Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:         The target timekeeper to setup.
125  * @clock:              Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134         cycle_t interval;
135         u64 tmp, ntpinterval;
136         struct clocksource *old_clock;
137
138         old_clock = tk->tkr.clock;
139         tk->tkr.clock = clock;
140         tk->tkr.read = clock->read;
141         tk->tkr.mask = clock->mask;
142         tk->tkr.cycle_last = tk->tkr.read(clock);
143
144         /* Do the ns -> cycle conversion first, using original mult */
145         tmp = NTP_INTERVAL_LENGTH;
146         tmp <<= clock->shift;
147         ntpinterval = tmp;
148         tmp += clock->mult/2;
149         do_div(tmp, clock->mult);
150         if (tmp == 0)
151                 tmp = 1;
152
153         interval = (cycle_t) tmp;
154         tk->cycle_interval = interval;
155
156         /* Go back from cycles -> shifted ns */
157         tk->xtime_interval = (u64) interval * clock->mult;
158         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159         tk->raw_interval =
160                 ((u64) interval * clock->mult) >> clock->shift;
161
162          /* if changing clocks, convert xtime_nsec shift units */
163         if (old_clock) {
164                 int shift_change = clock->shift - old_clock->shift;
165                 if (shift_change < 0)
166                         tk->tkr.xtime_nsec >>= -shift_change;
167                 else
168                         tk->tkr.xtime_nsec <<= shift_change;
169         }
170         tk->tkr.shift = clock->shift;
171
172         tk->ntp_error = 0;
173         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175
176         /*
177          * The timekeeper keeps its own mult values for the currently
178          * active clocksource. These value will be adjusted via NTP
179          * to counteract clock drifting.
180          */
181         tk->tkr.mult = clock->mult;
182         tk->ntp_err_mult = 0;
183 }
184
185 /* Timekeeper helper functions. */
186
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196         cycle_t cycle_now, delta;
197         s64 nsec;
198
199         /* read clocksource: */
200         cycle_now = tkr->read(tkr->clock);
201
202         /* calculate the delta since the last update_wall_time: */
203         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204
205         nsec = delta * tkr->mult + tkr->xtime_nsec;
206         nsec >>= tkr->shift;
207
208         /* If arch requires, add in get_arch_timeoffset() */
209         return nsec + arch_gettimeoffset();
210 }
211
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214         struct clocksource *clock = tk->tkr.clock;
215         cycle_t cycle_now, delta;
216         s64 nsec;
217
218         /* read clocksource: */
219         cycle_now = tk->tkr.read(clock);
220
221         /* calculate the delta since the last update_wall_time: */
222         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223
224         /* convert delta to nanoseconds. */
225         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226
227         /* If arch requires, add in get_arch_timeoffset() */
228         return nsec + arch_gettimeoffset();
229 }
230
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:         The timekeeper from which we take the update
234  * @tkf:        The fast timekeeper to update
235  * @tbase:      The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();   <- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();   <- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();   <- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();   <- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *      seq = tkf->seq;
257  *      smp_rmb();
258  *      idx = seq & 0x01;
259  *      now = now(tkf->base[idx]);
260  *      smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274         struct tk_read_base *base = tk_fast_mono.base;
275
276         /* Force readers off to base[1] */
277         raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279         /* Update base[0] */
280         memcpy(base, &tk->tkr, sizeof(*base));
281
282         /* Force readers back to base[0] */
283         raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285         /* Update base[1] */
286         memcpy(base + 1, base, sizeof(*base));
287 }
288
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *      now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323         struct tk_read_base *tkr;
324         unsigned int seq;
325         u64 now;
326
327         do {
328                 seq = raw_read_seqcount(&tk_fast_mono.seq);
329                 tkr = tk_fast_mono.base + (seq & 0x01);
330                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333         return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341         struct timespec xt, wm;
342
343         xt = timespec64_to_timespec(tk_xtime(tk));
344         wm = timespec64_to_timespec(tk->wall_to_monotonic);
345         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346                             tk->tkr.cycle_last);
347 }
348
349 static inline void old_vsyscall_fixup(struct timekeeper *tk)
350 {
351         s64 remainder;
352
353         /*
354         * Store only full nanoseconds into xtime_nsec after rounding
355         * it up and add the remainder to the error difference.
356         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357         * by truncating the remainder in vsyscalls. However, it causes
358         * additional work to be done in timekeeping_adjust(). Once
359         * the vsyscall implementations are converted to use xtime_nsec
360         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361         * users are removed, this can be killed.
362         */
363         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364         tk->tkr.xtime_nsec -= remainder;
365         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366         tk->ntp_error += remainder << tk->ntp_error_shift;
367         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 }
369 #else
370 #define old_vsyscall_fixup(tk)
371 #endif
372
373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376 {
377         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 }
379
380 /**
381  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
382  */
383 int pvclock_gtod_register_notifier(struct notifier_block *nb)
384 {
385         struct timekeeper *tk = &tk_core.timekeeper;
386         unsigned long flags;
387         int ret;
388
389         raw_spin_lock_irqsave(&timekeeper_lock, flags);
390         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391         update_pvclock_gtod(tk, true);
392         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393
394         return ret;
395 }
396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398 /**
399  * pvclock_gtod_unregister_notifier - unregister a pvclock
400  * timedata update listener
401  */
402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403 {
404         unsigned long flags;
405         int ret;
406
407         raw_spin_lock_irqsave(&timekeeper_lock, flags);
408         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410
411         return ret;
412 }
413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
415 /*
416  * Update the ktime_t based scalar nsec members of the timekeeper
417  */
418 static inline void tk_update_ktime_data(struct timekeeper *tk)
419 {
420         u64 seconds;
421         u32 nsec;
422
423         /*
424          * The xtime based monotonic readout is:
425          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
426          * The ktime based monotonic readout is:
427          *      nsec = base_mono + now();
428          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
429          */
430         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
431         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
432         tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
433
434         /* Update the monotonic raw base */
435         tk->base_raw = timespec64_to_ktime(tk->raw_time);
436
437         /*
438          * The sum of the nanoseconds portions of xtime and
439          * wall_to_monotonic can be greater/equal one second. Take
440          * this into account before updating tk->ktime_sec.
441          */
442         nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
443         if (nsec >= NSEC_PER_SEC)
444                 seconds++;
445         tk->ktime_sec = seconds;
446 }
447
448 /* must hold timekeeper_lock */
449 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
450 {
451         if (action & TK_CLEAR_NTP) {
452                 tk->ntp_error = 0;
453                 ntp_clear();
454         }
455
456         tk_update_ktime_data(tk);
457
458         update_vsyscall(tk);
459         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
460
461         if (action & TK_MIRROR)
462                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
463                        sizeof(tk_core.timekeeper));
464
465         update_fast_timekeeper(tk);
466 }
467
468 /**
469  * timekeeping_forward_now - update clock to the current time
470  *
471  * Forward the current clock to update its state since the last call to
472  * update_wall_time(). This is useful before significant clock changes,
473  * as it avoids having to deal with this time offset explicitly.
474  */
475 static void timekeeping_forward_now(struct timekeeper *tk)
476 {
477         struct clocksource *clock = tk->tkr.clock;
478         cycle_t cycle_now, delta;
479         s64 nsec;
480
481         cycle_now = tk->tkr.read(clock);
482         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
483         tk->tkr.cycle_last = cycle_now;
484
485         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
486
487         /* If arch requires, add in get_arch_timeoffset() */
488         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
489
490         tk_normalize_xtime(tk);
491
492         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
493         timespec64_add_ns(&tk->raw_time, nsec);
494 }
495
496 /**
497  * __getnstimeofday64 - Returns the time of day in a timespec64.
498  * @ts:         pointer to the timespec to be set
499  *
500  * Updates the time of day in the timespec.
501  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
502  */
503 int __getnstimeofday64(struct timespec64 *ts)
504 {
505         struct timekeeper *tk = &tk_core.timekeeper;
506         unsigned long seq;
507         s64 nsecs = 0;
508
509         do {
510                 seq = read_seqcount_begin(&tk_core.seq);
511
512                 ts->tv_sec = tk->xtime_sec;
513                 nsecs = timekeeping_get_ns(&tk->tkr);
514
515         } while (read_seqcount_retry(&tk_core.seq, seq));
516
517         ts->tv_nsec = 0;
518         timespec64_add_ns(ts, nsecs);
519
520         /*
521          * Do not bail out early, in case there were callers still using
522          * the value, even in the face of the WARN_ON.
523          */
524         if (unlikely(timekeeping_suspended))
525                 return -EAGAIN;
526         return 0;
527 }
528 EXPORT_SYMBOL(__getnstimeofday64);
529
530 /**
531  * getnstimeofday64 - Returns the time of day in a timespec64.
532  * @ts:         pointer to the timespec64 to be set
533  *
534  * Returns the time of day in a timespec64 (WARN if suspended).
535  */
536 void getnstimeofday64(struct timespec64 *ts)
537 {
538         WARN_ON(__getnstimeofday64(ts));
539 }
540 EXPORT_SYMBOL(getnstimeofday64);
541
542 ktime_t ktime_get(void)
543 {
544         struct timekeeper *tk = &tk_core.timekeeper;
545         unsigned int seq;
546         ktime_t base;
547         s64 nsecs;
548
549         WARN_ON(timekeeping_suspended);
550
551         do {
552                 seq = read_seqcount_begin(&tk_core.seq);
553                 base = tk->tkr.base_mono;
554                 nsecs = timekeeping_get_ns(&tk->tkr);
555
556         } while (read_seqcount_retry(&tk_core.seq, seq));
557
558         return ktime_add_ns(base, nsecs);
559 }
560 EXPORT_SYMBOL_GPL(ktime_get);
561
562 static ktime_t *offsets[TK_OFFS_MAX] = {
563         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
564         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
565         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
566 };
567
568 ktime_t ktime_get_with_offset(enum tk_offsets offs)
569 {
570         struct timekeeper *tk = &tk_core.timekeeper;
571         unsigned int seq;
572         ktime_t base, *offset = offsets[offs];
573         s64 nsecs;
574
575         WARN_ON(timekeeping_suspended);
576
577         do {
578                 seq = read_seqcount_begin(&tk_core.seq);
579                 base = ktime_add(tk->tkr.base_mono, *offset);
580                 nsecs = timekeeping_get_ns(&tk->tkr);
581
582         } while (read_seqcount_retry(&tk_core.seq, seq));
583
584         return ktime_add_ns(base, nsecs);
585
586 }
587 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
588
589 /**
590  * ktime_mono_to_any() - convert mononotic time to any other time
591  * @tmono:      time to convert.
592  * @offs:       which offset to use
593  */
594 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
595 {
596         ktime_t *offset = offsets[offs];
597         unsigned long seq;
598         ktime_t tconv;
599
600         do {
601                 seq = read_seqcount_begin(&tk_core.seq);
602                 tconv = ktime_add(tmono, *offset);
603         } while (read_seqcount_retry(&tk_core.seq, seq));
604
605         return tconv;
606 }
607 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
608
609 /**
610  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
611  */
612 ktime_t ktime_get_raw(void)
613 {
614         struct timekeeper *tk = &tk_core.timekeeper;
615         unsigned int seq;
616         ktime_t base;
617         s64 nsecs;
618
619         do {
620                 seq = read_seqcount_begin(&tk_core.seq);
621                 base = tk->base_raw;
622                 nsecs = timekeeping_get_ns_raw(tk);
623
624         } while (read_seqcount_retry(&tk_core.seq, seq));
625
626         return ktime_add_ns(base, nsecs);
627 }
628 EXPORT_SYMBOL_GPL(ktime_get_raw);
629
630 /**
631  * ktime_get_ts64 - get the monotonic clock in timespec64 format
632  * @ts:         pointer to timespec variable
633  *
634  * The function calculates the monotonic clock from the realtime
635  * clock and the wall_to_monotonic offset and stores the result
636  * in normalized timespec64 format in the variable pointed to by @ts.
637  */
638 void ktime_get_ts64(struct timespec64 *ts)
639 {
640         struct timekeeper *tk = &tk_core.timekeeper;
641         struct timespec64 tomono;
642         s64 nsec;
643         unsigned int seq;
644
645         WARN_ON(timekeeping_suspended);
646
647         do {
648                 seq = read_seqcount_begin(&tk_core.seq);
649                 ts->tv_sec = tk->xtime_sec;
650                 nsec = timekeeping_get_ns(&tk->tkr);
651                 tomono = tk->wall_to_monotonic;
652
653         } while (read_seqcount_retry(&tk_core.seq, seq));
654
655         ts->tv_sec += tomono.tv_sec;
656         ts->tv_nsec = 0;
657         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
658 }
659 EXPORT_SYMBOL_GPL(ktime_get_ts64);
660
661 /**
662  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
663  *
664  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
665  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
666  * works on both 32 and 64 bit systems. On 32 bit systems the readout
667  * covers ~136 years of uptime which should be enough to prevent
668  * premature wrap arounds.
669  */
670 time64_t ktime_get_seconds(void)
671 {
672         struct timekeeper *tk = &tk_core.timekeeper;
673
674         WARN_ON(timekeeping_suspended);
675         return tk->ktime_sec;
676 }
677 EXPORT_SYMBOL_GPL(ktime_get_seconds);
678
679 /**
680  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
681  *
682  * Returns the wall clock seconds since 1970. This replaces the
683  * get_seconds() interface which is not y2038 safe on 32bit systems.
684  *
685  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
686  * 32bit systems the access must be protected with the sequence
687  * counter to provide "atomic" access to the 64bit tk->xtime_sec
688  * value.
689  */
690 time64_t ktime_get_real_seconds(void)
691 {
692         struct timekeeper *tk = &tk_core.timekeeper;
693         time64_t seconds;
694         unsigned int seq;
695
696         if (IS_ENABLED(CONFIG_64BIT))
697                 return tk->xtime_sec;
698
699         do {
700                 seq = read_seqcount_begin(&tk_core.seq);
701                 seconds = tk->xtime_sec;
702
703         } while (read_seqcount_retry(&tk_core.seq, seq));
704
705         return seconds;
706 }
707 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
708
709 #ifdef CONFIG_NTP_PPS
710
711 /**
712  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
713  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
714  * @ts_real:    pointer to the timespec to be set to the time of day
715  *
716  * This function reads both the time of day and raw monotonic time at the
717  * same time atomically and stores the resulting timestamps in timespec
718  * format.
719  */
720 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
721 {
722         struct timekeeper *tk = &tk_core.timekeeper;
723         unsigned long seq;
724         s64 nsecs_raw, nsecs_real;
725
726         WARN_ON_ONCE(timekeeping_suspended);
727
728         do {
729                 seq = read_seqcount_begin(&tk_core.seq);
730
731                 *ts_raw = timespec64_to_timespec(tk->raw_time);
732                 ts_real->tv_sec = tk->xtime_sec;
733                 ts_real->tv_nsec = 0;
734
735                 nsecs_raw = timekeeping_get_ns_raw(tk);
736                 nsecs_real = timekeeping_get_ns(&tk->tkr);
737
738         } while (read_seqcount_retry(&tk_core.seq, seq));
739
740         timespec_add_ns(ts_raw, nsecs_raw);
741         timespec_add_ns(ts_real, nsecs_real);
742 }
743 EXPORT_SYMBOL(getnstime_raw_and_real);
744
745 #endif /* CONFIG_NTP_PPS */
746
747 /**
748  * do_gettimeofday - Returns the time of day in a timeval
749  * @tv:         pointer to the timeval to be set
750  *
751  * NOTE: Users should be converted to using getnstimeofday()
752  */
753 void do_gettimeofday(struct timeval *tv)
754 {
755         struct timespec64 now;
756
757         getnstimeofday64(&now);
758         tv->tv_sec = now.tv_sec;
759         tv->tv_usec = now.tv_nsec/1000;
760 }
761 EXPORT_SYMBOL(do_gettimeofday);
762
763 /**
764  * do_settimeofday64 - Sets the time of day.
765  * @ts:     pointer to the timespec64 variable containing the new time
766  *
767  * Sets the time of day to the new time and update NTP and notify hrtimers
768  */
769 int do_settimeofday64(const struct timespec64 *ts)
770 {
771         struct timekeeper *tk = &tk_core.timekeeper;
772         struct timespec64 ts_delta, xt;
773         unsigned long flags;
774
775         if (!timespec64_valid_strict(ts))
776                 return -EINVAL;
777
778         raw_spin_lock_irqsave(&timekeeper_lock, flags);
779         write_seqcount_begin(&tk_core.seq);
780
781         timekeeping_forward_now(tk);
782
783         xt = tk_xtime(tk);
784         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
785         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
786
787         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
788
789         tk_set_xtime(tk, ts);
790
791         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
792
793         write_seqcount_end(&tk_core.seq);
794         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
795
796         /* signal hrtimers about time change */
797         clock_was_set();
798
799         return 0;
800 }
801 EXPORT_SYMBOL(do_settimeofday64);
802
803 /**
804  * timekeeping_inject_offset - Adds or subtracts from the current time.
805  * @tv:         pointer to the timespec variable containing the offset
806  *
807  * Adds or subtracts an offset value from the current time.
808  */
809 int timekeeping_inject_offset(struct timespec *ts)
810 {
811         struct timekeeper *tk = &tk_core.timekeeper;
812         unsigned long flags;
813         struct timespec64 ts64, tmp;
814         int ret = 0;
815
816         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
817                 return -EINVAL;
818
819         ts64 = timespec_to_timespec64(*ts);
820
821         raw_spin_lock_irqsave(&timekeeper_lock, flags);
822         write_seqcount_begin(&tk_core.seq);
823
824         timekeeping_forward_now(tk);
825
826         /* Make sure the proposed value is valid */
827         tmp = timespec64_add(tk_xtime(tk),  ts64);
828         if (!timespec64_valid_strict(&tmp)) {
829                 ret = -EINVAL;
830                 goto error;
831         }
832
833         tk_xtime_add(tk, &ts64);
834         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
835
836 error: /* even if we error out, we forwarded the time, so call update */
837         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
838
839         write_seqcount_end(&tk_core.seq);
840         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
841
842         /* signal hrtimers about time change */
843         clock_was_set();
844
845         return ret;
846 }
847 EXPORT_SYMBOL(timekeeping_inject_offset);
848
849
850 /**
851  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
852  *
853  */
854 s32 timekeeping_get_tai_offset(void)
855 {
856         struct timekeeper *tk = &tk_core.timekeeper;
857         unsigned int seq;
858         s32 ret;
859
860         do {
861                 seq = read_seqcount_begin(&tk_core.seq);
862                 ret = tk->tai_offset;
863         } while (read_seqcount_retry(&tk_core.seq, seq));
864
865         return ret;
866 }
867
868 /**
869  * __timekeeping_set_tai_offset - Lock free worker function
870  *
871  */
872 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
873 {
874         tk->tai_offset = tai_offset;
875         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
876 }
877
878 /**
879  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
880  *
881  */
882 void timekeeping_set_tai_offset(s32 tai_offset)
883 {
884         struct timekeeper *tk = &tk_core.timekeeper;
885         unsigned long flags;
886
887         raw_spin_lock_irqsave(&timekeeper_lock, flags);
888         write_seqcount_begin(&tk_core.seq);
889         __timekeeping_set_tai_offset(tk, tai_offset);
890         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
891         write_seqcount_end(&tk_core.seq);
892         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
893         clock_was_set();
894 }
895
896 /**
897  * change_clocksource - Swaps clocksources if a new one is available
898  *
899  * Accumulates current time interval and initializes new clocksource
900  */
901 static int change_clocksource(void *data)
902 {
903         struct timekeeper *tk = &tk_core.timekeeper;
904         struct clocksource *new, *old;
905         unsigned long flags;
906
907         new = (struct clocksource *) data;
908
909         raw_spin_lock_irqsave(&timekeeper_lock, flags);
910         write_seqcount_begin(&tk_core.seq);
911
912         timekeeping_forward_now(tk);
913         /*
914          * If the cs is in module, get a module reference. Succeeds
915          * for built-in code (owner == NULL) as well.
916          */
917         if (try_module_get(new->owner)) {
918                 if (!new->enable || new->enable(new) == 0) {
919                         old = tk->tkr.clock;
920                         tk_setup_internals(tk, new);
921                         if (old->disable)
922                                 old->disable(old);
923                         module_put(old->owner);
924                 } else {
925                         module_put(new->owner);
926                 }
927         }
928         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
929
930         write_seqcount_end(&tk_core.seq);
931         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
932
933         return 0;
934 }
935
936 /**
937  * timekeeping_notify - Install a new clock source
938  * @clock:              pointer to the clock source
939  *
940  * This function is called from clocksource.c after a new, better clock
941  * source has been registered. The caller holds the clocksource_mutex.
942  */
943 int timekeeping_notify(struct clocksource *clock)
944 {
945         struct timekeeper *tk = &tk_core.timekeeper;
946
947         if (tk->tkr.clock == clock)
948                 return 0;
949         stop_machine(change_clocksource, clock, NULL);
950         tick_clock_notify();
951         return tk->tkr.clock == clock ? 0 : -1;
952 }
953
954 /**
955  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
956  * @ts:         pointer to the timespec64 to be set
957  *
958  * Returns the raw monotonic time (completely un-modified by ntp)
959  */
960 void getrawmonotonic64(struct timespec64 *ts)
961 {
962         struct timekeeper *tk = &tk_core.timekeeper;
963         struct timespec64 ts64;
964         unsigned long seq;
965         s64 nsecs;
966
967         do {
968                 seq = read_seqcount_begin(&tk_core.seq);
969                 nsecs = timekeeping_get_ns_raw(tk);
970                 ts64 = tk->raw_time;
971
972         } while (read_seqcount_retry(&tk_core.seq, seq));
973
974         timespec64_add_ns(&ts64, nsecs);
975         *ts = ts64;
976 }
977 EXPORT_SYMBOL(getrawmonotonic64);
978
979
980 /**
981  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
982  */
983 int timekeeping_valid_for_hres(void)
984 {
985         struct timekeeper *tk = &tk_core.timekeeper;
986         unsigned long seq;
987         int ret;
988
989         do {
990                 seq = read_seqcount_begin(&tk_core.seq);
991
992                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
993
994         } while (read_seqcount_retry(&tk_core.seq, seq));
995
996         return ret;
997 }
998
999 /**
1000  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1001  */
1002 u64 timekeeping_max_deferment(void)
1003 {
1004         struct timekeeper *tk = &tk_core.timekeeper;
1005         unsigned long seq;
1006         u64 ret;
1007
1008         do {
1009                 seq = read_seqcount_begin(&tk_core.seq);
1010
1011                 ret = tk->tkr.clock->max_idle_ns;
1012
1013         } while (read_seqcount_retry(&tk_core.seq, seq));
1014
1015         return ret;
1016 }
1017
1018 /**
1019  * read_persistent_clock -  Return time from the persistent clock.
1020  *
1021  * Weak dummy function for arches that do not yet support it.
1022  * Reads the time from the battery backed persistent clock.
1023  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1024  *
1025  *  XXX - Do be sure to remove it once all arches implement it.
1026  */
1027 void __weak read_persistent_clock(struct timespec *ts)
1028 {
1029         ts->tv_sec = 0;
1030         ts->tv_nsec = 0;
1031 }
1032
1033 /**
1034  * read_boot_clock -  Return time of the system start.
1035  *
1036  * Weak dummy function for arches that do not yet support it.
1037  * Function to read the exact time the system has been started.
1038  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1039  *
1040  *  XXX - Do be sure to remove it once all arches implement it.
1041  */
1042 void __weak read_boot_clock(struct timespec *ts)
1043 {
1044         ts->tv_sec = 0;
1045         ts->tv_nsec = 0;
1046 }
1047
1048 /*
1049  * timekeeping_init - Initializes the clocksource and common timekeeping values
1050  */
1051 void __init timekeeping_init(void)
1052 {
1053         struct timekeeper *tk = &tk_core.timekeeper;
1054         struct clocksource *clock;
1055         unsigned long flags;
1056         struct timespec64 now, boot, tmp;
1057         struct timespec ts;
1058
1059         read_persistent_clock(&ts);
1060         now = timespec_to_timespec64(ts);
1061         if (!timespec64_valid_strict(&now)) {
1062                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1063                         "         Check your CMOS/BIOS settings.\n");
1064                 now.tv_sec = 0;
1065                 now.tv_nsec = 0;
1066         } else if (now.tv_sec || now.tv_nsec)
1067                 persistent_clock_exist = true;
1068
1069         read_boot_clock(&ts);
1070         boot = timespec_to_timespec64(ts);
1071         if (!timespec64_valid_strict(&boot)) {
1072                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1073                         "         Check your CMOS/BIOS settings.\n");
1074                 boot.tv_sec = 0;
1075                 boot.tv_nsec = 0;
1076         }
1077
1078         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1079         write_seqcount_begin(&tk_core.seq);
1080         ntp_init();
1081
1082         clock = clocksource_default_clock();
1083         if (clock->enable)
1084                 clock->enable(clock);
1085         tk_setup_internals(tk, clock);
1086
1087         tk_set_xtime(tk, &now);
1088         tk->raw_time.tv_sec = 0;
1089         tk->raw_time.tv_nsec = 0;
1090         tk->base_raw.tv64 = 0;
1091         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1092                 boot = tk_xtime(tk);
1093
1094         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1095         tk_set_wall_to_mono(tk, tmp);
1096
1097         timekeeping_update(tk, TK_MIRROR);
1098
1099         write_seqcount_end(&tk_core.seq);
1100         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1101 }
1102
1103 /* time in seconds when suspend began */
1104 static struct timespec64 timekeeping_suspend_time;
1105
1106 /**
1107  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1108  * @delta: pointer to a timespec delta value
1109  *
1110  * Takes a timespec offset measuring a suspend interval and properly
1111  * adds the sleep offset to the timekeeping variables.
1112  */
1113 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1114                                            struct timespec64 *delta)
1115 {
1116         if (!timespec64_valid_strict(delta)) {
1117                 printk_deferred(KERN_WARNING
1118                                 "__timekeeping_inject_sleeptime: Invalid "
1119                                 "sleep delta value!\n");
1120                 return;
1121         }
1122         tk_xtime_add(tk, delta);
1123         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1124         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1125         tk_debug_account_sleep_time(delta);
1126 }
1127
1128 /**
1129  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1130  * @delta: pointer to a timespec64 delta value
1131  *
1132  * This hook is for architectures that cannot support read_persistent_clock
1133  * because their RTC/persistent clock is only accessible when irqs are enabled.
1134  *
1135  * This function should only be called by rtc_resume(), and allows
1136  * a suspend offset to be injected into the timekeeping values.
1137  */
1138 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1139 {
1140         struct timekeeper *tk = &tk_core.timekeeper;
1141         unsigned long flags;
1142
1143         /*
1144          * Make sure we don't set the clock twice, as timekeeping_resume()
1145          * already did it
1146          */
1147         if (has_persistent_clock())
1148                 return;
1149
1150         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1151         write_seqcount_begin(&tk_core.seq);
1152
1153         timekeeping_forward_now(tk);
1154
1155         __timekeeping_inject_sleeptime(tk, delta);
1156
1157         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1158
1159         write_seqcount_end(&tk_core.seq);
1160         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1161
1162         /* signal hrtimers about time change */
1163         clock_was_set();
1164 }
1165
1166 /**
1167  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1168  *
1169  * This is for the generic clocksource timekeeping.
1170  * xtime/wall_to_monotonic/jiffies/etc are
1171  * still managed by arch specific suspend/resume code.
1172  */
1173 static void timekeeping_resume(void)
1174 {
1175         struct timekeeper *tk = &tk_core.timekeeper;
1176         struct clocksource *clock = tk->tkr.clock;
1177         unsigned long flags;
1178         struct timespec64 ts_new, ts_delta;
1179         struct timespec tmp;
1180         cycle_t cycle_now, cycle_delta;
1181         bool suspendtime_found = false;
1182
1183         read_persistent_clock(&tmp);
1184         ts_new = timespec_to_timespec64(tmp);
1185
1186         clockevents_resume();
1187         clocksource_resume();
1188
1189         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1190         write_seqcount_begin(&tk_core.seq);
1191
1192         /*
1193          * After system resumes, we need to calculate the suspended time and
1194          * compensate it for the OS time. There are 3 sources that could be
1195          * used: Nonstop clocksource during suspend, persistent clock and rtc
1196          * device.
1197          *
1198          * One specific platform may have 1 or 2 or all of them, and the
1199          * preference will be:
1200          *      suspend-nonstop clocksource -> persistent clock -> rtc
1201          * The less preferred source will only be tried if there is no better
1202          * usable source. The rtc part is handled separately in rtc core code.
1203          */
1204         cycle_now = tk->tkr.read(clock);
1205         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1206                 cycle_now > tk->tkr.cycle_last) {
1207                 u64 num, max = ULLONG_MAX;
1208                 u32 mult = clock->mult;
1209                 u32 shift = clock->shift;
1210                 s64 nsec = 0;
1211
1212                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1213                                                 tk->tkr.mask);
1214
1215                 /*
1216                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1217                  * suspended time is too long. In that case we need do the
1218                  * 64 bits math carefully
1219                  */
1220                 do_div(max, mult);
1221                 if (cycle_delta > max) {
1222                         num = div64_u64(cycle_delta, max);
1223                         nsec = (((u64) max * mult) >> shift) * num;
1224                         cycle_delta -= num * max;
1225                 }
1226                 nsec += ((u64) cycle_delta * mult) >> shift;
1227
1228                 ts_delta = ns_to_timespec64(nsec);
1229                 suspendtime_found = true;
1230         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1231                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1232                 suspendtime_found = true;
1233         }
1234
1235         if (suspendtime_found)
1236                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1237
1238         /* Re-base the last cycle value */
1239         tk->tkr.cycle_last = cycle_now;
1240         tk->ntp_error = 0;
1241         timekeeping_suspended = 0;
1242         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1243         write_seqcount_end(&tk_core.seq);
1244         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245
1246         touch_softlockup_watchdog();
1247
1248         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1249
1250         /* Resume hrtimers */
1251         hrtimers_resume();
1252 }
1253
1254 static int timekeeping_suspend(void)
1255 {
1256         struct timekeeper *tk = &tk_core.timekeeper;
1257         unsigned long flags;
1258         struct timespec64               delta, delta_delta;
1259         static struct timespec64        old_delta;
1260         struct timespec tmp;
1261
1262         read_persistent_clock(&tmp);
1263         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1264
1265         /*
1266          * On some systems the persistent_clock can not be detected at
1267          * timekeeping_init by its return value, so if we see a valid
1268          * value returned, update the persistent_clock_exists flag.
1269          */
1270         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1271                 persistent_clock_exist = true;
1272
1273         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274         write_seqcount_begin(&tk_core.seq);
1275         timekeeping_forward_now(tk);
1276         timekeeping_suspended = 1;
1277
1278         /*
1279          * To avoid drift caused by repeated suspend/resumes,
1280          * which each can add ~1 second drift error,
1281          * try to compensate so the difference in system time
1282          * and persistent_clock time stays close to constant.
1283          */
1284         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1285         delta_delta = timespec64_sub(delta, old_delta);
1286         if (abs(delta_delta.tv_sec)  >= 2) {
1287                 /*
1288                  * if delta_delta is too large, assume time correction
1289                  * has occured and set old_delta to the current delta.
1290                  */
1291                 old_delta = delta;
1292         } else {
1293                 /* Otherwise try to adjust old_system to compensate */
1294                 timekeeping_suspend_time =
1295                         timespec64_add(timekeeping_suspend_time, delta_delta);
1296         }
1297
1298         timekeeping_update(tk, TK_MIRROR);
1299         write_seqcount_end(&tk_core.seq);
1300         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1301
1302         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1303         clocksource_suspend();
1304         clockevents_suspend();
1305
1306         return 0;
1307 }
1308
1309 /* sysfs resume/suspend bits for timekeeping */
1310 static struct syscore_ops timekeeping_syscore_ops = {
1311         .resume         = timekeeping_resume,
1312         .suspend        = timekeeping_suspend,
1313 };
1314
1315 static int __init timekeeping_init_ops(void)
1316 {
1317         register_syscore_ops(&timekeeping_syscore_ops);
1318         return 0;
1319 }
1320 device_initcall(timekeeping_init_ops);
1321
1322 /*
1323  * Apply a multiplier adjustment to the timekeeper
1324  */
1325 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1326                                                          s64 offset,
1327                                                          bool negative,
1328                                                          int adj_scale)
1329 {
1330         s64 interval = tk->cycle_interval;
1331         s32 mult_adj = 1;
1332
1333         if (negative) {
1334                 mult_adj = -mult_adj;
1335                 interval = -interval;
1336                 offset  = -offset;
1337         }
1338         mult_adj <<= adj_scale;
1339         interval <<= adj_scale;
1340         offset <<= adj_scale;
1341
1342         /*
1343          * So the following can be confusing.
1344          *
1345          * To keep things simple, lets assume mult_adj == 1 for now.
1346          *
1347          * When mult_adj != 1, remember that the interval and offset values
1348          * have been appropriately scaled so the math is the same.
1349          *
1350          * The basic idea here is that we're increasing the multiplier
1351          * by one, this causes the xtime_interval to be incremented by
1352          * one cycle_interval. This is because:
1353          *      xtime_interval = cycle_interval * mult
1354          * So if mult is being incremented by one:
1355          *      xtime_interval = cycle_interval * (mult + 1)
1356          * Its the same as:
1357          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1358          * Which can be shortened to:
1359          *      xtime_interval += cycle_interval
1360          *
1361          * So offset stores the non-accumulated cycles. Thus the current
1362          * time (in shifted nanoseconds) is:
1363          *      now = (offset * adj) + xtime_nsec
1364          * Now, even though we're adjusting the clock frequency, we have
1365          * to keep time consistent. In other words, we can't jump back
1366          * in time, and we also want to avoid jumping forward in time.
1367          *
1368          * So given the same offset value, we need the time to be the same
1369          * both before and after the freq adjustment.
1370          *      now = (offset * adj_1) + xtime_nsec_1
1371          *      now = (offset * adj_2) + xtime_nsec_2
1372          * So:
1373          *      (offset * adj_1) + xtime_nsec_1 =
1374          *              (offset * adj_2) + xtime_nsec_2
1375          * And we know:
1376          *      adj_2 = adj_1 + 1
1377          * So:
1378          *      (offset * adj_1) + xtime_nsec_1 =
1379          *              (offset * (adj_1+1)) + xtime_nsec_2
1380          *      (offset * adj_1) + xtime_nsec_1 =
1381          *              (offset * adj_1) + offset + xtime_nsec_2
1382          * Canceling the sides:
1383          *      xtime_nsec_1 = offset + xtime_nsec_2
1384          * Which gives us:
1385          *      xtime_nsec_2 = xtime_nsec_1 - offset
1386          * Which simplfies to:
1387          *      xtime_nsec -= offset
1388          *
1389          * XXX - TODO: Doc ntp_error calculation.
1390          */
1391         if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1392                 /* NTP adjustment caused clocksource mult overflow */
1393                 WARN_ON_ONCE(1);
1394                 return;
1395         }
1396
1397         tk->tkr.mult += mult_adj;
1398         tk->xtime_interval += interval;
1399         tk->tkr.xtime_nsec -= offset;
1400         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1401 }
1402
1403 /*
1404  * Calculate the multiplier adjustment needed to match the frequency
1405  * specified by NTP
1406  */
1407 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1408                                                         s64 offset)
1409 {
1410         s64 interval = tk->cycle_interval;
1411         s64 xinterval = tk->xtime_interval;
1412         s64 tick_error;
1413         bool negative;
1414         u32 adj;
1415
1416         /* Remove any current error adj from freq calculation */
1417         if (tk->ntp_err_mult)
1418                 xinterval -= tk->cycle_interval;
1419
1420         tk->ntp_tick = ntp_tick_length();
1421
1422         /* Calculate current error per tick */
1423         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1424         tick_error -= (xinterval + tk->xtime_remainder);
1425
1426         /* Don't worry about correcting it if its small */
1427         if (likely((tick_error >= 0) && (tick_error <= interval)))
1428                 return;
1429
1430         /* preserve the direction of correction */
1431         negative = (tick_error < 0);
1432
1433         /* Sort out the magnitude of the correction */
1434         tick_error = abs(tick_error);
1435         for (adj = 0; tick_error > interval; adj++)
1436                 tick_error >>= 1;
1437
1438         /* scale the corrections */
1439         timekeeping_apply_adjustment(tk, offset, negative, adj);
1440 }
1441
1442 /*
1443  * Adjust the timekeeper's multiplier to the correct frequency
1444  * and also to reduce the accumulated error value.
1445  */
1446 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1447 {
1448         /* Correct for the current frequency error */
1449         timekeeping_freqadjust(tk, offset);
1450
1451         /* Next make a small adjustment to fix any cumulative error */
1452         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1453                 tk->ntp_err_mult = 1;
1454                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1455         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1456                 /* Undo any existing error adjustment */
1457                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1458                 tk->ntp_err_mult = 0;
1459         }
1460
1461         if (unlikely(tk->tkr.clock->maxadj &&
1462                 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1463                         > tk->tkr.clock->maxadj))) {
1464                 printk_once(KERN_WARNING
1465                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1466                         tk->tkr.clock->name, (long)tk->tkr.mult,
1467                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1468         }
1469
1470         /*
1471          * It may be possible that when we entered this function, xtime_nsec
1472          * was very small.  Further, if we're slightly speeding the clocksource
1473          * in the code above, its possible the required corrective factor to
1474          * xtime_nsec could cause it to underflow.
1475          *
1476          * Now, since we already accumulated the second, cannot simply roll
1477          * the accumulated second back, since the NTP subsystem has been
1478          * notified via second_overflow. So instead we push xtime_nsec forward
1479          * by the amount we underflowed, and add that amount into the error.
1480          *
1481          * We'll correct this error next time through this function, when
1482          * xtime_nsec is not as small.
1483          */
1484         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1485                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1486                 tk->tkr.xtime_nsec = 0;
1487                 tk->ntp_error += neg << tk->ntp_error_shift;
1488         }
1489 }
1490
1491 /**
1492  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1493  *
1494  * Helper function that accumulates a the nsecs greater then a second
1495  * from the xtime_nsec field to the xtime_secs field.
1496  * It also calls into the NTP code to handle leapsecond processing.
1497  *
1498  */
1499 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1500 {
1501         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1502         unsigned int clock_set = 0;
1503
1504         while (tk->tkr.xtime_nsec >= nsecps) {
1505                 int leap;
1506
1507                 tk->tkr.xtime_nsec -= nsecps;
1508                 tk->xtime_sec++;
1509
1510                 /* Figure out if its a leap sec and apply if needed */
1511                 leap = second_overflow(tk->xtime_sec);
1512                 if (unlikely(leap)) {
1513                         struct timespec64 ts;
1514
1515                         tk->xtime_sec += leap;
1516
1517                         ts.tv_sec = leap;
1518                         ts.tv_nsec = 0;
1519                         tk_set_wall_to_mono(tk,
1520                                 timespec64_sub(tk->wall_to_monotonic, ts));
1521
1522                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1523
1524                         clock_set = TK_CLOCK_WAS_SET;
1525                 }
1526         }
1527         return clock_set;
1528 }
1529
1530 /**
1531  * logarithmic_accumulation - shifted accumulation of cycles
1532  *
1533  * This functions accumulates a shifted interval of cycles into
1534  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1535  * loop.
1536  *
1537  * Returns the unconsumed cycles.
1538  */
1539 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1540                                                 u32 shift,
1541                                                 unsigned int *clock_set)
1542 {
1543         cycle_t interval = tk->cycle_interval << shift;
1544         u64 raw_nsecs;
1545
1546         /* If the offset is smaller then a shifted interval, do nothing */
1547         if (offset < interval)
1548                 return offset;
1549
1550         /* Accumulate one shifted interval */
1551         offset -= interval;
1552         tk->tkr.cycle_last += interval;
1553
1554         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1555         *clock_set |= accumulate_nsecs_to_secs(tk);
1556
1557         /* Accumulate raw time */
1558         raw_nsecs = (u64)tk->raw_interval << shift;
1559         raw_nsecs += tk->raw_time.tv_nsec;
1560         if (raw_nsecs >= NSEC_PER_SEC) {
1561                 u64 raw_secs = raw_nsecs;
1562                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1563                 tk->raw_time.tv_sec += raw_secs;
1564         }
1565         tk->raw_time.tv_nsec = raw_nsecs;
1566
1567         /* Accumulate error between NTP and clock interval */
1568         tk->ntp_error += tk->ntp_tick << shift;
1569         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1570                                                 (tk->ntp_error_shift + shift);
1571
1572         return offset;
1573 }
1574
1575 /**
1576  * update_wall_time - Uses the current clocksource to increment the wall time
1577  *
1578  */
1579 void update_wall_time(void)
1580 {
1581         struct timekeeper *real_tk = &tk_core.timekeeper;
1582         struct timekeeper *tk = &shadow_timekeeper;
1583         cycle_t offset;
1584         int shift = 0, maxshift;
1585         unsigned int clock_set = 0;
1586         unsigned long flags;
1587
1588         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1589
1590         /* Make sure we're fully resumed: */
1591         if (unlikely(timekeeping_suspended))
1592                 goto out;
1593
1594 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1595         offset = real_tk->cycle_interval;
1596 #else
1597         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1598                                    tk->tkr.cycle_last, tk->tkr.mask);
1599 #endif
1600
1601         /* Check if there's really nothing to do */
1602         if (offset < real_tk->cycle_interval)
1603                 goto out;
1604
1605         /*
1606          * With NO_HZ we may have to accumulate many cycle_intervals
1607          * (think "ticks") worth of time at once. To do this efficiently,
1608          * we calculate the largest doubling multiple of cycle_intervals
1609          * that is smaller than the offset.  We then accumulate that
1610          * chunk in one go, and then try to consume the next smaller
1611          * doubled multiple.
1612          */
1613         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1614         shift = max(0, shift);
1615         /* Bound shift to one less than what overflows tick_length */
1616         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1617         shift = min(shift, maxshift);
1618         while (offset >= tk->cycle_interval) {
1619                 offset = logarithmic_accumulation(tk, offset, shift,
1620                                                         &clock_set);
1621                 if (offset < tk->cycle_interval<<shift)
1622                         shift--;
1623         }
1624
1625         /* correct the clock when NTP error is too big */
1626         timekeeping_adjust(tk, offset);
1627
1628         /*
1629          * XXX This can be killed once everyone converts
1630          * to the new update_vsyscall.
1631          */
1632         old_vsyscall_fixup(tk);
1633
1634         /*
1635          * Finally, make sure that after the rounding
1636          * xtime_nsec isn't larger than NSEC_PER_SEC
1637          */
1638         clock_set |= accumulate_nsecs_to_secs(tk);
1639
1640         write_seqcount_begin(&tk_core.seq);
1641         /*
1642          * Update the real timekeeper.
1643          *
1644          * We could avoid this memcpy by switching pointers, but that
1645          * requires changes to all other timekeeper usage sites as
1646          * well, i.e. move the timekeeper pointer getter into the
1647          * spinlocked/seqcount protected sections. And we trade this
1648          * memcpy under the tk_core.seq against one before we start
1649          * updating.
1650          */
1651         memcpy(real_tk, tk, sizeof(*tk));
1652         timekeeping_update(real_tk, clock_set);
1653         write_seqcount_end(&tk_core.seq);
1654 out:
1655         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1656         if (clock_set)
1657                 /* Have to call _delayed version, since in irq context*/
1658                 clock_was_set_delayed();
1659 }
1660
1661 /**
1662  * getboottime64 - Return the real time of system boot.
1663  * @ts:         pointer to the timespec64 to be set
1664  *
1665  * Returns the wall-time of boot in a timespec64.
1666  *
1667  * This is based on the wall_to_monotonic offset and the total suspend
1668  * time. Calls to settimeofday will affect the value returned (which
1669  * basically means that however wrong your real time clock is at boot time,
1670  * you get the right time here).
1671  */
1672 void getboottime64(struct timespec64 *ts)
1673 {
1674         struct timekeeper *tk = &tk_core.timekeeper;
1675         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1676
1677         *ts = ktime_to_timespec64(t);
1678 }
1679 EXPORT_SYMBOL_GPL(getboottime64);
1680
1681 unsigned long get_seconds(void)
1682 {
1683         struct timekeeper *tk = &tk_core.timekeeper;
1684
1685         return tk->xtime_sec;
1686 }
1687 EXPORT_SYMBOL(get_seconds);
1688
1689 struct timespec __current_kernel_time(void)
1690 {
1691         struct timekeeper *tk = &tk_core.timekeeper;
1692
1693         return timespec64_to_timespec(tk_xtime(tk));
1694 }
1695
1696 struct timespec current_kernel_time(void)
1697 {
1698         struct timekeeper *tk = &tk_core.timekeeper;
1699         struct timespec64 now;
1700         unsigned long seq;
1701
1702         do {
1703                 seq = read_seqcount_begin(&tk_core.seq);
1704
1705                 now = tk_xtime(tk);
1706         } while (read_seqcount_retry(&tk_core.seq, seq));
1707
1708         return timespec64_to_timespec(now);
1709 }
1710 EXPORT_SYMBOL(current_kernel_time);
1711
1712 struct timespec64 get_monotonic_coarse64(void)
1713 {
1714         struct timekeeper *tk = &tk_core.timekeeper;
1715         struct timespec64 now, mono;
1716         unsigned long seq;
1717
1718         do {
1719                 seq = read_seqcount_begin(&tk_core.seq);
1720
1721                 now = tk_xtime(tk);
1722                 mono = tk->wall_to_monotonic;
1723         } while (read_seqcount_retry(&tk_core.seq, seq));
1724
1725         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1726                                 now.tv_nsec + mono.tv_nsec);
1727
1728         return now;
1729 }
1730
1731 /*
1732  * Must hold jiffies_lock
1733  */
1734 void do_timer(unsigned long ticks)
1735 {
1736         jiffies_64 += ticks;
1737         calc_global_load(ticks);
1738 }
1739
1740 /**
1741  * ktime_get_update_offsets_tick - hrtimer helper
1742  * @offs_real:  pointer to storage for monotonic -> realtime offset
1743  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1744  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1745  *
1746  * Returns monotonic time at last tick and various offsets
1747  */
1748 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1749                                                         ktime_t *offs_tai)
1750 {
1751         struct timekeeper *tk = &tk_core.timekeeper;
1752         unsigned int seq;
1753         ktime_t base;
1754         u64 nsecs;
1755
1756         do {
1757                 seq = read_seqcount_begin(&tk_core.seq);
1758
1759                 base = tk->tkr.base_mono;
1760                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1761
1762                 *offs_real = tk->offs_real;
1763                 *offs_boot = tk->offs_boot;
1764                 *offs_tai = tk->offs_tai;
1765         } while (read_seqcount_retry(&tk_core.seq, seq));
1766
1767         return ktime_add_ns(base, nsecs);
1768 }
1769
1770 #ifdef CONFIG_HIGH_RES_TIMERS
1771 /**
1772  * ktime_get_update_offsets_now - hrtimer helper
1773  * @offs_real:  pointer to storage for monotonic -> realtime offset
1774  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1775  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1776  *
1777  * Returns current monotonic time and updates the offsets
1778  * Called from hrtimer_interrupt() or retrigger_next_event()
1779  */
1780 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1781                                                         ktime_t *offs_tai)
1782 {
1783         struct timekeeper *tk = &tk_core.timekeeper;
1784         unsigned int seq;
1785         ktime_t base;
1786         u64 nsecs;
1787
1788         do {
1789                 seq = read_seqcount_begin(&tk_core.seq);
1790
1791                 base = tk->tkr.base_mono;
1792                 nsecs = timekeeping_get_ns(&tk->tkr);
1793
1794                 *offs_real = tk->offs_real;
1795                 *offs_boot = tk->offs_boot;
1796                 *offs_tai = tk->offs_tai;
1797         } while (read_seqcount_retry(&tk_core.seq, seq));
1798
1799         return ktime_add_ns(base, nsecs);
1800 }
1801 #endif
1802
1803 /**
1804  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1805  */
1806 int do_adjtimex(struct timex *txc)
1807 {
1808         struct timekeeper *tk = &tk_core.timekeeper;
1809         unsigned long flags;
1810         struct timespec64 ts;
1811         s32 orig_tai, tai;
1812         int ret;
1813
1814         /* Validate the data before disabling interrupts */
1815         ret = ntp_validate_timex(txc);
1816         if (ret)
1817                 return ret;
1818
1819         if (txc->modes & ADJ_SETOFFSET) {
1820                 struct timespec delta;
1821                 delta.tv_sec  = txc->time.tv_sec;
1822                 delta.tv_nsec = txc->time.tv_usec;
1823                 if (!(txc->modes & ADJ_NANO))
1824                         delta.tv_nsec *= 1000;
1825                 ret = timekeeping_inject_offset(&delta);
1826                 if (ret)
1827                         return ret;
1828         }
1829
1830         getnstimeofday64(&ts);
1831
1832         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1833         write_seqcount_begin(&tk_core.seq);
1834
1835         orig_tai = tai = tk->tai_offset;
1836         ret = __do_adjtimex(txc, &ts, &tai);
1837
1838         if (tai != orig_tai) {
1839                 __timekeeping_set_tai_offset(tk, tai);
1840                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1841         }
1842         write_seqcount_end(&tk_core.seq);
1843         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1844
1845         if (tai != orig_tai)
1846                 clock_was_set();
1847
1848         ntp_notify_cmos_timer();
1849
1850         return ret;
1851 }
1852
1853 #ifdef CONFIG_NTP_PPS
1854 /**
1855  * hardpps() - Accessor function to NTP __hardpps function
1856  */
1857 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1858 {
1859         unsigned long flags;
1860
1861         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1862         write_seqcount_begin(&tk_core.seq);
1863
1864         __hardpps(phase_ts, raw_ts);
1865
1866         write_seqcount_end(&tk_core.seq);
1867         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1868 }
1869 EXPORT_SYMBOL(hardpps);
1870 #endif
1871
1872 /**
1873  * xtime_update() - advances the timekeeping infrastructure
1874  * @ticks:      number of ticks, that have elapsed since the last call.
1875  *
1876  * Must be called with interrupts disabled.
1877  */
1878 void xtime_update(unsigned long ticks)
1879 {
1880         write_seqlock(&jiffies_lock);
1881         do_timer(ticks);
1882         write_sequnlock(&jiffies_lock);
1883         update_wall_time();
1884 }