MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on the following paper:
8  * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9  *
10  * Code partially derived from nft_hash
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28
29 #define HASH_DEFAULT_SIZE       64UL
30 #define HASH_MIN_SIZE           4UL
31 #define BUCKET_LOCKS_PER_CPU   128UL
32
33 /* Base bits plus 1 bit for nulls marker */
34 #define HASH_RESERVED_SPACE     (RHT_BASE_BITS + 1)
35
36 enum {
37         RHT_LOCK_NORMAL,
38         RHT_LOCK_NESTED,
39 };
40
41 /* The bucket lock is selected based on the hash and protects mutations
42  * on a group of hash buckets.
43  *
44  * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
45  * a single lock always covers both buckets which may both contains
46  * entries which link to the same bucket of the old table during resizing.
47  * This allows to simplify the locking as locking the bucket in both
48  * tables during resize always guarantee protection.
49  *
50  * IMPORTANT: When holding the bucket lock of both the old and new table
51  * during expansions and shrinking, the old bucket lock must always be
52  * acquired first.
53  */
54 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
55 {
56         return &tbl->locks[hash & tbl->locks_mask];
57 }
58
59 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
60 {
61         return (void *) he - ht->p.head_offset;
62 }
63
64 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
65 {
66         return hash & (tbl->size - 1);
67 }
68
69 static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
70 {
71         u32 hash;
72
73         if (unlikely(!ht->p.key_len))
74                 hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
75         else
76                 hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
77                                     ht->p.hash_rnd);
78
79         return hash >> HASH_RESERVED_SPACE;
80 }
81
82 static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
83 {
84         return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
85 }
86
87 static u32 head_hashfn(const struct rhashtable *ht,
88                        const struct bucket_table *tbl,
89                        const struct rhash_head *he)
90 {
91         return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
92 }
93
94 #ifdef CONFIG_PROVE_LOCKING
95 static void debug_dump_buckets(const struct rhashtable *ht,
96                                const struct bucket_table *tbl)
97 {
98         struct rhash_head *he;
99         unsigned int i, hash;
100
101         for (i = 0; i < tbl->size; i++) {
102                 pr_warn(" [Bucket %d] ", i);
103                 rht_for_each_rcu(he, tbl, i) {
104                         hash = head_hashfn(ht, tbl, he);
105                         pr_cont("[hash = %#x, lock = %p] ",
106                                 hash, bucket_lock(tbl, hash));
107                 }
108                 pr_cont("\n");
109         }
110
111 }
112
113 static void debug_dump_table(struct rhashtable *ht,
114                              const struct bucket_table *tbl,
115                              unsigned int hash)
116 {
117         struct bucket_table *old_tbl, *future_tbl;
118
119         pr_emerg("BUG: lock for hash %#x in table %p not held\n",
120                  hash, tbl);
121
122         rcu_read_lock();
123         future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
124         old_tbl = rht_dereference_rcu(ht->tbl, ht);
125         if (future_tbl != old_tbl) {
126                 pr_warn("Future table %p (size: %zd)\n",
127                         future_tbl, future_tbl->size);
128                 debug_dump_buckets(ht, future_tbl);
129         }
130
131         pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
132         debug_dump_buckets(ht, old_tbl);
133
134         rcu_read_unlock();
135 }
136
137 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
138 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)                               \
139         do {                                                            \
140                 if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) { \
141                         debug_dump_table(HT, TBL, HASH);                \
142                         BUG();                                          \
143                 }                                                       \
144         } while (0)
145
146 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
147 {
148         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
149 }
150 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
151
152 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
153 {
154         spinlock_t *lock = bucket_lock(tbl, hash);
155
156         return (debug_locks) ? lockdep_is_held(lock) : 1;
157 }
158 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
159 #else
160 #define ASSERT_RHT_MUTEX(HT)
161 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
162 #endif
163
164
165 static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
166 {
167         struct rhash_head __rcu **pprev;
168
169         for (pprev = &tbl->buckets[n];
170              !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
171              pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
172                 ;
173
174         return pprev;
175 }
176
177 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
178 {
179         unsigned int i, size;
180 #if defined(CONFIG_PROVE_LOCKING)
181         unsigned int nr_pcpus = 2;
182 #else
183         unsigned int nr_pcpus = num_possible_cpus();
184 #endif
185
186         nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
187         size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
188
189         /* Never allocate more than 0.5 locks per bucket */
190         size = min_t(unsigned int, size, tbl->size >> 1);
191
192         if (sizeof(spinlock_t) != 0) {
193 #ifdef CONFIG_NUMA
194                 if (size * sizeof(spinlock_t) > PAGE_SIZE)
195                         tbl->locks = vmalloc(size * sizeof(spinlock_t));
196                 else
197 #endif
198                 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
199                                            GFP_KERNEL);
200                 if (!tbl->locks)
201                         return -ENOMEM;
202                 for (i = 0; i < size; i++)
203                         spin_lock_init(&tbl->locks[i]);
204         }
205         tbl->locks_mask = size - 1;
206
207         return 0;
208 }
209
210 static void bucket_table_free(const struct bucket_table *tbl)
211 {
212         if (tbl)
213                 kvfree(tbl->locks);
214
215         kvfree(tbl);
216 }
217
218 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
219                                                size_t nbuckets)
220 {
221         struct bucket_table *tbl = NULL;
222         size_t size;
223         int i;
224
225         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
226         if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
227                 tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
228         if (tbl == NULL)
229                 tbl = vzalloc(size);
230         if (tbl == NULL)
231                 return NULL;
232
233         tbl->size = nbuckets;
234
235         if (alloc_bucket_locks(ht, tbl) < 0) {
236                 bucket_table_free(tbl);
237                 return NULL;
238         }
239
240         for (i = 0; i < nbuckets; i++)
241                 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
242
243         return tbl;
244 }
245
246 /**
247  * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
248  * @ht:         hash table
249  * @new_size:   new table size
250  */
251 static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
252 {
253         /* Expand table when exceeding 75% load */
254         return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
255                (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift);
256 }
257
258 /**
259  * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
260  * @ht:         hash table
261  * @new_size:   new table size
262  */
263 static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
264 {
265         /* Shrink table beneath 30% load */
266         return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
267                (atomic_read(&ht->shift) > ht->p.min_shift);
268 }
269
270 static void lock_buckets(struct bucket_table *new_tbl,
271                          struct bucket_table *old_tbl, unsigned int hash)
272         __acquires(old_bucket_lock)
273 {
274         spin_lock_bh(bucket_lock(old_tbl, hash));
275         if (new_tbl != old_tbl)
276                 spin_lock_bh_nested(bucket_lock(new_tbl, hash),
277                                     RHT_LOCK_NESTED);
278 }
279
280 static void unlock_buckets(struct bucket_table *new_tbl,
281                            struct bucket_table *old_tbl, unsigned int hash)
282         __releases(old_bucket_lock)
283 {
284         if (new_tbl != old_tbl)
285                 spin_unlock_bh(bucket_lock(new_tbl, hash));
286         spin_unlock_bh(bucket_lock(old_tbl, hash));
287 }
288
289 /**
290  * Unlink entries on bucket which hash to different bucket.
291  *
292  * Returns true if no more work needs to be performed on the bucket.
293  */
294 static bool hashtable_chain_unzip(struct rhashtable *ht,
295                                   const struct bucket_table *new_tbl,
296                                   struct bucket_table *old_tbl,
297                                   size_t old_hash)
298 {
299         struct rhash_head *he, *p, *next;
300         unsigned int new_hash, new_hash2;
301
302         ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
303
304         /* Old bucket empty, no work needed. */
305         p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
306                                    old_hash);
307         if (rht_is_a_nulls(p))
308                 return false;
309
310         new_hash = head_hashfn(ht, new_tbl, p);
311         ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
312
313         /* Advance the old bucket pointer one or more times until it
314          * reaches a node that doesn't hash to the same bucket as the
315          * previous node p. Call the previous node p;
316          */
317         rht_for_each_continue(he, p->next, old_tbl, old_hash) {
318                 new_hash2 = head_hashfn(ht, new_tbl, he);
319                 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
320
321                 if (new_hash != new_hash2)
322                         break;
323                 p = he;
324         }
325         rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
326
327         /* Find the subsequent node which does hash to the same
328          * bucket as node P, or NULL if no such node exists.
329          */
330         INIT_RHT_NULLS_HEAD(next, ht, old_hash);
331         if (!rht_is_a_nulls(he)) {
332                 rht_for_each_continue(he, he->next, old_tbl, old_hash) {
333                         if (head_hashfn(ht, new_tbl, he) == new_hash) {
334                                 next = he;
335                                 break;
336                         }
337                 }
338         }
339
340         /* Set p's next pointer to that subsequent node pointer,
341          * bypassing the nodes which do not hash to p's bucket
342          */
343         rcu_assign_pointer(p->next, next);
344
345         p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
346                                    old_hash);
347
348         return !rht_is_a_nulls(p);
349 }
350
351 static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
352                             unsigned int new_hash, struct rhash_head *entry)
353 {
354         ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
355
356         rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
357 }
358
359 /**
360  * rhashtable_expand - Expand hash table while allowing concurrent lookups
361  * @ht:         the hash table to expand
362  *
363  * A secondary bucket array is allocated and the hash entries are migrated
364  * while keeping them on both lists until the end of the RCU grace period.
365  *
366  * This function may only be called in a context where it is safe to call
367  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
368  *
369  * The caller must ensure that no concurrent resizing occurs by holding
370  * ht->mutex.
371  *
372  * It is valid to have concurrent insertions and deletions protected by per
373  * bucket locks or concurrent RCU protected lookups and traversals.
374  */
375 int rhashtable_expand(struct rhashtable *ht)
376 {
377         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
378         struct rhash_head *he;
379         unsigned int new_hash, old_hash;
380         bool complete = false;
381
382         ASSERT_RHT_MUTEX(ht);
383
384         new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
385         if (new_tbl == NULL)
386                 return -ENOMEM;
387
388         atomic_inc(&ht->shift);
389
390         /* Make insertions go into the new, empty table right away. Deletions
391          * and lookups will be attempted in both tables until we synchronize.
392          * The synchronize_rcu() guarantees for the new table to be picked up
393          * so no new additions go into the old table while we relink.
394          */
395         rcu_assign_pointer(ht->future_tbl, new_tbl);
396         synchronize_rcu();
397
398         /* For each new bucket, search the corresponding old bucket for the
399          * first entry that hashes to the new bucket, and link the end of
400          * newly formed bucket chain (containing entries added to future
401          * table) to that entry. Since all the entries which will end up in
402          * the new bucket appear in the same old bucket, this constructs an
403          * entirely valid new hash table, but with multiple buckets
404          * "zipped" together into a single imprecise chain.
405          */
406         for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
407                 old_hash = rht_bucket_index(old_tbl, new_hash);
408                 lock_buckets(new_tbl, old_tbl, new_hash);
409                 rht_for_each(he, old_tbl, old_hash) {
410                         if (head_hashfn(ht, new_tbl, he) == new_hash) {
411                                 link_old_to_new(ht, new_tbl, new_hash, he);
412                                 break;
413                         }
414                 }
415                 unlock_buckets(new_tbl, old_tbl, new_hash);
416                 cond_resched();
417         }
418
419         /* Unzip interleaved hash chains */
420         while (!complete && !ht->being_destroyed) {
421                 /* Wait for readers. All new readers will see the new
422                  * table, and thus no references to the old table will
423                  * remain.
424                  */
425                 synchronize_rcu();
426
427                 /* For each bucket in the old table (each of which
428                  * contains items from multiple buckets of the new
429                  * table): ...
430                  */
431                 complete = true;
432                 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
433                         lock_buckets(new_tbl, old_tbl, old_hash);
434
435                         if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
436                                                   old_hash))
437                                 complete = false;
438
439                         unlock_buckets(new_tbl, old_tbl, old_hash);
440                         cond_resched();
441                 }
442         }
443
444         rcu_assign_pointer(ht->tbl, new_tbl);
445         synchronize_rcu();
446
447         bucket_table_free(old_tbl);
448         return 0;
449 }
450 EXPORT_SYMBOL_GPL(rhashtable_expand);
451
452 /**
453  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
454  * @ht:         the hash table to shrink
455  *
456  * This function may only be called in a context where it is safe to call
457  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
458  *
459  * The caller must ensure that no concurrent resizing occurs by holding
460  * ht->mutex.
461  *
462  * The caller must ensure that no concurrent table mutations take place.
463  * It is however valid to have concurrent lookups if they are RCU protected.
464  *
465  * It is valid to have concurrent insertions and deletions protected by per
466  * bucket locks or concurrent RCU protected lookups and traversals.
467  */
468 int rhashtable_shrink(struct rhashtable *ht)
469 {
470         struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
471         unsigned int new_hash;
472
473         ASSERT_RHT_MUTEX(ht);
474
475         new_tbl = bucket_table_alloc(ht, tbl->size / 2);
476         if (new_tbl == NULL)
477                 return -ENOMEM;
478
479         rcu_assign_pointer(ht->future_tbl, new_tbl);
480         synchronize_rcu();
481
482         /* Link the first entry in the old bucket to the end of the
483          * bucket in the new table. As entries are concurrently being
484          * added to the new table, lock down the new bucket. As we
485          * always divide the size in half when shrinking, each bucket
486          * in the new table maps to exactly two buckets in the old
487          * table.
488          */
489         for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
490                 lock_buckets(new_tbl, tbl, new_hash);
491
492                 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
493                                    tbl->buckets[new_hash]);
494                 ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
495                 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
496                                    tbl->buckets[new_hash + new_tbl->size]);
497
498                 unlock_buckets(new_tbl, tbl, new_hash);
499                 cond_resched();
500         }
501
502         /* Publish the new, valid hash table */
503         rcu_assign_pointer(ht->tbl, new_tbl);
504         atomic_dec(&ht->shift);
505
506         /* Wait for readers. No new readers will have references to the
507          * old hash table.
508          */
509         synchronize_rcu();
510
511         bucket_table_free(tbl);
512
513         return 0;
514 }
515 EXPORT_SYMBOL_GPL(rhashtable_shrink);
516
517 static void rht_deferred_worker(struct work_struct *work)
518 {
519         struct rhashtable *ht;
520         struct bucket_table *tbl;
521         struct rhashtable_walker *walker;
522
523         ht = container_of(work, struct rhashtable, run_work);
524         mutex_lock(&ht->mutex);
525         if (ht->being_destroyed)
526                 goto unlock;
527
528         tbl = rht_dereference(ht->tbl, ht);
529
530         list_for_each_entry(walker, &ht->walkers, list)
531                 walker->resize = true;
532
533         if (rht_grow_above_75(ht, tbl->size))
534                 rhashtable_expand(ht);
535         else if (rht_shrink_below_30(ht, tbl->size))
536                 rhashtable_shrink(ht);
537 unlock:
538         mutex_unlock(&ht->mutex);
539 }
540
541 static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
542                                 struct bucket_table *tbl,
543                                 const struct bucket_table *old_tbl, u32 hash)
544 {
545         bool no_resize_running = tbl == old_tbl;
546         struct rhash_head *head;
547
548         hash = rht_bucket_index(tbl, hash);
549         head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
550
551         ASSERT_BUCKET_LOCK(ht, tbl, hash);
552
553         if (rht_is_a_nulls(head))
554                 INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
555         else
556                 RCU_INIT_POINTER(obj->next, head);
557
558         rcu_assign_pointer(tbl->buckets[hash], obj);
559
560         atomic_inc(&ht->nelems);
561         if (no_resize_running && rht_grow_above_75(ht, tbl->size))
562                 schedule_work(&ht->run_work);
563 }
564
565 /**
566  * rhashtable_insert - insert object into hash table
567  * @ht:         hash table
568  * @obj:        pointer to hash head inside object
569  *
570  * Will take a per bucket spinlock to protect against mutual mutations
571  * on the same bucket. Multiple insertions may occur in parallel unless
572  * they map to the same bucket lock.
573  *
574  * It is safe to call this function from atomic context.
575  *
576  * Will trigger an automatic deferred table resizing if the size grows
577  * beyond the watermark indicated by grow_decision() which can be passed
578  * to rhashtable_init().
579  */
580 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
581 {
582         struct bucket_table *tbl, *old_tbl;
583         unsigned hash;
584
585         rcu_read_lock();
586
587         tbl = rht_dereference_rcu(ht->future_tbl, ht);
588         old_tbl = rht_dereference_rcu(ht->tbl, ht);
589         hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
590
591         lock_buckets(tbl, old_tbl, hash);
592         __rhashtable_insert(ht, obj, tbl, old_tbl, hash);
593         unlock_buckets(tbl, old_tbl, hash);
594
595         rcu_read_unlock();
596 }
597 EXPORT_SYMBOL_GPL(rhashtable_insert);
598
599 /**
600  * rhashtable_remove - remove object from hash table
601  * @ht:         hash table
602  * @obj:        pointer to hash head inside object
603  *
604  * Since the hash chain is single linked, the removal operation needs to
605  * walk the bucket chain upon removal. The removal operation is thus
606  * considerable slow if the hash table is not correctly sized.
607  *
608  * Will automatically shrink the table via rhashtable_expand() if the
609  * shrink_decision function specified at rhashtable_init() returns true.
610  *
611  * The caller must ensure that no concurrent table mutations occur. It is
612  * however valid to have concurrent lookups if they are RCU protected.
613  */
614 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
615 {
616         struct bucket_table *tbl, *new_tbl, *old_tbl;
617         struct rhash_head __rcu **pprev;
618         struct rhash_head *he, *he2;
619         unsigned int hash, new_hash;
620         bool ret = false;
621
622         rcu_read_lock();
623         old_tbl = rht_dereference_rcu(ht->tbl, ht);
624         tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
625         new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
626
627         lock_buckets(new_tbl, old_tbl, new_hash);
628 restart:
629         hash = rht_bucket_index(tbl, new_hash);
630         pprev = &tbl->buckets[hash];
631         rht_for_each(he, tbl, hash) {
632                 if (he != obj) {
633                         pprev = &he->next;
634                         continue;
635                 }
636
637                 ASSERT_BUCKET_LOCK(ht, tbl, hash);
638
639                 if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
640                     !rht_is_a_nulls(obj->next) &&
641                     head_hashfn(ht, tbl, obj->next) != hash) {
642                         rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
643                 } else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
644                         rht_for_each_continue(he2, obj->next, tbl, hash) {
645                                 if (head_hashfn(ht, tbl, he2) == hash) {
646                                         rcu_assign_pointer(*pprev, he2);
647                                         goto found;
648                                 }
649                         }
650
651                         rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
652                 } else {
653                         rcu_assign_pointer(*pprev, obj->next);
654                 }
655
656 found:
657                 ret = true;
658                 break;
659         }
660
661         /* The entry may be linked in either 'tbl', 'future_tbl', or both.
662          * 'future_tbl' only exists for a short period of time during
663          * resizing. Thus traversing both is fine and the added cost is
664          * very rare.
665          */
666         if (tbl != old_tbl) {
667                 tbl = old_tbl;
668                 goto restart;
669         }
670
671         unlock_buckets(new_tbl, old_tbl, new_hash);
672
673         if (ret) {
674                 bool no_resize_running = new_tbl == old_tbl;
675
676                 atomic_dec(&ht->nelems);
677                 if (no_resize_running && rht_shrink_below_30(ht, new_tbl->size))
678                         schedule_work(&ht->run_work);
679         }
680
681         rcu_read_unlock();
682
683         return ret;
684 }
685 EXPORT_SYMBOL_GPL(rhashtable_remove);
686
687 struct rhashtable_compare_arg {
688         struct rhashtable *ht;
689         const void *key;
690 };
691
692 static bool rhashtable_compare(void *ptr, void *arg)
693 {
694         struct rhashtable_compare_arg *x = arg;
695         struct rhashtable *ht = x->ht;
696
697         return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
698 }
699
700 /**
701  * rhashtable_lookup - lookup key in hash table
702  * @ht:         hash table
703  * @key:        pointer to key
704  *
705  * Computes the hash value for the key and traverses the bucket chain looking
706  * for a entry with an identical key. The first matching entry is returned.
707  *
708  * This lookup function may only be used for fixed key hash table (key_len
709  * parameter set). It will BUG() if used inappropriately.
710  *
711  * Lookups may occur in parallel with hashtable mutations and resizing.
712  */
713 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
714 {
715         struct rhashtable_compare_arg arg = {
716                 .ht = ht,
717                 .key = key,
718         };
719
720         BUG_ON(!ht->p.key_len);
721
722         return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
723 }
724 EXPORT_SYMBOL_GPL(rhashtable_lookup);
725
726 /**
727  * rhashtable_lookup_compare - search hash table with compare function
728  * @ht:         hash table
729  * @key:        the pointer to the key
730  * @compare:    compare function, must return true on match
731  * @arg:        argument passed on to compare function
732  *
733  * Traverses the bucket chain behind the provided hash value and calls the
734  * specified compare function for each entry.
735  *
736  * Lookups may occur in parallel with hashtable mutations and resizing.
737  *
738  * Returns the first entry on which the compare function returned true.
739  */
740 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
741                                 bool (*compare)(void *, void *), void *arg)
742 {
743         const struct bucket_table *tbl, *old_tbl;
744         struct rhash_head *he;
745         u32 hash;
746
747         rcu_read_lock();
748
749         old_tbl = rht_dereference_rcu(ht->tbl, ht);
750         tbl = rht_dereference_rcu(ht->future_tbl, ht);
751         hash = key_hashfn(ht, key, ht->p.key_len);
752 restart:
753         rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
754                 if (!compare(rht_obj(ht, he), arg))
755                         continue;
756                 rcu_read_unlock();
757                 return rht_obj(ht, he);
758         }
759
760         if (unlikely(tbl != old_tbl)) {
761                 tbl = old_tbl;
762                 goto restart;
763         }
764         rcu_read_unlock();
765
766         return NULL;
767 }
768 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
769
770 /**
771  * rhashtable_lookup_insert - lookup and insert object into hash table
772  * @ht:         hash table
773  * @obj:        pointer to hash head inside object
774  *
775  * Locks down the bucket chain in both the old and new table if a resize
776  * is in progress to ensure that writers can't remove from the old table
777  * and can't insert to the new table during the atomic operation of search
778  * and insertion. Searches for duplicates in both the old and new table if
779  * a resize is in progress.
780  *
781  * This lookup function may only be used for fixed key hash table (key_len
782  * parameter set). It will BUG() if used inappropriately.
783  *
784  * It is safe to call this function from atomic context.
785  *
786  * Will trigger an automatic deferred table resizing if the size grows
787  * beyond the watermark indicated by grow_decision() which can be passed
788  * to rhashtable_init().
789  */
790 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
791 {
792         struct rhashtable_compare_arg arg = {
793                 .ht = ht,
794                 .key = rht_obj(ht, obj) + ht->p.key_offset,
795         };
796
797         BUG_ON(!ht->p.key_len);
798
799         return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
800                                                 &arg);
801 }
802 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
803
804 /**
805  * rhashtable_lookup_compare_insert - search and insert object to hash table
806  *                                    with compare function
807  * @ht:         hash table
808  * @obj:        pointer to hash head inside object
809  * @compare:    compare function, must return true on match
810  * @arg:        argument passed on to compare function
811  *
812  * Locks down the bucket chain in both the old and new table if a resize
813  * is in progress to ensure that writers can't remove from the old table
814  * and can't insert to the new table during the atomic operation of search
815  * and insertion. Searches for duplicates in both the old and new table if
816  * a resize is in progress.
817  *
818  * Lookups may occur in parallel with hashtable mutations and resizing.
819  *
820  * Will trigger an automatic deferred table resizing if the size grows
821  * beyond the watermark indicated by grow_decision() which can be passed
822  * to rhashtable_init().
823  */
824 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
825                                       struct rhash_head *obj,
826                                       bool (*compare)(void *, void *),
827                                       void *arg)
828 {
829         struct bucket_table *new_tbl, *old_tbl;
830         u32 new_hash;
831         bool success = true;
832
833         BUG_ON(!ht->p.key_len);
834
835         rcu_read_lock();
836         old_tbl = rht_dereference_rcu(ht->tbl, ht);
837         new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
838         new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
839
840         lock_buckets(new_tbl, old_tbl, new_hash);
841
842         if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
843                                       compare, arg)) {
844                 success = false;
845                 goto exit;
846         }
847
848         __rhashtable_insert(ht, obj, new_tbl, old_tbl, new_hash);
849
850 exit:
851         unlock_buckets(new_tbl, old_tbl, new_hash);
852         rcu_read_unlock();
853
854         return success;
855 }
856 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
857
858 /**
859  * rhashtable_walk_init - Initialise an iterator
860  * @ht:         Table to walk over
861  * @iter:       Hash table Iterator
862  *
863  * This function prepares a hash table walk.
864  *
865  * Note that if you restart a walk after rhashtable_walk_stop you
866  * may see the same object twice.  Also, you may miss objects if
867  * there are removals in between rhashtable_walk_stop and the next
868  * call to rhashtable_walk_start.
869  *
870  * For a completely stable walk you should construct your own data
871  * structure outside the hash table.
872  *
873  * This function may sleep so you must not call it from interrupt
874  * context or with spin locks held.
875  *
876  * You must call rhashtable_walk_exit if this function returns
877  * successfully.
878  */
879 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
880 {
881         iter->ht = ht;
882         iter->p = NULL;
883         iter->slot = 0;
884         iter->skip = 0;
885
886         iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
887         if (!iter->walker)
888                 return -ENOMEM;
889
890         INIT_LIST_HEAD(&iter->walker->list);
891         iter->walker->resize = false;
892
893         mutex_lock(&ht->mutex);
894         list_add(&iter->walker->list, &ht->walkers);
895         mutex_unlock(&ht->mutex);
896
897         return 0;
898 }
899 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
900
901 /**
902  * rhashtable_walk_exit - Free an iterator
903  * @iter:       Hash table Iterator
904  *
905  * This function frees resources allocated by rhashtable_walk_init.
906  */
907 void rhashtable_walk_exit(struct rhashtable_iter *iter)
908 {
909         mutex_lock(&iter->ht->mutex);
910         list_del(&iter->walker->list);
911         mutex_unlock(&iter->ht->mutex);
912         kfree(iter->walker);
913 }
914 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
915
916 /**
917  * rhashtable_walk_start - Start a hash table walk
918  * @iter:       Hash table iterator
919  *
920  * Start a hash table walk.  Note that we take the RCU lock in all
921  * cases including when we return an error.  So you must always call
922  * rhashtable_walk_stop to clean up.
923  *
924  * Returns zero if successful.
925  *
926  * Returns -EAGAIN if resize event occured.  Note that the iterator
927  * will rewind back to the beginning and you may use it immediately
928  * by calling rhashtable_walk_next.
929  */
930 int rhashtable_walk_start(struct rhashtable_iter *iter)
931 {
932         rcu_read_lock();
933
934         if (iter->walker->resize) {
935                 iter->slot = 0;
936                 iter->skip = 0;
937                 iter->walker->resize = false;
938                 return -EAGAIN;
939         }
940
941         return 0;
942 }
943 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
944
945 /**
946  * rhashtable_walk_next - Return the next object and advance the iterator
947  * @iter:       Hash table iterator
948  *
949  * Note that you must call rhashtable_walk_stop when you are finished
950  * with the walk.
951  *
952  * Returns the next object or NULL when the end of the table is reached.
953  *
954  * Returns -EAGAIN if resize event occured.  Note that the iterator
955  * will rewind back to the beginning and you may continue to use it.
956  */
957 void *rhashtable_walk_next(struct rhashtable_iter *iter)
958 {
959         const struct bucket_table *tbl;
960         struct rhashtable *ht = iter->ht;
961         struct rhash_head *p = iter->p;
962         void *obj = NULL;
963
964         tbl = rht_dereference_rcu(ht->tbl, ht);
965
966         if (p) {
967                 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
968                 goto next;
969         }
970
971         for (; iter->slot < tbl->size; iter->slot++) {
972                 int skip = iter->skip;
973
974                 rht_for_each_rcu(p, tbl, iter->slot) {
975                         if (!skip)
976                                 break;
977                         skip--;
978                 }
979
980 next:
981                 if (!rht_is_a_nulls(p)) {
982                         iter->skip++;
983                         iter->p = p;
984                         obj = rht_obj(ht, p);
985                         goto out;
986                 }
987
988                 iter->skip = 0;
989         }
990
991         iter->p = NULL;
992
993 out:
994         if (iter->walker->resize) {
995                 iter->p = NULL;
996                 iter->slot = 0;
997                 iter->skip = 0;
998                 iter->walker->resize = false;
999                 return ERR_PTR(-EAGAIN);
1000         }
1001
1002         return obj;
1003 }
1004 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1005
1006 /**
1007  * rhashtable_walk_stop - Finish a hash table walk
1008  * @iter:       Hash table iterator
1009  *
1010  * Finish a hash table walk.
1011  */
1012 void rhashtable_walk_stop(struct rhashtable_iter *iter)
1013 {
1014         rcu_read_unlock();
1015         iter->p = NULL;
1016 }
1017 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1018
1019 static size_t rounded_hashtable_size(struct rhashtable_params *params)
1020 {
1021         return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1022                    1UL << params->min_shift);
1023 }
1024
1025 /**
1026  * rhashtable_init - initialize a new hash table
1027  * @ht:         hash table to be initialized
1028  * @params:     configuration parameters
1029  *
1030  * Initializes a new hash table based on the provided configuration
1031  * parameters. A table can be configured either with a variable or
1032  * fixed length key:
1033  *
1034  * Configuration Example 1: Fixed length keys
1035  * struct test_obj {
1036  *      int                     key;
1037  *      void *                  my_member;
1038  *      struct rhash_head       node;
1039  * };
1040  *
1041  * struct rhashtable_params params = {
1042  *      .head_offset = offsetof(struct test_obj, node),
1043  *      .key_offset = offsetof(struct test_obj, key),
1044  *      .key_len = sizeof(int),
1045  *      .hashfn = jhash,
1046  *      .nulls_base = (1U << RHT_BASE_SHIFT),
1047  * };
1048  *
1049  * Configuration Example 2: Variable length keys
1050  * struct test_obj {
1051  *      [...]
1052  *      struct rhash_head       node;
1053  * };
1054  *
1055  * u32 my_hash_fn(const void *data, u32 seed)
1056  * {
1057  *      struct test_obj *obj = data;
1058  *
1059  *      return [... hash ...];
1060  * }
1061  *
1062  * struct rhashtable_params params = {
1063  *      .head_offset = offsetof(struct test_obj, node),
1064  *      .hashfn = jhash,
1065  *      .obj_hashfn = my_hash_fn,
1066  * };
1067  */
1068 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1069 {
1070         struct bucket_table *tbl;
1071         size_t size;
1072
1073         size = HASH_DEFAULT_SIZE;
1074
1075         if ((params->key_len && !params->hashfn) ||
1076             (!params->key_len && !params->obj_hashfn))
1077                 return -EINVAL;
1078
1079         if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1080                 return -EINVAL;
1081
1082         params->min_shift = max_t(size_t, params->min_shift,
1083                                   ilog2(HASH_MIN_SIZE));
1084
1085         if (params->nelem_hint)
1086                 size = rounded_hashtable_size(params);
1087
1088         memset(ht, 0, sizeof(*ht));
1089         mutex_init(&ht->mutex);
1090         memcpy(&ht->p, params, sizeof(*params));
1091         INIT_LIST_HEAD(&ht->walkers);
1092
1093         if (params->locks_mul)
1094                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1095         else
1096                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1097
1098         tbl = bucket_table_alloc(ht, size);
1099         if (tbl == NULL)
1100                 return -ENOMEM;
1101
1102         atomic_set(&ht->nelems, 0);
1103         atomic_set(&ht->shift, ilog2(tbl->size));
1104         RCU_INIT_POINTER(ht->tbl, tbl);
1105         RCU_INIT_POINTER(ht->future_tbl, tbl);
1106
1107         if (!ht->p.hash_rnd)
1108                 get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1109
1110         INIT_WORK(&ht->run_work, rht_deferred_worker);
1111
1112         return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(rhashtable_init);
1115
1116 /**
1117  * rhashtable_destroy - destroy hash table
1118  * @ht:         the hash table to destroy
1119  *
1120  * Frees the bucket array. This function is not rcu safe, therefore the caller
1121  * has to make sure that no resizing may happen by unpublishing the hashtable
1122  * and waiting for the quiescent cycle before releasing the bucket array.
1123  */
1124 void rhashtable_destroy(struct rhashtable *ht)
1125 {
1126         ht->being_destroyed = true;
1127
1128         cancel_work_sync(&ht->run_work);
1129
1130         mutex_lock(&ht->mutex);
1131         bucket_table_free(rht_dereference(ht->tbl, ht));
1132         mutex_unlock(&ht->mutex);
1133 }
1134 EXPORT_SYMBOL_GPL(rhashtable_destroy);