MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / kernel / capability.c
1 /*
2  * linux/kernel/capability.c
3  *
4  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
5  *
6  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
7  * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/audit.h>
13 #include <linux/capability.h>
14 #include <linux/mm.h>
15 #include <linux/export.h>
16 #include <linux/security.h>
17 #include <linux/syscalls.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/user_namespace.h>
20 #include <asm/uaccess.h>
21
22 /*
23  * Leveraged for setting/resetting capabilities
24  */
25
26 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
27 EXPORT_SYMBOL(__cap_empty_set);
28
29 int file_caps_enabled = 1;
30
31 static int __init file_caps_disable(char *str)
32 {
33         file_caps_enabled = 0;
34         return 1;
35 }
36 __setup("no_file_caps", file_caps_disable);
37
38 /*
39  * More recent versions of libcap are available from:
40  *
41  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
42  */
43
44 static void warn_legacy_capability_use(void)
45 {
46         char name[sizeof(current->comm)];
47
48         pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
49                      get_task_comm(name, current));
50 }
51
52 /*
53  * Version 2 capabilities worked fine, but the linux/capability.h file
54  * that accompanied their introduction encouraged their use without
55  * the necessary user-space source code changes. As such, we have
56  * created a version 3 with equivalent functionality to version 2, but
57  * with a header change to protect legacy source code from using
58  * version 2 when it wanted to use version 1. If your system has code
59  * that trips the following warning, it is using version 2 specific
60  * capabilities and may be doing so insecurely.
61  *
62  * The remedy is to either upgrade your version of libcap (to 2.10+,
63  * if the application is linked against it), or recompile your
64  * application with modern kernel headers and this warning will go
65  * away.
66  */
67
68 static void warn_deprecated_v2(void)
69 {
70         char name[sizeof(current->comm)];
71
72         pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
73                      get_task_comm(name, current));
74 }
75
76 /*
77  * Version check. Return the number of u32s in each capability flag
78  * array, or a negative value on error.
79  */
80 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
81 {
82         __u32 version;
83
84         if (get_user(version, &header->version))
85                 return -EFAULT;
86
87         switch (version) {
88         case _LINUX_CAPABILITY_VERSION_1:
89                 warn_legacy_capability_use();
90                 *tocopy = _LINUX_CAPABILITY_U32S_1;
91                 break;
92         case _LINUX_CAPABILITY_VERSION_2:
93                 warn_deprecated_v2();
94                 /*
95                  * fall through - v3 is otherwise equivalent to v2.
96                  */
97         case _LINUX_CAPABILITY_VERSION_3:
98                 *tocopy = _LINUX_CAPABILITY_U32S_3;
99                 break;
100         default:
101                 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
102                         return -EFAULT;
103                 return -EINVAL;
104         }
105
106         return 0;
107 }
108
109 /*
110  * The only thing that can change the capabilities of the current
111  * process is the current process. As such, we can't be in this code
112  * at the same time as we are in the process of setting capabilities
113  * in this process. The net result is that we can limit our use of
114  * locks to when we are reading the caps of another process.
115  */
116 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
117                                      kernel_cap_t *pIp, kernel_cap_t *pPp)
118 {
119         int ret;
120
121         if (pid && (pid != task_pid_vnr(current))) {
122                 struct task_struct *target;
123
124                 rcu_read_lock();
125
126                 target = find_task_by_vpid(pid);
127                 if (!target)
128                         ret = -ESRCH;
129                 else
130                         ret = security_capget(target, pEp, pIp, pPp);
131
132                 rcu_read_unlock();
133         } else
134                 ret = security_capget(current, pEp, pIp, pPp);
135
136         return ret;
137 }
138
139 /**
140  * sys_capget - get the capabilities of a given process.
141  * @header: pointer to struct that contains capability version and
142  *      target pid data
143  * @dataptr: pointer to struct that contains the effective, permitted,
144  *      and inheritable capabilities that are returned
145  *
146  * Returns 0 on success and < 0 on error.
147  */
148 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
149 {
150         int ret = 0;
151         pid_t pid;
152         unsigned tocopy;
153         kernel_cap_t pE, pI, pP;
154
155         ret = cap_validate_magic(header, &tocopy);
156         if ((dataptr == NULL) || (ret != 0))
157                 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
158
159         if (get_user(pid, &header->pid))
160                 return -EFAULT;
161
162         if (pid < 0)
163                 return -EINVAL;
164
165         ret = cap_get_target_pid(pid, &pE, &pI, &pP);
166         if (!ret) {
167                 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
168                 unsigned i;
169
170                 for (i = 0; i < tocopy; i++) {
171                         kdata[i].effective = pE.cap[i];
172                         kdata[i].permitted = pP.cap[i];
173                         kdata[i].inheritable = pI.cap[i];
174                 }
175
176                 /*
177                  * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
178                  * we silently drop the upper capabilities here. This
179                  * has the effect of making older libcap
180                  * implementations implicitly drop upper capability
181                  * bits when they perform a: capget/modify/capset
182                  * sequence.
183                  *
184                  * This behavior is considered fail-safe
185                  * behavior. Upgrading the application to a newer
186                  * version of libcap will enable access to the newer
187                  * capabilities.
188                  *
189                  * An alternative would be to return an error here
190                  * (-ERANGE), but that causes legacy applications to
191                  * unexpectedly fail; the capget/modify/capset aborts
192                  * before modification is attempted and the application
193                  * fails.
194                  */
195                 if (copy_to_user(dataptr, kdata, tocopy
196                                  * sizeof(struct __user_cap_data_struct))) {
197                         return -EFAULT;
198                 }
199         }
200
201         return ret;
202 }
203
204 /**
205  * sys_capset - set capabilities for a process or (*) a group of processes
206  * @header: pointer to struct that contains capability version and
207  *      target pid data
208  * @data: pointer to struct that contains the effective, permitted,
209  *      and inheritable capabilities
210  *
211  * Set capabilities for the current process only.  The ability to any other
212  * process(es) has been deprecated and removed.
213  *
214  * The restrictions on setting capabilities are specified as:
215  *
216  * I: any raised capabilities must be a subset of the old permitted
217  * P: any raised capabilities must be a subset of the old permitted
218  * E: must be set to a subset of new permitted
219  *
220  * Returns 0 on success and < 0 on error.
221  */
222 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
223 {
224         struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
225         unsigned i, tocopy, copybytes;
226         kernel_cap_t inheritable, permitted, effective;
227         struct cred *new;
228         int ret;
229         pid_t pid;
230
231         ret = cap_validate_magic(header, &tocopy);
232         if (ret != 0)
233                 return ret;
234
235         if (get_user(pid, &header->pid))
236                 return -EFAULT;
237
238         /* may only affect current now */
239         if (pid != 0 && pid != task_pid_vnr(current))
240                 return -EPERM;
241
242         copybytes = tocopy * sizeof(struct __user_cap_data_struct);
243         if (copybytes > sizeof(kdata))
244                 return -EFAULT;
245
246         if (copy_from_user(&kdata, data, copybytes))
247                 return -EFAULT;
248
249         for (i = 0; i < tocopy; i++) {
250                 effective.cap[i] = kdata[i].effective;
251                 permitted.cap[i] = kdata[i].permitted;
252                 inheritable.cap[i] = kdata[i].inheritable;
253         }
254         while (i < _KERNEL_CAPABILITY_U32S) {
255                 effective.cap[i] = 0;
256                 permitted.cap[i] = 0;
257                 inheritable.cap[i] = 0;
258                 i++;
259         }
260
261         effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
262         permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
263         inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
264
265         new = prepare_creds();
266         if (!new)
267                 return -ENOMEM;
268
269         ret = security_capset(new, current_cred(),
270                               &effective, &inheritable, &permitted);
271         if (ret < 0)
272                 goto error;
273
274         audit_log_capset(new, current_cred());
275
276         return commit_creds(new);
277
278 error:
279         abort_creds(new);
280         return ret;
281 }
282
283 /**
284  * has_ns_capability - Does a task have a capability in a specific user ns
285  * @t: The task in question
286  * @ns: target user namespace
287  * @cap: The capability to be tested for
288  *
289  * Return true if the specified task has the given superior capability
290  * currently in effect to the specified user namespace, false if not.
291  *
292  * Note that this does not set PF_SUPERPRIV on the task.
293  */
294 bool has_ns_capability(struct task_struct *t,
295                        struct user_namespace *ns, int cap)
296 {
297         int ret;
298
299         rcu_read_lock();
300         ret = security_capable(__task_cred(t), ns, cap);
301         rcu_read_unlock();
302
303         return (ret == 0);
304 }
305
306 /**
307  * has_capability - Does a task have a capability in init_user_ns
308  * @t: The task in question
309  * @cap: The capability to be tested for
310  *
311  * Return true if the specified task has the given superior capability
312  * currently in effect to the initial user namespace, false if not.
313  *
314  * Note that this does not set PF_SUPERPRIV on the task.
315  */
316 bool has_capability(struct task_struct *t, int cap)
317 {
318         return has_ns_capability(t, &init_user_ns, cap);
319 }
320
321 /**
322  * has_ns_capability_noaudit - Does a task have a capability (unaudited)
323  * in a specific user ns.
324  * @t: The task in question
325  * @ns: target user namespace
326  * @cap: The capability to be tested for
327  *
328  * Return true if the specified task has the given superior capability
329  * currently in effect to the specified user namespace, false if not.
330  * Do not write an audit message for the check.
331  *
332  * Note that this does not set PF_SUPERPRIV on the task.
333  */
334 bool has_ns_capability_noaudit(struct task_struct *t,
335                                struct user_namespace *ns, int cap)
336 {
337         int ret;
338
339         rcu_read_lock();
340         ret = security_capable_noaudit(__task_cred(t), ns, cap);
341         rcu_read_unlock();
342
343         return (ret == 0);
344 }
345
346 /**
347  * has_capability_noaudit - Does a task have a capability (unaudited) in the
348  * initial user ns
349  * @t: The task in question
350  * @cap: The capability to be tested for
351  *
352  * Return true if the specified task has the given superior capability
353  * currently in effect to init_user_ns, false if not.  Don't write an
354  * audit message for the check.
355  *
356  * Note that this does not set PF_SUPERPRIV on the task.
357  */
358 bool has_capability_noaudit(struct task_struct *t, int cap)
359 {
360         return has_ns_capability_noaudit(t, &init_user_ns, cap);
361 }
362
363 /**
364  * ns_capable - Determine if the current task has a superior capability in effect
365  * @ns:  The usernamespace we want the capability in
366  * @cap: The capability to be tested for
367  *
368  * Return true if the current task has the given superior capability currently
369  * available for use, false if not.
370  *
371  * This sets PF_SUPERPRIV on the task if the capability is available on the
372  * assumption that it's about to be used.
373  */
374 bool ns_capable(struct user_namespace *ns, int cap)
375 {
376         if (unlikely(!cap_valid(cap))) {
377                 pr_crit("capable() called with invalid cap=%u\n", cap);
378                 BUG();
379         }
380
381         if (security_capable(current_cred(), ns, cap) == 0) {
382                 current->flags |= PF_SUPERPRIV;
383                 return true;
384         }
385         return false;
386 }
387 EXPORT_SYMBOL(ns_capable);
388
389 /**
390  * file_ns_capable - Determine if the file's opener had a capability in effect
391  * @file:  The file we want to check
392  * @ns:  The usernamespace we want the capability in
393  * @cap: The capability to be tested for
394  *
395  * Return true if task that opened the file had a capability in effect
396  * when the file was opened.
397  *
398  * This does not set PF_SUPERPRIV because the caller may not
399  * actually be privileged.
400  */
401 bool file_ns_capable(const struct file *file, struct user_namespace *ns,
402                      int cap)
403 {
404         if (WARN_ON_ONCE(!cap_valid(cap)))
405                 return false;
406
407         if (security_capable(file->f_cred, ns, cap) == 0)
408                 return true;
409
410         return false;
411 }
412 EXPORT_SYMBOL(file_ns_capable);
413
414 /**
415  * capable - Determine if the current task has a superior capability in effect
416  * @cap: The capability to be tested for
417  *
418  * Return true if the current task has the given superior capability currently
419  * available for use, false if not.
420  *
421  * This sets PF_SUPERPRIV on the task if the capability is available on the
422  * assumption that it's about to be used.
423  */
424 bool capable(int cap)
425 {
426         return ns_capable(&init_user_ns, cap);
427 }
428 EXPORT_SYMBOL(capable);
429
430 /**
431  * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
432  * @inode: The inode in question
433  * @cap: The capability in question
434  *
435  * Return true if the current task has the given capability targeted at
436  * its own user namespace and that the given inode's uid and gid are
437  * mapped into the current user namespace.
438  */
439 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap)
440 {
441         struct user_namespace *ns = current_user_ns();
442
443         return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid) &&
444                 kgid_has_mapping(ns, inode->i_gid);
445 }
446 EXPORT_SYMBOL(capable_wrt_inode_uidgid);