Merge branch 'acpi-ec'
[linux-drm-fsl-dcu.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         if (!tlb->end)
239                 return;
240
241         tlb_flush(tlb);
242         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246         __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254                 free_pages_and_swap_cache(batch->pages, batch->nr);
255                 batch->nr = 0;
256         }
257         tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392                            unsigned long addr)
393 {
394         pgtable_t token = pmd_pgtable(*pmd);
395         pmd_clear(pmd);
396         pte_free_tlb(tlb, token, addr);
397         atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401                                 unsigned long addr, unsigned long end,
402                                 unsigned long floor, unsigned long ceiling)
403 {
404         pmd_t *pmd;
405         unsigned long next;
406         unsigned long start;
407
408         start = addr;
409         pmd = pmd_offset(pud, addr);
410         do {
411                 next = pmd_addr_end(addr, end);
412                 if (pmd_none_or_clear_bad(pmd))
413                         continue;
414                 free_pte_range(tlb, pmd, addr);
415         } while (pmd++, addr = next, addr != end);
416
417         start &= PUD_MASK;
418         if (start < floor)
419                 return;
420         if (ceiling) {
421                 ceiling &= PUD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 return;
427
428         pmd = pmd_offset(pud, start);
429         pud_clear(pud);
430         pmd_free_tlb(tlb, pmd, start);
431 }
432
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434                                 unsigned long addr, unsigned long end,
435                                 unsigned long floor, unsigned long ceiling)
436 {
437         pud_t *pud;
438         unsigned long next;
439         unsigned long start;
440
441         start = addr;
442         pud = pud_offset(pgd, addr);
443         do {
444                 next = pud_addr_end(addr, end);
445                 if (pud_none_or_clear_bad(pud))
446                         continue;
447                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448         } while (pud++, addr = next, addr != end);
449
450         start &= PGDIR_MASK;
451         if (start < floor)
452                 return;
453         if (ceiling) {
454                 ceiling &= PGDIR_MASK;
455                 if (!ceiling)
456                         return;
457         }
458         if (end - 1 > ceiling - 1)
459                 return;
460
461         pud = pud_offset(pgd, start);
462         pgd_clear(pgd);
463         pud_free_tlb(tlb, pud, start);
464 }
465
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void free_pgd_range(struct mmu_gather *tlb,
470                         unsigned long addr, unsigned long end,
471                         unsigned long floor, unsigned long ceiling)
472 {
473         pgd_t *pgd;
474         unsigned long next;
475
476         /*
477          * The next few lines have given us lots of grief...
478          *
479          * Why are we testing PMD* at this top level?  Because often
480          * there will be no work to do at all, and we'd prefer not to
481          * go all the way down to the bottom just to discover that.
482          *
483          * Why all these "- 1"s?  Because 0 represents both the bottom
484          * of the address space and the top of it (using -1 for the
485          * top wouldn't help much: the masks would do the wrong thing).
486          * The rule is that addr 0 and floor 0 refer to the bottom of
487          * the address space, but end 0 and ceiling 0 refer to the top
488          * Comparisons need to use "end - 1" and "ceiling - 1" (though
489          * that end 0 case should be mythical).
490          *
491          * Wherever addr is brought up or ceiling brought down, we must
492          * be careful to reject "the opposite 0" before it confuses the
493          * subsequent tests.  But what about where end is brought down
494          * by PMD_SIZE below? no, end can't go down to 0 there.
495          *
496          * Whereas we round start (addr) and ceiling down, by different
497          * masks at different levels, in order to test whether a table
498          * now has no other vmas using it, so can be freed, we don't
499          * bother to round floor or end up - the tests don't need that.
500          */
501
502         addr &= PMD_MASK;
503         if (addr < floor) {
504                 addr += PMD_SIZE;
505                 if (!addr)
506                         return;
507         }
508         if (ceiling) {
509                 ceiling &= PMD_MASK;
510                 if (!ceiling)
511                         return;
512         }
513         if (end - 1 > ceiling - 1)
514                 end -= PMD_SIZE;
515         if (addr > end - 1)
516                 return;
517
518         pgd = pgd_offset(tlb->mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(pgd))
522                         continue;
523                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524         } while (pgd++, addr = next, addr != end);
525 }
526
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528                 unsigned long floor, unsigned long ceiling)
529 {
530         while (vma) {
531                 struct vm_area_struct *next = vma->vm_next;
532                 unsigned long addr = vma->vm_start;
533
534                 /*
535                  * Hide vma from rmap and truncate_pagecache before freeing
536                  * pgtables
537                  */
538                 unlink_anon_vmas(vma);
539                 unlink_file_vma(vma);
540
541                 if (is_vm_hugetlb_page(vma)) {
542                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543                                 floor, next? next->vm_start: ceiling);
544                 } else {
545                         /*
546                          * Optimization: gather nearby vmas into one call down
547                          */
548                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549                                && !is_vm_hugetlb_page(next)) {
550                                 vma = next;
551                                 next = vma->vm_next;
552                                 unlink_anon_vmas(vma);
553                                 unlink_file_vma(vma);
554                         }
555                         free_pgd_range(tlb, addr, vma->vm_end,
556                                 floor, next? next->vm_start: ceiling);
557                 }
558                 vma = next;
559         }
560 }
561
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563                 pmd_t *pmd, unsigned long address)
564 {
565         spinlock_t *ptl;
566         pgtable_t new = pte_alloc_one(mm, address);
567         int wait_split_huge_page;
568         if (!new)
569                 return -ENOMEM;
570
571         /*
572          * Ensure all pte setup (eg. pte page lock and page clearing) are
573          * visible before the pte is made visible to other CPUs by being
574          * put into page tables.
575          *
576          * The other side of the story is the pointer chasing in the page
577          * table walking code (when walking the page table without locking;
578          * ie. most of the time). Fortunately, these data accesses consist
579          * of a chain of data-dependent loads, meaning most CPUs (alpha
580          * being the notable exception) will already guarantee loads are
581          * seen in-order. See the alpha page table accessors for the
582          * smp_read_barrier_depends() barriers in page table walking code.
583          */
584         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585
586         ptl = pmd_lock(mm, pmd);
587         wait_split_huge_page = 0;
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         } else if (unlikely(pmd_trans_splitting(*pmd)))
593                 wait_split_huge_page = 1;
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         if (wait_split_huge_page)
598                 wait_split_huge_page(vma->anon_vma, pmd);
599         return 0;
600 }
601
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605         if (!new)
606                 return -ENOMEM;
607
608         smp_wmb(); /* See comment in __pte_alloc */
609
610         spin_lock(&init_mm.page_table_lock);
611         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
612                 pmd_populate_kernel(&init_mm, pmd, new);
613                 new = NULL;
614         } else
615                 VM_BUG_ON(pmd_trans_splitting(*pmd));
616         spin_unlock(&init_mm.page_table_lock);
617         if (new)
618                 pte_free_kernel(&init_mm, new);
619         return 0;
620 }
621
622 static inline void init_rss_vec(int *rss)
623 {
624         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629         int i;
630
631         if (current->mm == mm)
632                 sync_mm_rss(mm);
633         for (i = 0; i < NR_MM_COUNTERS; i++)
634                 if (rss[i])
635                         add_mm_counter(mm, i, rss[i]);
636 }
637
638 /*
639  * This function is called to print an error when a bad pte
640  * is found. For example, we might have a PFN-mapped pte in
641  * a region that doesn't allow it.
642  *
643  * The calling function must still handle the error.
644  */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646                           pte_t pte, struct page *page)
647 {
648         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649         pud_t *pud = pud_offset(pgd, addr);
650         pmd_t *pmd = pmd_offset(pud, addr);
651         struct address_space *mapping;
652         pgoff_t index;
653         static unsigned long resume;
654         static unsigned long nr_shown;
655         static unsigned long nr_unshown;
656
657         /*
658          * Allow a burst of 60 reports, then keep quiet for that minute;
659          * or allow a steady drip of one report per second.
660          */
661         if (nr_shown == 60) {
662                 if (time_before(jiffies, resume)) {
663                         nr_unshown++;
664                         return;
665                 }
666                 if (nr_unshown) {
667                         printk(KERN_ALERT
668                                 "BUG: Bad page map: %lu messages suppressed\n",
669                                 nr_unshown);
670                         nr_unshown = 0;
671                 }
672                 nr_shown = 0;
673         }
674         if (nr_shown++ == 0)
675                 resume = jiffies + 60 * HZ;
676
677         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678         index = linear_page_index(vma, addr);
679
680         printk(KERN_ALERT
681                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
682                 current->comm,
683                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684         if (page)
685                 dump_page(page, "bad pte");
686         printk(KERN_ALERT
687                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689         /*
690          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691          */
692         if (vma->vm_ops)
693                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694                        vma->vm_ops->fault);
695         if (vma->vm_file)
696                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697                        vma->vm_file->f_op->mmap);
698         dump_stack();
699         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750                                 pte_t pte)
751 {
752         unsigned long pfn = pte_pfn(pte);
753
754         if (HAVE_PTE_SPECIAL) {
755                 if (likely(!pte_special(pte)))
756                         goto check_pfn;
757                 if (vma->vm_ops && vma->vm_ops->find_special_page)
758                         return vma->vm_ops->find_special_page(vma, addr);
759                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
760                         return NULL;
761                 if (!is_zero_pfn(pfn))
762                         print_bad_pte(vma, addr, pte, NULL);
763                 return NULL;
764         }
765
766         /* !HAVE_PTE_SPECIAL case follows: */
767
768         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
769                 if (vma->vm_flags & VM_MIXEDMAP) {
770                         if (!pfn_valid(pfn))
771                                 return NULL;
772                         goto out;
773                 } else {
774                         unsigned long off;
775                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
776                         if (pfn == vma->vm_pgoff + off)
777                                 return NULL;
778                         if (!is_cow_mapping(vma->vm_flags))
779                                 return NULL;
780                 }
781         }
782
783         if (is_zero_pfn(pfn))
784                 return NULL;
785 check_pfn:
786         if (unlikely(pfn > highest_memmap_pfn)) {
787                 print_bad_pte(vma, addr, pte, NULL);
788                 return NULL;
789         }
790
791         /*
792          * NOTE! We still have PageReserved() pages in the page tables.
793          * eg. VDSO mappings can cause them to exist.
794          */
795 out:
796         return pfn_to_page(pfn);
797 }
798
799 /*
800  * copy one vm_area from one task to the other. Assumes the page tables
801  * already present in the new task to be cleared in the whole range
802  * covered by this vma.
803  */
804
805 static inline unsigned long
806 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
808                 unsigned long addr, int *rss)
809 {
810         unsigned long vm_flags = vma->vm_flags;
811         pte_t pte = *src_pte;
812         struct page *page;
813
814         /* pte contains position in swap or file, so copy. */
815         if (unlikely(!pte_present(pte))) {
816                 if (!pte_file(pte)) {
817                         swp_entry_t entry = pte_to_swp_entry(pte);
818
819                         if (likely(!non_swap_entry(entry))) {
820                                 if (swap_duplicate(entry) < 0)
821                                         return entry.val;
822
823                                 /* make sure dst_mm is on swapoff's mmlist. */
824                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
825                                         spin_lock(&mmlist_lock);
826                                         if (list_empty(&dst_mm->mmlist))
827                                                 list_add(&dst_mm->mmlist,
828                                                          &src_mm->mmlist);
829                                         spin_unlock(&mmlist_lock);
830                                 }
831                                 rss[MM_SWAPENTS]++;
832                         } else if (is_migration_entry(entry)) {
833                                 page = migration_entry_to_page(entry);
834
835                                 if (PageAnon(page))
836                                         rss[MM_ANONPAGES]++;
837                                 else
838                                         rss[MM_FILEPAGES]++;
839
840                                 if (is_write_migration_entry(entry) &&
841                                     is_cow_mapping(vm_flags)) {
842                                         /*
843                                          * COW mappings require pages in both
844                                          * parent and child to be set to read.
845                                          */
846                                         make_migration_entry_read(&entry);
847                                         pte = swp_entry_to_pte(entry);
848                                         if (pte_swp_soft_dirty(*src_pte))
849                                                 pte = pte_swp_mksoft_dirty(pte);
850                                         set_pte_at(src_mm, addr, src_pte, pte);
851                                 }
852                         }
853                 }
854                 goto out_set_pte;
855         }
856
857         /*
858          * If it's a COW mapping, write protect it both
859          * in the parent and the child
860          */
861         if (is_cow_mapping(vm_flags)) {
862                 ptep_set_wrprotect(src_mm, addr, src_pte);
863                 pte = pte_wrprotect(pte);
864         }
865
866         /*
867          * If it's a shared mapping, mark it clean in
868          * the child
869          */
870         if (vm_flags & VM_SHARED)
871                 pte = pte_mkclean(pte);
872         pte = pte_mkold(pte);
873
874         page = vm_normal_page(vma, addr, pte);
875         if (page) {
876                 get_page(page);
877                 page_dup_rmap(page);
878                 if (PageAnon(page))
879                         rss[MM_ANONPAGES]++;
880                 else
881                         rss[MM_FILEPAGES]++;
882         }
883
884 out_set_pte:
885         set_pte_at(dst_mm, addr, dst_pte, pte);
886         return 0;
887 }
888
889 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
890                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
891                    unsigned long addr, unsigned long end)
892 {
893         pte_t *orig_src_pte, *orig_dst_pte;
894         pte_t *src_pte, *dst_pte;
895         spinlock_t *src_ptl, *dst_ptl;
896         int progress = 0;
897         int rss[NR_MM_COUNTERS];
898         swp_entry_t entry = (swp_entry_t){0};
899
900 again:
901         init_rss_vec(rss);
902
903         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
904         if (!dst_pte)
905                 return -ENOMEM;
906         src_pte = pte_offset_map(src_pmd, addr);
907         src_ptl = pte_lockptr(src_mm, src_pmd);
908         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
909         orig_src_pte = src_pte;
910         orig_dst_pte = dst_pte;
911         arch_enter_lazy_mmu_mode();
912
913         do {
914                 /*
915                  * We are holding two locks at this point - either of them
916                  * could generate latencies in another task on another CPU.
917                  */
918                 if (progress >= 32) {
919                         progress = 0;
920                         if (need_resched() ||
921                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
922                                 break;
923                 }
924                 if (pte_none(*src_pte)) {
925                         progress++;
926                         continue;
927                 }
928                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
929                                                         vma, addr, rss);
930                 if (entry.val)
931                         break;
932                 progress += 8;
933         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
934
935         arch_leave_lazy_mmu_mode();
936         spin_unlock(src_ptl);
937         pte_unmap(orig_src_pte);
938         add_mm_rss_vec(dst_mm, rss);
939         pte_unmap_unlock(orig_dst_pte, dst_ptl);
940         cond_resched();
941
942         if (entry.val) {
943                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
944                         return -ENOMEM;
945                 progress = 0;
946         }
947         if (addr != end)
948                 goto again;
949         return 0;
950 }
951
952 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
953                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
954                 unsigned long addr, unsigned long end)
955 {
956         pmd_t *src_pmd, *dst_pmd;
957         unsigned long next;
958
959         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
960         if (!dst_pmd)
961                 return -ENOMEM;
962         src_pmd = pmd_offset(src_pud, addr);
963         do {
964                 next = pmd_addr_end(addr, end);
965                 if (pmd_trans_huge(*src_pmd)) {
966                         int err;
967                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
968                         err = copy_huge_pmd(dst_mm, src_mm,
969                                             dst_pmd, src_pmd, addr, vma);
970                         if (err == -ENOMEM)
971                                 return -ENOMEM;
972                         if (!err)
973                                 continue;
974                         /* fall through */
975                 }
976                 if (pmd_none_or_clear_bad(src_pmd))
977                         continue;
978                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
979                                                 vma, addr, next))
980                         return -ENOMEM;
981         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
982         return 0;
983 }
984
985 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
986                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
987                 unsigned long addr, unsigned long end)
988 {
989         pud_t *src_pud, *dst_pud;
990         unsigned long next;
991
992         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
993         if (!dst_pud)
994                 return -ENOMEM;
995         src_pud = pud_offset(src_pgd, addr);
996         do {
997                 next = pud_addr_end(addr, end);
998                 if (pud_none_or_clear_bad(src_pud))
999                         continue;
1000                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1001                                                 vma, addr, next))
1002                         return -ENOMEM;
1003         } while (dst_pud++, src_pud++, addr = next, addr != end);
1004         return 0;
1005 }
1006
1007 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1008                 struct vm_area_struct *vma)
1009 {
1010         pgd_t *src_pgd, *dst_pgd;
1011         unsigned long next;
1012         unsigned long addr = vma->vm_start;
1013         unsigned long end = vma->vm_end;
1014         unsigned long mmun_start;       /* For mmu_notifiers */
1015         unsigned long mmun_end;         /* For mmu_notifiers */
1016         bool is_cow;
1017         int ret;
1018
1019         /*
1020          * Don't copy ptes where a page fault will fill them correctly.
1021          * Fork becomes much lighter when there are big shared or private
1022          * readonly mappings. The tradeoff is that copy_page_range is more
1023          * efficient than faulting.
1024          */
1025         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1026                                VM_PFNMAP | VM_MIXEDMAP))) {
1027                 if (!vma->anon_vma)
1028                         return 0;
1029         }
1030
1031         if (is_vm_hugetlb_page(vma))
1032                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1033
1034         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1035                 /*
1036                  * We do not free on error cases below as remove_vma
1037                  * gets called on error from higher level routine
1038                  */
1039                 ret = track_pfn_copy(vma);
1040                 if (ret)
1041                         return ret;
1042         }
1043
1044         /*
1045          * We need to invalidate the secondary MMU mappings only when
1046          * there could be a permission downgrade on the ptes of the
1047          * parent mm. And a permission downgrade will only happen if
1048          * is_cow_mapping() returns true.
1049          */
1050         is_cow = is_cow_mapping(vma->vm_flags);
1051         mmun_start = addr;
1052         mmun_end   = end;
1053         if (is_cow)
1054                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1055                                                     mmun_end);
1056
1057         ret = 0;
1058         dst_pgd = pgd_offset(dst_mm, addr);
1059         src_pgd = pgd_offset(src_mm, addr);
1060         do {
1061                 next = pgd_addr_end(addr, end);
1062                 if (pgd_none_or_clear_bad(src_pgd))
1063                         continue;
1064                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1065                                             vma, addr, next))) {
1066                         ret = -ENOMEM;
1067                         break;
1068                 }
1069         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1070
1071         if (is_cow)
1072                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1073         return ret;
1074 }
1075
1076 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1077                                 struct vm_area_struct *vma, pmd_t *pmd,
1078                                 unsigned long addr, unsigned long end,
1079                                 struct zap_details *details)
1080 {
1081         struct mm_struct *mm = tlb->mm;
1082         int force_flush = 0;
1083         int rss[NR_MM_COUNTERS];
1084         spinlock_t *ptl;
1085         pte_t *start_pte;
1086         pte_t *pte;
1087
1088 again:
1089         init_rss_vec(rss);
1090         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1091         pte = start_pte;
1092         arch_enter_lazy_mmu_mode();
1093         do {
1094                 pte_t ptent = *pte;
1095                 if (pte_none(ptent)) {
1096                         continue;
1097                 }
1098
1099                 if (pte_present(ptent)) {
1100                         struct page *page;
1101
1102                         page = vm_normal_page(vma, addr, ptent);
1103                         if (unlikely(details) && page) {
1104                                 /*
1105                                  * unmap_shared_mapping_pages() wants to
1106                                  * invalidate cache without truncating:
1107                                  * unmap shared but keep private pages.
1108                                  */
1109                                 if (details->check_mapping &&
1110                                     details->check_mapping != page->mapping)
1111                                         continue;
1112                                 /*
1113                                  * Each page->index must be checked when
1114                                  * invalidating or truncating nonlinear.
1115                                  */
1116                                 if (details->nonlinear_vma &&
1117                                     (page->index < details->first_index ||
1118                                      page->index > details->last_index))
1119                                         continue;
1120                         }
1121                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1122                                                         tlb->fullmm);
1123                         tlb_remove_tlb_entry(tlb, pte, addr);
1124                         if (unlikely(!page))
1125                                 continue;
1126                         if (unlikely(details) && details->nonlinear_vma
1127                             && linear_page_index(details->nonlinear_vma,
1128                                                 addr) != page->index) {
1129                                 pte_t ptfile = pgoff_to_pte(page->index);
1130                                 if (pte_soft_dirty(ptent))
1131                                         ptfile = pte_file_mksoft_dirty(ptfile);
1132                                 set_pte_at(mm, addr, pte, ptfile);
1133                         }
1134                         if (PageAnon(page))
1135                                 rss[MM_ANONPAGES]--;
1136                         else {
1137                                 if (pte_dirty(ptent)) {
1138                                         force_flush = 1;
1139                                         set_page_dirty(page);
1140                                 }
1141                                 if (pte_young(ptent) &&
1142                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1143                                         mark_page_accessed(page);
1144                                 rss[MM_FILEPAGES]--;
1145                         }
1146                         page_remove_rmap(page);
1147                         if (unlikely(page_mapcount(page) < 0))
1148                                 print_bad_pte(vma, addr, ptent, page);
1149                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1150                                 force_flush = 1;
1151                                 addr += PAGE_SIZE;
1152                                 break;
1153                         }
1154                         continue;
1155                 }
1156                 /*
1157                  * If details->check_mapping, we leave swap entries;
1158                  * if details->nonlinear_vma, we leave file entries.
1159                  */
1160                 if (unlikely(details))
1161                         continue;
1162                 if (pte_file(ptent)) {
1163                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1164                                 print_bad_pte(vma, addr, ptent, NULL);
1165                 } else {
1166                         swp_entry_t entry = pte_to_swp_entry(ptent);
1167
1168                         if (!non_swap_entry(entry))
1169                                 rss[MM_SWAPENTS]--;
1170                         else if (is_migration_entry(entry)) {
1171                                 struct page *page;
1172
1173                                 page = migration_entry_to_page(entry);
1174
1175                                 if (PageAnon(page))
1176                                         rss[MM_ANONPAGES]--;
1177                                 else
1178                                         rss[MM_FILEPAGES]--;
1179                         }
1180                         if (unlikely(!free_swap_and_cache(entry)))
1181                                 print_bad_pte(vma, addr, ptent, NULL);
1182                 }
1183                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1184         } while (pte++, addr += PAGE_SIZE, addr != end);
1185
1186         add_mm_rss_vec(mm, rss);
1187         arch_leave_lazy_mmu_mode();
1188
1189         /* Do the actual TLB flush before dropping ptl */
1190         if (force_flush)
1191                 tlb_flush_mmu_tlbonly(tlb);
1192         pte_unmap_unlock(start_pte, ptl);
1193
1194         /*
1195          * If we forced a TLB flush (either due to running out of
1196          * batch buffers or because we needed to flush dirty TLB
1197          * entries before releasing the ptl), free the batched
1198          * memory too. Restart if we didn't do everything.
1199          */
1200         if (force_flush) {
1201                 force_flush = 0;
1202                 tlb_flush_mmu_free(tlb);
1203
1204                 if (addr != end)
1205                         goto again;
1206         }
1207
1208         return addr;
1209 }
1210
1211 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1212                                 struct vm_area_struct *vma, pud_t *pud,
1213                                 unsigned long addr, unsigned long end,
1214                                 struct zap_details *details)
1215 {
1216         pmd_t *pmd;
1217         unsigned long next;
1218
1219         pmd = pmd_offset(pud, addr);
1220         do {
1221                 next = pmd_addr_end(addr, end);
1222                 if (pmd_trans_huge(*pmd)) {
1223                         if (next - addr != HPAGE_PMD_SIZE) {
1224 #ifdef CONFIG_DEBUG_VM
1225                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1226                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1227                                                 __func__, addr, end,
1228                                                 vma->vm_start,
1229                                                 vma->vm_end);
1230                                         BUG();
1231                                 }
1232 #endif
1233                                 split_huge_page_pmd(vma, addr, pmd);
1234                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1235                                 goto next;
1236                         /* fall through */
1237                 }
1238                 /*
1239                  * Here there can be other concurrent MADV_DONTNEED or
1240                  * trans huge page faults running, and if the pmd is
1241                  * none or trans huge it can change under us. This is
1242                  * because MADV_DONTNEED holds the mmap_sem in read
1243                  * mode.
1244                  */
1245                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1246                         goto next;
1247                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1248 next:
1249                 cond_resched();
1250         } while (pmd++, addr = next, addr != end);
1251
1252         return addr;
1253 }
1254
1255 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1256                                 struct vm_area_struct *vma, pgd_t *pgd,
1257                                 unsigned long addr, unsigned long end,
1258                                 struct zap_details *details)
1259 {
1260         pud_t *pud;
1261         unsigned long next;
1262
1263         pud = pud_offset(pgd, addr);
1264         do {
1265                 next = pud_addr_end(addr, end);
1266                 if (pud_none_or_clear_bad(pud))
1267                         continue;
1268                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1269         } while (pud++, addr = next, addr != end);
1270
1271         return addr;
1272 }
1273
1274 static void unmap_page_range(struct mmu_gather *tlb,
1275                              struct vm_area_struct *vma,
1276                              unsigned long addr, unsigned long end,
1277                              struct zap_details *details)
1278 {
1279         pgd_t *pgd;
1280         unsigned long next;
1281
1282         if (details && !details->check_mapping && !details->nonlinear_vma)
1283                 details = NULL;
1284
1285         BUG_ON(addr >= end);
1286         tlb_start_vma(tlb, vma);
1287         pgd = pgd_offset(vma->vm_mm, addr);
1288         do {
1289                 next = pgd_addr_end(addr, end);
1290                 if (pgd_none_or_clear_bad(pgd))
1291                         continue;
1292                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1293         } while (pgd++, addr = next, addr != end);
1294         tlb_end_vma(tlb, vma);
1295 }
1296
1297
1298 static void unmap_single_vma(struct mmu_gather *tlb,
1299                 struct vm_area_struct *vma, unsigned long start_addr,
1300                 unsigned long end_addr,
1301                 struct zap_details *details)
1302 {
1303         unsigned long start = max(vma->vm_start, start_addr);
1304         unsigned long end;
1305
1306         if (start >= vma->vm_end)
1307                 return;
1308         end = min(vma->vm_end, end_addr);
1309         if (end <= vma->vm_start)
1310                 return;
1311
1312         if (vma->vm_file)
1313                 uprobe_munmap(vma, start, end);
1314
1315         if (unlikely(vma->vm_flags & VM_PFNMAP))
1316                 untrack_pfn(vma, 0, 0);
1317
1318         if (start != end) {
1319                 if (unlikely(is_vm_hugetlb_page(vma))) {
1320                         /*
1321                          * It is undesirable to test vma->vm_file as it
1322                          * should be non-null for valid hugetlb area.
1323                          * However, vm_file will be NULL in the error
1324                          * cleanup path of mmap_region. When
1325                          * hugetlbfs ->mmap method fails,
1326                          * mmap_region() nullifies vma->vm_file
1327                          * before calling this function to clean up.
1328                          * Since no pte has actually been setup, it is
1329                          * safe to do nothing in this case.
1330                          */
1331                         if (vma->vm_file) {
1332                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1333                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1334                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1335                         }
1336                 } else
1337                         unmap_page_range(tlb, vma, start, end, details);
1338         }
1339 }
1340
1341 /**
1342  * unmap_vmas - unmap a range of memory covered by a list of vma's
1343  * @tlb: address of the caller's struct mmu_gather
1344  * @vma: the starting vma
1345  * @start_addr: virtual address at which to start unmapping
1346  * @end_addr: virtual address at which to end unmapping
1347  *
1348  * Unmap all pages in the vma list.
1349  *
1350  * Only addresses between `start' and `end' will be unmapped.
1351  *
1352  * The VMA list must be sorted in ascending virtual address order.
1353  *
1354  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355  * range after unmap_vmas() returns.  So the only responsibility here is to
1356  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357  * drops the lock and schedules.
1358  */
1359 void unmap_vmas(struct mmu_gather *tlb,
1360                 struct vm_area_struct *vma, unsigned long start_addr,
1361                 unsigned long end_addr)
1362 {
1363         struct mm_struct *mm = vma->vm_mm;
1364
1365         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1366         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1367                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1368         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1369 }
1370
1371 /**
1372  * zap_page_range - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @start: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of nonlinear truncation or shared cache invalidation
1377  *
1378  * Caller must protect the VMA list
1379  */
1380 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384         struct mmu_gather tlb;
1385         unsigned long end = start + size;
1386
1387         lru_add_drain();
1388         tlb_gather_mmu(&tlb, mm, start, end);
1389         update_hiwater_rss(mm);
1390         mmu_notifier_invalidate_range_start(mm, start, end);
1391         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1392                 unmap_single_vma(&tlb, vma, start, end, details);
1393         mmu_notifier_invalidate_range_end(mm, start, end);
1394         tlb_finish_mmu(&tlb, start, end);
1395 }
1396
1397 /**
1398  * zap_page_range_single - remove user pages in a given range
1399  * @vma: vm_area_struct holding the applicable pages
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  * @details: details of nonlinear truncation or shared cache invalidation
1403  *
1404  * The range must fit into one VMA.
1405  */
1406 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1407                 unsigned long size, struct zap_details *details)
1408 {
1409         struct mm_struct *mm = vma->vm_mm;
1410         struct mmu_gather tlb;
1411         unsigned long end = address + size;
1412
1413         lru_add_drain();
1414         tlb_gather_mmu(&tlb, mm, address, end);
1415         update_hiwater_rss(mm);
1416         mmu_notifier_invalidate_range_start(mm, address, end);
1417         unmap_single_vma(&tlb, vma, address, end, details);
1418         mmu_notifier_invalidate_range_end(mm, address, end);
1419         tlb_finish_mmu(&tlb, address, end);
1420 }
1421
1422 /**
1423  * zap_vma_ptes - remove ptes mapping the vma
1424  * @vma: vm_area_struct holding ptes to be zapped
1425  * @address: starting address of pages to zap
1426  * @size: number of bytes to zap
1427  *
1428  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429  *
1430  * The entire address range must be fully contained within the vma.
1431  *
1432  * Returns 0 if successful.
1433  */
1434 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1435                 unsigned long size)
1436 {
1437         if (address < vma->vm_start || address + size > vma->vm_end ||
1438                         !(vma->vm_flags & VM_PFNMAP))
1439                 return -1;
1440         zap_page_range_single(vma, address, size, NULL);
1441         return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1444
1445 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1446                         spinlock_t **ptl)
1447 {
1448         pgd_t * pgd = pgd_offset(mm, addr);
1449         pud_t * pud = pud_alloc(mm, pgd, addr);
1450         if (pud) {
1451                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1452                 if (pmd) {
1453                         VM_BUG_ON(pmd_trans_huge(*pmd));
1454                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1455                 }
1456         }
1457         return NULL;
1458 }
1459
1460 /*
1461  * This is the old fallback for page remapping.
1462  *
1463  * For historical reasons, it only allows reserved pages. Only
1464  * old drivers should use this, and they needed to mark their
1465  * pages reserved for the old functions anyway.
1466  */
1467 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1468                         struct page *page, pgprot_t prot)
1469 {
1470         struct mm_struct *mm = vma->vm_mm;
1471         int retval;
1472         pte_t *pte;
1473         spinlock_t *ptl;
1474
1475         retval = -EINVAL;
1476         if (PageAnon(page))
1477                 goto out;
1478         retval = -ENOMEM;
1479         flush_dcache_page(page);
1480         pte = get_locked_pte(mm, addr, &ptl);
1481         if (!pte)
1482                 goto out;
1483         retval = -EBUSY;
1484         if (!pte_none(*pte))
1485                 goto out_unlock;
1486
1487         /* Ok, finally just insert the thing.. */
1488         get_page(page);
1489         inc_mm_counter_fast(mm, MM_FILEPAGES);
1490         page_add_file_rmap(page);
1491         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1492
1493         retval = 0;
1494         pte_unmap_unlock(pte, ptl);
1495         return retval;
1496 out_unlock:
1497         pte_unmap_unlock(pte, ptl);
1498 out:
1499         return retval;
1500 }
1501
1502 /**
1503  * vm_insert_page - insert single page into user vma
1504  * @vma: user vma to map to
1505  * @addr: target user address of this page
1506  * @page: source kernel page
1507  *
1508  * This allows drivers to insert individual pages they've allocated
1509  * into a user vma.
1510  *
1511  * The page has to be a nice clean _individual_ kernel allocation.
1512  * If you allocate a compound page, you need to have marked it as
1513  * such (__GFP_COMP), or manually just split the page up yourself
1514  * (see split_page()).
1515  *
1516  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1517  * took an arbitrary page protection parameter. This doesn't allow
1518  * that. Your vma protection will have to be set up correctly, which
1519  * means that if you want a shared writable mapping, you'd better
1520  * ask for a shared writable mapping!
1521  *
1522  * The page does not need to be reserved.
1523  *
1524  * Usually this function is called from f_op->mmap() handler
1525  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1526  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1527  * function from other places, for example from page-fault handler.
1528  */
1529 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1530                         struct page *page)
1531 {
1532         if (addr < vma->vm_start || addr >= vma->vm_end)
1533                 return -EFAULT;
1534         if (!page_count(page))
1535                 return -EINVAL;
1536         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1537                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1538                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1539                 vma->vm_flags |= VM_MIXEDMAP;
1540         }
1541         return insert_page(vma, addr, page, vma->vm_page_prot);
1542 }
1543 EXPORT_SYMBOL(vm_insert_page);
1544
1545 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1546                         unsigned long pfn, pgprot_t prot)
1547 {
1548         struct mm_struct *mm = vma->vm_mm;
1549         int retval;
1550         pte_t *pte, entry;
1551         spinlock_t *ptl;
1552
1553         retval = -ENOMEM;
1554         pte = get_locked_pte(mm, addr, &ptl);
1555         if (!pte)
1556                 goto out;
1557         retval = -EBUSY;
1558         if (!pte_none(*pte))
1559                 goto out_unlock;
1560
1561         /* Ok, finally just insert the thing.. */
1562         entry = pte_mkspecial(pfn_pte(pfn, prot));
1563         set_pte_at(mm, addr, pte, entry);
1564         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1565
1566         retval = 0;
1567 out_unlock:
1568         pte_unmap_unlock(pte, ptl);
1569 out:
1570         return retval;
1571 }
1572
1573 /**
1574  * vm_insert_pfn - insert single pfn into user vma
1575  * @vma: user vma to map to
1576  * @addr: target user address of this page
1577  * @pfn: source kernel pfn
1578  *
1579  * Similar to vm_insert_page, this allows drivers to insert individual pages
1580  * they've allocated into a user vma. Same comments apply.
1581  *
1582  * This function should only be called from a vm_ops->fault handler, and
1583  * in that case the handler should return NULL.
1584  *
1585  * vma cannot be a COW mapping.
1586  *
1587  * As this is called only for pages that do not currently exist, we
1588  * do not need to flush old virtual caches or the TLB.
1589  */
1590 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1591                         unsigned long pfn)
1592 {
1593         int ret;
1594         pgprot_t pgprot = vma->vm_page_prot;
1595         /*
1596          * Technically, architectures with pte_special can avoid all these
1597          * restrictions (same for remap_pfn_range).  However we would like
1598          * consistency in testing and feature parity among all, so we should
1599          * try to keep these invariants in place for everybody.
1600          */
1601         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1602         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1603                                                 (VM_PFNMAP|VM_MIXEDMAP));
1604         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1605         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1606
1607         if (addr < vma->vm_start || addr >= vma->vm_end)
1608                 return -EFAULT;
1609         if (track_pfn_insert(vma, &pgprot, pfn))
1610                 return -EINVAL;
1611
1612         ret = insert_pfn(vma, addr, pfn, pgprot);
1613
1614         return ret;
1615 }
1616 EXPORT_SYMBOL(vm_insert_pfn);
1617
1618 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1619                         unsigned long pfn)
1620 {
1621         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1622
1623         if (addr < vma->vm_start || addr >= vma->vm_end)
1624                 return -EFAULT;
1625
1626         /*
1627          * If we don't have pte special, then we have to use the pfn_valid()
1628          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1629          * refcount the page if pfn_valid is true (hence insert_page rather
1630          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1631          * without pte special, it would there be refcounted as a normal page.
1632          */
1633         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1634                 struct page *page;
1635
1636                 page = pfn_to_page(pfn);
1637                 return insert_page(vma, addr, page, vma->vm_page_prot);
1638         }
1639         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1640 }
1641 EXPORT_SYMBOL(vm_insert_mixed);
1642
1643 /*
1644  * maps a range of physical memory into the requested pages. the old
1645  * mappings are removed. any references to nonexistent pages results
1646  * in null mappings (currently treated as "copy-on-access")
1647  */
1648 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1649                         unsigned long addr, unsigned long end,
1650                         unsigned long pfn, pgprot_t prot)
1651 {
1652         pte_t *pte;
1653         spinlock_t *ptl;
1654
1655         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1656         if (!pte)
1657                 return -ENOMEM;
1658         arch_enter_lazy_mmu_mode();
1659         do {
1660                 BUG_ON(!pte_none(*pte));
1661                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1662                 pfn++;
1663         } while (pte++, addr += PAGE_SIZE, addr != end);
1664         arch_leave_lazy_mmu_mode();
1665         pte_unmap_unlock(pte - 1, ptl);
1666         return 0;
1667 }
1668
1669 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1670                         unsigned long addr, unsigned long end,
1671                         unsigned long pfn, pgprot_t prot)
1672 {
1673         pmd_t *pmd;
1674         unsigned long next;
1675
1676         pfn -= addr >> PAGE_SHIFT;
1677         pmd = pmd_alloc(mm, pud, addr);
1678         if (!pmd)
1679                 return -ENOMEM;
1680         VM_BUG_ON(pmd_trans_huge(*pmd));
1681         do {
1682                 next = pmd_addr_end(addr, end);
1683                 if (remap_pte_range(mm, pmd, addr, next,
1684                                 pfn + (addr >> PAGE_SHIFT), prot))
1685                         return -ENOMEM;
1686         } while (pmd++, addr = next, addr != end);
1687         return 0;
1688 }
1689
1690 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1691                         unsigned long addr, unsigned long end,
1692                         unsigned long pfn, pgprot_t prot)
1693 {
1694         pud_t *pud;
1695         unsigned long next;
1696
1697         pfn -= addr >> PAGE_SHIFT;
1698         pud = pud_alloc(mm, pgd, addr);
1699         if (!pud)
1700                 return -ENOMEM;
1701         do {
1702                 next = pud_addr_end(addr, end);
1703                 if (remap_pmd_range(mm, pud, addr, next,
1704                                 pfn + (addr >> PAGE_SHIFT), prot))
1705                         return -ENOMEM;
1706         } while (pud++, addr = next, addr != end);
1707         return 0;
1708 }
1709
1710 /**
1711  * remap_pfn_range - remap kernel memory to userspace
1712  * @vma: user vma to map to
1713  * @addr: target user address to start at
1714  * @pfn: physical address of kernel memory
1715  * @size: size of map area
1716  * @prot: page protection flags for this mapping
1717  *
1718  *  Note: this is only safe if the mm semaphore is held when called.
1719  */
1720 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1721                     unsigned long pfn, unsigned long size, pgprot_t prot)
1722 {
1723         pgd_t *pgd;
1724         unsigned long next;
1725         unsigned long end = addr + PAGE_ALIGN(size);
1726         struct mm_struct *mm = vma->vm_mm;
1727         int err;
1728
1729         /*
1730          * Physically remapped pages are special. Tell the
1731          * rest of the world about it:
1732          *   VM_IO tells people not to look at these pages
1733          *      (accesses can have side effects).
1734          *   VM_PFNMAP tells the core MM that the base pages are just
1735          *      raw PFN mappings, and do not have a "struct page" associated
1736          *      with them.
1737          *   VM_DONTEXPAND
1738          *      Disable vma merging and expanding with mremap().
1739          *   VM_DONTDUMP
1740          *      Omit vma from core dump, even when VM_IO turned off.
1741          *
1742          * There's a horrible special case to handle copy-on-write
1743          * behaviour that some programs depend on. We mark the "original"
1744          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1745          * See vm_normal_page() for details.
1746          */
1747         if (is_cow_mapping(vma->vm_flags)) {
1748                 if (addr != vma->vm_start || end != vma->vm_end)
1749                         return -EINVAL;
1750                 vma->vm_pgoff = pfn;
1751         }
1752
1753         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1754         if (err)
1755                 return -EINVAL;
1756
1757         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1758
1759         BUG_ON(addr >= end);
1760         pfn -= addr >> PAGE_SHIFT;
1761         pgd = pgd_offset(mm, addr);
1762         flush_cache_range(vma, addr, end);
1763         do {
1764                 next = pgd_addr_end(addr, end);
1765                 err = remap_pud_range(mm, pgd, addr, next,
1766                                 pfn + (addr >> PAGE_SHIFT), prot);
1767                 if (err)
1768                         break;
1769         } while (pgd++, addr = next, addr != end);
1770
1771         if (err)
1772                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1773
1774         return err;
1775 }
1776 EXPORT_SYMBOL(remap_pfn_range);
1777
1778 /**
1779  * vm_iomap_memory - remap memory to userspace
1780  * @vma: user vma to map to
1781  * @start: start of area
1782  * @len: size of area
1783  *
1784  * This is a simplified io_remap_pfn_range() for common driver use. The
1785  * driver just needs to give us the physical memory range to be mapped,
1786  * we'll figure out the rest from the vma information.
1787  *
1788  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1789  * whatever write-combining details or similar.
1790  */
1791 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1792 {
1793         unsigned long vm_len, pfn, pages;
1794
1795         /* Check that the physical memory area passed in looks valid */
1796         if (start + len < start)
1797                 return -EINVAL;
1798         /*
1799          * You *really* shouldn't map things that aren't page-aligned,
1800          * but we've historically allowed it because IO memory might
1801          * just have smaller alignment.
1802          */
1803         len += start & ~PAGE_MASK;
1804         pfn = start >> PAGE_SHIFT;
1805         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1806         if (pfn + pages < pfn)
1807                 return -EINVAL;
1808
1809         /* We start the mapping 'vm_pgoff' pages into the area */
1810         if (vma->vm_pgoff > pages)
1811                 return -EINVAL;
1812         pfn += vma->vm_pgoff;
1813         pages -= vma->vm_pgoff;
1814
1815         /* Can we fit all of the mapping? */
1816         vm_len = vma->vm_end - vma->vm_start;
1817         if (vm_len >> PAGE_SHIFT > pages)
1818                 return -EINVAL;
1819
1820         /* Ok, let it rip */
1821         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1822 }
1823 EXPORT_SYMBOL(vm_iomap_memory);
1824
1825 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1826                                      unsigned long addr, unsigned long end,
1827                                      pte_fn_t fn, void *data)
1828 {
1829         pte_t *pte;
1830         int err;
1831         pgtable_t token;
1832         spinlock_t *uninitialized_var(ptl);
1833
1834         pte = (mm == &init_mm) ?
1835                 pte_alloc_kernel(pmd, addr) :
1836                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1837         if (!pte)
1838                 return -ENOMEM;
1839
1840         BUG_ON(pmd_huge(*pmd));
1841
1842         arch_enter_lazy_mmu_mode();
1843
1844         token = pmd_pgtable(*pmd);
1845
1846         do {
1847                 err = fn(pte++, token, addr, data);
1848                 if (err)
1849                         break;
1850         } while (addr += PAGE_SIZE, addr != end);
1851
1852         arch_leave_lazy_mmu_mode();
1853
1854         if (mm != &init_mm)
1855                 pte_unmap_unlock(pte-1, ptl);
1856         return err;
1857 }
1858
1859 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1860                                      unsigned long addr, unsigned long end,
1861                                      pte_fn_t fn, void *data)
1862 {
1863         pmd_t *pmd;
1864         unsigned long next;
1865         int err;
1866
1867         BUG_ON(pud_huge(*pud));
1868
1869         pmd = pmd_alloc(mm, pud, addr);
1870         if (!pmd)
1871                 return -ENOMEM;
1872         do {
1873                 next = pmd_addr_end(addr, end);
1874                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1875                 if (err)
1876                         break;
1877         } while (pmd++, addr = next, addr != end);
1878         return err;
1879 }
1880
1881 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1882                                      unsigned long addr, unsigned long end,
1883                                      pte_fn_t fn, void *data)
1884 {
1885         pud_t *pud;
1886         unsigned long next;
1887         int err;
1888
1889         pud = pud_alloc(mm, pgd, addr);
1890         if (!pud)
1891                 return -ENOMEM;
1892         do {
1893                 next = pud_addr_end(addr, end);
1894                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1895                 if (err)
1896                         break;
1897         } while (pud++, addr = next, addr != end);
1898         return err;
1899 }
1900
1901 /*
1902  * Scan a region of virtual memory, filling in page tables as necessary
1903  * and calling a provided function on each leaf page table.
1904  */
1905 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1906                         unsigned long size, pte_fn_t fn, void *data)
1907 {
1908         pgd_t *pgd;
1909         unsigned long next;
1910         unsigned long end = addr + size;
1911         int err;
1912
1913         BUG_ON(addr >= end);
1914         pgd = pgd_offset(mm, addr);
1915         do {
1916                 next = pgd_addr_end(addr, end);
1917                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1918                 if (err)
1919                         break;
1920         } while (pgd++, addr = next, addr != end);
1921
1922         return err;
1923 }
1924 EXPORT_SYMBOL_GPL(apply_to_page_range);
1925
1926 /*
1927  * handle_pte_fault chooses page fault handler according to an entry
1928  * which was read non-atomically.  Before making any commitment, on
1929  * those architectures or configurations (e.g. i386 with PAE) which
1930  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1931  * must check under lock before unmapping the pte and proceeding
1932  * (but do_wp_page is only called after already making such a check;
1933  * and do_anonymous_page can safely check later on).
1934  */
1935 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1936                                 pte_t *page_table, pte_t orig_pte)
1937 {
1938         int same = 1;
1939 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1940         if (sizeof(pte_t) > sizeof(unsigned long)) {
1941                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1942                 spin_lock(ptl);
1943                 same = pte_same(*page_table, orig_pte);
1944                 spin_unlock(ptl);
1945         }
1946 #endif
1947         pte_unmap(page_table);
1948         return same;
1949 }
1950
1951 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1952 {
1953         debug_dma_assert_idle(src);
1954
1955         /*
1956          * If the source page was a PFN mapping, we don't have
1957          * a "struct page" for it. We do a best-effort copy by
1958          * just copying from the original user address. If that
1959          * fails, we just zero-fill it. Live with it.
1960          */
1961         if (unlikely(!src)) {
1962                 void *kaddr = kmap_atomic(dst);
1963                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1964
1965                 /*
1966                  * This really shouldn't fail, because the page is there
1967                  * in the page tables. But it might just be unreadable,
1968                  * in which case we just give up and fill the result with
1969                  * zeroes.
1970                  */
1971                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1972                         clear_page(kaddr);
1973                 kunmap_atomic(kaddr);
1974                 flush_dcache_page(dst);
1975         } else
1976                 copy_user_highpage(dst, src, va, vma);
1977 }
1978
1979 /*
1980  * Notify the address space that the page is about to become writable so that
1981  * it can prohibit this or wait for the page to get into an appropriate state.
1982  *
1983  * We do this without the lock held, so that it can sleep if it needs to.
1984  */
1985 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1986                unsigned long address)
1987 {
1988         struct vm_fault vmf;
1989         int ret;
1990
1991         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1992         vmf.pgoff = page->index;
1993         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1994         vmf.page = page;
1995
1996         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1997         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1998                 return ret;
1999         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2000                 lock_page(page);
2001                 if (!page->mapping) {
2002                         unlock_page(page);
2003                         return 0; /* retry */
2004                 }
2005                 ret |= VM_FAULT_LOCKED;
2006         } else
2007                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2008         return ret;
2009 }
2010
2011 /*
2012  * This routine handles present pages, when users try to write
2013  * to a shared page. It is done by copying the page to a new address
2014  * and decrementing the shared-page counter for the old page.
2015  *
2016  * Note that this routine assumes that the protection checks have been
2017  * done by the caller (the low-level page fault routine in most cases).
2018  * Thus we can safely just mark it writable once we've done any necessary
2019  * COW.
2020  *
2021  * We also mark the page dirty at this point even though the page will
2022  * change only once the write actually happens. This avoids a few races,
2023  * and potentially makes it more efficient.
2024  *
2025  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2026  * but allow concurrent faults), with pte both mapped and locked.
2027  * We return with mmap_sem still held, but pte unmapped and unlocked.
2028  */
2029 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2030                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2031                 spinlock_t *ptl, pte_t orig_pte)
2032         __releases(ptl)
2033 {
2034         struct page *old_page, *new_page = NULL;
2035         pte_t entry;
2036         int ret = 0;
2037         int page_mkwrite = 0;
2038         struct page *dirty_page = NULL;
2039         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2040         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2041         struct mem_cgroup *memcg;
2042
2043         old_page = vm_normal_page(vma, address, orig_pte);
2044         if (!old_page) {
2045                 /*
2046                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2047                  * VM_PFNMAP VMA.
2048                  *
2049                  * We should not cow pages in a shared writeable mapping.
2050                  * Just mark the pages writable as we can't do any dirty
2051                  * accounting on raw pfn maps.
2052                  */
2053                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2054                                      (VM_WRITE|VM_SHARED))
2055                         goto reuse;
2056                 goto gotten;
2057         }
2058
2059         /*
2060          * Take out anonymous pages first, anonymous shared vmas are
2061          * not dirty accountable.
2062          */
2063         if (PageAnon(old_page) && !PageKsm(old_page)) {
2064                 if (!trylock_page(old_page)) {
2065                         page_cache_get(old_page);
2066                         pte_unmap_unlock(page_table, ptl);
2067                         lock_page(old_page);
2068                         page_table = pte_offset_map_lock(mm, pmd, address,
2069                                                          &ptl);
2070                         if (!pte_same(*page_table, orig_pte)) {
2071                                 unlock_page(old_page);
2072                                 goto unlock;
2073                         }
2074                         page_cache_release(old_page);
2075                 }
2076                 if (reuse_swap_page(old_page)) {
2077                         /*
2078                          * The page is all ours.  Move it to our anon_vma so
2079                          * the rmap code will not search our parent or siblings.
2080                          * Protected against the rmap code by the page lock.
2081                          */
2082                         page_move_anon_rmap(old_page, vma, address);
2083                         unlock_page(old_page);
2084                         goto reuse;
2085                 }
2086                 unlock_page(old_page);
2087         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2088                                         (VM_WRITE|VM_SHARED))) {
2089                 /*
2090                  * Only catch write-faults on shared writable pages,
2091                  * read-only shared pages can get COWed by
2092                  * get_user_pages(.write=1, .force=1).
2093                  */
2094                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2095                         int tmp;
2096                         page_cache_get(old_page);
2097                         pte_unmap_unlock(page_table, ptl);
2098                         tmp = do_page_mkwrite(vma, old_page, address);
2099                         if (unlikely(!tmp || (tmp &
2100                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2101                                 page_cache_release(old_page);
2102                                 return tmp;
2103                         }
2104                         /*
2105                          * Since we dropped the lock we need to revalidate
2106                          * the PTE as someone else may have changed it.  If
2107                          * they did, we just return, as we can count on the
2108                          * MMU to tell us if they didn't also make it writable.
2109                          */
2110                         page_table = pte_offset_map_lock(mm, pmd, address,
2111                                                          &ptl);
2112                         if (!pte_same(*page_table, orig_pte)) {
2113                                 unlock_page(old_page);
2114                                 goto unlock;
2115                         }
2116
2117                         page_mkwrite = 1;
2118                 }
2119                 dirty_page = old_page;
2120                 get_page(dirty_page);
2121
2122 reuse:
2123                 /*
2124                  * Clear the pages cpupid information as the existing
2125                  * information potentially belongs to a now completely
2126                  * unrelated process.
2127                  */
2128                 if (old_page)
2129                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2130
2131                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2132                 entry = pte_mkyoung(orig_pte);
2133                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2135                         update_mmu_cache(vma, address, page_table);
2136                 pte_unmap_unlock(page_table, ptl);
2137                 ret |= VM_FAULT_WRITE;
2138
2139                 if (!dirty_page)
2140                         return ret;
2141
2142                 if (!page_mkwrite) {
2143                         struct address_space *mapping;
2144                         int dirtied;
2145
2146                         lock_page(dirty_page);
2147                         dirtied = set_page_dirty(dirty_page);
2148                         VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page);
2149                         mapping = dirty_page->mapping;
2150                         unlock_page(dirty_page);
2151
2152                         if (dirtied && mapping) {
2153                                 /*
2154                                  * Some device drivers do not set page.mapping
2155                                  * but still dirty their pages
2156                                  */
2157                                 balance_dirty_pages_ratelimited(mapping);
2158                         }
2159
2160                         /* file_update_time outside page_lock */
2161                         if (vma->vm_file)
2162                                 file_update_time(vma->vm_file);
2163                 }
2164                 put_page(dirty_page);
2165                 if (page_mkwrite) {
2166                         struct address_space *mapping = dirty_page->mapping;
2167
2168                         set_page_dirty(dirty_page);
2169                         unlock_page(dirty_page);
2170                         page_cache_release(dirty_page);
2171                         if (mapping)    {
2172                                 /*
2173                                  * Some device drivers do not set page.mapping
2174                                  * but still dirty their pages
2175                                  */
2176                                 balance_dirty_pages_ratelimited(mapping);
2177                         }
2178                 }
2179
2180                 return ret;
2181         }
2182
2183         /*
2184          * Ok, we need to copy. Oh, well..
2185          */
2186         page_cache_get(old_page);
2187 gotten:
2188         pte_unmap_unlock(page_table, ptl);
2189
2190         if (unlikely(anon_vma_prepare(vma)))
2191                 goto oom;
2192
2193         if (is_zero_pfn(pte_pfn(orig_pte))) {
2194                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2195                 if (!new_page)
2196                         goto oom;
2197         } else {
2198                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2199                 if (!new_page)
2200                         goto oom;
2201                 cow_user_page(new_page, old_page, address, vma);
2202         }
2203         __SetPageUptodate(new_page);
2204
2205         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2206                 goto oom_free_new;
2207
2208         mmun_start  = address & PAGE_MASK;
2209         mmun_end    = mmun_start + PAGE_SIZE;
2210         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2211
2212         /*
2213          * Re-check the pte - we dropped the lock
2214          */
2215         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2216         if (likely(pte_same(*page_table, orig_pte))) {
2217                 if (old_page) {
2218                         if (!PageAnon(old_page)) {
2219                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2220                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2221                         }
2222                 } else
2223                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2224                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2225                 entry = mk_pte(new_page, vma->vm_page_prot);
2226                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2227                 /*
2228                  * Clear the pte entry and flush it first, before updating the
2229                  * pte with the new entry. This will avoid a race condition
2230                  * seen in the presence of one thread doing SMC and another
2231                  * thread doing COW.
2232                  */
2233                 ptep_clear_flush_notify(vma, address, page_table);
2234                 page_add_new_anon_rmap(new_page, vma, address);
2235                 mem_cgroup_commit_charge(new_page, memcg, false);
2236                 lru_cache_add_active_or_unevictable(new_page, vma);
2237                 /*
2238                  * We call the notify macro here because, when using secondary
2239                  * mmu page tables (such as kvm shadow page tables), we want the
2240                  * new page to be mapped directly into the secondary page table.
2241                  */
2242                 set_pte_at_notify(mm, address, page_table, entry);
2243                 update_mmu_cache(vma, address, page_table);
2244                 if (old_page) {
2245                         /*
2246                          * Only after switching the pte to the new page may
2247                          * we remove the mapcount here. Otherwise another
2248                          * process may come and find the rmap count decremented
2249                          * before the pte is switched to the new page, and
2250                          * "reuse" the old page writing into it while our pte
2251                          * here still points into it and can be read by other
2252                          * threads.
2253                          *
2254                          * The critical issue is to order this
2255                          * page_remove_rmap with the ptp_clear_flush above.
2256                          * Those stores are ordered by (if nothing else,)
2257                          * the barrier present in the atomic_add_negative
2258                          * in page_remove_rmap.
2259                          *
2260                          * Then the TLB flush in ptep_clear_flush ensures that
2261                          * no process can access the old page before the
2262                          * decremented mapcount is visible. And the old page
2263                          * cannot be reused until after the decremented
2264                          * mapcount is visible. So transitively, TLBs to
2265                          * old page will be flushed before it can be reused.
2266                          */
2267                         page_remove_rmap(old_page);
2268                 }
2269
2270                 /* Free the old page.. */
2271                 new_page = old_page;
2272                 ret |= VM_FAULT_WRITE;
2273         } else
2274                 mem_cgroup_cancel_charge(new_page, memcg);
2275
2276         if (new_page)
2277                 page_cache_release(new_page);
2278 unlock:
2279         pte_unmap_unlock(page_table, ptl);
2280         if (mmun_end > mmun_start)
2281                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2282         if (old_page) {
2283                 /*
2284                  * Don't let another task, with possibly unlocked vma,
2285                  * keep the mlocked page.
2286                  */
2287                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2288                         lock_page(old_page);    /* LRU manipulation */
2289                         munlock_vma_page(old_page);
2290                         unlock_page(old_page);
2291                 }
2292                 page_cache_release(old_page);
2293         }
2294         return ret;
2295 oom_free_new:
2296         page_cache_release(new_page);
2297 oom:
2298         if (old_page)
2299                 page_cache_release(old_page);
2300         return VM_FAULT_OOM;
2301 }
2302
2303 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2304                 unsigned long start_addr, unsigned long end_addr,
2305                 struct zap_details *details)
2306 {
2307         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2308 }
2309
2310 static inline void unmap_mapping_range_tree(struct rb_root *root,
2311                                             struct zap_details *details)
2312 {
2313         struct vm_area_struct *vma;
2314         pgoff_t vba, vea, zba, zea;
2315
2316         vma_interval_tree_foreach(vma, root,
2317                         details->first_index, details->last_index) {
2318
2319                 vba = vma->vm_pgoff;
2320                 vea = vba + vma_pages(vma) - 1;
2321                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322                 zba = details->first_index;
2323                 if (zba < vba)
2324                         zba = vba;
2325                 zea = details->last_index;
2326                 if (zea > vea)
2327                         zea = vea;
2328
2329                 unmap_mapping_range_vma(vma,
2330                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2331                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2332                                 details);
2333         }
2334 }
2335
2336 static inline void unmap_mapping_range_list(struct list_head *head,
2337                                             struct zap_details *details)
2338 {
2339         struct vm_area_struct *vma;
2340
2341         /*
2342          * In nonlinear VMAs there is no correspondence between virtual address
2343          * offset and file offset.  So we must perform an exhaustive search
2344          * across *all* the pages in each nonlinear VMA, not just the pages
2345          * whose virtual address lies outside the file truncation point.
2346          */
2347         list_for_each_entry(vma, head, shared.nonlinear) {
2348                 details->nonlinear_vma = vma;
2349                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2350         }
2351 }
2352
2353 /**
2354  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2355  * @mapping: the address space containing mmaps to be unmapped.
2356  * @holebegin: byte in first page to unmap, relative to the start of
2357  * the underlying file.  This will be rounded down to a PAGE_SIZE
2358  * boundary.  Note that this is different from truncate_pagecache(), which
2359  * must keep the partial page.  In contrast, we must get rid of
2360  * partial pages.
2361  * @holelen: size of prospective hole in bytes.  This will be rounded
2362  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2363  * end of the file.
2364  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365  * but 0 when invalidating pagecache, don't throw away private data.
2366  */
2367 void unmap_mapping_range(struct address_space *mapping,
2368                 loff_t const holebegin, loff_t const holelen, int even_cows)
2369 {
2370         struct zap_details details;
2371         pgoff_t hba = holebegin >> PAGE_SHIFT;
2372         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2373
2374         /* Check for overflow. */
2375         if (sizeof(holelen) > sizeof(hlen)) {
2376                 long long holeend =
2377                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378                 if (holeend & ~(long long)ULONG_MAX)
2379                         hlen = ULONG_MAX - hba + 1;
2380         }
2381
2382         details.check_mapping = even_cows? NULL: mapping;
2383         details.nonlinear_vma = NULL;
2384         details.first_index = hba;
2385         details.last_index = hba + hlen - 1;
2386         if (details.last_index < details.first_index)
2387                 details.last_index = ULONG_MAX;
2388
2389
2390         i_mmap_lock_write(mapping);
2391         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2392                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2393         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2394                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2395         i_mmap_unlock_write(mapping);
2396 }
2397 EXPORT_SYMBOL(unmap_mapping_range);
2398
2399 /*
2400  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401  * but allow concurrent faults), and pte mapped but not yet locked.
2402  * We return with pte unmapped and unlocked.
2403  *
2404  * We return with the mmap_sem locked or unlocked in the same cases
2405  * as does filemap_fault().
2406  */
2407 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2408                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2409                 unsigned int flags, pte_t orig_pte)
2410 {
2411         spinlock_t *ptl;
2412         struct page *page, *swapcache;
2413         struct mem_cgroup *memcg;
2414         swp_entry_t entry;
2415         pte_t pte;
2416         int locked;
2417         int exclusive = 0;
2418         int ret = 0;
2419
2420         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2421                 goto out;
2422
2423         entry = pte_to_swp_entry(orig_pte);
2424         if (unlikely(non_swap_entry(entry))) {
2425                 if (is_migration_entry(entry)) {
2426                         migration_entry_wait(mm, pmd, address);
2427                 } else if (is_hwpoison_entry(entry)) {
2428                         ret = VM_FAULT_HWPOISON;
2429                 } else {
2430                         print_bad_pte(vma, address, orig_pte, NULL);
2431                         ret = VM_FAULT_SIGBUS;
2432                 }
2433                 goto out;
2434         }
2435         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2436         page = lookup_swap_cache(entry);
2437         if (!page) {
2438                 page = swapin_readahead(entry,
2439                                         GFP_HIGHUSER_MOVABLE, vma, address);
2440                 if (!page) {
2441                         /*
2442                          * Back out if somebody else faulted in this pte
2443                          * while we released the pte lock.
2444                          */
2445                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2446                         if (likely(pte_same(*page_table, orig_pte)))
2447                                 ret = VM_FAULT_OOM;
2448                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2449                         goto unlock;
2450                 }
2451
2452                 /* Had to read the page from swap area: Major fault */
2453                 ret = VM_FAULT_MAJOR;
2454                 count_vm_event(PGMAJFAULT);
2455                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2456         } else if (PageHWPoison(page)) {
2457                 /*
2458                  * hwpoisoned dirty swapcache pages are kept for killing
2459                  * owner processes (which may be unknown at hwpoison time)
2460                  */
2461                 ret = VM_FAULT_HWPOISON;
2462                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2463                 swapcache = page;
2464                 goto out_release;
2465         }
2466
2467         swapcache = page;
2468         locked = lock_page_or_retry(page, mm, flags);
2469
2470         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2471         if (!locked) {
2472                 ret |= VM_FAULT_RETRY;
2473                 goto out_release;
2474         }
2475
2476         /*
2477          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2478          * release the swapcache from under us.  The page pin, and pte_same
2479          * test below, are not enough to exclude that.  Even if it is still
2480          * swapcache, we need to check that the page's swap has not changed.
2481          */
2482         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2483                 goto out_page;
2484
2485         page = ksm_might_need_to_copy(page, vma, address);
2486         if (unlikely(!page)) {
2487                 ret = VM_FAULT_OOM;
2488                 page = swapcache;
2489                 goto out_page;
2490         }
2491
2492         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2493                 ret = VM_FAULT_OOM;
2494                 goto out_page;
2495         }
2496
2497         /*
2498          * Back out if somebody else already faulted in this pte.
2499          */
2500         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2501         if (unlikely(!pte_same(*page_table, orig_pte)))
2502                 goto out_nomap;
2503
2504         if (unlikely(!PageUptodate(page))) {
2505                 ret = VM_FAULT_SIGBUS;
2506                 goto out_nomap;
2507         }
2508
2509         /*
2510          * The page isn't present yet, go ahead with the fault.
2511          *
2512          * Be careful about the sequence of operations here.
2513          * To get its accounting right, reuse_swap_page() must be called
2514          * while the page is counted on swap but not yet in mapcount i.e.
2515          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2516          * must be called after the swap_free(), or it will never succeed.
2517          */
2518
2519         inc_mm_counter_fast(mm, MM_ANONPAGES);
2520         dec_mm_counter_fast(mm, MM_SWAPENTS);
2521         pte = mk_pte(page, vma->vm_page_prot);
2522         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2523                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2524                 flags &= ~FAULT_FLAG_WRITE;
2525                 ret |= VM_FAULT_WRITE;
2526                 exclusive = 1;
2527         }
2528         flush_icache_page(vma, page);
2529         if (pte_swp_soft_dirty(orig_pte))
2530                 pte = pte_mksoft_dirty(pte);
2531         set_pte_at(mm, address, page_table, pte);
2532         if (page == swapcache) {
2533                 do_page_add_anon_rmap(page, vma, address, exclusive);
2534                 mem_cgroup_commit_charge(page, memcg, true);
2535         } else { /* ksm created a completely new copy */
2536                 page_add_new_anon_rmap(page, vma, address);
2537                 mem_cgroup_commit_charge(page, memcg, false);
2538                 lru_cache_add_active_or_unevictable(page, vma);
2539         }
2540
2541         swap_free(entry);
2542         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2543                 try_to_free_swap(page);
2544         unlock_page(page);
2545         if (page != swapcache) {
2546                 /*
2547                  * Hold the lock to avoid the swap entry to be reused
2548                  * until we take the PT lock for the pte_same() check
2549                  * (to avoid false positives from pte_same). For
2550                  * further safety release the lock after the swap_free
2551                  * so that the swap count won't change under a
2552                  * parallel locked swapcache.
2553                  */
2554                 unlock_page(swapcache);
2555                 page_cache_release(swapcache);
2556         }
2557
2558         if (flags & FAULT_FLAG_WRITE) {
2559                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2560                 if (ret & VM_FAULT_ERROR)
2561                         ret &= VM_FAULT_ERROR;
2562                 goto out;
2563         }
2564
2565         /* No need to invalidate - it was non-present before */
2566         update_mmu_cache(vma, address, page_table);
2567 unlock:
2568         pte_unmap_unlock(page_table, ptl);
2569 out:
2570         return ret;
2571 out_nomap:
2572         mem_cgroup_cancel_charge(page, memcg);
2573         pte_unmap_unlock(page_table, ptl);
2574 out_page:
2575         unlock_page(page);
2576 out_release:
2577         page_cache_release(page);
2578         if (page != swapcache) {
2579                 unlock_page(swapcache);
2580                 page_cache_release(swapcache);
2581         }
2582         return ret;
2583 }
2584
2585 /*
2586  * This is like a special single-page "expand_{down|up}wards()",
2587  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2588  * doesn't hit another vma.
2589  */
2590 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2591 {
2592         address &= PAGE_MASK;
2593         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2594                 struct vm_area_struct *prev = vma->vm_prev;
2595
2596                 /*
2597                  * Is there a mapping abutting this one below?
2598                  *
2599                  * That's only ok if it's the same stack mapping
2600                  * that has gotten split..
2601                  */
2602                 if (prev && prev->vm_end == address)
2603                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2604
2605                 return expand_downwards(vma, address - PAGE_SIZE);
2606         }
2607         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2608                 struct vm_area_struct *next = vma->vm_next;
2609
2610                 /* As VM_GROWSDOWN but s/below/above/ */
2611                 if (next && next->vm_start == address + PAGE_SIZE)
2612                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2613
2614                 return expand_upwards(vma, address + PAGE_SIZE);
2615         }
2616         return 0;
2617 }
2618
2619 /*
2620  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2621  * but allow concurrent faults), and pte mapped but not yet locked.
2622  * We return with mmap_sem still held, but pte unmapped and unlocked.
2623  */
2624 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2625                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2626                 unsigned int flags)
2627 {
2628         struct mem_cgroup *memcg;
2629         struct page *page;
2630         spinlock_t *ptl;
2631         pte_t entry;
2632
2633         pte_unmap(page_table);
2634
2635         /* Check if we need to add a guard page to the stack */
2636         if (check_stack_guard_page(vma, address) < 0)
2637                 return VM_FAULT_SIGSEGV;
2638
2639         /* Use the zero-page for reads */
2640         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2641                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2642                                                 vma->vm_page_prot));
2643                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2644                 if (!pte_none(*page_table))
2645                         goto unlock;
2646                 goto setpte;
2647         }
2648
2649         /* Allocate our own private page. */
2650         if (unlikely(anon_vma_prepare(vma)))
2651                 goto oom;
2652         page = alloc_zeroed_user_highpage_movable(vma, address);
2653         if (!page)
2654                 goto oom;
2655         /*
2656          * The memory barrier inside __SetPageUptodate makes sure that
2657          * preceeding stores to the page contents become visible before
2658          * the set_pte_at() write.
2659          */
2660         __SetPageUptodate(page);
2661
2662         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2663                 goto oom_free_page;
2664
2665         entry = mk_pte(page, vma->vm_page_prot);
2666         if (vma->vm_flags & VM_WRITE)
2667                 entry = pte_mkwrite(pte_mkdirty(entry));
2668
2669         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2670         if (!pte_none(*page_table))
2671                 goto release;
2672
2673         inc_mm_counter_fast(mm, MM_ANONPAGES);
2674         page_add_new_anon_rmap(page, vma, address);
2675         mem_cgroup_commit_charge(page, memcg, false);
2676         lru_cache_add_active_or_unevictable(page, vma);
2677 setpte:
2678         set_pte_at(mm, address, page_table, entry);
2679
2680         /* No need to invalidate - it was non-present before */
2681         update_mmu_cache(vma, address, page_table);
2682 unlock:
2683         pte_unmap_unlock(page_table, ptl);
2684         return 0;
2685 release:
2686         mem_cgroup_cancel_charge(page, memcg);
2687         page_cache_release(page);
2688         goto unlock;
2689 oom_free_page:
2690         page_cache_release(page);
2691 oom:
2692         return VM_FAULT_OOM;
2693 }
2694
2695 /*
2696  * The mmap_sem must have been held on entry, and may have been
2697  * released depending on flags and vma->vm_ops->fault() return value.
2698  * See filemap_fault() and __lock_page_retry().
2699  */
2700 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2701                 pgoff_t pgoff, unsigned int flags, struct page **page)
2702 {
2703         struct vm_fault vmf;
2704         int ret;
2705
2706         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2707         vmf.pgoff = pgoff;
2708         vmf.flags = flags;
2709         vmf.page = NULL;
2710
2711         ret = vma->vm_ops->fault(vma, &vmf);
2712         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2713                 return ret;
2714
2715         if (unlikely(PageHWPoison(vmf.page))) {
2716                 if (ret & VM_FAULT_LOCKED)
2717                         unlock_page(vmf.page);
2718                 page_cache_release(vmf.page);
2719                 return VM_FAULT_HWPOISON;
2720         }
2721
2722         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2723                 lock_page(vmf.page);
2724         else
2725                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2726
2727         *page = vmf.page;
2728         return ret;
2729 }
2730
2731 /**
2732  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2733  *
2734  * @vma: virtual memory area
2735  * @address: user virtual address
2736  * @page: page to map
2737  * @pte: pointer to target page table entry
2738  * @write: true, if new entry is writable
2739  * @anon: true, if it's anonymous page
2740  *
2741  * Caller must hold page table lock relevant for @pte.
2742  *
2743  * Target users are page handler itself and implementations of
2744  * vm_ops->map_pages.
2745  */
2746 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2747                 struct page *page, pte_t *pte, bool write, bool anon)
2748 {
2749         pte_t entry;
2750
2751         flush_icache_page(vma, page);
2752         entry = mk_pte(page, vma->vm_page_prot);
2753         if (write)
2754                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2755         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2756                 entry = pte_mksoft_dirty(entry);
2757         if (anon) {
2758                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2759                 page_add_new_anon_rmap(page, vma, address);
2760         } else {
2761                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2762                 page_add_file_rmap(page);
2763         }
2764         set_pte_at(vma->vm_mm, address, pte, entry);
2765
2766         /* no need to invalidate: a not-present page won't be cached */
2767         update_mmu_cache(vma, address, pte);
2768 }
2769
2770 static unsigned long fault_around_bytes __read_mostly =
2771         rounddown_pow_of_two(65536);
2772
2773 #ifdef CONFIG_DEBUG_FS
2774 static int fault_around_bytes_get(void *data, u64 *val)
2775 {
2776         *val = fault_around_bytes;
2777         return 0;
2778 }
2779
2780 /*
2781  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2782  * rounded down to nearest page order. It's what do_fault_around() expects to
2783  * see.
2784  */
2785 static int fault_around_bytes_set(void *data, u64 val)
2786 {
2787         if (val / PAGE_SIZE > PTRS_PER_PTE)
2788                 return -EINVAL;
2789         if (val > PAGE_SIZE)
2790                 fault_around_bytes = rounddown_pow_of_two(val);
2791         else
2792                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2793         return 0;
2794 }
2795 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2796                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2797
2798 static int __init fault_around_debugfs(void)
2799 {
2800         void *ret;
2801
2802         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2803                         &fault_around_bytes_fops);
2804         if (!ret)
2805                 pr_warn("Failed to create fault_around_bytes in debugfs");
2806         return 0;
2807 }
2808 late_initcall(fault_around_debugfs);
2809 #endif
2810
2811 /*
2812  * do_fault_around() tries to map few pages around the fault address. The hope
2813  * is that the pages will be needed soon and this will lower the number of
2814  * faults to handle.
2815  *
2816  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2817  * not ready to be mapped: not up-to-date, locked, etc.
2818  *
2819  * This function is called with the page table lock taken. In the split ptlock
2820  * case the page table lock only protects only those entries which belong to
2821  * the page table corresponding to the fault address.
2822  *
2823  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2824  * only once.
2825  *
2826  * fault_around_pages() defines how many pages we'll try to map.
2827  * do_fault_around() expects it to return a power of two less than or equal to
2828  * PTRS_PER_PTE.
2829  *
2830  * The virtual address of the area that we map is naturally aligned to the
2831  * fault_around_pages() value (and therefore to page order).  This way it's
2832  * easier to guarantee that we don't cross page table boundaries.
2833  */
2834 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2835                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2836 {
2837         unsigned long start_addr, nr_pages, mask;
2838         pgoff_t max_pgoff;
2839         struct vm_fault vmf;
2840         int off;
2841
2842         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2843         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2844
2845         start_addr = max(address & mask, vma->vm_start);
2846         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2847         pte -= off;
2848         pgoff -= off;
2849
2850         /*
2851          *  max_pgoff is either end of page table or end of vma
2852          *  or fault_around_pages() from pgoff, depending what is nearest.
2853          */
2854         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2855                 PTRS_PER_PTE - 1;
2856         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2857                         pgoff + nr_pages - 1);
2858
2859         /* Check if it makes any sense to call ->map_pages */
2860         while (!pte_none(*pte)) {
2861                 if (++pgoff > max_pgoff)
2862                         return;
2863                 start_addr += PAGE_SIZE;
2864                 if (start_addr >= vma->vm_end)
2865                         return;
2866                 pte++;
2867         }
2868
2869         vmf.virtual_address = (void __user *) start_addr;
2870         vmf.pte = pte;
2871         vmf.pgoff = pgoff;
2872         vmf.max_pgoff = max_pgoff;
2873         vmf.flags = flags;
2874         vma->vm_ops->map_pages(vma, &vmf);
2875 }
2876
2877 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2878                 unsigned long address, pmd_t *pmd,
2879                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2880 {
2881         struct page *fault_page;
2882         spinlock_t *ptl;
2883         pte_t *pte;
2884         int ret = 0;
2885
2886         /*
2887          * Let's call ->map_pages() first and use ->fault() as fallback
2888          * if page by the offset is not ready to be mapped (cold cache or
2889          * something).
2890          */
2891         if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2892             fault_around_bytes >> PAGE_SHIFT > 1) {
2893                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2894                 do_fault_around(vma, address, pte, pgoff, flags);
2895                 if (!pte_same(*pte, orig_pte))
2896                         goto unlock_out;
2897                 pte_unmap_unlock(pte, ptl);
2898         }
2899
2900         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2901         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2902                 return ret;
2903
2904         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2905         if (unlikely(!pte_same(*pte, orig_pte))) {
2906                 pte_unmap_unlock(pte, ptl);
2907                 unlock_page(fault_page);
2908                 page_cache_release(fault_page);
2909                 return ret;
2910         }
2911         do_set_pte(vma, address, fault_page, pte, false, false);
2912         unlock_page(fault_page);
2913 unlock_out:
2914         pte_unmap_unlock(pte, ptl);
2915         return ret;
2916 }
2917
2918 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2919                 unsigned long address, pmd_t *pmd,
2920                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2921 {
2922         struct page *fault_page, *new_page;
2923         struct mem_cgroup *memcg;
2924         spinlock_t *ptl;
2925         pte_t *pte;
2926         int ret;
2927
2928         if (unlikely(anon_vma_prepare(vma)))
2929                 return VM_FAULT_OOM;
2930
2931         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2932         if (!new_page)
2933                 return VM_FAULT_OOM;
2934
2935         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2936                 page_cache_release(new_page);
2937                 return VM_FAULT_OOM;
2938         }
2939
2940         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2941         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2942                 goto uncharge_out;
2943
2944         copy_user_highpage(new_page, fault_page, address, vma);
2945         __SetPageUptodate(new_page);
2946
2947         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2948         if (unlikely(!pte_same(*pte, orig_pte))) {
2949                 pte_unmap_unlock(pte, ptl);
2950                 unlock_page(fault_page);
2951                 page_cache_release(fault_page);
2952                 goto uncharge_out;
2953         }
2954         do_set_pte(vma, address, new_page, pte, true, true);
2955         mem_cgroup_commit_charge(new_page, memcg, false);
2956         lru_cache_add_active_or_unevictable(new_page, vma);
2957         pte_unmap_unlock(pte, ptl);
2958         unlock_page(fault_page);
2959         page_cache_release(fault_page);
2960         return ret;
2961 uncharge_out:
2962         mem_cgroup_cancel_charge(new_page, memcg);
2963         page_cache_release(new_page);
2964         return ret;
2965 }
2966
2967 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2968                 unsigned long address, pmd_t *pmd,
2969                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2970 {
2971         struct page *fault_page;
2972         struct address_space *mapping;
2973         spinlock_t *ptl;
2974         pte_t *pte;
2975         int dirtied = 0;
2976         int ret, tmp;
2977
2978         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2979         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2980                 return ret;
2981
2982         /*
2983          * Check if the backing address space wants to know that the page is
2984          * about to become writable
2985          */
2986         if (vma->vm_ops->page_mkwrite) {
2987                 unlock_page(fault_page);
2988                 tmp = do_page_mkwrite(vma, fault_page, address);
2989                 if (unlikely(!tmp ||
2990                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2991                         page_cache_release(fault_page);
2992                         return tmp;
2993                 }
2994         }
2995
2996         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2997         if (unlikely(!pte_same(*pte, orig_pte))) {
2998                 pte_unmap_unlock(pte, ptl);
2999                 unlock_page(fault_page);
3000                 page_cache_release(fault_page);
3001                 return ret;
3002         }
3003         do_set_pte(vma, address, fault_page, pte, true, false);
3004         pte_unmap_unlock(pte, ptl);
3005
3006         if (set_page_dirty(fault_page))
3007                 dirtied = 1;
3008         /*
3009          * Take a local copy of the address_space - page.mapping may be zeroed
3010          * by truncate after unlock_page().   The address_space itself remains
3011          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3012          * release semantics to prevent the compiler from undoing this copying.
3013          */
3014         mapping = fault_page->mapping;
3015         unlock_page(fault_page);
3016         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3017                 /*
3018                  * Some device drivers do not set page.mapping but still
3019                  * dirty their pages
3020                  */
3021                 balance_dirty_pages_ratelimited(mapping);
3022         }
3023
3024         /* file_update_time outside page_lock */
3025         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3026                 file_update_time(vma->vm_file);
3027
3028         return ret;
3029 }
3030
3031 /*
3032  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3033  * but allow concurrent faults).
3034  * The mmap_sem may have been released depending on flags and our
3035  * return value.  See filemap_fault() and __lock_page_or_retry().
3036  */
3037 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3038                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3039                 unsigned int flags, pte_t orig_pte)
3040 {
3041         pgoff_t pgoff = (((address & PAGE_MASK)
3042                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3043
3044         pte_unmap(page_table);
3045         if (!(flags & FAULT_FLAG_WRITE))
3046                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3047                                 orig_pte);
3048         if (!(vma->vm_flags & VM_SHARED))
3049                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3050                                 orig_pte);
3051         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3052 }
3053
3054 /*
3055  * Fault of a previously existing named mapping. Repopulate the pte
3056  * from the encoded file_pte if possible. This enables swappable
3057  * nonlinear vmas.
3058  *
3059  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3060  * but allow concurrent faults), and pte mapped but not yet locked.
3061  * We return with pte unmapped and unlocked.
3062  * The mmap_sem may have been released depending on flags and our
3063  * return value.  See filemap_fault() and __lock_page_or_retry().
3064  */
3065 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3066                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3067                 unsigned int flags, pte_t orig_pte)
3068 {
3069         pgoff_t pgoff;
3070
3071         flags |= FAULT_FLAG_NONLINEAR;
3072
3073         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3074                 return 0;
3075
3076         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3077                 /*
3078                  * Page table corrupted: show pte and kill process.
3079                  */
3080                 print_bad_pte(vma, address, orig_pte, NULL);
3081                 return VM_FAULT_SIGBUS;
3082         }
3083
3084         pgoff = pte_to_pgoff(orig_pte);
3085         if (!(flags & FAULT_FLAG_WRITE))
3086                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3087                                 orig_pte);
3088         if (!(vma->vm_flags & VM_SHARED))
3089                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3090                                 orig_pte);
3091         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3092 }
3093
3094 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3095                                 unsigned long addr, int page_nid,
3096                                 int *flags)
3097 {
3098         get_page(page);
3099
3100         count_vm_numa_event(NUMA_HINT_FAULTS);
3101         if (page_nid == numa_node_id()) {
3102                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3103                 *flags |= TNF_FAULT_LOCAL;
3104         }
3105
3106         return mpol_misplaced(page, vma, addr);
3107 }
3108
3109 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3110                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3111 {
3112         struct page *page = NULL;
3113         spinlock_t *ptl;
3114         int page_nid = -1;
3115         int last_cpupid;
3116         int target_nid;
3117         bool migrated = false;
3118         int flags = 0;
3119
3120         /*
3121         * The "pte" at this point cannot be used safely without
3122         * validation through pte_unmap_same(). It's of NUMA type but
3123         * the pfn may be screwed if the read is non atomic.
3124         *
3125         * ptep_modify_prot_start is not called as this is clearing
3126         * the _PAGE_NUMA bit and it is not really expected that there
3127         * would be concurrent hardware modifications to the PTE.
3128         */
3129         ptl = pte_lockptr(mm, pmd);
3130         spin_lock(ptl);
3131         if (unlikely(!pte_same(*ptep, pte))) {
3132                 pte_unmap_unlock(ptep, ptl);
3133                 goto out;
3134         }
3135
3136         pte = pte_mknonnuma(pte);
3137         set_pte_at(mm, addr, ptep, pte);
3138         update_mmu_cache(vma, addr, ptep);
3139
3140         page = vm_normal_page(vma, addr, pte);
3141         if (!page) {
3142                 pte_unmap_unlock(ptep, ptl);
3143                 return 0;
3144         }
3145         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3146
3147         /*
3148          * Avoid grouping on DSO/COW pages in specific and RO pages
3149          * in general, RO pages shouldn't hurt as much anyway since
3150          * they can be in shared cache state.
3151          */
3152         if (!pte_write(pte))
3153                 flags |= TNF_NO_GROUP;
3154
3155         /*
3156          * Flag if the page is shared between multiple address spaces. This
3157          * is later used when determining whether to group tasks together
3158          */
3159         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3160                 flags |= TNF_SHARED;
3161
3162         last_cpupid = page_cpupid_last(page);
3163         page_nid = page_to_nid(page);
3164         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3165         pte_unmap_unlock(ptep, ptl);
3166         if (target_nid == -1) {
3167                 put_page(page);
3168                 goto out;
3169         }
3170
3171         /* Migrate to the requested node */
3172         migrated = migrate_misplaced_page(page, vma, target_nid);
3173         if (migrated) {
3174                 page_nid = target_nid;
3175                 flags |= TNF_MIGRATED;
3176         }
3177
3178 out:
3179         if (page_nid != -1)
3180                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3181         return 0;
3182 }
3183
3184 /*
3185  * These routines also need to handle stuff like marking pages dirty
3186  * and/or accessed for architectures that don't do it in hardware (most
3187  * RISC architectures).  The early dirtying is also good on the i386.
3188  *
3189  * There is also a hook called "update_mmu_cache()" that architectures
3190  * with external mmu caches can use to update those (ie the Sparc or
3191  * PowerPC hashed page tables that act as extended TLBs).
3192  *
3193  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3194  * but allow concurrent faults), and pte mapped but not yet locked.
3195  * We return with pte unmapped and unlocked.
3196  *
3197  * The mmap_sem may have been released depending on flags and our
3198  * return value.  See filemap_fault() and __lock_page_or_retry().
3199  */
3200 static int handle_pte_fault(struct mm_struct *mm,
3201                      struct vm_area_struct *vma, unsigned long address,
3202                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3203 {
3204         pte_t entry;
3205         spinlock_t *ptl;
3206
3207         /*
3208          * some architectures can have larger ptes than wordsize,
3209          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3210          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3211          * The code below just needs a consistent view for the ifs and
3212          * we later double check anyway with the ptl lock held. So here
3213          * a barrier will do.
3214          */
3215         entry = *pte;
3216         barrier();
3217         if (!pte_present(entry)) {
3218                 if (pte_none(entry)) {
3219                         if (vma->vm_ops) {
3220                                 if (likely(vma->vm_ops->fault))
3221                                         return do_linear_fault(mm, vma, address,
3222                                                 pte, pmd, flags, entry);
3223                         }
3224                         return do_anonymous_page(mm, vma, address,
3225                                                  pte, pmd, flags);
3226                 }
3227                 if (pte_file(entry))
3228                         return do_nonlinear_fault(mm, vma, address,
3229                                         pte, pmd, flags, entry);
3230                 return do_swap_page(mm, vma, address,
3231                                         pte, pmd, flags, entry);
3232         }
3233
3234         if (pte_numa(entry))
3235                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3236
3237         ptl = pte_lockptr(mm, pmd);
3238         spin_lock(ptl);
3239         if (unlikely(!pte_same(*pte, entry)))
3240                 goto unlock;
3241         if (flags & FAULT_FLAG_WRITE) {
3242                 if (!pte_write(entry))
3243                         return do_wp_page(mm, vma, address,
3244                                         pte, pmd, ptl, entry);
3245                 entry = pte_mkdirty(entry);
3246         }
3247         entry = pte_mkyoung(entry);
3248         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3249                 update_mmu_cache(vma, address, pte);
3250         } else {
3251                 /*
3252                  * This is needed only for protection faults but the arch code
3253                  * is not yet telling us if this is a protection fault or not.
3254                  * This still avoids useless tlb flushes for .text page faults
3255                  * with threads.
3256                  */
3257                 if (flags & FAULT_FLAG_WRITE)
3258                         flush_tlb_fix_spurious_fault(vma, address);
3259         }
3260 unlock:
3261         pte_unmap_unlock(pte, ptl);
3262         return 0;
3263 }
3264
3265 /*
3266  * By the time we get here, we already hold the mm semaphore
3267  *
3268  * The mmap_sem may have been released depending on flags and our
3269  * return value.  See filemap_fault() and __lock_page_or_retry().
3270  */
3271 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3272                              unsigned long address, unsigned int flags)
3273 {
3274         pgd_t *pgd;
3275         pud_t *pud;
3276         pmd_t *pmd;
3277         pte_t *pte;
3278
3279         if (unlikely(is_vm_hugetlb_page(vma)))
3280                 return hugetlb_fault(mm, vma, address, flags);
3281
3282         pgd = pgd_offset(mm, address);
3283         pud = pud_alloc(mm, pgd, address);
3284         if (!pud)
3285                 return VM_FAULT_OOM;
3286         pmd = pmd_alloc(mm, pud, address);
3287         if (!pmd)
3288                 return VM_FAULT_OOM;
3289         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3290                 int ret = VM_FAULT_FALLBACK;
3291                 if (!vma->vm_ops)
3292                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3293                                         pmd, flags);
3294                 if (!(ret & VM_FAULT_FALLBACK))
3295                         return ret;
3296         } else {
3297                 pmd_t orig_pmd = *pmd;
3298                 int ret;
3299
3300                 barrier();
3301                 if (pmd_trans_huge(orig_pmd)) {
3302                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3303
3304                         /*
3305                          * If the pmd is splitting, return and retry the
3306                          * the fault.  Alternative: wait until the split
3307                          * is done, and goto retry.
3308                          */
3309                         if (pmd_trans_splitting(orig_pmd))
3310                                 return 0;
3311
3312                         if (pmd_numa(orig_pmd))
3313                                 return do_huge_pmd_numa_page(mm, vma, address,
3314                                                              orig_pmd, pmd);
3315
3316                         if (dirty && !pmd_write(orig_pmd)) {
3317                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3318                                                           orig_pmd);
3319                                 if (!(ret & VM_FAULT_FALLBACK))
3320                                         return ret;
3321                         } else {
3322                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3323                                                       orig_pmd, dirty);
3324                                 return 0;
3325                         }
3326                 }
3327         }
3328
3329         /*
3330          * Use __pte_alloc instead of pte_alloc_map, because we can't
3331          * run pte_offset_map on the pmd, if an huge pmd could
3332          * materialize from under us from a different thread.
3333          */
3334         if (unlikely(pmd_none(*pmd)) &&
3335             unlikely(__pte_alloc(mm, vma, pmd, address)))
3336                 return VM_FAULT_OOM;
3337         /* if an huge pmd materialized from under us just retry later */
3338         if (unlikely(pmd_trans_huge(*pmd)))
3339                 return 0;
3340         /*
3341          * A regular pmd is established and it can't morph into a huge pmd
3342          * from under us anymore at this point because we hold the mmap_sem
3343          * read mode and khugepaged takes it in write mode. So now it's
3344          * safe to run pte_offset_map().
3345          */
3346         pte = pte_offset_map(pmd, address);
3347
3348         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3349 }
3350
3351 /*
3352  * By the time we get here, we already hold the mm semaphore
3353  *
3354  * The mmap_sem may have been released depending on flags and our
3355  * return value.  See filemap_fault() and __lock_page_or_retry().
3356  */
3357 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3358                     unsigned long address, unsigned int flags)
3359 {
3360         int ret;
3361
3362         __set_current_state(TASK_RUNNING);
3363
3364         count_vm_event(PGFAULT);
3365         mem_cgroup_count_vm_event(mm, PGFAULT);
3366
3367         /* do counter updates before entering really critical section. */
3368         check_sync_rss_stat(current);
3369
3370         /*
3371          * Enable the memcg OOM handling for faults triggered in user
3372          * space.  Kernel faults are handled more gracefully.
3373          */
3374         if (flags & FAULT_FLAG_USER)
3375                 mem_cgroup_oom_enable();
3376
3377         ret = __handle_mm_fault(mm, vma, address, flags);
3378
3379         if (flags & FAULT_FLAG_USER) {
3380                 mem_cgroup_oom_disable();
3381                 /*
3382                  * The task may have entered a memcg OOM situation but
3383                  * if the allocation error was handled gracefully (no
3384                  * VM_FAULT_OOM), there is no need to kill anything.
3385                  * Just clean up the OOM state peacefully.
3386                  */
3387                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3388                         mem_cgroup_oom_synchronize(false);
3389         }
3390
3391         return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(handle_mm_fault);
3394
3395 #ifndef __PAGETABLE_PUD_FOLDED
3396 /*
3397  * Allocate page upper directory.
3398  * We've already handled the fast-path in-line.
3399  */
3400 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3401 {
3402         pud_t *new = pud_alloc_one(mm, address);
3403         if (!new)
3404                 return -ENOMEM;
3405
3406         smp_wmb(); /* See comment in __pte_alloc */
3407
3408         spin_lock(&mm->page_table_lock);
3409         if (pgd_present(*pgd))          /* Another has populated it */
3410                 pud_free(mm, new);
3411         else
3412                 pgd_populate(mm, pgd, new);
3413         spin_unlock(&mm->page_table_lock);
3414         return 0;
3415 }
3416 #endif /* __PAGETABLE_PUD_FOLDED */
3417
3418 #ifndef __PAGETABLE_PMD_FOLDED
3419 /*
3420  * Allocate page middle directory.
3421  * We've already handled the fast-path in-line.
3422  */
3423 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3424 {
3425         pmd_t *new = pmd_alloc_one(mm, address);
3426         if (!new)
3427                 return -ENOMEM;
3428
3429         smp_wmb(); /* See comment in __pte_alloc */
3430
3431         spin_lock(&mm->page_table_lock);
3432 #ifndef __ARCH_HAS_4LEVEL_HACK
3433         if (pud_present(*pud))          /* Another has populated it */
3434                 pmd_free(mm, new);
3435         else
3436                 pud_populate(mm, pud, new);
3437 #else
3438         if (pgd_present(*pud))          /* Another has populated it */
3439                 pmd_free(mm, new);
3440         else
3441                 pgd_populate(mm, pud, new);
3442 #endif /* __ARCH_HAS_4LEVEL_HACK */
3443         spin_unlock(&mm->page_table_lock);
3444         return 0;
3445 }
3446 #endif /* __PAGETABLE_PMD_FOLDED */
3447
3448 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3449                 pte_t **ptepp, spinlock_t **ptlp)
3450 {
3451         pgd_t *pgd;
3452         pud_t *pud;
3453         pmd_t *pmd;
3454         pte_t *ptep;
3455
3456         pgd = pgd_offset(mm, address);
3457         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3458                 goto out;
3459
3460         pud = pud_offset(pgd, address);
3461         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3462                 goto out;
3463
3464         pmd = pmd_offset(pud, address);
3465         VM_BUG_ON(pmd_trans_huge(*pmd));
3466         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3467                 goto out;
3468
3469         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3470         if (pmd_huge(*pmd))
3471                 goto out;
3472
3473         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3474         if (!ptep)
3475                 goto out;
3476         if (!pte_present(*ptep))
3477                 goto unlock;
3478         *ptepp = ptep;
3479         return 0;
3480 unlock:
3481         pte_unmap_unlock(ptep, *ptlp);
3482 out:
3483         return -EINVAL;
3484 }
3485
3486 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3487                              pte_t **ptepp, spinlock_t **ptlp)
3488 {
3489         int res;
3490
3491         /* (void) is needed to make gcc happy */
3492         (void) __cond_lock(*ptlp,
3493                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3494         return res;
3495 }
3496
3497 /**
3498  * follow_pfn - look up PFN at a user virtual address
3499  * @vma: memory mapping
3500  * @address: user virtual address
3501  * @pfn: location to store found PFN
3502  *
3503  * Only IO mappings and raw PFN mappings are allowed.
3504  *
3505  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3506  */
3507 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3508         unsigned long *pfn)
3509 {
3510         int ret = -EINVAL;
3511         spinlock_t *ptl;
3512         pte_t *ptep;
3513
3514         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3515                 return ret;
3516
3517         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3518         if (ret)
3519                 return ret;
3520         *pfn = pte_pfn(*ptep);
3521         pte_unmap_unlock(ptep, ptl);
3522         return 0;
3523 }
3524 EXPORT_SYMBOL(follow_pfn);
3525
3526 #ifdef CONFIG_HAVE_IOREMAP_PROT
3527 int follow_phys(struct vm_area_struct *vma,
3528                 unsigned long address, unsigned int flags,
3529                 unsigned long *prot, resource_size_t *phys)
3530 {
3531         int ret = -EINVAL;
3532         pte_t *ptep, pte;
3533         spinlock_t *ptl;
3534
3535         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3536                 goto out;
3537
3538         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3539                 goto out;
3540         pte = *ptep;
3541
3542         if ((flags & FOLL_WRITE) && !pte_write(pte))
3543                 goto unlock;
3544
3545         *prot = pgprot_val(pte_pgprot(pte));
3546         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3547
3548         ret = 0;
3549 unlock:
3550         pte_unmap_unlock(ptep, ptl);
3551 out:
3552         return ret;
3553 }
3554
3555 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3556                         void *buf, int len, int write)
3557 {
3558         resource_size_t phys_addr;
3559         unsigned long prot = 0;
3560         void __iomem *maddr;
3561         int offset = addr & (PAGE_SIZE-1);
3562
3563         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3564                 return -EINVAL;
3565
3566         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3567         if (write)
3568                 memcpy_toio(maddr + offset, buf, len);
3569         else
3570                 memcpy_fromio(buf, maddr + offset, len);
3571         iounmap(maddr);
3572
3573         return len;
3574 }
3575 EXPORT_SYMBOL_GPL(generic_access_phys);
3576 #endif
3577
3578 /*
3579  * Access another process' address space as given in mm.  If non-NULL, use the
3580  * given task for page fault accounting.
3581  */
3582 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3583                 unsigned long addr, void *buf, int len, int write)
3584 {
3585         struct vm_area_struct *vma;
3586         void *old_buf = buf;
3587
3588         down_read(&mm->mmap_sem);
3589         /* ignore errors, just check how much was successfully transferred */
3590         while (len) {
3591                 int bytes, ret, offset;
3592                 void *maddr;
3593                 struct page *page = NULL;
3594
3595                 ret = get_user_pages(tsk, mm, addr, 1,
3596                                 write, 1, &page, &vma);
3597                 if (ret <= 0) {
3598 #ifndef CONFIG_HAVE_IOREMAP_PROT
3599                         break;
3600 #else
3601                         /*
3602                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3603                          * we can access using slightly different code.
3604                          */
3605                         vma = find_vma(mm, addr);
3606                         if (!vma || vma->vm_start > addr)
3607                                 break;
3608                         if (vma->vm_ops && vma->vm_ops->access)
3609                                 ret = vma->vm_ops->access(vma, addr, buf,
3610                                                           len, write);
3611                         if (ret <= 0)
3612                                 break;
3613                         bytes = ret;
3614 #endif
3615                 } else {
3616                         bytes = len;
3617                         offset = addr & (PAGE_SIZE-1);
3618                         if (bytes > PAGE_SIZE-offset)
3619                                 bytes = PAGE_SIZE-offset;
3620
3621                         maddr = kmap(page);
3622                         if (write) {
3623                                 copy_to_user_page(vma, page, addr,
3624                                                   maddr + offset, buf, bytes);
3625                                 set_page_dirty_lock(page);
3626                         } else {
3627                                 copy_from_user_page(vma, page, addr,
3628                                                     buf, maddr + offset, bytes);
3629                         }
3630                         kunmap(page);
3631                         page_cache_release(page);
3632                 }
3633                 len -= bytes;
3634                 buf += bytes;
3635                 addr += bytes;
3636         }
3637         up_read(&mm->mmap_sem);
3638
3639         return buf - old_buf;
3640 }
3641
3642 /**
3643  * access_remote_vm - access another process' address space
3644  * @mm:         the mm_struct of the target address space
3645  * @addr:       start address to access
3646  * @buf:        source or destination buffer
3647  * @len:        number of bytes to transfer
3648  * @write:      whether the access is a write
3649  *
3650  * The caller must hold a reference on @mm.
3651  */
3652 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3653                 void *buf, int len, int write)
3654 {
3655         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3656 }
3657
3658 /*
3659  * Access another process' address space.
3660  * Source/target buffer must be kernel space,
3661  * Do not walk the page table directly, use get_user_pages
3662  */
3663 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3664                 void *buf, int len, int write)
3665 {
3666         struct mm_struct *mm;
3667         int ret;
3668
3669         mm = get_task_mm(tsk);
3670         if (!mm)
3671                 return 0;
3672
3673         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3674         mmput(mm);
3675
3676         return ret;
3677 }
3678
3679 /*
3680  * Print the name of a VMA.
3681  */
3682 void print_vma_addr(char *prefix, unsigned long ip)
3683 {
3684         struct mm_struct *mm = current->mm;
3685         struct vm_area_struct *vma;
3686
3687         /*
3688          * Do not print if we are in atomic
3689          * contexts (in exception stacks, etc.):
3690          */
3691         if (preempt_count())
3692                 return;
3693
3694         down_read(&mm->mmap_sem);
3695         vma = find_vma(mm, ip);
3696         if (vma && vma->vm_file) {
3697                 struct file *f = vma->vm_file;
3698                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3699                 if (buf) {
3700                         char *p;
3701
3702                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3703                         if (IS_ERR(p))
3704                                 p = "?";
3705                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3706                                         vma->vm_start,
3707                                         vma->vm_end - vma->vm_start);
3708                         free_page((unsigned long)buf);
3709                 }
3710         }
3711         up_read(&mm->mmap_sem);
3712 }
3713
3714 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3715 void might_fault(void)
3716 {
3717         /*
3718          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3719          * holding the mmap_sem, this is safe because kernel memory doesn't
3720          * get paged out, therefore we'll never actually fault, and the
3721          * below annotations will generate false positives.
3722          */
3723         if (segment_eq(get_fs(), KERNEL_DS))
3724                 return;
3725
3726         /*
3727          * it would be nicer only to annotate paths which are not under
3728          * pagefault_disable, however that requires a larger audit and
3729          * providing helpers like get_user_atomic.
3730          */
3731         if (in_atomic())
3732                 return;
3733
3734         __might_sleep(__FILE__, __LINE__, 0);
3735
3736         if (current->mm)
3737                 might_lock_read(&current->mm->mmap_sem);
3738 }
3739 EXPORT_SYMBOL(might_fault);
3740 #endif
3741
3742 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3743 static void clear_gigantic_page(struct page *page,
3744                                 unsigned long addr,
3745                                 unsigned int pages_per_huge_page)
3746 {
3747         int i;
3748         struct page *p = page;
3749
3750         might_sleep();
3751         for (i = 0; i < pages_per_huge_page;
3752              i++, p = mem_map_next(p, page, i)) {
3753                 cond_resched();
3754                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3755         }
3756 }
3757 void clear_huge_page(struct page *page,
3758                      unsigned long addr, unsigned int pages_per_huge_page)
3759 {
3760         int i;
3761
3762         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3763                 clear_gigantic_page(page, addr, pages_per_huge_page);
3764                 return;
3765         }
3766
3767         might_sleep();
3768         for (i = 0; i < pages_per_huge_page; i++) {
3769                 cond_resched();
3770                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3771         }
3772 }
3773
3774 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3775                                     unsigned long addr,
3776                                     struct vm_area_struct *vma,
3777                                     unsigned int pages_per_huge_page)
3778 {
3779         int i;
3780         struct page *dst_base = dst;
3781         struct page *src_base = src;
3782
3783         for (i = 0; i < pages_per_huge_page; ) {
3784                 cond_resched();
3785                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3786
3787                 i++;
3788                 dst = mem_map_next(dst, dst_base, i);
3789                 src = mem_map_next(src, src_base, i);
3790         }
3791 }
3792
3793 void copy_user_huge_page(struct page *dst, struct page *src,
3794                          unsigned long addr, struct vm_area_struct *vma,
3795                          unsigned int pages_per_huge_page)
3796 {
3797         int i;
3798
3799         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3800                 copy_user_gigantic_page(dst, src, addr, vma,
3801                                         pages_per_huge_page);
3802                 return;
3803         }
3804
3805         might_sleep();
3806         for (i = 0; i < pages_per_huge_page; i++) {
3807                 cond_resched();
3808                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3809         }
3810 }
3811 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3812
3813 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3814
3815 static struct kmem_cache *page_ptl_cachep;
3816
3817 void __init ptlock_cache_init(void)
3818 {
3819         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3820                         SLAB_PANIC, NULL);
3821 }
3822
3823 bool ptlock_alloc(struct page *page)
3824 {
3825         spinlock_t *ptl;
3826
3827         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3828         if (!ptl)
3829                 return false;
3830         page->ptl = ptl;
3831         return true;
3832 }
3833
3834 void ptlock_free(struct page *page)
3835 {
3836         kmem_cache_free(page_ptl_cachep, page->ptl);
3837 }
3838 #endif