Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47
48 /*
49  * This path almost never happens for VM activity - pages are normally
50  * freed via pagevecs.  But it gets used by networking.
51  */
52 static void __page_cache_release(struct page *page)
53 {
54         if (PageLRU(page)) {
55                 struct zone *zone = page_zone(page);
56                 struct lruvec *lruvec;
57                 unsigned long flags;
58
59                 spin_lock_irqsave(&zone->lru_lock, flags);
60                 lruvec = mem_cgroup_page_lruvec(page, zone);
61                 VM_BUG_ON(!PageLRU(page));
62                 __ClearPageLRU(page);
63                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64                 spin_unlock_irqrestore(&zone->lru_lock, flags);
65         }
66 }
67
68 static void __put_single_page(struct page *page)
69 {
70         __page_cache_release(page);
71         free_hot_cold_page(page, 0);
72 }
73
74 static void __put_compound_page(struct page *page)
75 {
76         compound_page_dtor *dtor;
77
78         __page_cache_release(page);
79         dtor = get_compound_page_dtor(page);
80         (*dtor)(page);
81 }
82
83 static void put_compound_page(struct page *page)
84 {
85         if (unlikely(PageTail(page))) {
86                 /* __split_huge_page_refcount can run under us */
87                 struct page *page_head = compound_trans_head(page);
88
89                 if (likely(page != page_head &&
90                            get_page_unless_zero(page_head))) {
91                         unsigned long flags;
92
93                         /*
94                          * THP can not break up slab pages so avoid taking
95                          * compound_lock().  Slab performs non-atomic bit ops
96                          * on page->flags for better performance.  In particular
97                          * slab_unlock() in slub used to be a hot path.  It is
98                          * still hot on arches that do not support
99                          * this_cpu_cmpxchg_double().
100                          */
101                         if (PageSlab(page_head) || PageHeadHuge(page_head)) {
102                                 if (likely(PageTail(page))) {
103                                         /*
104                                          * __split_huge_page_refcount
105                                          * cannot race here.
106                                          */
107                                         VM_BUG_ON(!PageHead(page_head));
108                                         atomic_dec(&page->_mapcount);
109                                         if (put_page_testzero(page_head))
110                                                 VM_BUG_ON(1);
111                                         if (put_page_testzero(page_head))
112                                                 __put_compound_page(page_head);
113                                         return;
114                                 } else
115                                         /*
116                                          * __split_huge_page_refcount
117                                          * run before us, "page" was a
118                                          * THP tail. The split
119                                          * page_head has been freed
120                                          * and reallocated as slab or
121                                          * hugetlbfs page of smaller
122                                          * order (only possible if
123                                          * reallocated as slab on
124                                          * x86).
125                                          */
126                                         goto skip_lock;
127                         }
128                         /*
129                          * page_head wasn't a dangling pointer but it
130                          * may not be a head page anymore by the time
131                          * we obtain the lock. That is ok as long as it
132                          * can't be freed from under us.
133                          */
134                         flags = compound_lock_irqsave(page_head);
135                         if (unlikely(!PageTail(page))) {
136                                 /* __split_huge_page_refcount run before us */
137                                 compound_unlock_irqrestore(page_head, flags);
138 skip_lock:
139                                 if (put_page_testzero(page_head)) {
140                                         /*
141                                          * The head page may have been
142                                          * freed and reallocated as a
143                                          * compound page of smaller
144                                          * order and then freed again.
145                                          * All we know is that it
146                                          * cannot have become: a THP
147                                          * page, a compound page of
148                                          * higher order, a tail page.
149                                          * That is because we still
150                                          * hold the refcount of the
151                                          * split THP tail and
152                                          * page_head was the THP head
153                                          * before the split.
154                                          */
155                                         if (PageHead(page_head))
156                                                 __put_compound_page(page_head);
157                                         else
158                                                 __put_single_page(page_head);
159                                 }
160 out_put_single:
161                                 if (put_page_testzero(page))
162                                         __put_single_page(page);
163                                 return;
164                         }
165                         VM_BUG_ON(page_head != page->first_page);
166                         /*
167                          * We can release the refcount taken by
168                          * get_page_unless_zero() now that
169                          * __split_huge_page_refcount() is blocked on
170                          * the compound_lock.
171                          */
172                         if (put_page_testzero(page_head))
173                                 VM_BUG_ON(1);
174                         /* __split_huge_page_refcount will wait now */
175                         VM_BUG_ON(page_mapcount(page) <= 0);
176                         atomic_dec(&page->_mapcount);
177                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
178                         VM_BUG_ON(atomic_read(&page->_count) != 0);
179                         compound_unlock_irqrestore(page_head, flags);
180
181                         if (put_page_testzero(page_head)) {
182                                 if (PageHead(page_head))
183                                         __put_compound_page(page_head);
184                                 else
185                                         __put_single_page(page_head);
186                         }
187                 } else {
188                         /* page_head is a dangling pointer */
189                         VM_BUG_ON(PageTail(page));
190                         goto out_put_single;
191                 }
192         } else if (put_page_testzero(page)) {
193                 if (PageHead(page))
194                         __put_compound_page(page);
195                 else
196                         __put_single_page(page);
197         }
198 }
199
200 void put_page(struct page *page)
201 {
202         if (unlikely(PageCompound(page)))
203                 put_compound_page(page);
204         else if (put_page_testzero(page))
205                 __put_single_page(page);
206 }
207 EXPORT_SYMBOL(put_page);
208
209 /*
210  * This function is exported but must not be called by anything other
211  * than get_page(). It implements the slow path of get_page().
212  */
213 bool __get_page_tail(struct page *page)
214 {
215         /*
216          * This takes care of get_page() if run on a tail page
217          * returned by one of the get_user_pages/follow_page variants.
218          * get_user_pages/follow_page itself doesn't need the compound
219          * lock because it runs __get_page_tail_foll() under the
220          * proper PT lock that already serializes against
221          * split_huge_page().
222          */
223         unsigned long flags;
224         bool got = false;
225         struct page *page_head = compound_trans_head(page);
226
227         if (likely(page != page_head && get_page_unless_zero(page_head))) {
228                 /* Ref to put_compound_page() comment. */
229                 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
230                         if (likely(PageTail(page))) {
231                                 /*
232                                  * This is a hugetlbfs page or a slab
233                                  * page. __split_huge_page_refcount
234                                  * cannot race here.
235                                  */
236                                 VM_BUG_ON(!PageHead(page_head));
237                                 __get_page_tail_foll(page, false);
238                                 return true;
239                         } else {
240                                 /*
241                                  * __split_huge_page_refcount run
242                                  * before us, "page" was a THP
243                                  * tail. The split page_head has been
244                                  * freed and reallocated as slab or
245                                  * hugetlbfs page of smaller order
246                                  * (only possible if reallocated as
247                                  * slab on x86).
248                                  */
249                                 put_page(page_head);
250                                 return false;
251                         }
252                 }
253
254                 /*
255                  * page_head wasn't a dangling pointer but it
256                  * may not be a head page anymore by the time
257                  * we obtain the lock. That is ok as long as it
258                  * can't be freed from under us.
259                  */
260                 flags = compound_lock_irqsave(page_head);
261                 /* here __split_huge_page_refcount won't run anymore */
262                 if (likely(PageTail(page))) {
263                         __get_page_tail_foll(page, false);
264                         got = true;
265                 }
266                 compound_unlock_irqrestore(page_head, flags);
267                 if (unlikely(!got))
268                         put_page(page_head);
269         }
270         return got;
271 }
272 EXPORT_SYMBOL(__get_page_tail);
273
274 /**
275  * put_pages_list() - release a list of pages
276  * @pages: list of pages threaded on page->lru
277  *
278  * Release a list of pages which are strung together on page.lru.  Currently
279  * used by read_cache_pages() and related error recovery code.
280  */
281 void put_pages_list(struct list_head *pages)
282 {
283         while (!list_empty(pages)) {
284                 struct page *victim;
285
286                 victim = list_entry(pages->prev, struct page, lru);
287                 list_del(&victim->lru);
288                 page_cache_release(victim);
289         }
290 }
291 EXPORT_SYMBOL(put_pages_list);
292
293 /*
294  * get_kernel_pages() - pin kernel pages in memory
295  * @kiov:       An array of struct kvec structures
296  * @nr_segs:    number of segments to pin
297  * @write:      pinning for read/write, currently ignored
298  * @pages:      array that receives pointers to the pages pinned.
299  *              Should be at least nr_segs long.
300  *
301  * Returns number of pages pinned. This may be fewer than the number
302  * requested. If nr_pages is 0 or negative, returns 0. If no pages
303  * were pinned, returns -errno. Each page returned must be released
304  * with a put_page() call when it is finished with.
305  */
306 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
307                 struct page **pages)
308 {
309         int seg;
310
311         for (seg = 0; seg < nr_segs; seg++) {
312                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
313                         return seg;
314
315                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
316                 page_cache_get(pages[seg]);
317         }
318
319         return seg;
320 }
321 EXPORT_SYMBOL_GPL(get_kernel_pages);
322
323 /*
324  * get_kernel_page() - pin a kernel page in memory
325  * @start:      starting kernel address
326  * @write:      pinning for read/write, currently ignored
327  * @pages:      array that receives pointer to the page pinned.
328  *              Must be at least nr_segs long.
329  *
330  * Returns 1 if page is pinned. If the page was not pinned, returns
331  * -errno. The page returned must be released with a put_page() call
332  * when it is finished with.
333  */
334 int get_kernel_page(unsigned long start, int write, struct page **pages)
335 {
336         const struct kvec kiov = {
337                 .iov_base = (void *)start,
338                 .iov_len = PAGE_SIZE
339         };
340
341         return get_kernel_pages(&kiov, 1, write, pages);
342 }
343 EXPORT_SYMBOL_GPL(get_kernel_page);
344
345 static void pagevec_lru_move_fn(struct pagevec *pvec,
346         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
347         void *arg)
348 {
349         int i;
350         struct zone *zone = NULL;
351         struct lruvec *lruvec;
352         unsigned long flags = 0;
353
354         for (i = 0; i < pagevec_count(pvec); i++) {
355                 struct page *page = pvec->pages[i];
356                 struct zone *pagezone = page_zone(page);
357
358                 if (pagezone != zone) {
359                         if (zone)
360                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
361                         zone = pagezone;
362                         spin_lock_irqsave(&zone->lru_lock, flags);
363                 }
364
365                 lruvec = mem_cgroup_page_lruvec(page, zone);
366                 (*move_fn)(page, lruvec, arg);
367         }
368         if (zone)
369                 spin_unlock_irqrestore(&zone->lru_lock, flags);
370         release_pages(pvec->pages, pvec->nr, pvec->cold);
371         pagevec_reinit(pvec);
372 }
373
374 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
375                                  void *arg)
376 {
377         int *pgmoved = arg;
378
379         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
380                 enum lru_list lru = page_lru_base_type(page);
381                 list_move_tail(&page->lru, &lruvec->lists[lru]);
382                 (*pgmoved)++;
383         }
384 }
385
386 /*
387  * pagevec_move_tail() must be called with IRQ disabled.
388  * Otherwise this may cause nasty races.
389  */
390 static void pagevec_move_tail(struct pagevec *pvec)
391 {
392         int pgmoved = 0;
393
394         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
395         __count_vm_events(PGROTATED, pgmoved);
396 }
397
398 /*
399  * Writeback is about to end against a page which has been marked for immediate
400  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
401  * inactive list.
402  */
403 void rotate_reclaimable_page(struct page *page)
404 {
405         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
406             !PageUnevictable(page) && PageLRU(page)) {
407                 struct pagevec *pvec;
408                 unsigned long flags;
409
410                 page_cache_get(page);
411                 local_irq_save(flags);
412                 pvec = &__get_cpu_var(lru_rotate_pvecs);
413                 if (!pagevec_add(pvec, page))
414                         pagevec_move_tail(pvec);
415                 local_irq_restore(flags);
416         }
417 }
418
419 static void update_page_reclaim_stat(struct lruvec *lruvec,
420                                      int file, int rotated)
421 {
422         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
423
424         reclaim_stat->recent_scanned[file]++;
425         if (rotated)
426                 reclaim_stat->recent_rotated[file]++;
427 }
428
429 static void __activate_page(struct page *page, struct lruvec *lruvec,
430                             void *arg)
431 {
432         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
433                 int file = page_is_file_cache(page);
434                 int lru = page_lru_base_type(page);
435
436                 del_page_from_lru_list(page, lruvec, lru);
437                 SetPageActive(page);
438                 lru += LRU_ACTIVE;
439                 add_page_to_lru_list(page, lruvec, lru);
440                 trace_mm_lru_activate(page, page_to_pfn(page));
441
442                 __count_vm_event(PGACTIVATE);
443                 update_page_reclaim_stat(lruvec, file, 1);
444         }
445 }
446
447 #ifdef CONFIG_SMP
448 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
449
450 static void activate_page_drain(int cpu)
451 {
452         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
453
454         if (pagevec_count(pvec))
455                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
456 }
457
458 static bool need_activate_page_drain(int cpu)
459 {
460         return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
461 }
462
463 void activate_page(struct page *page)
464 {
465         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
466                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
467
468                 page_cache_get(page);
469                 if (!pagevec_add(pvec, page))
470                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
471                 put_cpu_var(activate_page_pvecs);
472         }
473 }
474
475 #else
476 static inline void activate_page_drain(int cpu)
477 {
478 }
479
480 static bool need_activate_page_drain(int cpu)
481 {
482         return false;
483 }
484
485 void activate_page(struct page *page)
486 {
487         struct zone *zone = page_zone(page);
488
489         spin_lock_irq(&zone->lru_lock);
490         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
491         spin_unlock_irq(&zone->lru_lock);
492 }
493 #endif
494
495 static void __lru_cache_activate_page(struct page *page)
496 {
497         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
498         int i;
499
500         /*
501          * Search backwards on the optimistic assumption that the page being
502          * activated has just been added to this pagevec. Note that only
503          * the local pagevec is examined as a !PageLRU page could be in the
504          * process of being released, reclaimed, migrated or on a remote
505          * pagevec that is currently being drained. Furthermore, marking
506          * a remote pagevec's page PageActive potentially hits a race where
507          * a page is marked PageActive just after it is added to the inactive
508          * list causing accounting errors and BUG_ON checks to trigger.
509          */
510         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
511                 struct page *pagevec_page = pvec->pages[i];
512
513                 if (pagevec_page == page) {
514                         SetPageActive(page);
515                         break;
516                 }
517         }
518
519         put_cpu_var(lru_add_pvec);
520 }
521
522 /*
523  * Mark a page as having seen activity.
524  *
525  * inactive,unreferenced        ->      inactive,referenced
526  * inactive,referenced          ->      active,unreferenced
527  * active,unreferenced          ->      active,referenced
528  */
529 void mark_page_accessed(struct page *page)
530 {
531         if (!PageActive(page) && !PageUnevictable(page) &&
532                         PageReferenced(page)) {
533
534                 /*
535                  * If the page is on the LRU, queue it for activation via
536                  * activate_page_pvecs. Otherwise, assume the page is on a
537                  * pagevec, mark it active and it'll be moved to the active
538                  * LRU on the next drain.
539                  */
540                 if (PageLRU(page))
541                         activate_page(page);
542                 else
543                         __lru_cache_activate_page(page);
544                 ClearPageReferenced(page);
545         } else if (!PageReferenced(page)) {
546                 SetPageReferenced(page);
547         }
548 }
549 EXPORT_SYMBOL(mark_page_accessed);
550
551 /*
552  * Queue the page for addition to the LRU via pagevec. The decision on whether
553  * to add the page to the [in]active [file|anon] list is deferred until the
554  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
555  * have the page added to the active list using mark_page_accessed().
556  */
557 void __lru_cache_add(struct page *page)
558 {
559         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
560
561         page_cache_get(page);
562         if (!pagevec_space(pvec))
563                 __pagevec_lru_add(pvec);
564         pagevec_add(pvec, page);
565         put_cpu_var(lru_add_pvec);
566 }
567 EXPORT_SYMBOL(__lru_cache_add);
568
569 /**
570  * lru_cache_add - add a page to a page list
571  * @page: the page to be added to the LRU.
572  */
573 void lru_cache_add(struct page *page)
574 {
575         VM_BUG_ON(PageActive(page) && PageUnevictable(page));
576         VM_BUG_ON(PageLRU(page));
577         __lru_cache_add(page);
578 }
579
580 /**
581  * add_page_to_unevictable_list - add a page to the unevictable list
582  * @page:  the page to be added to the unevictable list
583  *
584  * Add page directly to its zone's unevictable list.  To avoid races with
585  * tasks that might be making the page evictable, through eg. munlock,
586  * munmap or exit, while it's not on the lru, we want to add the page
587  * while it's locked or otherwise "invisible" to other tasks.  This is
588  * difficult to do when using the pagevec cache, so bypass that.
589  */
590 void add_page_to_unevictable_list(struct page *page)
591 {
592         struct zone *zone = page_zone(page);
593         struct lruvec *lruvec;
594
595         spin_lock_irq(&zone->lru_lock);
596         lruvec = mem_cgroup_page_lruvec(page, zone);
597         ClearPageActive(page);
598         SetPageUnevictable(page);
599         SetPageLRU(page);
600         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
601         spin_unlock_irq(&zone->lru_lock);
602 }
603
604 /*
605  * If the page can not be invalidated, it is moved to the
606  * inactive list to speed up its reclaim.  It is moved to the
607  * head of the list, rather than the tail, to give the flusher
608  * threads some time to write it out, as this is much more
609  * effective than the single-page writeout from reclaim.
610  *
611  * If the page isn't page_mapped and dirty/writeback, the page
612  * could reclaim asap using PG_reclaim.
613  *
614  * 1. active, mapped page -> none
615  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
616  * 3. inactive, mapped page -> none
617  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
618  * 5. inactive, clean -> inactive, tail
619  * 6. Others -> none
620  *
621  * In 4, why it moves inactive's head, the VM expects the page would
622  * be write it out by flusher threads as this is much more effective
623  * than the single-page writeout from reclaim.
624  */
625 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
626                               void *arg)
627 {
628         int lru, file;
629         bool active;
630
631         if (!PageLRU(page))
632                 return;
633
634         if (PageUnevictable(page))
635                 return;
636
637         /* Some processes are using the page */
638         if (page_mapped(page))
639                 return;
640
641         active = PageActive(page);
642         file = page_is_file_cache(page);
643         lru = page_lru_base_type(page);
644
645         del_page_from_lru_list(page, lruvec, lru + active);
646         ClearPageActive(page);
647         ClearPageReferenced(page);
648         add_page_to_lru_list(page, lruvec, lru);
649
650         if (PageWriteback(page) || PageDirty(page)) {
651                 /*
652                  * PG_reclaim could be raced with end_page_writeback
653                  * It can make readahead confusing.  But race window
654                  * is _really_ small and  it's non-critical problem.
655                  */
656                 SetPageReclaim(page);
657         } else {
658                 /*
659                  * The page's writeback ends up during pagevec
660                  * We moves tha page into tail of inactive.
661                  */
662                 list_move_tail(&page->lru, &lruvec->lists[lru]);
663                 __count_vm_event(PGROTATED);
664         }
665
666         if (active)
667                 __count_vm_event(PGDEACTIVATE);
668         update_page_reclaim_stat(lruvec, file, 0);
669 }
670
671 /*
672  * Drain pages out of the cpu's pagevecs.
673  * Either "cpu" is the current CPU, and preemption has already been
674  * disabled; or "cpu" is being hot-unplugged, and is already dead.
675  */
676 void lru_add_drain_cpu(int cpu)
677 {
678         struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
679
680         if (pagevec_count(pvec))
681                 __pagevec_lru_add(pvec);
682
683         pvec = &per_cpu(lru_rotate_pvecs, cpu);
684         if (pagevec_count(pvec)) {
685                 unsigned long flags;
686
687                 /* No harm done if a racing interrupt already did this */
688                 local_irq_save(flags);
689                 pagevec_move_tail(pvec);
690                 local_irq_restore(flags);
691         }
692
693         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
694         if (pagevec_count(pvec))
695                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
696
697         activate_page_drain(cpu);
698 }
699
700 /**
701  * deactivate_page - forcefully deactivate a page
702  * @page: page to deactivate
703  *
704  * This function hints the VM that @page is a good reclaim candidate,
705  * for example if its invalidation fails due to the page being dirty
706  * or under writeback.
707  */
708 void deactivate_page(struct page *page)
709 {
710         /*
711          * In a workload with many unevictable page such as mprotect, unevictable
712          * page deactivation for accelerating reclaim is pointless.
713          */
714         if (PageUnevictable(page))
715                 return;
716
717         if (likely(get_page_unless_zero(page))) {
718                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
719
720                 if (!pagevec_add(pvec, page))
721                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
722                 put_cpu_var(lru_deactivate_pvecs);
723         }
724 }
725
726 void lru_add_drain(void)
727 {
728         lru_add_drain_cpu(get_cpu());
729         put_cpu();
730 }
731
732 static void lru_add_drain_per_cpu(struct work_struct *dummy)
733 {
734         lru_add_drain();
735 }
736
737 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
738
739 void lru_add_drain_all(void)
740 {
741         static DEFINE_MUTEX(lock);
742         static struct cpumask has_work;
743         int cpu;
744
745         mutex_lock(&lock);
746         get_online_cpus();
747         cpumask_clear(&has_work);
748
749         for_each_online_cpu(cpu) {
750                 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
751
752                 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
753                     pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
754                     pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
755                     need_activate_page_drain(cpu)) {
756                         INIT_WORK(work, lru_add_drain_per_cpu);
757                         schedule_work_on(cpu, work);
758                         cpumask_set_cpu(cpu, &has_work);
759                 }
760         }
761
762         for_each_cpu(cpu, &has_work)
763                 flush_work(&per_cpu(lru_add_drain_work, cpu));
764
765         put_online_cpus();
766         mutex_unlock(&lock);
767 }
768
769 /*
770  * Batched page_cache_release().  Decrement the reference count on all the
771  * passed pages.  If it fell to zero then remove the page from the LRU and
772  * free it.
773  *
774  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
775  * for the remainder of the operation.
776  *
777  * The locking in this function is against shrink_inactive_list(): we recheck
778  * the page count inside the lock to see whether shrink_inactive_list()
779  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
780  * will free it.
781  */
782 void release_pages(struct page **pages, int nr, int cold)
783 {
784         int i;
785         LIST_HEAD(pages_to_free);
786         struct zone *zone = NULL;
787         struct lruvec *lruvec;
788         unsigned long uninitialized_var(flags);
789
790         for (i = 0; i < nr; i++) {
791                 struct page *page = pages[i];
792
793                 if (unlikely(PageCompound(page))) {
794                         if (zone) {
795                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
796                                 zone = NULL;
797                         }
798                         put_compound_page(page);
799                         continue;
800                 }
801
802                 if (!put_page_testzero(page))
803                         continue;
804
805                 if (PageLRU(page)) {
806                         struct zone *pagezone = page_zone(page);
807
808                         if (pagezone != zone) {
809                                 if (zone)
810                                         spin_unlock_irqrestore(&zone->lru_lock,
811                                                                         flags);
812                                 zone = pagezone;
813                                 spin_lock_irqsave(&zone->lru_lock, flags);
814                         }
815
816                         lruvec = mem_cgroup_page_lruvec(page, zone);
817                         VM_BUG_ON(!PageLRU(page));
818                         __ClearPageLRU(page);
819                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
820                 }
821
822                 /* Clear Active bit in case of parallel mark_page_accessed */
823                 ClearPageActive(page);
824
825                 list_add(&page->lru, &pages_to_free);
826         }
827         if (zone)
828                 spin_unlock_irqrestore(&zone->lru_lock, flags);
829
830         free_hot_cold_page_list(&pages_to_free, cold);
831 }
832 EXPORT_SYMBOL(release_pages);
833
834 /*
835  * The pages which we're about to release may be in the deferred lru-addition
836  * queues.  That would prevent them from really being freed right now.  That's
837  * OK from a correctness point of view but is inefficient - those pages may be
838  * cache-warm and we want to give them back to the page allocator ASAP.
839  *
840  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
841  * and __pagevec_lru_add_active() call release_pages() directly to avoid
842  * mutual recursion.
843  */
844 void __pagevec_release(struct pagevec *pvec)
845 {
846         lru_add_drain();
847         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
848         pagevec_reinit(pvec);
849 }
850 EXPORT_SYMBOL(__pagevec_release);
851
852 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
853 /* used by __split_huge_page_refcount() */
854 void lru_add_page_tail(struct page *page, struct page *page_tail,
855                        struct lruvec *lruvec, struct list_head *list)
856 {
857         const int file = 0;
858
859         VM_BUG_ON(!PageHead(page));
860         VM_BUG_ON(PageCompound(page_tail));
861         VM_BUG_ON(PageLRU(page_tail));
862         VM_BUG_ON(NR_CPUS != 1 &&
863                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
864
865         if (!list)
866                 SetPageLRU(page_tail);
867
868         if (likely(PageLRU(page)))
869                 list_add_tail(&page_tail->lru, &page->lru);
870         else if (list) {
871                 /* page reclaim is reclaiming a huge page */
872                 get_page(page_tail);
873                 list_add_tail(&page_tail->lru, list);
874         } else {
875                 struct list_head *list_head;
876                 /*
877                  * Head page has not yet been counted, as an hpage,
878                  * so we must account for each subpage individually.
879                  *
880                  * Use the standard add function to put page_tail on the list,
881                  * but then correct its position so they all end up in order.
882                  */
883                 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
884                 list_head = page_tail->lru.prev;
885                 list_move_tail(&page_tail->lru, list_head);
886         }
887
888         if (!PageUnevictable(page))
889                 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
890 }
891 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
892
893 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
894                                  void *arg)
895 {
896         int file = page_is_file_cache(page);
897         int active = PageActive(page);
898         enum lru_list lru = page_lru(page);
899
900         VM_BUG_ON(PageLRU(page));
901
902         SetPageLRU(page);
903         add_page_to_lru_list(page, lruvec, lru);
904         update_page_reclaim_stat(lruvec, file, active);
905         trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
906 }
907
908 /*
909  * Add the passed pages to the LRU, then drop the caller's refcount
910  * on them.  Reinitialises the caller's pagevec.
911  */
912 void __pagevec_lru_add(struct pagevec *pvec)
913 {
914         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
915 }
916 EXPORT_SYMBOL(__pagevec_lru_add);
917
918 /**
919  * pagevec_lookup - gang pagecache lookup
920  * @pvec:       Where the resulting pages are placed
921  * @mapping:    The address_space to search
922  * @start:      The starting page index
923  * @nr_pages:   The maximum number of pages
924  *
925  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
926  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
927  * reference against the pages in @pvec.
928  *
929  * The search returns a group of mapping-contiguous pages with ascending
930  * indexes.  There may be holes in the indices due to not-present pages.
931  *
932  * pagevec_lookup() returns the number of pages which were found.
933  */
934 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
935                 pgoff_t start, unsigned nr_pages)
936 {
937         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
938         return pagevec_count(pvec);
939 }
940 EXPORT_SYMBOL(pagevec_lookup);
941
942 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
943                 pgoff_t *index, int tag, unsigned nr_pages)
944 {
945         pvec->nr = find_get_pages_tag(mapping, index, tag,
946                                         nr_pages, pvec->pages);
947         return pagevec_count(pvec);
948 }
949 EXPORT_SYMBOL(pagevec_lookup_tag);
950
951 /*
952  * Perform any setup for the swap system
953  */
954 void __init swap_setup(void)
955 {
956         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
957 #ifdef CONFIG_SWAP
958         int i;
959
960         if (bdi_init(swapper_spaces[0].backing_dev_info))
961                 panic("Failed to init swap bdi");
962         for (i = 0; i < MAX_SWAPFILES; i++) {
963                 spin_lock_init(&swapper_spaces[i].tree_lock);
964                 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
965         }
966 #endif
967
968         /* Use a smaller cluster for small-memory machines */
969         if (megs < 16)
970                 page_cluster = 2;
971         else
972                 page_cluster = 3;
973         /*
974          * Right now other parts of the system means that we
975          * _really_ don't want to cluster much more
976          */
977 }