Merge branch '4.3-fixes' into mips-for-linux-next
[linux-drm-fsl-dcu.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6
7 #ifdef CONFIG_SLOB
8 /*
9  * Common fields provided in kmem_cache by all slab allocators
10  * This struct is either used directly by the allocator (SLOB)
11  * or the allocator must include definitions for all fields
12  * provided in kmem_cache_common in their definition of kmem_cache.
13  *
14  * Once we can do anonymous structs (C11 standard) we could put a
15  * anonymous struct definition in these allocators so that the
16  * separate allocations in the kmem_cache structure of SLAB and
17  * SLUB is no longer needed.
18  */
19 struct kmem_cache {
20         unsigned int object_size;/* The original size of the object */
21         unsigned int size;      /* The aligned/padded/added on size  */
22         unsigned int align;     /* Alignment as calculated */
23         unsigned long flags;    /* Active flags on the slab */
24         const char *name;       /* Slab name for sysfs */
25         int refcount;           /* Use counter */
26         void (*ctor)(void *);   /* Called on object slot creation */
27         struct list_head list;  /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41
42 /*
43  * State of the slab allocator.
44  *
45  * This is used to describe the states of the allocator during bootup.
46  * Allocators use this to gradually bootstrap themselves. Most allocators
47  * have the problem that the structures used for managing slab caches are
48  * allocated from slab caches themselves.
49  */
50 enum slab_state {
51         DOWN,                   /* No slab functionality yet */
52         PARTIAL,                /* SLUB: kmem_cache_node available */
53         PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
54         UP,                     /* Slab caches usable but not all extras yet */
55         FULL                    /* Everything is working */
56 };
57
58 extern enum slab_state slab_state;
59
60 /* The slab cache mutex protects the management structures during changes */
61 extern struct mutex slab_mutex;
62
63 /* The list of all slab caches on the system */
64 extern struct list_head slab_caches;
65
66 /* The slab cache that manages slab cache information */
67 extern struct kmem_cache *kmem_cache;
68
69 unsigned long calculate_alignment(unsigned long flags,
70                 unsigned long align, unsigned long size);
71
72 #ifndef CONFIG_SLOB
73 /* Kmalloc array related functions */
74 void setup_kmalloc_cache_index_table(void);
75 void create_kmalloc_caches(unsigned long);
76
77 /* Find the kmalloc slab corresponding for a certain size */
78 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
79 #endif
80
81
82 /* Functions provided by the slab allocators */
83 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
84
85 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
86                         unsigned long flags);
87 extern void create_boot_cache(struct kmem_cache *, const char *name,
88                         size_t size, unsigned long flags);
89
90 int slab_unmergeable(struct kmem_cache *s);
91 struct kmem_cache *find_mergeable(size_t size, size_t align,
92                 unsigned long flags, const char *name, void (*ctor)(void *));
93 #ifndef CONFIG_SLOB
94 struct kmem_cache *
95 __kmem_cache_alias(const char *name, size_t size, size_t align,
96                    unsigned long flags, void (*ctor)(void *));
97
98 unsigned long kmem_cache_flags(unsigned long object_size,
99         unsigned long flags, const char *name,
100         void (*ctor)(void *));
101 #else
102 static inline struct kmem_cache *
103 __kmem_cache_alias(const char *name, size_t size, size_t align,
104                    unsigned long flags, void (*ctor)(void *))
105 { return NULL; }
106
107 static inline unsigned long kmem_cache_flags(unsigned long object_size,
108         unsigned long flags, const char *name,
109         void (*ctor)(void *))
110 {
111         return flags;
112 }
113 #endif
114
115
116 /* Legal flag mask for kmem_cache_create(), for various configurations */
117 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
118                          SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
119
120 #if defined(CONFIG_DEBUG_SLAB)
121 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
122 #elif defined(CONFIG_SLUB_DEBUG)
123 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
124                           SLAB_TRACE | SLAB_DEBUG_FREE)
125 #else
126 #define SLAB_DEBUG_FLAGS (0)
127 #endif
128
129 #if defined(CONFIG_SLAB)
130 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
131                           SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
132 #elif defined(CONFIG_SLUB)
133 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
134                           SLAB_TEMPORARY | SLAB_NOTRACK)
135 #else
136 #define SLAB_CACHE_FLAGS (0)
137 #endif
138
139 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
140
141 int __kmem_cache_shutdown(struct kmem_cache *);
142 int __kmem_cache_shrink(struct kmem_cache *, bool);
143 void slab_kmem_cache_release(struct kmem_cache *);
144
145 struct seq_file;
146 struct file;
147
148 struct slabinfo {
149         unsigned long active_objs;
150         unsigned long num_objs;
151         unsigned long active_slabs;
152         unsigned long num_slabs;
153         unsigned long shared_avail;
154         unsigned int limit;
155         unsigned int batchcount;
156         unsigned int shared;
157         unsigned int objects_per_slab;
158         unsigned int cache_order;
159 };
160
161 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
162 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
163 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
164                        size_t count, loff_t *ppos);
165
166 /*
167  * Generic implementation of bulk operations
168  * These are useful for situations in which the allocator cannot
169  * perform optimizations. In that case segments of the objecct listed
170  * may be allocated or freed using these operations.
171  */
172 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
173 bool __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
174
175 #ifdef CONFIG_MEMCG_KMEM
176 /*
177  * Iterate over all memcg caches of the given root cache. The caller must hold
178  * slab_mutex.
179  */
180 #define for_each_memcg_cache(iter, root) \
181         list_for_each_entry(iter, &(root)->memcg_params.list, \
182                             memcg_params.list)
183
184 #define for_each_memcg_cache_safe(iter, tmp, root) \
185         list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \
186                                  memcg_params.list)
187
188 static inline bool is_root_cache(struct kmem_cache *s)
189 {
190         return s->memcg_params.is_root_cache;
191 }
192
193 static inline bool slab_equal_or_root(struct kmem_cache *s,
194                                       struct kmem_cache *p)
195 {
196         return p == s || p == s->memcg_params.root_cache;
197 }
198
199 /*
200  * We use suffixes to the name in memcg because we can't have caches
201  * created in the system with the same name. But when we print them
202  * locally, better refer to them with the base name
203  */
204 static inline const char *cache_name(struct kmem_cache *s)
205 {
206         if (!is_root_cache(s))
207                 s = s->memcg_params.root_cache;
208         return s->name;
209 }
210
211 /*
212  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
213  * That said the caller must assure the memcg's cache won't go away by either
214  * taking a css reference to the owner cgroup, or holding the slab_mutex.
215  */
216 static inline struct kmem_cache *
217 cache_from_memcg_idx(struct kmem_cache *s, int idx)
218 {
219         struct kmem_cache *cachep;
220         struct memcg_cache_array *arr;
221
222         rcu_read_lock();
223         arr = rcu_dereference(s->memcg_params.memcg_caches);
224
225         /*
226          * Make sure we will access the up-to-date value. The code updating
227          * memcg_caches issues a write barrier to match this (see
228          * memcg_create_kmem_cache()).
229          */
230         cachep = lockless_dereference(arr->entries[idx]);
231         rcu_read_unlock();
232
233         return cachep;
234 }
235
236 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
237 {
238         if (is_root_cache(s))
239                 return s;
240         return s->memcg_params.root_cache;
241 }
242
243 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
244                                              gfp_t gfp, int order)
245 {
246         if (!memcg_kmem_enabled())
247                 return 0;
248         if (is_root_cache(s))
249                 return 0;
250         return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order);
251 }
252
253 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
254 {
255         if (!memcg_kmem_enabled())
256                 return;
257         if (is_root_cache(s))
258                 return;
259         memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order);
260 }
261
262 extern void slab_init_memcg_params(struct kmem_cache *);
263
264 #else /* !CONFIG_MEMCG_KMEM */
265
266 #define for_each_memcg_cache(iter, root) \
267         for ((void)(iter), (void)(root); 0; )
268 #define for_each_memcg_cache_safe(iter, tmp, root) \
269         for ((void)(iter), (void)(tmp), (void)(root); 0; )
270
271 static inline bool is_root_cache(struct kmem_cache *s)
272 {
273         return true;
274 }
275
276 static inline bool slab_equal_or_root(struct kmem_cache *s,
277                                       struct kmem_cache *p)
278 {
279         return true;
280 }
281
282 static inline const char *cache_name(struct kmem_cache *s)
283 {
284         return s->name;
285 }
286
287 static inline struct kmem_cache *
288 cache_from_memcg_idx(struct kmem_cache *s, int idx)
289 {
290         return NULL;
291 }
292
293 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
294 {
295         return s;
296 }
297
298 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
299 {
300         return 0;
301 }
302
303 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
304 {
305 }
306
307 static inline void slab_init_memcg_params(struct kmem_cache *s)
308 {
309 }
310 #endif /* CONFIG_MEMCG_KMEM */
311
312 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
313 {
314         struct kmem_cache *cachep;
315         struct page *page;
316
317         /*
318          * When kmemcg is not being used, both assignments should return the
319          * same value. but we don't want to pay the assignment price in that
320          * case. If it is not compiled in, the compiler should be smart enough
321          * to not do even the assignment. In that case, slab_equal_or_root
322          * will also be a constant.
323          */
324         if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
325                 return s;
326
327         page = virt_to_head_page(x);
328         cachep = page->slab_cache;
329         if (slab_equal_or_root(cachep, s))
330                 return cachep;
331
332         pr_err("%s: Wrong slab cache. %s but object is from %s\n",
333                __func__, s->name, cachep->name);
334         WARN_ON_ONCE(1);
335         return s;
336 }
337
338 #ifndef CONFIG_SLOB
339 /*
340  * The slab lists for all objects.
341  */
342 struct kmem_cache_node {
343         spinlock_t list_lock;
344
345 #ifdef CONFIG_SLAB
346         struct list_head slabs_partial; /* partial list first, better asm code */
347         struct list_head slabs_full;
348         struct list_head slabs_free;
349         unsigned long free_objects;
350         unsigned int free_limit;
351         unsigned int colour_next;       /* Per-node cache coloring */
352         struct array_cache *shared;     /* shared per node */
353         struct alien_cache **alien;     /* on other nodes */
354         unsigned long next_reap;        /* updated without locking */
355         int free_touched;               /* updated without locking */
356 #endif
357
358 #ifdef CONFIG_SLUB
359         unsigned long nr_partial;
360         struct list_head partial;
361 #ifdef CONFIG_SLUB_DEBUG
362         atomic_long_t nr_slabs;
363         atomic_long_t total_objects;
364         struct list_head full;
365 #endif
366 #endif
367
368 };
369
370 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
371 {
372         return s->node[node];
373 }
374
375 /*
376  * Iterator over all nodes. The body will be executed for each node that has
377  * a kmem_cache_node structure allocated (which is true for all online nodes)
378  */
379 #define for_each_kmem_cache_node(__s, __node, __n) \
380         for (__node = 0; __node < nr_node_ids; __node++) \
381                  if ((__n = get_node(__s, __node)))
382
383 #endif
384
385 void *slab_start(struct seq_file *m, loff_t *pos);
386 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
387 void slab_stop(struct seq_file *m, void *p);
388 int memcg_slab_show(struct seq_file *m, void *p);
389
390 #endif /* MM_SLAB_H */