Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;       /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156                                          struct net_device *dev,
157                                          struct netdev_notifier_info *info);
158
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191         while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209         spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223         struct net *net = dev_net(dev);
224
225         ASSERT_RTNL();
226
227         write_lock_bh(&dev_base_lock);
228         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230         hlist_add_head_rcu(&dev->index_hlist,
231                            dev_index_hash(net, dev->ifindex));
232         write_unlock_bh(&dev_base_lock);
233
234         dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242         ASSERT_RTNL();
243
244         /* Unlink dev from the device chain */
245         write_lock_bh(&dev_base_lock);
246         list_del_rcu(&dev->dev_list);
247         hlist_del_rcu(&dev->name_hlist);
248         hlist_del_rcu(&dev->index_hlist);
249         write_unlock_bh(&dev_base_lock);
250
251         dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255  *      Our notifier list
256  */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261  *      Device drivers call our routines to queue packets here. We empty the
262  *      queue in the local softnet handler.
263  */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312         int i;
313
314         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315                 if (netdev_lock_type[i] == dev_type)
316                         return i;
317         /* the last key is used by default */
318         return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322                                                  unsigned short dev_type)
323 {
324         int i;
325
326         i = netdev_lock_pos(dev_type);
327         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328                                    netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333         int i;
334
335         i = netdev_lock_pos(dev->type);
336         lockdep_set_class_and_name(&dev->addr_list_lock,
337                                    &netdev_addr_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342                                                  unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352                 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357  *      Add a protocol ID to the list. Now that the input handler is
358  *      smarter we can dispense with all the messy stuff that used to be
359  *      here.
360  *
361  *      BEWARE!!! Protocol handlers, mangling input packets,
362  *      MUST BE last in hash buckets and checking protocol handlers
363  *      MUST start from promiscuous ptype_all chain in net_bh.
364  *      It is true now, do not change it.
365  *      Explanation follows: if protocol handler, mangling packet, will
366  *      be the first on list, it is not able to sense, that packet
367  *      is cloned and should be copied-on-write, so that it will
368  *      change it and subsequent readers will get broken packet.
369  *                                                      --ANK (980803)
370  */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374         if (pt->type == htons(ETH_P_ALL))
375                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376         else
377                 return pt->dev ? &pt->dev->ptype_specific :
378                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382  *      dev_add_pack - add packet handler
383  *      @pt: packet type declaration
384  *
385  *      Add a protocol handler to the networking stack. The passed &packet_type
386  *      is linked into kernel lists and may not be freed until it has been
387  *      removed from the kernel lists.
388  *
389  *      This call does not sleep therefore it can not
390  *      guarantee all CPU's that are in middle of receiving packets
391  *      will see the new packet type (until the next received packet).
392  */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396         struct list_head *head = ptype_head(pt);
397
398         spin_lock(&ptype_lock);
399         list_add_rcu(&pt->list, head);
400         spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405  *      __dev_remove_pack        - remove packet handler
406  *      @pt: packet type declaration
407  *
408  *      Remove a protocol handler that was previously added to the kernel
409  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *      from the kernel lists and can be freed or reused once this function
411  *      returns.
412  *
413  *      The packet type might still be in use by receivers
414  *      and must not be freed until after all the CPU's have gone
415  *      through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419         struct list_head *head = ptype_head(pt);
420         struct packet_type *pt1;
421
422         spin_lock(&ptype_lock);
423
424         list_for_each_entry(pt1, head, list) {
425                 if (pt == pt1) {
426                         list_del_rcu(&pt->list);
427                         goto out;
428                 }
429         }
430
431         pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433         spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438  *      dev_remove_pack  - remove packet handler
439  *      @pt: packet type declaration
440  *
441  *      Remove a protocol handler that was previously added to the kernel
442  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *      from the kernel lists and can be freed or reused once this function
444  *      returns.
445  *
446  *      This call sleeps to guarantee that no CPU is looking at the packet
447  *      type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451         __dev_remove_pack(pt);
452
453         synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459  *      dev_add_offload - register offload handlers
460  *      @po: protocol offload declaration
461  *
462  *      Add protocol offload handlers to the networking stack. The passed
463  *      &proto_offload is linked into kernel lists and may not be freed until
464  *      it has been removed from the kernel lists.
465  *
466  *      This call does not sleep therefore it can not
467  *      guarantee all CPU's that are in middle of receiving packets
468  *      will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472         struct packet_offload *elem;
473
474         spin_lock(&offload_lock);
475         list_for_each_entry(elem, &offload_base, list) {
476                 if (po->priority < elem->priority)
477                         break;
478         }
479         list_add_rcu(&po->list, elem->list.prev);
480         spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483
484 /**
485  *      __dev_remove_offload     - remove offload handler
486  *      @po: packet offload declaration
487  *
488  *      Remove a protocol offload handler that was previously added to the
489  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *      is removed from the kernel lists and can be freed or reused once this
491  *      function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *      and must not be freed until after all the CPU's have gone
495  *      through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499         struct list_head *head = &offload_base;
500         struct packet_offload *po1;
501
502         spin_lock(&offload_lock);
503
504         list_for_each_entry(po1, head, list) {
505                 if (po == po1) {
506                         list_del_rcu(&po->list);
507                         goto out;
508                 }
509         }
510
511         pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513         spin_unlock(&offload_lock);
514 }
515
516 /**
517  *      dev_remove_offload       - remove packet offload handler
518  *      @po: packet offload declaration
519  *
520  *      Remove a packet offload handler that was previously added to the kernel
521  *      offload handlers by dev_add_offload(). The passed &offload_type is
522  *      removed from the kernel lists and can be freed or reused once this
523  *      function returns.
524  *
525  *      This call sleeps to guarantee that no CPU is looking at the packet
526  *      type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530         __dev_remove_offload(po);
531
532         synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535
536 /******************************************************************************
537
538                       Device Boot-time Settings Routines
539
540 *******************************************************************************/
541
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545 /**
546  *      netdev_boot_setup_add   - add new setup entry
547  *      @name: name of the device
548  *      @map: configured settings for the device
549  *
550  *      Adds new setup entry to the dev_boot_setup list.  The function
551  *      returns 0 on error and 1 on success.  This is a generic routine to
552  *      all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556         struct netdev_boot_setup *s;
557         int i;
558
559         s = dev_boot_setup;
560         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562                         memset(s[i].name, 0, sizeof(s[i].name));
563                         strlcpy(s[i].name, name, IFNAMSIZ);
564                         memcpy(&s[i].map, map, sizeof(s[i].map));
565                         break;
566                 }
567         }
568
569         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571
572 /**
573  *      netdev_boot_setup_check - check boot time settings
574  *      @dev: the netdevice
575  *
576  *      Check boot time settings for the device.
577  *      The found settings are set for the device to be used
578  *      later in the device probing.
579  *      Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583         struct netdev_boot_setup *s = dev_boot_setup;
584         int i;
585
586         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588                     !strcmp(dev->name, s[i].name)) {
589                         dev->irq        = s[i].map.irq;
590                         dev->base_addr  = s[i].map.base_addr;
591                         dev->mem_start  = s[i].map.mem_start;
592                         dev->mem_end    = s[i].map.mem_end;
593                         return 1;
594                 }
595         }
596         return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599
600
601 /**
602  *      netdev_boot_base        - get address from boot time settings
603  *      @prefix: prefix for network device
604  *      @unit: id for network device
605  *
606  *      Check boot time settings for the base address of device.
607  *      The found settings are set for the device to be used
608  *      later in the device probing.
609  *      Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613         const struct netdev_boot_setup *s = dev_boot_setup;
614         char name[IFNAMSIZ];
615         int i;
616
617         sprintf(name, "%s%d", prefix, unit);
618
619         /*
620          * If device already registered then return base of 1
621          * to indicate not to probe for this interface
622          */
623         if (__dev_get_by_name(&init_net, name))
624                 return 1;
625
626         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627                 if (!strcmp(name, s[i].name))
628                         return s[i].map.base_addr;
629         return 0;
630 }
631
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637         int ints[5];
638         struct ifmap map;
639
640         str = get_options(str, ARRAY_SIZE(ints), ints);
641         if (!str || !*str)
642                 return 0;
643
644         /* Save settings */
645         memset(&map, 0, sizeof(map));
646         if (ints[0] > 0)
647                 map.irq = ints[1];
648         if (ints[0] > 1)
649                 map.base_addr = ints[2];
650         if (ints[0] > 2)
651                 map.mem_start = ints[3];
652         if (ints[0] > 3)
653                 map.mem_end = ints[4];
654
655         /* Add new entry to the list */
656         return netdev_boot_setup_add(str, &map);
657 }
658
659 __setup("netdev=", netdev_boot_setup);
660
661 /*******************************************************************************
662
663                             Device Interface Subroutines
664
665 *******************************************************************************/
666
667 /**
668  *      dev_get_iflink  - get 'iflink' value of a interface
669  *      @dev: targeted interface
670  *
671  *      Indicates the ifindex the interface is linked to.
672  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674
675 int dev_get_iflink(const struct net_device *dev)
676 {
677         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678                 return dev->netdev_ops->ndo_get_iflink(dev);
679
680         return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685  *      __dev_get_by_name       - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name. Must be called under RTNL semaphore
690  *      or @dev_base_lock. If the name is found a pointer to the device
691  *      is returned. If the name is not found then %NULL is returned. The
692  *      reference counters are not incremented so the caller must be
693  *      careful with locks.
694  */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710  *      dev_get_by_name_rcu     - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name.
715  *      If the name is found a pointer to the device is returned.
716  *      If the name is not found then %NULL is returned.
717  *      The reference counters are not incremented so the caller must be
718  *      careful with locks. The caller must hold RCU lock.
719  */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724         struct hlist_head *head = dev_name_hash(net, name);
725
726         hlist_for_each_entry_rcu(dev, head, name_hlist)
727                 if (!strncmp(dev->name, name, IFNAMSIZ))
728                         return dev;
729
730         return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735  *      dev_get_by_name         - find a device by its name
736  *      @net: the applicable net namespace
737  *      @name: name to find
738  *
739  *      Find an interface by name. This can be called from any
740  *      context and does its own locking. The returned handle has
741  *      the usage count incremented and the caller must use dev_put() to
742  *      release it when it is no longer needed. %NULL is returned if no
743  *      matching device is found.
744  */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748         struct net_device *dev;
749
750         rcu_read_lock();
751         dev = dev_get_by_name_rcu(net, name);
752         if (dev)
753                 dev_hold(dev);
754         rcu_read_unlock();
755         return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760  *      __dev_get_by_index - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold either the RTNL semaphore
768  *      or @dev_base_lock.
769  */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773         struct net_device *dev;
774         struct hlist_head *head = dev_index_hash(net, ifindex);
775
776         hlist_for_each_entry(dev, head, index_hlist)
777                 if (dev->ifindex == ifindex)
778                         return dev;
779
780         return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785  *      dev_get_by_index_rcu - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns %NULL if the device
790  *      is not found or a pointer to the device. The device has not
791  *      had its reference counter increased so the caller must be careful
792  *      about locking. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798         struct hlist_head *head = dev_index_hash(net, ifindex);
799
800         hlist_for_each_entry_rcu(dev, head, index_hlist)
801                 if (dev->ifindex == ifindex)
802                         return dev;
803
804         return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810  *      dev_get_by_index - find a device by its ifindex
811  *      @net: the applicable net namespace
812  *      @ifindex: index of device
813  *
814  *      Search for an interface by index. Returns NULL if the device
815  *      is not found or a pointer to the device. The device returned has
816  *      had a reference added and the pointer is safe until the user calls
817  *      dev_put to indicate they have finished with it.
818  */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822         struct net_device *dev;
823
824         rcu_read_lock();
825         dev = dev_get_by_index_rcu(net, ifindex);
826         if (dev)
827                 dev_hold(dev);
828         rcu_read_unlock();
829         return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834  *      netdev_get_name - get a netdevice name, knowing its ifindex.
835  *      @net: network namespace
836  *      @name: a pointer to the buffer where the name will be stored.
837  *      @ifindex: the ifindex of the interface to get the name from.
838  *
839  *      The use of raw_seqcount_begin() and cond_resched() before
840  *      retrying is required as we want to give the writers a chance
841  *      to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845         struct net_device *dev;
846         unsigned int seq;
847
848 retry:
849         seq = raw_seqcount_begin(&devnet_rename_seq);
850         rcu_read_lock();
851         dev = dev_get_by_index_rcu(net, ifindex);
852         if (!dev) {
853                 rcu_read_unlock();
854                 return -ENODEV;
855         }
856
857         strcpy(name, dev->name);
858         rcu_read_unlock();
859         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860                 cond_resched();
861                 goto retry;
862         }
863
864         return 0;
865 }
866
867 /**
868  *      dev_getbyhwaddr_rcu - find a device by its hardware address
869  *      @net: the applicable net namespace
870  *      @type: media type of device
871  *      @ha: hardware address
872  *
873  *      Search for an interface by MAC address. Returns NULL if the device
874  *      is not found or a pointer to the device.
875  *      The caller must hold RCU or RTNL.
876  *      The returned device has not had its ref count increased
877  *      and the caller must therefore be careful about locking
878  *
879  */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882                                        const char *ha)
883 {
884         struct net_device *dev;
885
886         for_each_netdev_rcu(net, dev)
887                 if (dev->type == type &&
888                     !memcmp(dev->dev_addr, ha, dev->addr_len))
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897         struct net_device *dev;
898
899         ASSERT_RTNL();
900         for_each_netdev(net, dev)
901                 if (dev->type == type)
902                         return dev;
903
904         return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910         struct net_device *dev, *ret = NULL;
911
912         rcu_read_lock();
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type) {
915                         dev_hold(dev);
916                         ret = dev;
917                         break;
918                 }
919         rcu_read_unlock();
920         return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925  *      __dev_get_by_flags - find any device with given flags
926  *      @net: the applicable net namespace
927  *      @if_flags: IFF_* values
928  *      @mask: bitmask of bits in if_flags to check
929  *
930  *      Search for any interface with the given flags. Returns NULL if a device
931  *      is not found or a pointer to the device. Must be called inside
932  *      rtnl_lock(), and result refcount is unchanged.
933  */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936                                       unsigned short mask)
937 {
938         struct net_device *dev, *ret;
939
940         ASSERT_RTNL();
941
942         ret = NULL;
943         for_each_netdev(net, dev) {
944                 if (((dev->flags ^ if_flags) & mask) == 0) {
945                         ret = dev;
946                         break;
947                 }
948         }
949         return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954  *      dev_valid_name - check if name is okay for network device
955  *      @name: name string
956  *
957  *      Network device names need to be valid file names to
958  *      to allow sysfs to work.  We also disallow any kind of
959  *      whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963         if (*name == '\0')
964                 return false;
965         if (strlen(name) >= IFNAMSIZ)
966                 return false;
967         if (!strcmp(name, ".") || !strcmp(name, ".."))
968                 return false;
969
970         while (*name) {
971                 if (*name == '/' || *name == ':' || isspace(*name))
972                         return false;
973                 name++;
974         }
975         return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980  *      __dev_alloc_name - allocate a name for a device
981  *      @net: network namespace to allocate the device name in
982  *      @name: name format string
983  *      @buf:  scratch buffer and result name string
984  *
985  *      Passed a format string - eg "lt%d" it will try and find a suitable
986  *      id. It scans list of devices to build up a free map, then chooses
987  *      the first empty slot. The caller must hold the dev_base or rtnl lock
988  *      while allocating the name and adding the device in order to avoid
989  *      duplicates.
990  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *      Returns the number of the unit assigned or a negative errno code.
992  */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996         int i = 0;
997         const char *p;
998         const int max_netdevices = 8*PAGE_SIZE;
999         unsigned long *inuse;
1000         struct net_device *d;
1001
1002         p = strnchr(name, IFNAMSIZ-1, '%');
1003         if (p) {
1004                 /*
1005                  * Verify the string as this thing may have come from
1006                  * the user.  There must be either one "%d" and no other "%"
1007                  * characters.
1008                  */
1009                 if (p[1] != 'd' || strchr(p + 2, '%'))
1010                         return -EINVAL;
1011
1012                 /* Use one page as a bit array of possible slots */
1013                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014                 if (!inuse)
1015                         return -ENOMEM;
1016
1017                 for_each_netdev(net, d) {
1018                         if (!sscanf(d->name, name, &i))
1019                                 continue;
1020                         if (i < 0 || i >= max_netdevices)
1021                                 continue;
1022
1023                         /*  avoid cases where sscanf is not exact inverse of printf */
1024                         snprintf(buf, IFNAMSIZ, name, i);
1025                         if (!strncmp(buf, d->name, IFNAMSIZ))
1026                                 set_bit(i, inuse);
1027                 }
1028
1029                 i = find_first_zero_bit(inuse, max_netdevices);
1030                 free_page((unsigned long) inuse);
1031         }
1032
1033         if (buf != name)
1034                 snprintf(buf, IFNAMSIZ, name, i);
1035         if (!__dev_get_by_name(net, buf))
1036                 return i;
1037
1038         /* It is possible to run out of possible slots
1039          * when the name is long and there isn't enough space left
1040          * for the digits, or if all bits are used.
1041          */
1042         return -ENFILE;
1043 }
1044
1045 /**
1046  *      dev_alloc_name - allocate a name for a device
1047  *      @dev: device
1048  *      @name: name format string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061         char buf[IFNAMSIZ];
1062         struct net *net;
1063         int ret;
1064
1065         BUG_ON(!dev_net(dev));
1066         net = dev_net(dev);
1067         ret = __dev_alloc_name(net, name, buf);
1068         if (ret >= 0)
1069                 strlcpy(dev->name, buf, IFNAMSIZ);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075                              struct net_device *dev,
1076                              const char *name)
1077 {
1078         char buf[IFNAMSIZ];
1079         int ret;
1080
1081         ret = __dev_alloc_name(net, name, buf);
1082         if (ret >= 0)
1083                 strlcpy(dev->name, buf, IFNAMSIZ);
1084         return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088                               struct net_device *dev,
1089                               const char *name)
1090 {
1091         BUG_ON(!net);
1092
1093         if (!dev_valid_name(name))
1094                 return -EINVAL;
1095
1096         if (strchr(name, '%'))
1097                 return dev_alloc_name_ns(net, dev, name);
1098         else if (__dev_get_by_name(net, name))
1099                 return -EEXIST;
1100         else if (dev->name != name)
1101                 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103         return 0;
1104 }
1105
1106 /**
1107  *      dev_change_name - change name of a device
1108  *      @dev: device
1109  *      @newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *      Change name of a device, can pass format strings "eth%d".
1112  *      for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116         unsigned char old_assign_type;
1117         char oldname[IFNAMSIZ];
1118         int err = 0;
1119         int ret;
1120         struct net *net;
1121
1122         ASSERT_RTNL();
1123         BUG_ON(!dev_net(dev));
1124
1125         net = dev_net(dev);
1126         if (dev->flags & IFF_UP)
1127                 return -EBUSY;
1128
1129         write_seqcount_begin(&devnet_rename_seq);
1130
1131         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132                 write_seqcount_end(&devnet_rename_seq);
1133                 return 0;
1134         }
1135
1136         memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138         err = dev_get_valid_name(net, dev, newname);
1139         if (err < 0) {
1140                 write_seqcount_end(&devnet_rename_seq);
1141                 return err;
1142         }
1143
1144         if (oldname[0] && !strchr(oldname, '%'))
1145                 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147         old_assign_type = dev->name_assign_type;
1148         dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151         ret = device_rename(&dev->dev, dev->name);
1152         if (ret) {
1153                 memcpy(dev->name, oldname, IFNAMSIZ);
1154                 dev->name_assign_type = old_assign_type;
1155                 write_seqcount_end(&devnet_rename_seq);
1156                 return ret;
1157         }
1158
1159         write_seqcount_end(&devnet_rename_seq);
1160
1161         netdev_adjacent_rename_links(dev, oldname);
1162
1163         write_lock_bh(&dev_base_lock);
1164         hlist_del_rcu(&dev->name_hlist);
1165         write_unlock_bh(&dev_base_lock);
1166
1167         synchronize_rcu();
1168
1169         write_lock_bh(&dev_base_lock);
1170         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171         write_unlock_bh(&dev_base_lock);
1172
1173         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174         ret = notifier_to_errno(ret);
1175
1176         if (ret) {
1177                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178                 if (err >= 0) {
1179                         err = ret;
1180                         write_seqcount_begin(&devnet_rename_seq);
1181                         memcpy(dev->name, oldname, IFNAMSIZ);
1182                         memcpy(oldname, newname, IFNAMSIZ);
1183                         dev->name_assign_type = old_assign_type;
1184                         old_assign_type = NET_NAME_RENAMED;
1185                         goto rollback;
1186                 } else {
1187                         pr_err("%s: name change rollback failed: %d\n",
1188                                dev->name, ret);
1189                 }
1190         }
1191
1192         return err;
1193 }
1194
1195 /**
1196  *      dev_set_alias - change ifalias of a device
1197  *      @dev: device
1198  *      @alias: name up to IFALIASZ
1199  *      @len: limit of bytes to copy from info
1200  *
1201  *      Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205         char *new_ifalias;
1206
1207         ASSERT_RTNL();
1208
1209         if (len >= IFALIASZ)
1210                 return -EINVAL;
1211
1212         if (!len) {
1213                 kfree(dev->ifalias);
1214                 dev->ifalias = NULL;
1215                 return 0;
1216         }
1217
1218         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219         if (!new_ifalias)
1220                 return -ENOMEM;
1221         dev->ifalias = new_ifalias;
1222
1223         strlcpy(dev->ifalias, alias, len+1);
1224         return len;
1225 }
1226
1227
1228 /**
1229  *      netdev_features_change - device changes features
1230  *      @dev: device to cause notification
1231  *
1232  *      Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241  *      netdev_state_change - device changes state
1242  *      @dev: device to cause notification
1243  *
1244  *      Called to indicate a device has changed state. This function calls
1245  *      the notifier chains for netdev_chain and sends a NEWLINK message
1246  *      to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250         if (dev->flags & IFF_UP) {
1251                 struct netdev_notifier_change_info change_info;
1252
1253                 change_info.flags_changed = 0;
1254                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255                                               &change_info.info);
1256                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257         }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262  *      netdev_notify_peers - notify network peers about existence of @dev
1263  *      @dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273         rtnl_lock();
1274         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275         rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281         const struct net_device_ops *ops = dev->netdev_ops;
1282         int ret;
1283
1284         ASSERT_RTNL();
1285
1286         if (!netif_device_present(dev))
1287                 return -ENODEV;
1288
1289         /* Block netpoll from trying to do any rx path servicing.
1290          * If we don't do this there is a chance ndo_poll_controller
1291          * or ndo_poll may be running while we open the device
1292          */
1293         netpoll_poll_disable(dev);
1294
1295         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296         ret = notifier_to_errno(ret);
1297         if (ret)
1298                 return ret;
1299
1300         set_bit(__LINK_STATE_START, &dev->state);
1301
1302         if (ops->ndo_validate_addr)
1303                 ret = ops->ndo_validate_addr(dev);
1304
1305         if (!ret && ops->ndo_open)
1306                 ret = ops->ndo_open(dev);
1307
1308         netpoll_poll_enable(dev);
1309
1310         if (ret)
1311                 clear_bit(__LINK_STATE_START, &dev->state);
1312         else {
1313                 dev->flags |= IFF_UP;
1314                 dev_set_rx_mode(dev);
1315                 dev_activate(dev);
1316                 add_device_randomness(dev->dev_addr, dev->addr_len);
1317         }
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      dev_open        - prepare an interface for use.
1324  *      @dev:   device to open
1325  *
1326  *      Takes a device from down to up state. The device's private open
1327  *      function is invoked and then the multicast lists are loaded. Finally
1328  *      the device is moved into the up state and a %NETDEV_UP message is
1329  *      sent to the netdev notifier chain.
1330  *
1331  *      Calling this function on an active interface is a nop. On a failure
1332  *      a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336         int ret;
1337
1338         if (dev->flags & IFF_UP)
1339                 return 0;
1340
1341         ret = __dev_open(dev);
1342         if (ret < 0)
1343                 return ret;
1344
1345         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346         call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354         struct net_device *dev;
1355
1356         ASSERT_RTNL();
1357         might_sleep();
1358
1359         list_for_each_entry(dev, head, close_list) {
1360                 /* Temporarily disable netpoll until the interface is down */
1361                 netpoll_poll_disable(dev);
1362
1363                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365                 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368                  * can be even on different cpu. So just clear netif_running().
1369                  *
1370                  * dev->stop() will invoke napi_disable() on all of it's
1371                  * napi_struct instances on this device.
1372                  */
1373                 smp_mb__after_atomic(); /* Commit netif_running(). */
1374         }
1375
1376         dev_deactivate_many(head);
1377
1378         list_for_each_entry(dev, head, close_list) {
1379                 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381                 /*
1382                  *      Call the device specific close. This cannot fail.
1383                  *      Only if device is UP
1384                  *
1385                  *      We allow it to be called even after a DETACH hot-plug
1386                  *      event.
1387                  */
1388                 if (ops->ndo_stop)
1389                         ops->ndo_stop(dev);
1390
1391                 dev->flags &= ~IFF_UP;
1392                 netpoll_poll_enable(dev);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400         int retval;
1401         LIST_HEAD(single);
1402
1403         list_add(&dev->close_list, &single);
1404         retval = __dev_close_many(&single);
1405         list_del(&single);
1406
1407         return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412         struct net_device *dev, *tmp;
1413
1414         /* Remove the devices that don't need to be closed */
1415         list_for_each_entry_safe(dev, tmp, head, close_list)
1416                 if (!(dev->flags & IFF_UP))
1417                         list_del_init(&dev->close_list);
1418
1419         __dev_close_many(head);
1420
1421         list_for_each_entry_safe(dev, tmp, head, close_list) {
1422                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424                 if (unlink)
1425                         list_del_init(&dev->close_list);
1426         }
1427
1428         return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433  *      dev_close - shutdown an interface.
1434  *      @dev: device to shutdown
1435  *
1436  *      This function moves an active device into down state. A
1437  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *      chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443         if (dev->flags & IFF_UP) {
1444                 LIST_HEAD(single);
1445
1446                 list_add(&dev->close_list, &single);
1447                 dev_close_many(&single, true);
1448                 list_del(&single);
1449         }
1450         return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456  *      dev_disable_lro - disable Large Receive Offload on a device
1457  *      @dev: device
1458  *
1459  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *      called under RTNL.  This is needed if received packets may be
1461  *      forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465         struct net_device *lower_dev;
1466         struct list_head *iter;
1467
1468         dev->wanted_features &= ~NETIF_F_LRO;
1469         netdev_update_features(dev);
1470
1471         if (unlikely(dev->features & NETIF_F_LRO))
1472                 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474         netdev_for_each_lower_dev(dev, lower_dev, iter)
1475                 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480                                    struct net_device *dev)
1481 {
1482         struct netdev_notifier_info info;
1483
1484         netdev_notifier_info_init(&info, dev);
1485         return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491  *      register_netdevice_notifier - register a network notifier block
1492  *      @nb: notifier
1493  *
1494  *      Register a notifier to be called when network device events occur.
1495  *      The notifier passed is linked into the kernel structures and must
1496  *      not be reused until it has been unregistered. A negative errno code
1497  *      is returned on a failure.
1498  *
1499  *      When registered all registration and up events are replayed
1500  *      to the new notifier to allow device to have a race free
1501  *      view of the network device list.
1502  */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506         struct net_device *dev;
1507         struct net_device *last;
1508         struct net *net;
1509         int err;
1510
1511         rtnl_lock();
1512         err = raw_notifier_chain_register(&netdev_chain, nb);
1513         if (err)
1514                 goto unlock;
1515         if (dev_boot_phase)
1516                 goto unlock;
1517         for_each_net(net) {
1518                 for_each_netdev(net, dev) {
1519                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520                         err = notifier_to_errno(err);
1521                         if (err)
1522                                 goto rollback;
1523
1524                         if (!(dev->flags & IFF_UP))
1525                                 continue;
1526
1527                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1528                 }
1529         }
1530
1531 unlock:
1532         rtnl_unlock();
1533         return err;
1534
1535 rollback:
1536         last = dev;
1537         for_each_net(net) {
1538                 for_each_netdev(net, dev) {
1539                         if (dev == last)
1540                                 goto outroll;
1541
1542                         if (dev->flags & IFF_UP) {
1543                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544                                                         dev);
1545                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546                         }
1547                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548                 }
1549         }
1550
1551 outroll:
1552         raw_notifier_chain_unregister(&netdev_chain, nb);
1553         goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558  *      unregister_netdevice_notifier - unregister a network notifier block
1559  *      @nb: notifier
1560  *
1561  *      Unregister a notifier previously registered by
1562  *      register_netdevice_notifier(). The notifier is unlinked into the
1563  *      kernel structures and may then be reused. A negative errno code
1564  *      is returned on a failure.
1565  *
1566  *      After unregistering unregister and down device events are synthesized
1567  *      for all devices on the device list to the removed notifier to remove
1568  *      the need for special case cleanup code.
1569  */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573         struct net_device *dev;
1574         struct net *net;
1575         int err;
1576
1577         rtnl_lock();
1578         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579         if (err)
1580                 goto unlock;
1581
1582         for_each_net(net) {
1583                 for_each_netdev(net, dev) {
1584                         if (dev->flags & IFF_UP) {
1585                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586                                                         dev);
1587                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588                         }
1589                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590                 }
1591         }
1592 unlock:
1593         rtnl_unlock();
1594         return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599  *      call_netdevice_notifiers_info - call all network notifier blocks
1600  *      @val: value passed unmodified to notifier function
1601  *      @dev: net_device pointer passed unmodified to notifier function
1602  *      @info: notifier information data
1603  *
1604  *      Call all network notifier blocks.  Parameters and return value
1605  *      are as for raw_notifier_call_chain().
1606  */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609                                          struct net_device *dev,
1610                                          struct netdev_notifier_info *info)
1611 {
1612         ASSERT_RTNL();
1613         netdev_notifier_info_init(info, dev);
1614         return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618  *      call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *      Call all network notifier blocks.  Parameters and return value
1623  *      are as for raw_notifier_call_chain().
1624  */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628         struct netdev_notifier_info info;
1629
1630         return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639         static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645         static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664         if (deferred) {
1665                 while (--deferred)
1666                         static_key_slow_dec(&netstamp_needed);
1667                 return;
1668         }
1669 #endif
1670         static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677         if (in_interrupt()) {
1678                 atomic_inc(&netstamp_needed_deferred);
1679                 return;
1680         }
1681 #endif
1682         static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688         skb->tstamp.tv64 = 0;
1689         if (static_key_false(&netstamp_needed))
1690                 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB)                  \
1694         if (static_key_false(&netstamp_needed)) {               \
1695                 if ((COND) && !(SKB)->tstamp.tv64)      \
1696                         __net_timestamp(SKB);           \
1697         }                                               \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701         unsigned int len;
1702
1703         if (!(dev->flags & IFF_UP))
1704                 return false;
1705
1706         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707         if (skb->len <= len)
1708                 return true;
1709
1710         /* if TSO is enabled, we don't care about the length as the packet
1711          * could be forwarded without being segmented before
1712          */
1713         if (skb_is_gso(skb))
1714                 return true;
1715
1716         return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723             unlikely(!is_skb_forwardable(dev, skb))) {
1724                 atomic_long_inc(&dev->rx_dropped);
1725                 kfree_skb(skb);
1726                 return NET_RX_DROP;
1727         }
1728
1729         skb_scrub_packet(skb, true);
1730         skb->priority = 0;
1731         skb->protocol = eth_type_trans(skb, dev);
1732         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733
1734         return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *      NET_RX_SUCCESS  (no congestion)
1746  *      NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
1762 static inline int deliver_skb(struct sk_buff *skb,
1763                               struct packet_type *pt_prev,
1764                               struct net_device *orig_dev)
1765 {
1766         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767                 return -ENOMEM;
1768         atomic_inc(&skb->users);
1769         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773                                           struct packet_type **pt,
1774                                           struct net_device *orig_dev,
1775                                           __be16 type,
1776                                           struct list_head *ptype_list)
1777 {
1778         struct packet_type *ptype, *pt_prev = *pt;
1779
1780         list_for_each_entry_rcu(ptype, ptype_list, list) {
1781                 if (ptype->type != type)
1782                         continue;
1783                 if (pt_prev)
1784                         deliver_skb(skb, pt_prev, orig_dev);
1785                 pt_prev = ptype;
1786         }
1787         *pt = pt_prev;
1788 }
1789
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792         if (!ptype->af_packet_priv || !skb->sk)
1793                 return false;
1794
1795         if (ptype->id_match)
1796                 return ptype->id_match(ptype, skb->sk);
1797         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798                 return true;
1799
1800         return false;
1801 }
1802
1803 /*
1804  *      Support routine. Sends outgoing frames to any network
1805  *      taps currently in use.
1806  */
1807
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810         struct packet_type *ptype;
1811         struct sk_buff *skb2 = NULL;
1812         struct packet_type *pt_prev = NULL;
1813         struct list_head *ptype_list = &ptype_all;
1814
1815         rcu_read_lock();
1816 again:
1817         list_for_each_entry_rcu(ptype, ptype_list, list) {
1818                 /* Never send packets back to the socket
1819                  * they originated from - MvS (miquels@drinkel.ow.org)
1820                  */
1821                 if (skb_loop_sk(ptype, skb))
1822                         continue;
1823
1824                 if (pt_prev) {
1825                         deliver_skb(skb2, pt_prev, skb->dev);
1826                         pt_prev = ptype;
1827                         continue;
1828                 }
1829
1830                 /* need to clone skb, done only once */
1831                 skb2 = skb_clone(skb, GFP_ATOMIC);
1832                 if (!skb2)
1833                         goto out_unlock;
1834
1835                 net_timestamp_set(skb2);
1836
1837                 /* skb->nh should be correctly
1838                  * set by sender, so that the second statement is
1839                  * just protection against buggy protocols.
1840                  */
1841                 skb_reset_mac_header(skb2);
1842
1843                 if (skb_network_header(skb2) < skb2->data ||
1844                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846                                              ntohs(skb2->protocol),
1847                                              dev->name);
1848                         skb_reset_network_header(skb2);
1849                 }
1850
1851                 skb2->transport_header = skb2->network_header;
1852                 skb2->pkt_type = PACKET_OUTGOING;
1853                 pt_prev = ptype;
1854         }
1855
1856         if (ptype_list == &ptype_all) {
1857                 ptype_list = &dev->ptype_all;
1858                 goto again;
1859         }
1860 out_unlock:
1861         if (pt_prev)
1862                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863         rcu_read_unlock();
1864 }
1865
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881         int i;
1882         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884         /* If TC0 is invalidated disable TC mapping */
1885         if (tc->offset + tc->count > txq) {
1886                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887                 dev->num_tc = 0;
1888                 return;
1889         }
1890
1891         /* Invalidated prio to tc mappings set to TC0 */
1892         for (i = 1; i < TC_BITMASK + 1; i++) {
1893                 int q = netdev_get_prio_tc_map(dev, i);
1894
1895                 tc = &dev->tc_to_txq[q];
1896                 if (tc->offset + tc->count > txq) {
1897                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898                                 i, q);
1899                         netdev_set_prio_tc_map(dev, i, 0);
1900                 }
1901         }
1902 }
1903
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)             \
1907         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910                                         int cpu, u16 index)
1911 {
1912         struct xps_map *map = NULL;
1913         int pos;
1914
1915         if (dev_maps)
1916                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917
1918         for (pos = 0; map && pos < map->len; pos++) {
1919                 if (map->queues[pos] == index) {
1920                         if (map->len > 1) {
1921                                 map->queues[pos] = map->queues[--map->len];
1922                         } else {
1923                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924                                 kfree_rcu(map, rcu);
1925                                 map = NULL;
1926                         }
1927                         break;
1928                 }
1929         }
1930
1931         return map;
1932 }
1933
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936         struct xps_dev_maps *dev_maps;
1937         int cpu, i;
1938         bool active = false;
1939
1940         mutex_lock(&xps_map_mutex);
1941         dev_maps = xmap_dereference(dev->xps_maps);
1942
1943         if (!dev_maps)
1944                 goto out_no_maps;
1945
1946         for_each_possible_cpu(cpu) {
1947                 for (i = index; i < dev->num_tx_queues; i++) {
1948                         if (!remove_xps_queue(dev_maps, cpu, i))
1949                                 break;
1950                 }
1951                 if (i == dev->num_tx_queues)
1952                         active = true;
1953         }
1954
1955         if (!active) {
1956                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957                 kfree_rcu(dev_maps, rcu);
1958         }
1959
1960         for (i = index; i < dev->num_tx_queues; i++)
1961                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962                                              NUMA_NO_NODE);
1963
1964 out_no_maps:
1965         mutex_unlock(&xps_map_mutex);
1966 }
1967
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969                                       int cpu, u16 index)
1970 {
1971         struct xps_map *new_map;
1972         int alloc_len = XPS_MIN_MAP_ALLOC;
1973         int i, pos;
1974
1975         for (pos = 0; map && pos < map->len; pos++) {
1976                 if (map->queues[pos] != index)
1977                         continue;
1978                 return map;
1979         }
1980
1981         /* Need to add queue to this CPU's existing map */
1982         if (map) {
1983                 if (pos < map->alloc_len)
1984                         return map;
1985
1986                 alloc_len = map->alloc_len * 2;
1987         }
1988
1989         /* Need to allocate new map to store queue on this CPU's map */
1990         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991                                cpu_to_node(cpu));
1992         if (!new_map)
1993                 return NULL;
1994
1995         for (i = 0; i < pos; i++)
1996                 new_map->queues[i] = map->queues[i];
1997         new_map->alloc_len = alloc_len;
1998         new_map->len = pos;
1999
2000         return new_map;
2001 }
2002
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004                         u16 index)
2005 {
2006         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007         struct xps_map *map, *new_map;
2008         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009         int cpu, numa_node_id = -2;
2010         bool active = false;
2011
2012         mutex_lock(&xps_map_mutex);
2013
2014         dev_maps = xmap_dereference(dev->xps_maps);
2015
2016         /* allocate memory for queue storage */
2017         for_each_online_cpu(cpu) {
2018                 if (!cpumask_test_cpu(cpu, mask))
2019                         continue;
2020
2021                 if (!new_dev_maps)
2022                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023                 if (!new_dev_maps) {
2024                         mutex_unlock(&xps_map_mutex);
2025                         return -ENOMEM;
2026                 }
2027
2028                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029                                  NULL;
2030
2031                 map = expand_xps_map(map, cpu, index);
2032                 if (!map)
2033                         goto error;
2034
2035                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036         }
2037
2038         if (!new_dev_maps)
2039                 goto out_no_new_maps;
2040
2041         for_each_possible_cpu(cpu) {
2042                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043                         /* add queue to CPU maps */
2044                         int pos = 0;
2045
2046                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047                         while ((pos < map->len) && (map->queues[pos] != index))
2048                                 pos++;
2049
2050                         if (pos == map->len)
2051                                 map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053                         if (numa_node_id == -2)
2054                                 numa_node_id = cpu_to_node(cpu);
2055                         else if (numa_node_id != cpu_to_node(cpu))
2056                                 numa_node_id = -1;
2057 #endif
2058                 } else if (dev_maps) {
2059                         /* fill in the new device map from the old device map */
2060                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062                 }
2063
2064         }
2065
2066         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
2068         /* Cleanup old maps */
2069         if (dev_maps) {
2070                 for_each_possible_cpu(cpu) {
2071                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073                         if (map && map != new_map)
2074                                 kfree_rcu(map, rcu);
2075                 }
2076
2077                 kfree_rcu(dev_maps, rcu);
2078         }
2079
2080         dev_maps = new_dev_maps;
2081         active = true;
2082
2083 out_no_new_maps:
2084         /* update Tx queue numa node */
2085         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086                                      (numa_node_id >= 0) ? numa_node_id :
2087                                      NUMA_NO_NODE);
2088
2089         if (!dev_maps)
2090                 goto out_no_maps;
2091
2092         /* removes queue from unused CPUs */
2093         for_each_possible_cpu(cpu) {
2094                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095                         continue;
2096
2097                 if (remove_xps_queue(dev_maps, cpu, index))
2098                         active = true;
2099         }
2100
2101         /* free map if not active */
2102         if (!active) {
2103                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107 out_no_maps:
2108         mutex_unlock(&xps_map_mutex);
2109
2110         return 0;
2111 error:
2112         /* remove any maps that we added */
2113         for_each_possible_cpu(cpu) {
2114                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116                                  NULL;
2117                 if (new_map && new_map != map)
2118                         kfree(new_map);
2119         }
2120
2121         mutex_unlock(&xps_map_mutex);
2122
2123         kfree(new_dev_maps);
2124         return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135         int rc;
2136
2137         if (txq < 1 || txq > dev->num_tx_queues)
2138                 return -EINVAL;
2139
2140         if (dev->reg_state == NETREG_REGISTERED ||
2141             dev->reg_state == NETREG_UNREGISTERING) {
2142                 ASSERT_RTNL();
2143
2144                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145                                                   txq);
2146                 if (rc)
2147                         return rc;
2148
2149                 if (dev->num_tc)
2150                         netif_setup_tc(dev, txq);
2151
2152                 if (txq < dev->real_num_tx_queues) {
2153                         qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155                         netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157                 }
2158         }
2159
2160         dev->real_num_tx_queues = txq;
2161         return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *      @dev: Network device
2169  *      @rxq: Actual number of RX queues
2170  *
2171  *      This must be called either with the rtnl_lock held or before
2172  *      registration of the net device.  Returns 0 on success, or a
2173  *      negative error code.  If called before registration, it always
2174  *      succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178         int rc;
2179
2180         if (rxq < 1 || rxq > dev->num_rx_queues)
2181                 return -EINVAL;
2182
2183         if (dev->reg_state == NETREG_REGISTERED) {
2184                 ASSERT_RTNL();
2185
2186                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187                                                   rxq);
2188                 if (rc)
2189                         return rc;
2190         }
2191
2192         dev->real_num_rx_queues = rxq;
2193         return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212         struct softnet_data *sd;
2213         unsigned long flags;
2214
2215         local_irq_save(flags);
2216         sd = this_cpu_ptr(&softnet_data);
2217         q->next_sched = NULL;
2218         *sd->output_queue_tailp = q;
2219         sd->output_queue_tailp = &q->next_sched;
2220         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221         local_irq_restore(flags);
2222 }
2223
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227                 __netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230
2231 struct dev_kfree_skb_cb {
2232         enum skb_free_reason reason;
2233 };
2234
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237         return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242         rcu_read_lock();
2243         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246                 __netif_schedule(q);
2247         }
2248         rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251
2252 /**
2253  *      netif_wake_subqueue - allow sending packets on subqueue
2254  *      @dev: network device
2255  *      @queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264                 struct Qdisc *q;
2265
2266                 rcu_read_lock();
2267                 q = rcu_dereference(txq->qdisc);
2268                 __netif_schedule(q);
2269                 rcu_read_unlock();
2270         }
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277                 struct Qdisc *q;
2278
2279                 rcu_read_lock();
2280                 q = rcu_dereference(dev_queue->qdisc);
2281                 __netif_schedule(q);
2282                 rcu_read_unlock();
2283         }
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289         unsigned long flags;
2290
2291         if (likely(atomic_read(&skb->users) == 1)) {
2292                 smp_rmb();
2293                 atomic_set(&skb->users, 0);
2294         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295                 return;
2296         }
2297         get_kfree_skb_cb(skb)->reason = reason;
2298         local_irq_save(flags);
2299         skb->next = __this_cpu_read(softnet_data.completion_queue);
2300         __this_cpu_write(softnet_data.completion_queue, skb);
2301         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302         local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308         if (in_irq() || irqs_disabled())
2309                 __dev_kfree_skb_irq(skb, reason);
2310         else
2311                 dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314
2315
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325             netif_running(dev)) {
2326                 netif_tx_stop_all_queues(dev);
2327         }
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340             netif_running(dev)) {
2341                 netif_tx_wake_all_queues(dev);
2342                 __netdev_watchdog_up(dev);
2343         }
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352                   unsigned int num_tx_queues)
2353 {
2354         u32 hash;
2355         u16 qoffset = 0;
2356         u16 qcount = num_tx_queues;
2357
2358         if (skb_rx_queue_recorded(skb)) {
2359                 hash = skb_get_rx_queue(skb);
2360                 while (unlikely(hash >= num_tx_queues))
2361                         hash -= num_tx_queues;
2362                 return hash;
2363         }
2364
2365         if (dev->num_tc) {
2366                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367                 qoffset = dev->tc_to_txq[tc].offset;
2368                 qcount = dev->tc_to_txq[tc].count;
2369         }
2370
2371         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377         static const netdev_features_t null_features = 0;
2378         struct net_device *dev = skb->dev;
2379         const char *driver = "";
2380
2381         if (!net_ratelimit())
2382                 return;
2383
2384         if (dev && dev->dev.parent)
2385                 driver = dev_driver_string(dev->dev.parent);
2386
2387         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388              "gso_type=%d ip_summed=%d\n",
2389              driver, dev ? &dev->features : &null_features,
2390              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392              skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401         __wsum csum;
2402         int ret = 0, offset;
2403
2404         if (skb->ip_summed == CHECKSUM_COMPLETE)
2405                 goto out_set_summed;
2406
2407         if (unlikely(skb_shinfo(skb)->gso_size)) {
2408                 skb_warn_bad_offload(skb);
2409                 return -EINVAL;
2410         }
2411
2412         /* Before computing a checksum, we should make sure no frag could
2413          * be modified by an external entity : checksum could be wrong.
2414          */
2415         if (skb_has_shared_frag(skb)) {
2416                 ret = __skb_linearize(skb);
2417                 if (ret)
2418                         goto out;
2419         }
2420
2421         offset = skb_checksum_start_offset(skb);
2422         BUG_ON(offset >= skb_headlen(skb));
2423         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425         offset += skb->csum_offset;
2426         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428         if (skb_cloned(skb) &&
2429             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431                 if (ret)
2432                         goto out;
2433         }
2434
2435         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437         skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439         return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445         __be16 type = skb->protocol;
2446
2447         /* Tunnel gso handlers can set protocol to ethernet. */
2448         if (type == htons(ETH_P_TEB)) {
2449                 struct ethhdr *eth;
2450
2451                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452                         return 0;
2453
2454                 eth = (struct ethhdr *)skb_mac_header(skb);
2455                 type = eth->h_proto;
2456         }
2457
2458         return __vlan_get_protocol(skb, type, depth);
2459 }
2460
2461 /**
2462  *      skb_mac_gso_segment - mac layer segmentation handler.
2463  *      @skb: buffer to segment
2464  *      @features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467                                     netdev_features_t features)
2468 {
2469         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470         struct packet_offload *ptype;
2471         int vlan_depth = skb->mac_len;
2472         __be16 type = skb_network_protocol(skb, &vlan_depth);
2473
2474         if (unlikely(!type))
2475                 return ERR_PTR(-EINVAL);
2476
2477         __skb_pull(skb, vlan_depth);
2478
2479         rcu_read_lock();
2480         list_for_each_entry_rcu(ptype, &offload_base, list) {
2481                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2482                         segs = ptype->callbacks.gso_segment(skb, features);
2483                         break;
2484                 }
2485         }
2486         rcu_read_unlock();
2487
2488         __skb_push(skb, skb->data - skb_mac_header(skb));
2489
2490         return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499         if (tx_path)
2500                 return skb->ip_summed != CHECKSUM_PARTIAL;
2501         else
2502                 return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504
2505 /**
2506  *      __skb_gso_segment - Perform segmentation on skb.
2507  *      @skb: buffer to segment
2508  *      @features: features for the output path (see dev->features)
2509  *      @tx_path: whether it is called in TX path
2510  *
2511  *      This function segments the given skb and returns a list of segments.
2512  *
2513  *      It may return NULL if the skb requires no segmentation.  This is
2514  *      only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517                                   netdev_features_t features, bool tx_path)
2518 {
2519         if (unlikely(skb_needs_check(skb, tx_path))) {
2520                 int err;
2521
2522                 skb_warn_bad_offload(skb);
2523
2524                 err = skb_cow_head(skb, 0);
2525                 if (err < 0)
2526                         return ERR_PTR(err);
2527         }
2528
2529         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530         SKB_GSO_CB(skb)->encap_level = 0;
2531
2532         skb_reset_mac_header(skb);
2533         skb_reset_mac_len(skb);
2534
2535         return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543         if (net_ratelimit()) {
2544                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545                 dump_stack();
2546         }
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559         int i;
2560         if (!(dev->features & NETIF_F_HIGHDMA)) {
2561                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563                         if (PageHighMem(skb_frag_page(frag)))
2564                                 return 1;
2565                 }
2566         }
2567
2568         if (PCI_DMA_BUS_IS_PHYS) {
2569                 struct device *pdev = dev->dev.parent;
2570
2571                 if (!pdev)
2572                         return 0;
2573                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577                                 return 1;
2578                 }
2579         }
2580 #endif
2581         return 0;
2582 }
2583
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589                                            netdev_features_t features,
2590                                            __be16 type)
2591 {
2592         if (eth_p_mpls(type))
2593                 features &= skb->dev->mpls_features;
2594
2595         return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599                                            netdev_features_t features,
2600                                            __be16 type)
2601 {
2602         return features;
2603 }
2604 #endif
2605
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607         netdev_features_t features)
2608 {
2609         int tmp;
2610         __be16 type;
2611
2612         type = skb_network_protocol(skb, &tmp);
2613         features = net_mpls_features(skb, features, type);
2614
2615         if (skb->ip_summed != CHECKSUM_NONE &&
2616             !can_checksum_protocol(features, type)) {
2617                 features &= ~NETIF_F_ALL_CSUM;
2618         } else if (illegal_highdma(skb->dev, skb)) {
2619                 features &= ~NETIF_F_SG;
2620         }
2621
2622         return features;
2623 }
2624
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626                                           struct net_device *dev,
2627                                           netdev_features_t features)
2628 {
2629         return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634                                              struct net_device *dev,
2635                                              netdev_features_t features)
2636 {
2637         return vlan_features_check(skb, features);
2638 }
2639
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642         struct net_device *dev = skb->dev;
2643         netdev_features_t features = dev->features;
2644         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645
2646         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647                 features &= ~NETIF_F_GSO_MASK;
2648
2649         /* If encapsulation offload request, verify we are testing
2650          * hardware encapsulation features instead of standard
2651          * features for the netdev
2652          */
2653         if (skb->encapsulation)
2654                 features &= dev->hw_enc_features;
2655
2656         if (skb_vlan_tagged(skb))
2657                 features = netdev_intersect_features(features,
2658                                                      dev->vlan_features |
2659                                                      NETIF_F_HW_VLAN_CTAG_TX |
2660                                                      NETIF_F_HW_VLAN_STAG_TX);
2661
2662         if (dev->netdev_ops->ndo_features_check)
2663                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664                                                                 features);
2665         else
2666                 features &= dflt_features_check(skb, dev, features);
2667
2668         return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673                     struct netdev_queue *txq, bool more)
2674 {
2675         unsigned int len;
2676         int rc;
2677
2678         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679                 dev_queue_xmit_nit(skb, dev);
2680
2681         len = skb->len;
2682         trace_net_dev_start_xmit(skb, dev);
2683         rc = netdev_start_xmit(skb, dev, txq, more);
2684         trace_net_dev_xmit(skb, rc, dev, len);
2685
2686         return rc;
2687 }
2688
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690                                     struct netdev_queue *txq, int *ret)
2691 {
2692         struct sk_buff *skb = first;
2693         int rc = NETDEV_TX_OK;
2694
2695         while (skb) {
2696                 struct sk_buff *next = skb->next;
2697
2698                 skb->next = NULL;
2699                 rc = xmit_one(skb, dev, txq, next != NULL);
2700                 if (unlikely(!dev_xmit_complete(rc))) {
2701                         skb->next = next;
2702                         goto out;
2703                 }
2704
2705                 skb = next;
2706                 if (netif_xmit_stopped(txq) && skb) {
2707                         rc = NETDEV_TX_BUSY;
2708                         break;
2709                 }
2710         }
2711
2712 out:
2713         *ret = rc;
2714         return skb;
2715 }
2716
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718                                           netdev_features_t features)
2719 {
2720         if (skb_vlan_tag_present(skb) &&
2721             !vlan_hw_offload_capable(features, skb->vlan_proto))
2722                 skb = __vlan_hwaccel_push_inside(skb);
2723         return skb;
2724 }
2725
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728         netdev_features_t features;
2729
2730         if (skb->next)
2731                 return skb;
2732
2733         features = netif_skb_features(skb);
2734         skb = validate_xmit_vlan(skb, features);
2735         if (unlikely(!skb))
2736                 goto out_null;
2737
2738         if (netif_needs_gso(skb, features)) {
2739                 struct sk_buff *segs;
2740
2741                 segs = skb_gso_segment(skb, features);
2742                 if (IS_ERR(segs)) {
2743                         goto out_kfree_skb;
2744                 } else if (segs) {
2745                         consume_skb(skb);
2746                         skb = segs;
2747                 }
2748         } else {
2749                 if (skb_needs_linearize(skb, features) &&
2750                     __skb_linearize(skb))
2751                         goto out_kfree_skb;
2752
2753                 /* If packet is not checksummed and device does not
2754                  * support checksumming for this protocol, complete
2755                  * checksumming here.
2756                  */
2757                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758                         if (skb->encapsulation)
2759                                 skb_set_inner_transport_header(skb,
2760                                                                skb_checksum_start_offset(skb));
2761                         else
2762                                 skb_set_transport_header(skb,
2763                                                          skb_checksum_start_offset(skb));
2764                         if (!(features & NETIF_F_ALL_CSUM) &&
2765                             skb_checksum_help(skb))
2766                                 goto out_kfree_skb;
2767                 }
2768         }
2769
2770         return skb;
2771
2772 out_kfree_skb:
2773         kfree_skb(skb);
2774 out_null:
2775         return NULL;
2776 }
2777
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780         struct sk_buff *next, *head = NULL, *tail;
2781
2782         for (; skb != NULL; skb = next) {
2783                 next = skb->next;
2784                 skb->next = NULL;
2785
2786                 /* in case skb wont be segmented, point to itself */
2787                 skb->prev = skb;
2788
2789                 skb = validate_xmit_skb(skb, dev);
2790                 if (!skb)
2791                         continue;
2792
2793                 if (!head)
2794                         head = skb;
2795                 else
2796                         tail->next = skb;
2797                 /* If skb was segmented, skb->prev points to
2798                  * the last segment. If not, it still contains skb.
2799                  */
2800                 tail = skb->prev;
2801         }
2802         return head;
2803 }
2804
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809         qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811         /* To get more precise estimation of bytes sent on wire,
2812          * we add to pkt_len the headers size of all segments
2813          */
2814         if (shinfo->gso_size)  {
2815                 unsigned int hdr_len;
2816                 u16 gso_segs = shinfo->gso_segs;
2817
2818                 /* mac layer + network layer */
2819                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821                 /* + transport layer */
2822                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823                         hdr_len += tcp_hdrlen(skb);
2824                 else
2825                         hdr_len += sizeof(struct udphdr);
2826
2827                 if (shinfo->gso_type & SKB_GSO_DODGY)
2828                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829                                                 shinfo->gso_size);
2830
2831                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832         }
2833 }
2834
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836                                  struct net_device *dev,
2837                                  struct netdev_queue *txq)
2838 {
2839         spinlock_t *root_lock = qdisc_lock(q);
2840         bool contended;
2841         int rc;
2842
2843         qdisc_pkt_len_init(skb);
2844         qdisc_calculate_pkt_len(skb, q);
2845         /*
2846          * Heuristic to force contended enqueues to serialize on a
2847          * separate lock before trying to get qdisc main lock.
2848          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849          * often and dequeue packets faster.
2850          */
2851         contended = qdisc_is_running(q);
2852         if (unlikely(contended))
2853                 spin_lock(&q->busylock);
2854
2855         spin_lock(root_lock);
2856         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857                 kfree_skb(skb);
2858                 rc = NET_XMIT_DROP;
2859         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860                    qdisc_run_begin(q)) {
2861                 /*
2862                  * This is a work-conserving queue; there are no old skbs
2863                  * waiting to be sent out; and the qdisc is not running -
2864                  * xmit the skb directly.
2865                  */
2866
2867                 qdisc_bstats_update(q, skb);
2868
2869                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870                         if (unlikely(contended)) {
2871                                 spin_unlock(&q->busylock);
2872                                 contended = false;
2873                         }
2874                         __qdisc_run(q);
2875                 } else
2876                         qdisc_run_end(q);
2877
2878                 rc = NET_XMIT_SUCCESS;
2879         } else {
2880                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881                 if (qdisc_run_begin(q)) {
2882                         if (unlikely(contended)) {
2883                                 spin_unlock(&q->busylock);
2884                                 contended = false;
2885                         }
2886                         __qdisc_run(q);
2887                 }
2888         }
2889         spin_unlock(root_lock);
2890         if (unlikely(contended))
2891                 spin_unlock(&q->busylock);
2892         return rc;
2893 }
2894
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899
2900         if (!skb->priority && skb->sk && map) {
2901                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903                 if (prioidx < map->priomap_len)
2904                         skb->priority = map->priomap[prioidx];
2905         }
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913
2914 #define RECURSION_LIMIT 10
2915
2916 /**
2917  *      dev_loopback_xmit - loop back @skb
2918  *      @skb: buffer to transmit
2919  */
2920 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2921 {
2922         skb_reset_mac_header(skb);
2923         __skb_pull(skb, skb_network_offset(skb));
2924         skb->pkt_type = PACKET_LOOPBACK;
2925         skb->ip_summed = CHECKSUM_UNNECESSARY;
2926         WARN_ON(!skb_dst(skb));
2927         skb_dst_force(skb);
2928         netif_rx_ni(skb);
2929         return 0;
2930 }
2931 EXPORT_SYMBOL(dev_loopback_xmit);
2932
2933 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2934 {
2935 #ifdef CONFIG_XPS
2936         struct xps_dev_maps *dev_maps;
2937         struct xps_map *map;
2938         int queue_index = -1;
2939
2940         rcu_read_lock();
2941         dev_maps = rcu_dereference(dev->xps_maps);
2942         if (dev_maps) {
2943                 map = rcu_dereference(
2944                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2945                 if (map) {
2946                         if (map->len == 1)
2947                                 queue_index = map->queues[0];
2948                         else
2949                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2950                                                                            map->len)];
2951                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2952                                 queue_index = -1;
2953                 }
2954         }
2955         rcu_read_unlock();
2956
2957         return queue_index;
2958 #else
2959         return -1;
2960 #endif
2961 }
2962
2963 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2964 {
2965         struct sock *sk = skb->sk;
2966         int queue_index = sk_tx_queue_get(sk);
2967
2968         if (queue_index < 0 || skb->ooo_okay ||
2969             queue_index >= dev->real_num_tx_queues) {
2970                 int new_index = get_xps_queue(dev, skb);
2971                 if (new_index < 0)
2972                         new_index = skb_tx_hash(dev, skb);
2973
2974                 if (queue_index != new_index && sk &&
2975                     rcu_access_pointer(sk->sk_dst_cache))
2976                         sk_tx_queue_set(sk, new_index);
2977
2978                 queue_index = new_index;
2979         }
2980
2981         return queue_index;
2982 }
2983
2984 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2985                                     struct sk_buff *skb,
2986                                     void *accel_priv)
2987 {
2988         int queue_index = 0;
2989
2990 #ifdef CONFIG_XPS
2991         if (skb->sender_cpu == 0)
2992                 skb->sender_cpu = raw_smp_processor_id() + 1;
2993 #endif
2994
2995         if (dev->real_num_tx_queues != 1) {
2996                 const struct net_device_ops *ops = dev->netdev_ops;
2997                 if (ops->ndo_select_queue)
2998                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
2999                                                             __netdev_pick_tx);
3000                 else
3001                         queue_index = __netdev_pick_tx(dev, skb);
3002
3003                 if (!accel_priv)
3004                         queue_index = netdev_cap_txqueue(dev, queue_index);
3005         }
3006
3007         skb_set_queue_mapping(skb, queue_index);
3008         return netdev_get_tx_queue(dev, queue_index);
3009 }
3010
3011 /**
3012  *      __dev_queue_xmit - transmit a buffer
3013  *      @skb: buffer to transmit
3014  *      @accel_priv: private data used for L2 forwarding offload
3015  *
3016  *      Queue a buffer for transmission to a network device. The caller must
3017  *      have set the device and priority and built the buffer before calling
3018  *      this function. The function can be called from an interrupt.
3019  *
3020  *      A negative errno code is returned on a failure. A success does not
3021  *      guarantee the frame will be transmitted as it may be dropped due
3022  *      to congestion or traffic shaping.
3023  *
3024  * -----------------------------------------------------------------------------------
3025  *      I notice this method can also return errors from the queue disciplines,
3026  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3027  *      be positive.
3028  *
3029  *      Regardless of the return value, the skb is consumed, so it is currently
3030  *      difficult to retry a send to this method.  (You can bump the ref count
3031  *      before sending to hold a reference for retry if you are careful.)
3032  *
3033  *      When calling this method, interrupts MUST be enabled.  This is because
3034  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3035  *          --BLG
3036  */
3037 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3038 {
3039         struct net_device *dev = skb->dev;
3040         struct netdev_queue *txq;
3041         struct Qdisc *q;
3042         int rc = -ENOMEM;
3043
3044         skb_reset_mac_header(skb);
3045
3046         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3047                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3048
3049         /* Disable soft irqs for various locks below. Also
3050          * stops preemption for RCU.
3051          */
3052         rcu_read_lock_bh();
3053
3054         skb_update_prio(skb);
3055
3056         /* If device/qdisc don't need skb->dst, release it right now while
3057          * its hot in this cpu cache.
3058          */
3059         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3060                 skb_dst_drop(skb);
3061         else
3062                 skb_dst_force(skb);
3063
3064 #ifdef CONFIG_NET_SWITCHDEV
3065         /* Don't forward if offload device already forwarded */
3066         if (skb->offload_fwd_mark &&
3067             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3068                 consume_skb(skb);
3069                 rc = NET_XMIT_SUCCESS;
3070                 goto out;
3071         }
3072 #endif
3073
3074         txq = netdev_pick_tx(dev, skb, accel_priv);
3075         q = rcu_dereference_bh(txq->qdisc);
3076
3077 #ifdef CONFIG_NET_CLS_ACT
3078         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3079 #endif
3080         trace_net_dev_queue(skb);
3081         if (q->enqueue) {
3082                 rc = __dev_xmit_skb(skb, q, dev, txq);
3083                 goto out;
3084         }
3085
3086         /* The device has no queue. Common case for software devices:
3087            loopback, all the sorts of tunnels...
3088
3089            Really, it is unlikely that netif_tx_lock protection is necessary
3090            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3091            counters.)
3092            However, it is possible, that they rely on protection
3093            made by us here.
3094
3095            Check this and shot the lock. It is not prone from deadlocks.
3096            Either shot noqueue qdisc, it is even simpler 8)
3097          */
3098         if (dev->flags & IFF_UP) {
3099                 int cpu = smp_processor_id(); /* ok because BHs are off */
3100
3101                 if (txq->xmit_lock_owner != cpu) {
3102
3103                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3104                                 goto recursion_alert;
3105
3106                         skb = validate_xmit_skb(skb, dev);
3107                         if (!skb)
3108                                 goto drop;
3109
3110                         HARD_TX_LOCK(dev, txq, cpu);
3111
3112                         if (!netif_xmit_stopped(txq)) {
3113                                 __this_cpu_inc(xmit_recursion);
3114                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3115                                 __this_cpu_dec(xmit_recursion);
3116                                 if (dev_xmit_complete(rc)) {
3117                                         HARD_TX_UNLOCK(dev, txq);
3118                                         goto out;
3119                                 }
3120                         }
3121                         HARD_TX_UNLOCK(dev, txq);
3122                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3123                                              dev->name);
3124                 } else {
3125                         /* Recursion is detected! It is possible,
3126                          * unfortunately
3127                          */
3128 recursion_alert:
3129                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3130                                              dev->name);
3131                 }
3132         }
3133
3134         rc = -ENETDOWN;
3135 drop:
3136         rcu_read_unlock_bh();
3137
3138         atomic_long_inc(&dev->tx_dropped);
3139         kfree_skb_list(skb);
3140         return rc;
3141 out:
3142         rcu_read_unlock_bh();
3143         return rc;
3144 }
3145
3146 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3147 {
3148         return __dev_queue_xmit(skb, NULL);
3149 }
3150 EXPORT_SYMBOL(dev_queue_xmit_sk);
3151
3152 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3153 {
3154         return __dev_queue_xmit(skb, accel_priv);
3155 }
3156 EXPORT_SYMBOL(dev_queue_xmit_accel);
3157
3158
3159 /*=======================================================================
3160                         Receiver routines
3161   =======================================================================*/
3162
3163 int netdev_max_backlog __read_mostly = 1000;
3164 EXPORT_SYMBOL(netdev_max_backlog);
3165
3166 int netdev_tstamp_prequeue __read_mostly = 1;
3167 int netdev_budget __read_mostly = 300;
3168 int weight_p __read_mostly = 64;            /* old backlog weight */
3169
3170 /* Called with irq disabled */
3171 static inline void ____napi_schedule(struct softnet_data *sd,
3172                                      struct napi_struct *napi)
3173 {
3174         list_add_tail(&napi->poll_list, &sd->poll_list);
3175         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3176 }
3177
3178 #ifdef CONFIG_RPS
3179
3180 /* One global table that all flow-based protocols share. */
3181 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3182 EXPORT_SYMBOL(rps_sock_flow_table);
3183 u32 rps_cpu_mask __read_mostly;
3184 EXPORT_SYMBOL(rps_cpu_mask);
3185
3186 struct static_key rps_needed __read_mostly;
3187
3188 static struct rps_dev_flow *
3189 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3190             struct rps_dev_flow *rflow, u16 next_cpu)
3191 {
3192         if (next_cpu < nr_cpu_ids) {
3193 #ifdef CONFIG_RFS_ACCEL
3194                 struct netdev_rx_queue *rxqueue;
3195                 struct rps_dev_flow_table *flow_table;
3196                 struct rps_dev_flow *old_rflow;
3197                 u32 flow_id;
3198                 u16 rxq_index;
3199                 int rc;
3200
3201                 /* Should we steer this flow to a different hardware queue? */
3202                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3203                     !(dev->features & NETIF_F_NTUPLE))
3204                         goto out;
3205                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3206                 if (rxq_index == skb_get_rx_queue(skb))
3207                         goto out;
3208
3209                 rxqueue = dev->_rx + rxq_index;
3210                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3211                 if (!flow_table)
3212                         goto out;
3213                 flow_id = skb_get_hash(skb) & flow_table->mask;
3214                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3215                                                         rxq_index, flow_id);
3216                 if (rc < 0)
3217                         goto out;
3218                 old_rflow = rflow;
3219                 rflow = &flow_table->flows[flow_id];
3220                 rflow->filter = rc;
3221                 if (old_rflow->filter == rflow->filter)
3222                         old_rflow->filter = RPS_NO_FILTER;
3223         out:
3224 #endif
3225                 rflow->last_qtail =
3226                         per_cpu(softnet_data, next_cpu).input_queue_head;
3227         }
3228
3229         rflow->cpu = next_cpu;
3230         return rflow;
3231 }
3232
3233 /*
3234  * get_rps_cpu is called from netif_receive_skb and returns the target
3235  * CPU from the RPS map of the receiving queue for a given skb.
3236  * rcu_read_lock must be held on entry.
3237  */
3238 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3239                        struct rps_dev_flow **rflowp)
3240 {
3241         const struct rps_sock_flow_table *sock_flow_table;
3242         struct netdev_rx_queue *rxqueue = dev->_rx;
3243         struct rps_dev_flow_table *flow_table;
3244         struct rps_map *map;
3245         int cpu = -1;
3246         u32 tcpu;
3247         u32 hash;
3248
3249         if (skb_rx_queue_recorded(skb)) {
3250                 u16 index = skb_get_rx_queue(skb);
3251
3252                 if (unlikely(index >= dev->real_num_rx_queues)) {
3253                         WARN_ONCE(dev->real_num_rx_queues > 1,
3254                                   "%s received packet on queue %u, but number "
3255                                   "of RX queues is %u\n",
3256                                   dev->name, index, dev->real_num_rx_queues);
3257                         goto done;
3258                 }
3259                 rxqueue += index;
3260         }
3261
3262         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3263
3264         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3265         map = rcu_dereference(rxqueue->rps_map);
3266         if (!flow_table && !map)
3267                 goto done;
3268
3269         skb_reset_network_header(skb);
3270         hash = skb_get_hash(skb);
3271         if (!hash)
3272                 goto done;
3273
3274         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3275         if (flow_table && sock_flow_table) {
3276                 struct rps_dev_flow *rflow;
3277                 u32 next_cpu;
3278                 u32 ident;
3279
3280                 /* First check into global flow table if there is a match */
3281                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3282                 if ((ident ^ hash) & ~rps_cpu_mask)
3283                         goto try_rps;
3284
3285                 next_cpu = ident & rps_cpu_mask;
3286
3287                 /* OK, now we know there is a match,
3288                  * we can look at the local (per receive queue) flow table
3289                  */
3290                 rflow = &flow_table->flows[hash & flow_table->mask];
3291                 tcpu = rflow->cpu;
3292
3293                 /*
3294                  * If the desired CPU (where last recvmsg was done) is
3295                  * different from current CPU (one in the rx-queue flow
3296                  * table entry), switch if one of the following holds:
3297                  *   - Current CPU is unset (>= nr_cpu_ids).
3298                  *   - Current CPU is offline.
3299                  *   - The current CPU's queue tail has advanced beyond the
3300                  *     last packet that was enqueued using this table entry.
3301                  *     This guarantees that all previous packets for the flow
3302                  *     have been dequeued, thus preserving in order delivery.
3303                  */
3304                 if (unlikely(tcpu != next_cpu) &&
3305                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3306                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3307                       rflow->last_qtail)) >= 0)) {
3308                         tcpu = next_cpu;
3309                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3310                 }
3311
3312                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3313                         *rflowp = rflow;
3314                         cpu = tcpu;
3315                         goto done;
3316                 }
3317         }
3318
3319 try_rps:
3320
3321         if (map) {
3322                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3323                 if (cpu_online(tcpu)) {
3324                         cpu = tcpu;
3325                         goto done;
3326                 }
3327         }
3328
3329 done:
3330         return cpu;
3331 }
3332
3333 #ifdef CONFIG_RFS_ACCEL
3334
3335 /**
3336  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3337  * @dev: Device on which the filter was set
3338  * @rxq_index: RX queue index
3339  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3340  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3341  *
3342  * Drivers that implement ndo_rx_flow_steer() should periodically call
3343  * this function for each installed filter and remove the filters for
3344  * which it returns %true.
3345  */
3346 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3347                          u32 flow_id, u16 filter_id)
3348 {
3349         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3350         struct rps_dev_flow_table *flow_table;
3351         struct rps_dev_flow *rflow;
3352         bool expire = true;
3353         unsigned int cpu;
3354
3355         rcu_read_lock();
3356         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3357         if (flow_table && flow_id <= flow_table->mask) {
3358                 rflow = &flow_table->flows[flow_id];
3359                 cpu = ACCESS_ONCE(rflow->cpu);
3360                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3361                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3362                            rflow->last_qtail) <
3363                      (int)(10 * flow_table->mask)))
3364                         expire = false;
3365         }
3366         rcu_read_unlock();
3367         return expire;
3368 }
3369 EXPORT_SYMBOL(rps_may_expire_flow);
3370
3371 #endif /* CONFIG_RFS_ACCEL */
3372
3373 /* Called from hardirq (IPI) context */
3374 static void rps_trigger_softirq(void *data)
3375 {
3376         struct softnet_data *sd = data;
3377
3378         ____napi_schedule(sd, &sd->backlog);
3379         sd->received_rps++;
3380 }
3381
3382 #endif /* CONFIG_RPS */
3383
3384 /*
3385  * Check if this softnet_data structure is another cpu one
3386  * If yes, queue it to our IPI list and return 1
3387  * If no, return 0
3388  */
3389 static int rps_ipi_queued(struct softnet_data *sd)
3390 {
3391 #ifdef CONFIG_RPS
3392         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3393
3394         if (sd != mysd) {
3395                 sd->rps_ipi_next = mysd->rps_ipi_list;
3396                 mysd->rps_ipi_list = sd;
3397
3398                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3399                 return 1;
3400         }
3401 #endif /* CONFIG_RPS */
3402         return 0;
3403 }
3404
3405 #ifdef CONFIG_NET_FLOW_LIMIT
3406 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3407 #endif
3408
3409 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3410 {
3411 #ifdef CONFIG_NET_FLOW_LIMIT
3412         struct sd_flow_limit *fl;
3413         struct softnet_data *sd;
3414         unsigned int old_flow, new_flow;
3415
3416         if (qlen < (netdev_max_backlog >> 1))
3417                 return false;
3418
3419         sd = this_cpu_ptr(&softnet_data);
3420
3421         rcu_read_lock();
3422         fl = rcu_dereference(sd->flow_limit);
3423         if (fl) {
3424                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3425                 old_flow = fl->history[fl->history_head];
3426                 fl->history[fl->history_head] = new_flow;
3427
3428                 fl->history_head++;
3429                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3430
3431                 if (likely(fl->buckets[old_flow]))
3432                         fl->buckets[old_flow]--;
3433
3434                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3435                         fl->count++;
3436                         rcu_read_unlock();
3437                         return true;
3438                 }
3439         }
3440         rcu_read_unlock();
3441 #endif
3442         return false;
3443 }
3444
3445 /*
3446  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3447  * queue (may be a remote CPU queue).
3448  */
3449 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3450                               unsigned int *qtail)
3451 {
3452         struct softnet_data *sd;
3453         unsigned long flags;
3454         unsigned int qlen;
3455
3456         sd = &per_cpu(softnet_data, cpu);
3457
3458         local_irq_save(flags);
3459
3460         rps_lock(sd);
3461         if (!netif_running(skb->dev))
3462                 goto drop;
3463         qlen = skb_queue_len(&sd->input_pkt_queue);
3464         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3465                 if (qlen) {
3466 enqueue:
3467                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3468                         input_queue_tail_incr_save(sd, qtail);
3469                         rps_unlock(sd);
3470                         local_irq_restore(flags);
3471                         return NET_RX_SUCCESS;
3472                 }
3473
3474                 /* Schedule NAPI for backlog device
3475                  * We can use non atomic operation since we own the queue lock
3476                  */
3477                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3478                         if (!rps_ipi_queued(sd))
3479                                 ____napi_schedule(sd, &sd->backlog);
3480                 }
3481                 goto enqueue;
3482         }
3483
3484 drop:
3485         sd->dropped++;
3486         rps_unlock(sd);
3487
3488         local_irq_restore(flags);
3489
3490         atomic_long_inc(&skb->dev->rx_dropped);
3491         kfree_skb(skb);
3492         return NET_RX_DROP;
3493 }
3494
3495 static int netif_rx_internal(struct sk_buff *skb)
3496 {
3497         int ret;
3498
3499         net_timestamp_check(netdev_tstamp_prequeue, skb);
3500
3501         trace_netif_rx(skb);
3502 #ifdef CONFIG_RPS
3503         if (static_key_false(&rps_needed)) {
3504                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3505                 int cpu;
3506
3507                 preempt_disable();
3508                 rcu_read_lock();
3509
3510                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3511                 if (cpu < 0)
3512                         cpu = smp_processor_id();
3513
3514                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3515
3516                 rcu_read_unlock();
3517                 preempt_enable();
3518         } else
3519 #endif
3520         {
3521                 unsigned int qtail;
3522                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3523                 put_cpu();
3524         }
3525         return ret;
3526 }
3527
3528 /**
3529  *      netif_rx        -       post buffer to the network code
3530  *      @skb: buffer to post
3531  *
3532  *      This function receives a packet from a device driver and queues it for
3533  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3534  *      may be dropped during processing for congestion control or by the
3535  *      protocol layers.
3536  *
3537  *      return values:
3538  *      NET_RX_SUCCESS  (no congestion)
3539  *      NET_RX_DROP     (packet was dropped)
3540  *
3541  */
3542
3543 int netif_rx(struct sk_buff *skb)
3544 {
3545         trace_netif_rx_entry(skb);
3546
3547         return netif_rx_internal(skb);
3548 }
3549 EXPORT_SYMBOL(netif_rx);
3550
3551 int netif_rx_ni(struct sk_buff *skb)
3552 {
3553         int err;
3554
3555         trace_netif_rx_ni_entry(skb);
3556
3557         preempt_disable();
3558         err = netif_rx_internal(skb);
3559         if (local_softirq_pending())
3560                 do_softirq();
3561         preempt_enable();
3562
3563         return err;
3564 }
3565 EXPORT_SYMBOL(netif_rx_ni);
3566
3567 static void net_tx_action(struct softirq_action *h)
3568 {
3569         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3570
3571         if (sd->completion_queue) {
3572                 struct sk_buff *clist;
3573
3574                 local_irq_disable();
3575                 clist = sd->completion_queue;
3576                 sd->completion_queue = NULL;
3577                 local_irq_enable();
3578
3579                 while (clist) {
3580                         struct sk_buff *skb = clist;
3581                         clist = clist->next;
3582
3583                         WARN_ON(atomic_read(&skb->users));
3584                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3585                                 trace_consume_skb(skb);
3586                         else
3587                                 trace_kfree_skb(skb, net_tx_action);
3588                         __kfree_skb(skb);
3589                 }
3590         }
3591
3592         if (sd->output_queue) {
3593                 struct Qdisc *head;
3594
3595                 local_irq_disable();
3596                 head = sd->output_queue;
3597                 sd->output_queue = NULL;
3598                 sd->output_queue_tailp = &sd->output_queue;
3599                 local_irq_enable();
3600
3601                 while (head) {
3602                         struct Qdisc *q = head;
3603                         spinlock_t *root_lock;
3604
3605                         head = head->next_sched;
3606
3607                         root_lock = qdisc_lock(q);
3608                         if (spin_trylock(root_lock)) {
3609                                 smp_mb__before_atomic();
3610                                 clear_bit(__QDISC_STATE_SCHED,
3611                                           &q->state);
3612                                 qdisc_run(q);
3613                                 spin_unlock(root_lock);
3614                         } else {
3615                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3616                                               &q->state)) {
3617                                         __netif_reschedule(q);
3618                                 } else {
3619                                         smp_mb__before_atomic();
3620                                         clear_bit(__QDISC_STATE_SCHED,
3621                                                   &q->state);
3622                                 }
3623                         }
3624                 }
3625         }
3626 }
3627
3628 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3629     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3630 /* This hook is defined here for ATM LANE */
3631 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3632                              unsigned char *addr) __read_mostly;
3633 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3634 #endif
3635
3636 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3637                                          struct packet_type **pt_prev,
3638                                          int *ret, struct net_device *orig_dev)
3639 {
3640 #ifdef CONFIG_NET_CLS_ACT
3641         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3642         struct tcf_result cl_res;
3643
3644         /* If there's at least one ingress present somewhere (so
3645          * we get here via enabled static key), remaining devices
3646          * that are not configured with an ingress qdisc will bail
3647          * out here.
3648          */
3649         if (!cl)
3650                 return skb;
3651         if (*pt_prev) {
3652                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3653                 *pt_prev = NULL;
3654         }
3655
3656         qdisc_skb_cb(skb)->pkt_len = skb->len;
3657         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3658         qdisc_bstats_cpu_update(cl->q, skb);
3659
3660         switch (tc_classify(skb, cl, &cl_res, false)) {
3661         case TC_ACT_OK:
3662         case TC_ACT_RECLASSIFY:
3663                 skb->tc_index = TC_H_MIN(cl_res.classid);
3664                 break;
3665         case TC_ACT_SHOT:
3666                 qdisc_qstats_cpu_drop(cl->q);
3667         case TC_ACT_STOLEN:
3668         case TC_ACT_QUEUED:
3669                 kfree_skb(skb);
3670                 return NULL;
3671         default:
3672                 break;
3673         }
3674 #endif /* CONFIG_NET_CLS_ACT */
3675         return skb;
3676 }
3677
3678 /**
3679  *      netdev_rx_handler_register - register receive handler
3680  *      @dev: device to register a handler for
3681  *      @rx_handler: receive handler to register
3682  *      @rx_handler_data: data pointer that is used by rx handler
3683  *
3684  *      Register a receive handler for a device. This handler will then be
3685  *      called from __netif_receive_skb. A negative errno code is returned
3686  *      on a failure.
3687  *
3688  *      The caller must hold the rtnl_mutex.
3689  *
3690  *      For a general description of rx_handler, see enum rx_handler_result.
3691  */
3692 int netdev_rx_handler_register(struct net_device *dev,
3693                                rx_handler_func_t *rx_handler,
3694                                void *rx_handler_data)
3695 {
3696         ASSERT_RTNL();
3697
3698         if (dev->rx_handler)
3699                 return -EBUSY;
3700
3701         /* Note: rx_handler_data must be set before rx_handler */
3702         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3703         rcu_assign_pointer(dev->rx_handler, rx_handler);
3704
3705         return 0;
3706 }
3707 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3708
3709 /**
3710  *      netdev_rx_handler_unregister - unregister receive handler
3711  *      @dev: device to unregister a handler from
3712  *
3713  *      Unregister a receive handler from a device.
3714  *
3715  *      The caller must hold the rtnl_mutex.
3716  */
3717 void netdev_rx_handler_unregister(struct net_device *dev)
3718 {
3719
3720         ASSERT_RTNL();
3721         RCU_INIT_POINTER(dev->rx_handler, NULL);
3722         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3723          * section has a guarantee to see a non NULL rx_handler_data
3724          * as well.
3725          */
3726         synchronize_net();
3727         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3728 }
3729 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3730
3731 /*
3732  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3733  * the special handling of PFMEMALLOC skbs.
3734  */
3735 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3736 {
3737         switch (skb->protocol) {
3738         case htons(ETH_P_ARP):
3739         case htons(ETH_P_IP):
3740         case htons(ETH_P_IPV6):
3741         case htons(ETH_P_8021Q):
3742         case htons(ETH_P_8021AD):
3743                 return true;
3744         default:
3745                 return false;
3746         }
3747 }
3748
3749 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3750                              int *ret, struct net_device *orig_dev)
3751 {
3752 #ifdef CONFIG_NETFILTER_INGRESS
3753         if (nf_hook_ingress_active(skb)) {
3754                 if (*pt_prev) {
3755                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3756                         *pt_prev = NULL;
3757                 }
3758
3759                 return nf_hook_ingress(skb);
3760         }
3761 #endif /* CONFIG_NETFILTER_INGRESS */
3762         return 0;
3763 }
3764
3765 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3766 {
3767         struct packet_type *ptype, *pt_prev;
3768         rx_handler_func_t *rx_handler;
3769         struct net_device *orig_dev;
3770         bool deliver_exact = false;
3771         int ret = NET_RX_DROP;
3772         __be16 type;
3773
3774         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3775
3776         trace_netif_receive_skb(skb);
3777
3778         orig_dev = skb->dev;
3779
3780         skb_reset_network_header(skb);
3781         if (!skb_transport_header_was_set(skb))
3782                 skb_reset_transport_header(skb);
3783         skb_reset_mac_len(skb);
3784
3785         pt_prev = NULL;
3786
3787 another_round:
3788         skb->skb_iif = skb->dev->ifindex;
3789
3790         __this_cpu_inc(softnet_data.processed);
3791
3792         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3793             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3794                 skb = skb_vlan_untag(skb);
3795                 if (unlikely(!skb))
3796                         goto out;
3797         }
3798
3799 #ifdef CONFIG_NET_CLS_ACT
3800         if (skb->tc_verd & TC_NCLS) {
3801                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3802                 goto ncls;
3803         }
3804 #endif
3805
3806         if (pfmemalloc)
3807                 goto skip_taps;
3808
3809         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3810                 if (pt_prev)
3811                         ret = deliver_skb(skb, pt_prev, orig_dev);
3812                 pt_prev = ptype;
3813         }
3814
3815         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3816                 if (pt_prev)
3817                         ret = deliver_skb(skb, pt_prev, orig_dev);
3818                 pt_prev = ptype;
3819         }
3820
3821 skip_taps:
3822 #ifdef CONFIG_NET_INGRESS
3823         if (static_key_false(&ingress_needed)) {
3824                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3825                 if (!skb)
3826                         goto out;
3827
3828                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3829                         goto out;
3830         }
3831 #endif
3832 #ifdef CONFIG_NET_CLS_ACT
3833         skb->tc_verd = 0;
3834 ncls:
3835 #endif
3836         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3837                 goto drop;
3838
3839         if (skb_vlan_tag_present(skb)) {
3840                 if (pt_prev) {
3841                         ret = deliver_skb(skb, pt_prev, orig_dev);
3842                         pt_prev = NULL;
3843                 }
3844                 if (vlan_do_receive(&skb))
3845                         goto another_round;
3846                 else if (unlikely(!skb))
3847                         goto out;
3848         }
3849
3850         rx_handler = rcu_dereference(skb->dev->rx_handler);
3851         if (rx_handler) {
3852                 if (pt_prev) {
3853                         ret = deliver_skb(skb, pt_prev, orig_dev);
3854                         pt_prev = NULL;
3855                 }
3856                 switch (rx_handler(&skb)) {
3857                 case RX_HANDLER_CONSUMED:
3858                         ret = NET_RX_SUCCESS;
3859                         goto out;
3860                 case RX_HANDLER_ANOTHER:
3861                         goto another_round;
3862                 case RX_HANDLER_EXACT:
3863                         deliver_exact = true;
3864                 case RX_HANDLER_PASS:
3865                         break;
3866                 default:
3867                         BUG();
3868                 }
3869         }
3870
3871         if (unlikely(skb_vlan_tag_present(skb))) {
3872                 if (skb_vlan_tag_get_id(skb))
3873                         skb->pkt_type = PACKET_OTHERHOST;
3874                 /* Note: we might in the future use prio bits
3875                  * and set skb->priority like in vlan_do_receive()
3876                  * For the time being, just ignore Priority Code Point
3877                  */
3878                 skb->vlan_tci = 0;
3879         }
3880
3881         type = skb->protocol;
3882
3883         /* deliver only exact match when indicated */
3884         if (likely(!deliver_exact)) {
3885                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3886                                        &ptype_base[ntohs(type) &
3887                                                    PTYPE_HASH_MASK]);
3888         }
3889
3890         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3891                                &orig_dev->ptype_specific);
3892
3893         if (unlikely(skb->dev != orig_dev)) {
3894                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3895                                        &skb->dev->ptype_specific);
3896         }
3897
3898         if (pt_prev) {
3899                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3900                         goto drop;
3901                 else
3902                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3903         } else {
3904 drop:
3905                 atomic_long_inc(&skb->dev->rx_dropped);
3906                 kfree_skb(skb);
3907                 /* Jamal, now you will not able to escape explaining
3908                  * me how you were going to use this. :-)
3909                  */
3910                 ret = NET_RX_DROP;
3911         }
3912
3913 out:
3914         return ret;
3915 }
3916
3917 static int __netif_receive_skb(struct sk_buff *skb)
3918 {
3919         int ret;
3920
3921         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3922                 unsigned long pflags = current->flags;
3923
3924                 /*
3925                  * PFMEMALLOC skbs are special, they should
3926                  * - be delivered to SOCK_MEMALLOC sockets only
3927                  * - stay away from userspace
3928                  * - have bounded memory usage
3929                  *
3930                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3931                  * context down to all allocation sites.
3932                  */
3933                 current->flags |= PF_MEMALLOC;
3934                 ret = __netif_receive_skb_core(skb, true);
3935                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3936         } else
3937                 ret = __netif_receive_skb_core(skb, false);
3938
3939         return ret;
3940 }
3941
3942 static int netif_receive_skb_internal(struct sk_buff *skb)
3943 {
3944         int ret;
3945
3946         net_timestamp_check(netdev_tstamp_prequeue, skb);
3947
3948         if (skb_defer_rx_timestamp(skb))
3949                 return NET_RX_SUCCESS;
3950
3951         rcu_read_lock();
3952
3953 #ifdef CONFIG_RPS
3954         if (static_key_false(&rps_needed)) {
3955                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3956                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3957
3958                 if (cpu >= 0) {
3959                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3960                         rcu_read_unlock();
3961                         return ret;
3962                 }
3963         }
3964 #endif
3965         ret = __netif_receive_skb(skb);
3966         rcu_read_unlock();
3967         return ret;
3968 }
3969
3970 /**
3971  *      netif_receive_skb - process receive buffer from network
3972  *      @skb: buffer to process
3973  *
3974  *      netif_receive_skb() is the main receive data processing function.
3975  *      It always succeeds. The buffer may be dropped during processing
3976  *      for congestion control or by the protocol layers.
3977  *
3978  *      This function may only be called from softirq context and interrupts
3979  *      should be enabled.
3980  *
3981  *      Return values (usually ignored):
3982  *      NET_RX_SUCCESS: no congestion
3983  *      NET_RX_DROP: packet was dropped
3984  */
3985 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3986 {
3987         trace_netif_receive_skb_entry(skb);
3988
3989         return netif_receive_skb_internal(skb);
3990 }
3991 EXPORT_SYMBOL(netif_receive_skb_sk);
3992
3993 /* Network device is going away, flush any packets still pending
3994  * Called with irqs disabled.
3995  */
3996 static void flush_backlog(void *arg)
3997 {
3998         struct net_device *dev = arg;
3999         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4000         struct sk_buff *skb, *tmp;
4001
4002         rps_lock(sd);
4003         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4004                 if (skb->dev == dev) {
4005                         __skb_unlink(skb, &sd->input_pkt_queue);
4006                         kfree_skb(skb);
4007                         input_queue_head_incr(sd);
4008                 }
4009         }
4010         rps_unlock(sd);
4011
4012         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4013                 if (skb->dev == dev) {
4014                         __skb_unlink(skb, &sd->process_queue);
4015                         kfree_skb(skb);
4016                         input_queue_head_incr(sd);
4017                 }
4018         }
4019 }
4020
4021 static int napi_gro_complete(struct sk_buff *skb)
4022 {
4023         struct packet_offload *ptype;
4024         __be16 type = skb->protocol;
4025         struct list_head *head = &offload_base;
4026         int err = -ENOENT;
4027
4028         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4029
4030         if (NAPI_GRO_CB(skb)->count == 1) {
4031                 skb_shinfo(skb)->gso_size = 0;
4032                 goto out;
4033         }
4034
4035         rcu_read_lock();
4036         list_for_each_entry_rcu(ptype, head, list) {
4037                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4038                         continue;
4039
4040                 err = ptype->callbacks.gro_complete(skb, 0);
4041                 break;
4042         }
4043         rcu_read_unlock();
4044
4045         if (err) {
4046                 WARN_ON(&ptype->list == head);
4047                 kfree_skb(skb);
4048                 return NET_RX_SUCCESS;
4049         }
4050
4051 out:
4052         return netif_receive_skb_internal(skb);
4053 }
4054
4055 /* napi->gro_list contains packets ordered by age.
4056  * youngest packets at the head of it.
4057  * Complete skbs in reverse order to reduce latencies.
4058  */
4059 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4060 {
4061         struct sk_buff *skb, *prev = NULL;
4062
4063         /* scan list and build reverse chain */
4064         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4065                 skb->prev = prev;
4066                 prev = skb;
4067         }
4068
4069         for (skb = prev; skb; skb = prev) {
4070                 skb->next = NULL;
4071
4072                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4073                         return;
4074
4075                 prev = skb->prev;
4076                 napi_gro_complete(skb);
4077                 napi->gro_count--;
4078         }
4079
4080         napi->gro_list = NULL;
4081 }
4082 EXPORT_SYMBOL(napi_gro_flush);
4083
4084 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4085 {
4086         struct sk_buff *p;
4087         unsigned int maclen = skb->dev->hard_header_len;
4088         u32 hash = skb_get_hash_raw(skb);
4089
4090         for (p = napi->gro_list; p; p = p->next) {
4091                 unsigned long diffs;
4092
4093                 NAPI_GRO_CB(p)->flush = 0;
4094
4095                 if (hash != skb_get_hash_raw(p)) {
4096                         NAPI_GRO_CB(p)->same_flow = 0;
4097                         continue;
4098                 }
4099
4100                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4101                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4102                 if (maclen == ETH_HLEN)
4103                         diffs |= compare_ether_header(skb_mac_header(p),
4104                                                       skb_mac_header(skb));
4105                 else if (!diffs)
4106                         diffs = memcmp(skb_mac_header(p),
4107                                        skb_mac_header(skb),
4108                                        maclen);
4109                 NAPI_GRO_CB(p)->same_flow = !diffs;
4110         }
4111 }
4112
4113 static void skb_gro_reset_offset(struct sk_buff *skb)
4114 {
4115         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4116         const skb_frag_t *frag0 = &pinfo->frags[0];
4117
4118         NAPI_GRO_CB(skb)->data_offset = 0;
4119         NAPI_GRO_CB(skb)->frag0 = NULL;
4120         NAPI_GRO_CB(skb)->frag0_len = 0;
4121
4122         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4123             pinfo->nr_frags &&
4124             !PageHighMem(skb_frag_page(frag0))) {
4125                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4126                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4127         }
4128 }
4129
4130 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4131 {
4132         struct skb_shared_info *pinfo = skb_shinfo(skb);
4133
4134         BUG_ON(skb->end - skb->tail < grow);
4135
4136         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4137
4138         skb->data_len -= grow;
4139         skb->tail += grow;
4140
4141         pinfo->frags[0].page_offset += grow;
4142         skb_frag_size_sub(&pinfo->frags[0], grow);
4143
4144         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4145                 skb_frag_unref(skb, 0);
4146                 memmove(pinfo->frags, pinfo->frags + 1,
4147                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4148         }
4149 }
4150
4151 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153         struct sk_buff **pp = NULL;
4154         struct packet_offload *ptype;
4155         __be16 type = skb->protocol;
4156         struct list_head *head = &offload_base;
4157         int same_flow;
4158         enum gro_result ret;
4159         int grow;
4160
4161         if (!(skb->dev->features & NETIF_F_GRO))
4162                 goto normal;
4163
4164         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4165                 goto normal;
4166
4167         gro_list_prepare(napi, skb);
4168
4169         rcu_read_lock();
4170         list_for_each_entry_rcu(ptype, head, list) {
4171                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4172                         continue;
4173
4174                 skb_set_network_header(skb, skb_gro_offset(skb));
4175                 skb_reset_mac_len(skb);
4176                 NAPI_GRO_CB(skb)->same_flow = 0;
4177                 NAPI_GRO_CB(skb)->flush = 0;
4178                 NAPI_GRO_CB(skb)->free = 0;
4179                 NAPI_GRO_CB(skb)->udp_mark = 0;
4180                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4181
4182                 /* Setup for GRO checksum validation */
4183                 switch (skb->ip_summed) {
4184                 case CHECKSUM_COMPLETE:
4185                         NAPI_GRO_CB(skb)->csum = skb->csum;
4186                         NAPI_GRO_CB(skb)->csum_valid = 1;
4187                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4188                         break;
4189                 case CHECKSUM_UNNECESSARY:
4190                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4191                         NAPI_GRO_CB(skb)->csum_valid = 0;
4192                         break;
4193                 default:
4194                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4195                         NAPI_GRO_CB(skb)->csum_valid = 0;
4196                 }
4197
4198                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4199                 break;
4200         }
4201         rcu_read_unlock();
4202
4203         if (&ptype->list == head)
4204                 goto normal;
4205
4206         same_flow = NAPI_GRO_CB(skb)->same_flow;
4207         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4208
4209         if (pp) {
4210                 struct sk_buff *nskb = *pp;
4211
4212                 *pp = nskb->next;
4213                 nskb->next = NULL;
4214                 napi_gro_complete(nskb);
4215                 napi->gro_count--;
4216         }
4217
4218         if (same_flow)
4219                 goto ok;
4220
4221         if (NAPI_GRO_CB(skb)->flush)
4222                 goto normal;
4223
4224         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4225                 struct sk_buff *nskb = napi->gro_list;
4226
4227                 /* locate the end of the list to select the 'oldest' flow */
4228                 while (nskb->next) {
4229                         pp = &nskb->next;
4230                         nskb = *pp;
4231                 }
4232                 *pp = NULL;
4233                 nskb->next = NULL;
4234                 napi_gro_complete(nskb);
4235         } else {
4236                 napi->gro_count++;
4237         }
4238         NAPI_GRO_CB(skb)->count = 1;
4239         NAPI_GRO_CB(skb)->age = jiffies;
4240         NAPI_GRO_CB(skb)->last = skb;
4241         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4242         skb->next = napi->gro_list;
4243         napi->gro_list = skb;
4244         ret = GRO_HELD;
4245
4246 pull:
4247         grow = skb_gro_offset(skb) - skb_headlen(skb);
4248         if (grow > 0)
4249                 gro_pull_from_frag0(skb, grow);
4250 ok:
4251         return ret;
4252
4253 normal:
4254         ret = GRO_NORMAL;
4255         goto pull;
4256 }
4257
4258 struct packet_offload *gro_find_receive_by_type(__be16 type)
4259 {
4260         struct list_head *offload_head = &offload_base;
4261         struct packet_offload *ptype;
4262
4263         list_for_each_entry_rcu(ptype, offload_head, list) {
4264                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4265                         continue;
4266                 return ptype;
4267         }
4268         return NULL;
4269 }
4270 EXPORT_SYMBOL(gro_find_receive_by_type);
4271
4272 struct packet_offload *gro_find_complete_by_type(__be16 type)
4273 {
4274         struct list_head *offload_head = &offload_base;
4275         struct packet_offload *ptype;
4276
4277         list_for_each_entry_rcu(ptype, offload_head, list) {
4278                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4279                         continue;
4280                 return ptype;
4281         }
4282         return NULL;
4283 }
4284 EXPORT_SYMBOL(gro_find_complete_by_type);
4285
4286 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4287 {
4288         switch (ret) {
4289         case GRO_NORMAL:
4290                 if (netif_receive_skb_internal(skb))
4291                         ret = GRO_DROP;
4292                 break;
4293
4294         case GRO_DROP:
4295                 kfree_skb(skb);
4296                 break;
4297
4298         case GRO_MERGED_FREE:
4299                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4300                         kmem_cache_free(skbuff_head_cache, skb);
4301                 else
4302                         __kfree_skb(skb);
4303                 break;
4304
4305         case GRO_HELD:
4306         case GRO_MERGED:
4307                 break;
4308         }
4309
4310         return ret;
4311 }
4312
4313 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4314 {
4315         trace_napi_gro_receive_entry(skb);
4316
4317         skb_gro_reset_offset(skb);
4318
4319         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4320 }
4321 EXPORT_SYMBOL(napi_gro_receive);
4322
4323 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325         if (unlikely(skb->pfmemalloc)) {
4326                 consume_skb(skb);
4327                 return;
4328         }
4329         __skb_pull(skb, skb_headlen(skb));
4330         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4331         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4332         skb->vlan_tci = 0;
4333         skb->dev = napi->dev;
4334         skb->skb_iif = 0;
4335         skb->encapsulation = 0;
4336         skb_shinfo(skb)->gso_type = 0;
4337         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4338
4339         napi->skb = skb;
4340 }
4341
4342 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4343 {
4344         struct sk_buff *skb = napi->skb;
4345
4346         if (!skb) {
4347                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4348                 napi->skb = skb;
4349         }
4350         return skb;
4351 }
4352 EXPORT_SYMBOL(napi_get_frags);
4353
4354 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4355                                       struct sk_buff *skb,
4356                                       gro_result_t ret)
4357 {
4358         switch (ret) {
4359         case GRO_NORMAL:
4360         case GRO_HELD:
4361                 __skb_push(skb, ETH_HLEN);
4362                 skb->protocol = eth_type_trans(skb, skb->dev);
4363                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4364                         ret = GRO_DROP;
4365                 break;
4366
4367         case GRO_DROP:
4368         case GRO_MERGED_FREE:
4369                 napi_reuse_skb(napi, skb);
4370                 break;
4371
4372         case GRO_MERGED:
4373                 break;
4374         }
4375
4376         return ret;
4377 }
4378
4379 /* Upper GRO stack assumes network header starts at gro_offset=0
4380  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4381  * We copy ethernet header into skb->data to have a common layout.
4382  */
4383 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4384 {
4385         struct sk_buff *skb = napi->skb;
4386         const struct ethhdr *eth;
4387         unsigned int hlen = sizeof(*eth);
4388
4389         napi->skb = NULL;
4390
4391         skb_reset_mac_header(skb);
4392         skb_gro_reset_offset(skb);
4393
4394         eth = skb_gro_header_fast(skb, 0);
4395         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4396                 eth = skb_gro_header_slow(skb, hlen, 0);
4397                 if (unlikely(!eth)) {
4398                         napi_reuse_skb(napi, skb);
4399                         return NULL;
4400                 }
4401         } else {
4402                 gro_pull_from_frag0(skb, hlen);
4403                 NAPI_GRO_CB(skb)->frag0 += hlen;
4404                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4405         }
4406         __skb_pull(skb, hlen);
4407
4408         /*
4409          * This works because the only protocols we care about don't require
4410          * special handling.
4411          * We'll fix it up properly in napi_frags_finish()
4412          */
4413         skb->protocol = eth->h_proto;
4414
4415         return skb;
4416 }
4417
4418 gro_result_t napi_gro_frags(struct napi_struct *napi)
4419 {
4420         struct sk_buff *skb = napi_frags_skb(napi);
4421
4422         if (!skb)
4423                 return GRO_DROP;
4424
4425         trace_napi_gro_frags_entry(skb);
4426
4427         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4428 }
4429 EXPORT_SYMBOL(napi_gro_frags);
4430
4431 /* Compute the checksum from gro_offset and return the folded value
4432  * after adding in any pseudo checksum.
4433  */
4434 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4435 {
4436         __wsum wsum;
4437         __sum16 sum;
4438
4439         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4440
4441         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4442         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4443         if (likely(!sum)) {
4444                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4445                     !skb->csum_complete_sw)
4446                         netdev_rx_csum_fault(skb->dev);
4447         }
4448
4449         NAPI_GRO_CB(skb)->csum = wsum;
4450         NAPI_GRO_CB(skb)->csum_valid = 1;
4451
4452         return sum;
4453 }
4454 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4455
4456 /*
4457  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4458  * Note: called with local irq disabled, but exits with local irq enabled.
4459  */
4460 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4461 {
4462 #ifdef CONFIG_RPS
4463         struct softnet_data *remsd = sd->rps_ipi_list;
4464
4465         if (remsd) {
4466                 sd->rps_ipi_list = NULL;
4467
4468                 local_irq_enable();
4469
4470                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4471                 while (remsd) {
4472                         struct softnet_data *next = remsd->rps_ipi_next;
4473
4474                         if (cpu_online(remsd->cpu))
4475                                 smp_call_function_single_async(remsd->cpu,
4476                                                            &remsd->csd);
4477                         remsd = next;
4478                 }
4479         } else
4480 #endif
4481                 local_irq_enable();
4482 }
4483
4484 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4485 {
4486 #ifdef CONFIG_RPS
4487         return sd->rps_ipi_list != NULL;
4488 #else
4489         return false;
4490 #endif
4491 }
4492
4493 static int process_backlog(struct napi_struct *napi, int quota)
4494 {
4495         int work = 0;
4496         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4497
4498         /* Check if we have pending ipi, its better to send them now,
4499          * not waiting net_rx_action() end.
4500          */
4501         if (sd_has_rps_ipi_waiting(sd)) {
4502                 local_irq_disable();
4503                 net_rps_action_and_irq_enable(sd);
4504         }
4505
4506         napi->weight = weight_p;
4507         local_irq_disable();
4508         while (1) {
4509                 struct sk_buff *skb;
4510
4511                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4512                         rcu_read_lock();
4513                         local_irq_enable();
4514                         __netif_receive_skb(skb);
4515                         rcu_read_unlock();
4516                         local_irq_disable();
4517                         input_queue_head_incr(sd);
4518                         if (++work >= quota) {
4519                                 local_irq_enable();
4520                                 return work;
4521                         }
4522                 }
4523
4524                 rps_lock(sd);
4525                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4526                         /*
4527                          * Inline a custom version of __napi_complete().
4528                          * only current cpu owns and manipulates this napi,
4529                          * and NAPI_STATE_SCHED is the only possible flag set
4530                          * on backlog.
4531                          * We can use a plain write instead of clear_bit(),
4532                          * and we dont need an smp_mb() memory barrier.
4533                          */
4534                         napi->state = 0;
4535                         rps_unlock(sd);
4536
4537                         break;
4538                 }
4539
4540                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4541                                            &sd->process_queue);
4542                 rps_unlock(sd);
4543         }
4544         local_irq_enable();
4545
4546         return work;
4547 }
4548
4549 /**
4550  * __napi_schedule - schedule for receive
4551  * @n: entry to schedule
4552  *
4553  * The entry's receive function will be scheduled to run.
4554  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4555  */
4556 void __napi_schedule(struct napi_struct *n)
4557 {
4558         unsigned long flags;
4559
4560         local_irq_save(flags);
4561         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4562         local_irq_restore(flags);
4563 }
4564 EXPORT_SYMBOL(__napi_schedule);
4565
4566 /**
4567  * __napi_schedule_irqoff - schedule for receive
4568  * @n: entry to schedule
4569  *
4570  * Variant of __napi_schedule() assuming hard irqs are masked
4571  */
4572 void __napi_schedule_irqoff(struct napi_struct *n)
4573 {
4574         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4575 }
4576 EXPORT_SYMBOL(__napi_schedule_irqoff);
4577
4578 void __napi_complete(struct napi_struct *n)
4579 {
4580         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4581
4582         list_del_init(&n->poll_list);
4583         smp_mb__before_atomic();
4584         clear_bit(NAPI_STATE_SCHED, &n->state);
4585 }
4586 EXPORT_SYMBOL(__napi_complete);
4587
4588 void napi_complete_done(struct napi_struct *n, int work_done)
4589 {
4590         unsigned long flags;
4591
4592         /*
4593          * don't let napi dequeue from the cpu poll list
4594          * just in case its running on a different cpu
4595          */
4596         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4597                 return;
4598
4599         if (n->gro_list) {
4600                 unsigned long timeout = 0;
4601
4602                 if (work_done)
4603                         timeout = n->dev->gro_flush_timeout;
4604
4605                 if (timeout)
4606                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4607                                       HRTIMER_MODE_REL_PINNED);
4608                 else
4609                         napi_gro_flush(n, false);
4610         }
4611         if (likely(list_empty(&n->poll_list))) {
4612                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4613         } else {
4614                 /* If n->poll_list is not empty, we need to mask irqs */
4615                 local_irq_save(flags);
4616                 __napi_complete(n);
4617                 local_irq_restore(flags);
4618         }
4619 }
4620 EXPORT_SYMBOL(napi_complete_done);
4621
4622 /* must be called under rcu_read_lock(), as we dont take a reference */
4623 struct napi_struct *napi_by_id(unsigned int napi_id)
4624 {
4625         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4626         struct napi_struct *napi;
4627
4628         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4629                 if (napi->napi_id == napi_id)
4630                         return napi;
4631
4632         return NULL;
4633 }
4634 EXPORT_SYMBOL_GPL(napi_by_id);
4635
4636 void napi_hash_add(struct napi_struct *napi)
4637 {
4638         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4639
4640                 spin_lock(&napi_hash_lock);
4641
4642                 /* 0 is not a valid id, we also skip an id that is taken
4643                  * we expect both events to be extremely rare
4644                  */
4645                 napi->napi_id = 0;
4646                 while (!napi->napi_id) {
4647                         napi->napi_id = ++napi_gen_id;
4648                         if (napi_by_id(napi->napi_id))
4649                                 napi->napi_id = 0;
4650                 }
4651
4652                 hlist_add_head_rcu(&napi->napi_hash_node,
4653                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4654
4655                 spin_unlock(&napi_hash_lock);
4656         }
4657 }
4658 EXPORT_SYMBOL_GPL(napi_hash_add);
4659
4660 /* Warning : caller is responsible to make sure rcu grace period
4661  * is respected before freeing memory containing @napi
4662  */
4663 void napi_hash_del(struct napi_struct *napi)
4664 {
4665         spin_lock(&napi_hash_lock);
4666
4667         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4668                 hlist_del_rcu(&napi->napi_hash_node);
4669
4670         spin_unlock(&napi_hash_lock);
4671 }
4672 EXPORT_SYMBOL_GPL(napi_hash_del);
4673
4674 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4675 {
4676         struct napi_struct *napi;
4677
4678         napi = container_of(timer, struct napi_struct, timer);
4679         if (napi->gro_list)
4680                 napi_schedule(napi);
4681
4682         return HRTIMER_NORESTART;
4683 }
4684
4685 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4686                     int (*poll)(struct napi_struct *, int), int weight)
4687 {
4688         INIT_LIST_HEAD(&napi->poll_list);
4689         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4690         napi->timer.function = napi_watchdog;
4691         napi->gro_count = 0;
4692         napi->gro_list = NULL;
4693         napi->skb = NULL;
4694         napi->poll = poll;
4695         if (weight > NAPI_POLL_WEIGHT)
4696                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4697                             weight, dev->name);
4698         napi->weight = weight;
4699         list_add(&napi->dev_list, &dev->napi_list);
4700         napi->dev = dev;
4701 #ifdef CONFIG_NETPOLL
4702         spin_lock_init(&napi->poll_lock);
4703         napi->poll_owner = -1;
4704 #endif
4705         set_bit(NAPI_STATE_SCHED, &napi->state);
4706 }
4707 EXPORT_SYMBOL(netif_napi_add);
4708
4709 void napi_disable(struct napi_struct *n)
4710 {
4711         might_sleep();
4712         set_bit(NAPI_STATE_DISABLE, &n->state);
4713
4714         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4715                 msleep(1);
4716         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4717                 msleep(1);
4718
4719         hrtimer_cancel(&n->timer);
4720
4721         clear_bit(NAPI_STATE_DISABLE, &n->state);
4722 }
4723 EXPORT_SYMBOL(napi_disable);
4724
4725 void netif_napi_del(struct napi_struct *napi)
4726 {
4727         list_del_init(&napi->dev_list);
4728         napi_free_frags(napi);
4729
4730         kfree_skb_list(napi->gro_list);
4731         napi->gro_list = NULL;
4732         napi->gro_count = 0;
4733 }
4734 EXPORT_SYMBOL(netif_napi_del);
4735
4736 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4737 {
4738         void *have;
4739         int work, weight;
4740
4741         list_del_init(&n->poll_list);
4742
4743         have = netpoll_poll_lock(n);
4744
4745         weight = n->weight;
4746
4747         /* This NAPI_STATE_SCHED test is for avoiding a race
4748          * with netpoll's poll_napi().  Only the entity which
4749          * obtains the lock and sees NAPI_STATE_SCHED set will
4750          * actually make the ->poll() call.  Therefore we avoid
4751          * accidentally calling ->poll() when NAPI is not scheduled.
4752          */
4753         work = 0;
4754         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4755                 work = n->poll(n, weight);
4756                 trace_napi_poll(n);
4757         }
4758
4759         WARN_ON_ONCE(work > weight);
4760
4761         if (likely(work < weight))
4762                 goto out_unlock;
4763
4764         /* Drivers must not modify the NAPI state if they
4765          * consume the entire weight.  In such cases this code
4766          * still "owns" the NAPI instance and therefore can
4767          * move the instance around on the list at-will.
4768          */
4769         if (unlikely(napi_disable_pending(n))) {
4770                 napi_complete(n);
4771                 goto out_unlock;
4772         }
4773
4774         if (n->gro_list) {
4775                 /* flush too old packets
4776                  * If HZ < 1000, flush all packets.
4777                  */
4778                 napi_gro_flush(n, HZ >= 1000);
4779         }
4780
4781         /* Some drivers may have called napi_schedule
4782          * prior to exhausting their budget.
4783          */
4784         if (unlikely(!list_empty(&n->poll_list))) {
4785                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4786                              n->dev ? n->dev->name : "backlog");
4787                 goto out_unlock;
4788         }
4789
4790         list_add_tail(&n->poll_list, repoll);
4791
4792 out_unlock:
4793         netpoll_poll_unlock(have);
4794
4795         return work;
4796 }
4797
4798 static void net_rx_action(struct softirq_action *h)
4799 {
4800         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4801         unsigned long time_limit = jiffies + 2;
4802         int budget = netdev_budget;
4803         LIST_HEAD(list);
4804         LIST_HEAD(repoll);
4805
4806         local_irq_disable();
4807         list_splice_init(&sd->poll_list, &list);
4808         local_irq_enable();
4809
4810         for (;;) {
4811                 struct napi_struct *n;
4812
4813                 if (list_empty(&list)) {
4814                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4815                                 return;
4816                         break;
4817                 }
4818
4819                 n = list_first_entry(&list, struct napi_struct, poll_list);
4820                 budget -= napi_poll(n, &repoll);
4821
4822                 /* If softirq window is exhausted then punt.
4823                  * Allow this to run for 2 jiffies since which will allow
4824                  * an average latency of 1.5/HZ.
4825                  */
4826                 if (unlikely(budget <= 0 ||
4827                              time_after_eq(jiffies, time_limit))) {
4828                         sd->time_squeeze++;
4829                         break;
4830                 }
4831         }
4832
4833         local_irq_disable();
4834
4835         list_splice_tail_init(&sd->poll_list, &list);
4836         list_splice_tail(&repoll, &list);
4837         list_splice(&list, &sd->poll_list);
4838         if (!list_empty(&sd->poll_list))
4839                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4840
4841         net_rps_action_and_irq_enable(sd);
4842 }
4843
4844 struct netdev_adjacent {
4845         struct net_device *dev;
4846
4847         /* upper master flag, there can only be one master device per list */
4848         bool master;
4849
4850         /* counter for the number of times this device was added to us */
4851         u16 ref_nr;
4852
4853         /* private field for the users */
4854         void *private;
4855
4856         struct list_head list;
4857         struct rcu_head rcu;
4858 };
4859
4860 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4861                                                  struct net_device *adj_dev,
4862                                                  struct list_head *adj_list)
4863 {
4864         struct netdev_adjacent *adj;
4865
4866         list_for_each_entry(adj, adj_list, list) {
4867                 if (adj->dev == adj_dev)
4868                         return adj;
4869         }
4870         return NULL;
4871 }
4872
4873 /**
4874  * netdev_has_upper_dev - Check if device is linked to an upper device
4875  * @dev: device
4876  * @upper_dev: upper device to check
4877  *
4878  * Find out if a device is linked to specified upper device and return true
4879  * in case it is. Note that this checks only immediate upper device,
4880  * not through a complete stack of devices. The caller must hold the RTNL lock.
4881  */
4882 bool netdev_has_upper_dev(struct net_device *dev,
4883                           struct net_device *upper_dev)
4884 {
4885         ASSERT_RTNL();
4886
4887         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4888 }
4889 EXPORT_SYMBOL(netdev_has_upper_dev);
4890
4891 /**
4892  * netdev_has_any_upper_dev - Check if device is linked to some device
4893  * @dev: device
4894  *
4895  * Find out if a device is linked to an upper device and return true in case
4896  * it is. The caller must hold the RTNL lock.
4897  */
4898 static bool netdev_has_any_upper_dev(struct net_device *dev)
4899 {
4900         ASSERT_RTNL();
4901
4902         return !list_empty(&dev->all_adj_list.upper);
4903 }
4904
4905 /**
4906  * netdev_master_upper_dev_get - Get master upper device
4907  * @dev: device
4908  *
4909  * Find a master upper device and return pointer to it or NULL in case
4910  * it's not there. The caller must hold the RTNL lock.
4911  */
4912 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4913 {
4914         struct netdev_adjacent *upper;
4915
4916         ASSERT_RTNL();
4917
4918         if (list_empty(&dev->adj_list.upper))
4919                 return NULL;
4920
4921         upper = list_first_entry(&dev->adj_list.upper,
4922                                  struct netdev_adjacent, list);
4923         if (likely(upper->master))
4924                 return upper->dev;
4925         return NULL;
4926 }
4927 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4928
4929 void *netdev_adjacent_get_private(struct list_head *adj_list)
4930 {
4931         struct netdev_adjacent *adj;
4932
4933         adj = list_entry(adj_list, struct netdev_adjacent, list);
4934
4935         return adj->private;
4936 }
4937 EXPORT_SYMBOL(netdev_adjacent_get_private);
4938
4939 /**
4940  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4941  * @dev: device
4942  * @iter: list_head ** of the current position
4943  *
4944  * Gets the next device from the dev's upper list, starting from iter
4945  * position. The caller must hold RCU read lock.
4946  */
4947 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4948                                                  struct list_head **iter)
4949 {
4950         struct netdev_adjacent *upper;
4951
4952         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4953
4954         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4955
4956         if (&upper->list == &dev->adj_list.upper)
4957                 return NULL;
4958
4959         *iter = &upper->list;
4960
4961         return upper->dev;
4962 }
4963 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4964
4965 /**
4966  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4967  * @dev: device
4968  * @iter: list_head ** of the current position
4969  *
4970  * Gets the next device from the dev's upper list, starting from iter
4971  * position. The caller must hold RCU read lock.
4972  */
4973 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4974                                                      struct list_head **iter)
4975 {
4976         struct netdev_adjacent *upper;
4977
4978         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4979
4980         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4981
4982         if (&upper->list == &dev->all_adj_list.upper)
4983                 return NULL;
4984
4985         *iter = &upper->list;
4986
4987         return upper->dev;
4988 }
4989 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4990
4991 /**
4992  * netdev_lower_get_next_private - Get the next ->private from the
4993  *                                 lower neighbour list
4994  * @dev: device
4995  * @iter: list_head ** of the current position
4996  *
4997  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4998  * list, starting from iter position. The caller must hold either hold the
4999  * RTNL lock or its own locking that guarantees that the neighbour lower
5000  * list will remain unchanged.
5001  */
5002 void *netdev_lower_get_next_private(struct net_device *dev,
5003                                     struct list_head **iter)
5004 {
5005         struct netdev_adjacent *lower;
5006
5007         lower = list_entry(*iter, struct netdev_adjacent, list);
5008
5009         if (&lower->list == &dev->adj_list.lower)
5010                 return NULL;
5011
5012         *iter = lower->list.next;
5013
5014         return lower->private;
5015 }
5016 EXPORT_SYMBOL(netdev_lower_get_next_private);
5017
5018 /**
5019  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5020  *                                     lower neighbour list, RCU
5021  *                                     variant
5022  * @dev: device
5023  * @iter: list_head ** of the current position
5024  *
5025  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5026  * list, starting from iter position. The caller must hold RCU read lock.
5027  */
5028 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5029                                         struct list_head **iter)
5030 {
5031         struct netdev_adjacent *lower;
5032
5033         WARN_ON_ONCE(!rcu_read_lock_held());
5034
5035         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5036
5037         if (&lower->list == &dev->adj_list.lower)
5038                 return NULL;
5039
5040         *iter = &lower->list;
5041
5042         return lower->private;
5043 }
5044 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5045
5046 /**
5047  * netdev_lower_get_next - Get the next device from the lower neighbour
5048  *                         list
5049  * @dev: device
5050  * @iter: list_head ** of the current position
5051  *
5052  * Gets the next netdev_adjacent from the dev's lower neighbour
5053  * list, starting from iter position. The caller must hold RTNL lock or
5054  * its own locking that guarantees that the neighbour lower
5055  * list will remain unchanged.
5056  */
5057 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5058 {
5059         struct netdev_adjacent *lower;
5060
5061         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5062
5063         if (&lower->list == &dev->adj_list.lower)
5064                 return NULL;
5065
5066         *iter = &lower->list;
5067
5068         return lower->dev;
5069 }
5070 EXPORT_SYMBOL(netdev_lower_get_next);
5071
5072 /**
5073  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5074  *                                     lower neighbour list, RCU
5075  *                                     variant
5076  * @dev: device
5077  *
5078  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5079  * list. The caller must hold RCU read lock.
5080  */
5081 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5082 {
5083         struct netdev_adjacent *lower;
5084
5085         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5086                         struct netdev_adjacent, list);
5087         if (lower)
5088                 return lower->private;
5089         return NULL;
5090 }
5091 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5092
5093 /**
5094  * netdev_master_upper_dev_get_rcu - Get master upper device
5095  * @dev: device
5096  *
5097  * Find a master upper device and return pointer to it or NULL in case
5098  * it's not there. The caller must hold the RCU read lock.
5099  */
5100 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5101 {
5102         struct netdev_adjacent *upper;
5103
5104         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5105                                        struct netdev_adjacent, list);
5106         if (upper && likely(upper->master))
5107                 return upper->dev;
5108         return NULL;
5109 }
5110 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5111
5112 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5113                               struct net_device *adj_dev,
5114                               struct list_head *dev_list)
5115 {
5116         char linkname[IFNAMSIZ+7];
5117         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5118                 "upper_%s" : "lower_%s", adj_dev->name);
5119         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5120                                  linkname);
5121 }
5122 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5123                                char *name,
5124                                struct list_head *dev_list)
5125 {
5126         char linkname[IFNAMSIZ+7];
5127         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5128                 "upper_%s" : "lower_%s", name);
5129         sysfs_remove_link(&(dev->dev.kobj), linkname);
5130 }
5131
5132 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5133                                                  struct net_device *adj_dev,
5134                                                  struct list_head *dev_list)
5135 {
5136         return (dev_list == &dev->adj_list.upper ||
5137                 dev_list == &dev->adj_list.lower) &&
5138                 net_eq(dev_net(dev), dev_net(adj_dev));
5139 }
5140
5141 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5142                                         struct net_device *adj_dev,
5143                                         struct list_head *dev_list,
5144                                         void *private, bool master)
5145 {
5146         struct netdev_adjacent *adj;
5147         int ret;
5148
5149         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5150
5151         if (adj) {
5152                 adj->ref_nr++;
5153                 return 0;
5154         }
5155
5156         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5157         if (!adj)
5158                 return -ENOMEM;
5159
5160         adj->dev = adj_dev;
5161         adj->master = master;
5162         adj->ref_nr = 1;
5163         adj->private = private;
5164         dev_hold(adj_dev);
5165
5166         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5167                  adj_dev->name, dev->name, adj_dev->name);
5168
5169         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5170                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5171                 if (ret)
5172                         goto free_adj;
5173         }
5174
5175         /* Ensure that master link is always the first item in list. */
5176         if (master) {
5177                 ret = sysfs_create_link(&(dev->dev.kobj),
5178                                         &(adj_dev->dev.kobj), "master");
5179                 if (ret)
5180                         goto remove_symlinks;
5181
5182                 list_add_rcu(&adj->list, dev_list);
5183         } else {
5184                 list_add_tail_rcu(&adj->list, dev_list);
5185         }
5186
5187         return 0;
5188
5189 remove_symlinks:
5190         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5191                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5192 free_adj:
5193         kfree(adj);
5194         dev_put(adj_dev);
5195
5196         return ret;
5197 }
5198
5199 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5200                                          struct net_device *adj_dev,
5201                                          struct list_head *dev_list)
5202 {
5203         struct netdev_adjacent *adj;
5204
5205         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5206
5207         if (!adj) {
5208                 pr_err("tried to remove device %s from %s\n",
5209                        dev->name, adj_dev->name);
5210                 BUG();
5211         }
5212
5213         if (adj->ref_nr > 1) {
5214                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5215                          adj->ref_nr-1);
5216                 adj->ref_nr--;
5217                 return;
5218         }
5219
5220         if (adj->master)
5221                 sysfs_remove_link(&(dev->dev.kobj), "master");
5222
5223         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5224                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5225
5226         list_del_rcu(&adj->list);
5227         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5228                  adj_dev->name, dev->name, adj_dev->name);
5229         dev_put(adj_dev);
5230         kfree_rcu(adj, rcu);
5231 }
5232
5233 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5234                                             struct net_device *upper_dev,
5235                                             struct list_head *up_list,
5236                                             struct list_head *down_list,
5237                                             void *private, bool master)
5238 {
5239         int ret;
5240
5241         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5242                                            master);
5243         if (ret)
5244                 return ret;
5245
5246         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5247                                            false);
5248         if (ret) {
5249                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5250                 return ret;
5251         }
5252
5253         return 0;
5254 }
5255
5256 static int __netdev_adjacent_dev_link(struct net_device *dev,
5257                                       struct net_device *upper_dev)
5258 {
5259         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5260                                                 &dev->all_adj_list.upper,
5261                                                 &upper_dev->all_adj_list.lower,
5262                                                 NULL, false);
5263 }
5264
5265 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5266                                                struct net_device *upper_dev,
5267                                                struct list_head *up_list,
5268                                                struct list_head *down_list)
5269 {
5270         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5271         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5272 }
5273
5274 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5275                                          struct net_device *upper_dev)
5276 {
5277         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5278                                            &dev->all_adj_list.upper,
5279                                            &upper_dev->all_adj_list.lower);
5280 }
5281
5282 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5283                                                 struct net_device *upper_dev,
5284                                                 void *private, bool master)
5285 {
5286         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5287
5288         if (ret)
5289                 return ret;
5290
5291         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5292                                                &dev->adj_list.upper,
5293                                                &upper_dev->adj_list.lower,
5294                                                private, master);
5295         if (ret) {
5296                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5297                 return ret;
5298         }
5299
5300         return 0;
5301 }
5302
5303 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5304                                                    struct net_device *upper_dev)
5305 {
5306         __netdev_adjacent_dev_unlink(dev, upper_dev);
5307         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5308                                            &dev->adj_list.upper,
5309                                            &upper_dev->adj_list.lower);
5310 }
5311
5312 static int __netdev_upper_dev_link(struct net_device *dev,
5313                                    struct net_device *upper_dev, bool master,
5314                                    void *private)
5315 {
5316         struct netdev_notifier_changeupper_info changeupper_info;
5317         struct netdev_adjacent *i, *j, *to_i, *to_j;
5318         int ret = 0;
5319
5320         ASSERT_RTNL();
5321
5322         if (dev == upper_dev)
5323                 return -EBUSY;
5324
5325         /* To prevent loops, check if dev is not upper device to upper_dev. */
5326         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5327                 return -EBUSY;
5328
5329         if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5330                 return -EEXIST;
5331
5332         if (master && netdev_master_upper_dev_get(dev))
5333                 return -EBUSY;
5334
5335         changeupper_info.upper_dev = upper_dev;
5336         changeupper_info.master = master;
5337         changeupper_info.linking = true;
5338
5339         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5340                                                    master);
5341         if (ret)
5342                 return ret;
5343
5344         /* Now that we linked these devs, make all the upper_dev's
5345          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5346          * versa, and don't forget the devices itself. All of these
5347          * links are non-neighbours.
5348          */
5349         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5350                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5351                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5352                                  i->dev->name, j->dev->name);
5353                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5354                         if (ret)
5355                                 goto rollback_mesh;
5356                 }
5357         }
5358
5359         /* add dev to every upper_dev's upper device */
5360         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5361                 pr_debug("linking %s's upper device %s with %s\n",
5362                          upper_dev->name, i->dev->name, dev->name);
5363                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5364                 if (ret)
5365                         goto rollback_upper_mesh;
5366         }
5367
5368         /* add upper_dev to every dev's lower device */
5369         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5370                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5371                          i->dev->name, upper_dev->name);
5372                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5373                 if (ret)
5374                         goto rollback_lower_mesh;
5375         }
5376
5377         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5378                                       &changeupper_info.info);
5379         return 0;
5380
5381 rollback_lower_mesh:
5382         to_i = i;
5383         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5384                 if (i == to_i)
5385                         break;
5386                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5387         }
5388
5389         i = NULL;
5390
5391 rollback_upper_mesh:
5392         to_i = i;
5393         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5394                 if (i == to_i)
5395                         break;
5396                 __netdev_adjacent_dev_unlink(dev, i->dev);
5397         }
5398
5399         i = j = NULL;
5400
5401 rollback_mesh:
5402         to_i = i;
5403         to_j = j;
5404         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5405                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5406                         if (i == to_i && j == to_j)
5407                                 break;
5408                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5409                 }
5410                 if (i == to_i)
5411                         break;
5412         }
5413
5414         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5415
5416         return ret;
5417 }
5418
5419 /**
5420  * netdev_upper_dev_link - Add a link to the upper device
5421  * @dev: device
5422  * @upper_dev: new upper device
5423  *
5424  * Adds a link to device which is upper to this one. The caller must hold
5425  * the RTNL lock. On a failure a negative errno code is returned.
5426  * On success the reference counts are adjusted and the function
5427  * returns zero.
5428  */
5429 int netdev_upper_dev_link(struct net_device *dev,
5430                           struct net_device *upper_dev)
5431 {
5432         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5433 }
5434 EXPORT_SYMBOL(netdev_upper_dev_link);
5435
5436 /**
5437  * netdev_master_upper_dev_link - Add a master link to the upper device
5438  * @dev: device
5439  * @upper_dev: new upper device
5440  *
5441  * Adds a link to device which is upper to this one. In this case, only
5442  * one master upper device can be linked, although other non-master devices
5443  * might be linked as well. The caller must hold the RTNL lock.
5444  * On a failure a negative errno code is returned. On success the reference
5445  * counts are adjusted and the function returns zero.
5446  */
5447 int netdev_master_upper_dev_link(struct net_device *dev,
5448                                  struct net_device *upper_dev)
5449 {
5450         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5451 }
5452 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5453
5454 int netdev_master_upper_dev_link_private(struct net_device *dev,
5455                                          struct net_device *upper_dev,
5456                                          void *private)
5457 {
5458         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5459 }
5460 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5461
5462 /**
5463  * netdev_upper_dev_unlink - Removes a link to upper device
5464  * @dev: device
5465  * @upper_dev: new upper device
5466  *
5467  * Removes a link to device which is upper to this one. The caller must hold
5468  * the RTNL lock.
5469  */
5470 void netdev_upper_dev_unlink(struct net_device *dev,
5471                              struct net_device *upper_dev)
5472 {
5473         struct netdev_notifier_changeupper_info changeupper_info;
5474         struct netdev_adjacent *i, *j;
5475         ASSERT_RTNL();
5476
5477         changeupper_info.upper_dev = upper_dev;
5478         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5479         changeupper_info.linking = false;
5480
5481         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5482
5483         /* Here is the tricky part. We must remove all dev's lower
5484          * devices from all upper_dev's upper devices and vice
5485          * versa, to maintain the graph relationship.
5486          */
5487         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5488                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5489                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5490
5491         /* remove also the devices itself from lower/upper device
5492          * list
5493          */
5494         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5495                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5496
5497         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5498                 __netdev_adjacent_dev_unlink(dev, i->dev);
5499
5500         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5501                                       &changeupper_info.info);
5502 }
5503 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5504
5505 /**
5506  * netdev_bonding_info_change - Dispatch event about slave change
5507  * @dev: device
5508  * @bonding_info: info to dispatch
5509  *
5510  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5511  * The caller must hold the RTNL lock.
5512  */
5513 void netdev_bonding_info_change(struct net_device *dev,
5514                                 struct netdev_bonding_info *bonding_info)
5515 {
5516         struct netdev_notifier_bonding_info     info;
5517
5518         memcpy(&info.bonding_info, bonding_info,
5519                sizeof(struct netdev_bonding_info));
5520         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5521                                       &info.info);
5522 }
5523 EXPORT_SYMBOL(netdev_bonding_info_change);
5524
5525 static void netdev_adjacent_add_links(struct net_device *dev)
5526 {
5527         struct netdev_adjacent *iter;
5528
5529         struct net *net = dev_net(dev);
5530
5531         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5532                 if (!net_eq(net,dev_net(iter->dev)))
5533                         continue;
5534                 netdev_adjacent_sysfs_add(iter->dev, dev,
5535                                           &iter->dev->adj_list.lower);
5536                 netdev_adjacent_sysfs_add(dev, iter->dev,
5537                                           &dev->adj_list.upper);
5538         }
5539
5540         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5541                 if (!net_eq(net,dev_net(iter->dev)))
5542                         continue;
5543                 netdev_adjacent_sysfs_add(iter->dev, dev,
5544                                           &iter->dev->adj_list.upper);
5545                 netdev_adjacent_sysfs_add(dev, iter->dev,
5546                                           &dev->adj_list.lower);
5547         }
5548 }
5549
5550 static void netdev_adjacent_del_links(struct net_device *dev)
5551 {
5552         struct netdev_adjacent *iter;
5553
5554         struct net *net = dev_net(dev);
5555
5556         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5557                 if (!net_eq(net,dev_net(iter->dev)))
5558                         continue;
5559                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5560                                           &iter->dev->adj_list.lower);
5561                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5562                                           &dev->adj_list.upper);
5563         }
5564
5565         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5566                 if (!net_eq(net,dev_net(iter->dev)))
5567                         continue;
5568                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5569                                           &iter->dev->adj_list.upper);
5570                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5571                                           &dev->adj_list.lower);
5572         }
5573 }
5574
5575 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5576 {
5577         struct netdev_adjacent *iter;
5578
5579         struct net *net = dev_net(dev);
5580
5581         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5582                 if (!net_eq(net,dev_net(iter->dev)))
5583                         continue;
5584                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5585                                           &iter->dev->adj_list.lower);
5586                 netdev_adjacent_sysfs_add(iter->dev, dev,
5587                                           &iter->dev->adj_list.lower);
5588         }
5589
5590         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5591                 if (!net_eq(net,dev_net(iter->dev)))
5592                         continue;
5593                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5594                                           &iter->dev->adj_list.upper);
5595                 netdev_adjacent_sysfs_add(iter->dev, dev,
5596                                           &iter->dev->adj_list.upper);
5597         }
5598 }
5599
5600 void *netdev_lower_dev_get_private(struct net_device *dev,
5601                                    struct net_device *lower_dev)
5602 {
5603         struct netdev_adjacent *lower;
5604
5605         if (!lower_dev)
5606                 return NULL;
5607         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5608         if (!lower)
5609                 return NULL;
5610
5611         return lower->private;
5612 }
5613 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5614
5615
5616 int dev_get_nest_level(struct net_device *dev,
5617                        bool (*type_check)(struct net_device *dev))
5618 {
5619         struct net_device *lower = NULL;
5620         struct list_head *iter;
5621         int max_nest = -1;
5622         int nest;
5623
5624         ASSERT_RTNL();
5625
5626         netdev_for_each_lower_dev(dev, lower, iter) {
5627                 nest = dev_get_nest_level(lower, type_check);
5628                 if (max_nest < nest)
5629                         max_nest = nest;
5630         }
5631
5632         if (type_check(dev))
5633                 max_nest++;
5634
5635         return max_nest;
5636 }
5637 EXPORT_SYMBOL(dev_get_nest_level);
5638
5639 static void dev_change_rx_flags(struct net_device *dev, int flags)
5640 {
5641         const struct net_device_ops *ops = dev->netdev_ops;
5642
5643         if (ops->ndo_change_rx_flags)
5644                 ops->ndo_change_rx_flags(dev, flags);
5645 }
5646
5647 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5648 {
5649         unsigned int old_flags = dev->flags;
5650         kuid_t uid;
5651         kgid_t gid;
5652
5653         ASSERT_RTNL();
5654
5655         dev->flags |= IFF_PROMISC;
5656         dev->promiscuity += inc;
5657         if (dev->promiscuity == 0) {
5658                 /*
5659                  * Avoid overflow.
5660                  * If inc causes overflow, untouch promisc and return error.
5661                  */
5662                 if (inc < 0)
5663                         dev->flags &= ~IFF_PROMISC;
5664                 else {
5665                         dev->promiscuity -= inc;
5666                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5667                                 dev->name);
5668                         return -EOVERFLOW;
5669                 }
5670         }
5671         if (dev->flags != old_flags) {
5672                 pr_info("device %s %s promiscuous mode\n",
5673                         dev->name,
5674                         dev->flags & IFF_PROMISC ? "entered" : "left");
5675                 if (audit_enabled) {
5676                         current_uid_gid(&uid, &gid);
5677                         audit_log(current->audit_context, GFP_ATOMIC,
5678                                 AUDIT_ANOM_PROMISCUOUS,
5679                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5680                                 dev->name, (dev->flags & IFF_PROMISC),
5681                                 (old_flags & IFF_PROMISC),
5682                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5683                                 from_kuid(&init_user_ns, uid),
5684                                 from_kgid(&init_user_ns, gid),
5685                                 audit_get_sessionid(current));
5686                 }
5687
5688                 dev_change_rx_flags(dev, IFF_PROMISC);
5689         }
5690         if (notify)
5691                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5692         return 0;
5693 }
5694
5695 /**
5696  *      dev_set_promiscuity     - update promiscuity count on a device
5697  *      @dev: device
5698  *      @inc: modifier
5699  *
5700  *      Add or remove promiscuity from a device. While the count in the device
5701  *      remains above zero the interface remains promiscuous. Once it hits zero
5702  *      the device reverts back to normal filtering operation. A negative inc
5703  *      value is used to drop promiscuity on the device.
5704  *      Return 0 if successful or a negative errno code on error.
5705  */
5706 int dev_set_promiscuity(struct net_device *dev, int inc)
5707 {
5708         unsigned int old_flags = dev->flags;
5709         int err;
5710
5711         err = __dev_set_promiscuity(dev, inc, true);
5712         if (err < 0)
5713                 return err;
5714         if (dev->flags != old_flags)
5715                 dev_set_rx_mode(dev);
5716         return err;
5717 }
5718 EXPORT_SYMBOL(dev_set_promiscuity);
5719
5720 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5721 {
5722         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5723
5724         ASSERT_RTNL();
5725
5726         dev->flags |= IFF_ALLMULTI;
5727         dev->allmulti += inc;
5728         if (dev->allmulti == 0) {
5729                 /*
5730                  * Avoid overflow.
5731                  * If inc causes overflow, untouch allmulti and return error.
5732                  */
5733                 if (inc < 0)
5734                         dev->flags &= ~IFF_ALLMULTI;
5735                 else {
5736                         dev->allmulti -= inc;
5737                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5738                                 dev->name);
5739                         return -EOVERFLOW;
5740                 }
5741         }
5742         if (dev->flags ^ old_flags) {
5743                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5744                 dev_set_rx_mode(dev);
5745                 if (notify)
5746                         __dev_notify_flags(dev, old_flags,
5747                                            dev->gflags ^ old_gflags);
5748         }
5749         return 0;
5750 }
5751
5752 /**
5753  *      dev_set_allmulti        - update allmulti count on a device
5754  *      @dev: device
5755  *      @inc: modifier
5756  *
5757  *      Add or remove reception of all multicast frames to a device. While the
5758  *      count in the device remains above zero the interface remains listening
5759  *      to all interfaces. Once it hits zero the device reverts back to normal
5760  *      filtering operation. A negative @inc value is used to drop the counter
5761  *      when releasing a resource needing all multicasts.
5762  *      Return 0 if successful or a negative errno code on error.
5763  */
5764
5765 int dev_set_allmulti(struct net_device *dev, int inc)
5766 {
5767         return __dev_set_allmulti(dev, inc, true);
5768 }
5769 EXPORT_SYMBOL(dev_set_allmulti);
5770
5771 /*
5772  *      Upload unicast and multicast address lists to device and
5773  *      configure RX filtering. When the device doesn't support unicast
5774  *      filtering it is put in promiscuous mode while unicast addresses
5775  *      are present.
5776  */
5777 void __dev_set_rx_mode(struct net_device *dev)
5778 {
5779         const struct net_device_ops *ops = dev->netdev_ops;
5780
5781         /* dev_open will call this function so the list will stay sane. */
5782         if (!(dev->flags&IFF_UP))
5783                 return;
5784
5785         if (!netif_device_present(dev))
5786                 return;
5787
5788         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5789                 /* Unicast addresses changes may only happen under the rtnl,
5790                  * therefore calling __dev_set_promiscuity here is safe.
5791                  */
5792                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5793                         __dev_set_promiscuity(dev, 1, false);
5794                         dev->uc_promisc = true;
5795                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5796                         __dev_set_promiscuity(dev, -1, false);
5797                         dev->uc_promisc = false;
5798                 }
5799         }
5800
5801         if (ops->ndo_set_rx_mode)
5802                 ops->ndo_set_rx_mode(dev);
5803 }
5804
5805 void dev_set_rx_mode(struct net_device *dev)
5806 {
5807         netif_addr_lock_bh(dev);
5808         __dev_set_rx_mode(dev);
5809         netif_addr_unlock_bh(dev);
5810 }
5811
5812 /**
5813  *      dev_get_flags - get flags reported to userspace
5814  *      @dev: device
5815  *
5816  *      Get the combination of flag bits exported through APIs to userspace.
5817  */
5818 unsigned int dev_get_flags(const struct net_device *dev)
5819 {
5820         unsigned int flags;
5821
5822         flags = (dev->flags & ~(IFF_PROMISC |
5823                                 IFF_ALLMULTI |
5824                                 IFF_RUNNING |
5825                                 IFF_LOWER_UP |
5826                                 IFF_DORMANT)) |
5827                 (dev->gflags & (IFF_PROMISC |
5828                                 IFF_ALLMULTI));
5829
5830         if (netif_running(dev)) {
5831                 if (netif_oper_up(dev))
5832                         flags |= IFF_RUNNING;
5833                 if (netif_carrier_ok(dev))
5834                         flags |= IFF_LOWER_UP;
5835                 if (netif_dormant(dev))
5836                         flags |= IFF_DORMANT;
5837         }
5838
5839         return flags;
5840 }
5841 EXPORT_SYMBOL(dev_get_flags);
5842
5843 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5844 {
5845         unsigned int old_flags = dev->flags;
5846         int ret;
5847
5848         ASSERT_RTNL();
5849
5850         /*
5851          *      Set the flags on our device.
5852          */
5853
5854         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5855                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5856                                IFF_AUTOMEDIA)) |
5857                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5858                                     IFF_ALLMULTI));
5859
5860         /*
5861          *      Load in the correct multicast list now the flags have changed.
5862          */
5863
5864         if ((old_flags ^ flags) & IFF_MULTICAST)
5865                 dev_change_rx_flags(dev, IFF_MULTICAST);
5866
5867         dev_set_rx_mode(dev);
5868
5869         /*
5870          *      Have we downed the interface. We handle IFF_UP ourselves
5871          *      according to user attempts to set it, rather than blindly
5872          *      setting it.
5873          */
5874
5875         ret = 0;
5876         if ((old_flags ^ flags) & IFF_UP)
5877                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5878
5879         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5880                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5881                 unsigned int old_flags = dev->flags;
5882
5883                 dev->gflags ^= IFF_PROMISC;
5884
5885                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5886                         if (dev->flags != old_flags)
5887                                 dev_set_rx_mode(dev);
5888         }
5889
5890         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5891            is important. Some (broken) drivers set IFF_PROMISC, when
5892            IFF_ALLMULTI is requested not asking us and not reporting.
5893          */
5894         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5895                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5896
5897                 dev->gflags ^= IFF_ALLMULTI;
5898                 __dev_set_allmulti(dev, inc, false);
5899         }
5900
5901         return ret;
5902 }
5903
5904 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5905                         unsigned int gchanges)
5906 {
5907         unsigned int changes = dev->flags ^ old_flags;
5908
5909         if (gchanges)
5910                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5911
5912         if (changes & IFF_UP) {
5913                 if (dev->flags & IFF_UP)
5914                         call_netdevice_notifiers(NETDEV_UP, dev);
5915                 else
5916                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5917         }
5918
5919         if (dev->flags & IFF_UP &&
5920             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5921                 struct netdev_notifier_change_info change_info;
5922
5923                 change_info.flags_changed = changes;
5924                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5925                                               &change_info.info);
5926         }
5927 }
5928
5929 /**
5930  *      dev_change_flags - change device settings
5931  *      @dev: device
5932  *      @flags: device state flags
5933  *
5934  *      Change settings on device based state flags. The flags are
5935  *      in the userspace exported format.
5936  */
5937 int dev_change_flags(struct net_device *dev, unsigned int flags)
5938 {
5939         int ret;
5940         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5941
5942         ret = __dev_change_flags(dev, flags);
5943         if (ret < 0)
5944                 return ret;
5945
5946         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5947         __dev_notify_flags(dev, old_flags, changes);
5948         return ret;
5949 }
5950 EXPORT_SYMBOL(dev_change_flags);
5951
5952 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5953 {
5954         const struct net_device_ops *ops = dev->netdev_ops;
5955
5956         if (ops->ndo_change_mtu)
5957                 return ops->ndo_change_mtu(dev, new_mtu);
5958
5959         dev->mtu = new_mtu;
5960         return 0;
5961 }
5962
5963 /**
5964  *      dev_set_mtu - Change maximum transfer unit
5965  *      @dev: device
5966  *      @new_mtu: new transfer unit
5967  *
5968  *      Change the maximum transfer size of the network device.
5969  */
5970 int dev_set_mtu(struct net_device *dev, int new_mtu)
5971 {
5972         int err, orig_mtu;
5973
5974         if (new_mtu == dev->mtu)
5975                 return 0;
5976
5977         /*      MTU must be positive.    */
5978         if (new_mtu < 0)
5979                 return -EINVAL;
5980
5981         if (!netif_device_present(dev))
5982                 return -ENODEV;
5983
5984         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5985         err = notifier_to_errno(err);
5986         if (err)
5987                 return err;
5988
5989         orig_mtu = dev->mtu;
5990         err = __dev_set_mtu(dev, new_mtu);
5991
5992         if (!err) {
5993                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5994                 err = notifier_to_errno(err);
5995                 if (err) {
5996                         /* setting mtu back and notifying everyone again,
5997                          * so that they have a chance to revert changes.
5998                          */
5999                         __dev_set_mtu(dev, orig_mtu);
6000                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6001                 }
6002         }
6003         return err;
6004 }
6005 EXPORT_SYMBOL(dev_set_mtu);
6006
6007 /**
6008  *      dev_set_group - Change group this device belongs to
6009  *      @dev: device
6010  *      @new_group: group this device should belong to
6011  */
6012 void dev_set_group(struct net_device *dev, int new_group)
6013 {
6014         dev->group = new_group;
6015 }
6016 EXPORT_SYMBOL(dev_set_group);
6017
6018 /**
6019  *      dev_set_mac_address - Change Media Access Control Address
6020  *      @dev: device
6021  *      @sa: new address
6022  *
6023  *      Change the hardware (MAC) address of the device
6024  */
6025 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6026 {
6027         const struct net_device_ops *ops = dev->netdev_ops;
6028         int err;
6029
6030         if (!ops->ndo_set_mac_address)
6031                 return -EOPNOTSUPP;
6032         if (sa->sa_family != dev->type)
6033                 return -EINVAL;
6034         if (!netif_device_present(dev))
6035                 return -ENODEV;
6036         err = ops->ndo_set_mac_address(dev, sa);
6037         if (err)
6038                 return err;
6039         dev->addr_assign_type = NET_ADDR_SET;
6040         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6041         add_device_randomness(dev->dev_addr, dev->addr_len);
6042         return 0;
6043 }
6044 EXPORT_SYMBOL(dev_set_mac_address);
6045
6046 /**
6047  *      dev_change_carrier - Change device carrier
6048  *      @dev: device
6049  *      @new_carrier: new value
6050  *
6051  *      Change device carrier
6052  */
6053 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6054 {
6055         const struct net_device_ops *ops = dev->netdev_ops;
6056
6057         if (!ops->ndo_change_carrier)
6058                 return -EOPNOTSUPP;
6059         if (!netif_device_present(dev))
6060                 return -ENODEV;
6061         return ops->ndo_change_carrier(dev, new_carrier);
6062 }
6063 EXPORT_SYMBOL(dev_change_carrier);
6064
6065 /**
6066  *      dev_get_phys_port_id - Get device physical port ID
6067  *      @dev: device
6068  *      @ppid: port ID
6069  *
6070  *      Get device physical port ID
6071  */
6072 int dev_get_phys_port_id(struct net_device *dev,
6073                          struct netdev_phys_item_id *ppid)
6074 {
6075         const struct net_device_ops *ops = dev->netdev_ops;
6076
6077         if (!ops->ndo_get_phys_port_id)
6078                 return -EOPNOTSUPP;
6079         return ops->ndo_get_phys_port_id(dev, ppid);
6080 }
6081 EXPORT_SYMBOL(dev_get_phys_port_id);
6082
6083 /**
6084  *      dev_get_phys_port_name - Get device physical port name
6085  *      @dev: device
6086  *      @name: port name
6087  *
6088  *      Get device physical port name
6089  */
6090 int dev_get_phys_port_name(struct net_device *dev,
6091                            char *name, size_t len)
6092 {
6093         const struct net_device_ops *ops = dev->netdev_ops;
6094
6095         if (!ops->ndo_get_phys_port_name)
6096                 return -EOPNOTSUPP;
6097         return ops->ndo_get_phys_port_name(dev, name, len);
6098 }
6099 EXPORT_SYMBOL(dev_get_phys_port_name);
6100
6101 /**
6102  *      dev_change_proto_down - update protocol port state information
6103  *      @dev: device
6104  *      @proto_down: new value
6105  *
6106  *      This info can be used by switch drivers to set the phys state of the
6107  *      port.
6108  */
6109 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6110 {
6111         const struct net_device_ops *ops = dev->netdev_ops;
6112
6113         if (!ops->ndo_change_proto_down)
6114                 return -EOPNOTSUPP;
6115         if (!netif_device_present(dev))
6116                 return -ENODEV;
6117         return ops->ndo_change_proto_down(dev, proto_down);
6118 }
6119 EXPORT_SYMBOL(dev_change_proto_down);
6120
6121 /**
6122  *      dev_new_index   -       allocate an ifindex
6123  *      @net: the applicable net namespace
6124  *
6125  *      Returns a suitable unique value for a new device interface
6126  *      number.  The caller must hold the rtnl semaphore or the
6127  *      dev_base_lock to be sure it remains unique.
6128  */
6129 static int dev_new_index(struct net *net)
6130 {
6131         int ifindex = net->ifindex;
6132         for (;;) {
6133                 if (++ifindex <= 0)
6134                         ifindex = 1;
6135                 if (!__dev_get_by_index(net, ifindex))
6136                         return net->ifindex = ifindex;
6137         }
6138 }
6139
6140 /* Delayed registration/unregisteration */
6141 static LIST_HEAD(net_todo_list);
6142 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6143
6144 static void net_set_todo(struct net_device *dev)
6145 {
6146         list_add_tail(&dev->todo_list, &net_todo_list);
6147         dev_net(dev)->dev_unreg_count++;
6148 }
6149
6150 static void rollback_registered_many(struct list_head *head)
6151 {
6152         struct net_device *dev, *tmp;
6153         LIST_HEAD(close_head);
6154
6155         BUG_ON(dev_boot_phase);
6156         ASSERT_RTNL();
6157
6158         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6159                 /* Some devices call without registering
6160                  * for initialization unwind. Remove those
6161                  * devices and proceed with the remaining.
6162                  */
6163                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6164                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6165                                  dev->name, dev);
6166
6167                         WARN_ON(1);
6168                         list_del(&dev->unreg_list);
6169                         continue;
6170                 }
6171                 dev->dismantle = true;
6172                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6173         }
6174
6175         /* If device is running, close it first. */
6176         list_for_each_entry(dev, head, unreg_list)
6177                 list_add_tail(&dev->close_list, &close_head);
6178         dev_close_many(&close_head, true);
6179
6180         list_for_each_entry(dev, head, unreg_list) {
6181                 /* And unlink it from device chain. */
6182                 unlist_netdevice(dev);
6183
6184                 dev->reg_state = NETREG_UNREGISTERING;
6185                 on_each_cpu(flush_backlog, dev, 1);
6186         }
6187
6188         synchronize_net();
6189
6190         list_for_each_entry(dev, head, unreg_list) {
6191                 struct sk_buff *skb = NULL;
6192
6193                 /* Shutdown queueing discipline. */
6194                 dev_shutdown(dev);
6195
6196
6197                 /* Notify protocols, that we are about to destroy
6198                    this device. They should clean all the things.
6199                 */
6200                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6201
6202                 if (!dev->rtnl_link_ops ||
6203                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6204                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6205                                                      GFP_KERNEL);
6206
6207                 /*
6208                  *      Flush the unicast and multicast chains
6209                  */
6210                 dev_uc_flush(dev);
6211                 dev_mc_flush(dev);
6212
6213                 if (dev->netdev_ops->ndo_uninit)
6214                         dev->netdev_ops->ndo_uninit(dev);
6215
6216                 if (skb)
6217                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6218
6219                 /* Notifier chain MUST detach us all upper devices. */
6220                 WARN_ON(netdev_has_any_upper_dev(dev));
6221
6222                 /* Remove entries from kobject tree */
6223                 netdev_unregister_kobject(dev);
6224 #ifdef CONFIG_XPS
6225                 /* Remove XPS queueing entries */
6226                 netif_reset_xps_queues_gt(dev, 0);
6227 #endif
6228         }
6229
6230         synchronize_net();
6231
6232         list_for_each_entry(dev, head, unreg_list)
6233                 dev_put(dev);
6234 }
6235
6236 static void rollback_registered(struct net_device *dev)
6237 {
6238         LIST_HEAD(single);
6239
6240         list_add(&dev->unreg_list, &single);
6241         rollback_registered_many(&single);
6242         list_del(&single);
6243 }
6244
6245 static netdev_features_t netdev_fix_features(struct net_device *dev,
6246         netdev_features_t features)
6247 {
6248         /* Fix illegal checksum combinations */
6249         if ((features & NETIF_F_HW_CSUM) &&
6250             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6251                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6252                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6253         }
6254
6255         /* TSO requires that SG is present as well. */
6256         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6257                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6258                 features &= ~NETIF_F_ALL_TSO;
6259         }
6260
6261         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6262                                         !(features & NETIF_F_IP_CSUM)) {
6263                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6264                 features &= ~NETIF_F_TSO;
6265                 features &= ~NETIF_F_TSO_ECN;
6266         }
6267
6268         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6269                                          !(features & NETIF_F_IPV6_CSUM)) {
6270                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6271                 features &= ~NETIF_F_TSO6;
6272         }
6273
6274         /* TSO ECN requires that TSO is present as well. */
6275         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6276                 features &= ~NETIF_F_TSO_ECN;
6277
6278         /* Software GSO depends on SG. */
6279         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6280                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6281                 features &= ~NETIF_F_GSO;
6282         }
6283
6284         /* UFO needs SG and checksumming */
6285         if (features & NETIF_F_UFO) {
6286                 /* maybe split UFO into V4 and V6? */
6287                 if (!((features & NETIF_F_GEN_CSUM) ||
6288                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6289                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6290                         netdev_dbg(dev,
6291                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6292                         features &= ~NETIF_F_UFO;
6293                 }
6294
6295                 if (!(features & NETIF_F_SG)) {
6296                         netdev_dbg(dev,
6297                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6298                         features &= ~NETIF_F_UFO;
6299                 }
6300         }
6301
6302 #ifdef CONFIG_NET_RX_BUSY_POLL
6303         if (dev->netdev_ops->ndo_busy_poll)
6304                 features |= NETIF_F_BUSY_POLL;
6305         else
6306 #endif
6307                 features &= ~NETIF_F_BUSY_POLL;
6308
6309         return features;
6310 }
6311
6312 int __netdev_update_features(struct net_device *dev)
6313 {
6314         netdev_features_t features;
6315         int err = 0;
6316
6317         ASSERT_RTNL();
6318
6319         features = netdev_get_wanted_features(dev);
6320
6321         if (dev->netdev_ops->ndo_fix_features)
6322                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6323
6324         /* driver might be less strict about feature dependencies */
6325         features = netdev_fix_features(dev, features);
6326
6327         if (dev->features == features)
6328                 return 0;
6329
6330         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6331                 &dev->features, &features);
6332
6333         if (dev->netdev_ops->ndo_set_features)
6334                 err = dev->netdev_ops->ndo_set_features(dev, features);
6335
6336         if (unlikely(err < 0)) {
6337                 netdev_err(dev,
6338                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6339                         err, &features, &dev->features);
6340                 return -1;
6341         }
6342
6343         if (!err)
6344                 dev->features = features;
6345
6346         return 1;
6347 }
6348
6349 /**
6350  *      netdev_update_features - recalculate device features
6351  *      @dev: the device to check
6352  *
6353  *      Recalculate dev->features set and send notifications if it
6354  *      has changed. Should be called after driver or hardware dependent
6355  *      conditions might have changed that influence the features.
6356  */
6357 void netdev_update_features(struct net_device *dev)
6358 {
6359         if (__netdev_update_features(dev))
6360                 netdev_features_change(dev);
6361 }
6362 EXPORT_SYMBOL(netdev_update_features);
6363
6364 /**
6365  *      netdev_change_features - recalculate device features
6366  *      @dev: the device to check
6367  *
6368  *      Recalculate dev->features set and send notifications even
6369  *      if they have not changed. Should be called instead of
6370  *      netdev_update_features() if also dev->vlan_features might
6371  *      have changed to allow the changes to be propagated to stacked
6372  *      VLAN devices.
6373  */
6374 void netdev_change_features(struct net_device *dev)
6375 {
6376         __netdev_update_features(dev);
6377         netdev_features_change(dev);
6378 }
6379 EXPORT_SYMBOL(netdev_change_features);
6380
6381 /**
6382  *      netif_stacked_transfer_operstate -      transfer operstate
6383  *      @rootdev: the root or lower level device to transfer state from
6384  *      @dev: the device to transfer operstate to
6385  *
6386  *      Transfer operational state from root to device. This is normally
6387  *      called when a stacking relationship exists between the root
6388  *      device and the device(a leaf device).
6389  */
6390 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6391                                         struct net_device *dev)
6392 {
6393         if (rootdev->operstate == IF_OPER_DORMANT)
6394                 netif_dormant_on(dev);
6395         else
6396                 netif_dormant_off(dev);
6397
6398         if (netif_carrier_ok(rootdev)) {
6399                 if (!netif_carrier_ok(dev))
6400                         netif_carrier_on(dev);
6401         } else {
6402                 if (netif_carrier_ok(dev))
6403                         netif_carrier_off(dev);
6404         }
6405 }
6406 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6407
6408 #ifdef CONFIG_SYSFS
6409 static int netif_alloc_rx_queues(struct net_device *dev)
6410 {
6411         unsigned int i, count = dev->num_rx_queues;
6412         struct netdev_rx_queue *rx;
6413         size_t sz = count * sizeof(*rx);
6414
6415         BUG_ON(count < 1);
6416
6417         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6418         if (!rx) {
6419                 rx = vzalloc(sz);
6420                 if (!rx)
6421                         return -ENOMEM;
6422         }
6423         dev->_rx = rx;
6424
6425         for (i = 0; i < count; i++)
6426                 rx[i].dev = dev;
6427         return 0;
6428 }
6429 #endif
6430
6431 static void netdev_init_one_queue(struct net_device *dev,
6432                                   struct netdev_queue *queue, void *_unused)
6433 {
6434         /* Initialize queue lock */
6435         spin_lock_init(&queue->_xmit_lock);
6436         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6437         queue->xmit_lock_owner = -1;
6438         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6439         queue->dev = dev;
6440 #ifdef CONFIG_BQL
6441         dql_init(&queue->dql, HZ);
6442 #endif
6443 }
6444
6445 static void netif_free_tx_queues(struct net_device *dev)
6446 {
6447         kvfree(dev->_tx);
6448 }
6449
6450 static int netif_alloc_netdev_queues(struct net_device *dev)
6451 {
6452         unsigned int count = dev->num_tx_queues;
6453         struct netdev_queue *tx;
6454         size_t sz = count * sizeof(*tx);
6455
6456         if (count < 1 || count > 0xffff)
6457                 return -EINVAL;
6458
6459         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6460         if (!tx) {
6461                 tx = vzalloc(sz);
6462                 if (!tx)
6463                         return -ENOMEM;
6464         }
6465         dev->_tx = tx;
6466
6467         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6468         spin_lock_init(&dev->tx_global_lock);
6469
6470         return 0;
6471 }
6472
6473 void netif_tx_stop_all_queues(struct net_device *dev)
6474 {
6475         unsigned int i;
6476
6477         for (i = 0; i < dev->num_tx_queues; i++) {
6478                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6479                 netif_tx_stop_queue(txq);
6480         }
6481 }
6482 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6483
6484 /**
6485  *      register_netdevice      - register a network device
6486  *      @dev: device to register
6487  *
6488  *      Take a completed network device structure and add it to the kernel
6489  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6490  *      chain. 0 is returned on success. A negative errno code is returned
6491  *      on a failure to set up the device, or if the name is a duplicate.
6492  *
6493  *      Callers must hold the rtnl semaphore. You may want
6494  *      register_netdev() instead of this.
6495  *
6496  *      BUGS:
6497  *      The locking appears insufficient to guarantee two parallel registers
6498  *      will not get the same name.
6499  */
6500
6501 int register_netdevice(struct net_device *dev)
6502 {
6503         int ret;
6504         struct net *net = dev_net(dev);
6505
6506         BUG_ON(dev_boot_phase);
6507         ASSERT_RTNL();
6508
6509         might_sleep();
6510
6511         /* When net_device's are persistent, this will be fatal. */
6512         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6513         BUG_ON(!net);
6514
6515         spin_lock_init(&dev->addr_list_lock);
6516         netdev_set_addr_lockdep_class(dev);
6517
6518         ret = dev_get_valid_name(net, dev, dev->name);
6519         if (ret < 0)
6520                 goto out;
6521
6522         /* Init, if this function is available */
6523         if (dev->netdev_ops->ndo_init) {
6524                 ret = dev->netdev_ops->ndo_init(dev);
6525                 if (ret) {
6526                         if (ret > 0)
6527                                 ret = -EIO;
6528                         goto out;
6529                 }
6530         }
6531
6532         if (((dev->hw_features | dev->features) &
6533              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6534             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6535              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6536                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6537                 ret = -EINVAL;
6538                 goto err_uninit;
6539         }
6540
6541         ret = -EBUSY;
6542         if (!dev->ifindex)
6543                 dev->ifindex = dev_new_index(net);
6544         else if (__dev_get_by_index(net, dev->ifindex))
6545                 goto err_uninit;
6546
6547         /* Transfer changeable features to wanted_features and enable
6548          * software offloads (GSO and GRO).
6549          */
6550         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6551         dev->features |= NETIF_F_SOFT_FEATURES;
6552         dev->wanted_features = dev->features & dev->hw_features;
6553
6554         if (!(dev->flags & IFF_LOOPBACK)) {
6555                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6556         }
6557
6558         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6559          */
6560         dev->vlan_features |= NETIF_F_HIGHDMA;
6561
6562         /* Make NETIF_F_SG inheritable to tunnel devices.
6563          */
6564         dev->hw_enc_features |= NETIF_F_SG;
6565
6566         /* Make NETIF_F_SG inheritable to MPLS.
6567          */
6568         dev->mpls_features |= NETIF_F_SG;
6569
6570         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6571         ret = notifier_to_errno(ret);
6572         if (ret)
6573                 goto err_uninit;
6574
6575         ret = netdev_register_kobject(dev);
6576         if (ret)
6577                 goto err_uninit;
6578         dev->reg_state = NETREG_REGISTERED;
6579
6580         __netdev_update_features(dev);
6581
6582         /*
6583          *      Default initial state at registry is that the
6584          *      device is present.
6585          */
6586
6587         set_bit(__LINK_STATE_PRESENT, &dev->state);
6588
6589         linkwatch_init_dev(dev);
6590
6591         dev_init_scheduler(dev);
6592         dev_hold(dev);
6593         list_netdevice(dev);
6594         add_device_randomness(dev->dev_addr, dev->addr_len);
6595
6596         /* If the device has permanent device address, driver should
6597          * set dev_addr and also addr_assign_type should be set to
6598          * NET_ADDR_PERM (default value).
6599          */
6600         if (dev->addr_assign_type == NET_ADDR_PERM)
6601                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6602
6603         /* Notify protocols, that a new device appeared. */
6604         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6605         ret = notifier_to_errno(ret);
6606         if (ret) {
6607                 rollback_registered(dev);
6608                 dev->reg_state = NETREG_UNREGISTERED;
6609         }
6610         /*
6611          *      Prevent userspace races by waiting until the network
6612          *      device is fully setup before sending notifications.
6613          */
6614         if (!dev->rtnl_link_ops ||
6615             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6616                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6617
6618 out:
6619         return ret;
6620
6621 err_uninit:
6622         if (dev->netdev_ops->ndo_uninit)
6623                 dev->netdev_ops->ndo_uninit(dev);
6624         goto out;
6625 }
6626 EXPORT_SYMBOL(register_netdevice);
6627
6628 /**
6629  *      init_dummy_netdev       - init a dummy network device for NAPI
6630  *      @dev: device to init
6631  *
6632  *      This takes a network device structure and initialize the minimum
6633  *      amount of fields so it can be used to schedule NAPI polls without
6634  *      registering a full blown interface. This is to be used by drivers
6635  *      that need to tie several hardware interfaces to a single NAPI
6636  *      poll scheduler due to HW limitations.
6637  */
6638 int init_dummy_netdev(struct net_device *dev)
6639 {
6640         /* Clear everything. Note we don't initialize spinlocks
6641          * are they aren't supposed to be taken by any of the
6642          * NAPI code and this dummy netdev is supposed to be
6643          * only ever used for NAPI polls
6644          */
6645         memset(dev, 0, sizeof(struct net_device));
6646
6647         /* make sure we BUG if trying to hit standard
6648          * register/unregister code path
6649          */
6650         dev->reg_state = NETREG_DUMMY;
6651
6652         /* NAPI wants this */
6653         INIT_LIST_HEAD(&dev->napi_list);
6654
6655         /* a dummy interface is started by default */
6656         set_bit(__LINK_STATE_PRESENT, &dev->state);
6657         set_bit(__LINK_STATE_START, &dev->state);
6658
6659         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6660          * because users of this 'device' dont need to change
6661          * its refcount.
6662          */
6663
6664         return 0;
6665 }
6666 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6667
6668
6669 /**
6670  *      register_netdev - register a network device
6671  *      @dev: device to register
6672  *
6673  *      Take a completed network device structure and add it to the kernel
6674  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6675  *      chain. 0 is returned on success. A negative errno code is returned
6676  *      on a failure to set up the device, or if the name is a duplicate.
6677  *
6678  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6679  *      and expands the device name if you passed a format string to
6680  *      alloc_netdev.
6681  */
6682 int register_netdev(struct net_device *dev)
6683 {
6684         int err;
6685
6686         rtnl_lock();
6687         err = register_netdevice(dev);
6688         rtnl_unlock();
6689         return err;
6690 }
6691 EXPORT_SYMBOL(register_netdev);
6692
6693 int netdev_refcnt_read(const struct net_device *dev)
6694 {
6695         int i, refcnt = 0;
6696
6697         for_each_possible_cpu(i)
6698                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6699         return refcnt;
6700 }
6701 EXPORT_SYMBOL(netdev_refcnt_read);
6702
6703 /**
6704  * netdev_wait_allrefs - wait until all references are gone.
6705  * @dev: target net_device
6706  *
6707  * This is called when unregistering network devices.
6708  *
6709  * Any protocol or device that holds a reference should register
6710  * for netdevice notification, and cleanup and put back the
6711  * reference if they receive an UNREGISTER event.
6712  * We can get stuck here if buggy protocols don't correctly
6713  * call dev_put.
6714  */
6715 static void netdev_wait_allrefs(struct net_device *dev)
6716 {
6717         unsigned long rebroadcast_time, warning_time;
6718         int refcnt;
6719
6720         linkwatch_forget_dev(dev);
6721
6722         rebroadcast_time = warning_time = jiffies;
6723         refcnt = netdev_refcnt_read(dev);
6724
6725         while (refcnt != 0) {
6726                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6727                         rtnl_lock();
6728
6729                         /* Rebroadcast unregister notification */
6730                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6731
6732                         __rtnl_unlock();
6733                         rcu_barrier();
6734                         rtnl_lock();
6735
6736                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6737                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6738                                      &dev->state)) {
6739                                 /* We must not have linkwatch events
6740                                  * pending on unregister. If this
6741                                  * happens, we simply run the queue
6742                                  * unscheduled, resulting in a noop
6743                                  * for this device.
6744                                  */
6745                                 linkwatch_run_queue();
6746                         }
6747
6748                         __rtnl_unlock();
6749
6750                         rebroadcast_time = jiffies;
6751                 }
6752
6753                 msleep(250);
6754
6755                 refcnt = netdev_refcnt_read(dev);
6756
6757                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6758                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6759                                  dev->name, refcnt);
6760                         warning_time = jiffies;
6761                 }
6762         }
6763 }
6764
6765 /* The sequence is:
6766  *
6767  *      rtnl_lock();
6768  *      ...
6769  *      register_netdevice(x1);
6770  *      register_netdevice(x2);
6771  *      ...
6772  *      unregister_netdevice(y1);
6773  *      unregister_netdevice(y2);
6774  *      ...
6775  *      rtnl_unlock();
6776  *      free_netdev(y1);
6777  *      free_netdev(y2);
6778  *
6779  * We are invoked by rtnl_unlock().
6780  * This allows us to deal with problems:
6781  * 1) We can delete sysfs objects which invoke hotplug
6782  *    without deadlocking with linkwatch via keventd.
6783  * 2) Since we run with the RTNL semaphore not held, we can sleep
6784  *    safely in order to wait for the netdev refcnt to drop to zero.
6785  *
6786  * We must not return until all unregister events added during
6787  * the interval the lock was held have been completed.
6788  */
6789 void netdev_run_todo(void)
6790 {
6791         struct list_head list;
6792
6793         /* Snapshot list, allow later requests */
6794         list_replace_init(&net_todo_list, &list);
6795
6796         __rtnl_unlock();
6797
6798
6799         /* Wait for rcu callbacks to finish before next phase */
6800         if (!list_empty(&list))
6801                 rcu_barrier();
6802
6803         while (!list_empty(&list)) {
6804                 struct net_device *dev
6805                         = list_first_entry(&list, struct net_device, todo_list);
6806                 list_del(&dev->todo_list);
6807
6808                 rtnl_lock();
6809                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6810                 __rtnl_unlock();
6811
6812                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6813                         pr_err("network todo '%s' but state %d\n",
6814                                dev->name, dev->reg_state);
6815                         dump_stack();
6816                         continue;
6817                 }
6818
6819                 dev->reg_state = NETREG_UNREGISTERED;
6820
6821                 netdev_wait_allrefs(dev);
6822
6823                 /* paranoia */
6824                 BUG_ON(netdev_refcnt_read(dev));
6825                 BUG_ON(!list_empty(&dev->ptype_all));
6826                 BUG_ON(!list_empty(&dev->ptype_specific));
6827                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6828                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6829                 WARN_ON(dev->dn_ptr);
6830
6831                 if (dev->destructor)
6832                         dev->destructor(dev);
6833
6834                 /* Report a network device has been unregistered */
6835                 rtnl_lock();
6836                 dev_net(dev)->dev_unreg_count--;
6837                 __rtnl_unlock();
6838                 wake_up(&netdev_unregistering_wq);
6839
6840                 /* Free network device */
6841                 kobject_put(&dev->dev.kobj);
6842         }
6843 }
6844
6845 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6846  * fields in the same order, with only the type differing.
6847  */
6848 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6849                              const struct net_device_stats *netdev_stats)
6850 {
6851 #if BITS_PER_LONG == 64
6852         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6853         memcpy(stats64, netdev_stats, sizeof(*stats64));
6854 #else
6855         size_t i, n = sizeof(*stats64) / sizeof(u64);
6856         const unsigned long *src = (const unsigned long *)netdev_stats;
6857         u64 *dst = (u64 *)stats64;
6858
6859         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6860                      sizeof(*stats64) / sizeof(u64));
6861         for (i = 0; i < n; i++)
6862                 dst[i] = src[i];
6863 #endif
6864 }
6865 EXPORT_SYMBOL(netdev_stats_to_stats64);
6866
6867 /**
6868  *      dev_get_stats   - get network device statistics
6869  *      @dev: device to get statistics from
6870  *      @storage: place to store stats
6871  *
6872  *      Get network statistics from device. Return @storage.
6873  *      The device driver may provide its own method by setting
6874  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6875  *      otherwise the internal statistics structure is used.
6876  */
6877 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6878                                         struct rtnl_link_stats64 *storage)
6879 {
6880         const struct net_device_ops *ops = dev->netdev_ops;
6881
6882         if (ops->ndo_get_stats64) {
6883                 memset(storage, 0, sizeof(*storage));
6884                 ops->ndo_get_stats64(dev, storage);
6885         } else if (ops->ndo_get_stats) {
6886                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6887         } else {
6888                 netdev_stats_to_stats64(storage, &dev->stats);
6889         }
6890         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6891         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6892         return storage;
6893 }
6894 EXPORT_SYMBOL(dev_get_stats);
6895
6896 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6897 {
6898         struct netdev_queue *queue = dev_ingress_queue(dev);
6899
6900 #ifdef CONFIG_NET_CLS_ACT
6901         if (queue)
6902                 return queue;
6903         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6904         if (!queue)
6905                 return NULL;
6906         netdev_init_one_queue(dev, queue, NULL);
6907         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6908         queue->qdisc_sleeping = &noop_qdisc;
6909         rcu_assign_pointer(dev->ingress_queue, queue);
6910 #endif
6911         return queue;
6912 }
6913
6914 static const struct ethtool_ops default_ethtool_ops;
6915
6916 void netdev_set_default_ethtool_ops(struct net_device *dev,
6917                                     const struct ethtool_ops *ops)
6918 {
6919         if (dev->ethtool_ops == &default_ethtool_ops)
6920                 dev->ethtool_ops = ops;
6921 }
6922 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6923
6924 void netdev_freemem(struct net_device *dev)
6925 {
6926         char *addr = (char *)dev - dev->padded;
6927
6928         kvfree(addr);
6929 }
6930
6931 /**
6932  *      alloc_netdev_mqs - allocate network device
6933  *      @sizeof_priv:           size of private data to allocate space for
6934  *      @name:                  device name format string
6935  *      @name_assign_type:      origin of device name
6936  *      @setup:                 callback to initialize device
6937  *      @txqs:                  the number of TX subqueues to allocate
6938  *      @rxqs:                  the number of RX subqueues to allocate
6939  *
6940  *      Allocates a struct net_device with private data area for driver use
6941  *      and performs basic initialization.  Also allocates subqueue structs
6942  *      for each queue on the device.
6943  */
6944 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6945                 unsigned char name_assign_type,
6946                 void (*setup)(struct net_device *),
6947                 unsigned int txqs, unsigned int rxqs)
6948 {
6949         struct net_device *dev;
6950         size_t alloc_size;
6951         struct net_device *p;
6952
6953         BUG_ON(strlen(name) >= sizeof(dev->name));
6954
6955         if (txqs < 1) {
6956                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6957                 return NULL;
6958         }
6959
6960 #ifdef CONFIG_SYSFS
6961         if (rxqs < 1) {
6962                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6963                 return NULL;
6964         }
6965 #endif
6966
6967         alloc_size = sizeof(struct net_device);
6968         if (sizeof_priv) {
6969                 /* ensure 32-byte alignment of private area */
6970                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6971                 alloc_size += sizeof_priv;
6972         }
6973         /* ensure 32-byte alignment of whole construct */
6974         alloc_size += NETDEV_ALIGN - 1;
6975
6976         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6977         if (!p)
6978                 p = vzalloc(alloc_size);
6979         if (!p)
6980                 return NULL;
6981
6982         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6983         dev->padded = (char *)dev - (char *)p;
6984
6985         dev->pcpu_refcnt = alloc_percpu(int);
6986         if (!dev->pcpu_refcnt)
6987                 goto free_dev;
6988
6989         if (dev_addr_init(dev))
6990                 goto free_pcpu;
6991
6992         dev_mc_init(dev);
6993         dev_uc_init(dev);
6994
6995         dev_net_set(dev, &init_net);
6996
6997         dev->gso_max_size = GSO_MAX_SIZE;
6998         dev->gso_max_segs = GSO_MAX_SEGS;
6999         dev->gso_min_segs = 0;
7000
7001         INIT_LIST_HEAD(&dev->napi_list);
7002         INIT_LIST_HEAD(&dev->unreg_list);
7003         INIT_LIST_HEAD(&dev->close_list);
7004         INIT_LIST_HEAD(&dev->link_watch_list);
7005         INIT_LIST_HEAD(&dev->adj_list.upper);
7006         INIT_LIST_HEAD(&dev->adj_list.lower);
7007         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7008         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7009         INIT_LIST_HEAD(&dev->ptype_all);
7010         INIT_LIST_HEAD(&dev->ptype_specific);
7011         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7012         setup(dev);
7013
7014         if (!dev->tx_queue_len)
7015                 dev->priv_flags |= IFF_NO_QUEUE;
7016
7017         dev->num_tx_queues = txqs;
7018         dev->real_num_tx_queues = txqs;
7019         if (netif_alloc_netdev_queues(dev))
7020                 goto free_all;
7021
7022 #ifdef CONFIG_SYSFS
7023         dev->num_rx_queues = rxqs;
7024         dev->real_num_rx_queues = rxqs;
7025         if (netif_alloc_rx_queues(dev))
7026                 goto free_all;
7027 #endif
7028
7029         strcpy(dev->name, name);
7030         dev->name_assign_type = name_assign_type;
7031         dev->group = INIT_NETDEV_GROUP;
7032         if (!dev->ethtool_ops)
7033                 dev->ethtool_ops = &default_ethtool_ops;
7034
7035         nf_hook_ingress_init(dev);
7036
7037         return dev;
7038
7039 free_all:
7040         free_netdev(dev);
7041         return NULL;
7042
7043 free_pcpu:
7044         free_percpu(dev->pcpu_refcnt);
7045 free_dev:
7046         netdev_freemem(dev);
7047         return NULL;
7048 }
7049 EXPORT_SYMBOL(alloc_netdev_mqs);
7050
7051 /**
7052  *      free_netdev - free network device
7053  *      @dev: device
7054  *
7055  *      This function does the last stage of destroying an allocated device
7056  *      interface. The reference to the device object is released.
7057  *      If this is the last reference then it will be freed.
7058  */
7059 void free_netdev(struct net_device *dev)
7060 {
7061         struct napi_struct *p, *n;
7062
7063         netif_free_tx_queues(dev);
7064 #ifdef CONFIG_SYSFS
7065         kvfree(dev->_rx);
7066 #endif
7067
7068         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7069
7070         /* Flush device addresses */
7071         dev_addr_flush(dev);
7072
7073         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7074                 netif_napi_del(p);
7075
7076         free_percpu(dev->pcpu_refcnt);
7077         dev->pcpu_refcnt = NULL;
7078
7079         /*  Compatibility with error handling in drivers */
7080         if (dev->reg_state == NETREG_UNINITIALIZED) {
7081                 netdev_freemem(dev);
7082                 return;
7083         }
7084
7085         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7086         dev->reg_state = NETREG_RELEASED;
7087
7088         /* will free via device release */
7089         put_device(&dev->dev);
7090 }
7091 EXPORT_SYMBOL(free_netdev);
7092
7093 /**
7094  *      synchronize_net -  Synchronize with packet receive processing
7095  *
7096  *      Wait for packets currently being received to be done.
7097  *      Does not block later packets from starting.
7098  */
7099 void synchronize_net(void)
7100 {
7101         might_sleep();
7102         if (rtnl_is_locked())
7103                 synchronize_rcu_expedited();
7104         else
7105                 synchronize_rcu();
7106 }
7107 EXPORT_SYMBOL(synchronize_net);
7108
7109 /**
7110  *      unregister_netdevice_queue - remove device from the kernel
7111  *      @dev: device
7112  *      @head: list
7113  *
7114  *      This function shuts down a device interface and removes it
7115  *      from the kernel tables.
7116  *      If head not NULL, device is queued to be unregistered later.
7117  *
7118  *      Callers must hold the rtnl semaphore.  You may want
7119  *      unregister_netdev() instead of this.
7120  */
7121
7122 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7123 {
7124         ASSERT_RTNL();
7125
7126         if (head) {
7127                 list_move_tail(&dev->unreg_list, head);
7128         } else {
7129                 rollback_registered(dev);
7130                 /* Finish processing unregister after unlock */
7131                 net_set_todo(dev);
7132         }
7133 }
7134 EXPORT_SYMBOL(unregister_netdevice_queue);
7135
7136 /**
7137  *      unregister_netdevice_many - unregister many devices
7138  *      @head: list of devices
7139  *
7140  *  Note: As most callers use a stack allocated list_head,
7141  *  we force a list_del() to make sure stack wont be corrupted later.
7142  */
7143 void unregister_netdevice_many(struct list_head *head)
7144 {
7145         struct net_device *dev;
7146
7147         if (!list_empty(head)) {
7148                 rollback_registered_many(head);
7149                 list_for_each_entry(dev, head, unreg_list)
7150                         net_set_todo(dev);
7151                 list_del(head);
7152         }
7153 }
7154 EXPORT_SYMBOL(unregister_netdevice_many);
7155
7156 /**
7157  *      unregister_netdev - remove device from the kernel
7158  *      @dev: device
7159  *
7160  *      This function shuts down a device interface and removes it
7161  *      from the kernel tables.
7162  *
7163  *      This is just a wrapper for unregister_netdevice that takes
7164  *      the rtnl semaphore.  In general you want to use this and not
7165  *      unregister_netdevice.
7166  */
7167 void unregister_netdev(struct net_device *dev)
7168 {
7169         rtnl_lock();
7170         unregister_netdevice(dev);
7171         rtnl_unlock();
7172 }
7173 EXPORT_SYMBOL(unregister_netdev);
7174
7175 /**
7176  *      dev_change_net_namespace - move device to different nethost namespace
7177  *      @dev: device
7178  *      @net: network namespace
7179  *      @pat: If not NULL name pattern to try if the current device name
7180  *            is already taken in the destination network namespace.
7181  *
7182  *      This function shuts down a device interface and moves it
7183  *      to a new network namespace. On success 0 is returned, on
7184  *      a failure a netagive errno code is returned.
7185  *
7186  *      Callers must hold the rtnl semaphore.
7187  */
7188
7189 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7190 {
7191         int err;
7192
7193         ASSERT_RTNL();
7194
7195         /* Don't allow namespace local devices to be moved. */
7196         err = -EINVAL;
7197         if (dev->features & NETIF_F_NETNS_LOCAL)
7198                 goto out;
7199
7200         /* Ensure the device has been registrered */
7201         if (dev->reg_state != NETREG_REGISTERED)
7202                 goto out;
7203
7204         /* Get out if there is nothing todo */
7205         err = 0;
7206         if (net_eq(dev_net(dev), net))
7207                 goto out;
7208
7209         /* Pick the destination device name, and ensure
7210          * we can use it in the destination network namespace.
7211          */
7212         err = -EEXIST;
7213         if (__dev_get_by_name(net, dev->name)) {
7214                 /* We get here if we can't use the current device name */
7215                 if (!pat)
7216                         goto out;
7217                 if (dev_get_valid_name(net, dev, pat) < 0)
7218                         goto out;
7219         }
7220
7221         /*
7222          * And now a mini version of register_netdevice unregister_netdevice.
7223          */
7224
7225         /* If device is running close it first. */
7226         dev_close(dev);
7227
7228         /* And unlink it from device chain */
7229         err = -ENODEV;
7230         unlist_netdevice(dev);
7231
7232         synchronize_net();
7233
7234         /* Shutdown queueing discipline. */
7235         dev_shutdown(dev);
7236
7237         /* Notify protocols, that we are about to destroy
7238            this device. They should clean all the things.
7239
7240            Note that dev->reg_state stays at NETREG_REGISTERED.
7241            This is wanted because this way 8021q and macvlan know
7242            the device is just moving and can keep their slaves up.
7243         */
7244         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7245         rcu_barrier();
7246         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7247         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7248
7249         /*
7250          *      Flush the unicast and multicast chains
7251          */
7252         dev_uc_flush(dev);
7253         dev_mc_flush(dev);
7254
7255         /* Send a netdev-removed uevent to the old namespace */
7256         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7257         netdev_adjacent_del_links(dev);
7258
7259         /* Actually switch the network namespace */
7260         dev_net_set(dev, net);
7261
7262         /* If there is an ifindex conflict assign a new one */
7263         if (__dev_get_by_index(net, dev->ifindex))
7264                 dev->ifindex = dev_new_index(net);
7265
7266         /* Send a netdev-add uevent to the new namespace */
7267         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7268         netdev_adjacent_add_links(dev);
7269
7270         /* Fixup kobjects */
7271         err = device_rename(&dev->dev, dev->name);
7272         WARN_ON(err);
7273
7274         /* Add the device back in the hashes */
7275         list_netdevice(dev);
7276
7277         /* Notify protocols, that a new device appeared. */
7278         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7279
7280         /*
7281          *      Prevent userspace races by waiting until the network
7282          *      device is fully setup before sending notifications.
7283          */
7284         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7285
7286         synchronize_net();
7287         err = 0;
7288 out:
7289         return err;
7290 }
7291 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7292
7293 static int dev_cpu_callback(struct notifier_block *nfb,
7294                             unsigned long action,
7295                             void *ocpu)
7296 {
7297         struct sk_buff **list_skb;
7298         struct sk_buff *skb;
7299         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7300         struct softnet_data *sd, *oldsd;
7301
7302         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7303                 return NOTIFY_OK;
7304
7305         local_irq_disable();
7306         cpu = smp_processor_id();
7307         sd = &per_cpu(softnet_data, cpu);
7308         oldsd = &per_cpu(softnet_data, oldcpu);
7309
7310         /* Find end of our completion_queue. */
7311         list_skb = &sd->completion_queue;
7312         while (*list_skb)
7313                 list_skb = &(*list_skb)->next;
7314         /* Append completion queue from offline CPU. */
7315         *list_skb = oldsd->completion_queue;
7316         oldsd->completion_queue = NULL;
7317
7318         /* Append output queue from offline CPU. */
7319         if (oldsd->output_queue) {
7320                 *sd->output_queue_tailp = oldsd->output_queue;
7321                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7322                 oldsd->output_queue = NULL;
7323                 oldsd->output_queue_tailp = &oldsd->output_queue;
7324         }
7325         /* Append NAPI poll list from offline CPU, with one exception :
7326          * process_backlog() must be called by cpu owning percpu backlog.
7327          * We properly handle process_queue & input_pkt_queue later.
7328          */
7329         while (!list_empty(&oldsd->poll_list)) {
7330                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7331                                                             struct napi_struct,
7332                                                             poll_list);
7333
7334                 list_del_init(&napi->poll_list);
7335                 if (napi->poll == process_backlog)
7336                         napi->state = 0;
7337                 else
7338                         ____napi_schedule(sd, napi);
7339         }
7340
7341         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7342         local_irq_enable();
7343
7344         /* Process offline CPU's input_pkt_queue */
7345         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7346                 netif_rx_ni(skb);
7347                 input_queue_head_incr(oldsd);
7348         }
7349         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7350                 netif_rx_ni(skb);
7351                 input_queue_head_incr(oldsd);
7352         }
7353
7354         return NOTIFY_OK;
7355 }
7356
7357
7358 /**
7359  *      netdev_increment_features - increment feature set by one
7360  *      @all: current feature set
7361  *      @one: new feature set
7362  *      @mask: mask feature set
7363  *
7364  *      Computes a new feature set after adding a device with feature set
7365  *      @one to the master device with current feature set @all.  Will not
7366  *      enable anything that is off in @mask. Returns the new feature set.
7367  */
7368 netdev_features_t netdev_increment_features(netdev_features_t all,
7369         netdev_features_t one, netdev_features_t mask)
7370 {
7371         if (mask & NETIF_F_GEN_CSUM)
7372                 mask |= NETIF_F_ALL_CSUM;
7373         mask |= NETIF_F_VLAN_CHALLENGED;
7374
7375         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7376         all &= one | ~NETIF_F_ALL_FOR_ALL;
7377
7378         /* If one device supports hw checksumming, set for all. */
7379         if (all & NETIF_F_GEN_CSUM)
7380                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7381
7382         return all;
7383 }
7384 EXPORT_SYMBOL(netdev_increment_features);
7385
7386 static struct hlist_head * __net_init netdev_create_hash(void)
7387 {
7388         int i;
7389         struct hlist_head *hash;
7390
7391         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7392         if (hash != NULL)
7393                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7394                         INIT_HLIST_HEAD(&hash[i]);
7395
7396         return hash;
7397 }
7398
7399 /* Initialize per network namespace state */
7400 static int __net_init netdev_init(struct net *net)
7401 {
7402         if (net != &init_net)
7403                 INIT_LIST_HEAD(&net->dev_base_head);
7404
7405         net->dev_name_head = netdev_create_hash();
7406         if (net->dev_name_head == NULL)
7407                 goto err_name;
7408
7409         net->dev_index_head = netdev_create_hash();
7410         if (net->dev_index_head == NULL)
7411                 goto err_idx;
7412
7413         return 0;
7414
7415 err_idx:
7416         kfree(net->dev_name_head);
7417 err_name:
7418         return -ENOMEM;
7419 }
7420
7421 /**
7422  *      netdev_drivername - network driver for the device
7423  *      @dev: network device
7424  *
7425  *      Determine network driver for device.
7426  */
7427 const char *netdev_drivername(const struct net_device *dev)
7428 {
7429         const struct device_driver *driver;
7430         const struct device *parent;
7431         const char *empty = "";
7432
7433         parent = dev->dev.parent;
7434         if (!parent)
7435                 return empty;
7436
7437         driver = parent->driver;
7438         if (driver && driver->name)
7439                 return driver->name;
7440         return empty;
7441 }
7442
7443 static void __netdev_printk(const char *level, const struct net_device *dev,
7444                             struct va_format *vaf)
7445 {
7446         if (dev && dev->dev.parent) {
7447                 dev_printk_emit(level[1] - '0',
7448                                 dev->dev.parent,
7449                                 "%s %s %s%s: %pV",
7450                                 dev_driver_string(dev->dev.parent),
7451                                 dev_name(dev->dev.parent),
7452                                 netdev_name(dev), netdev_reg_state(dev),
7453                                 vaf);
7454         } else if (dev) {
7455                 printk("%s%s%s: %pV",
7456                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7457         } else {
7458                 printk("%s(NULL net_device): %pV", level, vaf);
7459         }
7460 }
7461
7462 void netdev_printk(const char *level, const struct net_device *dev,
7463                    const char *format, ...)
7464 {
7465         struct va_format vaf;
7466         va_list args;
7467
7468         va_start(args, format);
7469
7470         vaf.fmt = format;
7471         vaf.va = &args;
7472
7473         __netdev_printk(level, dev, &vaf);
7474
7475         va_end(args);
7476 }
7477 EXPORT_SYMBOL(netdev_printk);
7478
7479 #define define_netdev_printk_level(func, level)                 \
7480 void func(const struct net_device *dev, const char *fmt, ...)   \
7481 {                                                               \
7482         struct va_format vaf;                                   \
7483         va_list args;                                           \
7484                                                                 \
7485         va_start(args, fmt);                                    \
7486                                                                 \
7487         vaf.fmt = fmt;                                          \
7488         vaf.va = &args;                                         \
7489                                                                 \
7490         __netdev_printk(level, dev, &vaf);                      \
7491                                                                 \
7492         va_end(args);                                           \
7493 }                                                               \
7494 EXPORT_SYMBOL(func);
7495
7496 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7497 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7498 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7499 define_netdev_printk_level(netdev_err, KERN_ERR);
7500 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7501 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7502 define_netdev_printk_level(netdev_info, KERN_INFO);
7503
7504 static void __net_exit netdev_exit(struct net *net)
7505 {
7506         kfree(net->dev_name_head);
7507         kfree(net->dev_index_head);
7508 }
7509
7510 static struct pernet_operations __net_initdata netdev_net_ops = {
7511         .init = netdev_init,
7512         .exit = netdev_exit,
7513 };
7514
7515 static void __net_exit default_device_exit(struct net *net)
7516 {
7517         struct net_device *dev, *aux;
7518         /*
7519          * Push all migratable network devices back to the
7520          * initial network namespace
7521          */
7522         rtnl_lock();
7523         for_each_netdev_safe(net, dev, aux) {
7524                 int err;
7525                 char fb_name[IFNAMSIZ];
7526
7527                 /* Ignore unmoveable devices (i.e. loopback) */
7528                 if (dev->features & NETIF_F_NETNS_LOCAL)
7529                         continue;
7530
7531                 /* Leave virtual devices for the generic cleanup */
7532                 if (dev->rtnl_link_ops)
7533                         continue;
7534
7535                 /* Push remaining network devices to init_net */
7536                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7537                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7538                 if (err) {
7539                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7540                                  __func__, dev->name, err);
7541                         BUG();
7542                 }
7543         }
7544         rtnl_unlock();
7545 }
7546
7547 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7548 {
7549         /* Return with the rtnl_lock held when there are no network
7550          * devices unregistering in any network namespace in net_list.
7551          */
7552         struct net *net;
7553         bool unregistering;
7554         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7555
7556         add_wait_queue(&netdev_unregistering_wq, &wait);
7557         for (;;) {
7558                 unregistering = false;
7559                 rtnl_lock();
7560                 list_for_each_entry(net, net_list, exit_list) {
7561                         if (net->dev_unreg_count > 0) {
7562                                 unregistering = true;
7563                                 break;
7564                         }
7565                 }
7566                 if (!unregistering)
7567                         break;
7568                 __rtnl_unlock();
7569
7570                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7571         }
7572         remove_wait_queue(&netdev_unregistering_wq, &wait);
7573 }
7574
7575 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7576 {
7577         /* At exit all network devices most be removed from a network
7578          * namespace.  Do this in the reverse order of registration.
7579          * Do this across as many network namespaces as possible to
7580          * improve batching efficiency.
7581          */
7582         struct net_device *dev;
7583         struct net *net;
7584         LIST_HEAD(dev_kill_list);
7585
7586         /* To prevent network device cleanup code from dereferencing
7587          * loopback devices or network devices that have been freed
7588          * wait here for all pending unregistrations to complete,
7589          * before unregistring the loopback device and allowing the
7590          * network namespace be freed.
7591          *
7592          * The netdev todo list containing all network devices
7593          * unregistrations that happen in default_device_exit_batch
7594          * will run in the rtnl_unlock() at the end of
7595          * default_device_exit_batch.
7596          */
7597         rtnl_lock_unregistering(net_list);
7598         list_for_each_entry(net, net_list, exit_list) {
7599                 for_each_netdev_reverse(net, dev) {
7600                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7601                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7602                         else
7603                                 unregister_netdevice_queue(dev, &dev_kill_list);
7604                 }
7605         }
7606         unregister_netdevice_many(&dev_kill_list);
7607         rtnl_unlock();
7608 }
7609
7610 static struct pernet_operations __net_initdata default_device_ops = {
7611         .exit = default_device_exit,
7612         .exit_batch = default_device_exit_batch,
7613 };
7614
7615 /*
7616  *      Initialize the DEV module. At boot time this walks the device list and
7617  *      unhooks any devices that fail to initialise (normally hardware not
7618  *      present) and leaves us with a valid list of present and active devices.
7619  *
7620  */
7621
7622 /*
7623  *       This is called single threaded during boot, so no need
7624  *       to take the rtnl semaphore.
7625  */
7626 static int __init net_dev_init(void)
7627 {
7628         int i, rc = -ENOMEM;
7629
7630         BUG_ON(!dev_boot_phase);
7631
7632         if (dev_proc_init())
7633                 goto out;
7634
7635         if (netdev_kobject_init())
7636                 goto out;
7637
7638         INIT_LIST_HEAD(&ptype_all);
7639         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7640                 INIT_LIST_HEAD(&ptype_base[i]);
7641
7642         INIT_LIST_HEAD(&offload_base);
7643
7644         if (register_pernet_subsys(&netdev_net_ops))
7645                 goto out;
7646
7647         /*
7648          *      Initialise the packet receive queues.
7649          */
7650
7651         for_each_possible_cpu(i) {
7652                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7653
7654                 skb_queue_head_init(&sd->input_pkt_queue);
7655                 skb_queue_head_init(&sd->process_queue);
7656                 INIT_LIST_HEAD(&sd->poll_list);
7657                 sd->output_queue_tailp = &sd->output_queue;
7658 #ifdef CONFIG_RPS
7659                 sd->csd.func = rps_trigger_softirq;
7660                 sd->csd.info = sd;
7661                 sd->cpu = i;
7662 #endif
7663
7664                 sd->backlog.poll = process_backlog;
7665                 sd->backlog.weight = weight_p;
7666         }
7667
7668         dev_boot_phase = 0;
7669
7670         /* The loopback device is special if any other network devices
7671          * is present in a network namespace the loopback device must
7672          * be present. Since we now dynamically allocate and free the
7673          * loopback device ensure this invariant is maintained by
7674          * keeping the loopback device as the first device on the
7675          * list of network devices.  Ensuring the loopback devices
7676          * is the first device that appears and the last network device
7677          * that disappears.
7678          */
7679         if (register_pernet_device(&loopback_net_ops))
7680                 goto out;
7681
7682         if (register_pernet_device(&default_device_ops))
7683                 goto out;
7684
7685         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7686         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7687
7688         hotcpu_notifier(dev_cpu_callback, 0);
7689         dst_subsys_init();
7690         rc = 0;
7691 out:
7692         return rc;
7693 }
7694
7695 subsys_initcall(net_dev_init);