Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone_end_pfn(zone);
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646                 (unsigned long long) start_pfn << PAGE_SHIFT,
647                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649
650 /*
651  * Set bits in this map correspond to the page frames the contents of which
652  * should not be saved during the suspend.
653  */
654 static struct memory_bitmap *forbidden_pages_map;
655
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658
659 /*
660  * Each page frame allocated for creating the image is marked by setting the
661  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662  */
663
664 void swsusp_set_page_free(struct page *page)
665 {
666         if (free_pages_map)
667                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669
670 static int swsusp_page_is_free(struct page *page)
671 {
672         return free_pages_map ?
673                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675
676 void swsusp_unset_page_free(struct page *page)
677 {
678         if (free_pages_map)
679                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684         if (forbidden_pages_map)
685                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690         return forbidden_pages_map ?
691                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696         if (forbidden_pages_map)
697                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699
700 /**
701  *      mark_nosave_pages - set bits corresponding to the page frames the
702  *      contents of which should not be saved in a given bitmap.
703  */
704
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707         struct nosave_region *region;
708
709         if (list_empty(&nosave_regions))
710                 return;
711
712         list_for_each_entry(region, &nosave_regions, list) {
713                 unsigned long pfn;
714
715                 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
717                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718                                 - 1);
719
720                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721                         if (pfn_valid(pfn)) {
722                                 /*
723                                  * It is safe to ignore the result of
724                                  * mem_bm_set_bit_check() here, since we won't
725                                  * touch the PFNs for which the error is
726                                  * returned anyway.
727                                  */
728                                 mem_bm_set_bit_check(bm, pfn);
729                         }
730         }
731 }
732
733 /**
734  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
735  *      frames that should not be saved and free page frames.  The pointers
736  *      forbidden_pages_map and free_pages_map are only modified if everything
737  *      goes well, because we don't want the bits to be used before both bitmaps
738  *      are set up.
739  */
740
741 int create_basic_memory_bitmaps(void)
742 {
743         struct memory_bitmap *bm1, *bm2;
744         int error = 0;
745
746         if (forbidden_pages_map && free_pages_map)
747                 return 0;
748         else
749                 BUG_ON(forbidden_pages_map || free_pages_map);
750
751         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
752         if (!bm1)
753                 return -ENOMEM;
754
755         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
756         if (error)
757                 goto Free_first_object;
758
759         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760         if (!bm2)
761                 goto Free_first_bitmap;
762
763         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
764         if (error)
765                 goto Free_second_object;
766
767         forbidden_pages_map = bm1;
768         free_pages_map = bm2;
769         mark_nosave_pages(forbidden_pages_map);
770
771         pr_debug("PM: Basic memory bitmaps created\n");
772
773         return 0;
774
775  Free_second_object:
776         kfree(bm2);
777  Free_first_bitmap:
778         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779  Free_first_object:
780         kfree(bm1);
781         return -ENOMEM;
782 }
783
784 /**
785  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
786  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
787  *      so that the bitmaps themselves are not referred to while they are being
788  *      freed.
789  */
790
791 void free_basic_memory_bitmaps(void)
792 {
793         struct memory_bitmap *bm1, *bm2;
794
795         if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
796                 return;
797
798         bm1 = forbidden_pages_map;
799         bm2 = free_pages_map;
800         forbidden_pages_map = NULL;
801         free_pages_map = NULL;
802         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
803         kfree(bm1);
804         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
805         kfree(bm2);
806
807         pr_debug("PM: Basic memory bitmaps freed\n");
808 }
809
810 /**
811  *      snapshot_additional_pages - estimate the number of additional pages
812  *      be needed for setting up the suspend image data structures for given
813  *      zone (usually the returned value is greater than the exact number)
814  */
815
816 unsigned int snapshot_additional_pages(struct zone *zone)
817 {
818         unsigned int res;
819
820         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
821         res += DIV_ROUND_UP(res * sizeof(struct bm_block),
822                             LINKED_PAGE_DATA_SIZE);
823         return 2 * res;
824 }
825
826 #ifdef CONFIG_HIGHMEM
827 /**
828  *      count_free_highmem_pages - compute the total number of free highmem
829  *      pages, system-wide.
830  */
831
832 static unsigned int count_free_highmem_pages(void)
833 {
834         struct zone *zone;
835         unsigned int cnt = 0;
836
837         for_each_populated_zone(zone)
838                 if (is_highmem(zone))
839                         cnt += zone_page_state(zone, NR_FREE_PAGES);
840
841         return cnt;
842 }
843
844 /**
845  *      saveable_highmem_page - Determine whether a highmem page should be
846  *      included in the suspend image.
847  *
848  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
849  *      and it isn't a part of a free chunk of pages.
850  */
851 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
852 {
853         struct page *page;
854
855         if (!pfn_valid(pfn))
856                 return NULL;
857
858         page = pfn_to_page(pfn);
859         if (page_zone(page) != zone)
860                 return NULL;
861
862         BUG_ON(!PageHighMem(page));
863
864         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
865             PageReserved(page))
866                 return NULL;
867
868         if (page_is_guard(page))
869                 return NULL;
870
871         return page;
872 }
873
874 /**
875  *      count_highmem_pages - compute the total number of saveable highmem
876  *      pages.
877  */
878
879 static unsigned int count_highmem_pages(void)
880 {
881         struct zone *zone;
882         unsigned int n = 0;
883
884         for_each_populated_zone(zone) {
885                 unsigned long pfn, max_zone_pfn;
886
887                 if (!is_highmem(zone))
888                         continue;
889
890                 mark_free_pages(zone);
891                 max_zone_pfn = zone_end_pfn(zone);
892                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
893                         if (saveable_highmem_page(zone, pfn))
894                                 n++;
895         }
896         return n;
897 }
898 #else
899 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
900 {
901         return NULL;
902 }
903 #endif /* CONFIG_HIGHMEM */
904
905 /**
906  *      saveable_page - Determine whether a non-highmem page should be included
907  *      in the suspend image.
908  *
909  *      We should save the page if it isn't Nosave, and is not in the range
910  *      of pages statically defined as 'unsaveable', and it isn't a part of
911  *      a free chunk of pages.
912  */
913 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
914 {
915         struct page *page;
916
917         if (!pfn_valid(pfn))
918                 return NULL;
919
920         page = pfn_to_page(pfn);
921         if (page_zone(page) != zone)
922                 return NULL;
923
924         BUG_ON(PageHighMem(page));
925
926         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
927                 return NULL;
928
929         if (PageReserved(page)
930             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
931                 return NULL;
932
933         if (page_is_guard(page))
934                 return NULL;
935
936         return page;
937 }
938
939 /**
940  *      count_data_pages - compute the total number of saveable non-highmem
941  *      pages.
942  */
943
944 static unsigned int count_data_pages(void)
945 {
946         struct zone *zone;
947         unsigned long pfn, max_zone_pfn;
948         unsigned int n = 0;
949
950         for_each_populated_zone(zone) {
951                 if (is_highmem(zone))
952                         continue;
953
954                 mark_free_pages(zone);
955                 max_zone_pfn = zone_end_pfn(zone);
956                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
957                         if (saveable_page(zone, pfn))
958                                 n++;
959         }
960         return n;
961 }
962
963 /* This is needed, because copy_page and memcpy are not usable for copying
964  * task structs.
965  */
966 static inline void do_copy_page(long *dst, long *src)
967 {
968         int n;
969
970         for (n = PAGE_SIZE / sizeof(long); n; n--)
971                 *dst++ = *src++;
972 }
973
974
975 /**
976  *      safe_copy_page - check if the page we are going to copy is marked as
977  *              present in the kernel page tables (this always is the case if
978  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
979  *              kernel_page_present() always returns 'true').
980  */
981 static void safe_copy_page(void *dst, struct page *s_page)
982 {
983         if (kernel_page_present(s_page)) {
984                 do_copy_page(dst, page_address(s_page));
985         } else {
986                 kernel_map_pages(s_page, 1, 1);
987                 do_copy_page(dst, page_address(s_page));
988                 kernel_map_pages(s_page, 1, 0);
989         }
990 }
991
992
993 #ifdef CONFIG_HIGHMEM
994 static inline struct page *
995 page_is_saveable(struct zone *zone, unsigned long pfn)
996 {
997         return is_highmem(zone) ?
998                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
999 }
1000
1001 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1002 {
1003         struct page *s_page, *d_page;
1004         void *src, *dst;
1005
1006         s_page = pfn_to_page(src_pfn);
1007         d_page = pfn_to_page(dst_pfn);
1008         if (PageHighMem(s_page)) {
1009                 src = kmap_atomic(s_page);
1010                 dst = kmap_atomic(d_page);
1011                 do_copy_page(dst, src);
1012                 kunmap_atomic(dst);
1013                 kunmap_atomic(src);
1014         } else {
1015                 if (PageHighMem(d_page)) {
1016                         /* Page pointed to by src may contain some kernel
1017                          * data modified by kmap_atomic()
1018                          */
1019                         safe_copy_page(buffer, s_page);
1020                         dst = kmap_atomic(d_page);
1021                         copy_page(dst, buffer);
1022                         kunmap_atomic(dst);
1023                 } else {
1024                         safe_copy_page(page_address(d_page), s_page);
1025                 }
1026         }
1027 }
1028 #else
1029 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1030
1031 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1032 {
1033         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1034                                 pfn_to_page(src_pfn));
1035 }
1036 #endif /* CONFIG_HIGHMEM */
1037
1038 static void
1039 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1040 {
1041         struct zone *zone;
1042         unsigned long pfn;
1043
1044         for_each_populated_zone(zone) {
1045                 unsigned long max_zone_pfn;
1046
1047                 mark_free_pages(zone);
1048                 max_zone_pfn = zone_end_pfn(zone);
1049                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1050                         if (page_is_saveable(zone, pfn))
1051                                 memory_bm_set_bit(orig_bm, pfn);
1052         }
1053         memory_bm_position_reset(orig_bm);
1054         memory_bm_position_reset(copy_bm);
1055         for(;;) {
1056                 pfn = memory_bm_next_pfn(orig_bm);
1057                 if (unlikely(pfn == BM_END_OF_MAP))
1058                         break;
1059                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1060         }
1061 }
1062
1063 /* Total number of image pages */
1064 static unsigned int nr_copy_pages;
1065 /* Number of pages needed for saving the original pfns of the image pages */
1066 static unsigned int nr_meta_pages;
1067 /*
1068  * Numbers of normal and highmem page frames allocated for hibernation image
1069  * before suspending devices.
1070  */
1071 unsigned int alloc_normal, alloc_highmem;
1072 /*
1073  * Memory bitmap used for marking saveable pages (during hibernation) or
1074  * hibernation image pages (during restore)
1075  */
1076 static struct memory_bitmap orig_bm;
1077 /*
1078  * Memory bitmap used during hibernation for marking allocated page frames that
1079  * will contain copies of saveable pages.  During restore it is initially used
1080  * for marking hibernation image pages, but then the set bits from it are
1081  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1082  * used for marking "safe" highmem pages, but it has to be reinitialized for
1083  * this purpose.
1084  */
1085 static struct memory_bitmap copy_bm;
1086
1087 /**
1088  *      swsusp_free - free pages allocated for the suspend.
1089  *
1090  *      Suspend pages are alocated before the atomic copy is made, so we
1091  *      need to release them after the resume.
1092  */
1093
1094 void swsusp_free(void)
1095 {
1096         struct zone *zone;
1097         unsigned long pfn, max_zone_pfn;
1098
1099         for_each_populated_zone(zone) {
1100                 max_zone_pfn = zone_end_pfn(zone);
1101                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1102                         if (pfn_valid(pfn)) {
1103                                 struct page *page = pfn_to_page(pfn);
1104
1105                                 if (swsusp_page_is_forbidden(page) &&
1106                                     swsusp_page_is_free(page)) {
1107                                         swsusp_unset_page_forbidden(page);
1108                                         swsusp_unset_page_free(page);
1109                                         __free_page(page);
1110                                 }
1111                         }
1112         }
1113         nr_copy_pages = 0;
1114         nr_meta_pages = 0;
1115         restore_pblist = NULL;
1116         buffer = NULL;
1117         alloc_normal = 0;
1118         alloc_highmem = 0;
1119 }
1120
1121 /* Helper functions used for the shrinking of memory. */
1122
1123 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1124
1125 /**
1126  * preallocate_image_pages - Allocate a number of pages for hibernation image
1127  * @nr_pages: Number of page frames to allocate.
1128  * @mask: GFP flags to use for the allocation.
1129  *
1130  * Return value: Number of page frames actually allocated
1131  */
1132 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1133 {
1134         unsigned long nr_alloc = 0;
1135
1136         while (nr_pages > 0) {
1137                 struct page *page;
1138
1139                 page = alloc_image_page(mask);
1140                 if (!page)
1141                         break;
1142                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1143                 if (PageHighMem(page))
1144                         alloc_highmem++;
1145                 else
1146                         alloc_normal++;
1147                 nr_pages--;
1148                 nr_alloc++;
1149         }
1150
1151         return nr_alloc;
1152 }
1153
1154 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1155                                               unsigned long avail_normal)
1156 {
1157         unsigned long alloc;
1158
1159         if (avail_normal <= alloc_normal)
1160                 return 0;
1161
1162         alloc = avail_normal - alloc_normal;
1163         if (nr_pages < alloc)
1164                 alloc = nr_pages;
1165
1166         return preallocate_image_pages(alloc, GFP_IMAGE);
1167 }
1168
1169 #ifdef CONFIG_HIGHMEM
1170 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1171 {
1172         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1173 }
1174
1175 /**
1176  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1177  */
1178 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1179 {
1180         x *= multiplier;
1181         do_div(x, base);
1182         return (unsigned long)x;
1183 }
1184
1185 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1186                                                 unsigned long highmem,
1187                                                 unsigned long total)
1188 {
1189         unsigned long alloc = __fraction(nr_pages, highmem, total);
1190
1191         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1192 }
1193 #else /* CONFIG_HIGHMEM */
1194 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1195 {
1196         return 0;
1197 }
1198
1199 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1200                                                 unsigned long highmem,
1201                                                 unsigned long total)
1202 {
1203         return 0;
1204 }
1205 #endif /* CONFIG_HIGHMEM */
1206
1207 /**
1208  * free_unnecessary_pages - Release preallocated pages not needed for the image
1209  */
1210 static void free_unnecessary_pages(void)
1211 {
1212         unsigned long save, to_free_normal, to_free_highmem;
1213
1214         save = count_data_pages();
1215         if (alloc_normal >= save) {
1216                 to_free_normal = alloc_normal - save;
1217                 save = 0;
1218         } else {
1219                 to_free_normal = 0;
1220                 save -= alloc_normal;
1221         }
1222         save += count_highmem_pages();
1223         if (alloc_highmem >= save) {
1224                 to_free_highmem = alloc_highmem - save;
1225         } else {
1226                 to_free_highmem = 0;
1227                 save -= alloc_highmem;
1228                 if (to_free_normal > save)
1229                         to_free_normal -= save;
1230                 else
1231                         to_free_normal = 0;
1232         }
1233
1234         memory_bm_position_reset(&copy_bm);
1235
1236         while (to_free_normal > 0 || to_free_highmem > 0) {
1237                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1238                 struct page *page = pfn_to_page(pfn);
1239
1240                 if (PageHighMem(page)) {
1241                         if (!to_free_highmem)
1242                                 continue;
1243                         to_free_highmem--;
1244                         alloc_highmem--;
1245                 } else {
1246                         if (!to_free_normal)
1247                                 continue;
1248                         to_free_normal--;
1249                         alloc_normal--;
1250                 }
1251                 memory_bm_clear_bit(&copy_bm, pfn);
1252                 swsusp_unset_page_forbidden(page);
1253                 swsusp_unset_page_free(page);
1254                 __free_page(page);
1255         }
1256 }
1257
1258 /**
1259  * minimum_image_size - Estimate the minimum acceptable size of an image
1260  * @saveable: Number of saveable pages in the system.
1261  *
1262  * We want to avoid attempting to free too much memory too hard, so estimate the
1263  * minimum acceptable size of a hibernation image to use as the lower limit for
1264  * preallocating memory.
1265  *
1266  * We assume that the minimum image size should be proportional to
1267  *
1268  * [number of saveable pages] - [number of pages that can be freed in theory]
1269  *
1270  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1271  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1272  * minus mapped file pages.
1273  */
1274 static unsigned long minimum_image_size(unsigned long saveable)
1275 {
1276         unsigned long size;
1277
1278         size = global_page_state(NR_SLAB_RECLAIMABLE)
1279                 + global_page_state(NR_ACTIVE_ANON)
1280                 + global_page_state(NR_INACTIVE_ANON)
1281                 + global_page_state(NR_ACTIVE_FILE)
1282                 + global_page_state(NR_INACTIVE_FILE)
1283                 - global_page_state(NR_FILE_MAPPED);
1284
1285         return saveable <= size ? 0 : saveable - size;
1286 }
1287
1288 /**
1289  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1290  *
1291  * To create a hibernation image it is necessary to make a copy of every page
1292  * frame in use.  We also need a number of page frames to be free during
1293  * hibernation for allocations made while saving the image and for device
1294  * drivers, in case they need to allocate memory from their hibernation
1295  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1296  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1297  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1298  * total number of available page frames and allocate at least
1299  *
1300  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1301  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1302  *
1303  * of them, which corresponds to the maximum size of a hibernation image.
1304  *
1305  * If image_size is set below the number following from the above formula,
1306  * the preallocation of memory is continued until the total number of saveable
1307  * pages in the system is below the requested image size or the minimum
1308  * acceptable image size returned by minimum_image_size(), whichever is greater.
1309  */
1310 int hibernate_preallocate_memory(void)
1311 {
1312         struct zone *zone;
1313         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1314         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1315         struct timeval start, stop;
1316         int error;
1317
1318         printk(KERN_INFO "PM: Preallocating image memory... ");
1319         do_gettimeofday(&start);
1320
1321         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1322         if (error)
1323                 goto err_out;
1324
1325         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1326         if (error)
1327                 goto err_out;
1328
1329         alloc_normal = 0;
1330         alloc_highmem = 0;
1331
1332         /* Count the number of saveable data pages. */
1333         save_highmem = count_highmem_pages();
1334         saveable = count_data_pages();
1335
1336         /*
1337          * Compute the total number of page frames we can use (count) and the
1338          * number of pages needed for image metadata (size).
1339          */
1340         count = saveable;
1341         saveable += save_highmem;
1342         highmem = save_highmem;
1343         size = 0;
1344         for_each_populated_zone(zone) {
1345                 size += snapshot_additional_pages(zone);
1346                 if (is_highmem(zone))
1347                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1348                 else
1349                         count += zone_page_state(zone, NR_FREE_PAGES);
1350         }
1351         avail_normal = count;
1352         count += highmem;
1353         count -= totalreserve_pages;
1354
1355         /* Add number of pages required for page keys (s390 only). */
1356         size += page_key_additional_pages(saveable);
1357
1358         /* Compute the maximum number of saveable pages to leave in memory. */
1359         max_size = (count - (size + PAGES_FOR_IO)) / 2
1360                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1361         /* Compute the desired number of image pages specified by image_size. */
1362         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1363         if (size > max_size)
1364                 size = max_size;
1365         /*
1366          * If the desired number of image pages is at least as large as the
1367          * current number of saveable pages in memory, allocate page frames for
1368          * the image and we're done.
1369          */
1370         if (size >= saveable) {
1371                 pages = preallocate_image_highmem(save_highmem);
1372                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1373                 goto out;
1374         }
1375
1376         /* Estimate the minimum size of the image. */
1377         pages = minimum_image_size(saveable);
1378         /*
1379          * To avoid excessive pressure on the normal zone, leave room in it to
1380          * accommodate an image of the minimum size (unless it's already too
1381          * small, in which case don't preallocate pages from it at all).
1382          */
1383         if (avail_normal > pages)
1384                 avail_normal -= pages;
1385         else
1386                 avail_normal = 0;
1387         if (size < pages)
1388                 size = min_t(unsigned long, pages, max_size);
1389
1390         /*
1391          * Let the memory management subsystem know that we're going to need a
1392          * large number of page frames to allocate and make it free some memory.
1393          * NOTE: If this is not done, performance will be hurt badly in some
1394          * test cases.
1395          */
1396         shrink_all_memory(saveable - size);
1397
1398         /*
1399          * The number of saveable pages in memory was too high, so apply some
1400          * pressure to decrease it.  First, make room for the largest possible
1401          * image and fail if that doesn't work.  Next, try to decrease the size
1402          * of the image as much as indicated by 'size' using allocations from
1403          * highmem and non-highmem zones separately.
1404          */
1405         pages_highmem = preallocate_image_highmem(highmem / 2);
1406         alloc = count - max_size;
1407         if (alloc > pages_highmem)
1408                 alloc -= pages_highmem;
1409         else
1410                 alloc = 0;
1411         pages = preallocate_image_memory(alloc, avail_normal);
1412         if (pages < alloc) {
1413                 /* We have exhausted non-highmem pages, try highmem. */
1414                 alloc -= pages;
1415                 pages += pages_highmem;
1416                 pages_highmem = preallocate_image_highmem(alloc);
1417                 if (pages_highmem < alloc)
1418                         goto err_out;
1419                 pages += pages_highmem;
1420                 /*
1421                  * size is the desired number of saveable pages to leave in
1422                  * memory, so try to preallocate (all memory - size) pages.
1423                  */
1424                 alloc = (count - pages) - size;
1425                 pages += preallocate_image_highmem(alloc);
1426         } else {
1427                 /*
1428                  * There are approximately max_size saveable pages at this point
1429                  * and we want to reduce this number down to size.
1430                  */
1431                 alloc = max_size - size;
1432                 size = preallocate_highmem_fraction(alloc, highmem, count);
1433                 pages_highmem += size;
1434                 alloc -= size;
1435                 size = preallocate_image_memory(alloc, avail_normal);
1436                 pages_highmem += preallocate_image_highmem(alloc - size);
1437                 pages += pages_highmem + size;
1438         }
1439
1440         /*
1441          * We only need as many page frames for the image as there are saveable
1442          * pages in memory, but we have allocated more.  Release the excessive
1443          * ones now.
1444          */
1445         free_unnecessary_pages();
1446
1447  out:
1448         do_gettimeofday(&stop);
1449         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1450         swsusp_show_speed(&start, &stop, pages, "Allocated");
1451
1452         return 0;
1453
1454  err_out:
1455         printk(KERN_CONT "\n");
1456         swsusp_free();
1457         return -ENOMEM;
1458 }
1459
1460 #ifdef CONFIG_HIGHMEM
1461 /**
1462   *     count_pages_for_highmem - compute the number of non-highmem pages
1463   *     that will be necessary for creating copies of highmem pages.
1464   */
1465
1466 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1467 {
1468         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1469
1470         if (free_highmem >= nr_highmem)
1471                 nr_highmem = 0;
1472         else
1473                 nr_highmem -= free_highmem;
1474
1475         return nr_highmem;
1476 }
1477 #else
1478 static unsigned int
1479 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1480 #endif /* CONFIG_HIGHMEM */
1481
1482 /**
1483  *      enough_free_mem - Make sure we have enough free memory for the
1484  *      snapshot image.
1485  */
1486
1487 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1488 {
1489         struct zone *zone;
1490         unsigned int free = alloc_normal;
1491
1492         for_each_populated_zone(zone)
1493                 if (!is_highmem(zone))
1494                         free += zone_page_state(zone, NR_FREE_PAGES);
1495
1496         nr_pages += count_pages_for_highmem(nr_highmem);
1497         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1498                 nr_pages, PAGES_FOR_IO, free);
1499
1500         return free > nr_pages + PAGES_FOR_IO;
1501 }
1502
1503 #ifdef CONFIG_HIGHMEM
1504 /**
1505  *      get_highmem_buffer - if there are some highmem pages in the suspend
1506  *      image, we may need the buffer to copy them and/or load their data.
1507  */
1508
1509 static inline int get_highmem_buffer(int safe_needed)
1510 {
1511         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1512         return buffer ? 0 : -ENOMEM;
1513 }
1514
1515 /**
1516  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1517  *      Try to allocate as many pages as needed, but if the number of free
1518  *      highmem pages is lesser than that, allocate them all.
1519  */
1520
1521 static inline unsigned int
1522 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1523 {
1524         unsigned int to_alloc = count_free_highmem_pages();
1525
1526         if (to_alloc > nr_highmem)
1527                 to_alloc = nr_highmem;
1528
1529         nr_highmem -= to_alloc;
1530         while (to_alloc-- > 0) {
1531                 struct page *page;
1532
1533                 page = alloc_image_page(__GFP_HIGHMEM);
1534                 memory_bm_set_bit(bm, page_to_pfn(page));
1535         }
1536         return nr_highmem;
1537 }
1538 #else
1539 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1540
1541 static inline unsigned int
1542 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1543 #endif /* CONFIG_HIGHMEM */
1544
1545 /**
1546  *      swsusp_alloc - allocate memory for the suspend image
1547  *
1548  *      We first try to allocate as many highmem pages as there are
1549  *      saveable highmem pages in the system.  If that fails, we allocate
1550  *      non-highmem pages for the copies of the remaining highmem ones.
1551  *
1552  *      In this approach it is likely that the copies of highmem pages will
1553  *      also be located in the high memory, because of the way in which
1554  *      copy_data_pages() works.
1555  */
1556
1557 static int
1558 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1559                 unsigned int nr_pages, unsigned int nr_highmem)
1560 {
1561         if (nr_highmem > 0) {
1562                 if (get_highmem_buffer(PG_ANY))
1563                         goto err_out;
1564                 if (nr_highmem > alloc_highmem) {
1565                         nr_highmem -= alloc_highmem;
1566                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1567                 }
1568         }
1569         if (nr_pages > alloc_normal) {
1570                 nr_pages -= alloc_normal;
1571                 while (nr_pages-- > 0) {
1572                         struct page *page;
1573
1574                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1575                         if (!page)
1576                                 goto err_out;
1577                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1578                 }
1579         }
1580
1581         return 0;
1582
1583  err_out:
1584         swsusp_free();
1585         return -ENOMEM;
1586 }
1587
1588 asmlinkage int swsusp_save(void)
1589 {
1590         unsigned int nr_pages, nr_highmem;
1591
1592         printk(KERN_INFO "PM: Creating hibernation image:\n");
1593
1594         drain_local_pages(NULL);
1595         nr_pages = count_data_pages();
1596         nr_highmem = count_highmem_pages();
1597         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1598
1599         if (!enough_free_mem(nr_pages, nr_highmem)) {
1600                 printk(KERN_ERR "PM: Not enough free memory\n");
1601                 return -ENOMEM;
1602         }
1603
1604         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1605                 printk(KERN_ERR "PM: Memory allocation failed\n");
1606                 return -ENOMEM;
1607         }
1608
1609         /* During allocating of suspend pagedir, new cold pages may appear.
1610          * Kill them.
1611          */
1612         drain_local_pages(NULL);
1613         copy_data_pages(&copy_bm, &orig_bm);
1614
1615         /*
1616          * End of critical section. From now on, we can write to memory,
1617          * but we should not touch disk. This specially means we must _not_
1618          * touch swap space! Except we must write out our image of course.
1619          */
1620
1621         nr_pages += nr_highmem;
1622         nr_copy_pages = nr_pages;
1623         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1624
1625         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1626                 nr_pages);
1627
1628         return 0;
1629 }
1630
1631 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1632 static int init_header_complete(struct swsusp_info *info)
1633 {
1634         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1635         info->version_code = LINUX_VERSION_CODE;
1636         return 0;
1637 }
1638
1639 static char *check_image_kernel(struct swsusp_info *info)
1640 {
1641         if (info->version_code != LINUX_VERSION_CODE)
1642                 return "kernel version";
1643         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1644                 return "system type";
1645         if (strcmp(info->uts.release,init_utsname()->release))
1646                 return "kernel release";
1647         if (strcmp(info->uts.version,init_utsname()->version))
1648                 return "version";
1649         if (strcmp(info->uts.machine,init_utsname()->machine))
1650                 return "machine";
1651         return NULL;
1652 }
1653 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1654
1655 unsigned long snapshot_get_image_size(void)
1656 {
1657         return nr_copy_pages + nr_meta_pages + 1;
1658 }
1659
1660 static int init_header(struct swsusp_info *info)
1661 {
1662         memset(info, 0, sizeof(struct swsusp_info));
1663         info->num_physpages = get_num_physpages();
1664         info->image_pages = nr_copy_pages;
1665         info->pages = snapshot_get_image_size();
1666         info->size = info->pages;
1667         info->size <<= PAGE_SHIFT;
1668         return init_header_complete(info);
1669 }
1670
1671 /**
1672  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1673  *      are stored in the array @buf[] (1 page at a time)
1674  */
1675
1676 static inline void
1677 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1678 {
1679         int j;
1680
1681         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1682                 buf[j] = memory_bm_next_pfn(bm);
1683                 if (unlikely(buf[j] == BM_END_OF_MAP))
1684                         break;
1685                 /* Save page key for data page (s390 only). */
1686                 page_key_read(buf + j);
1687         }
1688 }
1689
1690 /**
1691  *      snapshot_read_next - used for reading the system memory snapshot.
1692  *
1693  *      On the first call to it @handle should point to a zeroed
1694  *      snapshot_handle structure.  The structure gets updated and a pointer
1695  *      to it should be passed to this function every next time.
1696  *
1697  *      On success the function returns a positive number.  Then, the caller
1698  *      is allowed to read up to the returned number of bytes from the memory
1699  *      location computed by the data_of() macro.
1700  *
1701  *      The function returns 0 to indicate the end of data stream condition,
1702  *      and a negative number is returned on error.  In such cases the
1703  *      structure pointed to by @handle is not updated and should not be used
1704  *      any more.
1705  */
1706
1707 int snapshot_read_next(struct snapshot_handle *handle)
1708 {
1709         if (handle->cur > nr_meta_pages + nr_copy_pages)
1710                 return 0;
1711
1712         if (!buffer) {
1713                 /* This makes the buffer be freed by swsusp_free() */
1714                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1715                 if (!buffer)
1716                         return -ENOMEM;
1717         }
1718         if (!handle->cur) {
1719                 int error;
1720
1721                 error = init_header((struct swsusp_info *)buffer);
1722                 if (error)
1723                         return error;
1724                 handle->buffer = buffer;
1725                 memory_bm_position_reset(&orig_bm);
1726                 memory_bm_position_reset(&copy_bm);
1727         } else if (handle->cur <= nr_meta_pages) {
1728                 clear_page(buffer);
1729                 pack_pfns(buffer, &orig_bm);
1730         } else {
1731                 struct page *page;
1732
1733                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1734                 if (PageHighMem(page)) {
1735                         /* Highmem pages are copied to the buffer,
1736                          * because we can't return with a kmapped
1737                          * highmem page (we may not be called again).
1738                          */
1739                         void *kaddr;
1740
1741                         kaddr = kmap_atomic(page);
1742                         copy_page(buffer, kaddr);
1743                         kunmap_atomic(kaddr);
1744                         handle->buffer = buffer;
1745                 } else {
1746                         handle->buffer = page_address(page);
1747                 }
1748         }
1749         handle->cur++;
1750         return PAGE_SIZE;
1751 }
1752
1753 /**
1754  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1755  *      the image during resume, because they conflict with the pages that
1756  *      had been used before suspend
1757  */
1758
1759 static int mark_unsafe_pages(struct memory_bitmap *bm)
1760 {
1761         struct zone *zone;
1762         unsigned long pfn, max_zone_pfn;
1763
1764         /* Clear page flags */
1765         for_each_populated_zone(zone) {
1766                 max_zone_pfn = zone_end_pfn(zone);
1767                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1768                         if (pfn_valid(pfn))
1769                                 swsusp_unset_page_free(pfn_to_page(pfn));
1770         }
1771
1772         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1773         memory_bm_position_reset(bm);
1774         do {
1775                 pfn = memory_bm_next_pfn(bm);
1776                 if (likely(pfn != BM_END_OF_MAP)) {
1777                         if (likely(pfn_valid(pfn)))
1778                                 swsusp_set_page_free(pfn_to_page(pfn));
1779                         else
1780                                 return -EFAULT;
1781                 }
1782         } while (pfn != BM_END_OF_MAP);
1783
1784         allocated_unsafe_pages = 0;
1785
1786         return 0;
1787 }
1788
1789 static void
1790 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1791 {
1792         unsigned long pfn;
1793
1794         memory_bm_position_reset(src);
1795         pfn = memory_bm_next_pfn(src);
1796         while (pfn != BM_END_OF_MAP) {
1797                 memory_bm_set_bit(dst, pfn);
1798                 pfn = memory_bm_next_pfn(src);
1799         }
1800 }
1801
1802 static int check_header(struct swsusp_info *info)
1803 {
1804         char *reason;
1805
1806         reason = check_image_kernel(info);
1807         if (!reason && info->num_physpages != get_num_physpages())
1808                 reason = "memory size";
1809         if (reason) {
1810                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1811                 return -EPERM;
1812         }
1813         return 0;
1814 }
1815
1816 /**
1817  *      load header - check the image header and copy data from it
1818  */
1819
1820 static int
1821 load_header(struct swsusp_info *info)
1822 {
1823         int error;
1824
1825         restore_pblist = NULL;
1826         error = check_header(info);
1827         if (!error) {
1828                 nr_copy_pages = info->image_pages;
1829                 nr_meta_pages = info->pages - info->image_pages - 1;
1830         }
1831         return error;
1832 }
1833
1834 /**
1835  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1836  *      the corresponding bit in the memory bitmap @bm
1837  */
1838 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1839 {
1840         int j;
1841
1842         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1843                 if (unlikely(buf[j] == BM_END_OF_MAP))
1844                         break;
1845
1846                 /* Extract and buffer page key for data page (s390 only). */
1847                 page_key_memorize(buf + j);
1848
1849                 if (memory_bm_pfn_present(bm, buf[j]))
1850                         memory_bm_set_bit(bm, buf[j]);
1851                 else
1852                         return -EFAULT;
1853         }
1854
1855         return 0;
1856 }
1857
1858 /* List of "safe" pages that may be used to store data loaded from the suspend
1859  * image
1860  */
1861 static struct linked_page *safe_pages_list;
1862
1863 #ifdef CONFIG_HIGHMEM
1864 /* struct highmem_pbe is used for creating the list of highmem pages that
1865  * should be restored atomically during the resume from disk, because the page
1866  * frames they have occupied before the suspend are in use.
1867  */
1868 struct highmem_pbe {
1869         struct page *copy_page; /* data is here now */
1870         struct page *orig_page; /* data was here before the suspend */
1871         struct highmem_pbe *next;
1872 };
1873
1874 /* List of highmem PBEs needed for restoring the highmem pages that were
1875  * allocated before the suspend and included in the suspend image, but have
1876  * also been allocated by the "resume" kernel, so their contents cannot be
1877  * written directly to their "original" page frames.
1878  */
1879 static struct highmem_pbe *highmem_pblist;
1880
1881 /**
1882  *      count_highmem_image_pages - compute the number of highmem pages in the
1883  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1884  *      image pages are assumed to be set.
1885  */
1886
1887 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1888 {
1889         unsigned long pfn;
1890         unsigned int cnt = 0;
1891
1892         memory_bm_position_reset(bm);
1893         pfn = memory_bm_next_pfn(bm);
1894         while (pfn != BM_END_OF_MAP) {
1895                 if (PageHighMem(pfn_to_page(pfn)))
1896                         cnt++;
1897
1898                 pfn = memory_bm_next_pfn(bm);
1899         }
1900         return cnt;
1901 }
1902
1903 /**
1904  *      prepare_highmem_image - try to allocate as many highmem pages as
1905  *      there are highmem image pages (@nr_highmem_p points to the variable
1906  *      containing the number of highmem image pages).  The pages that are
1907  *      "safe" (ie. will not be overwritten when the suspend image is
1908  *      restored) have the corresponding bits set in @bm (it must be
1909  *      unitialized).
1910  *
1911  *      NOTE: This function should not be called if there are no highmem
1912  *      image pages.
1913  */
1914
1915 static unsigned int safe_highmem_pages;
1916
1917 static struct memory_bitmap *safe_highmem_bm;
1918
1919 static int
1920 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1921 {
1922         unsigned int to_alloc;
1923
1924         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1925                 return -ENOMEM;
1926
1927         if (get_highmem_buffer(PG_SAFE))
1928                 return -ENOMEM;
1929
1930         to_alloc = count_free_highmem_pages();
1931         if (to_alloc > *nr_highmem_p)
1932                 to_alloc = *nr_highmem_p;
1933         else
1934                 *nr_highmem_p = to_alloc;
1935
1936         safe_highmem_pages = 0;
1937         while (to_alloc-- > 0) {
1938                 struct page *page;
1939
1940                 page = alloc_page(__GFP_HIGHMEM);
1941                 if (!swsusp_page_is_free(page)) {
1942                         /* The page is "safe", set its bit the bitmap */
1943                         memory_bm_set_bit(bm, page_to_pfn(page));
1944                         safe_highmem_pages++;
1945                 }
1946                 /* Mark the page as allocated */
1947                 swsusp_set_page_forbidden(page);
1948                 swsusp_set_page_free(page);
1949         }
1950         memory_bm_position_reset(bm);
1951         safe_highmem_bm = bm;
1952         return 0;
1953 }
1954
1955 /**
1956  *      get_highmem_page_buffer - for given highmem image page find the buffer
1957  *      that suspend_write_next() should set for its caller to write to.
1958  *
1959  *      If the page is to be saved to its "original" page frame or a copy of
1960  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1961  *      the copy of the page is to be made in normal memory, so the address of
1962  *      the copy is returned.
1963  *
1964  *      If @buffer is returned, the caller of suspend_write_next() will write
1965  *      the page's contents to @buffer, so they will have to be copied to the
1966  *      right location on the next call to suspend_write_next() and it is done
1967  *      with the help of copy_last_highmem_page().  For this purpose, if
1968  *      @buffer is returned, @last_highmem page is set to the page to which
1969  *      the data will have to be copied from @buffer.
1970  */
1971
1972 static struct page *last_highmem_page;
1973
1974 static void *
1975 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1976 {
1977         struct highmem_pbe *pbe;
1978         void *kaddr;
1979
1980         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1981                 /* We have allocated the "original" page frame and we can
1982                  * use it directly to store the loaded page.
1983                  */
1984                 last_highmem_page = page;
1985                 return buffer;
1986         }
1987         /* The "original" page frame has not been allocated and we have to
1988          * use a "safe" page frame to store the loaded page.
1989          */
1990         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1991         if (!pbe) {
1992                 swsusp_free();
1993                 return ERR_PTR(-ENOMEM);
1994         }
1995         pbe->orig_page = page;
1996         if (safe_highmem_pages > 0) {
1997                 struct page *tmp;
1998
1999                 /* Copy of the page will be stored in high memory */
2000                 kaddr = buffer;
2001                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2002                 safe_highmem_pages--;
2003                 last_highmem_page = tmp;
2004                 pbe->copy_page = tmp;
2005         } else {
2006                 /* Copy of the page will be stored in normal memory */
2007                 kaddr = safe_pages_list;
2008                 safe_pages_list = safe_pages_list->next;
2009                 pbe->copy_page = virt_to_page(kaddr);
2010         }
2011         pbe->next = highmem_pblist;
2012         highmem_pblist = pbe;
2013         return kaddr;
2014 }
2015
2016 /**
2017  *      copy_last_highmem_page - copy the contents of a highmem image from
2018  *      @buffer, where the caller of snapshot_write_next() has place them,
2019  *      to the right location represented by @last_highmem_page .
2020  */
2021
2022 static void copy_last_highmem_page(void)
2023 {
2024         if (last_highmem_page) {
2025                 void *dst;
2026
2027                 dst = kmap_atomic(last_highmem_page);
2028                 copy_page(dst, buffer);
2029                 kunmap_atomic(dst);
2030                 last_highmem_page = NULL;
2031         }
2032 }
2033
2034 static inline int last_highmem_page_copied(void)
2035 {
2036         return !last_highmem_page;
2037 }
2038
2039 static inline void free_highmem_data(void)
2040 {
2041         if (safe_highmem_bm)
2042                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2043
2044         if (buffer)
2045                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2046 }
2047 #else
2048 static inline int get_safe_write_buffer(void) { return 0; }
2049
2050 static unsigned int
2051 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2052
2053 static inline int
2054 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2055 {
2056         return 0;
2057 }
2058
2059 static inline void *
2060 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2061 {
2062         return ERR_PTR(-EINVAL);
2063 }
2064
2065 static inline void copy_last_highmem_page(void) {}
2066 static inline int last_highmem_page_copied(void) { return 1; }
2067 static inline void free_highmem_data(void) {}
2068 #endif /* CONFIG_HIGHMEM */
2069
2070 /**
2071  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2072  *      be overwritten in the process of restoring the system memory state
2073  *      from the suspend image ("unsafe" pages) and allocate memory for the
2074  *      image.
2075  *
2076  *      The idea is to allocate a new memory bitmap first and then allocate
2077  *      as many pages as needed for the image data, but not to assign these
2078  *      pages to specific tasks initially.  Instead, we just mark them as
2079  *      allocated and create a lists of "safe" pages that will be used
2080  *      later.  On systems with high memory a list of "safe" highmem pages is
2081  *      also created.
2082  */
2083
2084 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2085
2086 static int
2087 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2088 {
2089         unsigned int nr_pages, nr_highmem;
2090         struct linked_page *sp_list, *lp;
2091         int error;
2092
2093         /* If there is no highmem, the buffer will not be necessary */
2094         free_image_page(buffer, PG_UNSAFE_CLEAR);
2095         buffer = NULL;
2096
2097         nr_highmem = count_highmem_image_pages(bm);
2098         error = mark_unsafe_pages(bm);
2099         if (error)
2100                 goto Free;
2101
2102         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2103         if (error)
2104                 goto Free;
2105
2106         duplicate_memory_bitmap(new_bm, bm);
2107         memory_bm_free(bm, PG_UNSAFE_KEEP);
2108         if (nr_highmem > 0) {
2109                 error = prepare_highmem_image(bm, &nr_highmem);
2110                 if (error)
2111                         goto Free;
2112         }
2113         /* Reserve some safe pages for potential later use.
2114          *
2115          * NOTE: This way we make sure there will be enough safe pages for the
2116          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2117          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2118          */
2119         sp_list = NULL;
2120         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2121         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2122         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2123         while (nr_pages > 0) {
2124                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2125                 if (!lp) {
2126                         error = -ENOMEM;
2127                         goto Free;
2128                 }
2129                 lp->next = sp_list;
2130                 sp_list = lp;
2131                 nr_pages--;
2132         }
2133         /* Preallocate memory for the image */
2134         safe_pages_list = NULL;
2135         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2136         while (nr_pages > 0) {
2137                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2138                 if (!lp) {
2139                         error = -ENOMEM;
2140                         goto Free;
2141                 }
2142                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2143                         /* The page is "safe", add it to the list */
2144                         lp->next = safe_pages_list;
2145                         safe_pages_list = lp;
2146                 }
2147                 /* Mark the page as allocated */
2148                 swsusp_set_page_forbidden(virt_to_page(lp));
2149                 swsusp_set_page_free(virt_to_page(lp));
2150                 nr_pages--;
2151         }
2152         /* Free the reserved safe pages so that chain_alloc() can use them */
2153         while (sp_list) {
2154                 lp = sp_list->next;
2155                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2156                 sp_list = lp;
2157         }
2158         return 0;
2159
2160  Free:
2161         swsusp_free();
2162         return error;
2163 }
2164
2165 /**
2166  *      get_buffer - compute the address that snapshot_write_next() should
2167  *      set for its caller to write to.
2168  */
2169
2170 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2171 {
2172         struct pbe *pbe;
2173         struct page *page;
2174         unsigned long pfn = memory_bm_next_pfn(bm);
2175
2176         if (pfn == BM_END_OF_MAP)
2177                 return ERR_PTR(-EFAULT);
2178
2179         page = pfn_to_page(pfn);
2180         if (PageHighMem(page))
2181                 return get_highmem_page_buffer(page, ca);
2182
2183         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2184                 /* We have allocated the "original" page frame and we can
2185                  * use it directly to store the loaded page.
2186                  */
2187                 return page_address(page);
2188
2189         /* The "original" page frame has not been allocated and we have to
2190          * use a "safe" page frame to store the loaded page.
2191          */
2192         pbe = chain_alloc(ca, sizeof(struct pbe));
2193         if (!pbe) {
2194                 swsusp_free();
2195                 return ERR_PTR(-ENOMEM);
2196         }
2197         pbe->orig_address = page_address(page);
2198         pbe->address = safe_pages_list;
2199         safe_pages_list = safe_pages_list->next;
2200         pbe->next = restore_pblist;
2201         restore_pblist = pbe;
2202         return pbe->address;
2203 }
2204
2205 /**
2206  *      snapshot_write_next - used for writing the system memory snapshot.
2207  *
2208  *      On the first call to it @handle should point to a zeroed
2209  *      snapshot_handle structure.  The structure gets updated and a pointer
2210  *      to it should be passed to this function every next time.
2211  *
2212  *      On success the function returns a positive number.  Then, the caller
2213  *      is allowed to write up to the returned number of bytes to the memory
2214  *      location computed by the data_of() macro.
2215  *
2216  *      The function returns 0 to indicate the "end of file" condition,
2217  *      and a negative number is returned on error.  In such cases the
2218  *      structure pointed to by @handle is not updated and should not be used
2219  *      any more.
2220  */
2221
2222 int snapshot_write_next(struct snapshot_handle *handle)
2223 {
2224         static struct chain_allocator ca;
2225         int error = 0;
2226
2227         /* Check if we have already loaded the entire image */
2228         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2229                 return 0;
2230
2231         handle->sync_read = 1;
2232
2233         if (!handle->cur) {
2234                 if (!buffer)
2235                         /* This makes the buffer be freed by swsusp_free() */
2236                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2237
2238                 if (!buffer)
2239                         return -ENOMEM;
2240
2241                 handle->buffer = buffer;
2242         } else if (handle->cur == 1) {
2243                 error = load_header(buffer);
2244                 if (error)
2245                         return error;
2246
2247                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2248                 if (error)
2249                         return error;
2250
2251                 /* Allocate buffer for page keys. */
2252                 error = page_key_alloc(nr_copy_pages);
2253                 if (error)
2254                         return error;
2255
2256         } else if (handle->cur <= nr_meta_pages + 1) {
2257                 error = unpack_orig_pfns(buffer, &copy_bm);
2258                 if (error)
2259                         return error;
2260
2261                 if (handle->cur == nr_meta_pages + 1) {
2262                         error = prepare_image(&orig_bm, &copy_bm);
2263                         if (error)
2264                                 return error;
2265
2266                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2267                         memory_bm_position_reset(&orig_bm);
2268                         restore_pblist = NULL;
2269                         handle->buffer = get_buffer(&orig_bm, &ca);
2270                         handle->sync_read = 0;
2271                         if (IS_ERR(handle->buffer))
2272                                 return PTR_ERR(handle->buffer);
2273                 }
2274         } else {
2275                 copy_last_highmem_page();
2276                 /* Restore page key for data page (s390 only). */
2277                 page_key_write(handle->buffer);
2278                 handle->buffer = get_buffer(&orig_bm, &ca);
2279                 if (IS_ERR(handle->buffer))
2280                         return PTR_ERR(handle->buffer);
2281                 if (handle->buffer != buffer)
2282                         handle->sync_read = 0;
2283         }
2284         handle->cur++;
2285         return PAGE_SIZE;
2286 }
2287
2288 /**
2289  *      snapshot_write_finalize - must be called after the last call to
2290  *      snapshot_write_next() in case the last page in the image happens
2291  *      to be a highmem page and its contents should be stored in the
2292  *      highmem.  Additionally, it releases the memory that will not be
2293  *      used any more.
2294  */
2295
2296 void snapshot_write_finalize(struct snapshot_handle *handle)
2297 {
2298         copy_last_highmem_page();
2299         /* Restore page key for data page (s390 only). */
2300         page_key_write(handle->buffer);
2301         page_key_free();
2302         /* Free only if we have loaded the image entirely */
2303         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2304                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2305                 free_highmem_data();
2306         }
2307 }
2308
2309 int snapshot_image_loaded(struct snapshot_handle *handle)
2310 {
2311         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2312                         handle->cur <= nr_meta_pages + nr_copy_pages);
2313 }
2314
2315 #ifdef CONFIG_HIGHMEM
2316 /* Assumes that @buf is ready and points to a "safe" page */
2317 static inline void
2318 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2319 {
2320         void *kaddr1, *kaddr2;
2321
2322         kaddr1 = kmap_atomic(p1);
2323         kaddr2 = kmap_atomic(p2);
2324         copy_page(buf, kaddr1);
2325         copy_page(kaddr1, kaddr2);
2326         copy_page(kaddr2, buf);
2327         kunmap_atomic(kaddr2);
2328         kunmap_atomic(kaddr1);
2329 }
2330
2331 /**
2332  *      restore_highmem - for each highmem page that was allocated before
2333  *      the suspend and included in the suspend image, and also has been
2334  *      allocated by the "resume" kernel swap its current (ie. "before
2335  *      resume") contents with the previous (ie. "before suspend") one.
2336  *
2337  *      If the resume eventually fails, we can call this function once
2338  *      again and restore the "before resume" highmem state.
2339  */
2340
2341 int restore_highmem(void)
2342 {
2343         struct highmem_pbe *pbe = highmem_pblist;
2344         void *buf;
2345
2346         if (!pbe)
2347                 return 0;
2348
2349         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2350         if (!buf)
2351                 return -ENOMEM;
2352
2353         while (pbe) {
2354                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2355                 pbe = pbe->next;
2356         }
2357         free_image_page(buf, PG_UNSAFE_CLEAR);
2358         return 0;
2359 }
2360 #endif /* CONFIG_HIGHMEM */