MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / kernel / workqueue.c
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002           Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010           SUSE Linux Products GmbH
15  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55         /*
56          * worker_pool flags
57          *
58          * A bound pool is either associated or disassociated with its CPU.
59          * While associated (!DISASSOCIATED), all workers are bound to the
60          * CPU and none has %WORKER_UNBOUND set and concurrency management
61          * is in effect.
62          *
63          * While DISASSOCIATED, the cpu may be offline and all workers have
64          * %WORKER_UNBOUND set and concurrency management disabled, and may
65          * be executing on any CPU.  The pool behaves as an unbound one.
66          *
67          * Note that DISASSOCIATED should be flipped only while holding
68          * attach_mutex to avoid changing binding state while
69          * worker_attach_to_pool() is in progress.
70          */
71         POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
72
73         /* worker flags */
74         WORKER_DIE              = 1 << 1,       /* die die die */
75         WORKER_IDLE             = 1 << 2,       /* is idle */
76         WORKER_PREP             = 1 << 3,       /* preparing to run works */
77         WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
78         WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
79         WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
80
81         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
82                                   WORKER_UNBOUND | WORKER_REBOUND,
83
84         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
85
86         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
87         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
88
89         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
90         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
91
92         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93                                                 /* call for help after 10ms
94                                                    (min two ticks) */
95         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
96         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
97
98         /*
99          * Rescue workers are used only on emergencies and shared by
100          * all cpus.  Give MIN_NICE.
101          */
102         RESCUER_NICE_LEVEL      = MIN_NICE,
103         HIGHPRI_NICE_LEVEL      = MIN_NICE,
104
105         WQ_NAME_LEN             = 24,
106 };
107
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * WQ: wq->mutex protected.
131  *
132  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * MD: wq_mayday_lock protected.
135  */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140         spinlock_t              lock;           /* the pool lock */
141         int                     cpu;            /* I: the associated cpu */
142         int                     node;           /* I: the associated node ID */
143         int                     id;             /* I: pool ID */
144         unsigned int            flags;          /* X: flags */
145
146         struct list_head        worklist;       /* L: list of pending works */
147         int                     nr_workers;     /* L: total number of workers */
148
149         /* nr_idle includes the ones off idle_list for rebinding */
150         int                     nr_idle;        /* L: currently idle ones */
151
152         struct list_head        idle_list;      /* X: list of idle workers */
153         struct timer_list       idle_timer;     /* L: worker idle timeout */
154         struct timer_list       mayday_timer;   /* L: SOS timer for workers */
155
156         /* a workers is either on busy_hash or idle_list, or the manager */
157         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158                                                 /* L: hash of busy workers */
159
160         /* see manage_workers() for details on the two manager mutexes */
161         struct mutex            manager_arb;    /* manager arbitration */
162         struct mutex            attach_mutex;   /* attach/detach exclusion */
163         struct list_head        workers;        /* A: attached workers */
164         struct completion       *detach_completion; /* all workers detached */
165
166         struct ida              worker_ida;     /* worker IDs for task name */
167
168         struct workqueue_attrs  *attrs;         /* I: worker attributes */
169         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
170         int                     refcnt;         /* PL: refcnt for unbound pools */
171
172         /*
173          * The current concurrency level.  As it's likely to be accessed
174          * from other CPUs during try_to_wake_up(), put it in a separate
175          * cacheline.
176          */
177         atomic_t                nr_running ____cacheline_aligned_in_smp;
178
179         /*
180          * Destruction of pool is sched-RCU protected to allow dereferences
181          * from get_work_pool().
182          */
183         struct rcu_head         rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193         struct worker_pool      *pool;          /* I: the associated pool */
194         struct workqueue_struct *wq;            /* I: the owning workqueue */
195         int                     work_color;     /* L: current color */
196         int                     flush_color;    /* L: flushing color */
197         int                     refcnt;         /* L: reference count */
198         int                     nr_in_flight[WORK_NR_COLORS];
199                                                 /* L: nr of in_flight works */
200         int                     nr_active;      /* L: nr of active works */
201         int                     max_active;     /* L: max active works */
202         struct list_head        delayed_works;  /* L: delayed works */
203         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
204         struct list_head        mayday_node;    /* MD: node on wq->maydays */
205
206         /*
207          * Release of unbound pwq is punted to system_wq.  See put_pwq()
208          * and pwq_unbound_release_workfn() for details.  pool_workqueue
209          * itself is also sched-RCU protected so that the first pwq can be
210          * determined without grabbing wq->mutex.
211          */
212         struct work_struct      unbound_release_work;
213         struct rcu_head         rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220         struct list_head        list;           /* WQ: list of flushers */
221         int                     flush_color;    /* WQ: flush color waiting for */
222         struct completion       done;           /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232         struct list_head        pwqs;           /* WR: all pwqs of this wq */
233         struct list_head        list;           /* PL: list of all workqueues */
234
235         struct mutex            mutex;          /* protects this wq */
236         int                     work_color;     /* WQ: current work color */
237         int                     flush_color;    /* WQ: current flush color */
238         atomic_t                nr_pwqs_to_flush; /* flush in progress */
239         struct wq_flusher       *first_flusher; /* WQ: first flusher */
240         struct list_head        flusher_queue;  /* WQ: flush waiters */
241         struct list_head        flusher_overflow; /* WQ: flush overflow list */
242
243         struct list_head        maydays;        /* MD: pwqs requesting rescue */
244         struct worker           *rescuer;       /* I: rescue worker */
245
246         int                     nr_drainers;    /* WQ: drain in progress */
247         int                     saved_max_active; /* WQ: saved pwq max_active */
248
249         struct workqueue_attrs  *unbound_attrs; /* WQ: only for unbound wqs */
250         struct pool_workqueue   *dfl_pwq;       /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253         struct wq_device        *wq_dev;        /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256         struct lockdep_map      lockdep_map;
257 #endif
258         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
259
260         /* hot fields used during command issue, aligned to cacheline */
261         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
262         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static cpumask_var_t *wq_numa_possible_cpumask;
269                                         /* possible CPUs of each node */
270
271 static bool wq_disable_numa;
272 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
274 /* see the comment above the definition of WQ_POWER_EFFICIENT */
275 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276 static bool wq_power_efficient = true;
277 #else
278 static bool wq_power_efficient;
279 #endif
280
281 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282
283 static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
284
285 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287
288 static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
289 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
290
291 static LIST_HEAD(workqueues);           /* PL: list of all workqueues */
292 static bool workqueue_freezing;         /* PL: have wqs started freezing? */
293
294 /* the per-cpu worker pools */
295 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296                                      cpu_worker_pools);
297
298 static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
299
300 /* PL: hash of all unbound pools keyed by pool->attrs */
301 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302
303 /* I: attributes used when instantiating standard unbound pools on demand */
304 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305
306 /* I: attributes used when instantiating ordered pools on demand */
307 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308
309 struct workqueue_struct *system_wq __read_mostly;
310 EXPORT_SYMBOL(system_wq);
311 struct workqueue_struct *system_highpri_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_highpri_wq);
313 struct workqueue_struct *system_long_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_long_wq);
315 struct workqueue_struct *system_unbound_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_unbound_wq);
317 struct workqueue_struct *system_freezable_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_freezable_wq);
319 struct workqueue_struct *system_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323
324 static int worker_thread(void *__worker);
325 static void copy_workqueue_attrs(struct workqueue_attrs *to,
326                                  const struct workqueue_attrs *from);
327
328 #define CREATE_TRACE_POINTS
329 #include <trace/events/workqueue.h>
330
331 #define assert_rcu_or_pool_mutex()                                      \
332         rcu_lockdep_assert(rcu_read_lock_sched_held() ||                \
333                            lockdep_is_held(&wq_pool_mutex),             \
334                            "sched RCU or wq_pool_mutex should be held")
335
336 #define assert_rcu_or_wq_mutex(wq)                                      \
337         rcu_lockdep_assert(rcu_read_lock_sched_held() ||                \
338                            lockdep_is_held(&wq->mutex),                 \
339                            "sched RCU or wq->mutex should be held")
340
341 #define for_each_cpu_worker_pool(pool, cpu)                             \
342         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
343              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344              (pool)++)
345
346 /**
347  * for_each_pool - iterate through all worker_pools in the system
348  * @pool: iteration cursor
349  * @pi: integer used for iteration
350  *
351  * This must be called either with wq_pool_mutex held or sched RCU read
352  * locked.  If the pool needs to be used beyond the locking in effect, the
353  * caller is responsible for guaranteeing that the pool stays online.
354  *
355  * The if/else clause exists only for the lockdep assertion and can be
356  * ignored.
357  */
358 #define for_each_pool(pool, pi)                                         \
359         idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
360                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
361                 else
362
363 /**
364  * for_each_pool_worker - iterate through all workers of a worker_pool
365  * @worker: iteration cursor
366  * @pool: worker_pool to iterate workers of
367  *
368  * This must be called with @pool->attach_mutex.
369  *
370  * The if/else clause exists only for the lockdep assertion and can be
371  * ignored.
372  */
373 #define for_each_pool_worker(worker, pool)                              \
374         list_for_each_entry((worker), &(pool)->workers, node)           \
375                 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
376                 else
377
378 /**
379  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
380  * @pwq: iteration cursor
381  * @wq: the target workqueue
382  *
383  * This must be called either with wq->mutex held or sched RCU read locked.
384  * If the pwq needs to be used beyond the locking in effect, the caller is
385  * responsible for guaranteeing that the pwq stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pwq(pwq, wq)                                           \
391         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)          \
392                 if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
393                 else
394
395 #ifdef CONFIG_DEBUG_OBJECTS_WORK
396
397 static struct debug_obj_descr work_debug_descr;
398
399 static void *work_debug_hint(void *addr)
400 {
401         return ((struct work_struct *) addr)->func;
402 }
403
404 /*
405  * fixup_init is called when:
406  * - an active object is initialized
407  */
408 static int work_fixup_init(void *addr, enum debug_obj_state state)
409 {
410         struct work_struct *work = addr;
411
412         switch (state) {
413         case ODEBUG_STATE_ACTIVE:
414                 cancel_work_sync(work);
415                 debug_object_init(work, &work_debug_descr);
416                 return 1;
417         default:
418                 return 0;
419         }
420 }
421
422 /*
423  * fixup_activate is called when:
424  * - an active object is activated
425  * - an unknown object is activated (might be a statically initialized object)
426  */
427 static int work_fixup_activate(void *addr, enum debug_obj_state state)
428 {
429         struct work_struct *work = addr;
430
431         switch (state) {
432
433         case ODEBUG_STATE_NOTAVAILABLE:
434                 /*
435                  * This is not really a fixup. The work struct was
436                  * statically initialized. We just make sure that it
437                  * is tracked in the object tracker.
438                  */
439                 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
440                         debug_object_init(work, &work_debug_descr);
441                         debug_object_activate(work, &work_debug_descr);
442                         return 0;
443                 }
444                 WARN_ON_ONCE(1);
445                 return 0;
446
447         case ODEBUG_STATE_ACTIVE:
448                 WARN_ON(1);
449
450         default:
451                 return 0;
452         }
453 }
454
455 /*
456  * fixup_free is called when:
457  * - an active object is freed
458  */
459 static int work_fixup_free(void *addr, enum debug_obj_state state)
460 {
461         struct work_struct *work = addr;
462
463         switch (state) {
464         case ODEBUG_STATE_ACTIVE:
465                 cancel_work_sync(work);
466                 debug_object_free(work, &work_debug_descr);
467                 return 1;
468         default:
469                 return 0;
470         }
471 }
472
473 static struct debug_obj_descr work_debug_descr = {
474         .name           = "work_struct",
475         .debug_hint     = work_debug_hint,
476         .fixup_init     = work_fixup_init,
477         .fixup_activate = work_fixup_activate,
478         .fixup_free     = work_fixup_free,
479 };
480
481 static inline void debug_work_activate(struct work_struct *work)
482 {
483         debug_object_activate(work, &work_debug_descr);
484 }
485
486 static inline void debug_work_deactivate(struct work_struct *work)
487 {
488         debug_object_deactivate(work, &work_debug_descr);
489 }
490
491 void __init_work(struct work_struct *work, int onstack)
492 {
493         if (onstack)
494                 debug_object_init_on_stack(work, &work_debug_descr);
495         else
496                 debug_object_init(work, &work_debug_descr);
497 }
498 EXPORT_SYMBOL_GPL(__init_work);
499
500 void destroy_work_on_stack(struct work_struct *work)
501 {
502         debug_object_free(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
505
506 void destroy_delayed_work_on_stack(struct delayed_work *work)
507 {
508         destroy_timer_on_stack(&work->timer);
509         debug_object_free(&work->work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
512
513 #else
514 static inline void debug_work_activate(struct work_struct *work) { }
515 static inline void debug_work_deactivate(struct work_struct *work) { }
516 #endif
517
518 /**
519  * worker_pool_assign_id - allocate ID and assing it to @pool
520  * @pool: the pool pointer of interest
521  *
522  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
523  * successfully, -errno on failure.
524  */
525 static int worker_pool_assign_id(struct worker_pool *pool)
526 {
527         int ret;
528
529         lockdep_assert_held(&wq_pool_mutex);
530
531         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
532                         GFP_KERNEL);
533         if (ret >= 0) {
534                 pool->id = ret;
535                 return 0;
536         }
537         return ret;
538 }
539
540 /**
541  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
542  * @wq: the target workqueue
543  * @node: the node ID
544  *
545  * This must be called either with pwq_lock held or sched RCU read locked.
546  * If the pwq needs to be used beyond the locking in effect, the caller is
547  * responsible for guaranteeing that the pwq stays online.
548  *
549  * Return: The unbound pool_workqueue for @node.
550  */
551 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
552                                                   int node)
553 {
554         assert_rcu_or_wq_mutex(wq);
555         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
556 }
557
558 static unsigned int work_color_to_flags(int color)
559 {
560         return color << WORK_STRUCT_COLOR_SHIFT;
561 }
562
563 static int get_work_color(struct work_struct *work)
564 {
565         return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
566                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
567 }
568
569 static int work_next_color(int color)
570 {
571         return (color + 1) % WORK_NR_COLORS;
572 }
573
574 /*
575  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
576  * contain the pointer to the queued pwq.  Once execution starts, the flag
577  * is cleared and the high bits contain OFFQ flags and pool ID.
578  *
579  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
580  * and clear_work_data() can be used to set the pwq, pool or clear
581  * work->data.  These functions should only be called while the work is
582  * owned - ie. while the PENDING bit is set.
583  *
584  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
585  * corresponding to a work.  Pool is available once the work has been
586  * queued anywhere after initialization until it is sync canceled.  pwq is
587  * available only while the work item is queued.
588  *
589  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
590  * canceled.  While being canceled, a work item may have its PENDING set
591  * but stay off timer and worklist for arbitrarily long and nobody should
592  * try to steal the PENDING bit.
593  */
594 static inline void set_work_data(struct work_struct *work, unsigned long data,
595                                  unsigned long flags)
596 {
597         WARN_ON_ONCE(!work_pending(work));
598         atomic_long_set(&work->data, data | flags | work_static(work));
599 }
600
601 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
602                          unsigned long extra_flags)
603 {
604         set_work_data(work, (unsigned long)pwq,
605                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
606 }
607
608 static void set_work_pool_and_keep_pending(struct work_struct *work,
609                                            int pool_id)
610 {
611         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
612                       WORK_STRUCT_PENDING);
613 }
614
615 static void set_work_pool_and_clear_pending(struct work_struct *work,
616                                             int pool_id)
617 {
618         /*
619          * The following wmb is paired with the implied mb in
620          * test_and_set_bit(PENDING) and ensures all updates to @work made
621          * here are visible to and precede any updates by the next PENDING
622          * owner.
623          */
624         smp_wmb();
625         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
626 }
627
628 static void clear_work_data(struct work_struct *work)
629 {
630         smp_wmb();      /* see set_work_pool_and_clear_pending() */
631         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
632 }
633
634 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
635 {
636         unsigned long data = atomic_long_read(&work->data);
637
638         if (data & WORK_STRUCT_PWQ)
639                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
640         else
641                 return NULL;
642 }
643
644 /**
645  * get_work_pool - return the worker_pool a given work was associated with
646  * @work: the work item of interest
647  *
648  * Pools are created and destroyed under wq_pool_mutex, and allows read
649  * access under sched-RCU read lock.  As such, this function should be
650  * called under wq_pool_mutex or with preemption disabled.
651  *
652  * All fields of the returned pool are accessible as long as the above
653  * mentioned locking is in effect.  If the returned pool needs to be used
654  * beyond the critical section, the caller is responsible for ensuring the
655  * returned pool is and stays online.
656  *
657  * Return: The worker_pool @work was last associated with.  %NULL if none.
658  */
659 static struct worker_pool *get_work_pool(struct work_struct *work)
660 {
661         unsigned long data = atomic_long_read(&work->data);
662         int pool_id;
663
664         assert_rcu_or_pool_mutex();
665
666         if (data & WORK_STRUCT_PWQ)
667                 return ((struct pool_workqueue *)
668                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
669
670         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
671         if (pool_id == WORK_OFFQ_POOL_NONE)
672                 return NULL;
673
674         return idr_find(&worker_pool_idr, pool_id);
675 }
676
677 /**
678  * get_work_pool_id - return the worker pool ID a given work is associated with
679  * @work: the work item of interest
680  *
681  * Return: The worker_pool ID @work was last associated with.
682  * %WORK_OFFQ_POOL_NONE if none.
683  */
684 static int get_work_pool_id(struct work_struct *work)
685 {
686         unsigned long data = atomic_long_read(&work->data);
687
688         if (data & WORK_STRUCT_PWQ)
689                 return ((struct pool_workqueue *)
690                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
691
692         return data >> WORK_OFFQ_POOL_SHIFT;
693 }
694
695 static void mark_work_canceling(struct work_struct *work)
696 {
697         unsigned long pool_id = get_work_pool_id(work);
698
699         pool_id <<= WORK_OFFQ_POOL_SHIFT;
700         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
701 }
702
703 static bool work_is_canceling(struct work_struct *work)
704 {
705         unsigned long data = atomic_long_read(&work->data);
706
707         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
708 }
709
710 /*
711  * Policy functions.  These define the policies on how the global worker
712  * pools are managed.  Unless noted otherwise, these functions assume that
713  * they're being called with pool->lock held.
714  */
715
716 static bool __need_more_worker(struct worker_pool *pool)
717 {
718         return !atomic_read(&pool->nr_running);
719 }
720
721 /*
722  * Need to wake up a worker?  Called from anything but currently
723  * running workers.
724  *
725  * Note that, because unbound workers never contribute to nr_running, this
726  * function will always return %true for unbound pools as long as the
727  * worklist isn't empty.
728  */
729 static bool need_more_worker(struct worker_pool *pool)
730 {
731         return !list_empty(&pool->worklist) && __need_more_worker(pool);
732 }
733
734 /* Can I start working?  Called from busy but !running workers. */
735 static bool may_start_working(struct worker_pool *pool)
736 {
737         return pool->nr_idle;
738 }
739
740 /* Do I need to keep working?  Called from currently running workers. */
741 static bool keep_working(struct worker_pool *pool)
742 {
743         return !list_empty(&pool->worklist) &&
744                 atomic_read(&pool->nr_running) <= 1;
745 }
746
747 /* Do we need a new worker?  Called from manager. */
748 static bool need_to_create_worker(struct worker_pool *pool)
749 {
750         return need_more_worker(pool) && !may_start_working(pool);
751 }
752
753 /* Do we have too many workers and should some go away? */
754 static bool too_many_workers(struct worker_pool *pool)
755 {
756         bool managing = mutex_is_locked(&pool->manager_arb);
757         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758         int nr_busy = pool->nr_workers - nr_idle;
759
760         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
761 }
762
763 /*
764  * Wake up functions.
765  */
766
767 /* Return the first idle worker.  Safe with preemption disabled */
768 static struct worker *first_idle_worker(struct worker_pool *pool)
769 {
770         if (unlikely(list_empty(&pool->idle_list)))
771                 return NULL;
772
773         return list_first_entry(&pool->idle_list, struct worker, entry);
774 }
775
776 /**
777  * wake_up_worker - wake up an idle worker
778  * @pool: worker pool to wake worker from
779  *
780  * Wake up the first idle worker of @pool.
781  *
782  * CONTEXT:
783  * spin_lock_irq(pool->lock).
784  */
785 static void wake_up_worker(struct worker_pool *pool)
786 {
787         struct worker *worker = first_idle_worker(pool);
788
789         if (likely(worker))
790                 wake_up_process(worker->task);
791 }
792
793 /**
794  * wq_worker_waking_up - a worker is waking up
795  * @task: task waking up
796  * @cpu: CPU @task is waking up to
797  *
798  * This function is called during try_to_wake_up() when a worker is
799  * being awoken.
800  *
801  * CONTEXT:
802  * spin_lock_irq(rq->lock)
803  */
804 void wq_worker_waking_up(struct task_struct *task, int cpu)
805 {
806         struct worker *worker = kthread_data(task);
807
808         if (!(worker->flags & WORKER_NOT_RUNNING)) {
809                 WARN_ON_ONCE(worker->pool->cpu != cpu);
810                 atomic_inc(&worker->pool->nr_running);
811         }
812 }
813
814 /**
815  * wq_worker_sleeping - a worker is going to sleep
816  * @task: task going to sleep
817  * @cpu: CPU in question, must be the current CPU number
818  *
819  * This function is called during schedule() when a busy worker is
820  * going to sleep.  Worker on the same cpu can be woken up by
821  * returning pointer to its task.
822  *
823  * CONTEXT:
824  * spin_lock_irq(rq->lock)
825  *
826  * Return:
827  * Worker task on @cpu to wake up, %NULL if none.
828  */
829 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
830 {
831         struct worker *worker = kthread_data(task), *to_wakeup = NULL;
832         struct worker_pool *pool;
833
834         /*
835          * Rescuers, which may not have all the fields set up like normal
836          * workers, also reach here, let's not access anything before
837          * checking NOT_RUNNING.
838          */
839         if (worker->flags & WORKER_NOT_RUNNING)
840                 return NULL;
841
842         pool = worker->pool;
843
844         /* this can only happen on the local cpu */
845         if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
846                 return NULL;
847
848         /*
849          * The counterpart of the following dec_and_test, implied mb,
850          * worklist not empty test sequence is in insert_work().
851          * Please read comment there.
852          *
853          * NOT_RUNNING is clear.  This means that we're bound to and
854          * running on the local cpu w/ rq lock held and preemption
855          * disabled, which in turn means that none else could be
856          * manipulating idle_list, so dereferencing idle_list without pool
857          * lock is safe.
858          */
859         if (atomic_dec_and_test(&pool->nr_running) &&
860             !list_empty(&pool->worklist))
861                 to_wakeup = first_idle_worker(pool);
862         return to_wakeup ? to_wakeup->task : NULL;
863 }
864
865 /**
866  * worker_set_flags - set worker flags and adjust nr_running accordingly
867  * @worker: self
868  * @flags: flags to set
869  *
870  * Set @flags in @worker->flags and adjust nr_running accordingly.
871  *
872  * CONTEXT:
873  * spin_lock_irq(pool->lock)
874  */
875 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
876 {
877         struct worker_pool *pool = worker->pool;
878
879         WARN_ON_ONCE(worker->task != current);
880
881         /* If transitioning into NOT_RUNNING, adjust nr_running. */
882         if ((flags & WORKER_NOT_RUNNING) &&
883             !(worker->flags & WORKER_NOT_RUNNING)) {
884                 atomic_dec(&pool->nr_running);
885         }
886
887         worker->flags |= flags;
888 }
889
890 /**
891  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
892  * @worker: self
893  * @flags: flags to clear
894  *
895  * Clear @flags in @worker->flags and adjust nr_running accordingly.
896  *
897  * CONTEXT:
898  * spin_lock_irq(pool->lock)
899  */
900 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
901 {
902         struct worker_pool *pool = worker->pool;
903         unsigned int oflags = worker->flags;
904
905         WARN_ON_ONCE(worker->task != current);
906
907         worker->flags &= ~flags;
908
909         /*
910          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
911          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
912          * of multiple flags, not a single flag.
913          */
914         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
915                 if (!(worker->flags & WORKER_NOT_RUNNING))
916                         atomic_inc(&pool->nr_running);
917 }
918
919 /**
920  * find_worker_executing_work - find worker which is executing a work
921  * @pool: pool of interest
922  * @work: work to find worker for
923  *
924  * Find a worker which is executing @work on @pool by searching
925  * @pool->busy_hash which is keyed by the address of @work.  For a worker
926  * to match, its current execution should match the address of @work and
927  * its work function.  This is to avoid unwanted dependency between
928  * unrelated work executions through a work item being recycled while still
929  * being executed.
930  *
931  * This is a bit tricky.  A work item may be freed once its execution
932  * starts and nothing prevents the freed area from being recycled for
933  * another work item.  If the same work item address ends up being reused
934  * before the original execution finishes, workqueue will identify the
935  * recycled work item as currently executing and make it wait until the
936  * current execution finishes, introducing an unwanted dependency.
937  *
938  * This function checks the work item address and work function to avoid
939  * false positives.  Note that this isn't complete as one may construct a
940  * work function which can introduce dependency onto itself through a
941  * recycled work item.  Well, if somebody wants to shoot oneself in the
942  * foot that badly, there's only so much we can do, and if such deadlock
943  * actually occurs, it should be easy to locate the culprit work function.
944  *
945  * CONTEXT:
946  * spin_lock_irq(pool->lock).
947  *
948  * Return:
949  * Pointer to worker which is executing @work if found, %NULL
950  * otherwise.
951  */
952 static struct worker *find_worker_executing_work(struct worker_pool *pool,
953                                                  struct work_struct *work)
954 {
955         struct worker *worker;
956
957         hash_for_each_possible(pool->busy_hash, worker, hentry,
958                                (unsigned long)work)
959                 if (worker->current_work == work &&
960                     worker->current_func == work->func)
961                         return worker;
962
963         return NULL;
964 }
965
966 /**
967  * move_linked_works - move linked works to a list
968  * @work: start of series of works to be scheduled
969  * @head: target list to append @work to
970  * @nextp: out paramter for nested worklist walking
971  *
972  * Schedule linked works starting from @work to @head.  Work series to
973  * be scheduled starts at @work and includes any consecutive work with
974  * WORK_STRUCT_LINKED set in its predecessor.
975  *
976  * If @nextp is not NULL, it's updated to point to the next work of
977  * the last scheduled work.  This allows move_linked_works() to be
978  * nested inside outer list_for_each_entry_safe().
979  *
980  * CONTEXT:
981  * spin_lock_irq(pool->lock).
982  */
983 static void move_linked_works(struct work_struct *work, struct list_head *head,
984                               struct work_struct **nextp)
985 {
986         struct work_struct *n;
987
988         /*
989          * Linked worklist will always end before the end of the list,
990          * use NULL for list head.
991          */
992         list_for_each_entry_safe_from(work, n, NULL, entry) {
993                 list_move_tail(&work->entry, head);
994                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
995                         break;
996         }
997
998         /*
999          * If we're already inside safe list traversal and have moved
1000          * multiple works to the scheduled queue, the next position
1001          * needs to be updated.
1002          */
1003         if (nextp)
1004                 *nextp = n;
1005 }
1006
1007 /**
1008  * get_pwq - get an extra reference on the specified pool_workqueue
1009  * @pwq: pool_workqueue to get
1010  *
1011  * Obtain an extra reference on @pwq.  The caller should guarantee that
1012  * @pwq has positive refcnt and be holding the matching pool->lock.
1013  */
1014 static void get_pwq(struct pool_workqueue *pwq)
1015 {
1016         lockdep_assert_held(&pwq->pool->lock);
1017         WARN_ON_ONCE(pwq->refcnt <= 0);
1018         pwq->refcnt++;
1019 }
1020
1021 /**
1022  * put_pwq - put a pool_workqueue reference
1023  * @pwq: pool_workqueue to put
1024  *
1025  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1026  * destruction.  The caller should be holding the matching pool->lock.
1027  */
1028 static void put_pwq(struct pool_workqueue *pwq)
1029 {
1030         lockdep_assert_held(&pwq->pool->lock);
1031         if (likely(--pwq->refcnt))
1032                 return;
1033         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1034                 return;
1035         /*
1036          * @pwq can't be released under pool->lock, bounce to
1037          * pwq_unbound_release_workfn().  This never recurses on the same
1038          * pool->lock as this path is taken only for unbound workqueues and
1039          * the release work item is scheduled on a per-cpu workqueue.  To
1040          * avoid lockdep warning, unbound pool->locks are given lockdep
1041          * subclass of 1 in get_unbound_pool().
1042          */
1043         schedule_work(&pwq->unbound_release_work);
1044 }
1045
1046 /**
1047  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1048  * @pwq: pool_workqueue to put (can be %NULL)
1049  *
1050  * put_pwq() with locking.  This function also allows %NULL @pwq.
1051  */
1052 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1053 {
1054         if (pwq) {
1055                 /*
1056                  * As both pwqs and pools are sched-RCU protected, the
1057                  * following lock operations are safe.
1058                  */
1059                 spin_lock_irq(&pwq->pool->lock);
1060                 put_pwq(pwq);
1061                 spin_unlock_irq(&pwq->pool->lock);
1062         }
1063 }
1064
1065 static void pwq_activate_delayed_work(struct work_struct *work)
1066 {
1067         struct pool_workqueue *pwq = get_work_pwq(work);
1068
1069         trace_workqueue_activate_work(work);
1070         move_linked_works(work, &pwq->pool->worklist, NULL);
1071         __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1072         pwq->nr_active++;
1073 }
1074
1075 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1076 {
1077         struct work_struct *work = list_first_entry(&pwq->delayed_works,
1078                                                     struct work_struct, entry);
1079
1080         pwq_activate_delayed_work(work);
1081 }
1082
1083 /**
1084  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1085  * @pwq: pwq of interest
1086  * @color: color of work which left the queue
1087  *
1088  * A work either has completed or is removed from pending queue,
1089  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1090  *
1091  * CONTEXT:
1092  * spin_lock_irq(pool->lock).
1093  */
1094 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1095 {
1096         /* uncolored work items don't participate in flushing or nr_active */
1097         if (color == WORK_NO_COLOR)
1098                 goto out_put;
1099
1100         pwq->nr_in_flight[color]--;
1101
1102         pwq->nr_active--;
1103         if (!list_empty(&pwq->delayed_works)) {
1104                 /* one down, submit a delayed one */
1105                 if (pwq->nr_active < pwq->max_active)
1106                         pwq_activate_first_delayed(pwq);
1107         }
1108
1109         /* is flush in progress and are we at the flushing tip? */
1110         if (likely(pwq->flush_color != color))
1111                 goto out_put;
1112
1113         /* are there still in-flight works? */
1114         if (pwq->nr_in_flight[color])
1115                 goto out_put;
1116
1117         /* this pwq is done, clear flush_color */
1118         pwq->flush_color = -1;
1119
1120         /*
1121          * If this was the last pwq, wake up the first flusher.  It
1122          * will handle the rest.
1123          */
1124         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1125                 complete(&pwq->wq->first_flusher->done);
1126 out_put:
1127         put_pwq(pwq);
1128 }
1129
1130 /**
1131  * try_to_grab_pending - steal work item from worklist and disable irq
1132  * @work: work item to steal
1133  * @is_dwork: @work is a delayed_work
1134  * @flags: place to store irq state
1135  *
1136  * Try to grab PENDING bit of @work.  This function can handle @work in any
1137  * stable state - idle, on timer or on worklist.
1138  *
1139  * Return:
1140  *  1           if @work was pending and we successfully stole PENDING
1141  *  0           if @work was idle and we claimed PENDING
1142  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1143  *  -ENOENT     if someone else is canceling @work, this state may persist
1144  *              for arbitrarily long
1145  *
1146  * Note:
1147  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1148  * interrupted while holding PENDING and @work off queue, irq must be
1149  * disabled on entry.  This, combined with delayed_work->timer being
1150  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1151  *
1152  * On successful return, >= 0, irq is disabled and the caller is
1153  * responsible for releasing it using local_irq_restore(*@flags).
1154  *
1155  * This function is safe to call from any context including IRQ handler.
1156  */
1157 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1158                                unsigned long *flags)
1159 {
1160         struct worker_pool *pool;
1161         struct pool_workqueue *pwq;
1162
1163         local_irq_save(*flags);
1164
1165         /* try to steal the timer if it exists */
1166         if (is_dwork) {
1167                 struct delayed_work *dwork = to_delayed_work(work);
1168
1169                 /*
1170                  * dwork->timer is irqsafe.  If del_timer() fails, it's
1171                  * guaranteed that the timer is not queued anywhere and not
1172                  * running on the local CPU.
1173                  */
1174                 if (likely(del_timer(&dwork->timer)))
1175                         return 1;
1176         }
1177
1178         /* try to claim PENDING the normal way */
1179         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1180                 return 0;
1181
1182         /*
1183          * The queueing is in progress, or it is already queued. Try to
1184          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1185          */
1186         pool = get_work_pool(work);
1187         if (!pool)
1188                 goto fail;
1189
1190         spin_lock(&pool->lock);
1191         /*
1192          * work->data is guaranteed to point to pwq only while the work
1193          * item is queued on pwq->wq, and both updating work->data to point
1194          * to pwq on queueing and to pool on dequeueing are done under
1195          * pwq->pool->lock.  This in turn guarantees that, if work->data
1196          * points to pwq which is associated with a locked pool, the work
1197          * item is currently queued on that pool.
1198          */
1199         pwq = get_work_pwq(work);
1200         if (pwq && pwq->pool == pool) {
1201                 debug_work_deactivate(work);
1202
1203                 /*
1204                  * A delayed work item cannot be grabbed directly because
1205                  * it might have linked NO_COLOR work items which, if left
1206                  * on the delayed_list, will confuse pwq->nr_active
1207                  * management later on and cause stall.  Make sure the work
1208                  * item is activated before grabbing.
1209                  */
1210                 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1211                         pwq_activate_delayed_work(work);
1212
1213                 list_del_init(&work->entry);
1214                 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1215
1216                 /* work->data points to pwq iff queued, point to pool */
1217                 set_work_pool_and_keep_pending(work, pool->id);
1218
1219                 spin_unlock(&pool->lock);
1220                 return 1;
1221         }
1222         spin_unlock(&pool->lock);
1223 fail:
1224         local_irq_restore(*flags);
1225         if (work_is_canceling(work))
1226                 return -ENOENT;
1227         cpu_relax();
1228         return -EAGAIN;
1229 }
1230
1231 /**
1232  * insert_work - insert a work into a pool
1233  * @pwq: pwq @work belongs to
1234  * @work: work to insert
1235  * @head: insertion point
1236  * @extra_flags: extra WORK_STRUCT_* flags to set
1237  *
1238  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1239  * work_struct flags.
1240  *
1241  * CONTEXT:
1242  * spin_lock_irq(pool->lock).
1243  */
1244 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1245                         struct list_head *head, unsigned int extra_flags)
1246 {
1247         struct worker_pool *pool = pwq->pool;
1248
1249         /* we own @work, set data and link */
1250         set_work_pwq(work, pwq, extra_flags);
1251         list_add_tail(&work->entry, head);
1252         get_pwq(pwq);
1253
1254         /*
1255          * Ensure either wq_worker_sleeping() sees the above
1256          * list_add_tail() or we see zero nr_running to avoid workers lying
1257          * around lazily while there are works to be processed.
1258          */
1259         smp_mb();
1260
1261         if (__need_more_worker(pool))
1262                 wake_up_worker(pool);
1263 }
1264
1265 /*
1266  * Test whether @work is being queued from another work executing on the
1267  * same workqueue.
1268  */
1269 static bool is_chained_work(struct workqueue_struct *wq)
1270 {
1271         struct worker *worker;
1272
1273         worker = current_wq_worker();
1274         /*
1275          * Return %true iff I'm a worker execuing a work item on @wq.  If
1276          * I'm @worker, it's safe to dereference it without locking.
1277          */
1278         return worker && worker->current_pwq->wq == wq;
1279 }
1280
1281 static void __queue_work(int cpu, struct workqueue_struct *wq,
1282                          struct work_struct *work)
1283 {
1284         struct pool_workqueue *pwq;
1285         struct worker_pool *last_pool;
1286         struct list_head *worklist;
1287         unsigned int work_flags;
1288         unsigned int req_cpu = cpu;
1289
1290         /*
1291          * While a work item is PENDING && off queue, a task trying to
1292          * steal the PENDING will busy-loop waiting for it to either get
1293          * queued or lose PENDING.  Grabbing PENDING and queueing should
1294          * happen with IRQ disabled.
1295          */
1296         WARN_ON_ONCE(!irqs_disabled());
1297
1298         debug_work_activate(work);
1299
1300         /* if draining, only works from the same workqueue are allowed */
1301         if (unlikely(wq->flags & __WQ_DRAINING) &&
1302             WARN_ON_ONCE(!is_chained_work(wq)))
1303                 return;
1304 retry:
1305         if (req_cpu == WORK_CPU_UNBOUND)
1306                 cpu = raw_smp_processor_id();
1307
1308         /* pwq which will be used unless @work is executing elsewhere */
1309         if (!(wq->flags & WQ_UNBOUND))
1310                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1311         else
1312                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1313
1314         /*
1315          * If @work was previously on a different pool, it might still be
1316          * running there, in which case the work needs to be queued on that
1317          * pool to guarantee non-reentrancy.
1318          */
1319         last_pool = get_work_pool(work);
1320         if (last_pool && last_pool != pwq->pool) {
1321                 struct worker *worker;
1322
1323                 spin_lock(&last_pool->lock);
1324
1325                 worker = find_worker_executing_work(last_pool, work);
1326
1327                 if (worker && worker->current_pwq->wq == wq) {
1328                         pwq = worker->current_pwq;
1329                 } else {
1330                         /* meh... not running there, queue here */
1331                         spin_unlock(&last_pool->lock);
1332                         spin_lock(&pwq->pool->lock);
1333                 }
1334         } else {
1335                 spin_lock(&pwq->pool->lock);
1336         }
1337
1338         /*
1339          * pwq is determined and locked.  For unbound pools, we could have
1340          * raced with pwq release and it could already be dead.  If its
1341          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1342          * without another pwq replacing it in the numa_pwq_tbl or while
1343          * work items are executing on it, so the retrying is guaranteed to
1344          * make forward-progress.
1345          */
1346         if (unlikely(!pwq->refcnt)) {
1347                 if (wq->flags & WQ_UNBOUND) {
1348                         spin_unlock(&pwq->pool->lock);
1349                         cpu_relax();
1350                         goto retry;
1351                 }
1352                 /* oops */
1353                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1354                           wq->name, cpu);
1355         }
1356
1357         /* pwq determined, queue */
1358         trace_workqueue_queue_work(req_cpu, pwq, work);
1359
1360         if (WARN_ON(!list_empty(&work->entry))) {
1361                 spin_unlock(&pwq->pool->lock);
1362                 return;
1363         }
1364
1365         pwq->nr_in_flight[pwq->work_color]++;
1366         work_flags = work_color_to_flags(pwq->work_color);
1367
1368         if (likely(pwq->nr_active < pwq->max_active)) {
1369                 trace_workqueue_activate_work(work);
1370                 pwq->nr_active++;
1371                 worklist = &pwq->pool->worklist;
1372         } else {
1373                 work_flags |= WORK_STRUCT_DELAYED;
1374                 worklist = &pwq->delayed_works;
1375         }
1376
1377         insert_work(pwq, work, worklist, work_flags);
1378
1379         spin_unlock(&pwq->pool->lock);
1380 }
1381
1382 /**
1383  * queue_work_on - queue work on specific cpu
1384  * @cpu: CPU number to execute work on
1385  * @wq: workqueue to use
1386  * @work: work to queue
1387  *
1388  * We queue the work to a specific CPU, the caller must ensure it
1389  * can't go away.
1390  *
1391  * Return: %false if @work was already on a queue, %true otherwise.
1392  */
1393 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1394                    struct work_struct *work)
1395 {
1396         bool ret = false;
1397         unsigned long flags;
1398
1399         local_irq_save(flags);
1400
1401         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1402                 __queue_work(cpu, wq, work);
1403                 ret = true;
1404         }
1405
1406         local_irq_restore(flags);
1407         return ret;
1408 }
1409 EXPORT_SYMBOL(queue_work_on);
1410
1411 void delayed_work_timer_fn(unsigned long __data)
1412 {
1413         struct delayed_work *dwork = (struct delayed_work *)__data;
1414
1415         /* should have been called from irqsafe timer with irq already off */
1416         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1417 }
1418 EXPORT_SYMBOL(delayed_work_timer_fn);
1419
1420 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1421                                 struct delayed_work *dwork, unsigned long delay)
1422 {
1423         struct timer_list *timer = &dwork->timer;
1424         struct work_struct *work = &dwork->work;
1425
1426         WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1427                      timer->data != (unsigned long)dwork);
1428         WARN_ON_ONCE(timer_pending(timer));
1429         WARN_ON_ONCE(!list_empty(&work->entry));
1430
1431         /*
1432          * If @delay is 0, queue @dwork->work immediately.  This is for
1433          * both optimization and correctness.  The earliest @timer can
1434          * expire is on the closest next tick and delayed_work users depend
1435          * on that there's no such delay when @delay is 0.
1436          */
1437         if (!delay) {
1438                 __queue_work(cpu, wq, &dwork->work);
1439                 return;
1440         }
1441
1442         timer_stats_timer_set_start_info(&dwork->timer);
1443
1444         dwork->wq = wq;
1445         dwork->cpu = cpu;
1446         timer->expires = jiffies + delay;
1447
1448         if (unlikely(cpu != WORK_CPU_UNBOUND))
1449                 add_timer_on(timer, cpu);
1450         else
1451                 add_timer(timer);
1452 }
1453
1454 /**
1455  * queue_delayed_work_on - queue work on specific CPU after delay
1456  * @cpu: CPU number to execute work on
1457  * @wq: workqueue to use
1458  * @dwork: work to queue
1459  * @delay: number of jiffies to wait before queueing
1460  *
1461  * Return: %false if @work was already on a queue, %true otherwise.  If
1462  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1463  * execution.
1464  */
1465 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1466                            struct delayed_work *dwork, unsigned long delay)
1467 {
1468         struct work_struct *work = &dwork->work;
1469         bool ret = false;
1470         unsigned long flags;
1471
1472         /* read the comment in __queue_work() */
1473         local_irq_save(flags);
1474
1475         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1476                 __queue_delayed_work(cpu, wq, dwork, delay);
1477                 ret = true;
1478         }
1479
1480         local_irq_restore(flags);
1481         return ret;
1482 }
1483 EXPORT_SYMBOL(queue_delayed_work_on);
1484
1485 /**
1486  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1487  * @cpu: CPU number to execute work on
1488  * @wq: workqueue to use
1489  * @dwork: work to queue
1490  * @delay: number of jiffies to wait before queueing
1491  *
1492  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1493  * modify @dwork's timer so that it expires after @delay.  If @delay is
1494  * zero, @work is guaranteed to be scheduled immediately regardless of its
1495  * current state.
1496  *
1497  * Return: %false if @dwork was idle and queued, %true if @dwork was
1498  * pending and its timer was modified.
1499  *
1500  * This function is safe to call from any context including IRQ handler.
1501  * See try_to_grab_pending() for details.
1502  */
1503 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1504                          struct delayed_work *dwork, unsigned long delay)
1505 {
1506         unsigned long flags;
1507         int ret;
1508
1509         do {
1510                 ret = try_to_grab_pending(&dwork->work, true, &flags);
1511         } while (unlikely(ret == -EAGAIN));
1512
1513         if (likely(ret >= 0)) {
1514                 __queue_delayed_work(cpu, wq, dwork, delay);
1515                 local_irq_restore(flags);
1516         }
1517
1518         /* -ENOENT from try_to_grab_pending() becomes %true */
1519         return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1522
1523 /**
1524  * worker_enter_idle - enter idle state
1525  * @worker: worker which is entering idle state
1526  *
1527  * @worker is entering idle state.  Update stats and idle timer if
1528  * necessary.
1529  *
1530  * LOCKING:
1531  * spin_lock_irq(pool->lock).
1532  */
1533 static void worker_enter_idle(struct worker *worker)
1534 {
1535         struct worker_pool *pool = worker->pool;
1536
1537         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1538             WARN_ON_ONCE(!list_empty(&worker->entry) &&
1539                          (worker->hentry.next || worker->hentry.pprev)))
1540                 return;
1541
1542         /* can't use worker_set_flags(), also called from create_worker() */
1543         worker->flags |= WORKER_IDLE;
1544         pool->nr_idle++;
1545         worker->last_active = jiffies;
1546
1547         /* idle_list is LIFO */
1548         list_add(&worker->entry, &pool->idle_list);
1549
1550         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1551                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1552
1553         /*
1554          * Sanity check nr_running.  Because wq_unbind_fn() releases
1555          * pool->lock between setting %WORKER_UNBOUND and zapping
1556          * nr_running, the warning may trigger spuriously.  Check iff
1557          * unbind is not in progress.
1558          */
1559         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1560                      pool->nr_workers == pool->nr_idle &&
1561                      atomic_read(&pool->nr_running));
1562 }
1563
1564 /**
1565  * worker_leave_idle - leave idle state
1566  * @worker: worker which is leaving idle state
1567  *
1568  * @worker is leaving idle state.  Update stats.
1569  *
1570  * LOCKING:
1571  * spin_lock_irq(pool->lock).
1572  */
1573 static void worker_leave_idle(struct worker *worker)
1574 {
1575         struct worker_pool *pool = worker->pool;
1576
1577         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1578                 return;
1579         worker_clr_flags(worker, WORKER_IDLE);
1580         pool->nr_idle--;
1581         list_del_init(&worker->entry);
1582 }
1583
1584 static struct worker *alloc_worker(int node)
1585 {
1586         struct worker *worker;
1587
1588         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1589         if (worker) {
1590                 INIT_LIST_HEAD(&worker->entry);
1591                 INIT_LIST_HEAD(&worker->scheduled);
1592                 INIT_LIST_HEAD(&worker->node);
1593                 /* on creation a worker is in !idle && prep state */
1594                 worker->flags = WORKER_PREP;
1595         }
1596         return worker;
1597 }
1598
1599 /**
1600  * worker_attach_to_pool() - attach a worker to a pool
1601  * @worker: worker to be attached
1602  * @pool: the target pool
1603  *
1604  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1605  * cpu-binding of @worker are kept coordinated with the pool across
1606  * cpu-[un]hotplugs.
1607  */
1608 static void worker_attach_to_pool(struct worker *worker,
1609                                    struct worker_pool *pool)
1610 {
1611         mutex_lock(&pool->attach_mutex);
1612
1613         /*
1614          * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1615          * online CPUs.  It'll be re-applied when any of the CPUs come up.
1616          */
1617         set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1618
1619         /*
1620          * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1621          * stable across this function.  See the comments above the
1622          * flag definition for details.
1623          */
1624         if (pool->flags & POOL_DISASSOCIATED)
1625                 worker->flags |= WORKER_UNBOUND;
1626
1627         list_add_tail(&worker->node, &pool->workers);
1628
1629         mutex_unlock(&pool->attach_mutex);
1630 }
1631
1632 /**
1633  * worker_detach_from_pool() - detach a worker from its pool
1634  * @worker: worker which is attached to its pool
1635  * @pool: the pool @worker is attached to
1636  *
1637  * Undo the attaching which had been done in worker_attach_to_pool().  The
1638  * caller worker shouldn't access to the pool after detached except it has
1639  * other reference to the pool.
1640  */
1641 static void worker_detach_from_pool(struct worker *worker,
1642                                     struct worker_pool *pool)
1643 {
1644         struct completion *detach_completion = NULL;
1645
1646         mutex_lock(&pool->attach_mutex);
1647         list_del(&worker->node);
1648         if (list_empty(&pool->workers))
1649                 detach_completion = pool->detach_completion;
1650         mutex_unlock(&pool->attach_mutex);
1651
1652         /* clear leftover flags without pool->lock after it is detached */
1653         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1654
1655         if (detach_completion)
1656                 complete(detach_completion);
1657 }
1658
1659 /**
1660  * create_worker - create a new workqueue worker
1661  * @pool: pool the new worker will belong to
1662  *
1663  * Create and start a new worker which is attached to @pool.
1664  *
1665  * CONTEXT:
1666  * Might sleep.  Does GFP_KERNEL allocations.
1667  *
1668  * Return:
1669  * Pointer to the newly created worker.
1670  */
1671 static struct worker *create_worker(struct worker_pool *pool)
1672 {
1673         struct worker *worker = NULL;
1674         int id = -1;
1675         char id_buf[16];
1676
1677         /* ID is needed to determine kthread name */
1678         id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1679         if (id < 0)
1680                 goto fail;
1681
1682         worker = alloc_worker(pool->node);
1683         if (!worker)
1684                 goto fail;
1685
1686         worker->pool = pool;
1687         worker->id = id;
1688
1689         if (pool->cpu >= 0)
1690                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1691                          pool->attrs->nice < 0  ? "H" : "");
1692         else
1693                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1694
1695         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1696                                               "kworker/%s", id_buf);
1697         if (IS_ERR(worker->task))
1698                 goto fail;
1699
1700         set_user_nice(worker->task, pool->attrs->nice);
1701
1702         /* prevent userland from meddling with cpumask of workqueue workers */
1703         worker->task->flags |= PF_NO_SETAFFINITY;
1704
1705         /* successful, attach the worker to the pool */
1706         worker_attach_to_pool(worker, pool);
1707
1708         /* start the newly created worker */
1709         spin_lock_irq(&pool->lock);
1710         worker->pool->nr_workers++;
1711         worker_enter_idle(worker);
1712         wake_up_process(worker->task);
1713         spin_unlock_irq(&pool->lock);
1714
1715         return worker;
1716
1717 fail:
1718         if (id >= 0)
1719                 ida_simple_remove(&pool->worker_ida, id);
1720         kfree(worker);
1721         return NULL;
1722 }
1723
1724 /**
1725  * destroy_worker - destroy a workqueue worker
1726  * @worker: worker to be destroyed
1727  *
1728  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1729  * be idle.
1730  *
1731  * CONTEXT:
1732  * spin_lock_irq(pool->lock).
1733  */
1734 static void destroy_worker(struct worker *worker)
1735 {
1736         struct worker_pool *pool = worker->pool;
1737
1738         lockdep_assert_held(&pool->lock);
1739
1740         /* sanity check frenzy */
1741         if (WARN_ON(worker->current_work) ||
1742             WARN_ON(!list_empty(&worker->scheduled)) ||
1743             WARN_ON(!(worker->flags & WORKER_IDLE)))
1744                 return;
1745
1746         pool->nr_workers--;
1747         pool->nr_idle--;
1748
1749         list_del_init(&worker->entry);
1750         worker->flags |= WORKER_DIE;
1751         wake_up_process(worker->task);
1752 }
1753
1754 static void idle_worker_timeout(unsigned long __pool)
1755 {
1756         struct worker_pool *pool = (void *)__pool;
1757
1758         spin_lock_irq(&pool->lock);
1759
1760         while (too_many_workers(pool)) {
1761                 struct worker *worker;
1762                 unsigned long expires;
1763
1764                 /* idle_list is kept in LIFO order, check the last one */
1765                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1766                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1767
1768                 if (time_before(jiffies, expires)) {
1769                         mod_timer(&pool->idle_timer, expires);
1770                         break;
1771                 }
1772
1773                 destroy_worker(worker);
1774         }
1775
1776         spin_unlock_irq(&pool->lock);
1777 }
1778
1779 static void send_mayday(struct work_struct *work)
1780 {
1781         struct pool_workqueue *pwq = get_work_pwq(work);
1782         struct workqueue_struct *wq = pwq->wq;
1783
1784         lockdep_assert_held(&wq_mayday_lock);
1785
1786         if (!wq->rescuer)
1787                 return;
1788
1789         /* mayday mayday mayday */
1790         if (list_empty(&pwq->mayday_node)) {
1791                 /*
1792                  * If @pwq is for an unbound wq, its base ref may be put at
1793                  * any time due to an attribute change.  Pin @pwq until the
1794                  * rescuer is done with it.
1795                  */
1796                 get_pwq(pwq);
1797                 list_add_tail(&pwq->mayday_node, &wq->maydays);
1798                 wake_up_process(wq->rescuer->task);
1799         }
1800 }
1801
1802 static void pool_mayday_timeout(unsigned long __pool)
1803 {
1804         struct worker_pool *pool = (void *)__pool;
1805         struct work_struct *work;
1806
1807         spin_lock_irq(&pool->lock);
1808         spin_lock(&wq_mayday_lock);             /* for wq->maydays */
1809
1810         if (need_to_create_worker(pool)) {
1811                 /*
1812                  * We've been trying to create a new worker but
1813                  * haven't been successful.  We might be hitting an
1814                  * allocation deadlock.  Send distress signals to
1815                  * rescuers.
1816                  */
1817                 list_for_each_entry(work, &pool->worklist, entry)
1818                         send_mayday(work);
1819         }
1820
1821         spin_unlock(&wq_mayday_lock);
1822         spin_unlock_irq(&pool->lock);
1823
1824         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1825 }
1826
1827 /**
1828  * maybe_create_worker - create a new worker if necessary
1829  * @pool: pool to create a new worker for
1830  *
1831  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1832  * have at least one idle worker on return from this function.  If
1833  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1834  * sent to all rescuers with works scheduled on @pool to resolve
1835  * possible allocation deadlock.
1836  *
1837  * On return, need_to_create_worker() is guaranteed to be %false and
1838  * may_start_working() %true.
1839  *
1840  * LOCKING:
1841  * spin_lock_irq(pool->lock) which may be released and regrabbed
1842  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1843  * manager.
1844  */
1845 static void maybe_create_worker(struct worker_pool *pool)
1846 __releases(&pool->lock)
1847 __acquires(&pool->lock)
1848 {
1849 restart:
1850         spin_unlock_irq(&pool->lock);
1851
1852         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1853         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1854
1855         while (true) {
1856                 if (create_worker(pool) || !need_to_create_worker(pool))
1857                         break;
1858
1859                 schedule_timeout_interruptible(CREATE_COOLDOWN);
1860
1861                 if (!need_to_create_worker(pool))
1862                         break;
1863         }
1864
1865         del_timer_sync(&pool->mayday_timer);
1866         spin_lock_irq(&pool->lock);
1867         /*
1868          * This is necessary even after a new worker was just successfully
1869          * created as @pool->lock was dropped and the new worker might have
1870          * already become busy.
1871          */
1872         if (need_to_create_worker(pool))
1873                 goto restart;
1874 }
1875
1876 /**
1877  * manage_workers - manage worker pool
1878  * @worker: self
1879  *
1880  * Assume the manager role and manage the worker pool @worker belongs
1881  * to.  At any given time, there can be only zero or one manager per
1882  * pool.  The exclusion is handled automatically by this function.
1883  *
1884  * The caller can safely start processing works on false return.  On
1885  * true return, it's guaranteed that need_to_create_worker() is false
1886  * and may_start_working() is true.
1887  *
1888  * CONTEXT:
1889  * spin_lock_irq(pool->lock) which may be released and regrabbed
1890  * multiple times.  Does GFP_KERNEL allocations.
1891  *
1892  * Return:
1893  * %false if the pool doesn't need management and the caller can safely
1894  * start processing works, %true if management function was performed and
1895  * the conditions that the caller verified before calling the function may
1896  * no longer be true.
1897  */
1898 static bool manage_workers(struct worker *worker)
1899 {
1900         struct worker_pool *pool = worker->pool;
1901
1902         /*
1903          * Anyone who successfully grabs manager_arb wins the arbitration
1904          * and becomes the manager.  mutex_trylock() on pool->manager_arb
1905          * failure while holding pool->lock reliably indicates that someone
1906          * else is managing the pool and the worker which failed trylock
1907          * can proceed to executing work items.  This means that anyone
1908          * grabbing manager_arb is responsible for actually performing
1909          * manager duties.  If manager_arb is grabbed and released without
1910          * actual management, the pool may stall indefinitely.
1911          */
1912         if (!mutex_trylock(&pool->manager_arb))
1913                 return false;
1914
1915         maybe_create_worker(pool);
1916
1917         mutex_unlock(&pool->manager_arb);
1918         return true;
1919 }
1920
1921 /**
1922  * process_one_work - process single work
1923  * @worker: self
1924  * @work: work to process
1925  *
1926  * Process @work.  This function contains all the logics necessary to
1927  * process a single work including synchronization against and
1928  * interaction with other workers on the same cpu, queueing and
1929  * flushing.  As long as context requirement is met, any worker can
1930  * call this function to process a work.
1931  *
1932  * CONTEXT:
1933  * spin_lock_irq(pool->lock) which is released and regrabbed.
1934  */
1935 static void process_one_work(struct worker *worker, struct work_struct *work)
1936 __releases(&pool->lock)
1937 __acquires(&pool->lock)
1938 {
1939         struct pool_workqueue *pwq = get_work_pwq(work);
1940         struct worker_pool *pool = worker->pool;
1941         bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1942         int work_color;
1943         struct worker *collision;
1944 #ifdef CONFIG_LOCKDEP
1945         /*
1946          * It is permissible to free the struct work_struct from
1947          * inside the function that is called from it, this we need to
1948          * take into account for lockdep too.  To avoid bogus "held
1949          * lock freed" warnings as well as problems when looking into
1950          * work->lockdep_map, make a copy and use that here.
1951          */
1952         struct lockdep_map lockdep_map;
1953
1954         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1955 #endif
1956         /* ensure we're on the correct CPU */
1957         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1958                      raw_smp_processor_id() != pool->cpu);
1959
1960         /*
1961          * A single work shouldn't be executed concurrently by
1962          * multiple workers on a single cpu.  Check whether anyone is
1963          * already processing the work.  If so, defer the work to the
1964          * currently executing one.
1965          */
1966         collision = find_worker_executing_work(pool, work);
1967         if (unlikely(collision)) {
1968                 move_linked_works(work, &collision->scheduled, NULL);
1969                 return;
1970         }
1971
1972         /* claim and dequeue */
1973         debug_work_deactivate(work);
1974         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1975         worker->current_work = work;
1976         worker->current_func = work->func;
1977         worker->current_pwq = pwq;
1978         work_color = get_work_color(work);
1979
1980         list_del_init(&work->entry);
1981
1982         /*
1983          * CPU intensive works don't participate in concurrency management.
1984          * They're the scheduler's responsibility.  This takes @worker out
1985          * of concurrency management and the next code block will chain
1986          * execution of the pending work items.
1987          */
1988         if (unlikely(cpu_intensive))
1989                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1990
1991         /*
1992          * Wake up another worker if necessary.  The condition is always
1993          * false for normal per-cpu workers since nr_running would always
1994          * be >= 1 at this point.  This is used to chain execution of the
1995          * pending work items for WORKER_NOT_RUNNING workers such as the
1996          * UNBOUND and CPU_INTENSIVE ones.
1997          */
1998         if (need_more_worker(pool))
1999                 wake_up_worker(pool);
2000
2001         /*
2002          * Record the last pool and clear PENDING which should be the last
2003          * update to @work.  Also, do this inside @pool->lock so that
2004          * PENDING and queued state changes happen together while IRQ is
2005          * disabled.
2006          */
2007         set_work_pool_and_clear_pending(work, pool->id);
2008
2009         spin_unlock_irq(&pool->lock);
2010
2011         lock_map_acquire_read(&pwq->wq->lockdep_map);
2012         lock_map_acquire(&lockdep_map);
2013         trace_workqueue_execute_start(work);
2014         worker->current_func(work);
2015         /*
2016          * While we must be careful to not use "work" after this, the trace
2017          * point will only record its address.
2018          */
2019         trace_workqueue_execute_end(work);
2020         lock_map_release(&lockdep_map);
2021         lock_map_release(&pwq->wq->lockdep_map);
2022
2023         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2024                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2025                        "     last function: %pf\n",
2026                        current->comm, preempt_count(), task_pid_nr(current),
2027                        worker->current_func);
2028                 debug_show_held_locks(current);
2029                 dump_stack();
2030         }
2031
2032         /*
2033          * The following prevents a kworker from hogging CPU on !PREEMPT
2034          * kernels, where a requeueing work item waiting for something to
2035          * happen could deadlock with stop_machine as such work item could
2036          * indefinitely requeue itself while all other CPUs are trapped in
2037          * stop_machine. At the same time, report a quiescent RCU state so
2038          * the same condition doesn't freeze RCU.
2039          */
2040         cond_resched_rcu_qs();
2041
2042         spin_lock_irq(&pool->lock);
2043
2044         /* clear cpu intensive status */
2045         if (unlikely(cpu_intensive))
2046                 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2047
2048         /* we're done with it, release */
2049         hash_del(&worker->hentry);
2050         worker->current_work = NULL;
2051         worker->current_func = NULL;
2052         worker->current_pwq = NULL;
2053         worker->desc_valid = false;
2054         pwq_dec_nr_in_flight(pwq, work_color);
2055 }
2056
2057 /**
2058  * process_scheduled_works - process scheduled works
2059  * @worker: self
2060  *
2061  * Process all scheduled works.  Please note that the scheduled list
2062  * may change while processing a work, so this function repeatedly
2063  * fetches a work from the top and executes it.
2064  *
2065  * CONTEXT:
2066  * spin_lock_irq(pool->lock) which may be released and regrabbed
2067  * multiple times.
2068  */
2069 static void process_scheduled_works(struct worker *worker)
2070 {
2071         while (!list_empty(&worker->scheduled)) {
2072                 struct work_struct *work = list_first_entry(&worker->scheduled,
2073                                                 struct work_struct, entry);
2074                 process_one_work(worker, work);
2075         }
2076 }
2077
2078 /**
2079  * worker_thread - the worker thread function
2080  * @__worker: self
2081  *
2082  * The worker thread function.  All workers belong to a worker_pool -
2083  * either a per-cpu one or dynamic unbound one.  These workers process all
2084  * work items regardless of their specific target workqueue.  The only
2085  * exception is work items which belong to workqueues with a rescuer which
2086  * will be explained in rescuer_thread().
2087  *
2088  * Return: 0
2089  */
2090 static int worker_thread(void *__worker)
2091 {
2092         struct worker *worker = __worker;
2093         struct worker_pool *pool = worker->pool;
2094
2095         /* tell the scheduler that this is a workqueue worker */
2096         worker->task->flags |= PF_WQ_WORKER;
2097 woke_up:
2098         spin_lock_irq(&pool->lock);
2099
2100         /* am I supposed to die? */
2101         if (unlikely(worker->flags & WORKER_DIE)) {
2102                 spin_unlock_irq(&pool->lock);
2103                 WARN_ON_ONCE(!list_empty(&worker->entry));
2104                 worker->task->flags &= ~PF_WQ_WORKER;
2105
2106                 set_task_comm(worker->task, "kworker/dying");
2107                 ida_simple_remove(&pool->worker_ida, worker->id);
2108                 worker_detach_from_pool(worker, pool);
2109                 kfree(worker);
2110                 return 0;
2111         }
2112
2113         worker_leave_idle(worker);
2114 recheck:
2115         /* no more worker necessary? */
2116         if (!need_more_worker(pool))
2117                 goto sleep;
2118
2119         /* do we need to manage? */
2120         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2121                 goto recheck;
2122
2123         /*
2124          * ->scheduled list can only be filled while a worker is
2125          * preparing to process a work or actually processing it.
2126          * Make sure nobody diddled with it while I was sleeping.
2127          */
2128         WARN_ON_ONCE(!list_empty(&worker->scheduled));
2129
2130         /*
2131          * Finish PREP stage.  We're guaranteed to have at least one idle
2132          * worker or that someone else has already assumed the manager
2133          * role.  This is where @worker starts participating in concurrency
2134          * management if applicable and concurrency management is restored
2135          * after being rebound.  See rebind_workers() for details.
2136          */
2137         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2138
2139         do {
2140                 struct work_struct *work =
2141                         list_first_entry(&pool->worklist,
2142                                          struct work_struct, entry);
2143
2144                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2145                         /* optimization path, not strictly necessary */
2146                         process_one_work(worker, work);
2147                         if (unlikely(!list_empty(&worker->scheduled)))
2148                                 process_scheduled_works(worker);
2149                 } else {
2150                         move_linked_works(work, &worker->scheduled, NULL);
2151                         process_scheduled_works(worker);
2152                 }
2153         } while (keep_working(pool));
2154
2155         worker_set_flags(worker, WORKER_PREP);
2156 sleep:
2157         /*
2158          * pool->lock is held and there's no work to process and no need to
2159          * manage, sleep.  Workers are woken up only while holding
2160          * pool->lock or from local cpu, so setting the current state
2161          * before releasing pool->lock is enough to prevent losing any
2162          * event.
2163          */
2164         worker_enter_idle(worker);
2165         __set_current_state(TASK_INTERRUPTIBLE);
2166         spin_unlock_irq(&pool->lock);
2167         schedule();
2168         goto woke_up;
2169 }
2170
2171 /**
2172  * rescuer_thread - the rescuer thread function
2173  * @__rescuer: self
2174  *
2175  * Workqueue rescuer thread function.  There's one rescuer for each
2176  * workqueue which has WQ_MEM_RECLAIM set.
2177  *
2178  * Regular work processing on a pool may block trying to create a new
2179  * worker which uses GFP_KERNEL allocation which has slight chance of
2180  * developing into deadlock if some works currently on the same queue
2181  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2182  * the problem rescuer solves.
2183  *
2184  * When such condition is possible, the pool summons rescuers of all
2185  * workqueues which have works queued on the pool and let them process
2186  * those works so that forward progress can be guaranteed.
2187  *
2188  * This should happen rarely.
2189  *
2190  * Return: 0
2191  */
2192 static int rescuer_thread(void *__rescuer)
2193 {
2194         struct worker *rescuer = __rescuer;
2195         struct workqueue_struct *wq = rescuer->rescue_wq;
2196         struct list_head *scheduled = &rescuer->scheduled;
2197         bool should_stop;
2198
2199         set_user_nice(current, RESCUER_NICE_LEVEL);
2200
2201         /*
2202          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2203          * doesn't participate in concurrency management.
2204          */
2205         rescuer->task->flags |= PF_WQ_WORKER;
2206 repeat:
2207         set_current_state(TASK_INTERRUPTIBLE);
2208
2209         /*
2210          * By the time the rescuer is requested to stop, the workqueue
2211          * shouldn't have any work pending, but @wq->maydays may still have
2212          * pwq(s) queued.  This can happen by non-rescuer workers consuming
2213          * all the work items before the rescuer got to them.  Go through
2214          * @wq->maydays processing before acting on should_stop so that the
2215          * list is always empty on exit.
2216          */
2217         should_stop = kthread_should_stop();
2218
2219         /* see whether any pwq is asking for help */
2220         spin_lock_irq(&wq_mayday_lock);
2221
2222         while (!list_empty(&wq->maydays)) {
2223                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2224                                         struct pool_workqueue, mayday_node);
2225                 struct worker_pool *pool = pwq->pool;
2226                 struct work_struct *work, *n;
2227
2228                 __set_current_state(TASK_RUNNING);
2229                 list_del_init(&pwq->mayday_node);
2230
2231                 spin_unlock_irq(&wq_mayday_lock);
2232
2233                 worker_attach_to_pool(rescuer, pool);
2234
2235                 spin_lock_irq(&pool->lock);
2236                 rescuer->pool = pool;
2237
2238                 /*
2239                  * Slurp in all works issued via this workqueue and
2240                  * process'em.
2241                  */
2242                 WARN_ON_ONCE(!list_empty(scheduled));
2243                 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2244                         if (get_work_pwq(work) == pwq)
2245                                 move_linked_works(work, scheduled, &n);
2246
2247                 if (!list_empty(scheduled)) {
2248                         process_scheduled_works(rescuer);
2249
2250                         /*
2251                          * The above execution of rescued work items could
2252                          * have created more to rescue through
2253                          * pwq_activate_first_delayed() or chained
2254                          * queueing.  Let's put @pwq back on mayday list so
2255                          * that such back-to-back work items, which may be
2256                          * being used to relieve memory pressure, don't
2257                          * incur MAYDAY_INTERVAL delay inbetween.
2258                          */
2259                         if (need_to_create_worker(pool)) {
2260                                 spin_lock(&wq_mayday_lock);
2261                                 get_pwq(pwq);
2262                                 list_move_tail(&pwq->mayday_node, &wq->maydays);
2263                                 spin_unlock(&wq_mayday_lock);
2264                         }
2265                 }
2266
2267                 /*
2268                  * Put the reference grabbed by send_mayday().  @pool won't
2269                  * go away while we're still attached to it.
2270                  */
2271                 put_pwq(pwq);
2272
2273                 /*
2274                  * Leave this pool.  If need_more_worker() is %true, notify a
2275                  * regular worker; otherwise, we end up with 0 concurrency
2276                  * and stalling the execution.
2277                  */
2278                 if (need_more_worker(pool))
2279                         wake_up_worker(pool);
2280
2281                 rescuer->pool = NULL;
2282                 spin_unlock_irq(&pool->lock);
2283
2284                 worker_detach_from_pool(rescuer, pool);
2285
2286                 spin_lock_irq(&wq_mayday_lock);
2287         }
2288
2289         spin_unlock_irq(&wq_mayday_lock);
2290
2291         if (should_stop) {
2292                 __set_current_state(TASK_RUNNING);
2293                 rescuer->task->flags &= ~PF_WQ_WORKER;
2294                 return 0;
2295         }
2296
2297         /* rescuers should never participate in concurrency management */
2298         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2299         schedule();
2300         goto repeat;
2301 }
2302
2303 struct wq_barrier {
2304         struct work_struct      work;
2305         struct completion       done;
2306 };
2307
2308 static void wq_barrier_func(struct work_struct *work)
2309 {
2310         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2311         complete(&barr->done);
2312 }
2313
2314 /**
2315  * insert_wq_barrier - insert a barrier work
2316  * @pwq: pwq to insert barrier into
2317  * @barr: wq_barrier to insert
2318  * @target: target work to attach @barr to
2319  * @worker: worker currently executing @target, NULL if @target is not executing
2320  *
2321  * @barr is linked to @target such that @barr is completed only after
2322  * @target finishes execution.  Please note that the ordering
2323  * guarantee is observed only with respect to @target and on the local
2324  * cpu.
2325  *
2326  * Currently, a queued barrier can't be canceled.  This is because
2327  * try_to_grab_pending() can't determine whether the work to be
2328  * grabbed is at the head of the queue and thus can't clear LINKED
2329  * flag of the previous work while there must be a valid next work
2330  * after a work with LINKED flag set.
2331  *
2332  * Note that when @worker is non-NULL, @target may be modified
2333  * underneath us, so we can't reliably determine pwq from @target.
2334  *
2335  * CONTEXT:
2336  * spin_lock_irq(pool->lock).
2337  */
2338 static void insert_wq_barrier(struct pool_workqueue *pwq,
2339                               struct wq_barrier *barr,
2340                               struct work_struct *target, struct worker *worker)
2341 {
2342         struct list_head *head;
2343         unsigned int linked = 0;
2344
2345         /*
2346          * debugobject calls are safe here even with pool->lock locked
2347          * as we know for sure that this will not trigger any of the
2348          * checks and call back into the fixup functions where we
2349          * might deadlock.
2350          */
2351         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2352         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2353         init_completion(&barr->done);
2354
2355         /*
2356          * If @target is currently being executed, schedule the
2357          * barrier to the worker; otherwise, put it after @target.
2358          */
2359         if (worker)
2360                 head = worker->scheduled.next;
2361         else {
2362                 unsigned long *bits = work_data_bits(target);
2363
2364                 head = target->entry.next;
2365                 /* there can already be other linked works, inherit and set */
2366                 linked = *bits & WORK_STRUCT_LINKED;
2367                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2368         }
2369
2370         debug_work_activate(&barr->work);
2371         insert_work(pwq, &barr->work, head,
2372                     work_color_to_flags(WORK_NO_COLOR) | linked);
2373 }
2374
2375 /**
2376  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2377  * @wq: workqueue being flushed
2378  * @flush_color: new flush color, < 0 for no-op
2379  * @work_color: new work color, < 0 for no-op
2380  *
2381  * Prepare pwqs for workqueue flushing.
2382  *
2383  * If @flush_color is non-negative, flush_color on all pwqs should be
2384  * -1.  If no pwq has in-flight commands at the specified color, all
2385  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2386  * has in flight commands, its pwq->flush_color is set to
2387  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2388  * wakeup logic is armed and %true is returned.
2389  *
2390  * The caller should have initialized @wq->first_flusher prior to
2391  * calling this function with non-negative @flush_color.  If
2392  * @flush_color is negative, no flush color update is done and %false
2393  * is returned.
2394  *
2395  * If @work_color is non-negative, all pwqs should have the same
2396  * work_color which is previous to @work_color and all will be
2397  * advanced to @work_color.
2398  *
2399  * CONTEXT:
2400  * mutex_lock(wq->mutex).
2401  *
2402  * Return:
2403  * %true if @flush_color >= 0 and there's something to flush.  %false
2404  * otherwise.
2405  */
2406 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2407                                       int flush_color, int work_color)
2408 {
2409         bool wait = false;
2410         struct pool_workqueue *pwq;
2411
2412         if (flush_color >= 0) {
2413                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2414                 atomic_set(&wq->nr_pwqs_to_flush, 1);
2415         }
2416
2417         for_each_pwq(pwq, wq) {
2418                 struct worker_pool *pool = pwq->pool;
2419
2420                 spin_lock_irq(&pool->lock);
2421
2422                 if (flush_color >= 0) {
2423                         WARN_ON_ONCE(pwq->flush_color != -1);
2424
2425                         if (pwq->nr_in_flight[flush_color]) {
2426                                 pwq->flush_color = flush_color;
2427                                 atomic_inc(&wq->nr_pwqs_to_flush);
2428                                 wait = true;
2429                         }
2430                 }
2431
2432                 if (work_color >= 0) {
2433                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2434                         pwq->work_color = work_color;
2435                 }
2436
2437                 spin_unlock_irq(&pool->lock);
2438         }
2439
2440         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2441                 complete(&wq->first_flusher->done);
2442
2443         return wait;
2444 }
2445
2446 /**
2447  * flush_workqueue - ensure that any scheduled work has run to completion.
2448  * @wq: workqueue to flush
2449  *
2450  * This function sleeps until all work items which were queued on entry
2451  * have finished execution, but it is not livelocked by new incoming ones.
2452  */
2453 void flush_workqueue(struct workqueue_struct *wq)
2454 {
2455         struct wq_flusher this_flusher = {
2456                 .list = LIST_HEAD_INIT(this_flusher.list),
2457                 .flush_color = -1,
2458                 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2459         };
2460         int next_color;
2461
2462         lock_map_acquire(&wq->lockdep_map);
2463         lock_map_release(&wq->lockdep_map);
2464
2465         mutex_lock(&wq->mutex);
2466
2467         /*
2468          * Start-to-wait phase
2469          */
2470         next_color = work_next_color(wq->work_color);
2471
2472         if (next_color != wq->flush_color) {
2473                 /*
2474                  * Color space is not full.  The current work_color
2475                  * becomes our flush_color and work_color is advanced
2476                  * by one.
2477                  */
2478                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2479                 this_flusher.flush_color = wq->work_color;
2480                 wq->work_color = next_color;
2481
2482                 if (!wq->first_flusher) {
2483                         /* no flush in progress, become the first flusher */
2484                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2485
2486                         wq->first_flusher = &this_flusher;
2487
2488                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2489                                                        wq->work_color)) {
2490                                 /* nothing to flush, done */
2491                                 wq->flush_color = next_color;
2492                                 wq->first_flusher = NULL;
2493                                 goto out_unlock;
2494                         }
2495                 } else {
2496                         /* wait in queue */
2497                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2498                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
2499                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2500                 }
2501         } else {
2502                 /*
2503                  * Oops, color space is full, wait on overflow queue.
2504                  * The next flush completion will assign us
2505                  * flush_color and transfer to flusher_queue.
2506                  */
2507                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2508         }
2509
2510         mutex_unlock(&wq->mutex);
2511
2512         wait_for_completion(&this_flusher.done);
2513
2514         /*
2515          * Wake-up-and-cascade phase
2516          *
2517          * First flushers are responsible for cascading flushes and
2518          * handling overflow.  Non-first flushers can simply return.
2519          */
2520         if (wq->first_flusher != &this_flusher)
2521                 return;
2522
2523         mutex_lock(&wq->mutex);
2524
2525         /* we might have raced, check again with mutex held */
2526         if (wq->first_flusher != &this_flusher)
2527                 goto out_unlock;
2528
2529         wq->first_flusher = NULL;
2530
2531         WARN_ON_ONCE(!list_empty(&this_flusher.list));
2532         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2533
2534         while (true) {
2535                 struct wq_flusher *next, *tmp;
2536
2537                 /* complete all the flushers sharing the current flush color */
2538                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2539                         if (next->flush_color != wq->flush_color)
2540                                 break;
2541                         list_del_init(&next->list);
2542                         complete(&next->done);
2543                 }
2544
2545                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2546                              wq->flush_color != work_next_color(wq->work_color));
2547
2548                 /* this flush_color is finished, advance by one */
2549                 wq->flush_color = work_next_color(wq->flush_color);
2550
2551                 /* one color has been freed, handle overflow queue */
2552                 if (!list_empty(&wq->flusher_overflow)) {
2553                         /*
2554                          * Assign the same color to all overflowed
2555                          * flushers, advance work_color and append to
2556                          * flusher_queue.  This is the start-to-wait
2557                          * phase for these overflowed flushers.
2558                          */
2559                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
2560                                 tmp->flush_color = wq->work_color;
2561
2562                         wq->work_color = work_next_color(wq->work_color);
2563
2564                         list_splice_tail_init(&wq->flusher_overflow,
2565                                               &wq->flusher_queue);
2566                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2567                 }
2568
2569                 if (list_empty(&wq->flusher_queue)) {
2570                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
2571                         break;
2572                 }
2573
2574                 /*
2575                  * Need to flush more colors.  Make the next flusher
2576                  * the new first flusher and arm pwqs.
2577                  */
2578                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2579                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2580
2581                 list_del_init(&next->list);
2582                 wq->first_flusher = next;
2583
2584                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2585                         break;
2586
2587                 /*
2588                  * Meh... this color is already done, clear first
2589                  * flusher and repeat cascading.
2590                  */
2591                 wq->first_flusher = NULL;
2592         }
2593
2594 out_unlock:
2595         mutex_unlock(&wq->mutex);
2596 }
2597 EXPORT_SYMBOL_GPL(flush_workqueue);
2598
2599 /**
2600  * drain_workqueue - drain a workqueue
2601  * @wq: workqueue to drain
2602  *
2603  * Wait until the workqueue becomes empty.  While draining is in progress,
2604  * only chain queueing is allowed.  IOW, only currently pending or running
2605  * work items on @wq can queue further work items on it.  @wq is flushed
2606  * repeatedly until it becomes empty.  The number of flushing is detemined
2607  * by the depth of chaining and should be relatively short.  Whine if it
2608  * takes too long.
2609  */
2610 void drain_workqueue(struct workqueue_struct *wq)
2611 {
2612         unsigned int flush_cnt = 0;
2613         struct pool_workqueue *pwq;
2614
2615         /*
2616          * __queue_work() needs to test whether there are drainers, is much
2617          * hotter than drain_workqueue() and already looks at @wq->flags.
2618          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2619          */
2620         mutex_lock(&wq->mutex);
2621         if (!wq->nr_drainers++)
2622                 wq->flags |= __WQ_DRAINING;
2623         mutex_unlock(&wq->mutex);
2624 reflush:
2625         flush_workqueue(wq);
2626
2627         mutex_lock(&wq->mutex);
2628
2629         for_each_pwq(pwq, wq) {
2630                 bool drained;
2631
2632                 spin_lock_irq(&pwq->pool->lock);
2633                 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2634                 spin_unlock_irq(&pwq->pool->lock);
2635
2636                 if (drained)
2637                         continue;
2638
2639                 if (++flush_cnt == 10 ||
2640                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2641                         pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2642                                 wq->name, flush_cnt);
2643
2644                 mutex_unlock(&wq->mutex);
2645                 goto reflush;
2646         }
2647
2648         if (!--wq->nr_drainers)
2649                 wq->flags &= ~__WQ_DRAINING;
2650         mutex_unlock(&wq->mutex);
2651 }
2652 EXPORT_SYMBOL_GPL(drain_workqueue);
2653
2654 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2655 {
2656         struct worker *worker = NULL;
2657         struct worker_pool *pool;
2658         struct pool_workqueue *pwq;
2659
2660         might_sleep();
2661
2662         local_irq_disable();
2663         pool = get_work_pool(work);
2664         if (!pool) {
2665                 local_irq_enable();
2666                 return false;
2667         }
2668
2669         spin_lock(&pool->lock);
2670         /* see the comment in try_to_grab_pending() with the same code */
2671         pwq = get_work_pwq(work);
2672         if (pwq) {
2673                 if (unlikely(pwq->pool != pool))
2674                         goto already_gone;
2675         } else {
2676                 worker = find_worker_executing_work(pool, work);
2677                 if (!worker)
2678                         goto already_gone;
2679                 pwq = worker->current_pwq;
2680         }
2681
2682         insert_wq_barrier(pwq, barr, work, worker);
2683         spin_unlock_irq(&pool->lock);
2684
2685         /*
2686          * If @max_active is 1 or rescuer is in use, flushing another work
2687          * item on the same workqueue may lead to deadlock.  Make sure the
2688          * flusher is not running on the same workqueue by verifying write
2689          * access.
2690          */
2691         if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2692                 lock_map_acquire(&pwq->wq->lockdep_map);
2693         else
2694                 lock_map_acquire_read(&pwq->wq->lockdep_map);
2695         lock_map_release(&pwq->wq->lockdep_map);
2696
2697         return true;
2698 already_gone:
2699         spin_unlock_irq(&pool->lock);
2700         return false;
2701 }
2702
2703 /**
2704  * flush_work - wait for a work to finish executing the last queueing instance
2705  * @work: the work to flush
2706  *
2707  * Wait until @work has finished execution.  @work is guaranteed to be idle
2708  * on return if it hasn't been requeued since flush started.
2709  *
2710  * Return:
2711  * %true if flush_work() waited for the work to finish execution,
2712  * %false if it was already idle.
2713  */
2714 bool flush_work(struct work_struct *work)
2715 {
2716         struct wq_barrier barr;
2717
2718         lock_map_acquire(&work->lockdep_map);
2719         lock_map_release(&work->lockdep_map);
2720
2721         if (start_flush_work(work, &barr)) {
2722                 wait_for_completion(&barr.done);
2723                 destroy_work_on_stack(&barr.work);
2724                 return true;
2725         } else {
2726                 return false;
2727         }
2728 }
2729 EXPORT_SYMBOL_GPL(flush_work);
2730
2731 struct cwt_wait {
2732         wait_queue_t            wait;
2733         struct work_struct      *work;
2734 };
2735
2736 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2737 {
2738         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2739
2740         if (cwait->work != key)
2741                 return 0;
2742         return autoremove_wake_function(wait, mode, sync, key);
2743 }
2744
2745 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2746 {
2747         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2748         unsigned long flags;
2749         int ret;
2750
2751         do {
2752                 ret = try_to_grab_pending(work, is_dwork, &flags);
2753                 /*
2754                  * If someone else is already canceling, wait for it to
2755                  * finish.  flush_work() doesn't work for PREEMPT_NONE
2756                  * because we may get scheduled between @work's completion
2757                  * and the other canceling task resuming and clearing
2758                  * CANCELING - flush_work() will return false immediately
2759                  * as @work is no longer busy, try_to_grab_pending() will
2760                  * return -ENOENT as @work is still being canceled and the
2761                  * other canceling task won't be able to clear CANCELING as
2762                  * we're hogging the CPU.
2763                  *
2764                  * Let's wait for completion using a waitqueue.  As this
2765                  * may lead to the thundering herd problem, use a custom
2766                  * wake function which matches @work along with exclusive
2767                  * wait and wakeup.
2768                  */
2769                 if (unlikely(ret == -ENOENT)) {
2770                         struct cwt_wait cwait;
2771
2772                         init_wait(&cwait.wait);
2773                         cwait.wait.func = cwt_wakefn;
2774                         cwait.work = work;
2775
2776                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2777                                                   TASK_UNINTERRUPTIBLE);
2778                         if (work_is_canceling(work))
2779                                 schedule();
2780                         finish_wait(&cancel_waitq, &cwait.wait);
2781                 }
2782         } while (unlikely(ret < 0));
2783
2784         /* tell other tasks trying to grab @work to back off */
2785         mark_work_canceling(work);
2786         local_irq_restore(flags);
2787
2788         flush_work(work);
2789         clear_work_data(work);
2790
2791         /*
2792          * Paired with prepare_to_wait() above so that either
2793          * waitqueue_active() is visible here or !work_is_canceling() is
2794          * visible there.
2795          */
2796         smp_mb();
2797         if (waitqueue_active(&cancel_waitq))
2798                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2799
2800         return ret;
2801 }
2802
2803 /**
2804  * cancel_work_sync - cancel a work and wait for it to finish
2805  * @work: the work to cancel
2806  *
2807  * Cancel @work and wait for its execution to finish.  This function
2808  * can be used even if the work re-queues itself or migrates to
2809  * another workqueue.  On return from this function, @work is
2810  * guaranteed to be not pending or executing on any CPU.
2811  *
2812  * cancel_work_sync(&delayed_work->work) must not be used for
2813  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2814  *
2815  * The caller must ensure that the workqueue on which @work was last
2816  * queued can't be destroyed before this function returns.
2817  *
2818  * Return:
2819  * %true if @work was pending, %false otherwise.
2820  */
2821 bool cancel_work_sync(struct work_struct *work)
2822 {
2823         return __cancel_work_timer(work, false);
2824 }
2825 EXPORT_SYMBOL_GPL(cancel_work_sync);
2826
2827 /**
2828  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2829  * @dwork: the delayed work to flush
2830  *
2831  * Delayed timer is cancelled and the pending work is queued for
2832  * immediate execution.  Like flush_work(), this function only
2833  * considers the last queueing instance of @dwork.
2834  *
2835  * Return:
2836  * %true if flush_work() waited for the work to finish execution,
2837  * %false if it was already idle.
2838  */
2839 bool flush_delayed_work(struct delayed_work *dwork)
2840 {
2841         local_irq_disable();
2842         if (del_timer_sync(&dwork->timer))
2843                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2844         local_irq_enable();
2845         return flush_work(&dwork->work);
2846 }
2847 EXPORT_SYMBOL(flush_delayed_work);
2848
2849 /**
2850  * cancel_delayed_work - cancel a delayed work
2851  * @dwork: delayed_work to cancel
2852  *
2853  * Kill off a pending delayed_work.
2854  *
2855  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2856  * pending.
2857  *
2858  * Note:
2859  * The work callback function may still be running on return, unless
2860  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2861  * use cancel_delayed_work_sync() to wait on it.
2862  *
2863  * This function is safe to call from any context including IRQ handler.
2864  */
2865 bool cancel_delayed_work(struct delayed_work *dwork)
2866 {
2867         unsigned long flags;
2868         int ret;
2869
2870         do {
2871                 ret = try_to_grab_pending(&dwork->work, true, &flags);
2872         } while (unlikely(ret == -EAGAIN));
2873
2874         if (unlikely(ret < 0))
2875                 return false;
2876
2877         set_work_pool_and_clear_pending(&dwork->work,
2878                                         get_work_pool_id(&dwork->work));
2879         local_irq_restore(flags);
2880         return ret;
2881 }
2882 EXPORT_SYMBOL(cancel_delayed_work);
2883
2884 /**
2885  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2886  * @dwork: the delayed work cancel
2887  *
2888  * This is cancel_work_sync() for delayed works.
2889  *
2890  * Return:
2891  * %true if @dwork was pending, %false otherwise.
2892  */
2893 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2894 {
2895         return __cancel_work_timer(&dwork->work, true);
2896 }
2897 EXPORT_SYMBOL(cancel_delayed_work_sync);
2898
2899 /**
2900  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2901  * @func: the function to call
2902  *
2903  * schedule_on_each_cpu() executes @func on each online CPU using the
2904  * system workqueue and blocks until all CPUs have completed.
2905  * schedule_on_each_cpu() is very slow.
2906  *
2907  * Return:
2908  * 0 on success, -errno on failure.
2909  */
2910 int schedule_on_each_cpu(work_func_t func)
2911 {
2912         int cpu;
2913         struct work_struct __percpu *works;
2914
2915         works = alloc_percpu(struct work_struct);
2916         if (!works)
2917                 return -ENOMEM;
2918
2919         get_online_cpus();
2920
2921         for_each_online_cpu(cpu) {
2922                 struct work_struct *work = per_cpu_ptr(works, cpu);
2923
2924                 INIT_WORK(work, func);
2925                 schedule_work_on(cpu, work);
2926         }
2927
2928         for_each_online_cpu(cpu)
2929                 flush_work(per_cpu_ptr(works, cpu));
2930
2931         put_online_cpus();
2932         free_percpu(works);
2933         return 0;
2934 }
2935
2936 /**
2937  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2938  *
2939  * Forces execution of the kernel-global workqueue and blocks until its
2940  * completion.
2941  *
2942  * Think twice before calling this function!  It's very easy to get into
2943  * trouble if you don't take great care.  Either of the following situations
2944  * will lead to deadlock:
2945  *
2946  *      One of the work items currently on the workqueue needs to acquire
2947  *      a lock held by your code or its caller.
2948  *
2949  *      Your code is running in the context of a work routine.
2950  *
2951  * They will be detected by lockdep when they occur, but the first might not
2952  * occur very often.  It depends on what work items are on the workqueue and
2953  * what locks they need, which you have no control over.
2954  *
2955  * In most situations flushing the entire workqueue is overkill; you merely
2956  * need to know that a particular work item isn't queued and isn't running.
2957  * In such cases you should use cancel_delayed_work_sync() or
2958  * cancel_work_sync() instead.
2959  */
2960 void flush_scheduled_work(void)
2961 {
2962         flush_workqueue(system_wq);
2963 }
2964 EXPORT_SYMBOL(flush_scheduled_work);
2965
2966 /**
2967  * execute_in_process_context - reliably execute the routine with user context
2968  * @fn:         the function to execute
2969  * @ew:         guaranteed storage for the execute work structure (must
2970  *              be available when the work executes)
2971  *
2972  * Executes the function immediately if process context is available,
2973  * otherwise schedules the function for delayed execution.
2974  *
2975  * Return:      0 - function was executed
2976  *              1 - function was scheduled for execution
2977  */
2978 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2979 {
2980         if (!in_interrupt()) {
2981                 fn(&ew->work);
2982                 return 0;
2983         }
2984
2985         INIT_WORK(&ew->work, fn);
2986         schedule_work(&ew->work);
2987
2988         return 1;
2989 }
2990 EXPORT_SYMBOL_GPL(execute_in_process_context);
2991
2992 #ifdef CONFIG_SYSFS
2993 /*
2994  * Workqueues with WQ_SYSFS flag set is visible to userland via
2995  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
2996  * following attributes.
2997  *
2998  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
2999  *  max_active  RW int  : maximum number of in-flight work items
3000  *
3001  * Unbound workqueues have the following extra attributes.
3002  *
3003  *  id          RO int  : the associated pool ID
3004  *  nice        RW int  : nice value of the workers
3005  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
3006  */
3007 struct wq_device {
3008         struct workqueue_struct         *wq;
3009         struct device                   dev;
3010 };
3011
3012 static struct workqueue_struct *dev_to_wq(struct device *dev)
3013 {
3014         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3015
3016         return wq_dev->wq;
3017 }
3018
3019 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3020                             char *buf)
3021 {
3022         struct workqueue_struct *wq = dev_to_wq(dev);
3023
3024         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3025 }
3026 static DEVICE_ATTR_RO(per_cpu);
3027
3028 static ssize_t max_active_show(struct device *dev,
3029                                struct device_attribute *attr, char *buf)
3030 {
3031         struct workqueue_struct *wq = dev_to_wq(dev);
3032
3033         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3034 }
3035
3036 static ssize_t max_active_store(struct device *dev,
3037                                 struct device_attribute *attr, const char *buf,
3038                                 size_t count)
3039 {
3040         struct workqueue_struct *wq = dev_to_wq(dev);
3041         int val;
3042
3043         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3044                 return -EINVAL;
3045
3046         workqueue_set_max_active(wq, val);
3047         return count;
3048 }
3049 static DEVICE_ATTR_RW(max_active);
3050
3051 static struct attribute *wq_sysfs_attrs[] = {
3052         &dev_attr_per_cpu.attr,
3053         &dev_attr_max_active.attr,
3054         NULL,
3055 };
3056 ATTRIBUTE_GROUPS(wq_sysfs);
3057
3058 static ssize_t wq_pool_ids_show(struct device *dev,
3059                                 struct device_attribute *attr, char *buf)
3060 {
3061         struct workqueue_struct *wq = dev_to_wq(dev);
3062         const char *delim = "";
3063         int node, written = 0;
3064
3065         rcu_read_lock_sched();
3066         for_each_node(node) {
3067                 written += scnprintf(buf + written, PAGE_SIZE - written,
3068                                      "%s%d:%d", delim, node,
3069                                      unbound_pwq_by_node(wq, node)->pool->id);
3070                 delim = " ";
3071         }
3072         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3073         rcu_read_unlock_sched();
3074
3075         return written;
3076 }
3077
3078 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3079                             char *buf)
3080 {
3081         struct workqueue_struct *wq = dev_to_wq(dev);
3082         int written;
3083
3084         mutex_lock(&wq->mutex);
3085         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3086         mutex_unlock(&wq->mutex);
3087
3088         return written;
3089 }
3090
3091 /* prepare workqueue_attrs for sysfs store operations */
3092 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3093 {
3094         struct workqueue_attrs *attrs;
3095
3096         attrs = alloc_workqueue_attrs(GFP_KERNEL);
3097         if (!attrs)
3098                 return NULL;
3099
3100         mutex_lock(&wq->mutex);
3101         copy_workqueue_attrs(attrs, wq->unbound_attrs);
3102         mutex_unlock(&wq->mutex);
3103         return attrs;
3104 }
3105
3106 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3107                              const char *buf, size_t count)
3108 {
3109         struct workqueue_struct *wq = dev_to_wq(dev);
3110         struct workqueue_attrs *attrs;
3111         int ret;
3112
3113         attrs = wq_sysfs_prep_attrs(wq);
3114         if (!attrs)
3115                 return -ENOMEM;
3116
3117         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3118             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3119                 ret = apply_workqueue_attrs(wq, attrs);
3120         else
3121                 ret = -EINVAL;
3122
3123         free_workqueue_attrs(attrs);
3124         return ret ?: count;
3125 }
3126
3127 static ssize_t wq_cpumask_show(struct device *dev,
3128                                struct device_attribute *attr, char *buf)
3129 {
3130         struct workqueue_struct *wq = dev_to_wq(dev);
3131         int written;
3132
3133         mutex_lock(&wq->mutex);
3134         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
3135                             cpumask_pr_args(wq->unbound_attrs->cpumask));
3136         mutex_unlock(&wq->mutex);
3137         return written;
3138 }
3139
3140 static ssize_t wq_cpumask_store(struct device *dev,
3141                                 struct device_attribute *attr,
3142                                 const char *buf, size_t count)
3143 {
3144         struct workqueue_struct *wq = dev_to_wq(dev);
3145         struct workqueue_attrs *attrs;
3146         int ret;
3147
3148         attrs = wq_sysfs_prep_attrs(wq);
3149         if (!attrs)
3150                 return -ENOMEM;
3151
3152         ret = cpumask_parse(buf, attrs->cpumask);
3153         if (!ret)
3154                 ret = apply_workqueue_attrs(wq, attrs);
3155
3156         free_workqueue_attrs(attrs);
3157         return ret ?: count;
3158 }
3159
3160 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3161                             char *buf)
3162 {
3163         struct workqueue_struct *wq = dev_to_wq(dev);
3164         int written;
3165
3166         mutex_lock(&wq->mutex);
3167         written = scnprintf(buf, PAGE_SIZE, "%d\n",
3168                             !wq->unbound_attrs->no_numa);
3169         mutex_unlock(&wq->mutex);
3170
3171         return written;
3172 }
3173
3174 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3175                              const char *buf, size_t count)
3176 {
3177         struct workqueue_struct *wq = dev_to_wq(dev);
3178         struct workqueue_attrs *attrs;
3179         int v, ret;
3180
3181         attrs = wq_sysfs_prep_attrs(wq);
3182         if (!attrs)
3183                 return -ENOMEM;
3184
3185         ret = -EINVAL;
3186         if (sscanf(buf, "%d", &v) == 1) {
3187                 attrs->no_numa = !v;
3188                 ret = apply_workqueue_attrs(wq, attrs);
3189         }
3190
3191         free_workqueue_attrs(attrs);
3192         return ret ?: count;
3193 }
3194
3195 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3196         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3197         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3198         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3199         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3200         __ATTR_NULL,
3201 };
3202
3203 static struct bus_type wq_subsys = {
3204         .name                           = "workqueue",
3205         .dev_groups                     = wq_sysfs_groups,
3206 };
3207
3208 static int __init wq_sysfs_init(void)
3209 {
3210         return subsys_virtual_register(&wq_subsys, NULL);
3211 }
3212 core_initcall(wq_sysfs_init);
3213
3214 static void wq_device_release(struct device *dev)
3215 {
3216         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3217
3218         kfree(wq_dev);
3219 }
3220
3221 /**
3222  * workqueue_sysfs_register - make a workqueue visible in sysfs
3223  * @wq: the workqueue to register
3224  *
3225  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3226  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3227  * which is the preferred method.
3228  *
3229  * Workqueue user should use this function directly iff it wants to apply
3230  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3231  * apply_workqueue_attrs() may race against userland updating the
3232  * attributes.
3233  *
3234  * Return: 0 on success, -errno on failure.
3235  */
3236 int workqueue_sysfs_register(struct workqueue_struct *wq)
3237 {
3238         struct wq_device *wq_dev;
3239         int ret;
3240
3241         /*
3242          * Adjusting max_active or creating new pwqs by applyting
3243          * attributes breaks ordering guarantee.  Disallow exposing ordered
3244          * workqueues.
3245          */
3246         if (WARN_ON(wq->flags & __WQ_ORDERED))
3247                 return -EINVAL;
3248
3249         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3250         if (!wq_dev)
3251                 return -ENOMEM;
3252
3253         wq_dev->wq = wq;
3254         wq_dev->dev.bus = &wq_subsys;
3255         wq_dev->dev.init_name = wq->name;
3256         wq_dev->dev.release = wq_device_release;
3257
3258         /*
3259          * unbound_attrs are created separately.  Suppress uevent until
3260          * everything is ready.
3261          */
3262         dev_set_uevent_suppress(&wq_dev->dev, true);
3263
3264         ret = device_register(&wq_dev->dev);
3265         if (ret) {
3266                 kfree(wq_dev);
3267                 wq->wq_dev = NULL;
3268                 return ret;
3269         }
3270
3271         if (wq->flags & WQ_UNBOUND) {
3272                 struct device_attribute *attr;
3273
3274                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3275                         ret = device_create_file(&wq_dev->dev, attr);
3276                         if (ret) {
3277                                 device_unregister(&wq_dev->dev);
3278                                 wq->wq_dev = NULL;
3279                                 return ret;
3280                         }
3281                 }
3282         }
3283
3284         dev_set_uevent_suppress(&wq_dev->dev, false);
3285         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3286         return 0;
3287 }
3288
3289 /**
3290  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3291  * @wq: the workqueue to unregister
3292  *
3293  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3294  */
3295 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3296 {
3297         struct wq_device *wq_dev = wq->wq_dev;
3298
3299         if (!wq->wq_dev)
3300                 return;
3301
3302         wq->wq_dev = NULL;
3303         device_unregister(&wq_dev->dev);
3304 }
3305 #else   /* CONFIG_SYSFS */
3306 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
3307 #endif  /* CONFIG_SYSFS */
3308
3309 /**
3310  * free_workqueue_attrs - free a workqueue_attrs
3311  * @attrs: workqueue_attrs to free
3312  *
3313  * Undo alloc_workqueue_attrs().
3314  */
3315 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3316 {
3317         if (attrs) {
3318                 free_cpumask_var(attrs->cpumask);
3319                 kfree(attrs);
3320         }
3321 }
3322
3323 /**
3324  * alloc_workqueue_attrs - allocate a workqueue_attrs
3325  * @gfp_mask: allocation mask to use
3326  *
3327  * Allocate a new workqueue_attrs, initialize with default settings and
3328  * return it.
3329  *
3330  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3331  */
3332 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3333 {
3334         struct workqueue_attrs *attrs;
3335
3336         attrs = kzalloc(sizeof(*attrs), gfp_mask);
3337         if (!attrs)
3338                 goto fail;
3339         if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3340                 goto fail;
3341
3342         cpumask_copy(attrs->cpumask, cpu_possible_mask);
3343         return attrs;
3344 fail:
3345         free_workqueue_attrs(attrs);
3346         return NULL;
3347 }
3348
3349 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3350                                  const struct workqueue_attrs *from)
3351 {
3352         to->nice = from->nice;
3353         cpumask_copy(to->cpumask, from->cpumask);
3354         /*
3355          * Unlike hash and equality test, this function doesn't ignore
3356          * ->no_numa as it is used for both pool and wq attrs.  Instead,
3357          * get_unbound_pool() explicitly clears ->no_numa after copying.
3358          */
3359         to->no_numa = from->no_numa;
3360 }
3361
3362 /* hash value of the content of @attr */
3363 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3364 {
3365         u32 hash = 0;
3366
3367         hash = jhash_1word(attrs->nice, hash);
3368         hash = jhash(cpumask_bits(attrs->cpumask),
3369                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3370         return hash;
3371 }
3372
3373 /* content equality test */
3374 static bool wqattrs_equal(const struct workqueue_attrs *a,
3375                           const struct workqueue_attrs *b)
3376 {
3377         if (a->nice != b->nice)
3378                 return false;
3379         if (!cpumask_equal(a->cpumask, b->cpumask))
3380                 return false;
3381         return true;
3382 }
3383
3384 /**
3385  * init_worker_pool - initialize a newly zalloc'd worker_pool
3386  * @pool: worker_pool to initialize
3387  *
3388  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3389  *
3390  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3391  * inside @pool proper are initialized and put_unbound_pool() can be called
3392  * on @pool safely to release it.
3393  */
3394 static int init_worker_pool(struct worker_pool *pool)
3395 {
3396         spin_lock_init(&pool->lock);
3397         pool->id = -1;
3398         pool->cpu = -1;
3399         pool->node = NUMA_NO_NODE;
3400         pool->flags |= POOL_DISASSOCIATED;
3401         INIT_LIST_HEAD(&pool->worklist);
3402         INIT_LIST_HEAD(&pool->idle_list);
3403         hash_init(pool->busy_hash);
3404
3405         init_timer_deferrable(&pool->idle_timer);
3406         pool->idle_timer.function = idle_worker_timeout;
3407         pool->idle_timer.data = (unsigned long)pool;
3408
3409         setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3410                     (unsigned long)pool);
3411
3412         mutex_init(&pool->manager_arb);
3413         mutex_init(&pool->attach_mutex);
3414         INIT_LIST_HEAD(&pool->workers);
3415
3416         ida_init(&pool->worker_ida);
3417         INIT_HLIST_NODE(&pool->hash_node);
3418         pool->refcnt = 1;
3419
3420         /* shouldn't fail above this point */
3421         pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3422         if (!pool->attrs)
3423                 return -ENOMEM;
3424         return 0;
3425 }
3426
3427 static void rcu_free_pool(struct rcu_head *rcu)
3428 {
3429         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3430
3431         ida_destroy(&pool->worker_ida);
3432         free_workqueue_attrs(pool->attrs);
3433         kfree(pool);
3434 }
3435
3436 /**
3437  * put_unbound_pool - put a worker_pool
3438  * @pool: worker_pool to put
3439  *
3440  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3441  * safe manner.  get_unbound_pool() calls this function on its failure path
3442  * and this function should be able to release pools which went through,
3443  * successfully or not, init_worker_pool().
3444  *
3445  * Should be called with wq_pool_mutex held.
3446  */
3447 static void put_unbound_pool(struct worker_pool *pool)
3448 {
3449         DECLARE_COMPLETION_ONSTACK(detach_completion);
3450         struct worker *worker;
3451
3452         lockdep_assert_held(&wq_pool_mutex);
3453
3454         if (--pool->refcnt)
3455                 return;
3456
3457         /* sanity checks */
3458         if (WARN_ON(!(pool->cpu < 0)) ||
3459             WARN_ON(!list_empty(&pool->worklist)))
3460                 return;
3461
3462         /* release id and unhash */
3463         if (pool->id >= 0)
3464                 idr_remove(&worker_pool_idr, pool->id);
3465         hash_del(&pool->hash_node);
3466
3467         /*
3468          * Become the manager and destroy all workers.  Grabbing
3469          * manager_arb prevents @pool's workers from blocking on
3470          * attach_mutex.
3471          */
3472         mutex_lock(&pool->manager_arb);
3473
3474         spin_lock_irq(&pool->lock);
3475         while ((worker = first_idle_worker(pool)))
3476                 destroy_worker(worker);
3477         WARN_ON(pool->nr_workers || pool->nr_idle);
3478         spin_unlock_irq(&pool->lock);
3479
3480         mutex_lock(&pool->attach_mutex);
3481         if (!list_empty(&pool->workers))
3482                 pool->detach_completion = &detach_completion;
3483         mutex_unlock(&pool->attach_mutex);
3484
3485         if (pool->detach_completion)
3486                 wait_for_completion(pool->detach_completion);
3487
3488         mutex_unlock(&pool->manager_arb);
3489
3490         /* shut down the timers */
3491         del_timer_sync(&pool->idle_timer);
3492         del_timer_sync(&pool->mayday_timer);
3493
3494         /* sched-RCU protected to allow dereferences from get_work_pool() */
3495         call_rcu_sched(&pool->rcu, rcu_free_pool);
3496 }
3497
3498 /**
3499  * get_unbound_pool - get a worker_pool with the specified attributes
3500  * @attrs: the attributes of the worker_pool to get
3501  *
3502  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3503  * reference count and return it.  If there already is a matching
3504  * worker_pool, it will be used; otherwise, this function attempts to
3505  * create a new one.
3506  *
3507  * Should be called with wq_pool_mutex held.
3508  *
3509  * Return: On success, a worker_pool with the same attributes as @attrs.
3510  * On failure, %NULL.
3511  */
3512 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3513 {
3514         u32 hash = wqattrs_hash(attrs);
3515         struct worker_pool *pool;
3516         int node;
3517
3518         lockdep_assert_held(&wq_pool_mutex);
3519
3520         /* do we already have a matching pool? */
3521         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3522                 if (wqattrs_equal(pool->attrs, attrs)) {
3523                         pool->refcnt++;
3524                         return pool;
3525                 }
3526         }
3527
3528         /* nope, create a new one */
3529         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3530         if (!pool || init_worker_pool(pool) < 0)
3531                 goto fail;
3532
3533         lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3534         copy_workqueue_attrs(pool->attrs, attrs);
3535
3536         /*
3537          * no_numa isn't a worker_pool attribute, always clear it.  See
3538          * 'struct workqueue_attrs' comments for detail.
3539          */
3540         pool->attrs->no_numa = false;
3541
3542         /* if cpumask is contained inside a NUMA node, we belong to that node */
3543         if (wq_numa_enabled) {
3544                 for_each_node(node) {
3545                         if (cpumask_subset(pool->attrs->cpumask,
3546                                            wq_numa_possible_cpumask[node])) {
3547                                 pool->node = node;
3548                                 break;
3549                         }
3550                 }
3551         }
3552
3553         if (worker_pool_assign_id(pool) < 0)
3554                 goto fail;
3555
3556         /* create and start the initial worker */
3557         if (!create_worker(pool))
3558                 goto fail;
3559
3560         /* install */
3561         hash_add(unbound_pool_hash, &pool->hash_node, hash);
3562
3563         return pool;
3564 fail:
3565         if (pool)
3566                 put_unbound_pool(pool);
3567         return NULL;
3568 }
3569
3570 static void rcu_free_pwq(struct rcu_head *rcu)
3571 {
3572         kmem_cache_free(pwq_cache,
3573                         container_of(rcu, struct pool_workqueue, rcu));
3574 }
3575
3576 /*
3577  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3578  * and needs to be destroyed.
3579  */
3580 static void pwq_unbound_release_workfn(struct work_struct *work)
3581 {
3582         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3583                                                   unbound_release_work);
3584         struct workqueue_struct *wq = pwq->wq;
3585         struct worker_pool *pool = pwq->pool;
3586         bool is_last;
3587
3588         if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3589                 return;
3590
3591         mutex_lock(&wq->mutex);
3592         list_del_rcu(&pwq->pwqs_node);
3593         is_last = list_empty(&wq->pwqs);
3594         mutex_unlock(&wq->mutex);
3595
3596         mutex_lock(&wq_pool_mutex);
3597         put_unbound_pool(pool);
3598         mutex_unlock(&wq_pool_mutex);
3599
3600         call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3601
3602         /*
3603          * If we're the last pwq going away, @wq is already dead and no one
3604          * is gonna access it anymore.  Free it.
3605          */
3606         if (is_last) {
3607                 free_workqueue_attrs(wq->unbound_attrs);
3608                 kfree(wq);
3609         }
3610 }
3611
3612 /**
3613  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3614  * @pwq: target pool_workqueue
3615  *
3616  * If @pwq isn't freezing, set @pwq->max_active to the associated
3617  * workqueue's saved_max_active and activate delayed work items
3618  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3619  */
3620 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3621 {
3622         struct workqueue_struct *wq = pwq->wq;
3623         bool freezable = wq->flags & WQ_FREEZABLE;
3624
3625         /* for @wq->saved_max_active */
3626         lockdep_assert_held(&wq->mutex);
3627
3628         /* fast exit for non-freezable wqs */
3629         if (!freezable && pwq->max_active == wq->saved_max_active)
3630                 return;
3631
3632         spin_lock_irq(&pwq->pool->lock);
3633
3634         /*
3635          * During [un]freezing, the caller is responsible for ensuring that
3636          * this function is called at least once after @workqueue_freezing
3637          * is updated and visible.
3638          */
3639         if (!freezable || !workqueue_freezing) {
3640                 pwq->max_active = wq->saved_max_active;
3641
3642                 while (!list_empty(&pwq->delayed_works) &&
3643                        pwq->nr_active < pwq->max_active)
3644                         pwq_activate_first_delayed(pwq);
3645
3646                 /*
3647                  * Need to kick a worker after thawed or an unbound wq's
3648                  * max_active is bumped.  It's a slow path.  Do it always.
3649                  */
3650                 wake_up_worker(pwq->pool);
3651         } else {
3652                 pwq->max_active = 0;
3653         }
3654
3655         spin_unlock_irq(&pwq->pool->lock);
3656 }
3657
3658 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3659 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3660                      struct worker_pool *pool)
3661 {
3662         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3663
3664         memset(pwq, 0, sizeof(*pwq));
3665
3666         pwq->pool = pool;
3667         pwq->wq = wq;
3668         pwq->flush_color = -1;
3669         pwq->refcnt = 1;
3670         INIT_LIST_HEAD(&pwq->delayed_works);
3671         INIT_LIST_HEAD(&pwq->pwqs_node);
3672         INIT_LIST_HEAD(&pwq->mayday_node);
3673         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3674 }
3675
3676 /* sync @pwq with the current state of its associated wq and link it */
3677 static void link_pwq(struct pool_workqueue *pwq)
3678 {
3679         struct workqueue_struct *wq = pwq->wq;
3680
3681         lockdep_assert_held(&wq->mutex);
3682
3683         /* may be called multiple times, ignore if already linked */
3684         if (!list_empty(&pwq->pwqs_node))
3685                 return;
3686
3687         /* set the matching work_color */
3688         pwq->work_color = wq->work_color;
3689
3690         /* sync max_active to the current setting */
3691         pwq_adjust_max_active(pwq);
3692
3693         /* link in @pwq */
3694         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3695 }
3696
3697 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3698 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3699                                         const struct workqueue_attrs *attrs)
3700 {
3701         struct worker_pool *pool;
3702         struct pool_workqueue *pwq;
3703
3704         lockdep_assert_held(&wq_pool_mutex);
3705
3706         pool = get_unbound_pool(attrs);
3707         if (!pool)
3708                 return NULL;
3709
3710         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3711         if (!pwq) {
3712                 put_unbound_pool(pool);
3713                 return NULL;
3714         }
3715
3716         init_pwq(pwq, wq, pool);
3717         return pwq;
3718 }
3719
3720 /* undo alloc_unbound_pwq(), used only in the error path */
3721 static void free_unbound_pwq(struct pool_workqueue *pwq)
3722 {
3723         lockdep_assert_held(&wq_pool_mutex);
3724
3725         if (pwq) {
3726                 put_unbound_pool(pwq->pool);
3727                 kmem_cache_free(pwq_cache, pwq);
3728         }
3729 }
3730
3731 /**
3732  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3733  * @attrs: the wq_attrs of interest
3734  * @node: the target NUMA node
3735  * @cpu_going_down: if >= 0, the CPU to consider as offline
3736  * @cpumask: outarg, the resulting cpumask
3737  *
3738  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3739  * @cpu_going_down is >= 0, that cpu is considered offline during
3740  * calculation.  The result is stored in @cpumask.
3741  *
3742  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3743  * enabled and @node has online CPUs requested by @attrs, the returned
3744  * cpumask is the intersection of the possible CPUs of @node and
3745  * @attrs->cpumask.
3746  *
3747  * The caller is responsible for ensuring that the cpumask of @node stays
3748  * stable.
3749  *
3750  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3751  * %false if equal.
3752  */
3753 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3754                                  int cpu_going_down, cpumask_t *cpumask)
3755 {
3756         if (!wq_numa_enabled || attrs->no_numa)
3757                 goto use_dfl;
3758
3759         /* does @node have any online CPUs @attrs wants? */
3760         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3761         if (cpu_going_down >= 0)
3762                 cpumask_clear_cpu(cpu_going_down, cpumask);
3763
3764         if (cpumask_empty(cpumask))
3765                 goto use_dfl;
3766
3767         /* yeap, return possible CPUs in @node that @attrs wants */
3768         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3769         return !cpumask_equal(cpumask, attrs->cpumask);
3770
3771 use_dfl:
3772         cpumask_copy(cpumask, attrs->cpumask);
3773         return false;
3774 }
3775
3776 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3777 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3778                                                    int node,
3779                                                    struct pool_workqueue *pwq)
3780 {
3781         struct pool_workqueue *old_pwq;
3782
3783         lockdep_assert_held(&wq->mutex);
3784
3785         /* link_pwq() can handle duplicate calls */
3786         link_pwq(pwq);
3787
3788         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3789         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3790         return old_pwq;
3791 }
3792
3793 /**
3794  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3795  * @wq: the target workqueue
3796  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3797  *
3798  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3799  * machines, this function maps a separate pwq to each NUMA node with
3800  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3801  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3802  * items finish.  Note that a work item which repeatedly requeues itself
3803  * back-to-back will stay on its current pwq.
3804  *
3805  * Performs GFP_KERNEL allocations.
3806  *
3807  * Return: 0 on success and -errno on failure.
3808  */
3809 int apply_workqueue_attrs(struct workqueue_struct *wq,
3810                           const struct workqueue_attrs *attrs)
3811 {
3812         struct workqueue_attrs *new_attrs, *tmp_attrs;
3813         struct pool_workqueue **pwq_tbl, *dfl_pwq;
3814         int node, ret;
3815
3816         /* only unbound workqueues can change attributes */
3817         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3818                 return -EINVAL;
3819
3820         /* creating multiple pwqs breaks ordering guarantee */
3821         if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3822                 return -EINVAL;
3823
3824         pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3825         new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3826         tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3827         if (!pwq_tbl || !new_attrs || !tmp_attrs)
3828                 goto enomem;
3829
3830         /* make a copy of @attrs and sanitize it */
3831         copy_workqueue_attrs(new_attrs, attrs);
3832         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3833
3834         /*
3835          * We may create multiple pwqs with differing cpumasks.  Make a
3836          * copy of @new_attrs which will be modified and used to obtain
3837          * pools.
3838          */
3839         copy_workqueue_attrs(tmp_attrs, new_attrs);
3840
3841         /*
3842          * CPUs should stay stable across pwq creations and installations.
3843          * Pin CPUs, determine the target cpumask for each node and create
3844          * pwqs accordingly.
3845          */
3846         get_online_cpus();
3847
3848         mutex_lock(&wq_pool_mutex);
3849
3850         /*
3851          * If something goes wrong during CPU up/down, we'll fall back to
3852          * the default pwq covering whole @attrs->cpumask.  Always create
3853          * it even if we don't use it immediately.
3854          */
3855         dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3856         if (!dfl_pwq)
3857                 goto enomem_pwq;
3858
3859         for_each_node(node) {
3860                 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3861                         pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3862                         if (!pwq_tbl[node])
3863                                 goto enomem_pwq;
3864                 } else {
3865                         dfl_pwq->refcnt++;
3866                         pwq_tbl[node] = dfl_pwq;
3867                 }
3868         }
3869
3870         mutex_unlock(&wq_pool_mutex);
3871
3872         /* all pwqs have been created successfully, let's install'em */
3873         mutex_lock(&wq->mutex);
3874
3875         copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3876
3877         /* save the previous pwq and install the new one */
3878         for_each_node(node)
3879                 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3880
3881         /* @dfl_pwq might not have been used, ensure it's linked */
3882         link_pwq(dfl_pwq);
3883         swap(wq->dfl_pwq, dfl_pwq);
3884
3885         mutex_unlock(&wq->mutex);
3886
3887         /* put the old pwqs */
3888         for_each_node(node)
3889                 put_pwq_unlocked(pwq_tbl[node]);
3890         put_pwq_unlocked(dfl_pwq);
3891
3892         put_online_cpus();
3893         ret = 0;
3894         /* fall through */
3895 out_free:
3896         free_workqueue_attrs(tmp_attrs);
3897         free_workqueue_attrs(new_attrs);
3898         kfree(pwq_tbl);
3899         return ret;
3900
3901 enomem_pwq:
3902         free_unbound_pwq(dfl_pwq);
3903         for_each_node(node)
3904                 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3905                         free_unbound_pwq(pwq_tbl[node]);
3906         mutex_unlock(&wq_pool_mutex);
3907         put_online_cpus();
3908 enomem:
3909         ret = -ENOMEM;
3910         goto out_free;
3911 }
3912
3913 /**
3914  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3915  * @wq: the target workqueue
3916  * @cpu: the CPU coming up or going down
3917  * @online: whether @cpu is coming up or going down
3918  *
3919  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3920  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3921  * @wq accordingly.
3922  *
3923  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3924  * falls back to @wq->dfl_pwq which may not be optimal but is always
3925  * correct.
3926  *
3927  * Note that when the last allowed CPU of a NUMA node goes offline for a
3928  * workqueue with a cpumask spanning multiple nodes, the workers which were
3929  * already executing the work items for the workqueue will lose their CPU
3930  * affinity and may execute on any CPU.  This is similar to how per-cpu
3931  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3932  * affinity, it's the user's responsibility to flush the work item from
3933  * CPU_DOWN_PREPARE.
3934  */
3935 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3936                                    bool online)
3937 {
3938         int node = cpu_to_node(cpu);
3939         int cpu_off = online ? -1 : cpu;
3940         struct pool_workqueue *old_pwq = NULL, *pwq;
3941         struct workqueue_attrs *target_attrs;
3942         cpumask_t *cpumask;
3943
3944         lockdep_assert_held(&wq_pool_mutex);
3945
3946         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3947                 return;
3948
3949         /*
3950          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3951          * Let's use a preallocated one.  The following buf is protected by
3952          * CPU hotplug exclusion.
3953          */
3954         target_attrs = wq_update_unbound_numa_attrs_buf;
3955         cpumask = target_attrs->cpumask;
3956
3957         mutex_lock(&wq->mutex);
3958         if (wq->unbound_attrs->no_numa)
3959                 goto out_unlock;
3960
3961         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3962         pwq = unbound_pwq_by_node(wq, node);
3963
3964         /*
3965          * Let's determine what needs to be done.  If the target cpumask is
3966          * different from wq's, we need to compare it to @pwq's and create
3967          * a new one if they don't match.  If the target cpumask equals
3968          * wq's, the default pwq should be used.
3969          */
3970         if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3971                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3972                         goto out_unlock;
3973         } else {
3974                 goto use_dfl_pwq;
3975         }
3976
3977         mutex_unlock(&wq->mutex);
3978
3979         /* create a new pwq */
3980         pwq = alloc_unbound_pwq(wq, target_attrs);
3981         if (!pwq) {
3982                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3983                         wq->name);
3984                 mutex_lock(&wq->mutex);
3985                 goto use_dfl_pwq;
3986         }
3987
3988         /*
3989          * Install the new pwq.  As this function is called only from CPU
3990          * hotplug callbacks and applying a new attrs is wrapped with
3991          * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3992          * inbetween.
3993          */
3994         mutex_lock(&wq->mutex);
3995         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3996         goto out_unlock;
3997
3998 use_dfl_pwq:
3999         spin_lock_irq(&wq->dfl_pwq->pool->lock);
4000         get_pwq(wq->dfl_pwq);
4001         spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4002         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4003 out_unlock:
4004         mutex_unlock(&wq->mutex);
4005         put_pwq_unlocked(old_pwq);
4006 }
4007
4008 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4009 {
4010         bool highpri = wq->flags & WQ_HIGHPRI;
4011         int cpu, ret;
4012
4013         if (!(wq->flags & WQ_UNBOUND)) {
4014                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4015                 if (!wq->cpu_pwqs)
4016                         return -ENOMEM;
4017
4018                 for_each_possible_cpu(cpu) {
4019                         struct pool_workqueue *pwq =
4020                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
4021                         struct worker_pool *cpu_pools =
4022                                 per_cpu(cpu_worker_pools, cpu);
4023
4024                         init_pwq(pwq, wq, &cpu_pools[highpri]);
4025
4026                         mutex_lock(&wq->mutex);
4027                         link_pwq(pwq);
4028                         mutex_unlock(&wq->mutex);
4029                 }
4030                 return 0;
4031         } else if (wq->flags & __WQ_ORDERED) {
4032                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4033                 /* there should only be single pwq for ordering guarantee */
4034                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4035                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4036                      "ordering guarantee broken for workqueue %s\n", wq->name);
4037                 return ret;
4038         } else {
4039                 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4040         }
4041 }
4042
4043 static int wq_clamp_max_active(int max_active, unsigned int flags,
4044                                const char *name)
4045 {
4046         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4047
4048         if (max_active < 1 || max_active > lim)
4049                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4050                         max_active, name, 1, lim);
4051
4052         return clamp_val(max_active, 1, lim);
4053 }
4054
4055 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4056                                                unsigned int flags,
4057                                                int max_active,
4058                                                struct lock_class_key *key,
4059                                                const char *lock_name, ...)
4060 {
4061         size_t tbl_size = 0;
4062         va_list args;
4063         struct workqueue_struct *wq;
4064         struct pool_workqueue *pwq;
4065
4066         /* see the comment above the definition of WQ_POWER_EFFICIENT */
4067         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4068                 flags |= WQ_UNBOUND;
4069
4070         /* allocate wq and format name */
4071         if (flags & WQ_UNBOUND)
4072                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4073
4074         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4075         if (!wq)
4076                 return NULL;
4077
4078         if (flags & WQ_UNBOUND) {
4079                 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4080                 if (!wq->unbound_attrs)
4081                         goto err_free_wq;
4082         }
4083
4084         va_start(args, lock_name);
4085         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4086         va_end(args);
4087
4088         max_active = max_active ?: WQ_DFL_ACTIVE;
4089         max_active = wq_clamp_max_active(max_active, flags, wq->name);
4090
4091         /* init wq */
4092         wq->flags = flags;
4093         wq->saved_max_active = max_active;
4094         mutex_init(&wq->mutex);
4095         atomic_set(&wq->nr_pwqs_to_flush, 0);
4096         INIT_LIST_HEAD(&wq->pwqs);
4097         INIT_LIST_HEAD(&wq->flusher_queue);
4098         INIT_LIST_HEAD(&wq->flusher_overflow);
4099         INIT_LIST_HEAD(&wq->maydays);
4100
4101         lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4102         INIT_LIST_HEAD(&wq->list);
4103
4104         if (alloc_and_link_pwqs(wq) < 0)
4105                 goto err_free_wq;
4106
4107         /*
4108          * Workqueues which may be used during memory reclaim should
4109          * have a rescuer to guarantee forward progress.
4110          */
4111         if (flags & WQ_MEM_RECLAIM) {
4112                 struct worker *rescuer;
4113
4114                 rescuer = alloc_worker(NUMA_NO_NODE);
4115                 if (!rescuer)
4116                         goto err_destroy;
4117
4118                 rescuer->rescue_wq = wq;
4119                 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4120                                                wq->name);
4121                 if (IS_ERR(rescuer->task)) {
4122                         kfree(rescuer);
4123                         goto err_destroy;
4124                 }
4125
4126                 wq->rescuer = rescuer;
4127                 rescuer->task->flags |= PF_NO_SETAFFINITY;
4128                 wake_up_process(rescuer->task);
4129         }
4130
4131         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4132                 goto err_destroy;
4133
4134         /*
4135          * wq_pool_mutex protects global freeze state and workqueues list.
4136          * Grab it, adjust max_active and add the new @wq to workqueues
4137          * list.
4138          */
4139         mutex_lock(&wq_pool_mutex);
4140
4141         mutex_lock(&wq->mutex);
4142         for_each_pwq(pwq, wq)
4143                 pwq_adjust_max_active(pwq);
4144         mutex_unlock(&wq->mutex);
4145
4146         list_add(&wq->list, &workqueues);
4147
4148         mutex_unlock(&wq_pool_mutex);
4149
4150         return wq;
4151
4152 err_free_wq:
4153         free_workqueue_attrs(wq->unbound_attrs);
4154         kfree(wq);
4155         return NULL;
4156 err_destroy:
4157         destroy_workqueue(wq);
4158         return NULL;
4159 }
4160 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4161
4162 /**
4163  * destroy_workqueue - safely terminate a workqueue
4164  * @wq: target workqueue
4165  *
4166  * Safely destroy a workqueue. All work currently pending will be done first.
4167  */
4168 void destroy_workqueue(struct workqueue_struct *wq)
4169 {
4170         struct pool_workqueue *pwq;
4171         int node;
4172
4173         /* drain it before proceeding with destruction */
4174         drain_workqueue(wq);
4175
4176         /* sanity checks */
4177         mutex_lock(&wq->mutex);
4178         for_each_pwq(pwq, wq) {
4179                 int i;
4180
4181                 for (i = 0; i < WORK_NR_COLORS; i++) {
4182                         if (WARN_ON(pwq->nr_in_flight[i])) {
4183                                 mutex_unlock(&wq->mutex);
4184                                 return;
4185                         }
4186                 }
4187
4188                 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4189                     WARN_ON(pwq->nr_active) ||
4190                     WARN_ON(!list_empty(&pwq->delayed_works))) {
4191                         mutex_unlock(&wq->mutex);
4192                         return;
4193                 }
4194         }
4195         mutex_unlock(&wq->mutex);
4196
4197         /*
4198          * wq list is used to freeze wq, remove from list after
4199          * flushing is complete in case freeze races us.
4200          */
4201         mutex_lock(&wq_pool_mutex);
4202         list_del_init(&wq->list);
4203         mutex_unlock(&wq_pool_mutex);
4204
4205         workqueue_sysfs_unregister(wq);
4206
4207         if (wq->rescuer) {
4208                 kthread_stop(wq->rescuer->task);
4209                 kfree(wq->rescuer);
4210                 wq->rescuer = NULL;
4211         }
4212
4213         if (!(wq->flags & WQ_UNBOUND)) {
4214                 /*
4215                  * The base ref is never dropped on per-cpu pwqs.  Directly
4216                  * free the pwqs and wq.
4217                  */
4218                 free_percpu(wq->cpu_pwqs);
4219                 kfree(wq);
4220         } else {
4221                 /*
4222                  * We're the sole accessor of @wq at this point.  Directly
4223                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4224                  * @wq will be freed when the last pwq is released.
4225                  */
4226                 for_each_node(node) {
4227                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4228                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4229                         put_pwq_unlocked(pwq);
4230                 }
4231
4232                 /*
4233                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4234                  * put.  Don't access it afterwards.
4235                  */
4236                 pwq = wq->dfl_pwq;
4237                 wq->dfl_pwq = NULL;
4238                 put_pwq_unlocked(pwq);
4239         }
4240 }
4241 EXPORT_SYMBOL_GPL(destroy_workqueue);
4242
4243 /**
4244  * workqueue_set_max_active - adjust max_active of a workqueue
4245  * @wq: target workqueue
4246  * @max_active: new max_active value.
4247  *
4248  * Set max_active of @wq to @max_active.
4249  *
4250  * CONTEXT:
4251  * Don't call from IRQ context.
4252  */
4253 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4254 {
4255         struct pool_workqueue *pwq;
4256
4257         /* disallow meddling with max_active for ordered workqueues */
4258         if (WARN_ON(wq->flags & __WQ_ORDERED))
4259                 return;
4260
4261         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4262
4263         mutex_lock(&wq->mutex);
4264
4265         wq->saved_max_active = max_active;
4266
4267         for_each_pwq(pwq, wq)
4268                 pwq_adjust_max_active(pwq);
4269
4270         mutex_unlock(&wq->mutex);
4271 }
4272 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4273
4274 /**
4275  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4276  *
4277  * Determine whether %current is a workqueue rescuer.  Can be used from
4278  * work functions to determine whether it's being run off the rescuer task.
4279  *
4280  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4281  */
4282 bool current_is_workqueue_rescuer(void)
4283 {
4284         struct worker *worker = current_wq_worker();
4285
4286         return worker && worker->rescue_wq;
4287 }
4288
4289 /**
4290  * workqueue_congested - test whether a workqueue is congested
4291  * @cpu: CPU in question
4292  * @wq: target workqueue
4293  *
4294  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4295  * no synchronization around this function and the test result is
4296  * unreliable and only useful as advisory hints or for debugging.
4297  *
4298  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4299  * Note that both per-cpu and unbound workqueues may be associated with
4300  * multiple pool_workqueues which have separate congested states.  A
4301  * workqueue being congested on one CPU doesn't mean the workqueue is also
4302  * contested on other CPUs / NUMA nodes.
4303  *
4304  * Return:
4305  * %true if congested, %false otherwise.
4306  */
4307 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4308 {
4309         struct pool_workqueue *pwq;
4310         bool ret;
4311
4312         rcu_read_lock_sched();
4313
4314         if (cpu == WORK_CPU_UNBOUND)
4315                 cpu = smp_processor_id();
4316
4317         if (!(wq->flags & WQ_UNBOUND))
4318                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4319         else
4320                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4321
4322         ret = !list_empty(&pwq->delayed_works);
4323         rcu_read_unlock_sched();
4324
4325         return ret;
4326 }
4327 EXPORT_SYMBOL_GPL(workqueue_congested);
4328
4329 /**
4330  * work_busy - test whether a work is currently pending or running
4331  * @work: the work to be tested
4332  *
4333  * Test whether @work is currently pending or running.  There is no
4334  * synchronization around this function and the test result is
4335  * unreliable and only useful as advisory hints or for debugging.
4336  *
4337  * Return:
4338  * OR'd bitmask of WORK_BUSY_* bits.
4339  */
4340 unsigned int work_busy(struct work_struct *work)
4341 {
4342         struct worker_pool *pool;
4343         unsigned long flags;
4344         unsigned int ret = 0;
4345
4346         if (work_pending(work))
4347                 ret |= WORK_BUSY_PENDING;
4348
4349         local_irq_save(flags);
4350         pool = get_work_pool(work);
4351         if (pool) {
4352                 spin_lock(&pool->lock);
4353                 if (find_worker_executing_work(pool, work))
4354                         ret |= WORK_BUSY_RUNNING;
4355                 spin_unlock(&pool->lock);
4356         }
4357         local_irq_restore(flags);
4358
4359         return ret;
4360 }
4361 EXPORT_SYMBOL_GPL(work_busy);
4362
4363 /**
4364  * set_worker_desc - set description for the current work item
4365  * @fmt: printf-style format string
4366  * @...: arguments for the format string
4367  *
4368  * This function can be called by a running work function to describe what
4369  * the work item is about.  If the worker task gets dumped, this
4370  * information will be printed out together to help debugging.  The
4371  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4372  */
4373 void set_worker_desc(const char *fmt, ...)
4374 {
4375         struct worker *worker = current_wq_worker();
4376         va_list args;
4377
4378         if (worker) {
4379                 va_start(args, fmt);
4380                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4381                 va_end(args);
4382                 worker->desc_valid = true;
4383         }
4384 }
4385
4386 /**
4387  * print_worker_info - print out worker information and description
4388  * @log_lvl: the log level to use when printing
4389  * @task: target task
4390  *
4391  * If @task is a worker and currently executing a work item, print out the
4392  * name of the workqueue being serviced and worker description set with
4393  * set_worker_desc() by the currently executing work item.
4394  *
4395  * This function can be safely called on any task as long as the
4396  * task_struct itself is accessible.  While safe, this function isn't
4397  * synchronized and may print out mixups or garbages of limited length.
4398  */
4399 void print_worker_info(const char *log_lvl, struct task_struct *task)
4400 {
4401         work_func_t *fn = NULL;
4402         char name[WQ_NAME_LEN] = { };
4403         char desc[WORKER_DESC_LEN] = { };
4404         struct pool_workqueue *pwq = NULL;
4405         struct workqueue_struct *wq = NULL;
4406         bool desc_valid = false;
4407         struct worker *worker;
4408
4409         if (!(task->flags & PF_WQ_WORKER))
4410                 return;
4411
4412         /*
4413          * This function is called without any synchronization and @task
4414          * could be in any state.  Be careful with dereferences.
4415          */
4416         worker = probe_kthread_data(task);
4417
4418         /*
4419          * Carefully copy the associated workqueue's workfn and name.  Keep
4420          * the original last '\0' in case the original contains garbage.
4421          */
4422         probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4423         probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4424         probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4425         probe_kernel_read(name, wq->name, sizeof(name) - 1);
4426
4427         /* copy worker description */
4428         probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4429         if (desc_valid)
4430                 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4431
4432         if (fn || name[0] || desc[0]) {
4433                 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4434                 if (desc[0])
4435                         pr_cont(" (%s)", desc);
4436                 pr_cont("\n");
4437         }
4438 }
4439
4440 /*
4441  * CPU hotplug.
4442  *
4443  * There are two challenges in supporting CPU hotplug.  Firstly, there
4444  * are a lot of assumptions on strong associations among work, pwq and
4445  * pool which make migrating pending and scheduled works very
4446  * difficult to implement without impacting hot paths.  Secondly,
4447  * worker pools serve mix of short, long and very long running works making
4448  * blocked draining impractical.
4449  *
4450  * This is solved by allowing the pools to be disassociated from the CPU
4451  * running as an unbound one and allowing it to be reattached later if the
4452  * cpu comes back online.
4453  */
4454
4455 static void wq_unbind_fn(struct work_struct *work)
4456 {
4457         int cpu = smp_processor_id();
4458         struct worker_pool *pool;
4459         struct worker *worker;
4460
4461         for_each_cpu_worker_pool(pool, cpu) {
4462                 mutex_lock(&pool->attach_mutex);
4463                 spin_lock_irq(&pool->lock);
4464
4465                 /*
4466                  * We've blocked all attach/detach operations. Make all workers
4467                  * unbound and set DISASSOCIATED.  Before this, all workers
4468                  * except for the ones which are still executing works from
4469                  * before the last CPU down must be on the cpu.  After
4470                  * this, they may become diasporas.
4471                  */
4472                 for_each_pool_worker(worker, pool)
4473                         worker->flags |= WORKER_UNBOUND;
4474
4475                 pool->flags |= POOL_DISASSOCIATED;
4476
4477                 spin_unlock_irq(&pool->lock);
4478                 mutex_unlock(&pool->attach_mutex);
4479
4480                 /*
4481                  * Call schedule() so that we cross rq->lock and thus can
4482                  * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4483                  * This is necessary as scheduler callbacks may be invoked
4484                  * from other cpus.
4485                  */
4486                 schedule();
4487
4488                 /*
4489                  * Sched callbacks are disabled now.  Zap nr_running.
4490                  * After this, nr_running stays zero and need_more_worker()
4491                  * and keep_working() are always true as long as the
4492                  * worklist is not empty.  This pool now behaves as an
4493                  * unbound (in terms of concurrency management) pool which
4494                  * are served by workers tied to the pool.
4495                  */
4496                 atomic_set(&pool->nr_running, 0);
4497
4498                 /*
4499                  * With concurrency management just turned off, a busy
4500                  * worker blocking could lead to lengthy stalls.  Kick off
4501                  * unbound chain execution of currently pending work items.
4502                  */
4503                 spin_lock_irq(&pool->lock);
4504                 wake_up_worker(pool);
4505                 spin_unlock_irq(&pool->lock);
4506         }
4507 }
4508
4509 /**
4510  * rebind_workers - rebind all workers of a pool to the associated CPU
4511  * @pool: pool of interest
4512  *
4513  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4514  */
4515 static void rebind_workers(struct worker_pool *pool)
4516 {
4517         struct worker *worker;
4518
4519         lockdep_assert_held(&pool->attach_mutex);
4520
4521         /*
4522          * Restore CPU affinity of all workers.  As all idle workers should
4523          * be on the run-queue of the associated CPU before any local
4524          * wake-ups for concurrency management happen, restore CPU affinty
4525          * of all workers first and then clear UNBOUND.  As we're called
4526          * from CPU_ONLINE, the following shouldn't fail.
4527          */
4528         for_each_pool_worker(worker, pool)
4529                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4530                                                   pool->attrs->cpumask) < 0);
4531
4532         spin_lock_irq(&pool->lock);
4533         pool->flags &= ~POOL_DISASSOCIATED;
4534
4535         for_each_pool_worker(worker, pool) {
4536                 unsigned int worker_flags = worker->flags;
4537
4538                 /*
4539                  * A bound idle worker should actually be on the runqueue
4540                  * of the associated CPU for local wake-ups targeting it to
4541                  * work.  Kick all idle workers so that they migrate to the
4542                  * associated CPU.  Doing this in the same loop as
4543                  * replacing UNBOUND with REBOUND is safe as no worker will
4544                  * be bound before @pool->lock is released.
4545                  */
4546                 if (worker_flags & WORKER_IDLE)
4547                         wake_up_process(worker->task);
4548
4549                 /*
4550                  * We want to clear UNBOUND but can't directly call
4551                  * worker_clr_flags() or adjust nr_running.  Atomically
4552                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4553                  * @worker will clear REBOUND using worker_clr_flags() when
4554                  * it initiates the next execution cycle thus restoring
4555                  * concurrency management.  Note that when or whether
4556                  * @worker clears REBOUND doesn't affect correctness.
4557                  *
4558                  * ACCESS_ONCE() is necessary because @worker->flags may be
4559                  * tested without holding any lock in
4560                  * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4561                  * fail incorrectly leading to premature concurrency
4562                  * management operations.
4563                  */
4564                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4565                 worker_flags |= WORKER_REBOUND;
4566                 worker_flags &= ~WORKER_UNBOUND;
4567                 ACCESS_ONCE(worker->flags) = worker_flags;
4568         }
4569
4570         spin_unlock_irq(&pool->lock);
4571 }
4572
4573 /**
4574  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4575  * @pool: unbound pool of interest
4576  * @cpu: the CPU which is coming up
4577  *
4578  * An unbound pool may end up with a cpumask which doesn't have any online
4579  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4580  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4581  * online CPU before, cpus_allowed of all its workers should be restored.
4582  */
4583 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4584 {
4585         static cpumask_t cpumask;
4586         struct worker *worker;
4587
4588         lockdep_assert_held(&pool->attach_mutex);
4589
4590         /* is @cpu allowed for @pool? */
4591         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4592                 return;
4593
4594         /* is @cpu the only online CPU? */
4595         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4596         if (cpumask_weight(&cpumask) != 1)
4597                 return;
4598
4599         /* as we're called from CPU_ONLINE, the following shouldn't fail */
4600         for_each_pool_worker(worker, pool)
4601                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4602                                                   pool->attrs->cpumask) < 0);
4603 }
4604
4605 /*
4606  * Workqueues should be brought up before normal priority CPU notifiers.
4607  * This will be registered high priority CPU notifier.
4608  */
4609 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4610                                                unsigned long action,
4611                                                void *hcpu)
4612 {
4613         int cpu = (unsigned long)hcpu;
4614         struct worker_pool *pool;
4615         struct workqueue_struct *wq;
4616         int pi;
4617
4618         switch (action & ~CPU_TASKS_FROZEN) {
4619         case CPU_UP_PREPARE:
4620                 for_each_cpu_worker_pool(pool, cpu) {
4621                         if (pool->nr_workers)
4622                                 continue;
4623                         if (!create_worker(pool))
4624                                 return NOTIFY_BAD;
4625                 }
4626                 break;
4627
4628         case CPU_DOWN_FAILED:
4629         case CPU_ONLINE:
4630                 mutex_lock(&wq_pool_mutex);
4631
4632                 for_each_pool(pool, pi) {
4633                         mutex_lock(&pool->attach_mutex);
4634
4635                         if (pool->cpu == cpu)
4636                                 rebind_workers(pool);
4637                         else if (pool->cpu < 0)
4638                                 restore_unbound_workers_cpumask(pool, cpu);
4639
4640                         mutex_unlock(&pool->attach_mutex);
4641                 }
4642
4643                 /* update NUMA affinity of unbound workqueues */
4644                 list_for_each_entry(wq, &workqueues, list)
4645                         wq_update_unbound_numa(wq, cpu, true);
4646
4647                 mutex_unlock(&wq_pool_mutex);
4648                 break;
4649         }
4650         return NOTIFY_OK;
4651 }
4652
4653 /*
4654  * Workqueues should be brought down after normal priority CPU notifiers.
4655  * This will be registered as low priority CPU notifier.
4656  */
4657 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4658                                                  unsigned long action,
4659                                                  void *hcpu)
4660 {
4661         int cpu = (unsigned long)hcpu;
4662         struct work_struct unbind_work;
4663         struct workqueue_struct *wq;
4664
4665         switch (action & ~CPU_TASKS_FROZEN) {
4666         case CPU_DOWN_PREPARE:
4667                 /* unbinding per-cpu workers should happen on the local CPU */
4668                 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4669                 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4670
4671                 /* update NUMA affinity of unbound workqueues */
4672                 mutex_lock(&wq_pool_mutex);
4673                 list_for_each_entry(wq, &workqueues, list)
4674                         wq_update_unbound_numa(wq, cpu, false);
4675                 mutex_unlock(&wq_pool_mutex);
4676
4677                 /* wait for per-cpu unbinding to finish */
4678                 flush_work(&unbind_work);
4679                 destroy_work_on_stack(&unbind_work);
4680                 break;
4681         }
4682         return NOTIFY_OK;
4683 }
4684
4685 #ifdef CONFIG_SMP
4686
4687 struct work_for_cpu {
4688         struct work_struct work;
4689         long (*fn)(void *);
4690         void *arg;
4691         long ret;
4692 };
4693
4694 static void work_for_cpu_fn(struct work_struct *work)
4695 {
4696         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4697
4698         wfc->ret = wfc->fn(wfc->arg);
4699 }
4700
4701 /**
4702  * work_on_cpu - run a function in user context on a particular cpu
4703  * @cpu: the cpu to run on
4704  * @fn: the function to run
4705  * @arg: the function arg
4706  *
4707  * It is up to the caller to ensure that the cpu doesn't go offline.
4708  * The caller must not hold any locks which would prevent @fn from completing.
4709  *
4710  * Return: The value @fn returns.
4711  */
4712 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4713 {
4714         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4715
4716         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4717         schedule_work_on(cpu, &wfc.work);
4718         flush_work(&wfc.work);
4719         destroy_work_on_stack(&wfc.work);
4720         return wfc.ret;
4721 }
4722 EXPORT_SYMBOL_GPL(work_on_cpu);
4723 #endif /* CONFIG_SMP */
4724
4725 #ifdef CONFIG_FREEZER
4726
4727 /**
4728  * freeze_workqueues_begin - begin freezing workqueues
4729  *
4730  * Start freezing workqueues.  After this function returns, all freezable
4731  * workqueues will queue new works to their delayed_works list instead of
4732  * pool->worklist.
4733  *
4734  * CONTEXT:
4735  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4736  */
4737 void freeze_workqueues_begin(void)
4738 {
4739         struct workqueue_struct *wq;
4740         struct pool_workqueue *pwq;
4741
4742         mutex_lock(&wq_pool_mutex);
4743
4744         WARN_ON_ONCE(workqueue_freezing);
4745         workqueue_freezing = true;
4746
4747         list_for_each_entry(wq, &workqueues, list) {
4748                 mutex_lock(&wq->mutex);
4749                 for_each_pwq(pwq, wq)
4750                         pwq_adjust_max_active(pwq);
4751                 mutex_unlock(&wq->mutex);
4752         }
4753
4754         mutex_unlock(&wq_pool_mutex);
4755 }
4756
4757 /**
4758  * freeze_workqueues_busy - are freezable workqueues still busy?
4759  *
4760  * Check whether freezing is complete.  This function must be called
4761  * between freeze_workqueues_begin() and thaw_workqueues().
4762  *
4763  * CONTEXT:
4764  * Grabs and releases wq_pool_mutex.
4765  *
4766  * Return:
4767  * %true if some freezable workqueues are still busy.  %false if freezing
4768  * is complete.
4769  */
4770 bool freeze_workqueues_busy(void)
4771 {
4772         bool busy = false;
4773         struct workqueue_struct *wq;
4774         struct pool_workqueue *pwq;
4775
4776         mutex_lock(&wq_pool_mutex);
4777
4778         WARN_ON_ONCE(!workqueue_freezing);
4779
4780         list_for_each_entry(wq, &workqueues, list) {
4781                 if (!(wq->flags & WQ_FREEZABLE))
4782                         continue;
4783                 /*
4784                  * nr_active is monotonically decreasing.  It's safe
4785                  * to peek without lock.
4786                  */
4787                 rcu_read_lock_sched();
4788                 for_each_pwq(pwq, wq) {
4789                         WARN_ON_ONCE(pwq->nr_active < 0);
4790                         if (pwq->nr_active) {
4791                                 busy = true;
4792                                 rcu_read_unlock_sched();
4793                                 goto out_unlock;
4794                         }
4795                 }
4796                 rcu_read_unlock_sched();
4797         }
4798 out_unlock:
4799         mutex_unlock(&wq_pool_mutex);
4800         return busy;
4801 }
4802
4803 /**
4804  * thaw_workqueues - thaw workqueues
4805  *
4806  * Thaw workqueues.  Normal queueing is restored and all collected
4807  * frozen works are transferred to their respective pool worklists.
4808  *
4809  * CONTEXT:
4810  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4811  */
4812 void thaw_workqueues(void)
4813 {
4814         struct workqueue_struct *wq;
4815         struct pool_workqueue *pwq;
4816
4817         mutex_lock(&wq_pool_mutex);
4818
4819         if (!workqueue_freezing)
4820                 goto out_unlock;
4821
4822         workqueue_freezing = false;
4823
4824         /* restore max_active and repopulate worklist */
4825         list_for_each_entry(wq, &workqueues, list) {
4826                 mutex_lock(&wq->mutex);
4827                 for_each_pwq(pwq, wq)
4828                         pwq_adjust_max_active(pwq);
4829                 mutex_unlock(&wq->mutex);
4830         }
4831
4832 out_unlock:
4833         mutex_unlock(&wq_pool_mutex);
4834 }
4835 #endif /* CONFIG_FREEZER */
4836
4837 static void __init wq_numa_init(void)
4838 {
4839         cpumask_var_t *tbl;
4840         int node, cpu;
4841
4842         if (num_possible_nodes() <= 1)
4843                 return;
4844
4845         if (wq_disable_numa) {
4846                 pr_info("workqueue: NUMA affinity support disabled\n");
4847                 return;
4848         }
4849
4850         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4851         BUG_ON(!wq_update_unbound_numa_attrs_buf);
4852
4853         /*
4854          * We want masks of possible CPUs of each node which isn't readily
4855          * available.  Build one from cpu_to_node() which should have been
4856          * fully initialized by now.
4857          */
4858         tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4859         BUG_ON(!tbl);
4860
4861         for_each_node(node)
4862                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4863                                 node_online(node) ? node : NUMA_NO_NODE));
4864
4865         for_each_possible_cpu(cpu) {
4866                 node = cpu_to_node(cpu);
4867                 if (WARN_ON(node == NUMA_NO_NODE)) {
4868                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4869                         /* happens iff arch is bonkers, let's just proceed */
4870                         return;
4871                 }
4872                 cpumask_set_cpu(cpu, tbl[node]);
4873         }
4874
4875         wq_numa_possible_cpumask = tbl;
4876         wq_numa_enabled = true;
4877 }
4878
4879 static int __init init_workqueues(void)
4880 {
4881         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4882         int i, cpu;
4883
4884         WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4885
4886         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4887
4888         cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4889         hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4890
4891         wq_numa_init();
4892
4893         /* initialize CPU pools */
4894         for_each_possible_cpu(cpu) {
4895                 struct worker_pool *pool;
4896
4897                 i = 0;
4898                 for_each_cpu_worker_pool(pool, cpu) {
4899                         BUG_ON(init_worker_pool(pool));
4900                         pool->cpu = cpu;
4901                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4902                         pool->attrs->nice = std_nice[i++];
4903                         pool->node = cpu_to_node(cpu);
4904
4905                         /* alloc pool ID */
4906                         mutex_lock(&wq_pool_mutex);
4907                         BUG_ON(worker_pool_assign_id(pool));
4908                         mutex_unlock(&wq_pool_mutex);
4909                 }
4910         }
4911
4912         /* create the initial worker */
4913         for_each_online_cpu(cpu) {
4914                 struct worker_pool *pool;
4915
4916                 for_each_cpu_worker_pool(pool, cpu) {
4917                         pool->flags &= ~POOL_DISASSOCIATED;
4918                         BUG_ON(!create_worker(pool));
4919                 }
4920         }
4921
4922         /* create default unbound and ordered wq attrs */
4923         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4924                 struct workqueue_attrs *attrs;
4925
4926                 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4927                 attrs->nice = std_nice[i];
4928                 unbound_std_wq_attrs[i] = attrs;
4929
4930                 /*
4931                  * An ordered wq should have only one pwq as ordering is
4932                  * guaranteed by max_active which is enforced by pwqs.
4933                  * Turn off NUMA so that dfl_pwq is used for all nodes.
4934                  */
4935                 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4936                 attrs->nice = std_nice[i];
4937                 attrs->no_numa = true;
4938                 ordered_wq_attrs[i] = attrs;
4939         }
4940
4941         system_wq = alloc_workqueue("events", 0, 0);
4942         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4943         system_long_wq = alloc_workqueue("events_long", 0, 0);
4944         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4945                                             WQ_UNBOUND_MAX_ACTIVE);
4946         system_freezable_wq = alloc_workqueue("events_freezable",
4947                                               WQ_FREEZABLE, 0);
4948         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4949                                               WQ_POWER_EFFICIENT, 0);
4950         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4951                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4952                                               0);
4953         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4954                !system_unbound_wq || !system_freezable_wq ||
4955                !system_power_efficient_wq ||
4956                !system_freezable_power_efficient_wq);
4957         return 0;
4958 }
4959 early_initcall(init_workqueues);