Merge branch 'for-3.20/bdi' of git://git.kernel.dk/linux-block
[linux-drm-fsl-dcu.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 unsigned long highest_memmap_pfn;
66 struct percpu_counter vm_committed_as;
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly;
70 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
71 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
74 int heap_stack_gap = 0;
75
76 atomic_long_t mmap_pages_allocated;
77
78 /*
79  * The global memory commitment made in the system can be a metric
80  * that can be used to drive ballooning decisions when Linux is hosted
81  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82  * balancing memory across competing virtual machines that are hosted.
83  * Several metrics drive this policy engine including the guest reported
84  * memory commitment.
85  */
86 unsigned long vm_memory_committed(void)
87 {
88         return percpu_counter_read_positive(&vm_committed_as);
89 }
90
91 EXPORT_SYMBOL_GPL(vm_memory_committed);
92
93 EXPORT_SYMBOL(mem_map);
94
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache *vm_region_jar;
97 struct rb_root nommu_region_tree = RB_ROOT;
98 DECLARE_RWSEM(nommu_region_sem);
99
100 const struct vm_operations_struct generic_file_vm_ops = {
101 };
102
103 /*
104  * Return the total memory allocated for this pointer, not
105  * just what the caller asked for.
106  *
107  * Doesn't have to be accurate, i.e. may have races.
108  */
109 unsigned int kobjsize(const void *objp)
110 {
111         struct page *page;
112
113         /*
114          * If the object we have should not have ksize performed on it,
115          * return size of 0
116          */
117         if (!objp || !virt_addr_valid(objp))
118                 return 0;
119
120         page = virt_to_head_page(objp);
121
122         /*
123          * If the allocator sets PageSlab, we know the pointer came from
124          * kmalloc().
125          */
126         if (PageSlab(page))
127                 return ksize(objp);
128
129         /*
130          * If it's not a compound page, see if we have a matching VMA
131          * region. This test is intentionally done in reverse order,
132          * so if there's no VMA, we still fall through and hand back
133          * PAGE_SIZE for 0-order pages.
134          */
135         if (!PageCompound(page)) {
136                 struct vm_area_struct *vma;
137
138                 vma = find_vma(current->mm, (unsigned long)objp);
139                 if (vma)
140                         return vma->vm_end - vma->vm_start;
141         }
142
143         /*
144          * The ksize() function is only guaranteed to work for pointers
145          * returned by kmalloc(). So handle arbitrary pointers here.
146          */
147         return PAGE_SIZE << compound_order(page);
148 }
149
150 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
151                       unsigned long start, unsigned long nr_pages,
152                       unsigned int foll_flags, struct page **pages,
153                       struct vm_area_struct **vmas, int *nonblocking)
154 {
155         struct vm_area_struct *vma;
156         unsigned long vm_flags;
157         int i;
158
159         /* calculate required read or write permissions.
160          * If FOLL_FORCE is set, we only require the "MAY" flags.
161          */
162         vm_flags  = (foll_flags & FOLL_WRITE) ?
163                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
164         vm_flags &= (foll_flags & FOLL_FORCE) ?
165                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
166
167         for (i = 0; i < nr_pages; i++) {
168                 vma = find_vma(mm, start);
169                 if (!vma)
170                         goto finish_or_fault;
171
172                 /* protect what we can, including chardevs */
173                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
174                     !(vm_flags & vma->vm_flags))
175                         goto finish_or_fault;
176
177                 if (pages) {
178                         pages[i] = virt_to_page(start);
179                         if (pages[i])
180                                 page_cache_get(pages[i]);
181                 }
182                 if (vmas)
183                         vmas[i] = vma;
184                 start = (start + PAGE_SIZE) & PAGE_MASK;
185         }
186
187         return i;
188
189 finish_or_fault:
190         return i ? : -EFAULT;
191 }
192
193 /*
194  * get a list of pages in an address range belonging to the specified process
195  * and indicate the VMA that covers each page
196  * - this is potentially dodgy as we may end incrementing the page count of a
197  *   slab page or a secondary page from a compound page
198  * - don't permit access to VMAs that don't support it, such as I/O mappings
199  */
200 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
201                     unsigned long start, unsigned long nr_pages,
202                     int write, int force, struct page **pages,
203                     struct vm_area_struct **vmas)
204 {
205         int flags = 0;
206
207         if (write)
208                 flags |= FOLL_WRITE;
209         if (force)
210                 flags |= FOLL_FORCE;
211
212         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
213                                 NULL);
214 }
215 EXPORT_SYMBOL(get_user_pages);
216
217 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
218                            unsigned long start, unsigned long nr_pages,
219                            int write, int force, struct page **pages,
220                            int *locked)
221 {
222         return get_user_pages(tsk, mm, start, nr_pages, write, force,
223                               pages, NULL);
224 }
225 EXPORT_SYMBOL(get_user_pages_locked);
226
227 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
228                                unsigned long start, unsigned long nr_pages,
229                                int write, int force, struct page **pages,
230                                unsigned int gup_flags)
231 {
232         long ret;
233         down_read(&mm->mmap_sem);
234         ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
235                              pages, NULL);
236         up_read(&mm->mmap_sem);
237         return ret;
238 }
239 EXPORT_SYMBOL(__get_user_pages_unlocked);
240
241 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
242                              unsigned long start, unsigned long nr_pages,
243                              int write, int force, struct page **pages)
244 {
245         return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
246                                          force, pages, 0);
247 }
248 EXPORT_SYMBOL(get_user_pages_unlocked);
249
250 /**
251  * follow_pfn - look up PFN at a user virtual address
252  * @vma: memory mapping
253  * @address: user virtual address
254  * @pfn: location to store found PFN
255  *
256  * Only IO mappings and raw PFN mappings are allowed.
257  *
258  * Returns zero and the pfn at @pfn on success, -ve otherwise.
259  */
260 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
261         unsigned long *pfn)
262 {
263         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
264                 return -EINVAL;
265
266         *pfn = address >> PAGE_SHIFT;
267         return 0;
268 }
269 EXPORT_SYMBOL(follow_pfn);
270
271 LIST_HEAD(vmap_area_list);
272
273 void vfree(const void *addr)
274 {
275         kfree(addr);
276 }
277 EXPORT_SYMBOL(vfree);
278
279 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
280 {
281         /*
282          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
283          * returns only a logical address.
284          */
285         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
286 }
287 EXPORT_SYMBOL(__vmalloc);
288
289 void *vmalloc_user(unsigned long size)
290 {
291         void *ret;
292
293         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
294                         PAGE_KERNEL);
295         if (ret) {
296                 struct vm_area_struct *vma;
297
298                 down_write(&current->mm->mmap_sem);
299                 vma = find_vma(current->mm, (unsigned long)ret);
300                 if (vma)
301                         vma->vm_flags |= VM_USERMAP;
302                 up_write(&current->mm->mmap_sem);
303         }
304
305         return ret;
306 }
307 EXPORT_SYMBOL(vmalloc_user);
308
309 struct page *vmalloc_to_page(const void *addr)
310 {
311         return virt_to_page(addr);
312 }
313 EXPORT_SYMBOL(vmalloc_to_page);
314
315 unsigned long vmalloc_to_pfn(const void *addr)
316 {
317         return page_to_pfn(virt_to_page(addr));
318 }
319 EXPORT_SYMBOL(vmalloc_to_pfn);
320
321 long vread(char *buf, char *addr, unsigned long count)
322 {
323         /* Don't allow overflow */
324         if ((unsigned long) buf + count < count)
325                 count = -(unsigned long) buf;
326
327         memcpy(buf, addr, count);
328         return count;
329 }
330
331 long vwrite(char *buf, char *addr, unsigned long count)
332 {
333         /* Don't allow overflow */
334         if ((unsigned long) addr + count < count)
335                 count = -(unsigned long) addr;
336
337         memcpy(addr, buf, count);
338         return count;
339 }
340
341 /*
342  *      vmalloc  -  allocate virtually continguos memory
343  *
344  *      @size:          allocation size
345  *
346  *      Allocate enough pages to cover @size from the page level
347  *      allocator and map them into continguos kernel virtual space.
348  *
349  *      For tight control over page level allocator and protection flags
350  *      use __vmalloc() instead.
351  */
352 void *vmalloc(unsigned long size)
353 {
354        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
355 }
356 EXPORT_SYMBOL(vmalloc);
357
358 /*
359  *      vzalloc - allocate virtually continguos memory with zero fill
360  *
361  *      @size:          allocation size
362  *
363  *      Allocate enough pages to cover @size from the page level
364  *      allocator and map them into continguos kernel virtual space.
365  *      The memory allocated is set to zero.
366  *
367  *      For tight control over page level allocator and protection flags
368  *      use __vmalloc() instead.
369  */
370 void *vzalloc(unsigned long size)
371 {
372         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
373                         PAGE_KERNEL);
374 }
375 EXPORT_SYMBOL(vzalloc);
376
377 /**
378  * vmalloc_node - allocate memory on a specific node
379  * @size:       allocation size
380  * @node:       numa node
381  *
382  * Allocate enough pages to cover @size from the page level
383  * allocator and map them into contiguous kernel virtual space.
384  *
385  * For tight control over page level allocator and protection flags
386  * use __vmalloc() instead.
387  */
388 void *vmalloc_node(unsigned long size, int node)
389 {
390         return vmalloc(size);
391 }
392 EXPORT_SYMBOL(vmalloc_node);
393
394 /**
395  * vzalloc_node - allocate memory on a specific node with zero fill
396  * @size:       allocation size
397  * @node:       numa node
398  *
399  * Allocate enough pages to cover @size from the page level
400  * allocator and map them into contiguous kernel virtual space.
401  * The memory allocated is set to zero.
402  *
403  * For tight control over page level allocator and protection flags
404  * use __vmalloc() instead.
405  */
406 void *vzalloc_node(unsigned long size, int node)
407 {
408         return vzalloc(size);
409 }
410 EXPORT_SYMBOL(vzalloc_node);
411
412 #ifndef PAGE_KERNEL_EXEC
413 # define PAGE_KERNEL_EXEC PAGE_KERNEL
414 #endif
415
416 /**
417  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
418  *      @size:          allocation size
419  *
420  *      Kernel-internal function to allocate enough pages to cover @size
421  *      the page level allocator and map them into contiguous and
422  *      executable kernel virtual space.
423  *
424  *      For tight control over page level allocator and protection flags
425  *      use __vmalloc() instead.
426  */
427
428 void *vmalloc_exec(unsigned long size)
429 {
430         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
431 }
432
433 /**
434  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
435  *      @size:          allocation size
436  *
437  *      Allocate enough 32bit PA addressable pages to cover @size from the
438  *      page level allocator and map them into continguos kernel virtual space.
439  */
440 void *vmalloc_32(unsigned long size)
441 {
442         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
443 }
444 EXPORT_SYMBOL(vmalloc_32);
445
446 /**
447  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
448  *      @size:          allocation size
449  *
450  * The resulting memory area is 32bit addressable and zeroed so it can be
451  * mapped to userspace without leaking data.
452  *
453  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
454  * remap_vmalloc_range() are permissible.
455  */
456 void *vmalloc_32_user(unsigned long size)
457 {
458         /*
459          * We'll have to sort out the ZONE_DMA bits for 64-bit,
460          * but for now this can simply use vmalloc_user() directly.
461          */
462         return vmalloc_user(size);
463 }
464 EXPORT_SYMBOL(vmalloc_32_user);
465
466 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
467 {
468         BUG();
469         return NULL;
470 }
471 EXPORT_SYMBOL(vmap);
472
473 void vunmap(const void *addr)
474 {
475         BUG();
476 }
477 EXPORT_SYMBOL(vunmap);
478
479 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
480 {
481         BUG();
482         return NULL;
483 }
484 EXPORT_SYMBOL(vm_map_ram);
485
486 void vm_unmap_ram(const void *mem, unsigned int count)
487 {
488         BUG();
489 }
490 EXPORT_SYMBOL(vm_unmap_ram);
491
492 void vm_unmap_aliases(void)
493 {
494 }
495 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
496
497 /*
498  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
499  * have one.
500  */
501 void __weak vmalloc_sync_all(void)
502 {
503 }
504
505 /**
506  *      alloc_vm_area - allocate a range of kernel address space
507  *      @size:          size of the area
508  *
509  *      Returns:        NULL on failure, vm_struct on success
510  *
511  *      This function reserves a range of kernel address space, and
512  *      allocates pagetables to map that range.  No actual mappings
513  *      are created.  If the kernel address space is not shared
514  *      between processes, it syncs the pagetable across all
515  *      processes.
516  */
517 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
518 {
519         BUG();
520         return NULL;
521 }
522 EXPORT_SYMBOL_GPL(alloc_vm_area);
523
524 void free_vm_area(struct vm_struct *area)
525 {
526         BUG();
527 }
528 EXPORT_SYMBOL_GPL(free_vm_area);
529
530 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
531                    struct page *page)
532 {
533         return -EINVAL;
534 }
535 EXPORT_SYMBOL(vm_insert_page);
536
537 /*
538  *  sys_brk() for the most part doesn't need the global kernel
539  *  lock, except when an application is doing something nasty
540  *  like trying to un-brk an area that has already been mapped
541  *  to a regular file.  in this case, the unmapping will need
542  *  to invoke file system routines that need the global lock.
543  */
544 SYSCALL_DEFINE1(brk, unsigned long, brk)
545 {
546         struct mm_struct *mm = current->mm;
547
548         if (brk < mm->start_brk || brk > mm->context.end_brk)
549                 return mm->brk;
550
551         if (mm->brk == brk)
552                 return mm->brk;
553
554         /*
555          * Always allow shrinking brk
556          */
557         if (brk <= mm->brk) {
558                 mm->brk = brk;
559                 return brk;
560         }
561
562         /*
563          * Ok, looks good - let it rip.
564          */
565         flush_icache_range(mm->brk, brk);
566         return mm->brk = brk;
567 }
568
569 /*
570  * initialise the VMA and region record slabs
571  */
572 void __init mmap_init(void)
573 {
574         int ret;
575
576         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
577         VM_BUG_ON(ret);
578         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
579 }
580
581 /*
582  * validate the region tree
583  * - the caller must hold the region lock
584  */
585 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
586 static noinline void validate_nommu_regions(void)
587 {
588         struct vm_region *region, *last;
589         struct rb_node *p, *lastp;
590
591         lastp = rb_first(&nommu_region_tree);
592         if (!lastp)
593                 return;
594
595         last = rb_entry(lastp, struct vm_region, vm_rb);
596         BUG_ON(unlikely(last->vm_end <= last->vm_start));
597         BUG_ON(unlikely(last->vm_top < last->vm_end));
598
599         while ((p = rb_next(lastp))) {
600                 region = rb_entry(p, struct vm_region, vm_rb);
601                 last = rb_entry(lastp, struct vm_region, vm_rb);
602
603                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
604                 BUG_ON(unlikely(region->vm_top < region->vm_end));
605                 BUG_ON(unlikely(region->vm_start < last->vm_top));
606
607                 lastp = p;
608         }
609 }
610 #else
611 static void validate_nommu_regions(void)
612 {
613 }
614 #endif
615
616 /*
617  * add a region into the global tree
618  */
619 static void add_nommu_region(struct vm_region *region)
620 {
621         struct vm_region *pregion;
622         struct rb_node **p, *parent;
623
624         validate_nommu_regions();
625
626         parent = NULL;
627         p = &nommu_region_tree.rb_node;
628         while (*p) {
629                 parent = *p;
630                 pregion = rb_entry(parent, struct vm_region, vm_rb);
631                 if (region->vm_start < pregion->vm_start)
632                         p = &(*p)->rb_left;
633                 else if (region->vm_start > pregion->vm_start)
634                         p = &(*p)->rb_right;
635                 else if (pregion == region)
636                         return;
637                 else
638                         BUG();
639         }
640
641         rb_link_node(&region->vm_rb, parent, p);
642         rb_insert_color(&region->vm_rb, &nommu_region_tree);
643
644         validate_nommu_regions();
645 }
646
647 /*
648  * delete a region from the global tree
649  */
650 static void delete_nommu_region(struct vm_region *region)
651 {
652         BUG_ON(!nommu_region_tree.rb_node);
653
654         validate_nommu_regions();
655         rb_erase(&region->vm_rb, &nommu_region_tree);
656         validate_nommu_regions();
657 }
658
659 /*
660  * free a contiguous series of pages
661  */
662 static void free_page_series(unsigned long from, unsigned long to)
663 {
664         for (; from < to; from += PAGE_SIZE) {
665                 struct page *page = virt_to_page(from);
666
667                 kdebug("- free %lx", from);
668                 atomic_long_dec(&mmap_pages_allocated);
669                 if (page_count(page) != 1)
670                         kdebug("free page %p: refcount not one: %d",
671                                page, page_count(page));
672                 put_page(page);
673         }
674 }
675
676 /*
677  * release a reference to a region
678  * - the caller must hold the region semaphore for writing, which this releases
679  * - the region may not have been added to the tree yet, in which case vm_top
680  *   will equal vm_start
681  */
682 static void __put_nommu_region(struct vm_region *region)
683         __releases(nommu_region_sem)
684 {
685         kenter("%p{%d}", region, region->vm_usage);
686
687         BUG_ON(!nommu_region_tree.rb_node);
688
689         if (--region->vm_usage == 0) {
690                 if (region->vm_top > region->vm_start)
691                         delete_nommu_region(region);
692                 up_write(&nommu_region_sem);
693
694                 if (region->vm_file)
695                         fput(region->vm_file);
696
697                 /* IO memory and memory shared directly out of the pagecache
698                  * from ramfs/tmpfs mustn't be released here */
699                 if (region->vm_flags & VM_MAPPED_COPY) {
700                         kdebug("free series");
701                         free_page_series(region->vm_start, region->vm_top);
702                 }
703                 kmem_cache_free(vm_region_jar, region);
704         } else {
705                 up_write(&nommu_region_sem);
706         }
707 }
708
709 /*
710  * release a reference to a region
711  */
712 static void put_nommu_region(struct vm_region *region)
713 {
714         down_write(&nommu_region_sem);
715         __put_nommu_region(region);
716 }
717
718 /*
719  * update protection on a vma
720  */
721 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
722 {
723 #ifdef CONFIG_MPU
724         struct mm_struct *mm = vma->vm_mm;
725         long start = vma->vm_start & PAGE_MASK;
726         while (start < vma->vm_end) {
727                 protect_page(mm, start, flags);
728                 start += PAGE_SIZE;
729         }
730         update_protections(mm);
731 #endif
732 }
733
734 /*
735  * add a VMA into a process's mm_struct in the appropriate place in the list
736  * and tree and add to the address space's page tree also if not an anonymous
737  * page
738  * - should be called with mm->mmap_sem held writelocked
739  */
740 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
741 {
742         struct vm_area_struct *pvma, *prev;
743         struct address_space *mapping;
744         struct rb_node **p, *parent, *rb_prev;
745
746         kenter(",%p", vma);
747
748         BUG_ON(!vma->vm_region);
749
750         mm->map_count++;
751         vma->vm_mm = mm;
752
753         protect_vma(vma, vma->vm_flags);
754
755         /* add the VMA to the mapping */
756         if (vma->vm_file) {
757                 mapping = vma->vm_file->f_mapping;
758
759                 i_mmap_lock_write(mapping);
760                 flush_dcache_mmap_lock(mapping);
761                 vma_interval_tree_insert(vma, &mapping->i_mmap);
762                 flush_dcache_mmap_unlock(mapping);
763                 i_mmap_unlock_write(mapping);
764         }
765
766         /* add the VMA to the tree */
767         parent = rb_prev = NULL;
768         p = &mm->mm_rb.rb_node;
769         while (*p) {
770                 parent = *p;
771                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
772
773                 /* sort by: start addr, end addr, VMA struct addr in that order
774                  * (the latter is necessary as we may get identical VMAs) */
775                 if (vma->vm_start < pvma->vm_start)
776                         p = &(*p)->rb_left;
777                 else if (vma->vm_start > pvma->vm_start) {
778                         rb_prev = parent;
779                         p = &(*p)->rb_right;
780                 } else if (vma->vm_end < pvma->vm_end)
781                         p = &(*p)->rb_left;
782                 else if (vma->vm_end > pvma->vm_end) {
783                         rb_prev = parent;
784                         p = &(*p)->rb_right;
785                 } else if (vma < pvma)
786                         p = &(*p)->rb_left;
787                 else if (vma > pvma) {
788                         rb_prev = parent;
789                         p = &(*p)->rb_right;
790                 } else
791                         BUG();
792         }
793
794         rb_link_node(&vma->vm_rb, parent, p);
795         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
796
797         /* add VMA to the VMA list also */
798         prev = NULL;
799         if (rb_prev)
800                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
801
802         __vma_link_list(mm, vma, prev, parent);
803 }
804
805 /*
806  * delete a VMA from its owning mm_struct and address space
807  */
808 static void delete_vma_from_mm(struct vm_area_struct *vma)
809 {
810         int i;
811         struct address_space *mapping;
812         struct mm_struct *mm = vma->vm_mm;
813         struct task_struct *curr = current;
814
815         kenter("%p", vma);
816
817         protect_vma(vma, 0);
818
819         mm->map_count--;
820         for (i = 0; i < VMACACHE_SIZE; i++) {
821                 /* if the vma is cached, invalidate the entire cache */
822                 if (curr->vmacache[i] == vma) {
823                         vmacache_invalidate(mm);
824                         break;
825                 }
826         }
827
828         /* remove the VMA from the mapping */
829         if (vma->vm_file) {
830                 mapping = vma->vm_file->f_mapping;
831
832                 i_mmap_lock_write(mapping);
833                 flush_dcache_mmap_lock(mapping);
834                 vma_interval_tree_remove(vma, &mapping->i_mmap);
835                 flush_dcache_mmap_unlock(mapping);
836                 i_mmap_unlock_write(mapping);
837         }
838
839         /* remove from the MM's tree and list */
840         rb_erase(&vma->vm_rb, &mm->mm_rb);
841
842         if (vma->vm_prev)
843                 vma->vm_prev->vm_next = vma->vm_next;
844         else
845                 mm->mmap = vma->vm_next;
846
847         if (vma->vm_next)
848                 vma->vm_next->vm_prev = vma->vm_prev;
849 }
850
851 /*
852  * destroy a VMA record
853  */
854 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
855 {
856         kenter("%p", vma);
857         if (vma->vm_ops && vma->vm_ops->close)
858                 vma->vm_ops->close(vma);
859         if (vma->vm_file)
860                 fput(vma->vm_file);
861         put_nommu_region(vma->vm_region);
862         kmem_cache_free(vm_area_cachep, vma);
863 }
864
865 /*
866  * look up the first VMA in which addr resides, NULL if none
867  * - should be called with mm->mmap_sem at least held readlocked
868  */
869 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
870 {
871         struct vm_area_struct *vma;
872
873         /* check the cache first */
874         vma = vmacache_find(mm, addr);
875         if (likely(vma))
876                 return vma;
877
878         /* trawl the list (there may be multiple mappings in which addr
879          * resides) */
880         for (vma = mm->mmap; vma; vma = vma->vm_next) {
881                 if (vma->vm_start > addr)
882                         return NULL;
883                 if (vma->vm_end > addr) {
884                         vmacache_update(addr, vma);
885                         return vma;
886                 }
887         }
888
889         return NULL;
890 }
891 EXPORT_SYMBOL(find_vma);
892
893 /*
894  * find a VMA
895  * - we don't extend stack VMAs under NOMMU conditions
896  */
897 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
898 {
899         return find_vma(mm, addr);
900 }
901
902 /*
903  * expand a stack to a given address
904  * - not supported under NOMMU conditions
905  */
906 int expand_stack(struct vm_area_struct *vma, unsigned long address)
907 {
908         return -ENOMEM;
909 }
910
911 /*
912  * look up the first VMA exactly that exactly matches addr
913  * - should be called with mm->mmap_sem at least held readlocked
914  */
915 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
916                                              unsigned long addr,
917                                              unsigned long len)
918 {
919         struct vm_area_struct *vma;
920         unsigned long end = addr + len;
921
922         /* check the cache first */
923         vma = vmacache_find_exact(mm, addr, end);
924         if (vma)
925                 return vma;
926
927         /* trawl the list (there may be multiple mappings in which addr
928          * resides) */
929         for (vma = mm->mmap; vma; vma = vma->vm_next) {
930                 if (vma->vm_start < addr)
931                         continue;
932                 if (vma->vm_start > addr)
933                         return NULL;
934                 if (vma->vm_end == end) {
935                         vmacache_update(addr, vma);
936                         return vma;
937                 }
938         }
939
940         return NULL;
941 }
942
943 /*
944  * determine whether a mapping should be permitted and, if so, what sort of
945  * mapping we're capable of supporting
946  */
947 static int validate_mmap_request(struct file *file,
948                                  unsigned long addr,
949                                  unsigned long len,
950                                  unsigned long prot,
951                                  unsigned long flags,
952                                  unsigned long pgoff,
953                                  unsigned long *_capabilities)
954 {
955         unsigned long capabilities, rlen;
956         int ret;
957
958         /* do the simple checks first */
959         if (flags & MAP_FIXED) {
960                 printk(KERN_DEBUG
961                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
962                        current->pid);
963                 return -EINVAL;
964         }
965
966         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
967             (flags & MAP_TYPE) != MAP_SHARED)
968                 return -EINVAL;
969
970         if (!len)
971                 return -EINVAL;
972
973         /* Careful about overflows.. */
974         rlen = PAGE_ALIGN(len);
975         if (!rlen || rlen > TASK_SIZE)
976                 return -ENOMEM;
977
978         /* offset overflow? */
979         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
980                 return -EOVERFLOW;
981
982         if (file) {
983                 /* files must support mmap */
984                 if (!file->f_op->mmap)
985                         return -ENODEV;
986
987                 /* work out if what we've got could possibly be shared
988                  * - we support chardevs that provide their own "memory"
989                  * - we support files/blockdevs that are memory backed
990                  */
991                 if (file->f_op->mmap_capabilities) {
992                         capabilities = file->f_op->mmap_capabilities(file);
993                 } else {
994                         /* no explicit capabilities set, so assume some
995                          * defaults */
996                         switch (file_inode(file)->i_mode & S_IFMT) {
997                         case S_IFREG:
998                         case S_IFBLK:
999                                 capabilities = NOMMU_MAP_COPY;
1000                                 break;
1001
1002                         case S_IFCHR:
1003                                 capabilities =
1004                                         NOMMU_MAP_DIRECT |
1005                                         NOMMU_MAP_READ |
1006                                         NOMMU_MAP_WRITE;
1007                                 break;
1008
1009                         default:
1010                                 return -EINVAL;
1011                         }
1012                 }
1013
1014                 /* eliminate any capabilities that we can't support on this
1015                  * device */
1016                 if (!file->f_op->get_unmapped_area)
1017                         capabilities &= ~NOMMU_MAP_DIRECT;
1018                 if (!file->f_op->read)
1019                         capabilities &= ~NOMMU_MAP_COPY;
1020
1021                 /* The file shall have been opened with read permission. */
1022                 if (!(file->f_mode & FMODE_READ))
1023                         return -EACCES;
1024
1025                 if (flags & MAP_SHARED) {
1026                         /* do checks for writing, appending and locking */
1027                         if ((prot & PROT_WRITE) &&
1028                             !(file->f_mode & FMODE_WRITE))
1029                                 return -EACCES;
1030
1031                         if (IS_APPEND(file_inode(file)) &&
1032                             (file->f_mode & FMODE_WRITE))
1033                                 return -EACCES;
1034
1035                         if (locks_verify_locked(file))
1036                                 return -EAGAIN;
1037
1038                         if (!(capabilities & NOMMU_MAP_DIRECT))
1039                                 return -ENODEV;
1040
1041                         /* we mustn't privatise shared mappings */
1042                         capabilities &= ~NOMMU_MAP_COPY;
1043                 } else {
1044                         /* we're going to read the file into private memory we
1045                          * allocate */
1046                         if (!(capabilities & NOMMU_MAP_COPY))
1047                                 return -ENODEV;
1048
1049                         /* we don't permit a private writable mapping to be
1050                          * shared with the backing device */
1051                         if (prot & PROT_WRITE)
1052                                 capabilities &= ~NOMMU_MAP_DIRECT;
1053                 }
1054
1055                 if (capabilities & NOMMU_MAP_DIRECT) {
1056                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1057                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1058                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1059                             ) {
1060                                 capabilities &= ~NOMMU_MAP_DIRECT;
1061                                 if (flags & MAP_SHARED) {
1062                                         printk(KERN_WARNING
1063                                                "MAP_SHARED not completely supported on !MMU\n");
1064                                         return -EINVAL;
1065                                 }
1066                         }
1067                 }
1068
1069                 /* handle executable mappings and implied executable
1070                  * mappings */
1071                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1072                         if (prot & PROT_EXEC)
1073                                 return -EPERM;
1074                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1075                         /* handle implication of PROT_EXEC by PROT_READ */
1076                         if (current->personality & READ_IMPLIES_EXEC) {
1077                                 if (capabilities & NOMMU_MAP_EXEC)
1078                                         prot |= PROT_EXEC;
1079                         }
1080                 } else if ((prot & PROT_READ) &&
1081                          (prot & PROT_EXEC) &&
1082                          !(capabilities & NOMMU_MAP_EXEC)
1083                          ) {
1084                         /* backing file is not executable, try to copy */
1085                         capabilities &= ~NOMMU_MAP_DIRECT;
1086                 }
1087         } else {
1088                 /* anonymous mappings are always memory backed and can be
1089                  * privately mapped
1090                  */
1091                 capabilities = NOMMU_MAP_COPY;
1092
1093                 /* handle PROT_EXEC implication by PROT_READ */
1094                 if ((prot & PROT_READ) &&
1095                     (current->personality & READ_IMPLIES_EXEC))
1096                         prot |= PROT_EXEC;
1097         }
1098
1099         /* allow the security API to have its say */
1100         ret = security_mmap_addr(addr);
1101         if (ret < 0)
1102                 return ret;
1103
1104         /* looks okay */
1105         *_capabilities = capabilities;
1106         return 0;
1107 }
1108
1109 /*
1110  * we've determined that we can make the mapping, now translate what we
1111  * now know into VMA flags
1112  */
1113 static unsigned long determine_vm_flags(struct file *file,
1114                                         unsigned long prot,
1115                                         unsigned long flags,
1116                                         unsigned long capabilities)
1117 {
1118         unsigned long vm_flags;
1119
1120         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1121         /* vm_flags |= mm->def_flags; */
1122
1123         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1124                 /* attempt to share read-only copies of mapped file chunks */
1125                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1126                 if (file && !(prot & PROT_WRITE))
1127                         vm_flags |= VM_MAYSHARE;
1128         } else {
1129                 /* overlay a shareable mapping on the backing device or inode
1130                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1131                  * romfs/cramfs */
1132                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1133                 if (flags & MAP_SHARED)
1134                         vm_flags |= VM_SHARED;
1135         }
1136
1137         /* refuse to let anyone share private mappings with this process if
1138          * it's being traced - otherwise breakpoints set in it may interfere
1139          * with another untraced process
1140          */
1141         if ((flags & MAP_PRIVATE) && current->ptrace)
1142                 vm_flags &= ~VM_MAYSHARE;
1143
1144         return vm_flags;
1145 }
1146
1147 /*
1148  * set up a shared mapping on a file (the driver or filesystem provides and
1149  * pins the storage)
1150  */
1151 static int do_mmap_shared_file(struct vm_area_struct *vma)
1152 {
1153         int ret;
1154
1155         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1156         if (ret == 0) {
1157                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1158                 return 0;
1159         }
1160         if (ret != -ENOSYS)
1161                 return ret;
1162
1163         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1164          * opposed to tried but failed) so we can only give a suitable error as
1165          * it's not possible to make a private copy if MAP_SHARED was given */
1166         return -ENODEV;
1167 }
1168
1169 /*
1170  * set up a private mapping or an anonymous shared mapping
1171  */
1172 static int do_mmap_private(struct vm_area_struct *vma,
1173                            struct vm_region *region,
1174                            unsigned long len,
1175                            unsigned long capabilities)
1176 {
1177         unsigned long total, point;
1178         void *base;
1179         int ret, order;
1180
1181         /* invoke the file's mapping function so that it can keep track of
1182          * shared mappings on devices or memory
1183          * - VM_MAYSHARE will be set if it may attempt to share
1184          */
1185         if (capabilities & NOMMU_MAP_DIRECT) {
1186                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1187                 if (ret == 0) {
1188                         /* shouldn't return success if we're not sharing */
1189                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1190                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1191                         return 0;
1192                 }
1193                 if (ret != -ENOSYS)
1194                         return ret;
1195
1196                 /* getting an ENOSYS error indicates that direct mmap isn't
1197                  * possible (as opposed to tried but failed) so we'll try to
1198                  * make a private copy of the data and map that instead */
1199         }
1200
1201
1202         /* allocate some memory to hold the mapping
1203          * - note that this may not return a page-aligned address if the object
1204          *   we're allocating is smaller than a page
1205          */
1206         order = get_order(len);
1207         kdebug("alloc order %d for %lx", order, len);
1208
1209         total = 1 << order;
1210         point = len >> PAGE_SHIFT;
1211
1212         /* we don't want to allocate a power-of-2 sized page set */
1213         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1214                 total = point;
1215                 kdebug("try to alloc exact %lu pages", total);
1216                 base = alloc_pages_exact(len, GFP_KERNEL);
1217         } else {
1218                 base = (void *)__get_free_pages(GFP_KERNEL, order);
1219         }
1220
1221         if (!base)
1222                 goto enomem;
1223
1224         atomic_long_add(total, &mmap_pages_allocated);
1225
1226         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1227         region->vm_start = (unsigned long) base;
1228         region->vm_end   = region->vm_start + len;
1229         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1230
1231         vma->vm_start = region->vm_start;
1232         vma->vm_end   = region->vm_start + len;
1233
1234         if (vma->vm_file) {
1235                 /* read the contents of a file into the copy */
1236                 mm_segment_t old_fs;
1237                 loff_t fpos;
1238
1239                 fpos = vma->vm_pgoff;
1240                 fpos <<= PAGE_SHIFT;
1241
1242                 old_fs = get_fs();
1243                 set_fs(KERNEL_DS);
1244                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1245                 set_fs(old_fs);
1246
1247                 if (ret < 0)
1248                         goto error_free;
1249
1250                 /* clear the last little bit */
1251                 if (ret < len)
1252                         memset(base + ret, 0, len - ret);
1253
1254         }
1255
1256         return 0;
1257
1258 error_free:
1259         free_page_series(region->vm_start, region->vm_top);
1260         region->vm_start = vma->vm_start = 0;
1261         region->vm_end   = vma->vm_end = 0;
1262         region->vm_top   = 0;
1263         return ret;
1264
1265 enomem:
1266         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1267                len, current->pid, current->comm);
1268         show_free_areas(0);
1269         return -ENOMEM;
1270 }
1271
1272 /*
1273  * handle mapping creation for uClinux
1274  */
1275 unsigned long do_mmap_pgoff(struct file *file,
1276                             unsigned long addr,
1277                             unsigned long len,
1278                             unsigned long prot,
1279                             unsigned long flags,
1280                             unsigned long pgoff,
1281                             unsigned long *populate)
1282 {
1283         struct vm_area_struct *vma;
1284         struct vm_region *region;
1285         struct rb_node *rb;
1286         unsigned long capabilities, vm_flags, result;
1287         int ret;
1288
1289         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1290
1291         *populate = 0;
1292
1293         /* decide whether we should attempt the mapping, and if so what sort of
1294          * mapping */
1295         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1296                                     &capabilities);
1297         if (ret < 0) {
1298                 kleave(" = %d [val]", ret);
1299                 return ret;
1300         }
1301
1302         /* we ignore the address hint */
1303         addr = 0;
1304         len = PAGE_ALIGN(len);
1305
1306         /* we've determined that we can make the mapping, now translate what we
1307          * now know into VMA flags */
1308         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1309
1310         /* we're going to need to record the mapping */
1311         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1312         if (!region)
1313                 goto error_getting_region;
1314
1315         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1316         if (!vma)
1317                 goto error_getting_vma;
1318
1319         region->vm_usage = 1;
1320         region->vm_flags = vm_flags;
1321         region->vm_pgoff = pgoff;
1322
1323         INIT_LIST_HEAD(&vma->anon_vma_chain);
1324         vma->vm_flags = vm_flags;
1325         vma->vm_pgoff = pgoff;
1326
1327         if (file) {
1328                 region->vm_file = get_file(file);
1329                 vma->vm_file = get_file(file);
1330         }
1331
1332         down_write(&nommu_region_sem);
1333
1334         /* if we want to share, we need to check for regions created by other
1335          * mmap() calls that overlap with our proposed mapping
1336          * - we can only share with a superset match on most regular files
1337          * - shared mappings on character devices and memory backed files are
1338          *   permitted to overlap inexactly as far as we are concerned for in
1339          *   these cases, sharing is handled in the driver or filesystem rather
1340          *   than here
1341          */
1342         if (vm_flags & VM_MAYSHARE) {
1343                 struct vm_region *pregion;
1344                 unsigned long pglen, rpglen, pgend, rpgend, start;
1345
1346                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1347                 pgend = pgoff + pglen;
1348
1349                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1350                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1351
1352                         if (!(pregion->vm_flags & VM_MAYSHARE))
1353                                 continue;
1354
1355                         /* search for overlapping mappings on the same file */
1356                         if (file_inode(pregion->vm_file) !=
1357                             file_inode(file))
1358                                 continue;
1359
1360                         if (pregion->vm_pgoff >= pgend)
1361                                 continue;
1362
1363                         rpglen = pregion->vm_end - pregion->vm_start;
1364                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1365                         rpgend = pregion->vm_pgoff + rpglen;
1366                         if (pgoff >= rpgend)
1367                                 continue;
1368
1369                         /* handle inexactly overlapping matches between
1370                          * mappings */
1371                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1372                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1373                                 /* new mapping is not a subset of the region */
1374                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1375                                         goto sharing_violation;
1376                                 continue;
1377                         }
1378
1379                         /* we've found a region we can share */
1380                         pregion->vm_usage++;
1381                         vma->vm_region = pregion;
1382                         start = pregion->vm_start;
1383                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1384                         vma->vm_start = start;
1385                         vma->vm_end = start + len;
1386
1387                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1388                                 kdebug("share copy");
1389                                 vma->vm_flags |= VM_MAPPED_COPY;
1390                         } else {
1391                                 kdebug("share mmap");
1392                                 ret = do_mmap_shared_file(vma);
1393                                 if (ret < 0) {
1394                                         vma->vm_region = NULL;
1395                                         vma->vm_start = 0;
1396                                         vma->vm_end = 0;
1397                                         pregion->vm_usage--;
1398                                         pregion = NULL;
1399                                         goto error_just_free;
1400                                 }
1401                         }
1402                         fput(region->vm_file);
1403                         kmem_cache_free(vm_region_jar, region);
1404                         region = pregion;
1405                         result = start;
1406                         goto share;
1407                 }
1408
1409                 /* obtain the address at which to make a shared mapping
1410                  * - this is the hook for quasi-memory character devices to
1411                  *   tell us the location of a shared mapping
1412                  */
1413                 if (capabilities & NOMMU_MAP_DIRECT) {
1414                         addr = file->f_op->get_unmapped_area(file, addr, len,
1415                                                              pgoff, flags);
1416                         if (IS_ERR_VALUE(addr)) {
1417                                 ret = addr;
1418                                 if (ret != -ENOSYS)
1419                                         goto error_just_free;
1420
1421                                 /* the driver refused to tell us where to site
1422                                  * the mapping so we'll have to attempt to copy
1423                                  * it */
1424                                 ret = -ENODEV;
1425                                 if (!(capabilities & NOMMU_MAP_COPY))
1426                                         goto error_just_free;
1427
1428                                 capabilities &= ~NOMMU_MAP_DIRECT;
1429                         } else {
1430                                 vma->vm_start = region->vm_start = addr;
1431                                 vma->vm_end = region->vm_end = addr + len;
1432                         }
1433                 }
1434         }
1435
1436         vma->vm_region = region;
1437
1438         /* set up the mapping
1439          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1440          */
1441         if (file && vma->vm_flags & VM_SHARED)
1442                 ret = do_mmap_shared_file(vma);
1443         else
1444                 ret = do_mmap_private(vma, region, len, capabilities);
1445         if (ret < 0)
1446                 goto error_just_free;
1447         add_nommu_region(region);
1448
1449         /* clear anonymous mappings that don't ask for uninitialized data */
1450         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1451                 memset((void *)region->vm_start, 0,
1452                        region->vm_end - region->vm_start);
1453
1454         /* okay... we have a mapping; now we have to register it */
1455         result = vma->vm_start;
1456
1457         current->mm->total_vm += len >> PAGE_SHIFT;
1458
1459 share:
1460         add_vma_to_mm(current->mm, vma);
1461
1462         /* we flush the region from the icache only when the first executable
1463          * mapping of it is made  */
1464         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1465                 flush_icache_range(region->vm_start, region->vm_end);
1466                 region->vm_icache_flushed = true;
1467         }
1468
1469         up_write(&nommu_region_sem);
1470
1471         kleave(" = %lx", result);
1472         return result;
1473
1474 error_just_free:
1475         up_write(&nommu_region_sem);
1476 error:
1477         if (region->vm_file)
1478                 fput(region->vm_file);
1479         kmem_cache_free(vm_region_jar, region);
1480         if (vma->vm_file)
1481                 fput(vma->vm_file);
1482         kmem_cache_free(vm_area_cachep, vma);
1483         kleave(" = %d", ret);
1484         return ret;
1485
1486 sharing_violation:
1487         up_write(&nommu_region_sem);
1488         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1489         ret = -EINVAL;
1490         goto error;
1491
1492 error_getting_vma:
1493         kmem_cache_free(vm_region_jar, region);
1494         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1495                " from process %d failed\n",
1496                len, current->pid);
1497         show_free_areas(0);
1498         return -ENOMEM;
1499
1500 error_getting_region:
1501         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1502                " from process %d failed\n",
1503                len, current->pid);
1504         show_free_areas(0);
1505         return -ENOMEM;
1506 }
1507
1508 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1509                 unsigned long, prot, unsigned long, flags,
1510                 unsigned long, fd, unsigned long, pgoff)
1511 {
1512         struct file *file = NULL;
1513         unsigned long retval = -EBADF;
1514
1515         audit_mmap_fd(fd, flags);
1516         if (!(flags & MAP_ANONYMOUS)) {
1517                 file = fget(fd);
1518                 if (!file)
1519                         goto out;
1520         }
1521
1522         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1523
1524         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1525
1526         if (file)
1527                 fput(file);
1528 out:
1529         return retval;
1530 }
1531
1532 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1533 struct mmap_arg_struct {
1534         unsigned long addr;
1535         unsigned long len;
1536         unsigned long prot;
1537         unsigned long flags;
1538         unsigned long fd;
1539         unsigned long offset;
1540 };
1541
1542 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1543 {
1544         struct mmap_arg_struct a;
1545
1546         if (copy_from_user(&a, arg, sizeof(a)))
1547                 return -EFAULT;
1548         if (a.offset & ~PAGE_MASK)
1549                 return -EINVAL;
1550
1551         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1552                               a.offset >> PAGE_SHIFT);
1553 }
1554 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1555
1556 /*
1557  * split a vma into two pieces at address 'addr', a new vma is allocated either
1558  * for the first part or the tail.
1559  */
1560 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1561               unsigned long addr, int new_below)
1562 {
1563         struct vm_area_struct *new;
1564         struct vm_region *region;
1565         unsigned long npages;
1566
1567         kenter("");
1568
1569         /* we're only permitted to split anonymous regions (these should have
1570          * only a single usage on the region) */
1571         if (vma->vm_file)
1572                 return -ENOMEM;
1573
1574         if (mm->map_count >= sysctl_max_map_count)
1575                 return -ENOMEM;
1576
1577         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1578         if (!region)
1579                 return -ENOMEM;
1580
1581         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1582         if (!new) {
1583                 kmem_cache_free(vm_region_jar, region);
1584                 return -ENOMEM;
1585         }
1586
1587         /* most fields are the same, copy all, and then fixup */
1588         *new = *vma;
1589         *region = *vma->vm_region;
1590         new->vm_region = region;
1591
1592         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1593
1594         if (new_below) {
1595                 region->vm_top = region->vm_end = new->vm_end = addr;
1596         } else {
1597                 region->vm_start = new->vm_start = addr;
1598                 region->vm_pgoff = new->vm_pgoff += npages;
1599         }
1600
1601         if (new->vm_ops && new->vm_ops->open)
1602                 new->vm_ops->open(new);
1603
1604         delete_vma_from_mm(vma);
1605         down_write(&nommu_region_sem);
1606         delete_nommu_region(vma->vm_region);
1607         if (new_below) {
1608                 vma->vm_region->vm_start = vma->vm_start = addr;
1609                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1610         } else {
1611                 vma->vm_region->vm_end = vma->vm_end = addr;
1612                 vma->vm_region->vm_top = addr;
1613         }
1614         add_nommu_region(vma->vm_region);
1615         add_nommu_region(new->vm_region);
1616         up_write(&nommu_region_sem);
1617         add_vma_to_mm(mm, vma);
1618         add_vma_to_mm(mm, new);
1619         return 0;
1620 }
1621
1622 /*
1623  * shrink a VMA by removing the specified chunk from either the beginning or
1624  * the end
1625  */
1626 static int shrink_vma(struct mm_struct *mm,
1627                       struct vm_area_struct *vma,
1628                       unsigned long from, unsigned long to)
1629 {
1630         struct vm_region *region;
1631
1632         kenter("");
1633
1634         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1635          * and list */
1636         delete_vma_from_mm(vma);
1637         if (from > vma->vm_start)
1638                 vma->vm_end = from;
1639         else
1640                 vma->vm_start = to;
1641         add_vma_to_mm(mm, vma);
1642
1643         /* cut the backing region down to size */
1644         region = vma->vm_region;
1645         BUG_ON(region->vm_usage != 1);
1646
1647         down_write(&nommu_region_sem);
1648         delete_nommu_region(region);
1649         if (from > region->vm_start) {
1650                 to = region->vm_top;
1651                 region->vm_top = region->vm_end = from;
1652         } else {
1653                 region->vm_start = to;
1654         }
1655         add_nommu_region(region);
1656         up_write(&nommu_region_sem);
1657
1658         free_page_series(from, to);
1659         return 0;
1660 }
1661
1662 /*
1663  * release a mapping
1664  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1665  *   VMA, though it need not cover the whole VMA
1666  */
1667 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1668 {
1669         struct vm_area_struct *vma;
1670         unsigned long end;
1671         int ret;
1672
1673         kenter(",%lx,%zx", start, len);
1674
1675         len = PAGE_ALIGN(len);
1676         if (len == 0)
1677                 return -EINVAL;
1678
1679         end = start + len;
1680
1681         /* find the first potentially overlapping VMA */
1682         vma = find_vma(mm, start);
1683         if (!vma) {
1684                 static int limit;
1685                 if (limit < 5) {
1686                         printk(KERN_WARNING
1687                                "munmap of memory not mmapped by process %d"
1688                                " (%s): 0x%lx-0x%lx\n",
1689                                current->pid, current->comm,
1690                                start, start + len - 1);
1691                         limit++;
1692                 }
1693                 return -EINVAL;
1694         }
1695
1696         /* we're allowed to split an anonymous VMA but not a file-backed one */
1697         if (vma->vm_file) {
1698                 do {
1699                         if (start > vma->vm_start) {
1700                                 kleave(" = -EINVAL [miss]");
1701                                 return -EINVAL;
1702                         }
1703                         if (end == vma->vm_end)
1704                                 goto erase_whole_vma;
1705                         vma = vma->vm_next;
1706                 } while (vma);
1707                 kleave(" = -EINVAL [split file]");
1708                 return -EINVAL;
1709         } else {
1710                 /* the chunk must be a subset of the VMA found */
1711                 if (start == vma->vm_start && end == vma->vm_end)
1712                         goto erase_whole_vma;
1713                 if (start < vma->vm_start || end > vma->vm_end) {
1714                         kleave(" = -EINVAL [superset]");
1715                         return -EINVAL;
1716                 }
1717                 if (start & ~PAGE_MASK) {
1718                         kleave(" = -EINVAL [unaligned start]");
1719                         return -EINVAL;
1720                 }
1721                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1722                         kleave(" = -EINVAL [unaligned split]");
1723                         return -EINVAL;
1724                 }
1725                 if (start != vma->vm_start && end != vma->vm_end) {
1726                         ret = split_vma(mm, vma, start, 1);
1727                         if (ret < 0) {
1728                                 kleave(" = %d [split]", ret);
1729                                 return ret;
1730                         }
1731                 }
1732                 return shrink_vma(mm, vma, start, end);
1733         }
1734
1735 erase_whole_vma:
1736         delete_vma_from_mm(vma);
1737         delete_vma(mm, vma);
1738         kleave(" = 0");
1739         return 0;
1740 }
1741 EXPORT_SYMBOL(do_munmap);
1742
1743 int vm_munmap(unsigned long addr, size_t len)
1744 {
1745         struct mm_struct *mm = current->mm;
1746         int ret;
1747
1748         down_write(&mm->mmap_sem);
1749         ret = do_munmap(mm, addr, len);
1750         up_write(&mm->mmap_sem);
1751         return ret;
1752 }
1753 EXPORT_SYMBOL(vm_munmap);
1754
1755 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1756 {
1757         return vm_munmap(addr, len);
1758 }
1759
1760 /*
1761  * release all the mappings made in a process's VM space
1762  */
1763 void exit_mmap(struct mm_struct *mm)
1764 {
1765         struct vm_area_struct *vma;
1766
1767         if (!mm)
1768                 return;
1769
1770         kenter("");
1771
1772         mm->total_vm = 0;
1773
1774         while ((vma = mm->mmap)) {
1775                 mm->mmap = vma->vm_next;
1776                 delete_vma_from_mm(vma);
1777                 delete_vma(mm, vma);
1778                 cond_resched();
1779         }
1780
1781         kleave("");
1782 }
1783
1784 unsigned long vm_brk(unsigned long addr, unsigned long len)
1785 {
1786         return -ENOMEM;
1787 }
1788
1789 /*
1790  * expand (or shrink) an existing mapping, potentially moving it at the same
1791  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1792  *
1793  * under NOMMU conditions, we only permit changing a mapping's size, and only
1794  * as long as it stays within the region allocated by do_mmap_private() and the
1795  * block is not shareable
1796  *
1797  * MREMAP_FIXED is not supported under NOMMU conditions
1798  */
1799 static unsigned long do_mremap(unsigned long addr,
1800                         unsigned long old_len, unsigned long new_len,
1801                         unsigned long flags, unsigned long new_addr)
1802 {
1803         struct vm_area_struct *vma;
1804
1805         /* insanity checks first */
1806         old_len = PAGE_ALIGN(old_len);
1807         new_len = PAGE_ALIGN(new_len);
1808         if (old_len == 0 || new_len == 0)
1809                 return (unsigned long) -EINVAL;
1810
1811         if (addr & ~PAGE_MASK)
1812                 return -EINVAL;
1813
1814         if (flags & MREMAP_FIXED && new_addr != addr)
1815                 return (unsigned long) -EINVAL;
1816
1817         vma = find_vma_exact(current->mm, addr, old_len);
1818         if (!vma)
1819                 return (unsigned long) -EINVAL;
1820
1821         if (vma->vm_end != vma->vm_start + old_len)
1822                 return (unsigned long) -EFAULT;
1823
1824         if (vma->vm_flags & VM_MAYSHARE)
1825                 return (unsigned long) -EPERM;
1826
1827         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1828                 return (unsigned long) -ENOMEM;
1829
1830         /* all checks complete - do it */
1831         vma->vm_end = vma->vm_start + new_len;
1832         return vma->vm_start;
1833 }
1834
1835 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1836                 unsigned long, new_len, unsigned long, flags,
1837                 unsigned long, new_addr)
1838 {
1839         unsigned long ret;
1840
1841         down_write(&current->mm->mmap_sem);
1842         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1843         up_write(&current->mm->mmap_sem);
1844         return ret;
1845 }
1846
1847 struct page *follow_page_mask(struct vm_area_struct *vma,
1848                               unsigned long address, unsigned int flags,
1849                               unsigned int *page_mask)
1850 {
1851         *page_mask = 0;
1852         return NULL;
1853 }
1854
1855 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1856                 unsigned long pfn, unsigned long size, pgprot_t prot)
1857 {
1858         if (addr != (pfn << PAGE_SHIFT))
1859                 return -EINVAL;
1860
1861         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1862         return 0;
1863 }
1864 EXPORT_SYMBOL(remap_pfn_range);
1865
1866 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1867 {
1868         unsigned long pfn = start >> PAGE_SHIFT;
1869         unsigned long vm_len = vma->vm_end - vma->vm_start;
1870
1871         pfn += vma->vm_pgoff;
1872         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1873 }
1874 EXPORT_SYMBOL(vm_iomap_memory);
1875
1876 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1877                         unsigned long pgoff)
1878 {
1879         unsigned int size = vma->vm_end - vma->vm_start;
1880
1881         if (!(vma->vm_flags & VM_USERMAP))
1882                 return -EINVAL;
1883
1884         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1885         vma->vm_end = vma->vm_start + size;
1886
1887         return 0;
1888 }
1889 EXPORT_SYMBOL(remap_vmalloc_range);
1890
1891 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1892         unsigned long len, unsigned long pgoff, unsigned long flags)
1893 {
1894         return -ENOMEM;
1895 }
1896
1897 void unmap_mapping_range(struct address_space *mapping,
1898                          loff_t const holebegin, loff_t const holelen,
1899                          int even_cows)
1900 {
1901 }
1902 EXPORT_SYMBOL(unmap_mapping_range);
1903
1904 /*
1905  * Check that a process has enough memory to allocate a new virtual
1906  * mapping. 0 means there is enough memory for the allocation to
1907  * succeed and -ENOMEM implies there is not.
1908  *
1909  * We currently support three overcommit policies, which are set via the
1910  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1911  *
1912  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1913  * Additional code 2002 Jul 20 by Robert Love.
1914  *
1915  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1916  *
1917  * Note this is a helper function intended to be used by LSMs which
1918  * wish to use this logic.
1919  */
1920 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1921 {
1922         long free, allowed, reserve;
1923
1924         vm_acct_memory(pages);
1925
1926         /*
1927          * Sometimes we want to use more memory than we have
1928          */
1929         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1930                 return 0;
1931
1932         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1933                 free = global_page_state(NR_FREE_PAGES);
1934                 free += global_page_state(NR_FILE_PAGES);
1935
1936                 /*
1937                  * shmem pages shouldn't be counted as free in this
1938                  * case, they can't be purged, only swapped out, and
1939                  * that won't affect the overall amount of available
1940                  * memory in the system.
1941                  */
1942                 free -= global_page_state(NR_SHMEM);
1943
1944                 free += get_nr_swap_pages();
1945
1946                 /*
1947                  * Any slabs which are created with the
1948                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1949                  * which are reclaimable, under pressure.  The dentry
1950                  * cache and most inode caches should fall into this
1951                  */
1952                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1953
1954                 /*
1955                  * Leave reserved pages. The pages are not for anonymous pages.
1956                  */
1957                 if (free <= totalreserve_pages)
1958                         goto error;
1959                 else
1960                         free -= totalreserve_pages;
1961
1962                 /*
1963                  * Reserve some for root
1964                  */
1965                 if (!cap_sys_admin)
1966                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1967
1968                 if (free > pages)
1969                         return 0;
1970
1971                 goto error;
1972         }
1973
1974         allowed = vm_commit_limit();
1975         /*
1976          * Reserve some 3% for root
1977          */
1978         if (!cap_sys_admin)
1979                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1980
1981         /*
1982          * Don't let a single process grow so big a user can't recover
1983          */
1984         if (mm) {
1985                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1986                 allowed -= min_t(long, mm->total_vm / 32, reserve);
1987         }
1988
1989         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1990                 return 0;
1991
1992 error:
1993         vm_unacct_memory(pages);
1994
1995         return -ENOMEM;
1996 }
1997
1998 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1999 {
2000         BUG();
2001         return 0;
2002 }
2003 EXPORT_SYMBOL(filemap_fault);
2004
2005 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2006 {
2007         BUG();
2008 }
2009 EXPORT_SYMBOL(filemap_map_pages);
2010
2011 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2012                 unsigned long addr, void *buf, int len, int write)
2013 {
2014         struct vm_area_struct *vma;
2015
2016         down_read(&mm->mmap_sem);
2017
2018         /* the access must start within one of the target process's mappings */
2019         vma = find_vma(mm, addr);
2020         if (vma) {
2021                 /* don't overrun this mapping */
2022                 if (addr + len >= vma->vm_end)
2023                         len = vma->vm_end - addr;
2024
2025                 /* only read or write mappings where it is permitted */
2026                 if (write && vma->vm_flags & VM_MAYWRITE)
2027                         copy_to_user_page(vma, NULL, addr,
2028                                          (void *) addr, buf, len);
2029                 else if (!write && vma->vm_flags & VM_MAYREAD)
2030                         copy_from_user_page(vma, NULL, addr,
2031                                             buf, (void *) addr, len);
2032                 else
2033                         len = 0;
2034         } else {
2035                 len = 0;
2036         }
2037
2038         up_read(&mm->mmap_sem);
2039
2040         return len;
2041 }
2042
2043 /**
2044  * @access_remote_vm - access another process' address space
2045  * @mm:         the mm_struct of the target address space
2046  * @addr:       start address to access
2047  * @buf:        source or destination buffer
2048  * @len:        number of bytes to transfer
2049  * @write:      whether the access is a write
2050  *
2051  * The caller must hold a reference on @mm.
2052  */
2053 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2054                 void *buf, int len, int write)
2055 {
2056         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2057 }
2058
2059 /*
2060  * Access another process' address space.
2061  * - source/target buffer must be kernel space
2062  */
2063 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2064 {
2065         struct mm_struct *mm;
2066
2067         if (addr + len < addr)
2068                 return 0;
2069
2070         mm = get_task_mm(tsk);
2071         if (!mm)
2072                 return 0;
2073
2074         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2075
2076         mmput(mm);
2077         return len;
2078 }
2079
2080 /**
2081  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2082  * @inode: The inode to check
2083  * @size: The current filesize of the inode
2084  * @newsize: The proposed filesize of the inode
2085  *
2086  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2087  * make sure that that any outstanding VMAs aren't broken and then shrink the
2088  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2089  * automatically grant mappings that are too large.
2090  */
2091 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2092                                 size_t newsize)
2093 {
2094         struct vm_area_struct *vma;
2095         struct vm_region *region;
2096         pgoff_t low, high;
2097         size_t r_size, r_top;
2098
2099         low = newsize >> PAGE_SHIFT;
2100         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2101
2102         down_write(&nommu_region_sem);
2103         i_mmap_lock_read(inode->i_mapping);
2104
2105         /* search for VMAs that fall within the dead zone */
2106         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2107                 /* found one - only interested if it's shared out of the page
2108                  * cache */
2109                 if (vma->vm_flags & VM_SHARED) {
2110                         i_mmap_unlock_read(inode->i_mapping);
2111                         up_write(&nommu_region_sem);
2112                         return -ETXTBSY; /* not quite true, but near enough */
2113                 }
2114         }
2115
2116         /* reduce any regions that overlap the dead zone - if in existence,
2117          * these will be pointed to by VMAs that don't overlap the dead zone
2118          *
2119          * we don't check for any regions that start beyond the EOF as there
2120          * shouldn't be any
2121          */
2122         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2123                 if (!(vma->vm_flags & VM_SHARED))
2124                         continue;
2125
2126                 region = vma->vm_region;
2127                 r_size = region->vm_top - region->vm_start;
2128                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2129
2130                 if (r_top > newsize) {
2131                         region->vm_top -= r_top - newsize;
2132                         if (region->vm_end > region->vm_top)
2133                                 region->vm_end = region->vm_top;
2134                 }
2135         }
2136
2137         i_mmap_unlock_read(inode->i_mapping);
2138         up_write(&nommu_region_sem);
2139         return 0;
2140 }
2141
2142 /*
2143  * Initialise sysctl_user_reserve_kbytes.
2144  *
2145  * This is intended to prevent a user from starting a single memory hogging
2146  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2147  * mode.
2148  *
2149  * The default value is min(3% of free memory, 128MB)
2150  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2151  */
2152 static int __meminit init_user_reserve(void)
2153 {
2154         unsigned long free_kbytes;
2155
2156         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2157
2158         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2159         return 0;
2160 }
2161 module_init(init_user_reserve)
2162
2163 /*
2164  * Initialise sysctl_admin_reserve_kbytes.
2165  *
2166  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2167  * to log in and kill a memory hogging process.
2168  *
2169  * Systems with more than 256MB will reserve 8MB, enough to recover
2170  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2171  * only reserve 3% of free pages by default.
2172  */
2173 static int __meminit init_admin_reserve(void)
2174 {
2175         unsigned long free_kbytes;
2176
2177         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2178
2179         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2180         return 0;
2181 }
2182 module_init(init_admin_reserve)