Merge branch 'acpi-ec'
[linux-drm-fsl-dcu.git] / kernel / rcu / srcu.c
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *         Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *              Documentation/RCU/ *.txt
26  *
27  */
28
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/srcu.h>
38
39 #include "rcu.h"
40
41 /*
42  * Initialize an rcu_batch structure to empty.
43  */
44 static inline void rcu_batch_init(struct rcu_batch *b)
45 {
46         b->head = NULL;
47         b->tail = &b->head;
48 }
49
50 /*
51  * Enqueue a callback onto the tail of the specified rcu_batch structure.
52  */
53 static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
54 {
55         *b->tail = head;
56         b->tail = &head->next;
57 }
58
59 /*
60  * Is the specified rcu_batch structure empty?
61  */
62 static inline bool rcu_batch_empty(struct rcu_batch *b)
63 {
64         return b->tail == &b->head;
65 }
66
67 /*
68  * Remove the callback at the head of the specified rcu_batch structure
69  * and return a pointer to it, or return NULL if the structure is empty.
70  */
71 static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
72 {
73         struct rcu_head *head;
74
75         if (rcu_batch_empty(b))
76                 return NULL;
77
78         head = b->head;
79         b->head = head->next;
80         if (b->tail == &head->next)
81                 rcu_batch_init(b);
82
83         return head;
84 }
85
86 /*
87  * Move all callbacks from the rcu_batch structure specified by "from" to
88  * the structure specified by "to".
89  */
90 static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
91 {
92         if (!rcu_batch_empty(from)) {
93                 *to->tail = from->head;
94                 to->tail = from->tail;
95                 rcu_batch_init(from);
96         }
97 }
98
99 static int init_srcu_struct_fields(struct srcu_struct *sp)
100 {
101         sp->completed = 0;
102         spin_lock_init(&sp->queue_lock);
103         sp->running = false;
104         rcu_batch_init(&sp->batch_queue);
105         rcu_batch_init(&sp->batch_check0);
106         rcu_batch_init(&sp->batch_check1);
107         rcu_batch_init(&sp->batch_done);
108         INIT_DELAYED_WORK(&sp->work, process_srcu);
109         sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
110         return sp->per_cpu_ref ? 0 : -ENOMEM;
111 }
112
113 #ifdef CONFIG_DEBUG_LOCK_ALLOC
114
115 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
116                        struct lock_class_key *key)
117 {
118         /* Don't re-initialize a lock while it is held. */
119         debug_check_no_locks_freed((void *)sp, sizeof(*sp));
120         lockdep_init_map(&sp->dep_map, name, key, 0);
121         return init_srcu_struct_fields(sp);
122 }
123 EXPORT_SYMBOL_GPL(__init_srcu_struct);
124
125 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
126
127 /**
128  * init_srcu_struct - initialize a sleep-RCU structure
129  * @sp: structure to initialize.
130  *
131  * Must invoke this on a given srcu_struct before passing that srcu_struct
132  * to any other function.  Each srcu_struct represents a separate domain
133  * of SRCU protection.
134  */
135 int init_srcu_struct(struct srcu_struct *sp)
136 {
137         return init_srcu_struct_fields(sp);
138 }
139 EXPORT_SYMBOL_GPL(init_srcu_struct);
140
141 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
142
143 /*
144  * Returns approximate total of the readers' ->seq[] values for the
145  * rank of per-CPU counters specified by idx.
146  */
147 static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
148 {
149         int cpu;
150         unsigned long sum = 0;
151         unsigned long t;
152
153         for_each_possible_cpu(cpu) {
154                 t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
155                 sum += t;
156         }
157         return sum;
158 }
159
160 /*
161  * Returns approximate number of readers active on the specified rank
162  * of the per-CPU ->c[] counters.
163  */
164 static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
165 {
166         int cpu;
167         unsigned long sum = 0;
168         unsigned long t;
169
170         for_each_possible_cpu(cpu) {
171                 t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
172                 sum += t;
173         }
174         return sum;
175 }
176
177 /*
178  * Return true if the number of pre-existing readers is determined to
179  * be stably zero.  An example unstable zero can occur if the call
180  * to srcu_readers_active_idx() misses an __srcu_read_lock() increment,
181  * but due to task migration, sees the corresponding __srcu_read_unlock()
182  * decrement.  This can happen because srcu_readers_active_idx() takes
183  * time to sum the array, and might in fact be interrupted or preempted
184  * partway through the summation.
185  */
186 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
187 {
188         unsigned long seq;
189
190         seq = srcu_readers_seq_idx(sp, idx);
191
192         /*
193          * The following smp_mb() A pairs with the smp_mb() B located in
194          * __srcu_read_lock().  This pairing ensures that if an
195          * __srcu_read_lock() increments its counter after the summation
196          * in srcu_readers_active_idx(), then the corresponding SRCU read-side
197          * critical section will see any changes made prior to the start
198          * of the current SRCU grace period.
199          *
200          * Also, if the above call to srcu_readers_seq_idx() saw the
201          * increment of ->seq[], then the call to srcu_readers_active_idx()
202          * must see the increment of ->c[].
203          */
204         smp_mb(); /* A */
205
206         /*
207          * Note that srcu_readers_active_idx() can incorrectly return
208          * zero even though there is a pre-existing reader throughout.
209          * To see this, suppose that task A is in a very long SRCU
210          * read-side critical section that started on CPU 0, and that
211          * no other reader exists, so that the sum of the counters
212          * is equal to one.  Then suppose that task B starts executing
213          * srcu_readers_active_idx(), summing up to CPU 1, and then that
214          * task C starts reading on CPU 0, so that its increment is not
215          * summed, but finishes reading on CPU 2, so that its decrement
216          * -is- summed.  Then when task B completes its sum, it will
217          * incorrectly get zero, despite the fact that task A has been
218          * in its SRCU read-side critical section the whole time.
219          *
220          * We therefore do a validation step should srcu_readers_active_idx()
221          * return zero.
222          */
223         if (srcu_readers_active_idx(sp, idx) != 0)
224                 return false;
225
226         /*
227          * The remainder of this function is the validation step.
228          * The following smp_mb() D pairs with the smp_mb() C in
229          * __srcu_read_unlock().  If the __srcu_read_unlock() was seen
230          * by srcu_readers_active_idx() above, then any destructive
231          * operation performed after the grace period will happen after
232          * the corresponding SRCU read-side critical section.
233          *
234          * Note that there can be at most NR_CPUS worth of readers using
235          * the old index, which is not enough to overflow even a 32-bit
236          * integer.  (Yes, this does mean that systems having more than
237          * a billion or so CPUs need to be 64-bit systems.)  Therefore,
238          * the sum of the ->seq[] counters cannot possibly overflow.
239          * Therefore, the only way that the return values of the two
240          * calls to srcu_readers_seq_idx() can be equal is if there were
241          * no increments of the corresponding rank of ->seq[] counts
242          * in the interim.  But the missed-increment scenario laid out
243          * above includes an increment of the ->seq[] counter by
244          * the corresponding __srcu_read_lock().  Therefore, if this
245          * scenario occurs, the return values from the two calls to
246          * srcu_readers_seq_idx() will differ, and thus the validation
247          * step below suffices.
248          */
249         smp_mb(); /* D */
250
251         return srcu_readers_seq_idx(sp, idx) == seq;
252 }
253
254 /**
255  * srcu_readers_active - returns approximate number of readers.
256  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
257  *
258  * Note that this is not an atomic primitive, and can therefore suffer
259  * severe errors when invoked on an active srcu_struct.  That said, it
260  * can be useful as an error check at cleanup time.
261  */
262 static int srcu_readers_active(struct srcu_struct *sp)
263 {
264         int cpu;
265         unsigned long sum = 0;
266
267         for_each_possible_cpu(cpu) {
268                 sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
269                 sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
270         }
271         return sum;
272 }
273
274 /**
275  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
276  * @sp: structure to clean up.
277  *
278  * Must invoke this after you are finished using a given srcu_struct that
279  * was initialized via init_srcu_struct(), else you leak memory.
280  */
281 void cleanup_srcu_struct(struct srcu_struct *sp)
282 {
283         if (WARN_ON(srcu_readers_active(sp)))
284                 return; /* Leakage unless caller handles error. */
285         free_percpu(sp->per_cpu_ref);
286         sp->per_cpu_ref = NULL;
287 }
288 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
289
290 /*
291  * Counts the new reader in the appropriate per-CPU element of the
292  * srcu_struct.  Must be called from process context.
293  * Returns an index that must be passed to the matching srcu_read_unlock().
294  */
295 int __srcu_read_lock(struct srcu_struct *sp)
296 {
297         int idx;
298
299         idx = ACCESS_ONCE(sp->completed) & 0x1;
300         preempt_disable();
301         __this_cpu_inc(sp->per_cpu_ref->c[idx]);
302         smp_mb(); /* B */  /* Avoid leaking the critical section. */
303         __this_cpu_inc(sp->per_cpu_ref->seq[idx]);
304         preempt_enable();
305         return idx;
306 }
307 EXPORT_SYMBOL_GPL(__srcu_read_lock);
308
309 /*
310  * Removes the count for the old reader from the appropriate per-CPU
311  * element of the srcu_struct.  Note that this may well be a different
312  * CPU than that which was incremented by the corresponding srcu_read_lock().
313  * Must be called from process context.
314  */
315 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
316 {
317         smp_mb(); /* C */  /* Avoid leaking the critical section. */
318         this_cpu_dec(sp->per_cpu_ref->c[idx]);
319 }
320 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
321
322 /*
323  * We use an adaptive strategy for synchronize_srcu() and especially for
324  * synchronize_srcu_expedited().  We spin for a fixed time period
325  * (defined below) to allow SRCU readers to exit their read-side critical
326  * sections.  If there are still some readers after 10 microseconds,
327  * we repeatedly block for 1-millisecond time periods.  This approach
328  * has done well in testing, so there is no need for a config parameter.
329  */
330 #define SRCU_RETRY_CHECK_DELAY          5
331 #define SYNCHRONIZE_SRCU_TRYCOUNT       2
332 #define SYNCHRONIZE_SRCU_EXP_TRYCOUNT   12
333
334 /*
335  * @@@ Wait until all pre-existing readers complete.  Such readers
336  * will have used the index specified by "idx".
337  * the caller should ensures the ->completed is not changed while checking
338  * and idx = (->completed & 1) ^ 1
339  */
340 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
341 {
342         for (;;) {
343                 if (srcu_readers_active_idx_check(sp, idx))
344                         return true;
345                 if (--trycount <= 0)
346                         return false;
347                 udelay(SRCU_RETRY_CHECK_DELAY);
348         }
349 }
350
351 /*
352  * Increment the ->completed counter so that future SRCU readers will
353  * use the other rank of the ->c[] and ->seq[] arrays.  This allows
354  * us to wait for pre-existing readers in a starvation-free manner.
355  */
356 static void srcu_flip(struct srcu_struct *sp)
357 {
358         sp->completed++;
359 }
360
361 /*
362  * Enqueue an SRCU callback on the specified srcu_struct structure,
363  * initiating grace-period processing if it is not already running.
364  *
365  * Note that all CPUs must agree that the grace period extended beyond
366  * all pre-existing SRCU read-side critical section.  On systems with
367  * more than one CPU, this means that when "func()" is invoked, each CPU
368  * is guaranteed to have executed a full memory barrier since the end of
369  * its last corresponding SRCU read-side critical section whose beginning
370  * preceded the call to call_rcu().  It also means that each CPU executing
371  * an SRCU read-side critical section that continues beyond the start of
372  * "func()" must have executed a memory barrier after the call_rcu()
373  * but before the beginning of that SRCU read-side critical section.
374  * Note that these guarantees include CPUs that are offline, idle, or
375  * executing in user mode, as well as CPUs that are executing in the kernel.
376  *
377  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
378  * resulting SRCU callback function "func()", then both CPU A and CPU
379  * B are guaranteed to execute a full memory barrier during the time
380  * interval between the call to call_rcu() and the invocation of "func()".
381  * This guarantee applies even if CPU A and CPU B are the same CPU (but
382  * again only if the system has more than one CPU).
383  *
384  * Of course, these guarantees apply only for invocations of call_srcu(),
385  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
386  * srcu_struct structure.
387  */
388 void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
389                 void (*func)(struct rcu_head *head))
390 {
391         unsigned long flags;
392
393         head->next = NULL;
394         head->func = func;
395         spin_lock_irqsave(&sp->queue_lock, flags);
396         rcu_batch_queue(&sp->batch_queue, head);
397         if (!sp->running) {
398                 sp->running = true;
399                 queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
400         }
401         spin_unlock_irqrestore(&sp->queue_lock, flags);
402 }
403 EXPORT_SYMBOL_GPL(call_srcu);
404
405 struct rcu_synchronize {
406         struct rcu_head head;
407         struct completion completion;
408 };
409
410 /*
411  * Awaken the corresponding synchronize_srcu() instance now that a
412  * grace period has elapsed.
413  */
414 static void wakeme_after_rcu(struct rcu_head *head)
415 {
416         struct rcu_synchronize *rcu;
417
418         rcu = container_of(head, struct rcu_synchronize, head);
419         complete(&rcu->completion);
420 }
421
422 static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
423 static void srcu_reschedule(struct srcu_struct *sp);
424
425 /*
426  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
427  */
428 static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
429 {
430         struct rcu_synchronize rcu;
431         struct rcu_head *head = &rcu.head;
432         bool done = false;
433
434         rcu_lockdep_assert(!lock_is_held(&sp->dep_map) &&
435                            !lock_is_held(&rcu_bh_lock_map) &&
436                            !lock_is_held(&rcu_lock_map) &&
437                            !lock_is_held(&rcu_sched_lock_map),
438                            "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
439
440         might_sleep();
441         init_completion(&rcu.completion);
442
443         head->next = NULL;
444         head->func = wakeme_after_rcu;
445         spin_lock_irq(&sp->queue_lock);
446         if (!sp->running) {
447                 /* steal the processing owner */
448                 sp->running = true;
449                 rcu_batch_queue(&sp->batch_check0, head);
450                 spin_unlock_irq(&sp->queue_lock);
451
452                 srcu_advance_batches(sp, trycount);
453                 if (!rcu_batch_empty(&sp->batch_done)) {
454                         BUG_ON(sp->batch_done.head != head);
455                         rcu_batch_dequeue(&sp->batch_done);
456                         done = true;
457                 }
458                 /* give the processing owner to work_struct */
459                 srcu_reschedule(sp);
460         } else {
461                 rcu_batch_queue(&sp->batch_queue, head);
462                 spin_unlock_irq(&sp->queue_lock);
463         }
464
465         if (!done)
466                 wait_for_completion(&rcu.completion);
467 }
468
469 /**
470  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
471  * @sp: srcu_struct with which to synchronize.
472  *
473  * Wait for the count to drain to zero of both indexes. To avoid the
474  * possible starvation of synchronize_srcu(), it waits for the count of
475  * the index=((->completed & 1) ^ 1) to drain to zero at first,
476  * and then flip the completed and wait for the count of the other index.
477  *
478  * Can block; must be called from process context.
479  *
480  * Note that it is illegal to call synchronize_srcu() from the corresponding
481  * SRCU read-side critical section; doing so will result in deadlock.
482  * However, it is perfectly legal to call synchronize_srcu() on one
483  * srcu_struct from some other srcu_struct's read-side critical section,
484  * as long as the resulting graph of srcu_structs is acyclic.
485  *
486  * There are memory-ordering constraints implied by synchronize_srcu().
487  * On systems with more than one CPU, when synchronize_srcu() returns,
488  * each CPU is guaranteed to have executed a full memory barrier since
489  * the end of its last corresponding SRCU-sched read-side critical section
490  * whose beginning preceded the call to synchronize_srcu().  In addition,
491  * each CPU having an SRCU read-side critical section that extends beyond
492  * the return from synchronize_srcu() is guaranteed to have executed a
493  * full memory barrier after the beginning of synchronize_srcu() and before
494  * the beginning of that SRCU read-side critical section.  Note that these
495  * guarantees include CPUs that are offline, idle, or executing in user mode,
496  * as well as CPUs that are executing in the kernel.
497  *
498  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
499  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
500  * to have executed a full memory barrier during the execution of
501  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
502  * are the same CPU, but again only if the system has more than one CPU.
503  *
504  * Of course, these memory-ordering guarantees apply only when
505  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
506  * passed the same srcu_struct structure.
507  */
508 void synchronize_srcu(struct srcu_struct *sp)
509 {
510         __synchronize_srcu(sp, rcu_expedited
511                            ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
512                            : SYNCHRONIZE_SRCU_TRYCOUNT);
513 }
514 EXPORT_SYMBOL_GPL(synchronize_srcu);
515
516 /**
517  * synchronize_srcu_expedited - Brute-force SRCU grace period
518  * @sp: srcu_struct with which to synchronize.
519  *
520  * Wait for an SRCU grace period to elapse, but be more aggressive about
521  * spinning rather than blocking when waiting.
522  *
523  * Note that synchronize_srcu_expedited() has the same deadlock and
524  * memory-ordering properties as does synchronize_srcu().
525  */
526 void synchronize_srcu_expedited(struct srcu_struct *sp)
527 {
528         __synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
529 }
530 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
531
532 /**
533  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
534  * @sp: srcu_struct on which to wait for in-flight callbacks.
535  */
536 void srcu_barrier(struct srcu_struct *sp)
537 {
538         synchronize_srcu(sp);
539 }
540 EXPORT_SYMBOL_GPL(srcu_barrier);
541
542 /**
543  * srcu_batches_completed - return batches completed.
544  * @sp: srcu_struct on which to report batch completion.
545  *
546  * Report the number of batches, correlated with, but not necessarily
547  * precisely the same as, the number of grace periods that have elapsed.
548  */
549 unsigned long srcu_batches_completed(struct srcu_struct *sp)
550 {
551         return sp->completed;
552 }
553 EXPORT_SYMBOL_GPL(srcu_batches_completed);
554
555 #define SRCU_CALLBACK_BATCH     10
556 #define SRCU_INTERVAL           1
557
558 /*
559  * Move any new SRCU callbacks to the first stage of the SRCU grace
560  * period pipeline.
561  */
562 static void srcu_collect_new(struct srcu_struct *sp)
563 {
564         if (!rcu_batch_empty(&sp->batch_queue)) {
565                 spin_lock_irq(&sp->queue_lock);
566                 rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
567                 spin_unlock_irq(&sp->queue_lock);
568         }
569 }
570
571 /*
572  * Core SRCU state machine.  Advance callbacks from ->batch_check0 to
573  * ->batch_check1 and then to ->batch_done as readers drain.
574  */
575 static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
576 {
577         int idx = 1 ^ (sp->completed & 1);
578
579         /*
580          * Because readers might be delayed for an extended period after
581          * fetching ->completed for their index, at any point in time there
582          * might well be readers using both idx=0 and idx=1.  We therefore
583          * need to wait for readers to clear from both index values before
584          * invoking a callback.
585          */
586
587         if (rcu_batch_empty(&sp->batch_check0) &&
588             rcu_batch_empty(&sp->batch_check1))
589                 return; /* no callbacks need to be advanced */
590
591         if (!try_check_zero(sp, idx, trycount))
592                 return; /* failed to advance, will try after SRCU_INTERVAL */
593
594         /*
595          * The callbacks in ->batch_check1 have already done with their
596          * first zero check and flip back when they were enqueued on
597          * ->batch_check0 in a previous invocation of srcu_advance_batches().
598          * (Presumably try_check_zero() returned false during that
599          * invocation, leaving the callbacks stranded on ->batch_check1.)
600          * They are therefore ready to invoke, so move them to ->batch_done.
601          */
602         rcu_batch_move(&sp->batch_done, &sp->batch_check1);
603
604         if (rcu_batch_empty(&sp->batch_check0))
605                 return; /* no callbacks need to be advanced */
606         srcu_flip(sp);
607
608         /*
609          * The callbacks in ->batch_check0 just finished their
610          * first check zero and flip, so move them to ->batch_check1
611          * for future checking on the other idx.
612          */
613         rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
614
615         /*
616          * SRCU read-side critical sections are normally short, so check
617          * at least twice in quick succession after a flip.
618          */
619         trycount = trycount < 2 ? 2 : trycount;
620         if (!try_check_zero(sp, idx^1, trycount))
621                 return; /* failed to advance, will try after SRCU_INTERVAL */
622
623         /*
624          * The callbacks in ->batch_check1 have now waited for all
625          * pre-existing readers using both idx values.  They are therefore
626          * ready to invoke, so move them to ->batch_done.
627          */
628         rcu_batch_move(&sp->batch_done, &sp->batch_check1);
629 }
630
631 /*
632  * Invoke a limited number of SRCU callbacks that have passed through
633  * their grace period.  If there are more to do, SRCU will reschedule
634  * the workqueue.
635  */
636 static void srcu_invoke_callbacks(struct srcu_struct *sp)
637 {
638         int i;
639         struct rcu_head *head;
640
641         for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
642                 head = rcu_batch_dequeue(&sp->batch_done);
643                 if (!head)
644                         break;
645                 local_bh_disable();
646                 head->func(head);
647                 local_bh_enable();
648         }
649 }
650
651 /*
652  * Finished one round of SRCU grace period.  Start another if there are
653  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
654  */
655 static void srcu_reschedule(struct srcu_struct *sp)
656 {
657         bool pending = true;
658
659         if (rcu_batch_empty(&sp->batch_done) &&
660             rcu_batch_empty(&sp->batch_check1) &&
661             rcu_batch_empty(&sp->batch_check0) &&
662             rcu_batch_empty(&sp->batch_queue)) {
663                 spin_lock_irq(&sp->queue_lock);
664                 if (rcu_batch_empty(&sp->batch_done) &&
665                     rcu_batch_empty(&sp->batch_check1) &&
666                     rcu_batch_empty(&sp->batch_check0) &&
667                     rcu_batch_empty(&sp->batch_queue)) {
668                         sp->running = false;
669                         pending = false;
670                 }
671                 spin_unlock_irq(&sp->queue_lock);
672         }
673
674         if (pending)
675                 queue_delayed_work(system_power_efficient_wq,
676                                    &sp->work, SRCU_INTERVAL);
677 }
678
679 /*
680  * This is the work-queue function that handles SRCU grace periods.
681  */
682 void process_srcu(struct work_struct *work)
683 {
684         struct srcu_struct *sp;
685
686         sp = container_of(work, struct srcu_struct, work.work);
687
688         srcu_collect_new(sp);
689         srcu_advance_batches(sp, 1);
690         srcu_invoke_callbacks(sp);
691         srcu_reschedule(sp);
692 }
693 EXPORT_SYMBOL_GPL(process_srcu);