Merge branch 'akpm' (fixes from Andrew)
[linux-drm-fsl-dcu.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39
40 #if 0
41 #define kenter(FMT, ...) \
42         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
66 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
67 int heap_stack_gap = 0;
68
69 atomic_long_t mmap_pages_allocated;
70
71 /*
72  * The global memory commitment made in the system can be a metric
73  * that can be used to drive ballooning decisions when Linux is hosted
74  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
75  * balancing memory across competing virtual machines that are hosted.
76  * Several metrics drive this policy engine including the guest reported
77  * memory commitment.
78  */
79 unsigned long vm_memory_committed(void)
80 {
81         return percpu_counter_read_positive(&vm_committed_as);
82 }
83
84 EXPORT_SYMBOL_GPL(vm_memory_committed);
85
86 EXPORT_SYMBOL(mem_map);
87
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache *vm_region_jar;
90 struct rb_root nommu_region_tree = RB_ROOT;
91 DECLARE_RWSEM(nommu_region_sem);
92
93 const struct vm_operations_struct generic_file_vm_ops = {
94 };
95
96 /*
97  * Return the total memory allocated for this pointer, not
98  * just what the caller asked for.
99  *
100  * Doesn't have to be accurate, i.e. may have races.
101  */
102 unsigned int kobjsize(const void *objp)
103 {
104         struct page *page;
105
106         /*
107          * If the object we have should not have ksize performed on it,
108          * return size of 0
109          */
110         if (!objp || !virt_addr_valid(objp))
111                 return 0;
112
113         page = virt_to_head_page(objp);
114
115         /*
116          * If the allocator sets PageSlab, we know the pointer came from
117          * kmalloc().
118          */
119         if (PageSlab(page))
120                 return ksize(objp);
121
122         /*
123          * If it's not a compound page, see if we have a matching VMA
124          * region. This test is intentionally done in reverse order,
125          * so if there's no VMA, we still fall through and hand back
126          * PAGE_SIZE for 0-order pages.
127          */
128         if (!PageCompound(page)) {
129                 struct vm_area_struct *vma;
130
131                 vma = find_vma(current->mm, (unsigned long)objp);
132                 if (vma)
133                         return vma->vm_end - vma->vm_start;
134         }
135
136         /*
137          * The ksize() function is only guaranteed to work for pointers
138          * returned by kmalloc(). So handle arbitrary pointers here.
139          */
140         return PAGE_SIZE << compound_order(page);
141 }
142
143 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
144                       unsigned long start, unsigned long nr_pages,
145                       unsigned int foll_flags, struct page **pages,
146                       struct vm_area_struct **vmas, int *nonblocking)
147 {
148         struct vm_area_struct *vma;
149         unsigned long vm_flags;
150         int i;
151
152         /* calculate required read or write permissions.
153          * If FOLL_FORCE is set, we only require the "MAY" flags.
154          */
155         vm_flags  = (foll_flags & FOLL_WRITE) ?
156                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
157         vm_flags &= (foll_flags & FOLL_FORCE) ?
158                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
159
160         for (i = 0; i < nr_pages; i++) {
161                 vma = find_vma(mm, start);
162                 if (!vma)
163                         goto finish_or_fault;
164
165                 /* protect what we can, including chardevs */
166                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
167                     !(vm_flags & vma->vm_flags))
168                         goto finish_or_fault;
169
170                 if (pages) {
171                         pages[i] = virt_to_page(start);
172                         if (pages[i])
173                                 page_cache_get(pages[i]);
174                 }
175                 if (vmas)
176                         vmas[i] = vma;
177                 start = (start + PAGE_SIZE) & PAGE_MASK;
178         }
179
180         return i;
181
182 finish_or_fault:
183         return i ? : -EFAULT;
184 }
185
186 /*
187  * get a list of pages in an address range belonging to the specified process
188  * and indicate the VMA that covers each page
189  * - this is potentially dodgy as we may end incrementing the page count of a
190  *   slab page or a secondary page from a compound page
191  * - don't permit access to VMAs that don't support it, such as I/O mappings
192  */
193 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
194                     unsigned long start, unsigned long nr_pages,
195                     int write, int force, struct page **pages,
196                     struct vm_area_struct **vmas)
197 {
198         int flags = 0;
199
200         if (write)
201                 flags |= FOLL_WRITE;
202         if (force)
203                 flags |= FOLL_FORCE;
204
205         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
206                                 NULL);
207 }
208 EXPORT_SYMBOL(get_user_pages);
209
210 /**
211  * follow_pfn - look up PFN at a user virtual address
212  * @vma: memory mapping
213  * @address: user virtual address
214  * @pfn: location to store found PFN
215  *
216  * Only IO mappings and raw PFN mappings are allowed.
217  *
218  * Returns zero and the pfn at @pfn on success, -ve otherwise.
219  */
220 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
221         unsigned long *pfn)
222 {
223         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
224                 return -EINVAL;
225
226         *pfn = address >> PAGE_SHIFT;
227         return 0;
228 }
229 EXPORT_SYMBOL(follow_pfn);
230
231 LIST_HEAD(vmap_area_list);
232
233 void vfree(const void *addr)
234 {
235         kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241         /*
242          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243          * returns only a logical address.
244          */
245         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248
249 void *vmalloc_user(unsigned long size)
250 {
251         void *ret;
252
253         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254                         PAGE_KERNEL);
255         if (ret) {
256                 struct vm_area_struct *vma;
257
258                 down_write(&current->mm->mmap_sem);
259                 vma = find_vma(current->mm, (unsigned long)ret);
260                 if (vma)
261                         vma->vm_flags |= VM_USERMAP;
262                 up_write(&current->mm->mmap_sem);
263         }
264
265         return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268
269 struct page *vmalloc_to_page(const void *addr)
270 {
271         return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277         return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283         /* Don't allow overflow */
284         if ((unsigned long) buf + count < count)
285                 count = -(unsigned long) buf;
286
287         memcpy(buf, addr, count);
288         return count;
289 }
290
291 long vwrite(char *buf, char *addr, unsigned long count)
292 {
293         /* Don't allow overflow */
294         if ((unsigned long) addr + count < count)
295                 count = -(unsigned long) addr;
296
297         memcpy(addr, buf, count);
298         return(count);
299 }
300
301 /*
302  *      vmalloc  -  allocate virtually continguos memory
303  *
304  *      @size:          allocation size
305  *
306  *      Allocate enough pages to cover @size from the page level
307  *      allocator and map them into continguos kernel virtual space.
308  *
309  *      For tight control over page level allocator and protection flags
310  *      use __vmalloc() instead.
311  */
312 void *vmalloc(unsigned long size)
313 {
314        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vmalloc);
317
318 /*
319  *      vzalloc - allocate virtually continguos memory with zero fill
320  *
321  *      @size:          allocation size
322  *
323  *      Allocate enough pages to cover @size from the page level
324  *      allocator and map them into continguos kernel virtual space.
325  *      The memory allocated is set to zero.
326  *
327  *      For tight control over page level allocator and protection flags
328  *      use __vmalloc() instead.
329  */
330 void *vzalloc(unsigned long size)
331 {
332         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
333                         PAGE_KERNEL);
334 }
335 EXPORT_SYMBOL(vzalloc);
336
337 /**
338  * vmalloc_node - allocate memory on a specific node
339  * @size:       allocation size
340  * @node:       numa node
341  *
342  * Allocate enough pages to cover @size from the page level
343  * allocator and map them into contiguous kernel virtual space.
344  *
345  * For tight control over page level allocator and protection flags
346  * use __vmalloc() instead.
347  */
348 void *vmalloc_node(unsigned long size, int node)
349 {
350         return vmalloc(size);
351 }
352 EXPORT_SYMBOL(vmalloc_node);
353
354 /**
355  * vzalloc_node - allocate memory on a specific node with zero fill
356  * @size:       allocation size
357  * @node:       numa node
358  *
359  * Allocate enough pages to cover @size from the page level
360  * allocator and map them into contiguous kernel virtual space.
361  * The memory allocated is set to zero.
362  *
363  * For tight control over page level allocator and protection flags
364  * use __vmalloc() instead.
365  */
366 void *vzalloc_node(unsigned long size, int node)
367 {
368         return vzalloc(size);
369 }
370 EXPORT_SYMBOL(vzalloc_node);
371
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 #endif
375
376 /**
377  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
378  *      @size:          allocation size
379  *
380  *      Kernel-internal function to allocate enough pages to cover @size
381  *      the page level allocator and map them into contiguous and
382  *      executable kernel virtual space.
383  *
384  *      For tight control over page level allocator and protection flags
385  *      use __vmalloc() instead.
386  */
387
388 void *vmalloc_exec(unsigned long size)
389 {
390         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
391 }
392
393 /**
394  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
395  *      @size:          allocation size
396  *
397  *      Allocate enough 32bit PA addressable pages to cover @size from the
398  *      page level allocator and map them into continguos kernel virtual space.
399  */
400 void *vmalloc_32(unsigned long size)
401 {
402         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
403 }
404 EXPORT_SYMBOL(vmalloc_32);
405
406 /**
407  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408  *      @size:          allocation size
409  *
410  * The resulting memory area is 32bit addressable and zeroed so it can be
411  * mapped to userspace without leaking data.
412  *
413  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414  * remap_vmalloc_range() are permissible.
415  */
416 void *vmalloc_32_user(unsigned long size)
417 {
418         /*
419          * We'll have to sort out the ZONE_DMA bits for 64-bit,
420          * but for now this can simply use vmalloc_user() directly.
421          */
422         return vmalloc_user(size);
423 }
424 EXPORT_SYMBOL(vmalloc_32_user);
425
426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
427 {
428         BUG();
429         return NULL;
430 }
431 EXPORT_SYMBOL(vmap);
432
433 void vunmap(const void *addr)
434 {
435         BUG();
436 }
437 EXPORT_SYMBOL(vunmap);
438
439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
440 {
441         BUG();
442         return NULL;
443 }
444 EXPORT_SYMBOL(vm_map_ram);
445
446 void vm_unmap_ram(const void *mem, unsigned int count)
447 {
448         BUG();
449 }
450 EXPORT_SYMBOL(vm_unmap_ram);
451
452 void vm_unmap_aliases(void)
453 {
454 }
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
456
457 /*
458  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459  * have one.
460  */
461 void  __attribute__((weak)) vmalloc_sync_all(void)
462 {
463 }
464
465 /**
466  *      alloc_vm_area - allocate a range of kernel address space
467  *      @size:          size of the area
468  *
469  *      Returns:        NULL on failure, vm_struct on success
470  *
471  *      This function reserves a range of kernel address space, and
472  *      allocates pagetables to map that range.  No actual mappings
473  *      are created.  If the kernel address space is not shared
474  *      between processes, it syncs the pagetable across all
475  *      processes.
476  */
477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
478 {
479         BUG();
480         return NULL;
481 }
482 EXPORT_SYMBOL_GPL(alloc_vm_area);
483
484 void free_vm_area(struct vm_struct *area)
485 {
486         BUG();
487 }
488 EXPORT_SYMBOL_GPL(free_vm_area);
489
490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491                    struct page *page)
492 {
493         return -EINVAL;
494 }
495 EXPORT_SYMBOL(vm_insert_page);
496
497 /*
498  *  sys_brk() for the most part doesn't need the global kernel
499  *  lock, except when an application is doing something nasty
500  *  like trying to un-brk an area that has already been mapped
501  *  to a regular file.  in this case, the unmapping will need
502  *  to invoke file system routines that need the global lock.
503  */
504 SYSCALL_DEFINE1(brk, unsigned long, brk)
505 {
506         struct mm_struct *mm = current->mm;
507
508         if (brk < mm->start_brk || brk > mm->context.end_brk)
509                 return mm->brk;
510
511         if (mm->brk == brk)
512                 return mm->brk;
513
514         /*
515          * Always allow shrinking brk
516          */
517         if (brk <= mm->brk) {
518                 mm->brk = brk;
519                 return brk;
520         }
521
522         /*
523          * Ok, looks good - let it rip.
524          */
525         flush_icache_range(mm->brk, brk);
526         return mm->brk = brk;
527 }
528
529 /*
530  * initialise the VMA and region record slabs
531  */
532 void __init mmap_init(void)
533 {
534         int ret;
535
536         ret = percpu_counter_init(&vm_committed_as, 0);
537         VM_BUG_ON(ret);
538         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
539 }
540
541 /*
542  * validate the region tree
543  * - the caller must hold the region lock
544  */
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline void validate_nommu_regions(void)
547 {
548         struct vm_region *region, *last;
549         struct rb_node *p, *lastp;
550
551         lastp = rb_first(&nommu_region_tree);
552         if (!lastp)
553                 return;
554
555         last = rb_entry(lastp, struct vm_region, vm_rb);
556         BUG_ON(unlikely(last->vm_end <= last->vm_start));
557         BUG_ON(unlikely(last->vm_top < last->vm_end));
558
559         while ((p = rb_next(lastp))) {
560                 region = rb_entry(p, struct vm_region, vm_rb);
561                 last = rb_entry(lastp, struct vm_region, vm_rb);
562
563                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
564                 BUG_ON(unlikely(region->vm_top < region->vm_end));
565                 BUG_ON(unlikely(region->vm_start < last->vm_top));
566
567                 lastp = p;
568         }
569 }
570 #else
571 static void validate_nommu_regions(void)
572 {
573 }
574 #endif
575
576 /*
577  * add a region into the global tree
578  */
579 static void add_nommu_region(struct vm_region *region)
580 {
581         struct vm_region *pregion;
582         struct rb_node **p, *parent;
583
584         validate_nommu_regions();
585
586         parent = NULL;
587         p = &nommu_region_tree.rb_node;
588         while (*p) {
589                 parent = *p;
590                 pregion = rb_entry(parent, struct vm_region, vm_rb);
591                 if (region->vm_start < pregion->vm_start)
592                         p = &(*p)->rb_left;
593                 else if (region->vm_start > pregion->vm_start)
594                         p = &(*p)->rb_right;
595                 else if (pregion == region)
596                         return;
597                 else
598                         BUG();
599         }
600
601         rb_link_node(&region->vm_rb, parent, p);
602         rb_insert_color(&region->vm_rb, &nommu_region_tree);
603
604         validate_nommu_regions();
605 }
606
607 /*
608  * delete a region from the global tree
609  */
610 static void delete_nommu_region(struct vm_region *region)
611 {
612         BUG_ON(!nommu_region_tree.rb_node);
613
614         validate_nommu_regions();
615         rb_erase(&region->vm_rb, &nommu_region_tree);
616         validate_nommu_regions();
617 }
618
619 /*
620  * free a contiguous series of pages
621  */
622 static void free_page_series(unsigned long from, unsigned long to)
623 {
624         for (; from < to; from += PAGE_SIZE) {
625                 struct page *page = virt_to_page(from);
626
627                 kdebug("- free %lx", from);
628                 atomic_long_dec(&mmap_pages_allocated);
629                 if (page_count(page) != 1)
630                         kdebug("free page %p: refcount not one: %d",
631                                page, page_count(page));
632                 put_page(page);
633         }
634 }
635
636 /*
637  * release a reference to a region
638  * - the caller must hold the region semaphore for writing, which this releases
639  * - the region may not have been added to the tree yet, in which case vm_top
640  *   will equal vm_start
641  */
642 static void __put_nommu_region(struct vm_region *region)
643         __releases(nommu_region_sem)
644 {
645         kenter("%p{%d}", region, region->vm_usage);
646
647         BUG_ON(!nommu_region_tree.rb_node);
648
649         if (--region->vm_usage == 0) {
650                 if (region->vm_top > region->vm_start)
651                         delete_nommu_region(region);
652                 up_write(&nommu_region_sem);
653
654                 if (region->vm_file)
655                         fput(region->vm_file);
656
657                 /* IO memory and memory shared directly out of the pagecache
658                  * from ramfs/tmpfs mustn't be released here */
659                 if (region->vm_flags & VM_MAPPED_COPY) {
660                         kdebug("free series");
661                         free_page_series(region->vm_start, region->vm_top);
662                 }
663                 kmem_cache_free(vm_region_jar, region);
664         } else {
665                 up_write(&nommu_region_sem);
666         }
667 }
668
669 /*
670  * release a reference to a region
671  */
672 static void put_nommu_region(struct vm_region *region)
673 {
674         down_write(&nommu_region_sem);
675         __put_nommu_region(region);
676 }
677
678 /*
679  * update protection on a vma
680  */
681 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
682 {
683 #ifdef CONFIG_MPU
684         struct mm_struct *mm = vma->vm_mm;
685         long start = vma->vm_start & PAGE_MASK;
686         while (start < vma->vm_end) {
687                 protect_page(mm, start, flags);
688                 start += PAGE_SIZE;
689         }
690         update_protections(mm);
691 #endif
692 }
693
694 /*
695  * add a VMA into a process's mm_struct in the appropriate place in the list
696  * and tree and add to the address space's page tree also if not an anonymous
697  * page
698  * - should be called with mm->mmap_sem held writelocked
699  */
700 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
701 {
702         struct vm_area_struct *pvma, *prev;
703         struct address_space *mapping;
704         struct rb_node **p, *parent, *rb_prev;
705
706         kenter(",%p", vma);
707
708         BUG_ON(!vma->vm_region);
709
710         mm->map_count++;
711         vma->vm_mm = mm;
712
713         protect_vma(vma, vma->vm_flags);
714
715         /* add the VMA to the mapping */
716         if (vma->vm_file) {
717                 mapping = vma->vm_file->f_mapping;
718
719                 mutex_lock(&mapping->i_mmap_mutex);
720                 flush_dcache_mmap_lock(mapping);
721                 vma_interval_tree_insert(vma, &mapping->i_mmap);
722                 flush_dcache_mmap_unlock(mapping);
723                 mutex_unlock(&mapping->i_mmap_mutex);
724         }
725
726         /* add the VMA to the tree */
727         parent = rb_prev = NULL;
728         p = &mm->mm_rb.rb_node;
729         while (*p) {
730                 parent = *p;
731                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
732
733                 /* sort by: start addr, end addr, VMA struct addr in that order
734                  * (the latter is necessary as we may get identical VMAs) */
735                 if (vma->vm_start < pvma->vm_start)
736                         p = &(*p)->rb_left;
737                 else if (vma->vm_start > pvma->vm_start) {
738                         rb_prev = parent;
739                         p = &(*p)->rb_right;
740                 } else if (vma->vm_end < pvma->vm_end)
741                         p = &(*p)->rb_left;
742                 else if (vma->vm_end > pvma->vm_end) {
743                         rb_prev = parent;
744                         p = &(*p)->rb_right;
745                 } else if (vma < pvma)
746                         p = &(*p)->rb_left;
747                 else if (vma > pvma) {
748                         rb_prev = parent;
749                         p = &(*p)->rb_right;
750                 } else
751                         BUG();
752         }
753
754         rb_link_node(&vma->vm_rb, parent, p);
755         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
756
757         /* add VMA to the VMA list also */
758         prev = NULL;
759         if (rb_prev)
760                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
761
762         __vma_link_list(mm, vma, prev, parent);
763 }
764
765 /*
766  * delete a VMA from its owning mm_struct and address space
767  */
768 static void delete_vma_from_mm(struct vm_area_struct *vma)
769 {
770         struct address_space *mapping;
771         struct mm_struct *mm = vma->vm_mm;
772
773         kenter("%p", vma);
774
775         protect_vma(vma, 0);
776
777         mm->map_count--;
778         if (mm->mmap_cache == vma)
779                 mm->mmap_cache = NULL;
780
781         /* remove the VMA from the mapping */
782         if (vma->vm_file) {
783                 mapping = vma->vm_file->f_mapping;
784
785                 mutex_lock(&mapping->i_mmap_mutex);
786                 flush_dcache_mmap_lock(mapping);
787                 vma_interval_tree_remove(vma, &mapping->i_mmap);
788                 flush_dcache_mmap_unlock(mapping);
789                 mutex_unlock(&mapping->i_mmap_mutex);
790         }
791
792         /* remove from the MM's tree and list */
793         rb_erase(&vma->vm_rb, &mm->mm_rb);
794
795         if (vma->vm_prev)
796                 vma->vm_prev->vm_next = vma->vm_next;
797         else
798                 mm->mmap = vma->vm_next;
799
800         if (vma->vm_next)
801                 vma->vm_next->vm_prev = vma->vm_prev;
802 }
803
804 /*
805  * destroy a VMA record
806  */
807 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
808 {
809         kenter("%p", vma);
810         if (vma->vm_ops && vma->vm_ops->close)
811                 vma->vm_ops->close(vma);
812         if (vma->vm_file)
813                 fput(vma->vm_file);
814         put_nommu_region(vma->vm_region);
815         kmem_cache_free(vm_area_cachep, vma);
816 }
817
818 /*
819  * look up the first VMA in which addr resides, NULL if none
820  * - should be called with mm->mmap_sem at least held readlocked
821  */
822 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
823 {
824         struct vm_area_struct *vma;
825
826         /* check the cache first */
827         vma = ACCESS_ONCE(mm->mmap_cache);
828         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
829                 return vma;
830
831         /* trawl the list (there may be multiple mappings in which addr
832          * resides) */
833         for (vma = mm->mmap; vma; vma = vma->vm_next) {
834                 if (vma->vm_start > addr)
835                         return NULL;
836                 if (vma->vm_end > addr) {
837                         mm->mmap_cache = vma;
838                         return vma;
839                 }
840         }
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(find_vma);
845
846 /*
847  * find a VMA
848  * - we don't extend stack VMAs under NOMMU conditions
849  */
850 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
851 {
852         return find_vma(mm, addr);
853 }
854
855 /*
856  * expand a stack to a given address
857  * - not supported under NOMMU conditions
858  */
859 int expand_stack(struct vm_area_struct *vma, unsigned long address)
860 {
861         return -ENOMEM;
862 }
863
864 /*
865  * look up the first VMA exactly that exactly matches addr
866  * - should be called with mm->mmap_sem at least held readlocked
867  */
868 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
869                                              unsigned long addr,
870                                              unsigned long len)
871 {
872         struct vm_area_struct *vma;
873         unsigned long end = addr + len;
874
875         /* check the cache first */
876         vma = mm->mmap_cache;
877         if (vma && vma->vm_start == addr && vma->vm_end == end)
878                 return vma;
879
880         /* trawl the list (there may be multiple mappings in which addr
881          * resides) */
882         for (vma = mm->mmap; vma; vma = vma->vm_next) {
883                 if (vma->vm_start < addr)
884                         continue;
885                 if (vma->vm_start > addr)
886                         return NULL;
887                 if (vma->vm_end == end) {
888                         mm->mmap_cache = vma;
889                         return vma;
890                 }
891         }
892
893         return NULL;
894 }
895
896 /*
897  * determine whether a mapping should be permitted and, if so, what sort of
898  * mapping we're capable of supporting
899  */
900 static int validate_mmap_request(struct file *file,
901                                  unsigned long addr,
902                                  unsigned long len,
903                                  unsigned long prot,
904                                  unsigned long flags,
905                                  unsigned long pgoff,
906                                  unsigned long *_capabilities)
907 {
908         unsigned long capabilities, rlen;
909         int ret;
910
911         /* do the simple checks first */
912         if (flags & MAP_FIXED) {
913                 printk(KERN_DEBUG
914                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
915                        current->pid);
916                 return -EINVAL;
917         }
918
919         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
920             (flags & MAP_TYPE) != MAP_SHARED)
921                 return -EINVAL;
922
923         if (!len)
924                 return -EINVAL;
925
926         /* Careful about overflows.. */
927         rlen = PAGE_ALIGN(len);
928         if (!rlen || rlen > TASK_SIZE)
929                 return -ENOMEM;
930
931         /* offset overflow? */
932         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
933                 return -EOVERFLOW;
934
935         if (file) {
936                 /* validate file mapping requests */
937                 struct address_space *mapping;
938
939                 /* files must support mmap */
940                 if (!file->f_op->mmap)
941                         return -ENODEV;
942
943                 /* work out if what we've got could possibly be shared
944                  * - we support chardevs that provide their own "memory"
945                  * - we support files/blockdevs that are memory backed
946                  */
947                 mapping = file->f_mapping;
948                 if (!mapping)
949                         mapping = file_inode(file)->i_mapping;
950
951                 capabilities = 0;
952                 if (mapping && mapping->backing_dev_info)
953                         capabilities = mapping->backing_dev_info->capabilities;
954
955                 if (!capabilities) {
956                         /* no explicit capabilities set, so assume some
957                          * defaults */
958                         switch (file_inode(file)->i_mode & S_IFMT) {
959                         case S_IFREG:
960                         case S_IFBLK:
961                                 capabilities = BDI_CAP_MAP_COPY;
962                                 break;
963
964                         case S_IFCHR:
965                                 capabilities =
966                                         BDI_CAP_MAP_DIRECT |
967                                         BDI_CAP_READ_MAP |
968                                         BDI_CAP_WRITE_MAP;
969                                 break;
970
971                         default:
972                                 return -EINVAL;
973                         }
974                 }
975
976                 /* eliminate any capabilities that we can't support on this
977                  * device */
978                 if (!file->f_op->get_unmapped_area)
979                         capabilities &= ~BDI_CAP_MAP_DIRECT;
980                 if (!file->f_op->read)
981                         capabilities &= ~BDI_CAP_MAP_COPY;
982
983                 /* The file shall have been opened with read permission. */
984                 if (!(file->f_mode & FMODE_READ))
985                         return -EACCES;
986
987                 if (flags & MAP_SHARED) {
988                         /* do checks for writing, appending and locking */
989                         if ((prot & PROT_WRITE) &&
990                             !(file->f_mode & FMODE_WRITE))
991                                 return -EACCES;
992
993                         if (IS_APPEND(file_inode(file)) &&
994                             (file->f_mode & FMODE_WRITE))
995                                 return -EACCES;
996
997                         if (locks_verify_locked(file_inode(file)))
998                                 return -EAGAIN;
999
1000                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
1001                                 return -ENODEV;
1002
1003                         /* we mustn't privatise shared mappings */
1004                         capabilities &= ~BDI_CAP_MAP_COPY;
1005                 }
1006                 else {
1007                         /* we're going to read the file into private memory we
1008                          * allocate */
1009                         if (!(capabilities & BDI_CAP_MAP_COPY))
1010                                 return -ENODEV;
1011
1012                         /* we don't permit a private writable mapping to be
1013                          * shared with the backing device */
1014                         if (prot & PROT_WRITE)
1015                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1016                 }
1017
1018                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1019                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1020                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1021                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1022                             ) {
1023                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1024                                 if (flags & MAP_SHARED) {
1025                                         printk(KERN_WARNING
1026                                                "MAP_SHARED not completely supported on !MMU\n");
1027                                         return -EINVAL;
1028                                 }
1029                         }
1030                 }
1031
1032                 /* handle executable mappings and implied executable
1033                  * mappings */
1034                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1035                         if (prot & PROT_EXEC)
1036                                 return -EPERM;
1037                 }
1038                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1039                         /* handle implication of PROT_EXEC by PROT_READ */
1040                         if (current->personality & READ_IMPLIES_EXEC) {
1041                                 if (capabilities & BDI_CAP_EXEC_MAP)
1042                                         prot |= PROT_EXEC;
1043                         }
1044                 }
1045                 else if ((prot & PROT_READ) &&
1046                          (prot & PROT_EXEC) &&
1047                          !(capabilities & BDI_CAP_EXEC_MAP)
1048                          ) {
1049                         /* backing file is not executable, try to copy */
1050                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1051                 }
1052         }
1053         else {
1054                 /* anonymous mappings are always memory backed and can be
1055                  * privately mapped
1056                  */
1057                 capabilities = BDI_CAP_MAP_COPY;
1058
1059                 /* handle PROT_EXEC implication by PROT_READ */
1060                 if ((prot & PROT_READ) &&
1061                     (current->personality & READ_IMPLIES_EXEC))
1062                         prot |= PROT_EXEC;
1063         }
1064
1065         /* allow the security API to have its say */
1066         ret = security_mmap_addr(addr);
1067         if (ret < 0)
1068                 return ret;
1069
1070         /* looks okay */
1071         *_capabilities = capabilities;
1072         return 0;
1073 }
1074
1075 /*
1076  * we've determined that we can make the mapping, now translate what we
1077  * now know into VMA flags
1078  */
1079 static unsigned long determine_vm_flags(struct file *file,
1080                                         unsigned long prot,
1081                                         unsigned long flags,
1082                                         unsigned long capabilities)
1083 {
1084         unsigned long vm_flags;
1085
1086         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1087         /* vm_flags |= mm->def_flags; */
1088
1089         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1090                 /* attempt to share read-only copies of mapped file chunks */
1091                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1092                 if (file && !(prot & PROT_WRITE))
1093                         vm_flags |= VM_MAYSHARE;
1094         } else {
1095                 /* overlay a shareable mapping on the backing device or inode
1096                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1097                  * romfs/cramfs */
1098                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1099                 if (flags & MAP_SHARED)
1100                         vm_flags |= VM_SHARED;
1101         }
1102
1103         /* refuse to let anyone share private mappings with this process if
1104          * it's being traced - otherwise breakpoints set in it may interfere
1105          * with another untraced process
1106          */
1107         if ((flags & MAP_PRIVATE) && current->ptrace)
1108                 vm_flags &= ~VM_MAYSHARE;
1109
1110         return vm_flags;
1111 }
1112
1113 /*
1114  * set up a shared mapping on a file (the driver or filesystem provides and
1115  * pins the storage)
1116  */
1117 static int do_mmap_shared_file(struct vm_area_struct *vma)
1118 {
1119         int ret;
1120
1121         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1122         if (ret == 0) {
1123                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1124                 return 0;
1125         }
1126         if (ret != -ENOSYS)
1127                 return ret;
1128
1129         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1130          * opposed to tried but failed) so we can only give a suitable error as
1131          * it's not possible to make a private copy if MAP_SHARED was given */
1132         return -ENODEV;
1133 }
1134
1135 /*
1136  * set up a private mapping or an anonymous shared mapping
1137  */
1138 static int do_mmap_private(struct vm_area_struct *vma,
1139                            struct vm_region *region,
1140                            unsigned long len,
1141                            unsigned long capabilities)
1142 {
1143         struct page *pages;
1144         unsigned long total, point, n;
1145         void *base;
1146         int ret, order;
1147
1148         /* invoke the file's mapping function so that it can keep track of
1149          * shared mappings on devices or memory
1150          * - VM_MAYSHARE will be set if it may attempt to share
1151          */
1152         if (capabilities & BDI_CAP_MAP_DIRECT) {
1153                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1154                 if (ret == 0) {
1155                         /* shouldn't return success if we're not sharing */
1156                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1157                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1158                         return 0;
1159                 }
1160                 if (ret != -ENOSYS)
1161                         return ret;
1162
1163                 /* getting an ENOSYS error indicates that direct mmap isn't
1164                  * possible (as opposed to tried but failed) so we'll try to
1165                  * make a private copy of the data and map that instead */
1166         }
1167
1168
1169         /* allocate some memory to hold the mapping
1170          * - note that this may not return a page-aligned address if the object
1171          *   we're allocating is smaller than a page
1172          */
1173         order = get_order(len);
1174         kdebug("alloc order %d for %lx", order, len);
1175
1176         pages = alloc_pages(GFP_KERNEL, order);
1177         if (!pages)
1178                 goto enomem;
1179
1180         total = 1 << order;
1181         atomic_long_add(total, &mmap_pages_allocated);
1182
1183         point = len >> PAGE_SHIFT;
1184
1185         /* we allocated a power-of-2 sized page set, so we may want to trim off
1186          * the excess */
1187         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1188                 while (total > point) {
1189                         order = ilog2(total - point);
1190                         n = 1 << order;
1191                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1192                         atomic_long_sub(n, &mmap_pages_allocated);
1193                         total -= n;
1194                         set_page_refcounted(pages + total);
1195                         __free_pages(pages + total, order);
1196                 }
1197         }
1198
1199         for (point = 1; point < total; point++)
1200                 set_page_refcounted(&pages[point]);
1201
1202         base = page_address(pages);
1203         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1204         region->vm_start = (unsigned long) base;
1205         region->vm_end   = region->vm_start + len;
1206         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1207
1208         vma->vm_start = region->vm_start;
1209         vma->vm_end   = region->vm_start + len;
1210
1211         if (vma->vm_file) {
1212                 /* read the contents of a file into the copy */
1213                 mm_segment_t old_fs;
1214                 loff_t fpos;
1215
1216                 fpos = vma->vm_pgoff;
1217                 fpos <<= PAGE_SHIFT;
1218
1219                 old_fs = get_fs();
1220                 set_fs(KERNEL_DS);
1221                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1222                 set_fs(old_fs);
1223
1224                 if (ret < 0)
1225                         goto error_free;
1226
1227                 /* clear the last little bit */
1228                 if (ret < len)
1229                         memset(base + ret, 0, len - ret);
1230
1231         }
1232
1233         return 0;
1234
1235 error_free:
1236         free_page_series(region->vm_start, region->vm_top);
1237         region->vm_start = vma->vm_start = 0;
1238         region->vm_end   = vma->vm_end = 0;
1239         region->vm_top   = 0;
1240         return ret;
1241
1242 enomem:
1243         printk("Allocation of length %lu from process %d (%s) failed\n",
1244                len, current->pid, current->comm);
1245         show_free_areas(0);
1246         return -ENOMEM;
1247 }
1248
1249 /*
1250  * handle mapping creation for uClinux
1251  */
1252 unsigned long do_mmap_pgoff(struct file *file,
1253                             unsigned long addr,
1254                             unsigned long len,
1255                             unsigned long prot,
1256                             unsigned long flags,
1257                             unsigned long pgoff,
1258                             unsigned long *populate)
1259 {
1260         struct vm_area_struct *vma;
1261         struct vm_region *region;
1262         struct rb_node *rb;
1263         unsigned long capabilities, vm_flags, result;
1264         int ret;
1265
1266         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1267
1268         *populate = 0;
1269
1270         /* decide whether we should attempt the mapping, and if so what sort of
1271          * mapping */
1272         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1273                                     &capabilities);
1274         if (ret < 0) {
1275                 kleave(" = %d [val]", ret);
1276                 return ret;
1277         }
1278
1279         /* we ignore the address hint */
1280         addr = 0;
1281         len = PAGE_ALIGN(len);
1282
1283         /* we've determined that we can make the mapping, now translate what we
1284          * now know into VMA flags */
1285         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1286
1287         /* we're going to need to record the mapping */
1288         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1289         if (!region)
1290                 goto error_getting_region;
1291
1292         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1293         if (!vma)
1294                 goto error_getting_vma;
1295
1296         region->vm_usage = 1;
1297         region->vm_flags = vm_flags;
1298         region->vm_pgoff = pgoff;
1299
1300         INIT_LIST_HEAD(&vma->anon_vma_chain);
1301         vma->vm_flags = vm_flags;
1302         vma->vm_pgoff = pgoff;
1303
1304         if (file) {
1305                 region->vm_file = get_file(file);
1306                 vma->vm_file = get_file(file);
1307         }
1308
1309         down_write(&nommu_region_sem);
1310
1311         /* if we want to share, we need to check for regions created by other
1312          * mmap() calls that overlap with our proposed mapping
1313          * - we can only share with a superset match on most regular files
1314          * - shared mappings on character devices and memory backed files are
1315          *   permitted to overlap inexactly as far as we are concerned for in
1316          *   these cases, sharing is handled in the driver or filesystem rather
1317          *   than here
1318          */
1319         if (vm_flags & VM_MAYSHARE) {
1320                 struct vm_region *pregion;
1321                 unsigned long pglen, rpglen, pgend, rpgend, start;
1322
1323                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1324                 pgend = pgoff + pglen;
1325
1326                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1327                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1328
1329                         if (!(pregion->vm_flags & VM_MAYSHARE))
1330                                 continue;
1331
1332                         /* search for overlapping mappings on the same file */
1333                         if (file_inode(pregion->vm_file) !=
1334                             file_inode(file))
1335                                 continue;
1336
1337                         if (pregion->vm_pgoff >= pgend)
1338                                 continue;
1339
1340                         rpglen = pregion->vm_end - pregion->vm_start;
1341                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1342                         rpgend = pregion->vm_pgoff + rpglen;
1343                         if (pgoff >= rpgend)
1344                                 continue;
1345
1346                         /* handle inexactly overlapping matches between
1347                          * mappings */
1348                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1349                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1350                                 /* new mapping is not a subset of the region */
1351                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1352                                         goto sharing_violation;
1353                                 continue;
1354                         }
1355
1356                         /* we've found a region we can share */
1357                         pregion->vm_usage++;
1358                         vma->vm_region = pregion;
1359                         start = pregion->vm_start;
1360                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1361                         vma->vm_start = start;
1362                         vma->vm_end = start + len;
1363
1364                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1365                                 kdebug("share copy");
1366                                 vma->vm_flags |= VM_MAPPED_COPY;
1367                         } else {
1368                                 kdebug("share mmap");
1369                                 ret = do_mmap_shared_file(vma);
1370                                 if (ret < 0) {
1371                                         vma->vm_region = NULL;
1372                                         vma->vm_start = 0;
1373                                         vma->vm_end = 0;
1374                                         pregion->vm_usage--;
1375                                         pregion = NULL;
1376                                         goto error_just_free;
1377                                 }
1378                         }
1379                         fput(region->vm_file);
1380                         kmem_cache_free(vm_region_jar, region);
1381                         region = pregion;
1382                         result = start;
1383                         goto share;
1384                 }
1385
1386                 /* obtain the address at which to make a shared mapping
1387                  * - this is the hook for quasi-memory character devices to
1388                  *   tell us the location of a shared mapping
1389                  */
1390                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1391                         addr = file->f_op->get_unmapped_area(file, addr, len,
1392                                                              pgoff, flags);
1393                         if (IS_ERR_VALUE(addr)) {
1394                                 ret = addr;
1395                                 if (ret != -ENOSYS)
1396                                         goto error_just_free;
1397
1398                                 /* the driver refused to tell us where to site
1399                                  * the mapping so we'll have to attempt to copy
1400                                  * it */
1401                                 ret = -ENODEV;
1402                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1403                                         goto error_just_free;
1404
1405                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1406                         } else {
1407                                 vma->vm_start = region->vm_start = addr;
1408                                 vma->vm_end = region->vm_end = addr + len;
1409                         }
1410                 }
1411         }
1412
1413         vma->vm_region = region;
1414
1415         /* set up the mapping
1416          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1417          */
1418         if (file && vma->vm_flags & VM_SHARED)
1419                 ret = do_mmap_shared_file(vma);
1420         else
1421                 ret = do_mmap_private(vma, region, len, capabilities);
1422         if (ret < 0)
1423                 goto error_just_free;
1424         add_nommu_region(region);
1425
1426         /* clear anonymous mappings that don't ask for uninitialized data */
1427         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1428                 memset((void *)region->vm_start, 0,
1429                        region->vm_end - region->vm_start);
1430
1431         /* okay... we have a mapping; now we have to register it */
1432         result = vma->vm_start;
1433
1434         current->mm->total_vm += len >> PAGE_SHIFT;
1435
1436 share:
1437         add_vma_to_mm(current->mm, vma);
1438
1439         /* we flush the region from the icache only when the first executable
1440          * mapping of it is made  */
1441         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1442                 flush_icache_range(region->vm_start, region->vm_end);
1443                 region->vm_icache_flushed = true;
1444         }
1445
1446         up_write(&nommu_region_sem);
1447
1448         kleave(" = %lx", result);
1449         return result;
1450
1451 error_just_free:
1452         up_write(&nommu_region_sem);
1453 error:
1454         if (region->vm_file)
1455                 fput(region->vm_file);
1456         kmem_cache_free(vm_region_jar, region);
1457         if (vma->vm_file)
1458                 fput(vma->vm_file);
1459         kmem_cache_free(vm_area_cachep, vma);
1460         kleave(" = %d", ret);
1461         return ret;
1462
1463 sharing_violation:
1464         up_write(&nommu_region_sem);
1465         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1466         ret = -EINVAL;
1467         goto error;
1468
1469 error_getting_vma:
1470         kmem_cache_free(vm_region_jar, region);
1471         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1472                " from process %d failed\n",
1473                len, current->pid);
1474         show_free_areas(0);
1475         return -ENOMEM;
1476
1477 error_getting_region:
1478         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1479                " from process %d failed\n",
1480                len, current->pid);
1481         show_free_areas(0);
1482         return -ENOMEM;
1483 }
1484
1485 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1486                 unsigned long, prot, unsigned long, flags,
1487                 unsigned long, fd, unsigned long, pgoff)
1488 {
1489         struct file *file = NULL;
1490         unsigned long retval = -EBADF;
1491
1492         audit_mmap_fd(fd, flags);
1493         if (!(flags & MAP_ANONYMOUS)) {
1494                 file = fget(fd);
1495                 if (!file)
1496                         goto out;
1497         }
1498
1499         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1500
1501         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1502
1503         if (file)
1504                 fput(file);
1505 out:
1506         return retval;
1507 }
1508
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct {
1511         unsigned long addr;
1512         unsigned long len;
1513         unsigned long prot;
1514         unsigned long flags;
1515         unsigned long fd;
1516         unsigned long offset;
1517 };
1518
1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1520 {
1521         struct mmap_arg_struct a;
1522
1523         if (copy_from_user(&a, arg, sizeof(a)))
1524                 return -EFAULT;
1525         if (a.offset & ~PAGE_MASK)
1526                 return -EINVAL;
1527
1528         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529                               a.offset >> PAGE_SHIFT);
1530 }
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1532
1533 /*
1534  * split a vma into two pieces at address 'addr', a new vma is allocated either
1535  * for the first part or the tail.
1536  */
1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538               unsigned long addr, int new_below)
1539 {
1540         struct vm_area_struct *new;
1541         struct vm_region *region;
1542         unsigned long npages;
1543
1544         kenter("");
1545
1546         /* we're only permitted to split anonymous regions (these should have
1547          * only a single usage on the region) */
1548         if (vma->vm_file)
1549                 return -ENOMEM;
1550
1551         if (mm->map_count >= sysctl_max_map_count)
1552                 return -ENOMEM;
1553
1554         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555         if (!region)
1556                 return -ENOMEM;
1557
1558         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559         if (!new) {
1560                 kmem_cache_free(vm_region_jar, region);
1561                 return -ENOMEM;
1562         }
1563
1564         /* most fields are the same, copy all, and then fixup */
1565         *new = *vma;
1566         *region = *vma->vm_region;
1567         new->vm_region = region;
1568
1569         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1570
1571         if (new_below) {
1572                 region->vm_top = region->vm_end = new->vm_end = addr;
1573         } else {
1574                 region->vm_start = new->vm_start = addr;
1575                 region->vm_pgoff = new->vm_pgoff += npages;
1576         }
1577
1578         if (new->vm_ops && new->vm_ops->open)
1579                 new->vm_ops->open(new);
1580
1581         delete_vma_from_mm(vma);
1582         down_write(&nommu_region_sem);
1583         delete_nommu_region(vma->vm_region);
1584         if (new_below) {
1585                 vma->vm_region->vm_start = vma->vm_start = addr;
1586                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587         } else {
1588                 vma->vm_region->vm_end = vma->vm_end = addr;
1589                 vma->vm_region->vm_top = addr;
1590         }
1591         add_nommu_region(vma->vm_region);
1592         add_nommu_region(new->vm_region);
1593         up_write(&nommu_region_sem);
1594         add_vma_to_mm(mm, vma);
1595         add_vma_to_mm(mm, new);
1596         return 0;
1597 }
1598
1599 /*
1600  * shrink a VMA by removing the specified chunk from either the beginning or
1601  * the end
1602  */
1603 static int shrink_vma(struct mm_struct *mm,
1604                       struct vm_area_struct *vma,
1605                       unsigned long from, unsigned long to)
1606 {
1607         struct vm_region *region;
1608
1609         kenter("");
1610
1611         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1612          * and list */
1613         delete_vma_from_mm(vma);
1614         if (from > vma->vm_start)
1615                 vma->vm_end = from;
1616         else
1617                 vma->vm_start = to;
1618         add_vma_to_mm(mm, vma);
1619
1620         /* cut the backing region down to size */
1621         region = vma->vm_region;
1622         BUG_ON(region->vm_usage != 1);
1623
1624         down_write(&nommu_region_sem);
1625         delete_nommu_region(region);
1626         if (from > region->vm_start) {
1627                 to = region->vm_top;
1628                 region->vm_top = region->vm_end = from;
1629         } else {
1630                 region->vm_start = to;
1631         }
1632         add_nommu_region(region);
1633         up_write(&nommu_region_sem);
1634
1635         free_page_series(from, to);
1636         return 0;
1637 }
1638
1639 /*
1640  * release a mapping
1641  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642  *   VMA, though it need not cover the whole VMA
1643  */
1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1645 {
1646         struct vm_area_struct *vma;
1647         unsigned long end;
1648         int ret;
1649
1650         kenter(",%lx,%zx", start, len);
1651
1652         len = PAGE_ALIGN(len);
1653         if (len == 0)
1654                 return -EINVAL;
1655
1656         end = start + len;
1657
1658         /* find the first potentially overlapping VMA */
1659         vma = find_vma(mm, start);
1660         if (!vma) {
1661                 static int limit = 0;
1662                 if (limit < 5) {
1663                         printk(KERN_WARNING
1664                                "munmap of memory not mmapped by process %d"
1665                                " (%s): 0x%lx-0x%lx\n",
1666                                current->pid, current->comm,
1667                                start, start + len - 1);
1668                         limit++;
1669                 }
1670                 return -EINVAL;
1671         }
1672
1673         /* we're allowed to split an anonymous VMA but not a file-backed one */
1674         if (vma->vm_file) {
1675                 do {
1676                         if (start > vma->vm_start) {
1677                                 kleave(" = -EINVAL [miss]");
1678                                 return -EINVAL;
1679                         }
1680                         if (end == vma->vm_end)
1681                                 goto erase_whole_vma;
1682                         vma = vma->vm_next;
1683                 } while (vma);
1684                 kleave(" = -EINVAL [split file]");
1685                 return -EINVAL;
1686         } else {
1687                 /* the chunk must be a subset of the VMA found */
1688                 if (start == vma->vm_start && end == vma->vm_end)
1689                         goto erase_whole_vma;
1690                 if (start < vma->vm_start || end > vma->vm_end) {
1691                         kleave(" = -EINVAL [superset]");
1692                         return -EINVAL;
1693                 }
1694                 if (start & ~PAGE_MASK) {
1695                         kleave(" = -EINVAL [unaligned start]");
1696                         return -EINVAL;
1697                 }
1698                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1699                         kleave(" = -EINVAL [unaligned split]");
1700                         return -EINVAL;
1701                 }
1702                 if (start != vma->vm_start && end != vma->vm_end) {
1703                         ret = split_vma(mm, vma, start, 1);
1704                         if (ret < 0) {
1705                                 kleave(" = %d [split]", ret);
1706                                 return ret;
1707                         }
1708                 }
1709                 return shrink_vma(mm, vma, start, end);
1710         }
1711
1712 erase_whole_vma:
1713         delete_vma_from_mm(vma);
1714         delete_vma(mm, vma);
1715         kleave(" = 0");
1716         return 0;
1717 }
1718 EXPORT_SYMBOL(do_munmap);
1719
1720 int vm_munmap(unsigned long addr, size_t len)
1721 {
1722         struct mm_struct *mm = current->mm;
1723         int ret;
1724
1725         down_write(&mm->mmap_sem);
1726         ret = do_munmap(mm, addr, len);
1727         up_write(&mm->mmap_sem);
1728         return ret;
1729 }
1730 EXPORT_SYMBOL(vm_munmap);
1731
1732 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1733 {
1734         return vm_munmap(addr, len);
1735 }
1736
1737 /*
1738  * release all the mappings made in a process's VM space
1739  */
1740 void exit_mmap(struct mm_struct *mm)
1741 {
1742         struct vm_area_struct *vma;
1743
1744         if (!mm)
1745                 return;
1746
1747         kenter("");
1748
1749         mm->total_vm = 0;
1750
1751         while ((vma = mm->mmap)) {
1752                 mm->mmap = vma->vm_next;
1753                 delete_vma_from_mm(vma);
1754                 delete_vma(mm, vma);
1755                 cond_resched();
1756         }
1757
1758         kleave("");
1759 }
1760
1761 unsigned long vm_brk(unsigned long addr, unsigned long len)
1762 {
1763         return -ENOMEM;
1764 }
1765
1766 /*
1767  * expand (or shrink) an existing mapping, potentially moving it at the same
1768  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1769  *
1770  * under NOMMU conditions, we only permit changing a mapping's size, and only
1771  * as long as it stays within the region allocated by do_mmap_private() and the
1772  * block is not shareable
1773  *
1774  * MREMAP_FIXED is not supported under NOMMU conditions
1775  */
1776 static unsigned long do_mremap(unsigned long addr,
1777                         unsigned long old_len, unsigned long new_len,
1778                         unsigned long flags, unsigned long new_addr)
1779 {
1780         struct vm_area_struct *vma;
1781
1782         /* insanity checks first */
1783         old_len = PAGE_ALIGN(old_len);
1784         new_len = PAGE_ALIGN(new_len);
1785         if (old_len == 0 || new_len == 0)
1786                 return (unsigned long) -EINVAL;
1787
1788         if (addr & ~PAGE_MASK)
1789                 return -EINVAL;
1790
1791         if (flags & MREMAP_FIXED && new_addr != addr)
1792                 return (unsigned long) -EINVAL;
1793
1794         vma = find_vma_exact(current->mm, addr, old_len);
1795         if (!vma)
1796                 return (unsigned long) -EINVAL;
1797
1798         if (vma->vm_end != vma->vm_start + old_len)
1799                 return (unsigned long) -EFAULT;
1800
1801         if (vma->vm_flags & VM_MAYSHARE)
1802                 return (unsigned long) -EPERM;
1803
1804         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1805                 return (unsigned long) -ENOMEM;
1806
1807         /* all checks complete - do it */
1808         vma->vm_end = vma->vm_start + new_len;
1809         return vma->vm_start;
1810 }
1811
1812 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1813                 unsigned long, new_len, unsigned long, flags,
1814                 unsigned long, new_addr)
1815 {
1816         unsigned long ret;
1817
1818         down_write(&current->mm->mmap_sem);
1819         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1820         up_write(&current->mm->mmap_sem);
1821         return ret;
1822 }
1823
1824 struct page *follow_page_mask(struct vm_area_struct *vma,
1825                               unsigned long address, unsigned int flags,
1826                               unsigned int *page_mask)
1827 {
1828         *page_mask = 0;
1829         return NULL;
1830 }
1831
1832 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1833                 unsigned long pfn, unsigned long size, pgprot_t prot)
1834 {
1835         if (addr != (pfn << PAGE_SHIFT))
1836                 return -EINVAL;
1837
1838         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1839         return 0;
1840 }
1841 EXPORT_SYMBOL(remap_pfn_range);
1842
1843 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1844 {
1845         unsigned long pfn = start >> PAGE_SHIFT;
1846         unsigned long vm_len = vma->vm_end - vma->vm_start;
1847
1848         pfn += vma->vm_pgoff;
1849         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_iomap_memory);
1852
1853 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1854                         unsigned long pgoff)
1855 {
1856         unsigned int size = vma->vm_end - vma->vm_start;
1857
1858         if (!(vma->vm_flags & VM_USERMAP))
1859                 return -EINVAL;
1860
1861         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1862         vma->vm_end = vma->vm_start + size;
1863
1864         return 0;
1865 }
1866 EXPORT_SYMBOL(remap_vmalloc_range);
1867
1868 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1869         unsigned long len, unsigned long pgoff, unsigned long flags)
1870 {
1871         return -ENOMEM;
1872 }
1873
1874 void unmap_mapping_range(struct address_space *mapping,
1875                          loff_t const holebegin, loff_t const holelen,
1876                          int even_cows)
1877 {
1878 }
1879 EXPORT_SYMBOL(unmap_mapping_range);
1880
1881 /*
1882  * Check that a process has enough memory to allocate a new virtual
1883  * mapping. 0 means there is enough memory for the allocation to
1884  * succeed and -ENOMEM implies there is not.
1885  *
1886  * We currently support three overcommit policies, which are set via the
1887  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1888  *
1889  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1890  * Additional code 2002 Jul 20 by Robert Love.
1891  *
1892  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1893  *
1894  * Note this is a helper function intended to be used by LSMs which
1895  * wish to use this logic.
1896  */
1897 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1898 {
1899         unsigned long free, allowed, reserve;
1900
1901         vm_acct_memory(pages);
1902
1903         /*
1904          * Sometimes we want to use more memory than we have
1905          */
1906         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1907                 return 0;
1908
1909         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1910                 free = global_page_state(NR_FREE_PAGES);
1911                 free += global_page_state(NR_FILE_PAGES);
1912
1913                 /*
1914                  * shmem pages shouldn't be counted as free in this
1915                  * case, they can't be purged, only swapped out, and
1916                  * that won't affect the overall amount of available
1917                  * memory in the system.
1918                  */
1919                 free -= global_page_state(NR_SHMEM);
1920
1921                 free += get_nr_swap_pages();
1922
1923                 /*
1924                  * Any slabs which are created with the
1925                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1926                  * which are reclaimable, under pressure.  The dentry
1927                  * cache and most inode caches should fall into this
1928                  */
1929                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1930
1931                 /*
1932                  * Leave reserved pages. The pages are not for anonymous pages.
1933                  */
1934                 if (free <= totalreserve_pages)
1935                         goto error;
1936                 else
1937                         free -= totalreserve_pages;
1938
1939                 /*
1940                  * Reserve some for root
1941                  */
1942                 if (!cap_sys_admin)
1943                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1944
1945                 if (free > pages)
1946                         return 0;
1947
1948                 goto error;
1949         }
1950
1951         allowed = vm_commit_limit();
1952         /*
1953          * Reserve some 3% for root
1954          */
1955         if (!cap_sys_admin)
1956                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1957
1958         /*
1959          * Don't let a single process grow so big a user can't recover
1960          */
1961         if (mm) {
1962                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1963                 allowed -= min(mm->total_vm / 32, reserve);
1964         }
1965
1966         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1967                 return 0;
1968
1969 error:
1970         vm_unacct_memory(pages);
1971
1972         return -ENOMEM;
1973 }
1974
1975 int in_gate_area_no_mm(unsigned long addr)
1976 {
1977         return 0;
1978 }
1979
1980 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1981 {
1982         BUG();
1983         return 0;
1984 }
1985 EXPORT_SYMBOL(filemap_fault);
1986
1987 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1988                              unsigned long size, pgoff_t pgoff)
1989 {
1990         BUG();
1991         return 0;
1992 }
1993 EXPORT_SYMBOL(generic_file_remap_pages);
1994
1995 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1996                 unsigned long addr, void *buf, int len, int write)
1997 {
1998         struct vm_area_struct *vma;
1999
2000         down_read(&mm->mmap_sem);
2001
2002         /* the access must start within one of the target process's mappings */
2003         vma = find_vma(mm, addr);
2004         if (vma) {
2005                 /* don't overrun this mapping */
2006                 if (addr + len >= vma->vm_end)
2007                         len = vma->vm_end - addr;
2008
2009                 /* only read or write mappings where it is permitted */
2010                 if (write && vma->vm_flags & VM_MAYWRITE)
2011                         copy_to_user_page(vma, NULL, addr,
2012                                          (void *) addr, buf, len);
2013                 else if (!write && vma->vm_flags & VM_MAYREAD)
2014                         copy_from_user_page(vma, NULL, addr,
2015                                             buf, (void *) addr, len);
2016                 else
2017                         len = 0;
2018         } else {
2019                 len = 0;
2020         }
2021
2022         up_read(&mm->mmap_sem);
2023
2024         return len;
2025 }
2026
2027 /**
2028  * @access_remote_vm - access another process' address space
2029  * @mm:         the mm_struct of the target address space
2030  * @addr:       start address to access
2031  * @buf:        source or destination buffer
2032  * @len:        number of bytes to transfer
2033  * @write:      whether the access is a write
2034  *
2035  * The caller must hold a reference on @mm.
2036  */
2037 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2038                 void *buf, int len, int write)
2039 {
2040         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2041 }
2042
2043 /*
2044  * Access another process' address space.
2045  * - source/target buffer must be kernel space
2046  */
2047 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2048 {
2049         struct mm_struct *mm;
2050
2051         if (addr + len < addr)
2052                 return 0;
2053
2054         mm = get_task_mm(tsk);
2055         if (!mm)
2056                 return 0;
2057
2058         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2059
2060         mmput(mm);
2061         return len;
2062 }
2063
2064 /**
2065  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2066  * @inode: The inode to check
2067  * @size: The current filesize of the inode
2068  * @newsize: The proposed filesize of the inode
2069  *
2070  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2071  * make sure that that any outstanding VMAs aren't broken and then shrink the
2072  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2073  * automatically grant mappings that are too large.
2074  */
2075 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2076                                 size_t newsize)
2077 {
2078         struct vm_area_struct *vma;
2079         struct vm_region *region;
2080         pgoff_t low, high;
2081         size_t r_size, r_top;
2082
2083         low = newsize >> PAGE_SHIFT;
2084         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2085
2086         down_write(&nommu_region_sem);
2087         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2088
2089         /* search for VMAs that fall within the dead zone */
2090         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2091                 /* found one - only interested if it's shared out of the page
2092                  * cache */
2093                 if (vma->vm_flags & VM_SHARED) {
2094                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2095                         up_write(&nommu_region_sem);
2096                         return -ETXTBSY; /* not quite true, but near enough */
2097                 }
2098         }
2099
2100         /* reduce any regions that overlap the dead zone - if in existence,
2101          * these will be pointed to by VMAs that don't overlap the dead zone
2102          *
2103          * we don't check for any regions that start beyond the EOF as there
2104          * shouldn't be any
2105          */
2106         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2107                                   0, ULONG_MAX) {
2108                 if (!(vma->vm_flags & VM_SHARED))
2109                         continue;
2110
2111                 region = vma->vm_region;
2112                 r_size = region->vm_top - region->vm_start;
2113                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2114
2115                 if (r_top > newsize) {
2116                         region->vm_top -= r_top - newsize;
2117                         if (region->vm_end > region->vm_top)
2118                                 region->vm_end = region->vm_top;
2119                 }
2120         }
2121
2122         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2123         up_write(&nommu_region_sem);
2124         return 0;
2125 }
2126
2127 /*
2128  * Initialise sysctl_user_reserve_kbytes.
2129  *
2130  * This is intended to prevent a user from starting a single memory hogging
2131  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2132  * mode.
2133  *
2134  * The default value is min(3% of free memory, 128MB)
2135  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2136  */
2137 static int __meminit init_user_reserve(void)
2138 {
2139         unsigned long free_kbytes;
2140
2141         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2142
2143         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2144         return 0;
2145 }
2146 module_init(init_user_reserve)
2147
2148 /*
2149  * Initialise sysctl_admin_reserve_kbytes.
2150  *
2151  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2152  * to log in and kill a memory hogging process.
2153  *
2154  * Systems with more than 256MB will reserve 8MB, enough to recover
2155  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2156  * only reserve 3% of free pages by default.
2157  */
2158 static int __meminit init_admin_reserve(void)
2159 {
2160         unsigned long free_kbytes;
2161
2162         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2163
2164         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2165         return 0;
2166 }
2167 module_init(init_admin_reserve)