Merge branch 'akpm' (fixes from Andrew)
[linux-drm-fsl-dcu.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60
61 struct swap_list_t swap_list = {-1, -1};
62
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64
65 static DEFINE_MUTEX(swapon_mutex);
66
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
74 }
75
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80         swp_entry_t entry = swp_entry(si->type, offset);
81         struct page *page;
82         int ret = 0;
83
84         page = find_get_page(swap_address_space(entry), entry.val);
85         if (!page)
86                 return 0;
87         /*
88          * This function is called from scan_swap_map() and it's called
89          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90          * We have to use trylock for avoiding deadlock. This is a special
91          * case and you should use try_to_free_swap() with explicit lock_page()
92          * in usual operations.
93          */
94         if (trylock_page(page)) {
95                 ret = try_to_free_swap(page);
96                 unlock_page(page);
97         }
98         page_cache_release(page);
99         return ret;
100 }
101
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108         struct swap_extent *se;
109         sector_t start_block;
110         sector_t nr_blocks;
111         int err = 0;
112
113         /* Do not discard the swap header page! */
114         se = &si->first_swap_extent;
115         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117         if (nr_blocks) {
118                 err = blkdev_issue_discard(si->bdev, start_block,
119                                 nr_blocks, GFP_KERNEL, 0);
120                 if (err)
121                         return err;
122                 cond_resched();
123         }
124
125         list_for_each_entry(se, &si->first_swap_extent.list, list) {
126                 start_block = se->start_block << (PAGE_SHIFT - 9);
127                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128
129                 err = blkdev_issue_discard(si->bdev, start_block,
130                                 nr_blocks, GFP_KERNEL, 0);
131                 if (err)
132                         break;
133
134                 cond_resched();
135         }
136         return err;             /* That will often be -EOPNOTSUPP */
137 }
138
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144                                  pgoff_t start_page, pgoff_t nr_pages)
145 {
146         struct swap_extent *se = si->curr_swap_extent;
147         int found_extent = 0;
148
149         while (nr_pages) {
150                 struct list_head *lh;
151
152                 if (se->start_page <= start_page &&
153                     start_page < se->start_page + se->nr_pages) {
154                         pgoff_t offset = start_page - se->start_page;
155                         sector_t start_block = se->start_block + offset;
156                         sector_t nr_blocks = se->nr_pages - offset;
157
158                         if (nr_blocks > nr_pages)
159                                 nr_blocks = nr_pages;
160                         start_page += nr_blocks;
161                         nr_pages -= nr_blocks;
162
163                         if (!found_extent++)
164                                 si->curr_swap_extent = se;
165
166                         start_block <<= PAGE_SHIFT - 9;
167                         nr_blocks <<= PAGE_SHIFT - 9;
168                         if (blkdev_issue_discard(si->bdev, start_block,
169                                     nr_blocks, GFP_NOIO, 0))
170                                 break;
171                 }
172
173                 lh = se->list.next;
174                 se = list_entry(lh, struct swap_extent, list);
175         }
176 }
177
178 #define SWAPFILE_CLUSTER        256
179 #define LATENCY_LIMIT           256
180
181 static inline void cluster_set_flag(struct swap_cluster_info *info,
182         unsigned int flag)
183 {
184         info->flags = flag;
185 }
186
187 static inline unsigned int cluster_count(struct swap_cluster_info *info)
188 {
189         return info->data;
190 }
191
192 static inline void cluster_set_count(struct swap_cluster_info *info,
193                                      unsigned int c)
194 {
195         info->data = c;
196 }
197
198 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199                                          unsigned int c, unsigned int f)
200 {
201         info->flags = f;
202         info->data = c;
203 }
204
205 static inline unsigned int cluster_next(struct swap_cluster_info *info)
206 {
207         return info->data;
208 }
209
210 static inline void cluster_set_next(struct swap_cluster_info *info,
211                                     unsigned int n)
212 {
213         info->data = n;
214 }
215
216 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217                                          unsigned int n, unsigned int f)
218 {
219         info->flags = f;
220         info->data = n;
221 }
222
223 static inline bool cluster_is_free(struct swap_cluster_info *info)
224 {
225         return info->flags & CLUSTER_FLAG_FREE;
226 }
227
228 static inline bool cluster_is_null(struct swap_cluster_info *info)
229 {
230         return info->flags & CLUSTER_FLAG_NEXT_NULL;
231 }
232
233 static inline void cluster_set_null(struct swap_cluster_info *info)
234 {
235         info->flags = CLUSTER_FLAG_NEXT_NULL;
236         info->data = 0;
237 }
238
239 /* Add a cluster to discard list and schedule it to do discard */
240 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
241                 unsigned int idx)
242 {
243         /*
244          * If scan_swap_map() can't find a free cluster, it will check
245          * si->swap_map directly. To make sure the discarding cluster isn't
246          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247          * will be cleared after discard
248          */
249         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
251
252         if (cluster_is_null(&si->discard_cluster_head)) {
253                 cluster_set_next_flag(&si->discard_cluster_head,
254                                                 idx, 0);
255                 cluster_set_next_flag(&si->discard_cluster_tail,
256                                                 idx, 0);
257         } else {
258                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
259                 cluster_set_next(&si->cluster_info[tail], idx);
260                 cluster_set_next_flag(&si->discard_cluster_tail,
261                                                 idx, 0);
262         }
263
264         schedule_work(&si->discard_work);
265 }
266
267 /*
268  * Doing discard actually. After a cluster discard is finished, the cluster
269  * will be added to free cluster list. caller should hold si->lock.
270 */
271 static void swap_do_scheduled_discard(struct swap_info_struct *si)
272 {
273         struct swap_cluster_info *info;
274         unsigned int idx;
275
276         info = si->cluster_info;
277
278         while (!cluster_is_null(&si->discard_cluster_head)) {
279                 idx = cluster_next(&si->discard_cluster_head);
280
281                 cluster_set_next_flag(&si->discard_cluster_head,
282                                                 cluster_next(&info[idx]), 0);
283                 if (cluster_next(&si->discard_cluster_tail) == idx) {
284                         cluster_set_null(&si->discard_cluster_head);
285                         cluster_set_null(&si->discard_cluster_tail);
286                 }
287                 spin_unlock(&si->lock);
288
289                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
290                                 SWAPFILE_CLUSTER);
291
292                 spin_lock(&si->lock);
293                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294                 if (cluster_is_null(&si->free_cluster_head)) {
295                         cluster_set_next_flag(&si->free_cluster_head,
296                                                 idx, 0);
297                         cluster_set_next_flag(&si->free_cluster_tail,
298                                                 idx, 0);
299                 } else {
300                         unsigned int tail;
301
302                         tail = cluster_next(&si->free_cluster_tail);
303                         cluster_set_next(&info[tail], idx);
304                         cluster_set_next_flag(&si->free_cluster_tail,
305                                                 idx, 0);
306                 }
307                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308                                 0, SWAPFILE_CLUSTER);
309         }
310 }
311
312 static void swap_discard_work(struct work_struct *work)
313 {
314         struct swap_info_struct *si;
315
316         si = container_of(work, struct swap_info_struct, discard_work);
317
318         spin_lock(&si->lock);
319         swap_do_scheduled_discard(si);
320         spin_unlock(&si->lock);
321 }
322
323 /*
324  * The cluster corresponding to page_nr will be used. The cluster will be
325  * removed from free cluster list and its usage counter will be increased.
326  */
327 static void inc_cluster_info_page(struct swap_info_struct *p,
328         struct swap_cluster_info *cluster_info, unsigned long page_nr)
329 {
330         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
331
332         if (!cluster_info)
333                 return;
334         if (cluster_is_free(&cluster_info[idx])) {
335                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336                 cluster_set_next_flag(&p->free_cluster_head,
337                         cluster_next(&cluster_info[idx]), 0);
338                 if (cluster_next(&p->free_cluster_tail) == idx) {
339                         cluster_set_null(&p->free_cluster_tail);
340                         cluster_set_null(&p->free_cluster_head);
341                 }
342                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
343         }
344
345         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346         cluster_set_count(&cluster_info[idx],
347                 cluster_count(&cluster_info[idx]) + 1);
348 }
349
350 /*
351  * The cluster corresponding to page_nr decreases one usage. If the usage
352  * counter becomes 0, which means no page in the cluster is in using, we can
353  * optionally discard the cluster and add it to free cluster list.
354  */
355 static void dec_cluster_info_page(struct swap_info_struct *p,
356         struct swap_cluster_info *cluster_info, unsigned long page_nr)
357 {
358         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
359
360         if (!cluster_info)
361                 return;
362
363         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364         cluster_set_count(&cluster_info[idx],
365                 cluster_count(&cluster_info[idx]) - 1);
366
367         if (cluster_count(&cluster_info[idx]) == 0) {
368                 /*
369                  * If the swap is discardable, prepare discard the cluster
370                  * instead of free it immediately. The cluster will be freed
371                  * after discard.
372                  */
373                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
375                         swap_cluster_schedule_discard(p, idx);
376                         return;
377                 }
378
379                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380                 if (cluster_is_null(&p->free_cluster_head)) {
381                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
383                 } else {
384                         unsigned int tail = cluster_next(&p->free_cluster_tail);
385                         cluster_set_next(&cluster_info[tail], idx);
386                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
387                 }
388         }
389 }
390
391 /*
392  * It's possible scan_swap_map() uses a free cluster in the middle of free
393  * cluster list. Avoiding such abuse to avoid list corruption.
394  */
395 static bool
396 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
397         unsigned long offset)
398 {
399         struct percpu_cluster *percpu_cluster;
400         bool conflict;
401
402         offset /= SWAPFILE_CLUSTER;
403         conflict = !cluster_is_null(&si->free_cluster_head) &&
404                 offset != cluster_next(&si->free_cluster_head) &&
405                 cluster_is_free(&si->cluster_info[offset]);
406
407         if (!conflict)
408                 return false;
409
410         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
411         cluster_set_null(&percpu_cluster->index);
412         return true;
413 }
414
415 /*
416  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
417  * might involve allocating a new cluster for current CPU too.
418  */
419 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
420         unsigned long *offset, unsigned long *scan_base)
421 {
422         struct percpu_cluster *cluster;
423         bool found_free;
424         unsigned long tmp;
425
426 new_cluster:
427         cluster = this_cpu_ptr(si->percpu_cluster);
428         if (cluster_is_null(&cluster->index)) {
429                 if (!cluster_is_null(&si->free_cluster_head)) {
430                         cluster->index = si->free_cluster_head;
431                         cluster->next = cluster_next(&cluster->index) *
432                                         SWAPFILE_CLUSTER;
433                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
434                         /*
435                          * we don't have free cluster but have some clusters in
436                          * discarding, do discard now and reclaim them
437                          */
438                         swap_do_scheduled_discard(si);
439                         *scan_base = *offset = si->cluster_next;
440                         goto new_cluster;
441                 } else
442                         return;
443         }
444
445         found_free = false;
446
447         /*
448          * Other CPUs can use our cluster if they can't find a free cluster,
449          * check if there is still free entry in the cluster
450          */
451         tmp = cluster->next;
452         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
453                SWAPFILE_CLUSTER) {
454                 if (!si->swap_map[tmp]) {
455                         found_free = true;
456                         break;
457                 }
458                 tmp++;
459         }
460         if (!found_free) {
461                 cluster_set_null(&cluster->index);
462                 goto new_cluster;
463         }
464         cluster->next = tmp + 1;
465         *offset = tmp;
466         *scan_base = tmp;
467 }
468
469 static unsigned long scan_swap_map(struct swap_info_struct *si,
470                                    unsigned char usage)
471 {
472         unsigned long offset;
473         unsigned long scan_base;
474         unsigned long last_in_cluster = 0;
475         int latency_ration = LATENCY_LIMIT;
476
477         /*
478          * We try to cluster swap pages by allocating them sequentially
479          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
480          * way, however, we resort to first-free allocation, starting
481          * a new cluster.  This prevents us from scattering swap pages
482          * all over the entire swap partition, so that we reduce
483          * overall disk seek times between swap pages.  -- sct
484          * But we do now try to find an empty cluster.  -Andrea
485          * And we let swap pages go all over an SSD partition.  Hugh
486          */
487
488         si->flags += SWP_SCANNING;
489         scan_base = offset = si->cluster_next;
490
491         /* SSD algorithm */
492         if (si->cluster_info) {
493                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
494                 goto checks;
495         }
496
497         if (unlikely(!si->cluster_nr--)) {
498                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
499                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
500                         goto checks;
501                 }
502
503                 spin_unlock(&si->lock);
504
505                 /*
506                  * If seek is expensive, start searching for new cluster from
507                  * start of partition, to minimize the span of allocated swap.
508                  * But if seek is cheap, search from our current position, so
509                  * that swap is allocated from all over the partition: if the
510                  * Flash Translation Layer only remaps within limited zones,
511                  * we don't want to wear out the first zone too quickly.
512                  */
513                 if (!(si->flags & SWP_SOLIDSTATE))
514                         scan_base = offset = si->lowest_bit;
515                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
516
517                 /* Locate the first empty (unaligned) cluster */
518                 for (; last_in_cluster <= si->highest_bit; offset++) {
519                         if (si->swap_map[offset])
520                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
521                         else if (offset == last_in_cluster) {
522                                 spin_lock(&si->lock);
523                                 offset -= SWAPFILE_CLUSTER - 1;
524                                 si->cluster_next = offset;
525                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
526                                 goto checks;
527                         }
528                         if (unlikely(--latency_ration < 0)) {
529                                 cond_resched();
530                                 latency_ration = LATENCY_LIMIT;
531                         }
532                 }
533
534                 offset = si->lowest_bit;
535                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
536
537                 /* Locate the first empty (unaligned) cluster */
538                 for (; last_in_cluster < scan_base; offset++) {
539                         if (si->swap_map[offset])
540                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
541                         else if (offset == last_in_cluster) {
542                                 spin_lock(&si->lock);
543                                 offset -= SWAPFILE_CLUSTER - 1;
544                                 si->cluster_next = offset;
545                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
546                                 goto checks;
547                         }
548                         if (unlikely(--latency_ration < 0)) {
549                                 cond_resched();
550                                 latency_ration = LATENCY_LIMIT;
551                         }
552                 }
553
554                 offset = scan_base;
555                 spin_lock(&si->lock);
556                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
557         }
558
559 checks:
560         if (si->cluster_info) {
561                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
562                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
563         }
564         if (!(si->flags & SWP_WRITEOK))
565                 goto no_page;
566         if (!si->highest_bit)
567                 goto no_page;
568         if (offset > si->highest_bit)
569                 scan_base = offset = si->lowest_bit;
570
571         /* reuse swap entry of cache-only swap if not busy. */
572         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
573                 int swap_was_freed;
574                 spin_unlock(&si->lock);
575                 swap_was_freed = __try_to_reclaim_swap(si, offset);
576                 spin_lock(&si->lock);
577                 /* entry was freed successfully, try to use this again */
578                 if (swap_was_freed)
579                         goto checks;
580                 goto scan; /* check next one */
581         }
582
583         if (si->swap_map[offset])
584                 goto scan;
585
586         if (offset == si->lowest_bit)
587                 si->lowest_bit++;
588         if (offset == si->highest_bit)
589                 si->highest_bit--;
590         si->inuse_pages++;
591         if (si->inuse_pages == si->pages) {
592                 si->lowest_bit = si->max;
593                 si->highest_bit = 0;
594         }
595         si->swap_map[offset] = usage;
596         inc_cluster_info_page(si, si->cluster_info, offset);
597         si->cluster_next = offset + 1;
598         si->flags -= SWP_SCANNING;
599
600         return offset;
601
602 scan:
603         spin_unlock(&si->lock);
604         while (++offset <= si->highest_bit) {
605                 if (!si->swap_map[offset]) {
606                         spin_lock(&si->lock);
607                         goto checks;
608                 }
609                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
610                         spin_lock(&si->lock);
611                         goto checks;
612                 }
613                 if (unlikely(--latency_ration < 0)) {
614                         cond_resched();
615                         latency_ration = LATENCY_LIMIT;
616                 }
617         }
618         offset = si->lowest_bit;
619         while (++offset < scan_base) {
620                 if (!si->swap_map[offset]) {
621                         spin_lock(&si->lock);
622                         goto checks;
623                 }
624                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
625                         spin_lock(&si->lock);
626                         goto checks;
627                 }
628                 if (unlikely(--latency_ration < 0)) {
629                         cond_resched();
630                         latency_ration = LATENCY_LIMIT;
631                 }
632         }
633         spin_lock(&si->lock);
634
635 no_page:
636         si->flags -= SWP_SCANNING;
637         return 0;
638 }
639
640 swp_entry_t get_swap_page(void)
641 {
642         struct swap_info_struct *si;
643         pgoff_t offset;
644         int type, next;
645         int wrapped = 0;
646         int hp_index;
647
648         spin_lock(&swap_lock);
649         if (atomic_long_read(&nr_swap_pages) <= 0)
650                 goto noswap;
651         atomic_long_dec(&nr_swap_pages);
652
653         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
654                 hp_index = atomic_xchg(&highest_priority_index, -1);
655                 /*
656                  * highest_priority_index records current highest priority swap
657                  * type which just frees swap entries. If its priority is
658                  * higher than that of swap_list.next swap type, we use it.  It
659                  * isn't protected by swap_lock, so it can be an invalid value
660                  * if the corresponding swap type is swapoff. We double check
661                  * the flags here. It's even possible the swap type is swapoff
662                  * and swapon again and its priority is changed. In such rare
663                  * case, low prority swap type might be used, but eventually
664                  * high priority swap will be used after several rounds of
665                  * swap.
666                  */
667                 if (hp_index != -1 && hp_index != type &&
668                     swap_info[type]->prio < swap_info[hp_index]->prio &&
669                     (swap_info[hp_index]->flags & SWP_WRITEOK)) {
670                         type = hp_index;
671                         swap_list.next = type;
672                 }
673
674                 si = swap_info[type];
675                 next = si->next;
676                 if (next < 0 ||
677                     (!wrapped && si->prio != swap_info[next]->prio)) {
678                         next = swap_list.head;
679                         wrapped++;
680                 }
681
682                 spin_lock(&si->lock);
683                 if (!si->highest_bit) {
684                         spin_unlock(&si->lock);
685                         continue;
686                 }
687                 if (!(si->flags & SWP_WRITEOK)) {
688                         spin_unlock(&si->lock);
689                         continue;
690                 }
691
692                 swap_list.next = next;
693
694                 spin_unlock(&swap_lock);
695                 /* This is called for allocating swap entry for cache */
696                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
697                 spin_unlock(&si->lock);
698                 if (offset)
699                         return swp_entry(type, offset);
700                 spin_lock(&swap_lock);
701                 next = swap_list.next;
702         }
703
704         atomic_long_inc(&nr_swap_pages);
705 noswap:
706         spin_unlock(&swap_lock);
707         return (swp_entry_t) {0};
708 }
709
710 /* The only caller of this function is now suspend routine */
711 swp_entry_t get_swap_page_of_type(int type)
712 {
713         struct swap_info_struct *si;
714         pgoff_t offset;
715
716         si = swap_info[type];
717         spin_lock(&si->lock);
718         if (si && (si->flags & SWP_WRITEOK)) {
719                 atomic_long_dec(&nr_swap_pages);
720                 /* This is called for allocating swap entry, not cache */
721                 offset = scan_swap_map(si, 1);
722                 if (offset) {
723                         spin_unlock(&si->lock);
724                         return swp_entry(type, offset);
725                 }
726                 atomic_long_inc(&nr_swap_pages);
727         }
728         spin_unlock(&si->lock);
729         return (swp_entry_t) {0};
730 }
731
732 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
733 {
734         struct swap_info_struct *p;
735         unsigned long offset, type;
736
737         if (!entry.val)
738                 goto out;
739         type = swp_type(entry);
740         if (type >= nr_swapfiles)
741                 goto bad_nofile;
742         p = swap_info[type];
743         if (!(p->flags & SWP_USED))
744                 goto bad_device;
745         offset = swp_offset(entry);
746         if (offset >= p->max)
747                 goto bad_offset;
748         if (!p->swap_map[offset])
749                 goto bad_free;
750         spin_lock(&p->lock);
751         return p;
752
753 bad_free:
754         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
755         goto out;
756 bad_offset:
757         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
758         goto out;
759 bad_device:
760         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
761         goto out;
762 bad_nofile:
763         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
764 out:
765         return NULL;
766 }
767
768 /*
769  * This swap type frees swap entry, check if it is the highest priority swap
770  * type which just frees swap entry. get_swap_page() uses
771  * highest_priority_index to search highest priority swap type. The
772  * swap_info_struct.lock can't protect us if there are multiple swap types
773  * active, so we use atomic_cmpxchg.
774  */
775 static void set_highest_priority_index(int type)
776 {
777         int old_hp_index, new_hp_index;
778
779         do {
780                 old_hp_index = atomic_read(&highest_priority_index);
781                 if (old_hp_index != -1 &&
782                         swap_info[old_hp_index]->prio >= swap_info[type]->prio)
783                         break;
784                 new_hp_index = type;
785         } while (atomic_cmpxchg(&highest_priority_index,
786                 old_hp_index, new_hp_index) != old_hp_index);
787 }
788
789 static unsigned char swap_entry_free(struct swap_info_struct *p,
790                                      swp_entry_t entry, unsigned char usage)
791 {
792         unsigned long offset = swp_offset(entry);
793         unsigned char count;
794         unsigned char has_cache;
795
796         count = p->swap_map[offset];
797         has_cache = count & SWAP_HAS_CACHE;
798         count &= ~SWAP_HAS_CACHE;
799
800         if (usage == SWAP_HAS_CACHE) {
801                 VM_BUG_ON(!has_cache);
802                 has_cache = 0;
803         } else if (count == SWAP_MAP_SHMEM) {
804                 /*
805                  * Or we could insist on shmem.c using a special
806                  * swap_shmem_free() and free_shmem_swap_and_cache()...
807                  */
808                 count = 0;
809         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
810                 if (count == COUNT_CONTINUED) {
811                         if (swap_count_continued(p, offset, count))
812                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
813                         else
814                                 count = SWAP_MAP_MAX;
815                 } else
816                         count--;
817         }
818
819         if (!count)
820                 mem_cgroup_uncharge_swap(entry);
821
822         usage = count | has_cache;
823         p->swap_map[offset] = usage;
824
825         /* free if no reference */
826         if (!usage) {
827                 dec_cluster_info_page(p, p->cluster_info, offset);
828                 if (offset < p->lowest_bit)
829                         p->lowest_bit = offset;
830                 if (offset > p->highest_bit)
831                         p->highest_bit = offset;
832                 set_highest_priority_index(p->type);
833                 atomic_long_inc(&nr_swap_pages);
834                 p->inuse_pages--;
835                 frontswap_invalidate_page(p->type, offset);
836                 if (p->flags & SWP_BLKDEV) {
837                         struct gendisk *disk = p->bdev->bd_disk;
838                         if (disk->fops->swap_slot_free_notify)
839                                 disk->fops->swap_slot_free_notify(p->bdev,
840                                                                   offset);
841                 }
842         }
843
844         return usage;
845 }
846
847 /*
848  * Caller has made sure that the swap device corresponding to entry
849  * is still around or has not been recycled.
850  */
851 void swap_free(swp_entry_t entry)
852 {
853         struct swap_info_struct *p;
854
855         p = swap_info_get(entry);
856         if (p) {
857                 swap_entry_free(p, entry, 1);
858                 spin_unlock(&p->lock);
859         }
860 }
861
862 /*
863  * Called after dropping swapcache to decrease refcnt to swap entries.
864  */
865 void swapcache_free(swp_entry_t entry, struct page *page)
866 {
867         struct swap_info_struct *p;
868         unsigned char count;
869
870         p = swap_info_get(entry);
871         if (p) {
872                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
873                 if (page)
874                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
875                 spin_unlock(&p->lock);
876         }
877 }
878
879 /*
880  * How many references to page are currently swapped out?
881  * This does not give an exact answer when swap count is continued,
882  * but does include the high COUNT_CONTINUED flag to allow for that.
883  */
884 int page_swapcount(struct page *page)
885 {
886         int count = 0;
887         struct swap_info_struct *p;
888         swp_entry_t entry;
889
890         entry.val = page_private(page);
891         p = swap_info_get(entry);
892         if (p) {
893                 count = swap_count(p->swap_map[swp_offset(entry)]);
894                 spin_unlock(&p->lock);
895         }
896         return count;
897 }
898
899 /*
900  * We can write to an anon page without COW if there are no other references
901  * to it.  And as a side-effect, free up its swap: because the old content
902  * on disk will never be read, and seeking back there to write new content
903  * later would only waste time away from clustering.
904  */
905 int reuse_swap_page(struct page *page)
906 {
907         int count;
908
909         VM_BUG_ON(!PageLocked(page));
910         if (unlikely(PageKsm(page)))
911                 return 0;
912         count = page_mapcount(page);
913         if (count <= 1 && PageSwapCache(page)) {
914                 count += page_swapcount(page);
915                 if (count == 1 && !PageWriteback(page)) {
916                         delete_from_swap_cache(page);
917                         SetPageDirty(page);
918                 }
919         }
920         return count <= 1;
921 }
922
923 /*
924  * If swap is getting full, or if there are no more mappings of this page,
925  * then try_to_free_swap is called to free its swap space.
926  */
927 int try_to_free_swap(struct page *page)
928 {
929         VM_BUG_ON(!PageLocked(page));
930
931         if (!PageSwapCache(page))
932                 return 0;
933         if (PageWriteback(page))
934                 return 0;
935         if (page_swapcount(page))
936                 return 0;
937
938         /*
939          * Once hibernation has begun to create its image of memory,
940          * there's a danger that one of the calls to try_to_free_swap()
941          * - most probably a call from __try_to_reclaim_swap() while
942          * hibernation is allocating its own swap pages for the image,
943          * but conceivably even a call from memory reclaim - will free
944          * the swap from a page which has already been recorded in the
945          * image as a clean swapcache page, and then reuse its swap for
946          * another page of the image.  On waking from hibernation, the
947          * original page might be freed under memory pressure, then
948          * later read back in from swap, now with the wrong data.
949          *
950          * Hibernation suspends storage while it is writing the image
951          * to disk so check that here.
952          */
953         if (pm_suspended_storage())
954                 return 0;
955
956         delete_from_swap_cache(page);
957         SetPageDirty(page);
958         return 1;
959 }
960
961 /*
962  * Free the swap entry like above, but also try to
963  * free the page cache entry if it is the last user.
964  */
965 int free_swap_and_cache(swp_entry_t entry)
966 {
967         struct swap_info_struct *p;
968         struct page *page = NULL;
969
970         if (non_swap_entry(entry))
971                 return 1;
972
973         p = swap_info_get(entry);
974         if (p) {
975                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
976                         page = find_get_page(swap_address_space(entry),
977                                                 entry.val);
978                         if (page && !trylock_page(page)) {
979                                 page_cache_release(page);
980                                 page = NULL;
981                         }
982                 }
983                 spin_unlock(&p->lock);
984         }
985         if (page) {
986                 /*
987                  * Not mapped elsewhere, or swap space full? Free it!
988                  * Also recheck PageSwapCache now page is locked (above).
989                  */
990                 if (PageSwapCache(page) && !PageWriteback(page) &&
991                                 (!page_mapped(page) || vm_swap_full())) {
992                         delete_from_swap_cache(page);
993                         SetPageDirty(page);
994                 }
995                 unlock_page(page);
996                 page_cache_release(page);
997         }
998         return p != NULL;
999 }
1000
1001 #ifdef CONFIG_HIBERNATION
1002 /*
1003  * Find the swap type that corresponds to given device (if any).
1004  *
1005  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1006  * from 0, in which the swap header is expected to be located.
1007  *
1008  * This is needed for the suspend to disk (aka swsusp).
1009  */
1010 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1011 {
1012         struct block_device *bdev = NULL;
1013         int type;
1014
1015         if (device)
1016                 bdev = bdget(device);
1017
1018         spin_lock(&swap_lock);
1019         for (type = 0; type < nr_swapfiles; type++) {
1020                 struct swap_info_struct *sis = swap_info[type];
1021
1022                 if (!(sis->flags & SWP_WRITEOK))
1023                         continue;
1024
1025                 if (!bdev) {
1026                         if (bdev_p)
1027                                 *bdev_p = bdgrab(sis->bdev);
1028
1029                         spin_unlock(&swap_lock);
1030                         return type;
1031                 }
1032                 if (bdev == sis->bdev) {
1033                         struct swap_extent *se = &sis->first_swap_extent;
1034
1035                         if (se->start_block == offset) {
1036                                 if (bdev_p)
1037                                         *bdev_p = bdgrab(sis->bdev);
1038
1039                                 spin_unlock(&swap_lock);
1040                                 bdput(bdev);
1041                                 return type;
1042                         }
1043                 }
1044         }
1045         spin_unlock(&swap_lock);
1046         if (bdev)
1047                 bdput(bdev);
1048
1049         return -ENODEV;
1050 }
1051
1052 /*
1053  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1054  * corresponding to given index in swap_info (swap type).
1055  */
1056 sector_t swapdev_block(int type, pgoff_t offset)
1057 {
1058         struct block_device *bdev;
1059
1060         if ((unsigned int)type >= nr_swapfiles)
1061                 return 0;
1062         if (!(swap_info[type]->flags & SWP_WRITEOK))
1063                 return 0;
1064         return map_swap_entry(swp_entry(type, offset), &bdev);
1065 }
1066
1067 /*
1068  * Return either the total number of swap pages of given type, or the number
1069  * of free pages of that type (depending on @free)
1070  *
1071  * This is needed for software suspend
1072  */
1073 unsigned int count_swap_pages(int type, int free)
1074 {
1075         unsigned int n = 0;
1076
1077         spin_lock(&swap_lock);
1078         if ((unsigned int)type < nr_swapfiles) {
1079                 struct swap_info_struct *sis = swap_info[type];
1080
1081                 spin_lock(&sis->lock);
1082                 if (sis->flags & SWP_WRITEOK) {
1083                         n = sis->pages;
1084                         if (free)
1085                                 n -= sis->inuse_pages;
1086                 }
1087                 spin_unlock(&sis->lock);
1088         }
1089         spin_unlock(&swap_lock);
1090         return n;
1091 }
1092 #endif /* CONFIG_HIBERNATION */
1093
1094 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1095 {
1096 #ifdef CONFIG_MEM_SOFT_DIRTY
1097         /*
1098          * When pte keeps soft dirty bit the pte generated
1099          * from swap entry does not has it, still it's same
1100          * pte from logical point of view.
1101          */
1102         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1103         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1104 #else
1105         return pte_same(pte, swp_pte);
1106 #endif
1107 }
1108
1109 /*
1110  * No need to decide whether this PTE shares the swap entry with others,
1111  * just let do_wp_page work it out if a write is requested later - to
1112  * force COW, vm_page_prot omits write permission from any private vma.
1113  */
1114 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1115                 unsigned long addr, swp_entry_t entry, struct page *page)
1116 {
1117         struct page *swapcache;
1118         struct mem_cgroup *memcg;
1119         spinlock_t *ptl;
1120         pte_t *pte;
1121         int ret = 1;
1122
1123         swapcache = page;
1124         page = ksm_might_need_to_copy(page, vma, addr);
1125         if (unlikely(!page))
1126                 return -ENOMEM;
1127
1128         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1129                                          GFP_KERNEL, &memcg)) {
1130                 ret = -ENOMEM;
1131                 goto out_nolock;
1132         }
1133
1134         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1135         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1136                 mem_cgroup_cancel_charge_swapin(memcg);
1137                 ret = 0;
1138                 goto out;
1139         }
1140
1141         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1142         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1143         get_page(page);
1144         set_pte_at(vma->vm_mm, addr, pte,
1145                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1146         if (page == swapcache)
1147                 page_add_anon_rmap(page, vma, addr);
1148         else /* ksm created a completely new copy */
1149                 page_add_new_anon_rmap(page, vma, addr);
1150         mem_cgroup_commit_charge_swapin(page, memcg);
1151         swap_free(entry);
1152         /*
1153          * Move the page to the active list so it is not
1154          * immediately swapped out again after swapon.
1155          */
1156         activate_page(page);
1157 out:
1158         pte_unmap_unlock(pte, ptl);
1159 out_nolock:
1160         if (page != swapcache) {
1161                 unlock_page(page);
1162                 put_page(page);
1163         }
1164         return ret;
1165 }
1166
1167 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1168                                 unsigned long addr, unsigned long end,
1169                                 swp_entry_t entry, struct page *page)
1170 {
1171         pte_t swp_pte = swp_entry_to_pte(entry);
1172         pte_t *pte;
1173         int ret = 0;
1174
1175         /*
1176          * We don't actually need pte lock while scanning for swp_pte: since
1177          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1178          * page table while we're scanning; though it could get zapped, and on
1179          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1180          * of unmatched parts which look like swp_pte, so unuse_pte must
1181          * recheck under pte lock.  Scanning without pte lock lets it be
1182          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1183          */
1184         pte = pte_offset_map(pmd, addr);
1185         do {
1186                 /*
1187                  * swapoff spends a _lot_ of time in this loop!
1188                  * Test inline before going to call unuse_pte.
1189                  */
1190                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1191                         pte_unmap(pte);
1192                         ret = unuse_pte(vma, pmd, addr, entry, page);
1193                         if (ret)
1194                                 goto out;
1195                         pte = pte_offset_map(pmd, addr);
1196                 }
1197         } while (pte++, addr += PAGE_SIZE, addr != end);
1198         pte_unmap(pte - 1);
1199 out:
1200         return ret;
1201 }
1202
1203 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1204                                 unsigned long addr, unsigned long end,
1205                                 swp_entry_t entry, struct page *page)
1206 {
1207         pmd_t *pmd;
1208         unsigned long next;
1209         int ret;
1210
1211         pmd = pmd_offset(pud, addr);
1212         do {
1213                 next = pmd_addr_end(addr, end);
1214                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1215                         continue;
1216                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1217                 if (ret)
1218                         return ret;
1219         } while (pmd++, addr = next, addr != end);
1220         return 0;
1221 }
1222
1223 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1224                                 unsigned long addr, unsigned long end,
1225                                 swp_entry_t entry, struct page *page)
1226 {
1227         pud_t *pud;
1228         unsigned long next;
1229         int ret;
1230
1231         pud = pud_offset(pgd, addr);
1232         do {
1233                 next = pud_addr_end(addr, end);
1234                 if (pud_none_or_clear_bad(pud))
1235                         continue;
1236                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1237                 if (ret)
1238                         return ret;
1239         } while (pud++, addr = next, addr != end);
1240         return 0;
1241 }
1242
1243 static int unuse_vma(struct vm_area_struct *vma,
1244                                 swp_entry_t entry, struct page *page)
1245 {
1246         pgd_t *pgd;
1247         unsigned long addr, end, next;
1248         int ret;
1249
1250         if (page_anon_vma(page)) {
1251                 addr = page_address_in_vma(page, vma);
1252                 if (addr == -EFAULT)
1253                         return 0;
1254                 else
1255                         end = addr + PAGE_SIZE;
1256         } else {
1257                 addr = vma->vm_start;
1258                 end = vma->vm_end;
1259         }
1260
1261         pgd = pgd_offset(vma->vm_mm, addr);
1262         do {
1263                 next = pgd_addr_end(addr, end);
1264                 if (pgd_none_or_clear_bad(pgd))
1265                         continue;
1266                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1267                 if (ret)
1268                         return ret;
1269         } while (pgd++, addr = next, addr != end);
1270         return 0;
1271 }
1272
1273 static int unuse_mm(struct mm_struct *mm,
1274                                 swp_entry_t entry, struct page *page)
1275 {
1276         struct vm_area_struct *vma;
1277         int ret = 0;
1278
1279         if (!down_read_trylock(&mm->mmap_sem)) {
1280                 /*
1281                  * Activate page so shrink_inactive_list is unlikely to unmap
1282                  * its ptes while lock is dropped, so swapoff can make progress.
1283                  */
1284                 activate_page(page);
1285                 unlock_page(page);
1286                 down_read(&mm->mmap_sem);
1287                 lock_page(page);
1288         }
1289         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1290                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1291                         break;
1292         }
1293         up_read(&mm->mmap_sem);
1294         return (ret < 0)? ret: 0;
1295 }
1296
1297 /*
1298  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1299  * from current position to next entry still in use.
1300  * Recycle to start on reaching the end, returning 0 when empty.
1301  */
1302 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1303                                         unsigned int prev, bool frontswap)
1304 {
1305         unsigned int max = si->max;
1306         unsigned int i = prev;
1307         unsigned char count;
1308
1309         /*
1310          * No need for swap_lock here: we're just looking
1311          * for whether an entry is in use, not modifying it; false
1312          * hits are okay, and sys_swapoff() has already prevented new
1313          * allocations from this area (while holding swap_lock).
1314          */
1315         for (;;) {
1316                 if (++i >= max) {
1317                         if (!prev) {
1318                                 i = 0;
1319                                 break;
1320                         }
1321                         /*
1322                          * No entries in use at top of swap_map,
1323                          * loop back to start and recheck there.
1324                          */
1325                         max = prev + 1;
1326                         prev = 0;
1327                         i = 1;
1328                 }
1329                 if (frontswap) {
1330                         if (frontswap_test(si, i))
1331                                 break;
1332                         else
1333                                 continue;
1334                 }
1335                 count = ACCESS_ONCE(si->swap_map[i]);
1336                 if (count && swap_count(count) != SWAP_MAP_BAD)
1337                         break;
1338         }
1339         return i;
1340 }
1341
1342 /*
1343  * We completely avoid races by reading each swap page in advance,
1344  * and then search for the process using it.  All the necessary
1345  * page table adjustments can then be made atomically.
1346  *
1347  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1348  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1349  */
1350 int try_to_unuse(unsigned int type, bool frontswap,
1351                  unsigned long pages_to_unuse)
1352 {
1353         struct swap_info_struct *si = swap_info[type];
1354         struct mm_struct *start_mm;
1355         volatile unsigned char *swap_map; /* swap_map is accessed without
1356                                            * locking. Mark it as volatile
1357                                            * to prevent compiler doing
1358                                            * something odd.
1359                                            */
1360         unsigned char swcount;
1361         struct page *page;
1362         swp_entry_t entry;
1363         unsigned int i = 0;
1364         int retval = 0;
1365
1366         /*
1367          * When searching mms for an entry, a good strategy is to
1368          * start at the first mm we freed the previous entry from
1369          * (though actually we don't notice whether we or coincidence
1370          * freed the entry).  Initialize this start_mm with a hold.
1371          *
1372          * A simpler strategy would be to start at the last mm we
1373          * freed the previous entry from; but that would take less
1374          * advantage of mmlist ordering, which clusters forked mms
1375          * together, child after parent.  If we race with dup_mmap(), we
1376          * prefer to resolve parent before child, lest we miss entries
1377          * duplicated after we scanned child: using last mm would invert
1378          * that.
1379          */
1380         start_mm = &init_mm;
1381         atomic_inc(&init_mm.mm_users);
1382
1383         /*
1384          * Keep on scanning until all entries have gone.  Usually,
1385          * one pass through swap_map is enough, but not necessarily:
1386          * there are races when an instance of an entry might be missed.
1387          */
1388         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1389                 if (signal_pending(current)) {
1390                         retval = -EINTR;
1391                         break;
1392                 }
1393
1394                 /*
1395                  * Get a page for the entry, using the existing swap
1396                  * cache page if there is one.  Otherwise, get a clean
1397                  * page and read the swap into it.
1398                  */
1399                 swap_map = &si->swap_map[i];
1400                 entry = swp_entry(type, i);
1401                 page = read_swap_cache_async(entry,
1402                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1403                 if (!page) {
1404                         /*
1405                          * Either swap_duplicate() failed because entry
1406                          * has been freed independently, and will not be
1407                          * reused since sys_swapoff() already disabled
1408                          * allocation from here, or alloc_page() failed.
1409                          */
1410                         swcount = *swap_map;
1411                         /*
1412                          * We don't hold lock here, so the swap entry could be
1413                          * SWAP_MAP_BAD (when the cluster is discarding).
1414                          * Instead of fail out, We can just skip the swap
1415                          * entry because swapoff will wait for discarding
1416                          * finish anyway.
1417                          */
1418                         if (!swcount || swcount == SWAP_MAP_BAD)
1419                                 continue;
1420                         retval = -ENOMEM;
1421                         break;
1422                 }
1423
1424                 /*
1425                  * Don't hold on to start_mm if it looks like exiting.
1426                  */
1427                 if (atomic_read(&start_mm->mm_users) == 1) {
1428                         mmput(start_mm);
1429                         start_mm = &init_mm;
1430                         atomic_inc(&init_mm.mm_users);
1431                 }
1432
1433                 /*
1434                  * Wait for and lock page.  When do_swap_page races with
1435                  * try_to_unuse, do_swap_page can handle the fault much
1436                  * faster than try_to_unuse can locate the entry.  This
1437                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1438                  * defer to do_swap_page in such a case - in some tests,
1439                  * do_swap_page and try_to_unuse repeatedly compete.
1440                  */
1441                 wait_on_page_locked(page);
1442                 wait_on_page_writeback(page);
1443                 lock_page(page);
1444                 wait_on_page_writeback(page);
1445
1446                 /*
1447                  * Remove all references to entry.
1448                  */
1449                 swcount = *swap_map;
1450                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1451                         retval = shmem_unuse(entry, page);
1452                         /* page has already been unlocked and released */
1453                         if (retval < 0)
1454                                 break;
1455                         continue;
1456                 }
1457                 if (swap_count(swcount) && start_mm != &init_mm)
1458                         retval = unuse_mm(start_mm, entry, page);
1459
1460                 if (swap_count(*swap_map)) {
1461                         int set_start_mm = (*swap_map >= swcount);
1462                         struct list_head *p = &start_mm->mmlist;
1463                         struct mm_struct *new_start_mm = start_mm;
1464                         struct mm_struct *prev_mm = start_mm;
1465                         struct mm_struct *mm;
1466
1467                         atomic_inc(&new_start_mm->mm_users);
1468                         atomic_inc(&prev_mm->mm_users);
1469                         spin_lock(&mmlist_lock);
1470                         while (swap_count(*swap_map) && !retval &&
1471                                         (p = p->next) != &start_mm->mmlist) {
1472                                 mm = list_entry(p, struct mm_struct, mmlist);
1473                                 if (!atomic_inc_not_zero(&mm->mm_users))
1474                                         continue;
1475                                 spin_unlock(&mmlist_lock);
1476                                 mmput(prev_mm);
1477                                 prev_mm = mm;
1478
1479                                 cond_resched();
1480
1481                                 swcount = *swap_map;
1482                                 if (!swap_count(swcount)) /* any usage ? */
1483                                         ;
1484                                 else if (mm == &init_mm)
1485                                         set_start_mm = 1;
1486                                 else
1487                                         retval = unuse_mm(mm, entry, page);
1488
1489                                 if (set_start_mm && *swap_map < swcount) {
1490                                         mmput(new_start_mm);
1491                                         atomic_inc(&mm->mm_users);
1492                                         new_start_mm = mm;
1493                                         set_start_mm = 0;
1494                                 }
1495                                 spin_lock(&mmlist_lock);
1496                         }
1497                         spin_unlock(&mmlist_lock);
1498                         mmput(prev_mm);
1499                         mmput(start_mm);
1500                         start_mm = new_start_mm;
1501                 }
1502                 if (retval) {
1503                         unlock_page(page);
1504                         page_cache_release(page);
1505                         break;
1506                 }
1507
1508                 /*
1509                  * If a reference remains (rare), we would like to leave
1510                  * the page in the swap cache; but try_to_unmap could
1511                  * then re-duplicate the entry once we drop page lock,
1512                  * so we might loop indefinitely; also, that page could
1513                  * not be swapped out to other storage meanwhile.  So:
1514                  * delete from cache even if there's another reference,
1515                  * after ensuring that the data has been saved to disk -
1516                  * since if the reference remains (rarer), it will be
1517                  * read from disk into another page.  Splitting into two
1518                  * pages would be incorrect if swap supported "shared
1519                  * private" pages, but they are handled by tmpfs files.
1520                  *
1521                  * Given how unuse_vma() targets one particular offset
1522                  * in an anon_vma, once the anon_vma has been determined,
1523                  * this splitting happens to be just what is needed to
1524                  * handle where KSM pages have been swapped out: re-reading
1525                  * is unnecessarily slow, but we can fix that later on.
1526                  */
1527                 if (swap_count(*swap_map) &&
1528                      PageDirty(page) && PageSwapCache(page)) {
1529                         struct writeback_control wbc = {
1530                                 .sync_mode = WB_SYNC_NONE,
1531                         };
1532
1533                         swap_writepage(page, &wbc);
1534                         lock_page(page);
1535                         wait_on_page_writeback(page);
1536                 }
1537
1538                 /*
1539                  * It is conceivable that a racing task removed this page from
1540                  * swap cache just before we acquired the page lock at the top,
1541                  * or while we dropped it in unuse_mm().  The page might even
1542                  * be back in swap cache on another swap area: that we must not
1543                  * delete, since it may not have been written out to swap yet.
1544                  */
1545                 if (PageSwapCache(page) &&
1546                     likely(page_private(page) == entry.val))
1547                         delete_from_swap_cache(page);
1548
1549                 /*
1550                  * So we could skip searching mms once swap count went
1551                  * to 1, we did not mark any present ptes as dirty: must
1552                  * mark page dirty so shrink_page_list will preserve it.
1553                  */
1554                 SetPageDirty(page);
1555                 unlock_page(page);
1556                 page_cache_release(page);
1557
1558                 /*
1559                  * Make sure that we aren't completely killing
1560                  * interactive performance.
1561                  */
1562                 cond_resched();
1563                 if (frontswap && pages_to_unuse > 0) {
1564                         if (!--pages_to_unuse)
1565                                 break;
1566                 }
1567         }
1568
1569         mmput(start_mm);
1570         return retval;
1571 }
1572
1573 /*
1574  * After a successful try_to_unuse, if no swap is now in use, we know
1575  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1576  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1577  * added to the mmlist just after page_duplicate - before would be racy.
1578  */
1579 static void drain_mmlist(void)
1580 {
1581         struct list_head *p, *next;
1582         unsigned int type;
1583
1584         for (type = 0; type < nr_swapfiles; type++)
1585                 if (swap_info[type]->inuse_pages)
1586                         return;
1587         spin_lock(&mmlist_lock);
1588         list_for_each_safe(p, next, &init_mm.mmlist)
1589                 list_del_init(p);
1590         spin_unlock(&mmlist_lock);
1591 }
1592
1593 /*
1594  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1595  * corresponds to page offset for the specified swap entry.
1596  * Note that the type of this function is sector_t, but it returns page offset
1597  * into the bdev, not sector offset.
1598  */
1599 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1600 {
1601         struct swap_info_struct *sis;
1602         struct swap_extent *start_se;
1603         struct swap_extent *se;
1604         pgoff_t offset;
1605
1606         sis = swap_info[swp_type(entry)];
1607         *bdev = sis->bdev;
1608
1609         offset = swp_offset(entry);
1610         start_se = sis->curr_swap_extent;
1611         se = start_se;
1612
1613         for ( ; ; ) {
1614                 struct list_head *lh;
1615
1616                 if (se->start_page <= offset &&
1617                                 offset < (se->start_page + se->nr_pages)) {
1618                         return se->start_block + (offset - se->start_page);
1619                 }
1620                 lh = se->list.next;
1621                 se = list_entry(lh, struct swap_extent, list);
1622                 sis->curr_swap_extent = se;
1623                 BUG_ON(se == start_se);         /* It *must* be present */
1624         }
1625 }
1626
1627 /*
1628  * Returns the page offset into bdev for the specified page's swap entry.
1629  */
1630 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1631 {
1632         swp_entry_t entry;
1633         entry.val = page_private(page);
1634         return map_swap_entry(entry, bdev);
1635 }
1636
1637 /*
1638  * Free all of a swapdev's extent information
1639  */
1640 static void destroy_swap_extents(struct swap_info_struct *sis)
1641 {
1642         while (!list_empty(&sis->first_swap_extent.list)) {
1643                 struct swap_extent *se;
1644
1645                 se = list_entry(sis->first_swap_extent.list.next,
1646                                 struct swap_extent, list);
1647                 list_del(&se->list);
1648                 kfree(se);
1649         }
1650
1651         if (sis->flags & SWP_FILE) {
1652                 struct file *swap_file = sis->swap_file;
1653                 struct address_space *mapping = swap_file->f_mapping;
1654
1655                 sis->flags &= ~SWP_FILE;
1656                 mapping->a_ops->swap_deactivate(swap_file);
1657         }
1658 }
1659
1660 /*
1661  * Add a block range (and the corresponding page range) into this swapdev's
1662  * extent list.  The extent list is kept sorted in page order.
1663  *
1664  * This function rather assumes that it is called in ascending page order.
1665  */
1666 int
1667 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1668                 unsigned long nr_pages, sector_t start_block)
1669 {
1670         struct swap_extent *se;
1671         struct swap_extent *new_se;
1672         struct list_head *lh;
1673
1674         if (start_page == 0) {
1675                 se = &sis->first_swap_extent;
1676                 sis->curr_swap_extent = se;
1677                 se->start_page = 0;
1678                 se->nr_pages = nr_pages;
1679                 se->start_block = start_block;
1680                 return 1;
1681         } else {
1682                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1683                 se = list_entry(lh, struct swap_extent, list);
1684                 BUG_ON(se->start_page + se->nr_pages != start_page);
1685                 if (se->start_block + se->nr_pages == start_block) {
1686                         /* Merge it */
1687                         se->nr_pages += nr_pages;
1688                         return 0;
1689                 }
1690         }
1691
1692         /*
1693          * No merge.  Insert a new extent, preserving ordering.
1694          */
1695         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1696         if (new_se == NULL)
1697                 return -ENOMEM;
1698         new_se->start_page = start_page;
1699         new_se->nr_pages = nr_pages;
1700         new_se->start_block = start_block;
1701
1702         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1703         return 1;
1704 }
1705
1706 /*
1707  * A `swap extent' is a simple thing which maps a contiguous range of pages
1708  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1709  * is built at swapon time and is then used at swap_writepage/swap_readpage
1710  * time for locating where on disk a page belongs.
1711  *
1712  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1713  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1714  * swap files identically.
1715  *
1716  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1717  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1718  * swapfiles are handled *identically* after swapon time.
1719  *
1720  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1721  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1722  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1723  * requirements, they are simply tossed out - we will never use those blocks
1724  * for swapping.
1725  *
1726  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1727  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1728  * which will scribble on the fs.
1729  *
1730  * The amount of disk space which a single swap extent represents varies.
1731  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1732  * extents in the list.  To avoid much list walking, we cache the previous
1733  * search location in `curr_swap_extent', and start new searches from there.
1734  * This is extremely effective.  The average number of iterations in
1735  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1736  */
1737 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1738 {
1739         struct file *swap_file = sis->swap_file;
1740         struct address_space *mapping = swap_file->f_mapping;
1741         struct inode *inode = mapping->host;
1742         int ret;
1743
1744         if (S_ISBLK(inode->i_mode)) {
1745                 ret = add_swap_extent(sis, 0, sis->max, 0);
1746                 *span = sis->pages;
1747                 return ret;
1748         }
1749
1750         if (mapping->a_ops->swap_activate) {
1751                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1752                 if (!ret) {
1753                         sis->flags |= SWP_FILE;
1754                         ret = add_swap_extent(sis, 0, sis->max, 0);
1755                         *span = sis->pages;
1756                 }
1757                 return ret;
1758         }
1759
1760         return generic_swapfile_activate(sis, swap_file, span);
1761 }
1762
1763 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1764                                 unsigned char *swap_map,
1765                                 struct swap_cluster_info *cluster_info)
1766 {
1767         int i, prev;
1768
1769         if (prio >= 0)
1770                 p->prio = prio;
1771         else
1772                 p->prio = --least_priority;
1773         p->swap_map = swap_map;
1774         p->cluster_info = cluster_info;
1775         p->flags |= SWP_WRITEOK;
1776         atomic_long_add(p->pages, &nr_swap_pages);
1777         total_swap_pages += p->pages;
1778
1779         /* insert swap space into swap_list: */
1780         prev = -1;
1781         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1782                 if (p->prio >= swap_info[i]->prio)
1783                         break;
1784                 prev = i;
1785         }
1786         p->next = i;
1787         if (prev < 0)
1788                 swap_list.head = swap_list.next = p->type;
1789         else
1790                 swap_info[prev]->next = p->type;
1791 }
1792
1793 static void enable_swap_info(struct swap_info_struct *p, int prio,
1794                                 unsigned char *swap_map,
1795                                 struct swap_cluster_info *cluster_info,
1796                                 unsigned long *frontswap_map)
1797 {
1798         frontswap_init(p->type, frontswap_map);
1799         spin_lock(&swap_lock);
1800         spin_lock(&p->lock);
1801          _enable_swap_info(p, prio, swap_map, cluster_info);
1802         spin_unlock(&p->lock);
1803         spin_unlock(&swap_lock);
1804 }
1805
1806 static void reinsert_swap_info(struct swap_info_struct *p)
1807 {
1808         spin_lock(&swap_lock);
1809         spin_lock(&p->lock);
1810         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1811         spin_unlock(&p->lock);
1812         spin_unlock(&swap_lock);
1813 }
1814
1815 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1816 {
1817         struct swap_info_struct *p = NULL;
1818         unsigned char *swap_map;
1819         struct swap_cluster_info *cluster_info;
1820         unsigned long *frontswap_map;
1821         struct file *swap_file, *victim;
1822         struct address_space *mapping;
1823         struct inode *inode;
1824         struct filename *pathname;
1825         int i, type, prev;
1826         int err;
1827         unsigned int old_block_size;
1828
1829         if (!capable(CAP_SYS_ADMIN))
1830                 return -EPERM;
1831
1832         BUG_ON(!current->mm);
1833
1834         pathname = getname(specialfile);
1835         if (IS_ERR(pathname))
1836                 return PTR_ERR(pathname);
1837
1838         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1839         err = PTR_ERR(victim);
1840         if (IS_ERR(victim))
1841                 goto out;
1842
1843         mapping = victim->f_mapping;
1844         prev = -1;
1845         spin_lock(&swap_lock);
1846         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1847                 p = swap_info[type];
1848                 if (p->flags & SWP_WRITEOK) {
1849                         if (p->swap_file->f_mapping == mapping)
1850                                 break;
1851                 }
1852                 prev = type;
1853         }
1854         if (type < 0) {
1855                 err = -EINVAL;
1856                 spin_unlock(&swap_lock);
1857                 goto out_dput;
1858         }
1859         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1860                 vm_unacct_memory(p->pages);
1861         else {
1862                 err = -ENOMEM;
1863                 spin_unlock(&swap_lock);
1864                 goto out_dput;
1865         }
1866         if (prev < 0)
1867                 swap_list.head = p->next;
1868         else
1869                 swap_info[prev]->next = p->next;
1870         if (type == swap_list.next) {
1871                 /* just pick something that's safe... */
1872                 swap_list.next = swap_list.head;
1873         }
1874         spin_lock(&p->lock);
1875         if (p->prio < 0) {
1876                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1877                         swap_info[i]->prio = p->prio--;
1878                 least_priority++;
1879         }
1880         atomic_long_sub(p->pages, &nr_swap_pages);
1881         total_swap_pages -= p->pages;
1882         p->flags &= ~SWP_WRITEOK;
1883         spin_unlock(&p->lock);
1884         spin_unlock(&swap_lock);
1885
1886         set_current_oom_origin();
1887         err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1888         clear_current_oom_origin();
1889
1890         if (err) {
1891                 /* re-insert swap space back into swap_list */
1892                 reinsert_swap_info(p);
1893                 goto out_dput;
1894         }
1895
1896         flush_work(&p->discard_work);
1897
1898         destroy_swap_extents(p);
1899         if (p->flags & SWP_CONTINUED)
1900                 free_swap_count_continuations(p);
1901
1902         mutex_lock(&swapon_mutex);
1903         spin_lock(&swap_lock);
1904         spin_lock(&p->lock);
1905         drain_mmlist();
1906
1907         /* wait for anyone still in scan_swap_map */
1908         p->highest_bit = 0;             /* cuts scans short */
1909         while (p->flags >= SWP_SCANNING) {
1910                 spin_unlock(&p->lock);
1911                 spin_unlock(&swap_lock);
1912                 schedule_timeout_uninterruptible(1);
1913                 spin_lock(&swap_lock);
1914                 spin_lock(&p->lock);
1915         }
1916
1917         swap_file = p->swap_file;
1918         old_block_size = p->old_block_size;
1919         p->swap_file = NULL;
1920         p->max = 0;
1921         swap_map = p->swap_map;
1922         p->swap_map = NULL;
1923         cluster_info = p->cluster_info;
1924         p->cluster_info = NULL;
1925         p->flags = 0;
1926         frontswap_map = frontswap_map_get(p);
1927         spin_unlock(&p->lock);
1928         spin_unlock(&swap_lock);
1929         frontswap_invalidate_area(type);
1930         frontswap_map_set(p, NULL);
1931         mutex_unlock(&swapon_mutex);
1932         free_percpu(p->percpu_cluster);
1933         p->percpu_cluster = NULL;
1934         vfree(swap_map);
1935         vfree(cluster_info);
1936         vfree(frontswap_map);
1937         /* Destroy swap account information */
1938         swap_cgroup_swapoff(type);
1939
1940         inode = mapping->host;
1941         if (S_ISBLK(inode->i_mode)) {
1942                 struct block_device *bdev = I_BDEV(inode);
1943                 set_blocksize(bdev, old_block_size);
1944                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1945         } else {
1946                 mutex_lock(&inode->i_mutex);
1947                 inode->i_flags &= ~S_SWAPFILE;
1948                 mutex_unlock(&inode->i_mutex);
1949         }
1950         filp_close(swap_file, NULL);
1951         err = 0;
1952         atomic_inc(&proc_poll_event);
1953         wake_up_interruptible(&proc_poll_wait);
1954
1955 out_dput:
1956         filp_close(victim, NULL);
1957 out:
1958         putname(pathname);
1959         return err;
1960 }
1961
1962 #ifdef CONFIG_PROC_FS
1963 static unsigned swaps_poll(struct file *file, poll_table *wait)
1964 {
1965         struct seq_file *seq = file->private_data;
1966
1967         poll_wait(file, &proc_poll_wait, wait);
1968
1969         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1970                 seq->poll_event = atomic_read(&proc_poll_event);
1971                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1972         }
1973
1974         return POLLIN | POLLRDNORM;
1975 }
1976
1977 /* iterator */
1978 static void *swap_start(struct seq_file *swap, loff_t *pos)
1979 {
1980         struct swap_info_struct *si;
1981         int type;
1982         loff_t l = *pos;
1983
1984         mutex_lock(&swapon_mutex);
1985
1986         if (!l)
1987                 return SEQ_START_TOKEN;
1988
1989         for (type = 0; type < nr_swapfiles; type++) {
1990                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1991                 si = swap_info[type];
1992                 if (!(si->flags & SWP_USED) || !si->swap_map)
1993                         continue;
1994                 if (!--l)
1995                         return si;
1996         }
1997
1998         return NULL;
1999 }
2000
2001 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2002 {
2003         struct swap_info_struct *si = v;
2004         int type;
2005
2006         if (v == SEQ_START_TOKEN)
2007                 type = 0;
2008         else
2009                 type = si->type + 1;
2010
2011         for (; type < nr_swapfiles; type++) {
2012                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2013                 si = swap_info[type];
2014                 if (!(si->flags & SWP_USED) || !si->swap_map)
2015                         continue;
2016                 ++*pos;
2017                 return si;
2018         }
2019
2020         return NULL;
2021 }
2022
2023 static void swap_stop(struct seq_file *swap, void *v)
2024 {
2025         mutex_unlock(&swapon_mutex);
2026 }
2027
2028 static int swap_show(struct seq_file *swap, void *v)
2029 {
2030         struct swap_info_struct *si = v;
2031         struct file *file;
2032         int len;
2033
2034         if (si == SEQ_START_TOKEN) {
2035                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2036                 return 0;
2037         }
2038
2039         file = si->swap_file;
2040         len = seq_path(swap, &file->f_path, " \t\n\\");
2041         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2042                         len < 40 ? 40 - len : 1, " ",
2043                         S_ISBLK(file_inode(file)->i_mode) ?
2044                                 "partition" : "file\t",
2045                         si->pages << (PAGE_SHIFT - 10),
2046                         si->inuse_pages << (PAGE_SHIFT - 10),
2047                         si->prio);
2048         return 0;
2049 }
2050
2051 static const struct seq_operations swaps_op = {
2052         .start =        swap_start,
2053         .next =         swap_next,
2054         .stop =         swap_stop,
2055         .show =         swap_show
2056 };
2057
2058 static int swaps_open(struct inode *inode, struct file *file)
2059 {
2060         struct seq_file *seq;
2061         int ret;
2062
2063         ret = seq_open(file, &swaps_op);
2064         if (ret)
2065                 return ret;
2066
2067         seq = file->private_data;
2068         seq->poll_event = atomic_read(&proc_poll_event);
2069         return 0;
2070 }
2071
2072 static const struct file_operations proc_swaps_operations = {
2073         .open           = swaps_open,
2074         .read           = seq_read,
2075         .llseek         = seq_lseek,
2076         .release        = seq_release,
2077         .poll           = swaps_poll,
2078 };
2079
2080 static int __init procswaps_init(void)
2081 {
2082         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2083         return 0;
2084 }
2085 __initcall(procswaps_init);
2086 #endif /* CONFIG_PROC_FS */
2087
2088 #ifdef MAX_SWAPFILES_CHECK
2089 static int __init max_swapfiles_check(void)
2090 {
2091         MAX_SWAPFILES_CHECK();
2092         return 0;
2093 }
2094 late_initcall(max_swapfiles_check);
2095 #endif
2096
2097 static struct swap_info_struct *alloc_swap_info(void)
2098 {
2099         struct swap_info_struct *p;
2100         unsigned int type;
2101
2102         p = kzalloc(sizeof(*p), GFP_KERNEL);
2103         if (!p)
2104                 return ERR_PTR(-ENOMEM);
2105
2106         spin_lock(&swap_lock);
2107         for (type = 0; type < nr_swapfiles; type++) {
2108                 if (!(swap_info[type]->flags & SWP_USED))
2109                         break;
2110         }
2111         if (type >= MAX_SWAPFILES) {
2112                 spin_unlock(&swap_lock);
2113                 kfree(p);
2114                 return ERR_PTR(-EPERM);
2115         }
2116         if (type >= nr_swapfiles) {
2117                 p->type = type;
2118                 swap_info[type] = p;
2119                 /*
2120                  * Write swap_info[type] before nr_swapfiles, in case a
2121                  * racing procfs swap_start() or swap_next() is reading them.
2122                  * (We never shrink nr_swapfiles, we never free this entry.)
2123                  */
2124                 smp_wmb();
2125                 nr_swapfiles++;
2126         } else {
2127                 kfree(p);
2128                 p = swap_info[type];
2129                 /*
2130                  * Do not memset this entry: a racing procfs swap_next()
2131                  * would be relying on p->type to remain valid.
2132                  */
2133         }
2134         INIT_LIST_HEAD(&p->first_swap_extent.list);
2135         p->flags = SWP_USED;
2136         p->next = -1;
2137         spin_unlock(&swap_lock);
2138         spin_lock_init(&p->lock);
2139
2140         return p;
2141 }
2142
2143 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2144 {
2145         int error;
2146
2147         if (S_ISBLK(inode->i_mode)) {
2148                 p->bdev = bdgrab(I_BDEV(inode));
2149                 error = blkdev_get(p->bdev,
2150                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2151                                    sys_swapon);
2152                 if (error < 0) {
2153                         p->bdev = NULL;
2154                         return -EINVAL;
2155                 }
2156                 p->old_block_size = block_size(p->bdev);
2157                 error = set_blocksize(p->bdev, PAGE_SIZE);
2158                 if (error < 0)
2159                         return error;
2160                 p->flags |= SWP_BLKDEV;
2161         } else if (S_ISREG(inode->i_mode)) {
2162                 p->bdev = inode->i_sb->s_bdev;
2163                 mutex_lock(&inode->i_mutex);
2164                 if (IS_SWAPFILE(inode))
2165                         return -EBUSY;
2166         } else
2167                 return -EINVAL;
2168
2169         return 0;
2170 }
2171
2172 static unsigned long read_swap_header(struct swap_info_struct *p,
2173                                         union swap_header *swap_header,
2174                                         struct inode *inode)
2175 {
2176         int i;
2177         unsigned long maxpages;
2178         unsigned long swapfilepages;
2179         unsigned long last_page;
2180
2181         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2182                 pr_err("Unable to find swap-space signature\n");
2183                 return 0;
2184         }
2185
2186         /* swap partition endianess hack... */
2187         if (swab32(swap_header->info.version) == 1) {
2188                 swab32s(&swap_header->info.version);
2189                 swab32s(&swap_header->info.last_page);
2190                 swab32s(&swap_header->info.nr_badpages);
2191                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2192                         swab32s(&swap_header->info.badpages[i]);
2193         }
2194         /* Check the swap header's sub-version */
2195         if (swap_header->info.version != 1) {
2196                 pr_warn("Unable to handle swap header version %d\n",
2197                         swap_header->info.version);
2198                 return 0;
2199         }
2200
2201         p->lowest_bit  = 1;
2202         p->cluster_next = 1;
2203         p->cluster_nr = 0;
2204
2205         /*
2206          * Find out how many pages are allowed for a single swap
2207          * device. There are two limiting factors: 1) the number
2208          * of bits for the swap offset in the swp_entry_t type, and
2209          * 2) the number of bits in the swap pte as defined by the
2210          * different architectures. In order to find the
2211          * largest possible bit mask, a swap entry with swap type 0
2212          * and swap offset ~0UL is created, encoded to a swap pte,
2213          * decoded to a swp_entry_t again, and finally the swap
2214          * offset is extracted. This will mask all the bits from
2215          * the initial ~0UL mask that can't be encoded in either
2216          * the swp_entry_t or the architecture definition of a
2217          * swap pte.
2218          */
2219         maxpages = swp_offset(pte_to_swp_entry(
2220                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2221         last_page = swap_header->info.last_page;
2222         if (last_page > maxpages) {
2223                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2224                         maxpages << (PAGE_SHIFT - 10),
2225                         last_page << (PAGE_SHIFT - 10));
2226         }
2227         if (maxpages > last_page) {
2228                 maxpages = last_page + 1;
2229                 /* p->max is an unsigned int: don't overflow it */
2230                 if ((unsigned int)maxpages == 0)
2231                         maxpages = UINT_MAX;
2232         }
2233         p->highest_bit = maxpages - 1;
2234
2235         if (!maxpages)
2236                 return 0;
2237         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2238         if (swapfilepages && maxpages > swapfilepages) {
2239                 pr_warn("Swap area shorter than signature indicates\n");
2240                 return 0;
2241         }
2242         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2243                 return 0;
2244         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2245                 return 0;
2246
2247         return maxpages;
2248 }
2249
2250 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2251                                         union swap_header *swap_header,
2252                                         unsigned char *swap_map,
2253                                         struct swap_cluster_info *cluster_info,
2254                                         unsigned long maxpages,
2255                                         sector_t *span)
2256 {
2257         int i;
2258         unsigned int nr_good_pages;
2259         int nr_extents;
2260         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2261         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2262
2263         nr_good_pages = maxpages - 1;   /* omit header page */
2264
2265         cluster_set_null(&p->free_cluster_head);
2266         cluster_set_null(&p->free_cluster_tail);
2267         cluster_set_null(&p->discard_cluster_head);
2268         cluster_set_null(&p->discard_cluster_tail);
2269
2270         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2271                 unsigned int page_nr = swap_header->info.badpages[i];
2272                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2273                         return -EINVAL;
2274                 if (page_nr < maxpages) {
2275                         swap_map[page_nr] = SWAP_MAP_BAD;
2276                         nr_good_pages--;
2277                         /*
2278                          * Haven't marked the cluster free yet, no list
2279                          * operation involved
2280                          */
2281                         inc_cluster_info_page(p, cluster_info, page_nr);
2282                 }
2283         }
2284
2285         /* Haven't marked the cluster free yet, no list operation involved */
2286         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2287                 inc_cluster_info_page(p, cluster_info, i);
2288
2289         if (nr_good_pages) {
2290                 swap_map[0] = SWAP_MAP_BAD;
2291                 /*
2292                  * Not mark the cluster free yet, no list
2293                  * operation involved
2294                  */
2295                 inc_cluster_info_page(p, cluster_info, 0);
2296                 p->max = maxpages;
2297                 p->pages = nr_good_pages;
2298                 nr_extents = setup_swap_extents(p, span);
2299                 if (nr_extents < 0)
2300                         return nr_extents;
2301                 nr_good_pages = p->pages;
2302         }
2303         if (!nr_good_pages) {
2304                 pr_warn("Empty swap-file\n");
2305                 return -EINVAL;
2306         }
2307
2308         if (!cluster_info)
2309                 return nr_extents;
2310
2311         for (i = 0; i < nr_clusters; i++) {
2312                 if (!cluster_count(&cluster_info[idx])) {
2313                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2314                         if (cluster_is_null(&p->free_cluster_head)) {
2315                                 cluster_set_next_flag(&p->free_cluster_head,
2316                                                                 idx, 0);
2317                                 cluster_set_next_flag(&p->free_cluster_tail,
2318                                                                 idx, 0);
2319                         } else {
2320                                 unsigned int tail;
2321
2322                                 tail = cluster_next(&p->free_cluster_tail);
2323                                 cluster_set_next(&cluster_info[tail], idx);
2324                                 cluster_set_next_flag(&p->free_cluster_tail,
2325                                                                 idx, 0);
2326                         }
2327                 }
2328                 idx++;
2329                 if (idx == nr_clusters)
2330                         idx = 0;
2331         }
2332         return nr_extents;
2333 }
2334
2335 /*
2336  * Helper to sys_swapon determining if a given swap
2337  * backing device queue supports DISCARD operations.
2338  */
2339 static bool swap_discardable(struct swap_info_struct *si)
2340 {
2341         struct request_queue *q = bdev_get_queue(si->bdev);
2342
2343         if (!q || !blk_queue_discard(q))
2344                 return false;
2345
2346         return true;
2347 }
2348
2349 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2350 {
2351         struct swap_info_struct *p;
2352         struct filename *name;
2353         struct file *swap_file = NULL;
2354         struct address_space *mapping;
2355         int i;
2356         int prio;
2357         int error;
2358         union swap_header *swap_header;
2359         int nr_extents;
2360         sector_t span;
2361         unsigned long maxpages;
2362         unsigned char *swap_map = NULL;
2363         struct swap_cluster_info *cluster_info = NULL;
2364         unsigned long *frontswap_map = NULL;
2365         struct page *page = NULL;
2366         struct inode *inode = NULL;
2367
2368         if (swap_flags & ~SWAP_FLAGS_VALID)
2369                 return -EINVAL;
2370
2371         if (!capable(CAP_SYS_ADMIN))
2372                 return -EPERM;
2373
2374         p = alloc_swap_info();
2375         if (IS_ERR(p))
2376                 return PTR_ERR(p);
2377
2378         INIT_WORK(&p->discard_work, swap_discard_work);
2379
2380         name = getname(specialfile);
2381         if (IS_ERR(name)) {
2382                 error = PTR_ERR(name);
2383                 name = NULL;
2384                 goto bad_swap;
2385         }
2386         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2387         if (IS_ERR(swap_file)) {
2388                 error = PTR_ERR(swap_file);
2389                 swap_file = NULL;
2390                 goto bad_swap;
2391         }
2392
2393         p->swap_file = swap_file;
2394         mapping = swap_file->f_mapping;
2395
2396         for (i = 0; i < nr_swapfiles; i++) {
2397                 struct swap_info_struct *q = swap_info[i];
2398
2399                 if (q == p || !q->swap_file)
2400                         continue;
2401                 if (mapping == q->swap_file->f_mapping) {
2402                         error = -EBUSY;
2403                         goto bad_swap;
2404                 }
2405         }
2406
2407         inode = mapping->host;
2408         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2409         error = claim_swapfile(p, inode);
2410         if (unlikely(error))
2411                 goto bad_swap;
2412
2413         /*
2414          * Read the swap header.
2415          */
2416         if (!mapping->a_ops->readpage) {
2417                 error = -EINVAL;
2418                 goto bad_swap;
2419         }
2420         page = read_mapping_page(mapping, 0, swap_file);
2421         if (IS_ERR(page)) {
2422                 error = PTR_ERR(page);
2423                 goto bad_swap;
2424         }
2425         swap_header = kmap(page);
2426
2427         maxpages = read_swap_header(p, swap_header, inode);
2428         if (unlikely(!maxpages)) {
2429                 error = -EINVAL;
2430                 goto bad_swap;
2431         }
2432
2433         /* OK, set up the swap map and apply the bad block list */
2434         swap_map = vzalloc(maxpages);
2435         if (!swap_map) {
2436                 error = -ENOMEM;
2437                 goto bad_swap;
2438         }
2439         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2440                 p->flags |= SWP_SOLIDSTATE;
2441                 /*
2442                  * select a random position to start with to help wear leveling
2443                  * SSD
2444                  */
2445                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2446
2447                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2448                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2449                 if (!cluster_info) {
2450                         error = -ENOMEM;
2451                         goto bad_swap;
2452                 }
2453                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2454                 if (!p->percpu_cluster) {
2455                         error = -ENOMEM;
2456                         goto bad_swap;
2457                 }
2458                 for_each_possible_cpu(i) {
2459                         struct percpu_cluster *cluster;
2460                         cluster = per_cpu_ptr(p->percpu_cluster, i);
2461                         cluster_set_null(&cluster->index);
2462                 }
2463         }
2464
2465         error = swap_cgroup_swapon(p->type, maxpages);
2466         if (error)
2467                 goto bad_swap;
2468
2469         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2470                 cluster_info, maxpages, &span);
2471         if (unlikely(nr_extents < 0)) {
2472                 error = nr_extents;
2473                 goto bad_swap;
2474         }
2475         /* frontswap enabled? set up bit-per-page map for frontswap */
2476         if (frontswap_enabled)
2477                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2478
2479         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2480                 /*
2481                  * When discard is enabled for swap with no particular
2482                  * policy flagged, we set all swap discard flags here in
2483                  * order to sustain backward compatibility with older
2484                  * swapon(8) releases.
2485                  */
2486                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2487                              SWP_PAGE_DISCARD);
2488
2489                 /*
2490                  * By flagging sys_swapon, a sysadmin can tell us to
2491                  * either do single-time area discards only, or to just
2492                  * perform discards for released swap page-clusters.
2493                  * Now it's time to adjust the p->flags accordingly.
2494                  */
2495                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2496                         p->flags &= ~SWP_PAGE_DISCARD;
2497                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2498                         p->flags &= ~SWP_AREA_DISCARD;
2499
2500                 /* issue a swapon-time discard if it's still required */
2501                 if (p->flags & SWP_AREA_DISCARD) {
2502                         int err = discard_swap(p);
2503                         if (unlikely(err))
2504                                 pr_err("swapon: discard_swap(%p): %d\n",
2505                                         p, err);
2506                 }
2507         }
2508
2509         mutex_lock(&swapon_mutex);
2510         prio = -1;
2511         if (swap_flags & SWAP_FLAG_PREFER)
2512                 prio =
2513                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2514         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2515
2516         pr_info("Adding %uk swap on %s.  "
2517                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2518                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2519                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2520                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2521                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2522                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2523                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2524                 (frontswap_map) ? "FS" : "");
2525
2526         mutex_unlock(&swapon_mutex);
2527         atomic_inc(&proc_poll_event);
2528         wake_up_interruptible(&proc_poll_wait);
2529
2530         if (S_ISREG(inode->i_mode))
2531                 inode->i_flags |= S_SWAPFILE;
2532         error = 0;
2533         goto out;
2534 bad_swap:
2535         free_percpu(p->percpu_cluster);
2536         p->percpu_cluster = NULL;
2537         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2538                 set_blocksize(p->bdev, p->old_block_size);
2539                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2540         }
2541         destroy_swap_extents(p);
2542         swap_cgroup_swapoff(p->type);
2543         spin_lock(&swap_lock);
2544         p->swap_file = NULL;
2545         p->flags = 0;
2546         spin_unlock(&swap_lock);
2547         vfree(swap_map);
2548         vfree(cluster_info);
2549         if (swap_file) {
2550                 if (inode && S_ISREG(inode->i_mode)) {
2551                         mutex_unlock(&inode->i_mutex);
2552                         inode = NULL;
2553                 }
2554                 filp_close(swap_file, NULL);
2555         }
2556 out:
2557         if (page && !IS_ERR(page)) {
2558                 kunmap(page);
2559                 page_cache_release(page);
2560         }
2561         if (name)
2562                 putname(name);
2563         if (inode && S_ISREG(inode->i_mode))
2564                 mutex_unlock(&inode->i_mutex);
2565         return error;
2566 }
2567
2568 void si_swapinfo(struct sysinfo *val)
2569 {
2570         unsigned int type;
2571         unsigned long nr_to_be_unused = 0;
2572
2573         spin_lock(&swap_lock);
2574         for (type = 0; type < nr_swapfiles; type++) {
2575                 struct swap_info_struct *si = swap_info[type];
2576
2577                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2578                         nr_to_be_unused += si->inuse_pages;
2579         }
2580         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2581         val->totalswap = total_swap_pages + nr_to_be_unused;
2582         spin_unlock(&swap_lock);
2583 }
2584
2585 /*
2586  * Verify that a swap entry is valid and increment its swap map count.
2587  *
2588  * Returns error code in following case.
2589  * - success -> 0
2590  * - swp_entry is invalid -> EINVAL
2591  * - swp_entry is migration entry -> EINVAL
2592  * - swap-cache reference is requested but there is already one. -> EEXIST
2593  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2594  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2595  */
2596 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2597 {
2598         struct swap_info_struct *p;
2599         unsigned long offset, type;
2600         unsigned char count;
2601         unsigned char has_cache;
2602         int err = -EINVAL;
2603
2604         if (non_swap_entry(entry))
2605                 goto out;
2606
2607         type = swp_type(entry);
2608         if (type >= nr_swapfiles)
2609                 goto bad_file;
2610         p = swap_info[type];
2611         offset = swp_offset(entry);
2612
2613         spin_lock(&p->lock);
2614         if (unlikely(offset >= p->max))
2615                 goto unlock_out;
2616
2617         count = p->swap_map[offset];
2618
2619         /*
2620          * swapin_readahead() doesn't check if a swap entry is valid, so the
2621          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2622          */
2623         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2624                 err = -ENOENT;
2625                 goto unlock_out;
2626         }
2627
2628         has_cache = count & SWAP_HAS_CACHE;
2629         count &= ~SWAP_HAS_CACHE;
2630         err = 0;
2631
2632         if (usage == SWAP_HAS_CACHE) {
2633
2634                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2635                 if (!has_cache && count)
2636                         has_cache = SWAP_HAS_CACHE;
2637                 else if (has_cache)             /* someone else added cache */
2638                         err = -EEXIST;
2639                 else                            /* no users remaining */
2640                         err = -ENOENT;
2641
2642         } else if (count || has_cache) {
2643
2644                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2645                         count += usage;
2646                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2647                         err = -EINVAL;
2648                 else if (swap_count_continued(p, offset, count))
2649                         count = COUNT_CONTINUED;
2650                 else
2651                         err = -ENOMEM;
2652         } else
2653                 err = -ENOENT;                  /* unused swap entry */
2654
2655         p->swap_map[offset] = count | has_cache;
2656
2657 unlock_out:
2658         spin_unlock(&p->lock);
2659 out:
2660         return err;
2661
2662 bad_file:
2663         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2664         goto out;
2665 }
2666
2667 /*
2668  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2669  * (in which case its reference count is never incremented).
2670  */
2671 void swap_shmem_alloc(swp_entry_t entry)
2672 {
2673         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2674 }
2675
2676 /*
2677  * Increase reference count of swap entry by 1.
2678  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2679  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2680  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2681  * might occur if a page table entry has got corrupted.
2682  */
2683 int swap_duplicate(swp_entry_t entry)
2684 {
2685         int err = 0;
2686
2687         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2688                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2689         return err;
2690 }
2691
2692 /*
2693  * @entry: swap entry for which we allocate swap cache.
2694  *
2695  * Called when allocating swap cache for existing swap entry,
2696  * This can return error codes. Returns 0 at success.
2697  * -EBUSY means there is a swap cache.
2698  * Note: return code is different from swap_duplicate().
2699  */
2700 int swapcache_prepare(swp_entry_t entry)
2701 {
2702         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2703 }
2704
2705 struct swap_info_struct *page_swap_info(struct page *page)
2706 {
2707         swp_entry_t swap = { .val = page_private(page) };
2708         BUG_ON(!PageSwapCache(page));
2709         return swap_info[swp_type(swap)];
2710 }
2711
2712 /*
2713  * out-of-line __page_file_ methods to avoid include hell.
2714  */
2715 struct address_space *__page_file_mapping(struct page *page)
2716 {
2717         VM_BUG_ON(!PageSwapCache(page));
2718         return page_swap_info(page)->swap_file->f_mapping;
2719 }
2720 EXPORT_SYMBOL_GPL(__page_file_mapping);
2721
2722 pgoff_t __page_file_index(struct page *page)
2723 {
2724         swp_entry_t swap = { .val = page_private(page) };
2725         VM_BUG_ON(!PageSwapCache(page));
2726         return swp_offset(swap);
2727 }
2728 EXPORT_SYMBOL_GPL(__page_file_index);
2729
2730 /*
2731  * add_swap_count_continuation - called when a swap count is duplicated
2732  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2733  * page of the original vmalloc'ed swap_map, to hold the continuation count
2734  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2735  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2736  *
2737  * These continuation pages are seldom referenced: the common paths all work
2738  * on the original swap_map, only referring to a continuation page when the
2739  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2740  *
2741  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2742  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2743  * can be called after dropping locks.
2744  */
2745 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2746 {
2747         struct swap_info_struct *si;
2748         struct page *head;
2749         struct page *page;
2750         struct page *list_page;
2751         pgoff_t offset;
2752         unsigned char count;
2753
2754         /*
2755          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2756          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2757          */
2758         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2759
2760         si = swap_info_get(entry);
2761         if (!si) {
2762                 /*
2763                  * An acceptable race has occurred since the failing
2764                  * __swap_duplicate(): the swap entry has been freed,
2765                  * perhaps even the whole swap_map cleared for swapoff.
2766                  */
2767                 goto outer;
2768         }
2769
2770         offset = swp_offset(entry);
2771         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2772
2773         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2774                 /*
2775                  * The higher the swap count, the more likely it is that tasks
2776                  * will race to add swap count continuation: we need to avoid
2777                  * over-provisioning.
2778                  */
2779                 goto out;
2780         }
2781
2782         if (!page) {
2783                 spin_unlock(&si->lock);
2784                 return -ENOMEM;
2785         }
2786
2787         /*
2788          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2789          * no architecture is using highmem pages for kernel page tables: so it
2790          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2791          */
2792         head = vmalloc_to_page(si->swap_map + offset);
2793         offset &= ~PAGE_MASK;
2794
2795         /*
2796          * Page allocation does not initialize the page's lru field,
2797          * but it does always reset its private field.
2798          */
2799         if (!page_private(head)) {
2800                 BUG_ON(count & COUNT_CONTINUED);
2801                 INIT_LIST_HEAD(&head->lru);
2802                 set_page_private(head, SWP_CONTINUED);
2803                 si->flags |= SWP_CONTINUED;
2804         }
2805
2806         list_for_each_entry(list_page, &head->lru, lru) {
2807                 unsigned char *map;
2808
2809                 /*
2810                  * If the previous map said no continuation, but we've found
2811                  * a continuation page, free our allocation and use this one.
2812                  */
2813                 if (!(count & COUNT_CONTINUED))
2814                         goto out;
2815
2816                 map = kmap_atomic(list_page) + offset;
2817                 count = *map;
2818                 kunmap_atomic(map);
2819
2820                 /*
2821                  * If this continuation count now has some space in it,
2822                  * free our allocation and use this one.
2823                  */
2824                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2825                         goto out;
2826         }
2827
2828         list_add_tail(&page->lru, &head->lru);
2829         page = NULL;                    /* now it's attached, don't free it */
2830 out:
2831         spin_unlock(&si->lock);
2832 outer:
2833         if (page)
2834                 __free_page(page);
2835         return 0;
2836 }
2837
2838 /*
2839  * swap_count_continued - when the original swap_map count is incremented
2840  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2841  * into, carry if so, or else fail until a new continuation page is allocated;
2842  * when the original swap_map count is decremented from 0 with continuation,
2843  * borrow from the continuation and report whether it still holds more.
2844  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2845  */
2846 static bool swap_count_continued(struct swap_info_struct *si,
2847                                  pgoff_t offset, unsigned char count)
2848 {
2849         struct page *head;
2850         struct page *page;
2851         unsigned char *map;
2852
2853         head = vmalloc_to_page(si->swap_map + offset);
2854         if (page_private(head) != SWP_CONTINUED) {
2855                 BUG_ON(count & COUNT_CONTINUED);
2856                 return false;           /* need to add count continuation */
2857         }
2858
2859         offset &= ~PAGE_MASK;
2860         page = list_entry(head->lru.next, struct page, lru);
2861         map = kmap_atomic(page) + offset;
2862
2863         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2864                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2865
2866         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2867                 /*
2868                  * Think of how you add 1 to 999
2869                  */
2870                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2871                         kunmap_atomic(map);
2872                         page = list_entry(page->lru.next, struct page, lru);
2873                         BUG_ON(page == head);
2874                         map = kmap_atomic(page) + offset;
2875                 }
2876                 if (*map == SWAP_CONT_MAX) {
2877                         kunmap_atomic(map);
2878                         page = list_entry(page->lru.next, struct page, lru);
2879                         if (page == head)
2880                                 return false;   /* add count continuation */
2881                         map = kmap_atomic(page) + offset;
2882 init_map:               *map = 0;               /* we didn't zero the page */
2883                 }
2884                 *map += 1;
2885                 kunmap_atomic(map);
2886                 page = list_entry(page->lru.prev, struct page, lru);
2887                 while (page != head) {
2888                         map = kmap_atomic(page) + offset;
2889                         *map = COUNT_CONTINUED;
2890                         kunmap_atomic(map);
2891                         page = list_entry(page->lru.prev, struct page, lru);
2892                 }
2893                 return true;                    /* incremented */
2894
2895         } else {                                /* decrementing */
2896                 /*
2897                  * Think of how you subtract 1 from 1000
2898                  */
2899                 BUG_ON(count != COUNT_CONTINUED);
2900                 while (*map == COUNT_CONTINUED) {
2901                         kunmap_atomic(map);
2902                         page = list_entry(page->lru.next, struct page, lru);
2903                         BUG_ON(page == head);
2904                         map = kmap_atomic(page) + offset;
2905                 }
2906                 BUG_ON(*map == 0);
2907                 *map -= 1;
2908                 if (*map == 0)
2909                         count = 0;
2910                 kunmap_atomic(map);
2911                 page = list_entry(page->lru.prev, struct page, lru);
2912                 while (page != head) {
2913                         map = kmap_atomic(page) + offset;
2914                         *map = SWAP_CONT_MAX | count;
2915                         count = COUNT_CONTINUED;
2916                         kunmap_atomic(map);
2917                         page = list_entry(page->lru.prev, struct page, lru);
2918                 }
2919                 return count == COUNT_CONTINUED;
2920         }
2921 }
2922
2923 /*
2924  * free_swap_count_continuations - swapoff free all the continuation pages
2925  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2926  */
2927 static void free_swap_count_continuations(struct swap_info_struct *si)
2928 {
2929         pgoff_t offset;
2930
2931         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2932                 struct page *head;
2933                 head = vmalloc_to_page(si->swap_map + offset);
2934                 if (page_private(head)) {
2935                         struct list_head *this, *next;
2936                         list_for_each_safe(this, next, &head->lru) {
2937                                 struct page *page;
2938                                 page = list_entry(this, struct page, lru);
2939                                 list_del(this);
2940                                 __free_page(page);
2941                         }
2942                 }
2943         }
2944 }