Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8         int sched_priority;
9 };
10
11 #include <asm/param.h>  /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt_mask.h>
26
27 #include <asm/page.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
30
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
44
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56
57 #include <asm/processor.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68  * List of flags we want to share for kernel threads,
69  * if only because they are not used by them anyway.
70  */
71 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74  * These are the constant used to fake the fixed-point load-average
75  * counting. Some notes:
76  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
77  *    a load-average precision of 10 bits integer + 11 bits fractional
78  *  - if you want to count load-averages more often, you need more
79  *    precision, or rounding will get you. With 2-second counting freq,
80  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
81  *    11 bit fractions.
82  */
83 extern unsigned long avenrun[];         /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT          11              /* nr of bits of precision */
87 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
88 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
89 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5           2014            /* 1/exp(5sec/5min) */
91 #define EXP_15          2037            /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94         load *= exp; \
95         load += n*(FIXED_1-exp); \
96         load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106
107
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
110
111 extern unsigned long get_parent_ip(unsigned long addr);
112
113 extern void dump_cpu_task(int cpu);
114
115 struct seq_file;
116 struct cfs_rq;
117 struct task_group;
118 #ifdef CONFIG_SCHED_DEBUG
119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120 extern void proc_sched_set_task(struct task_struct *p);
121 extern void
122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123 #endif
124
125 /*
126  * Task state bitmask. NOTE! These bits are also
127  * encoded in fs/proc/array.c: get_task_state().
128  *
129  * We have two separate sets of flags: task->state
130  * is about runnability, while task->exit_state are
131  * about the task exiting. Confusing, but this way
132  * modifying one set can't modify the other one by
133  * mistake.
134  */
135 #define TASK_RUNNING            0
136 #define TASK_INTERRUPTIBLE      1
137 #define TASK_UNINTERRUPTIBLE    2
138 #define __TASK_STOPPED          4
139 #define __TASK_TRACED           8
140 /* in tsk->exit_state */
141 #define EXIT_ZOMBIE             16
142 #define EXIT_DEAD               32
143 /* in tsk->state again */
144 #define TASK_DEAD               64
145 #define TASK_WAKEKILL           128
146 #define TASK_WAKING             256
147 #define TASK_PARKED             512
148 #define TASK_STATE_MAX          1024
149
150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151
152 extern char ___assert_task_state[1 - 2*!!(
153                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154
155 /* Convenience macros for the sake of set_task_state */
156 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
158 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
159
160 /* Convenience macros for the sake of wake_up */
161 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163
164 /* get_task_state() */
165 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
166                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167                                  __TASK_TRACED)
168
169 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
170 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
171 #define task_is_dead(task)      ((task)->exit_state != 0)
172 #define task_is_stopped_or_traced(task) \
173                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174 #define task_contributes_to_load(task)  \
175                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176                                  (task->flags & PF_FROZEN) == 0)
177
178 #define __set_task_state(tsk, state_value)              \
179         do { (tsk)->state = (state_value); } while (0)
180 #define set_task_state(tsk, state_value)                \
181         set_mb((tsk)->state, (state_value))
182
183 /*
184  * set_current_state() includes a barrier so that the write of current->state
185  * is correctly serialised wrt the caller's subsequent test of whether to
186  * actually sleep:
187  *
188  *      set_current_state(TASK_UNINTERRUPTIBLE);
189  *      if (do_i_need_to_sleep())
190  *              schedule();
191  *
192  * If the caller does not need such serialisation then use __set_current_state()
193  */
194 #define __set_current_state(state_value)                        \
195         do { current->state = (state_value); } while (0)
196 #define set_current_state(state_value)          \
197         set_mb(current->state, (state_value))
198
199 /* Task command name length */
200 #define TASK_COMM_LEN 16
201
202 #include <linux/spinlock.h>
203
204 /*
205  * This serializes "schedule()" and also protects
206  * the run-queue from deletions/modifications (but
207  * _adding_ to the beginning of the run-queue has
208  * a separate lock).
209  */
210 extern rwlock_t tasklist_lock;
211 extern spinlock_t mmlist_lock;
212
213 struct task_struct;
214
215 #ifdef CONFIG_PROVE_RCU
216 extern int lockdep_tasklist_lock_is_held(void);
217 #endif /* #ifdef CONFIG_PROVE_RCU */
218
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern asmlinkage void schedule_tail(struct task_struct *prev);
222 extern void init_idle(struct task_struct *idle, int cpu);
223 extern void init_idle_bootup_task(struct task_struct *idle);
224
225 extern int runqueue_is_locked(int cpu);
226
227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228 extern void nohz_balance_enter_idle(int cpu);
229 extern void set_cpu_sd_state_idle(void);
230 extern int get_nohz_timer_target(void);
231 #else
232 static inline void nohz_balance_enter_idle(int cpu) { }
233 static inline void set_cpu_sd_state_idle(void) { }
234 #endif
235
236 /*
237  * Only dump TASK_* tasks. (0 for all tasks)
238  */
239 extern void show_state_filter(unsigned long state_filter);
240
241 static inline void show_state(void)
242 {
243         show_state_filter(0);
244 }
245
246 extern void show_regs(struct pt_regs *);
247
248 /*
249  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250  * task), SP is the stack pointer of the first frame that should be shown in the back
251  * trace (or NULL if the entire call-chain of the task should be shown).
252  */
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
257
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void update_process_times(int user);
261 extern void scheduler_tick(void);
262
263 extern void sched_show_task(struct task_struct *p);
264
265 #ifdef CONFIG_LOCKUP_DETECTOR
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_softlockup_watchdog_sync(void);
268 extern void touch_all_softlockup_watchdogs(void);
269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270                                   void __user *buffer,
271                                   size_t *lenp, loff_t *ppos);
272 extern unsigned int  softlockup_panic;
273 void lockup_detector_init(void);
274 #else
275 static inline void touch_softlockup_watchdog(void)
276 {
277 }
278 static inline void touch_softlockup_watchdog_sync(void)
279 {
280 }
281 static inline void touch_all_softlockup_watchdogs(void)
282 {
283 }
284 static inline void lockup_detector_init(void)
285 {
286 }
287 #endif
288
289 #ifdef CONFIG_DETECT_HUNG_TASK
290 void reset_hung_task_detector(void);
291 #else
292 static inline void reset_hung_task_detector(void)
293 {
294 }
295 #endif
296
297 /* Attach to any functions which should be ignored in wchan output. */
298 #define __sched         __attribute__((__section__(".sched.text")))
299
300 /* Linker adds these: start and end of __sched functions */
301 extern char __sched_text_start[], __sched_text_end[];
302
303 /* Is this address in the __sched functions? */
304 extern int in_sched_functions(unsigned long addr);
305
306 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
307 extern signed long schedule_timeout(signed long timeout);
308 extern signed long schedule_timeout_interruptible(signed long timeout);
309 extern signed long schedule_timeout_killable(signed long timeout);
310 extern signed long schedule_timeout_uninterruptible(signed long timeout);
311 asmlinkage void schedule(void);
312 extern void schedule_preempt_disabled(void);
313
314 struct nsproxy;
315 struct user_namespace;
316
317 #ifdef CONFIG_MMU
318 extern void arch_pick_mmap_layout(struct mm_struct *mm);
319 extern unsigned long
320 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
321                        unsigned long, unsigned long);
322 extern unsigned long
323 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
324                           unsigned long len, unsigned long pgoff,
325                           unsigned long flags);
326 #else
327 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
328 #endif
329
330
331 extern void set_dumpable(struct mm_struct *mm, int value);
332 extern int get_dumpable(struct mm_struct *mm);
333
334 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
335 #define SUID_DUMP_USER          1       /* Dump as user of process */
336 #define SUID_DUMP_ROOT          2       /* Dump as root */
337
338 /* mm flags */
339 /* dumpable bits */
340 #define MMF_DUMPABLE      0  /* core dump is permitted */
341 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
342
343 #define MMF_DUMPABLE_BITS 2
344 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
345
346 /* coredump filter bits */
347 #define MMF_DUMP_ANON_PRIVATE   2
348 #define MMF_DUMP_ANON_SHARED    3
349 #define MMF_DUMP_MAPPED_PRIVATE 4
350 #define MMF_DUMP_MAPPED_SHARED  5
351 #define MMF_DUMP_ELF_HEADERS    6
352 #define MMF_DUMP_HUGETLB_PRIVATE 7
353 #define MMF_DUMP_HUGETLB_SHARED  8
354
355 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
356 #define MMF_DUMP_FILTER_BITS    7
357 #define MMF_DUMP_FILTER_MASK \
358         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
359 #define MMF_DUMP_FILTER_DEFAULT \
360         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
361          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
362
363 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
364 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
365 #else
366 # define MMF_DUMP_MASK_DEFAULT_ELF      0
367 #endif
368                                         /* leave room for more dump flags */
369 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
370 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
371 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
372
373 #define MMF_HAS_UPROBES         19      /* has uprobes */
374 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
375
376 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
377
378 struct sighand_struct {
379         atomic_t                count;
380         struct k_sigaction      action[_NSIG];
381         spinlock_t              siglock;
382         wait_queue_head_t       signalfd_wqh;
383 };
384
385 struct pacct_struct {
386         int                     ac_flag;
387         long                    ac_exitcode;
388         unsigned long           ac_mem;
389         cputime_t               ac_utime, ac_stime;
390         unsigned long           ac_minflt, ac_majflt;
391 };
392
393 struct cpu_itimer {
394         cputime_t expires;
395         cputime_t incr;
396         u32 error;
397         u32 incr_error;
398 };
399
400 /**
401  * struct cputime - snaphsot of system and user cputime
402  * @utime: time spent in user mode
403  * @stime: time spent in system mode
404  *
405  * Gathers a generic snapshot of user and system time.
406  */
407 struct cputime {
408         cputime_t utime;
409         cputime_t stime;
410 };
411
412 /**
413  * struct task_cputime - collected CPU time counts
414  * @utime:              time spent in user mode, in &cputime_t units
415  * @stime:              time spent in kernel mode, in &cputime_t units
416  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
417  *
418  * This is an extension of struct cputime that includes the total runtime
419  * spent by the task from the scheduler point of view.
420  *
421  * As a result, this structure groups together three kinds of CPU time
422  * that are tracked for threads and thread groups.  Most things considering
423  * CPU time want to group these counts together and treat all three
424  * of them in parallel.
425  */
426 struct task_cputime {
427         cputime_t utime;
428         cputime_t stime;
429         unsigned long long sum_exec_runtime;
430 };
431 /* Alternate field names when used to cache expirations. */
432 #define prof_exp        stime
433 #define virt_exp        utime
434 #define sched_exp       sum_exec_runtime
435
436 #define INIT_CPUTIME    \
437         (struct task_cputime) {                                 \
438                 .utime = 0,                                     \
439                 .stime = 0,                                     \
440                 .sum_exec_runtime = 0,                          \
441         }
442
443 #define PREEMPT_ENABLED         (PREEMPT_NEED_RESCHED)
444
445 #ifdef CONFIG_PREEMPT_COUNT
446 #define PREEMPT_DISABLED        (1 + PREEMPT_ENABLED)
447 #else
448 #define PREEMPT_DISABLED        PREEMPT_ENABLED
449 #endif
450
451 /*
452  * Disable preemption until the scheduler is running.
453  * Reset by start_kernel()->sched_init()->init_idle().
454  *
455  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
456  * before the scheduler is active -- see should_resched().
457  */
458 #define INIT_PREEMPT_COUNT      (PREEMPT_DISABLED + PREEMPT_ACTIVE)
459
460 /**
461  * struct thread_group_cputimer - thread group interval timer counts
462  * @cputime:            thread group interval timers.
463  * @running:            non-zero when there are timers running and
464  *                      @cputime receives updates.
465  * @lock:               lock for fields in this struct.
466  *
467  * This structure contains the version of task_cputime, above, that is
468  * used for thread group CPU timer calculations.
469  */
470 struct thread_group_cputimer {
471         struct task_cputime cputime;
472         int running;
473         raw_spinlock_t lock;
474 };
475
476 #include <linux/rwsem.h>
477 struct autogroup;
478
479 /*
480  * NOTE! "signal_struct" does not have its own
481  * locking, because a shared signal_struct always
482  * implies a shared sighand_struct, so locking
483  * sighand_struct is always a proper superset of
484  * the locking of signal_struct.
485  */
486 struct signal_struct {
487         atomic_t                sigcnt;
488         atomic_t                live;
489         int                     nr_threads;
490
491         wait_queue_head_t       wait_chldexit;  /* for wait4() */
492
493         /* current thread group signal load-balancing target: */
494         struct task_struct      *curr_target;
495
496         /* shared signal handling: */
497         struct sigpending       shared_pending;
498
499         /* thread group exit support */
500         int                     group_exit_code;
501         /* overloaded:
502          * - notify group_exit_task when ->count is equal to notify_count
503          * - everyone except group_exit_task is stopped during signal delivery
504          *   of fatal signals, group_exit_task processes the signal.
505          */
506         int                     notify_count;
507         struct task_struct      *group_exit_task;
508
509         /* thread group stop support, overloads group_exit_code too */
510         int                     group_stop_count;
511         unsigned int            flags; /* see SIGNAL_* flags below */
512
513         /*
514          * PR_SET_CHILD_SUBREAPER marks a process, like a service
515          * manager, to re-parent orphan (double-forking) child processes
516          * to this process instead of 'init'. The service manager is
517          * able to receive SIGCHLD signals and is able to investigate
518          * the process until it calls wait(). All children of this
519          * process will inherit a flag if they should look for a
520          * child_subreaper process at exit.
521          */
522         unsigned int            is_child_subreaper:1;
523         unsigned int            has_child_subreaper:1;
524
525         /* POSIX.1b Interval Timers */
526         int                     posix_timer_id;
527         struct list_head        posix_timers;
528
529         /* ITIMER_REAL timer for the process */
530         struct hrtimer real_timer;
531         struct pid *leader_pid;
532         ktime_t it_real_incr;
533
534         /*
535          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
536          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
537          * values are defined to 0 and 1 respectively
538          */
539         struct cpu_itimer it[2];
540
541         /*
542          * Thread group totals for process CPU timers.
543          * See thread_group_cputimer(), et al, for details.
544          */
545         struct thread_group_cputimer cputimer;
546
547         /* Earliest-expiration cache. */
548         struct task_cputime cputime_expires;
549
550         struct list_head cpu_timers[3];
551
552         struct pid *tty_old_pgrp;
553
554         /* boolean value for session group leader */
555         int leader;
556
557         struct tty_struct *tty; /* NULL if no tty */
558
559 #ifdef CONFIG_SCHED_AUTOGROUP
560         struct autogroup *autogroup;
561 #endif
562         /*
563          * Cumulative resource counters for dead threads in the group,
564          * and for reaped dead child processes forked by this group.
565          * Live threads maintain their own counters and add to these
566          * in __exit_signal, except for the group leader.
567          */
568         cputime_t utime, stime, cutime, cstime;
569         cputime_t gtime;
570         cputime_t cgtime;
571 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
572         struct cputime prev_cputime;
573 #endif
574         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
575         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
576         unsigned long inblock, oublock, cinblock, coublock;
577         unsigned long maxrss, cmaxrss;
578         struct task_io_accounting ioac;
579
580         /*
581          * Cumulative ns of schedule CPU time fo dead threads in the
582          * group, not including a zombie group leader, (This only differs
583          * from jiffies_to_ns(utime + stime) if sched_clock uses something
584          * other than jiffies.)
585          */
586         unsigned long long sum_sched_runtime;
587
588         /*
589          * We don't bother to synchronize most readers of this at all,
590          * because there is no reader checking a limit that actually needs
591          * to get both rlim_cur and rlim_max atomically, and either one
592          * alone is a single word that can safely be read normally.
593          * getrlimit/setrlimit use task_lock(current->group_leader) to
594          * protect this instead of the siglock, because they really
595          * have no need to disable irqs.
596          */
597         struct rlimit rlim[RLIM_NLIMITS];
598
599 #ifdef CONFIG_BSD_PROCESS_ACCT
600         struct pacct_struct pacct;      /* per-process accounting information */
601 #endif
602 #ifdef CONFIG_TASKSTATS
603         struct taskstats *stats;
604 #endif
605 #ifdef CONFIG_AUDIT
606         unsigned audit_tty;
607         unsigned audit_tty_log_passwd;
608         struct tty_audit_buf *tty_audit_buf;
609 #endif
610 #ifdef CONFIG_CGROUPS
611         /*
612          * group_rwsem prevents new tasks from entering the threadgroup and
613          * member tasks from exiting,a more specifically, setting of
614          * PF_EXITING.  fork and exit paths are protected with this rwsem
615          * using threadgroup_change_begin/end().  Users which require
616          * threadgroup to remain stable should use threadgroup_[un]lock()
617          * which also takes care of exec path.  Currently, cgroup is the
618          * only user.
619          */
620         struct rw_semaphore group_rwsem;
621 #endif
622
623         oom_flags_t oom_flags;
624         short oom_score_adj;            /* OOM kill score adjustment */
625         short oom_score_adj_min;        /* OOM kill score adjustment min value.
626                                          * Only settable by CAP_SYS_RESOURCE. */
627
628         struct mutex cred_guard_mutex;  /* guard against foreign influences on
629                                          * credential calculations
630                                          * (notably. ptrace) */
631 };
632
633 /*
634  * Bits in flags field of signal_struct.
635  */
636 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
637 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
638 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
639 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
640 /*
641  * Pending notifications to parent.
642  */
643 #define SIGNAL_CLD_STOPPED      0x00000010
644 #define SIGNAL_CLD_CONTINUED    0x00000020
645 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
646
647 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
648
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
651 {
652         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
653                 (sig->group_exit_task != NULL);
654 }
655
656 /*
657  * Some day this will be a full-fledged user tracking system..
658  */
659 struct user_struct {
660         atomic_t __count;       /* reference count */
661         atomic_t processes;     /* How many processes does this user have? */
662         atomic_t files;         /* How many open files does this user have? */
663         atomic_t sigpending;    /* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665         atomic_t inotify_watches; /* How many inotify watches does this user have? */
666         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
667 #endif
668 #ifdef CONFIG_FANOTIFY
669         atomic_t fanotify_listeners;
670 #endif
671 #ifdef CONFIG_EPOLL
672         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
673 #endif
674 #ifdef CONFIG_POSIX_MQUEUE
675         /* protected by mq_lock */
676         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
677 #endif
678         unsigned long locked_shm; /* How many pages of mlocked shm ? */
679
680 #ifdef CONFIG_KEYS
681         struct key *uid_keyring;        /* UID specific keyring */
682         struct key *session_keyring;    /* UID's default session keyring */
683 #endif
684
685         /* Hash table maintenance information */
686         struct hlist_node uidhash_node;
687         kuid_t uid;
688
689 #ifdef CONFIG_PERF_EVENTS
690         atomic_long_t locked_vm;
691 #endif
692 };
693
694 extern int uids_sysfs_init(void);
695
696 extern struct user_struct *find_user(kuid_t);
697
698 extern struct user_struct root_user;
699 #define INIT_USER (&root_user)
700
701
702 struct backing_dev_info;
703 struct reclaim_state;
704
705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
706 struct sched_info {
707         /* cumulative counters */
708         unsigned long pcount;         /* # of times run on this cpu */
709         unsigned long long run_delay; /* time spent waiting on a runqueue */
710
711         /* timestamps */
712         unsigned long long last_arrival,/* when we last ran on a cpu */
713                            last_queued; /* when we were last queued to run */
714 };
715 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
716
717 #ifdef CONFIG_TASK_DELAY_ACCT
718 struct task_delay_info {
719         spinlock_t      lock;
720         unsigned int    flags;  /* Private per-task flags */
721
722         /* For each stat XXX, add following, aligned appropriately
723          *
724          * struct timespec XXX_start, XXX_end;
725          * u64 XXX_delay;
726          * u32 XXX_count;
727          *
728          * Atomicity of updates to XXX_delay, XXX_count protected by
729          * single lock above (split into XXX_lock if contention is an issue).
730          */
731
732         /*
733          * XXX_count is incremented on every XXX operation, the delay
734          * associated with the operation is added to XXX_delay.
735          * XXX_delay contains the accumulated delay time in nanoseconds.
736          */
737         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
738         u64 blkio_delay;        /* wait for sync block io completion */
739         u64 swapin_delay;       /* wait for swapin block io completion */
740         u32 blkio_count;        /* total count of the number of sync block */
741                                 /* io operations performed */
742         u32 swapin_count;       /* total count of the number of swapin block */
743                                 /* io operations performed */
744
745         struct timespec freepages_start, freepages_end;
746         u64 freepages_delay;    /* wait for memory reclaim */
747         u32 freepages_count;    /* total count of memory reclaim */
748 };
749 #endif  /* CONFIG_TASK_DELAY_ACCT */
750
751 static inline int sched_info_on(void)
752 {
753 #ifdef CONFIG_SCHEDSTATS
754         return 1;
755 #elif defined(CONFIG_TASK_DELAY_ACCT)
756         extern int delayacct_on;
757         return delayacct_on;
758 #else
759         return 0;
760 #endif
761 }
762
763 enum cpu_idle_type {
764         CPU_IDLE,
765         CPU_NOT_IDLE,
766         CPU_NEWLY_IDLE,
767         CPU_MAX_IDLE_TYPES
768 };
769
770 /*
771  * Increase resolution of cpu_power calculations
772  */
773 #define SCHED_POWER_SHIFT       10
774 #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
775
776 /*
777  * sched-domains (multiprocessor balancing) declarations:
778  */
779 #ifdef CONFIG_SMP
780 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
781 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
782 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
783 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
784 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
785 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
786 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
787 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
788 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
789 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
790 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
791 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
792 #define SD_NUMA                 0x4000  /* cross-node balancing */
793
794 extern int __weak arch_sd_sibiling_asym_packing(void);
795
796 struct sched_domain_attr {
797         int relax_domain_level;
798 };
799
800 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
801         .relax_domain_level = -1,                       \
802 }
803
804 extern int sched_domain_level_max;
805
806 struct sched_group;
807
808 struct sched_domain {
809         /* These fields must be setup */
810         struct sched_domain *parent;    /* top domain must be null terminated */
811         struct sched_domain *child;     /* bottom domain must be null terminated */
812         struct sched_group *groups;     /* the balancing groups of the domain */
813         unsigned long min_interval;     /* Minimum balance interval ms */
814         unsigned long max_interval;     /* Maximum balance interval ms */
815         unsigned int busy_factor;       /* less balancing by factor if busy */
816         unsigned int imbalance_pct;     /* No balance until over watermark */
817         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
818         unsigned int busy_idx;
819         unsigned int idle_idx;
820         unsigned int newidle_idx;
821         unsigned int wake_idx;
822         unsigned int forkexec_idx;
823         unsigned int smt_gain;
824
825         int nohz_idle;                  /* NOHZ IDLE status */
826         int flags;                      /* See SD_* */
827         int level;
828
829         /* Runtime fields. */
830         unsigned long last_balance;     /* init to jiffies. units in jiffies */
831         unsigned int balance_interval;  /* initialise to 1. units in ms. */
832         unsigned int nr_balance_failed; /* initialise to 0 */
833
834         /* idle_balance() stats */
835         u64 max_newidle_lb_cost;
836         unsigned long next_decay_max_lb_cost;
837
838 #ifdef CONFIG_SCHEDSTATS
839         /* load_balance() stats */
840         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
841         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
842         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
843         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
844         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
845         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
846         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
847         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
848
849         /* Active load balancing */
850         unsigned int alb_count;
851         unsigned int alb_failed;
852         unsigned int alb_pushed;
853
854         /* SD_BALANCE_EXEC stats */
855         unsigned int sbe_count;
856         unsigned int sbe_balanced;
857         unsigned int sbe_pushed;
858
859         /* SD_BALANCE_FORK stats */
860         unsigned int sbf_count;
861         unsigned int sbf_balanced;
862         unsigned int sbf_pushed;
863
864         /* try_to_wake_up() stats */
865         unsigned int ttwu_wake_remote;
866         unsigned int ttwu_move_affine;
867         unsigned int ttwu_move_balance;
868 #endif
869 #ifdef CONFIG_SCHED_DEBUG
870         char *name;
871 #endif
872         union {
873                 void *private;          /* used during construction */
874                 struct rcu_head rcu;    /* used during destruction */
875         };
876
877         unsigned int span_weight;
878         /*
879          * Span of all CPUs in this domain.
880          *
881          * NOTE: this field is variable length. (Allocated dynamically
882          * by attaching extra space to the end of the structure,
883          * depending on how many CPUs the kernel has booted up with)
884          */
885         unsigned long span[0];
886 };
887
888 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
889 {
890         return to_cpumask(sd->span);
891 }
892
893 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
894                                     struct sched_domain_attr *dattr_new);
895
896 /* Allocate an array of sched domains, for partition_sched_domains(). */
897 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
898 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
899
900 bool cpus_share_cache(int this_cpu, int that_cpu);
901
902 #else /* CONFIG_SMP */
903
904 struct sched_domain_attr;
905
906 static inline void
907 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
908                         struct sched_domain_attr *dattr_new)
909 {
910 }
911
912 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
913 {
914         return true;
915 }
916
917 #endif  /* !CONFIG_SMP */
918
919
920 struct io_context;                      /* See blkdev.h */
921
922
923 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
924 extern void prefetch_stack(struct task_struct *t);
925 #else
926 static inline void prefetch_stack(struct task_struct *t) { }
927 #endif
928
929 struct audit_context;           /* See audit.c */
930 struct mempolicy;
931 struct pipe_inode_info;
932 struct uts_namespace;
933
934 struct load_weight {
935         unsigned long weight, inv_weight;
936 };
937
938 struct sched_avg {
939         /*
940          * These sums represent an infinite geometric series and so are bound
941          * above by 1024/(1-y).  Thus we only need a u32 to store them for all
942          * choices of y < 1-2^(-32)*1024.
943          */
944         u32 runnable_avg_sum, runnable_avg_period;
945         u64 last_runnable_update;
946         s64 decay_count;
947         unsigned long load_avg_contrib;
948 };
949
950 #ifdef CONFIG_SCHEDSTATS
951 struct sched_statistics {
952         u64                     wait_start;
953         u64                     wait_max;
954         u64                     wait_count;
955         u64                     wait_sum;
956         u64                     iowait_count;
957         u64                     iowait_sum;
958
959         u64                     sleep_start;
960         u64                     sleep_max;
961         s64                     sum_sleep_runtime;
962
963         u64                     block_start;
964         u64                     block_max;
965         u64                     exec_max;
966         u64                     slice_max;
967
968         u64                     nr_migrations_cold;
969         u64                     nr_failed_migrations_affine;
970         u64                     nr_failed_migrations_running;
971         u64                     nr_failed_migrations_hot;
972         u64                     nr_forced_migrations;
973
974         u64                     nr_wakeups;
975         u64                     nr_wakeups_sync;
976         u64                     nr_wakeups_migrate;
977         u64                     nr_wakeups_local;
978         u64                     nr_wakeups_remote;
979         u64                     nr_wakeups_affine;
980         u64                     nr_wakeups_affine_attempts;
981         u64                     nr_wakeups_passive;
982         u64                     nr_wakeups_idle;
983 };
984 #endif
985
986 struct sched_entity {
987         struct load_weight      load;           /* for load-balancing */
988         struct rb_node          run_node;
989         struct list_head        group_node;
990         unsigned int            on_rq;
991
992         u64                     exec_start;
993         u64                     sum_exec_runtime;
994         u64                     vruntime;
995         u64                     prev_sum_exec_runtime;
996
997         u64                     nr_migrations;
998
999 #ifdef CONFIG_SCHEDSTATS
1000         struct sched_statistics statistics;
1001 #endif
1002
1003 #ifdef CONFIG_FAIR_GROUP_SCHED
1004         struct sched_entity     *parent;
1005         /* rq on which this entity is (to be) queued: */
1006         struct cfs_rq           *cfs_rq;
1007         /* rq "owned" by this entity/group: */
1008         struct cfs_rq           *my_q;
1009 #endif
1010
1011 #ifdef CONFIG_SMP
1012         /* Per-entity load-tracking */
1013         struct sched_avg        avg;
1014 #endif
1015 };
1016
1017 struct sched_rt_entity {
1018         struct list_head run_list;
1019         unsigned long timeout;
1020         unsigned long watchdog_stamp;
1021         unsigned int time_slice;
1022
1023         struct sched_rt_entity *back;
1024 #ifdef CONFIG_RT_GROUP_SCHED
1025         struct sched_rt_entity  *parent;
1026         /* rq on which this entity is (to be) queued: */
1027         struct rt_rq            *rt_rq;
1028         /* rq "owned" by this entity/group: */
1029         struct rt_rq            *my_q;
1030 #endif
1031 };
1032
1033
1034 struct rcu_node;
1035
1036 enum perf_event_task_context {
1037         perf_invalid_context = -1,
1038         perf_hw_context = 0,
1039         perf_sw_context,
1040         perf_nr_task_contexts,
1041 };
1042
1043 struct task_struct {
1044         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1045         void *stack;
1046         atomic_t usage;
1047         unsigned int flags;     /* per process flags, defined below */
1048         unsigned int ptrace;
1049
1050 #ifdef CONFIG_SMP
1051         struct llist_node wake_entry;
1052         int on_cpu;
1053         struct task_struct *last_wakee;
1054         unsigned long wakee_flips;
1055         unsigned long wakee_flip_decay_ts;
1056
1057         int wake_cpu;
1058 #endif
1059         int on_rq;
1060
1061         int prio, static_prio, normal_prio;
1062         unsigned int rt_priority;
1063         const struct sched_class *sched_class;
1064         struct sched_entity se;
1065         struct sched_rt_entity rt;
1066 #ifdef CONFIG_CGROUP_SCHED
1067         struct task_group *sched_task_group;
1068 #endif
1069
1070 #ifdef CONFIG_PREEMPT_NOTIFIERS
1071         /* list of struct preempt_notifier: */
1072         struct hlist_head preempt_notifiers;
1073 #endif
1074
1075 #ifdef CONFIG_BLK_DEV_IO_TRACE
1076         unsigned int btrace_seq;
1077 #endif
1078
1079         unsigned int policy;
1080         int nr_cpus_allowed;
1081         cpumask_t cpus_allowed;
1082
1083 #ifdef CONFIG_PREEMPT_RCU
1084         int rcu_read_lock_nesting;
1085         char rcu_read_unlock_special;
1086         struct list_head rcu_node_entry;
1087 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1088 #ifdef CONFIG_TREE_PREEMPT_RCU
1089         struct rcu_node *rcu_blocked_node;
1090 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1091 #ifdef CONFIG_RCU_BOOST
1092         struct rt_mutex *rcu_boost_mutex;
1093 #endif /* #ifdef CONFIG_RCU_BOOST */
1094
1095 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1096         struct sched_info sched_info;
1097 #endif
1098
1099         struct list_head tasks;
1100 #ifdef CONFIG_SMP
1101         struct plist_node pushable_tasks;
1102 #endif
1103
1104         struct mm_struct *mm, *active_mm;
1105 #ifdef CONFIG_COMPAT_BRK
1106         unsigned brk_randomized:1;
1107 #endif
1108 #if defined(SPLIT_RSS_COUNTING)
1109         struct task_rss_stat    rss_stat;
1110 #endif
1111 /* task state */
1112         int exit_state;
1113         int exit_code, exit_signal;
1114         int pdeath_signal;  /*  The signal sent when the parent dies  */
1115         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1116
1117         /* Used for emulating ABI behavior of previous Linux versions */
1118         unsigned int personality;
1119
1120         unsigned did_exec:1;
1121         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1122                                  * execve */
1123         unsigned in_iowait:1;
1124
1125         /* task may not gain privileges */
1126         unsigned no_new_privs:1;
1127
1128         /* Revert to default priority/policy when forking */
1129         unsigned sched_reset_on_fork:1;
1130         unsigned sched_contributes_to_load:1;
1131
1132         pid_t pid;
1133         pid_t tgid;
1134
1135 #ifdef CONFIG_CC_STACKPROTECTOR
1136         /* Canary value for the -fstack-protector gcc feature */
1137         unsigned long stack_canary;
1138 #endif
1139         /*
1140          * pointers to (original) parent process, youngest child, younger sibling,
1141          * older sibling, respectively.  (p->father can be replaced with
1142          * p->real_parent->pid)
1143          */
1144         struct task_struct __rcu *real_parent; /* real parent process */
1145         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1146         /*
1147          * children/sibling forms the list of my natural children
1148          */
1149         struct list_head children;      /* list of my children */
1150         struct list_head sibling;       /* linkage in my parent's children list */
1151         struct task_struct *group_leader;       /* threadgroup leader */
1152
1153         /*
1154          * ptraced is the list of tasks this task is using ptrace on.
1155          * This includes both natural children and PTRACE_ATTACH targets.
1156          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1157          */
1158         struct list_head ptraced;
1159         struct list_head ptrace_entry;
1160
1161         /* PID/PID hash table linkage. */
1162         struct pid_link pids[PIDTYPE_MAX];
1163         struct list_head thread_group;
1164
1165         struct completion *vfork_done;          /* for vfork() */
1166         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1167         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1168
1169         cputime_t utime, stime, utimescaled, stimescaled;
1170         cputime_t gtime;
1171 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1172         struct cputime prev_cputime;
1173 #endif
1174 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1175         seqlock_t vtime_seqlock;
1176         unsigned long long vtime_snap;
1177         enum {
1178                 VTIME_SLEEPING = 0,
1179                 VTIME_USER,
1180                 VTIME_SYS,
1181         } vtime_snap_whence;
1182 #endif
1183         unsigned long nvcsw, nivcsw; /* context switch counts */
1184         struct timespec start_time;             /* monotonic time */
1185         struct timespec real_start_time;        /* boot based time */
1186 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1187         unsigned long min_flt, maj_flt;
1188
1189         struct task_cputime cputime_expires;
1190         struct list_head cpu_timers[3];
1191
1192 /* process credentials */
1193         const struct cred __rcu *real_cred; /* objective and real subjective task
1194                                          * credentials (COW) */
1195         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1196                                          * credentials (COW) */
1197         char comm[TASK_COMM_LEN]; /* executable name excluding path
1198                                      - access with [gs]et_task_comm (which lock
1199                                        it with task_lock())
1200                                      - initialized normally by setup_new_exec */
1201 /* file system info */
1202         int link_count, total_link_count;
1203 #ifdef CONFIG_SYSVIPC
1204 /* ipc stuff */
1205         struct sysv_sem sysvsem;
1206 #endif
1207 #ifdef CONFIG_DETECT_HUNG_TASK
1208 /* hung task detection */
1209         unsigned long last_switch_count;
1210 #endif
1211 /* CPU-specific state of this task */
1212         struct thread_struct thread;
1213 /* filesystem information */
1214         struct fs_struct *fs;
1215 /* open file information */
1216         struct files_struct *files;
1217 /* namespaces */
1218         struct nsproxy *nsproxy;
1219 /* signal handlers */
1220         struct signal_struct *signal;
1221         struct sighand_struct *sighand;
1222
1223         sigset_t blocked, real_blocked;
1224         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1225         struct sigpending pending;
1226
1227         unsigned long sas_ss_sp;
1228         size_t sas_ss_size;
1229         int (*notifier)(void *priv);
1230         void *notifier_data;
1231         sigset_t *notifier_mask;
1232         struct callback_head *task_works;
1233
1234         struct audit_context *audit_context;
1235 #ifdef CONFIG_AUDITSYSCALL
1236         kuid_t loginuid;
1237         unsigned int sessionid;
1238 #endif
1239         struct seccomp seccomp;
1240
1241 /* Thread group tracking */
1242         u32 parent_exec_id;
1243         u32 self_exec_id;
1244 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1245  * mempolicy */
1246         spinlock_t alloc_lock;
1247
1248         /* Protection of the PI data structures: */
1249         raw_spinlock_t pi_lock;
1250
1251 #ifdef CONFIG_RT_MUTEXES
1252         /* PI waiters blocked on a rt_mutex held by this task */
1253         struct plist_head pi_waiters;
1254         /* Deadlock detection and priority inheritance handling */
1255         struct rt_mutex_waiter *pi_blocked_on;
1256 #endif
1257
1258 #ifdef CONFIG_DEBUG_MUTEXES
1259         /* mutex deadlock detection */
1260         struct mutex_waiter *blocked_on;
1261 #endif
1262 #ifdef CONFIG_TRACE_IRQFLAGS
1263         unsigned int irq_events;
1264         unsigned long hardirq_enable_ip;
1265         unsigned long hardirq_disable_ip;
1266         unsigned int hardirq_enable_event;
1267         unsigned int hardirq_disable_event;
1268         int hardirqs_enabled;
1269         int hardirq_context;
1270         unsigned long softirq_disable_ip;
1271         unsigned long softirq_enable_ip;
1272         unsigned int softirq_disable_event;
1273         unsigned int softirq_enable_event;
1274         int softirqs_enabled;
1275         int softirq_context;
1276 #endif
1277 #ifdef CONFIG_LOCKDEP
1278 # define MAX_LOCK_DEPTH 48UL
1279         u64 curr_chain_key;
1280         int lockdep_depth;
1281         unsigned int lockdep_recursion;
1282         struct held_lock held_locks[MAX_LOCK_DEPTH];
1283         gfp_t lockdep_reclaim_gfp;
1284 #endif
1285
1286 /* journalling filesystem info */
1287         void *journal_info;
1288
1289 /* stacked block device info */
1290         struct bio_list *bio_list;
1291
1292 #ifdef CONFIG_BLOCK
1293 /* stack plugging */
1294         struct blk_plug *plug;
1295 #endif
1296
1297 /* VM state */
1298         struct reclaim_state *reclaim_state;
1299
1300         struct backing_dev_info *backing_dev_info;
1301
1302         struct io_context *io_context;
1303
1304         unsigned long ptrace_message;
1305         siginfo_t *last_siginfo; /* For ptrace use.  */
1306         struct task_io_accounting ioac;
1307 #if defined(CONFIG_TASK_XACCT)
1308         u64 acct_rss_mem1;      /* accumulated rss usage */
1309         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1310         cputime_t acct_timexpd; /* stime + utime since last update */
1311 #endif
1312 #ifdef CONFIG_CPUSETS
1313         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1314         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1315         int cpuset_mem_spread_rotor;
1316         int cpuset_slab_spread_rotor;
1317 #endif
1318 #ifdef CONFIG_CGROUPS
1319         /* Control Group info protected by css_set_lock */
1320         struct css_set __rcu *cgroups;
1321         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1322         struct list_head cg_list;
1323 #endif
1324 #ifdef CONFIG_FUTEX
1325         struct robust_list_head __user *robust_list;
1326 #ifdef CONFIG_COMPAT
1327         struct compat_robust_list_head __user *compat_robust_list;
1328 #endif
1329         struct list_head pi_state_list;
1330         struct futex_pi_state *pi_state_cache;
1331 #endif
1332 #ifdef CONFIG_PERF_EVENTS
1333         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1334         struct mutex perf_event_mutex;
1335         struct list_head perf_event_list;
1336 #endif
1337 #ifdef CONFIG_NUMA
1338         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1339         short il_next;
1340         short pref_node_fork;
1341 #endif
1342 #ifdef CONFIG_NUMA_BALANCING
1343         int numa_scan_seq;
1344         unsigned int numa_scan_period;
1345         unsigned int numa_scan_period_max;
1346         int numa_preferred_nid;
1347         int numa_migrate_deferred;
1348         unsigned long numa_migrate_retry;
1349         u64 node_stamp;                 /* migration stamp  */
1350         struct callback_head numa_work;
1351
1352         struct list_head numa_entry;
1353         struct numa_group *numa_group;
1354
1355         /*
1356          * Exponential decaying average of faults on a per-node basis.
1357          * Scheduling placement decisions are made based on the these counts.
1358          * The values remain static for the duration of a PTE scan
1359          */
1360         unsigned long *numa_faults;
1361         unsigned long total_numa_faults;
1362
1363         /*
1364          * numa_faults_buffer records faults per node during the current
1365          * scan window. When the scan completes, the counts in numa_faults
1366          * decay and these values are copied.
1367          */
1368         unsigned long *numa_faults_buffer;
1369
1370         /*
1371          * numa_faults_locality tracks if faults recorded during the last
1372          * scan window were remote/local. The task scan period is adapted
1373          * based on the locality of the faults with different weights
1374          * depending on whether they were shared or private faults
1375          */
1376         unsigned long numa_faults_locality[2];
1377
1378         unsigned long numa_pages_migrated;
1379 #endif /* CONFIG_NUMA_BALANCING */
1380
1381         struct rcu_head rcu;
1382
1383         /*
1384          * cache last used pipe for splice
1385          */
1386         struct pipe_inode_info *splice_pipe;
1387
1388         struct page_frag task_frag;
1389
1390 #ifdef  CONFIG_TASK_DELAY_ACCT
1391         struct task_delay_info *delays;
1392 #endif
1393 #ifdef CONFIG_FAULT_INJECTION
1394         int make_it_fail;
1395 #endif
1396         /*
1397          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1398          * balance_dirty_pages() for some dirty throttling pause
1399          */
1400         int nr_dirtied;
1401         int nr_dirtied_pause;
1402         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1403
1404 #ifdef CONFIG_LATENCYTOP
1405         int latency_record_count;
1406         struct latency_record latency_record[LT_SAVECOUNT];
1407 #endif
1408         /*
1409          * time slack values; these are used to round up poll() and
1410          * select() etc timeout values. These are in nanoseconds.
1411          */
1412         unsigned long timer_slack_ns;
1413         unsigned long default_timer_slack_ns;
1414
1415 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1416         /* Index of current stored address in ret_stack */
1417         int curr_ret_stack;
1418         /* Stack of return addresses for return function tracing */
1419         struct ftrace_ret_stack *ret_stack;
1420         /* time stamp for last schedule */
1421         unsigned long long ftrace_timestamp;
1422         /*
1423          * Number of functions that haven't been traced
1424          * because of depth overrun.
1425          */
1426         atomic_t trace_overrun;
1427         /* Pause for the tracing */
1428         atomic_t tracing_graph_pause;
1429 #endif
1430 #ifdef CONFIG_TRACING
1431         /* state flags for use by tracers */
1432         unsigned long trace;
1433         /* bitmask and counter of trace recursion */
1434         unsigned long trace_recursion;
1435 #endif /* CONFIG_TRACING */
1436 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1437         struct memcg_batch_info {
1438                 int do_batch;   /* incremented when batch uncharge started */
1439                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1440                 unsigned long nr_pages; /* uncharged usage */
1441                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1442         } memcg_batch;
1443         unsigned int memcg_kmem_skip_account;
1444         struct memcg_oom_info {
1445                 struct mem_cgroup *memcg;
1446                 gfp_t gfp_mask;
1447                 int order;
1448                 unsigned int may_oom:1;
1449         } memcg_oom;
1450 #endif
1451 #ifdef CONFIG_UPROBES
1452         struct uprobe_task *utask;
1453 #endif
1454 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1455         unsigned int    sequential_io;
1456         unsigned int    sequential_io_avg;
1457 #endif
1458 };
1459
1460 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1461 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1462
1463 #define TNF_MIGRATED    0x01
1464 #define TNF_NO_GROUP    0x02
1465 #define TNF_SHARED      0x04
1466 #define TNF_FAULT_LOCAL 0x08
1467
1468 #ifdef CONFIG_NUMA_BALANCING
1469 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1470 extern pid_t task_numa_group_id(struct task_struct *p);
1471 extern void set_numabalancing_state(bool enabled);
1472 extern void task_numa_free(struct task_struct *p);
1473
1474 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1475 #else
1476 static inline void task_numa_fault(int last_node, int node, int pages,
1477                                    int flags)
1478 {
1479 }
1480 static inline pid_t task_numa_group_id(struct task_struct *p)
1481 {
1482         return 0;
1483 }
1484 static inline void set_numabalancing_state(bool enabled)
1485 {
1486 }
1487 static inline void task_numa_free(struct task_struct *p)
1488 {
1489 }
1490 #endif
1491
1492 static inline struct pid *task_pid(struct task_struct *task)
1493 {
1494         return task->pids[PIDTYPE_PID].pid;
1495 }
1496
1497 static inline struct pid *task_tgid(struct task_struct *task)
1498 {
1499         return task->group_leader->pids[PIDTYPE_PID].pid;
1500 }
1501
1502 /*
1503  * Without tasklist or rcu lock it is not safe to dereference
1504  * the result of task_pgrp/task_session even if task == current,
1505  * we can race with another thread doing sys_setsid/sys_setpgid.
1506  */
1507 static inline struct pid *task_pgrp(struct task_struct *task)
1508 {
1509         return task->group_leader->pids[PIDTYPE_PGID].pid;
1510 }
1511
1512 static inline struct pid *task_session(struct task_struct *task)
1513 {
1514         return task->group_leader->pids[PIDTYPE_SID].pid;
1515 }
1516
1517 struct pid_namespace;
1518
1519 /*
1520  * the helpers to get the task's different pids as they are seen
1521  * from various namespaces
1522  *
1523  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1524  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1525  *                     current.
1526  * task_xid_nr_ns()  : id seen from the ns specified;
1527  *
1528  * set_task_vxid()   : assigns a virtual id to a task;
1529  *
1530  * see also pid_nr() etc in include/linux/pid.h
1531  */
1532 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1533                         struct pid_namespace *ns);
1534
1535 static inline pid_t task_pid_nr(struct task_struct *tsk)
1536 {
1537         return tsk->pid;
1538 }
1539
1540 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1541                                         struct pid_namespace *ns)
1542 {
1543         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1544 }
1545
1546 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1547 {
1548         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1549 }
1550
1551
1552 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1553 {
1554         return tsk->tgid;
1555 }
1556
1557 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1558
1559 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1560 {
1561         return pid_vnr(task_tgid(tsk));
1562 }
1563
1564
1565 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1566                                         struct pid_namespace *ns)
1567 {
1568         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1569 }
1570
1571 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1572 {
1573         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1574 }
1575
1576
1577 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1578                                         struct pid_namespace *ns)
1579 {
1580         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1581 }
1582
1583 static inline pid_t task_session_vnr(struct task_struct *tsk)
1584 {
1585         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1586 }
1587
1588 /* obsolete, do not use */
1589 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1590 {
1591         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1592 }
1593
1594 /**
1595  * pid_alive - check that a task structure is not stale
1596  * @p: Task structure to be checked.
1597  *
1598  * Test if a process is not yet dead (at most zombie state)
1599  * If pid_alive fails, then pointers within the task structure
1600  * can be stale and must not be dereferenced.
1601  *
1602  * Return: 1 if the process is alive. 0 otherwise.
1603  */
1604 static inline int pid_alive(struct task_struct *p)
1605 {
1606         return p->pids[PIDTYPE_PID].pid != NULL;
1607 }
1608
1609 /**
1610  * is_global_init - check if a task structure is init
1611  * @tsk: Task structure to be checked.
1612  *
1613  * Check if a task structure is the first user space task the kernel created.
1614  *
1615  * Return: 1 if the task structure is init. 0 otherwise.
1616  */
1617 static inline int is_global_init(struct task_struct *tsk)
1618 {
1619         return tsk->pid == 1;
1620 }
1621
1622 extern struct pid *cad_pid;
1623
1624 extern void free_task(struct task_struct *tsk);
1625 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1626
1627 extern void __put_task_struct(struct task_struct *t);
1628
1629 static inline void put_task_struct(struct task_struct *t)
1630 {
1631         if (atomic_dec_and_test(&t->usage))
1632                 __put_task_struct(t);
1633 }
1634
1635 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1636 extern void task_cputime(struct task_struct *t,
1637                          cputime_t *utime, cputime_t *stime);
1638 extern void task_cputime_scaled(struct task_struct *t,
1639                                 cputime_t *utimescaled, cputime_t *stimescaled);
1640 extern cputime_t task_gtime(struct task_struct *t);
1641 #else
1642 static inline void task_cputime(struct task_struct *t,
1643                                 cputime_t *utime, cputime_t *stime)
1644 {
1645         if (utime)
1646                 *utime = t->utime;
1647         if (stime)
1648                 *stime = t->stime;
1649 }
1650
1651 static inline void task_cputime_scaled(struct task_struct *t,
1652                                        cputime_t *utimescaled,
1653                                        cputime_t *stimescaled)
1654 {
1655         if (utimescaled)
1656                 *utimescaled = t->utimescaled;
1657         if (stimescaled)
1658                 *stimescaled = t->stimescaled;
1659 }
1660
1661 static inline cputime_t task_gtime(struct task_struct *t)
1662 {
1663         return t->gtime;
1664 }
1665 #endif
1666 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1667 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1668
1669 /*
1670  * Per process flags
1671  */
1672 #define PF_EXITING      0x00000004      /* getting shut down */
1673 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1674 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1675 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1676 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1677 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1678 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1679 #define PF_DUMPCORE     0x00000200      /* dumped core */
1680 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1681 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1682 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1683 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1684 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1685 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1686 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1687 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1688 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1689 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1690 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1691 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1692 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1693 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1694 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1695 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1696 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1697 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1698 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1699 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1700 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1701 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1702
1703 /*
1704  * Only the _current_ task can read/write to tsk->flags, but other
1705  * tasks can access tsk->flags in readonly mode for example
1706  * with tsk_used_math (like during threaded core dumping).
1707  * There is however an exception to this rule during ptrace
1708  * or during fork: the ptracer task is allowed to write to the
1709  * child->flags of its traced child (same goes for fork, the parent
1710  * can write to the child->flags), because we're guaranteed the
1711  * child is not running and in turn not changing child->flags
1712  * at the same time the parent does it.
1713  */
1714 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1715 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1716 #define clear_used_math() clear_stopped_child_used_math(current)
1717 #define set_used_math() set_stopped_child_used_math(current)
1718 #define conditional_stopped_child_used_math(condition, child) \
1719         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1720 #define conditional_used_math(condition) \
1721         conditional_stopped_child_used_math(condition, current)
1722 #define copy_to_stopped_child_used_math(child) \
1723         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1724 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1725 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1726 #define used_math() tsk_used_math(current)
1727
1728 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1729 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1730 {
1731         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1732                 flags &= ~__GFP_IO;
1733         return flags;
1734 }
1735
1736 static inline unsigned int memalloc_noio_save(void)
1737 {
1738         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1739         current->flags |= PF_MEMALLOC_NOIO;
1740         return flags;
1741 }
1742
1743 static inline void memalloc_noio_restore(unsigned int flags)
1744 {
1745         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1746 }
1747
1748 /*
1749  * task->jobctl flags
1750  */
1751 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1752
1753 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1754 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1755 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1756 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1757 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1758 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1759 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1760
1761 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1762 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1763 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1764 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1765 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1766 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1767 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1768
1769 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1770 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1771
1772 extern bool task_set_jobctl_pending(struct task_struct *task,
1773                                     unsigned int mask);
1774 extern void task_clear_jobctl_trapping(struct task_struct *task);
1775 extern void task_clear_jobctl_pending(struct task_struct *task,
1776                                       unsigned int mask);
1777
1778 #ifdef CONFIG_PREEMPT_RCU
1779
1780 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1781 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1782
1783 static inline void rcu_copy_process(struct task_struct *p)
1784 {
1785         p->rcu_read_lock_nesting = 0;
1786         p->rcu_read_unlock_special = 0;
1787 #ifdef CONFIG_TREE_PREEMPT_RCU
1788         p->rcu_blocked_node = NULL;
1789 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1790 #ifdef CONFIG_RCU_BOOST
1791         p->rcu_boost_mutex = NULL;
1792 #endif /* #ifdef CONFIG_RCU_BOOST */
1793         INIT_LIST_HEAD(&p->rcu_node_entry);
1794 }
1795
1796 #else
1797
1798 static inline void rcu_copy_process(struct task_struct *p)
1799 {
1800 }
1801
1802 #endif
1803
1804 static inline void tsk_restore_flags(struct task_struct *task,
1805                                 unsigned long orig_flags, unsigned long flags)
1806 {
1807         task->flags &= ~flags;
1808         task->flags |= orig_flags & flags;
1809 }
1810
1811 #ifdef CONFIG_SMP
1812 extern void do_set_cpus_allowed(struct task_struct *p,
1813                                const struct cpumask *new_mask);
1814
1815 extern int set_cpus_allowed_ptr(struct task_struct *p,
1816                                 const struct cpumask *new_mask);
1817 #else
1818 static inline void do_set_cpus_allowed(struct task_struct *p,
1819                                       const struct cpumask *new_mask)
1820 {
1821 }
1822 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1823                                        const struct cpumask *new_mask)
1824 {
1825         if (!cpumask_test_cpu(0, new_mask))
1826                 return -EINVAL;
1827         return 0;
1828 }
1829 #endif
1830
1831 #ifdef CONFIG_NO_HZ_COMMON
1832 void calc_load_enter_idle(void);
1833 void calc_load_exit_idle(void);
1834 #else
1835 static inline void calc_load_enter_idle(void) { }
1836 static inline void calc_load_exit_idle(void) { }
1837 #endif /* CONFIG_NO_HZ_COMMON */
1838
1839 #ifndef CONFIG_CPUMASK_OFFSTACK
1840 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1841 {
1842         return set_cpus_allowed_ptr(p, &new_mask);
1843 }
1844 #endif
1845
1846 /*
1847  * Do not use outside of architecture code which knows its limitations.
1848  *
1849  * sched_clock() has no promise of monotonicity or bounded drift between
1850  * CPUs, use (which you should not) requires disabling IRQs.
1851  *
1852  * Please use one of the three interfaces below.
1853  */
1854 extern unsigned long long notrace sched_clock(void);
1855 /*
1856  * See the comment in kernel/sched/clock.c
1857  */
1858 extern u64 cpu_clock(int cpu);
1859 extern u64 local_clock(void);
1860 extern u64 sched_clock_cpu(int cpu);
1861
1862
1863 extern void sched_clock_init(void);
1864
1865 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1866 static inline void sched_clock_tick(void)
1867 {
1868 }
1869
1870 static inline void sched_clock_idle_sleep_event(void)
1871 {
1872 }
1873
1874 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1875 {
1876 }
1877 #else
1878 /*
1879  * Architectures can set this to 1 if they have specified
1880  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1881  * but then during bootup it turns out that sched_clock()
1882  * is reliable after all:
1883  */
1884 extern int sched_clock_stable;
1885
1886 extern void sched_clock_tick(void);
1887 extern void sched_clock_idle_sleep_event(void);
1888 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1889 #endif
1890
1891 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1892 /*
1893  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1894  * The reason for this explicit opt-in is not to have perf penalty with
1895  * slow sched_clocks.
1896  */
1897 extern void enable_sched_clock_irqtime(void);
1898 extern void disable_sched_clock_irqtime(void);
1899 #else
1900 static inline void enable_sched_clock_irqtime(void) {}
1901 static inline void disable_sched_clock_irqtime(void) {}
1902 #endif
1903
1904 extern unsigned long long
1905 task_sched_runtime(struct task_struct *task);
1906
1907 /* sched_exec is called by processes performing an exec */
1908 #ifdef CONFIG_SMP
1909 extern void sched_exec(void);
1910 #else
1911 #define sched_exec()   {}
1912 #endif
1913
1914 extern void sched_clock_idle_sleep_event(void);
1915 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1916
1917 #ifdef CONFIG_HOTPLUG_CPU
1918 extern void idle_task_exit(void);
1919 #else
1920 static inline void idle_task_exit(void) {}
1921 #endif
1922
1923 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1924 extern void wake_up_nohz_cpu(int cpu);
1925 #else
1926 static inline void wake_up_nohz_cpu(int cpu) { }
1927 #endif
1928
1929 #ifdef CONFIG_NO_HZ_FULL
1930 extern bool sched_can_stop_tick(void);
1931 extern u64 scheduler_tick_max_deferment(void);
1932 #else
1933 static inline bool sched_can_stop_tick(void) { return false; }
1934 #endif
1935
1936 #ifdef CONFIG_SCHED_AUTOGROUP
1937 extern void sched_autogroup_create_attach(struct task_struct *p);
1938 extern void sched_autogroup_detach(struct task_struct *p);
1939 extern void sched_autogroup_fork(struct signal_struct *sig);
1940 extern void sched_autogroup_exit(struct signal_struct *sig);
1941 #ifdef CONFIG_PROC_FS
1942 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1943 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1944 #endif
1945 #else
1946 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1947 static inline void sched_autogroup_detach(struct task_struct *p) { }
1948 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1949 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1950 #endif
1951
1952 extern bool yield_to(struct task_struct *p, bool preempt);
1953 extern void set_user_nice(struct task_struct *p, long nice);
1954 extern int task_prio(const struct task_struct *p);
1955 extern int task_nice(const struct task_struct *p);
1956 extern int can_nice(const struct task_struct *p, const int nice);
1957 extern int task_curr(const struct task_struct *p);
1958 extern int idle_cpu(int cpu);
1959 extern int sched_setscheduler(struct task_struct *, int,
1960                               const struct sched_param *);
1961 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1962                                       const struct sched_param *);
1963 extern struct task_struct *idle_task(int cpu);
1964 /**
1965  * is_idle_task - is the specified task an idle task?
1966  * @p: the task in question.
1967  *
1968  * Return: 1 if @p is an idle task. 0 otherwise.
1969  */
1970 static inline bool is_idle_task(const struct task_struct *p)
1971 {
1972         return p->pid == 0;
1973 }
1974 extern struct task_struct *curr_task(int cpu);
1975 extern void set_curr_task(int cpu, struct task_struct *p);
1976
1977 void yield(void);
1978
1979 /*
1980  * The default (Linux) execution domain.
1981  */
1982 extern struct exec_domain       default_exec_domain;
1983
1984 union thread_union {
1985         struct thread_info thread_info;
1986         unsigned long stack[THREAD_SIZE/sizeof(long)];
1987 };
1988
1989 #ifndef __HAVE_ARCH_KSTACK_END
1990 static inline int kstack_end(void *addr)
1991 {
1992         /* Reliable end of stack detection:
1993          * Some APM bios versions misalign the stack
1994          */
1995         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1996 }
1997 #endif
1998
1999 extern union thread_union init_thread_union;
2000 extern struct task_struct init_task;
2001
2002 extern struct   mm_struct init_mm;
2003
2004 extern struct pid_namespace init_pid_ns;
2005
2006 /*
2007  * find a task by one of its numerical ids
2008  *
2009  * find_task_by_pid_ns():
2010  *      finds a task by its pid in the specified namespace
2011  * find_task_by_vpid():
2012  *      finds a task by its virtual pid
2013  *
2014  * see also find_vpid() etc in include/linux/pid.h
2015  */
2016
2017 extern struct task_struct *find_task_by_vpid(pid_t nr);
2018 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2019                 struct pid_namespace *ns);
2020
2021 /* per-UID process charging. */
2022 extern struct user_struct * alloc_uid(kuid_t);
2023 static inline struct user_struct *get_uid(struct user_struct *u)
2024 {
2025         atomic_inc(&u->__count);
2026         return u;
2027 }
2028 extern void free_uid(struct user_struct *);
2029
2030 #include <asm/current.h>
2031
2032 extern void xtime_update(unsigned long ticks);
2033
2034 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2035 extern int wake_up_process(struct task_struct *tsk);
2036 extern void wake_up_new_task(struct task_struct *tsk);
2037 #ifdef CONFIG_SMP
2038  extern void kick_process(struct task_struct *tsk);
2039 #else
2040  static inline void kick_process(struct task_struct *tsk) { }
2041 #endif
2042 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2043 extern void sched_dead(struct task_struct *p);
2044
2045 extern void proc_caches_init(void);
2046 extern void flush_signals(struct task_struct *);
2047 extern void __flush_signals(struct task_struct *);
2048 extern void ignore_signals(struct task_struct *);
2049 extern void flush_signal_handlers(struct task_struct *, int force_default);
2050 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2051
2052 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2053 {
2054         unsigned long flags;
2055         int ret;
2056
2057         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2058         ret = dequeue_signal(tsk, mask, info);
2059         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2060
2061         return ret;
2062 }
2063
2064 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2065                               sigset_t *mask);
2066 extern void unblock_all_signals(void);
2067 extern void release_task(struct task_struct * p);
2068 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2069 extern int force_sigsegv(int, struct task_struct *);
2070 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2071 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2072 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2073 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2074                                 const struct cred *, u32);
2075 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2076 extern int kill_pid(struct pid *pid, int sig, int priv);
2077 extern int kill_proc_info(int, struct siginfo *, pid_t);
2078 extern __must_check bool do_notify_parent(struct task_struct *, int);
2079 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2080 extern void force_sig(int, struct task_struct *);
2081 extern int send_sig(int, struct task_struct *, int);
2082 extern int zap_other_threads(struct task_struct *p);
2083 extern struct sigqueue *sigqueue_alloc(void);
2084 extern void sigqueue_free(struct sigqueue *);
2085 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2086 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2087
2088 static inline void restore_saved_sigmask(void)
2089 {
2090         if (test_and_clear_restore_sigmask())
2091                 __set_current_blocked(&current->saved_sigmask);
2092 }
2093
2094 static inline sigset_t *sigmask_to_save(void)
2095 {
2096         sigset_t *res = &current->blocked;
2097         if (unlikely(test_restore_sigmask()))
2098                 res = &current->saved_sigmask;
2099         return res;
2100 }
2101
2102 static inline int kill_cad_pid(int sig, int priv)
2103 {
2104         return kill_pid(cad_pid, sig, priv);
2105 }
2106
2107 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2108 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2109 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2110 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2111
2112 /*
2113  * True if we are on the alternate signal stack.
2114  */
2115 static inline int on_sig_stack(unsigned long sp)
2116 {
2117 #ifdef CONFIG_STACK_GROWSUP
2118         return sp >= current->sas_ss_sp &&
2119                 sp - current->sas_ss_sp < current->sas_ss_size;
2120 #else
2121         return sp > current->sas_ss_sp &&
2122                 sp - current->sas_ss_sp <= current->sas_ss_size;
2123 #endif
2124 }
2125
2126 static inline int sas_ss_flags(unsigned long sp)
2127 {
2128         return (current->sas_ss_size == 0 ? SS_DISABLE
2129                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2130 }
2131
2132 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2133 {
2134         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2135 #ifdef CONFIG_STACK_GROWSUP
2136                 return current->sas_ss_sp;
2137 #else
2138                 return current->sas_ss_sp + current->sas_ss_size;
2139 #endif
2140         return sp;
2141 }
2142
2143 /*
2144  * Routines for handling mm_structs
2145  */
2146 extern struct mm_struct * mm_alloc(void);
2147
2148 /* mmdrop drops the mm and the page tables */
2149 extern void __mmdrop(struct mm_struct *);
2150 static inline void mmdrop(struct mm_struct * mm)
2151 {
2152         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2153                 __mmdrop(mm);
2154 }
2155
2156 /* mmput gets rid of the mappings and all user-space */
2157 extern void mmput(struct mm_struct *);
2158 /* Grab a reference to a task's mm, if it is not already going away */
2159 extern struct mm_struct *get_task_mm(struct task_struct *task);
2160 /*
2161  * Grab a reference to a task's mm, if it is not already going away
2162  * and ptrace_may_access with the mode parameter passed to it
2163  * succeeds.
2164  */
2165 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2166 /* Remove the current tasks stale references to the old mm_struct */
2167 extern void mm_release(struct task_struct *, struct mm_struct *);
2168 /* Allocate a new mm structure and copy contents from tsk->mm */
2169 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2170
2171 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2172                         struct task_struct *);
2173 extern void flush_thread(void);
2174 extern void exit_thread(void);
2175
2176 extern void exit_files(struct task_struct *);
2177 extern void __cleanup_sighand(struct sighand_struct *);
2178
2179 extern void exit_itimers(struct signal_struct *);
2180 extern void flush_itimer_signals(void);
2181
2182 extern void do_group_exit(int);
2183
2184 extern int allow_signal(int);
2185 extern int disallow_signal(int);
2186
2187 extern int do_execve(const char *,
2188                      const char __user * const __user *,
2189                      const char __user * const __user *);
2190 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2191 struct task_struct *fork_idle(int);
2192 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2193
2194 extern void set_task_comm(struct task_struct *tsk, char *from);
2195 extern char *get_task_comm(char *to, struct task_struct *tsk);
2196
2197 #ifdef CONFIG_SMP
2198 void scheduler_ipi(void);
2199 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2200 #else
2201 static inline void scheduler_ipi(void) { }
2202 static inline unsigned long wait_task_inactive(struct task_struct *p,
2203                                                long match_state)
2204 {
2205         return 1;
2206 }
2207 #endif
2208
2209 #define next_task(p) \
2210         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2211
2212 #define for_each_process(p) \
2213         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2214
2215 extern bool current_is_single_threaded(void);
2216
2217 /*
2218  * Careful: do_each_thread/while_each_thread is a double loop so
2219  *          'break' will not work as expected - use goto instead.
2220  */
2221 #define do_each_thread(g, t) \
2222         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2223
2224 #define while_each_thread(g, t) \
2225         while ((t = next_thread(t)) != g)
2226
2227 static inline int get_nr_threads(struct task_struct *tsk)
2228 {
2229         return tsk->signal->nr_threads;
2230 }
2231
2232 static inline bool thread_group_leader(struct task_struct *p)
2233 {
2234         return p->exit_signal >= 0;
2235 }
2236
2237 /* Do to the insanities of de_thread it is possible for a process
2238  * to have the pid of the thread group leader without actually being
2239  * the thread group leader.  For iteration through the pids in proc
2240  * all we care about is that we have a task with the appropriate
2241  * pid, we don't actually care if we have the right task.
2242  */
2243 static inline bool has_group_leader_pid(struct task_struct *p)
2244 {
2245         return task_pid(p) == p->signal->leader_pid;
2246 }
2247
2248 static inline
2249 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2250 {
2251         return p1->signal == p2->signal;
2252 }
2253
2254 static inline struct task_struct *next_thread(const struct task_struct *p)
2255 {
2256         return list_entry_rcu(p->thread_group.next,
2257                               struct task_struct, thread_group);
2258 }
2259
2260 static inline int thread_group_empty(struct task_struct *p)
2261 {
2262         return list_empty(&p->thread_group);
2263 }
2264
2265 #define delay_group_leader(p) \
2266                 (thread_group_leader(p) && !thread_group_empty(p))
2267
2268 /*
2269  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2270  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2271  * pins the final release of task.io_context.  Also protects ->cpuset and
2272  * ->cgroup.subsys[]. And ->vfork_done.
2273  *
2274  * Nests both inside and outside of read_lock(&tasklist_lock).
2275  * It must not be nested with write_lock_irq(&tasklist_lock),
2276  * neither inside nor outside.
2277  */
2278 static inline void task_lock(struct task_struct *p)
2279 {
2280         spin_lock(&p->alloc_lock);
2281 }
2282
2283 static inline void task_unlock(struct task_struct *p)
2284 {
2285         spin_unlock(&p->alloc_lock);
2286 }
2287
2288 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2289                                                         unsigned long *flags);
2290
2291 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2292                                                        unsigned long *flags)
2293 {
2294         struct sighand_struct *ret;
2295
2296         ret = __lock_task_sighand(tsk, flags);
2297         (void)__cond_lock(&tsk->sighand->siglock, ret);
2298         return ret;
2299 }
2300
2301 static inline void unlock_task_sighand(struct task_struct *tsk,
2302                                                 unsigned long *flags)
2303 {
2304         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2305 }
2306
2307 #ifdef CONFIG_CGROUPS
2308 static inline void threadgroup_change_begin(struct task_struct *tsk)
2309 {
2310         down_read(&tsk->signal->group_rwsem);
2311 }
2312 static inline void threadgroup_change_end(struct task_struct *tsk)
2313 {
2314         up_read(&tsk->signal->group_rwsem);
2315 }
2316
2317 /**
2318  * threadgroup_lock - lock threadgroup
2319  * @tsk: member task of the threadgroup to lock
2320  *
2321  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2322  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2323  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2324  * needs to stay stable across blockable operations.
2325  *
2326  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2327  * synchronization.  While held, no new task will be added to threadgroup
2328  * and no existing live task will have its PF_EXITING set.
2329  *
2330  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2331  * sub-thread becomes a new leader.
2332  */
2333 static inline void threadgroup_lock(struct task_struct *tsk)
2334 {
2335         down_write(&tsk->signal->group_rwsem);
2336 }
2337
2338 /**
2339  * threadgroup_unlock - unlock threadgroup
2340  * @tsk: member task of the threadgroup to unlock
2341  *
2342  * Reverse threadgroup_lock().
2343  */
2344 static inline void threadgroup_unlock(struct task_struct *tsk)
2345 {
2346         up_write(&tsk->signal->group_rwsem);
2347 }
2348 #else
2349 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2350 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2351 static inline void threadgroup_lock(struct task_struct *tsk) {}
2352 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2353 #endif
2354
2355 #ifndef __HAVE_THREAD_FUNCTIONS
2356
2357 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2358 #define task_stack_page(task)   ((task)->stack)
2359
2360 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2361 {
2362         *task_thread_info(p) = *task_thread_info(org);
2363         task_thread_info(p)->task = p;
2364 }
2365
2366 static inline unsigned long *end_of_stack(struct task_struct *p)
2367 {
2368         return (unsigned long *)(task_thread_info(p) + 1);
2369 }
2370
2371 #endif
2372
2373 static inline int object_is_on_stack(void *obj)
2374 {
2375         void *stack = task_stack_page(current);
2376
2377         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2378 }
2379
2380 extern void thread_info_cache_init(void);
2381
2382 #ifdef CONFIG_DEBUG_STACK_USAGE
2383 static inline unsigned long stack_not_used(struct task_struct *p)
2384 {
2385         unsigned long *n = end_of_stack(p);
2386
2387         do {    /* Skip over canary */
2388                 n++;
2389         } while (!*n);
2390
2391         return (unsigned long)n - (unsigned long)end_of_stack(p);
2392 }
2393 #endif
2394
2395 /* set thread flags in other task's structures
2396  * - see asm/thread_info.h for TIF_xxxx flags available
2397  */
2398 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2399 {
2400         set_ti_thread_flag(task_thread_info(tsk), flag);
2401 }
2402
2403 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2404 {
2405         clear_ti_thread_flag(task_thread_info(tsk), flag);
2406 }
2407
2408 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2409 {
2410         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2411 }
2412
2413 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2414 {
2415         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2416 }
2417
2418 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2419 {
2420         return test_ti_thread_flag(task_thread_info(tsk), flag);
2421 }
2422
2423 static inline void set_tsk_need_resched(struct task_struct *tsk)
2424 {
2425         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2426 }
2427
2428 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2429 {
2430         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2431 }
2432
2433 static inline int test_tsk_need_resched(struct task_struct *tsk)
2434 {
2435         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2436 }
2437
2438 static inline int restart_syscall(void)
2439 {
2440         set_tsk_thread_flag(current, TIF_SIGPENDING);
2441         return -ERESTARTNOINTR;
2442 }
2443
2444 static inline int signal_pending(struct task_struct *p)
2445 {
2446         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2447 }
2448
2449 static inline int __fatal_signal_pending(struct task_struct *p)
2450 {
2451         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2452 }
2453
2454 static inline int fatal_signal_pending(struct task_struct *p)
2455 {
2456         return signal_pending(p) && __fatal_signal_pending(p);
2457 }
2458
2459 static inline int signal_pending_state(long state, struct task_struct *p)
2460 {
2461         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2462                 return 0;
2463         if (!signal_pending(p))
2464                 return 0;
2465
2466         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2467 }
2468
2469 /*
2470  * cond_resched() and cond_resched_lock(): latency reduction via
2471  * explicit rescheduling in places that are safe. The return
2472  * value indicates whether a reschedule was done in fact.
2473  * cond_resched_lock() will drop the spinlock before scheduling,
2474  * cond_resched_softirq() will enable bhs before scheduling.
2475  */
2476 extern int _cond_resched(void);
2477
2478 #define cond_resched() ({                       \
2479         __might_sleep(__FILE__, __LINE__, 0);   \
2480         _cond_resched();                        \
2481 })
2482
2483 extern int __cond_resched_lock(spinlock_t *lock);
2484
2485 #ifdef CONFIG_PREEMPT_COUNT
2486 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2487 #else
2488 #define PREEMPT_LOCK_OFFSET     0
2489 #endif
2490
2491 #define cond_resched_lock(lock) ({                              \
2492         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2493         __cond_resched_lock(lock);                              \
2494 })
2495
2496 extern int __cond_resched_softirq(void);
2497
2498 #define cond_resched_softirq() ({                                       \
2499         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2500         __cond_resched_softirq();                                       \
2501 })
2502
2503 static inline void cond_resched_rcu(void)
2504 {
2505 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2506         rcu_read_unlock();
2507         cond_resched();
2508         rcu_read_lock();
2509 #endif
2510 }
2511
2512 /*
2513  * Does a critical section need to be broken due to another
2514  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2515  * but a general need for low latency)
2516  */
2517 static inline int spin_needbreak(spinlock_t *lock)
2518 {
2519 #ifdef CONFIG_PREEMPT
2520         return spin_is_contended(lock);
2521 #else
2522         return 0;
2523 #endif
2524 }
2525
2526 /*
2527  * Idle thread specific functions to determine the need_resched
2528  * polling state. We have two versions, one based on TS_POLLING in
2529  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2530  * thread_info.flags
2531  */
2532 #ifdef TS_POLLING
2533 static inline int tsk_is_polling(struct task_struct *p)
2534 {
2535         return task_thread_info(p)->status & TS_POLLING;
2536 }
2537 static inline void __current_set_polling(void)
2538 {
2539         current_thread_info()->status |= TS_POLLING;
2540 }
2541
2542 static inline bool __must_check current_set_polling_and_test(void)
2543 {
2544         __current_set_polling();
2545
2546         /*
2547          * Polling state must be visible before we test NEED_RESCHED,
2548          * paired by resched_task()
2549          */
2550         smp_mb();
2551
2552         return unlikely(tif_need_resched());
2553 }
2554
2555 static inline void __current_clr_polling(void)
2556 {
2557         current_thread_info()->status &= ~TS_POLLING;
2558 }
2559
2560 static inline bool __must_check current_clr_polling_and_test(void)
2561 {
2562         __current_clr_polling();
2563
2564         /*
2565          * Polling state must be visible before we test NEED_RESCHED,
2566          * paired by resched_task()
2567          */
2568         smp_mb();
2569
2570         return unlikely(tif_need_resched());
2571 }
2572 #elif defined(TIF_POLLING_NRFLAG)
2573 static inline int tsk_is_polling(struct task_struct *p)
2574 {
2575         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2576 }
2577
2578 static inline void __current_set_polling(void)
2579 {
2580         set_thread_flag(TIF_POLLING_NRFLAG);
2581 }
2582
2583 static inline bool __must_check current_set_polling_and_test(void)
2584 {
2585         __current_set_polling();
2586
2587         /*
2588          * Polling state must be visible before we test NEED_RESCHED,
2589          * paired by resched_task()
2590          *
2591          * XXX: assumes set/clear bit are identical barrier wise.
2592          */
2593         smp_mb__after_clear_bit();
2594
2595         return unlikely(tif_need_resched());
2596 }
2597
2598 static inline void __current_clr_polling(void)
2599 {
2600         clear_thread_flag(TIF_POLLING_NRFLAG);
2601 }
2602
2603 static inline bool __must_check current_clr_polling_and_test(void)
2604 {
2605         __current_clr_polling();
2606
2607         /*
2608          * Polling state must be visible before we test NEED_RESCHED,
2609          * paired by resched_task()
2610          */
2611         smp_mb__after_clear_bit();
2612
2613         return unlikely(tif_need_resched());
2614 }
2615
2616 #else
2617 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2618 static inline void __current_set_polling(void) { }
2619 static inline void __current_clr_polling(void) { }
2620
2621 static inline bool __must_check current_set_polling_and_test(void)
2622 {
2623         return unlikely(tif_need_resched());
2624 }
2625 static inline bool __must_check current_clr_polling_and_test(void)
2626 {
2627         return unlikely(tif_need_resched());
2628 }
2629 #endif
2630
2631 static __always_inline bool need_resched(void)
2632 {
2633         return unlikely(tif_need_resched());
2634 }
2635
2636 /*
2637  * Thread group CPU time accounting.
2638  */
2639 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2640 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2641
2642 static inline void thread_group_cputime_init(struct signal_struct *sig)
2643 {
2644         raw_spin_lock_init(&sig->cputimer.lock);
2645 }
2646
2647 /*
2648  * Reevaluate whether the task has signals pending delivery.
2649  * Wake the task if so.
2650  * This is required every time the blocked sigset_t changes.
2651  * callers must hold sighand->siglock.
2652  */
2653 extern void recalc_sigpending_and_wake(struct task_struct *t);
2654 extern void recalc_sigpending(void);
2655
2656 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2657
2658 static inline void signal_wake_up(struct task_struct *t, bool resume)
2659 {
2660         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2661 }
2662 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2663 {
2664         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2665 }
2666
2667 /*
2668  * Wrappers for p->thread_info->cpu access. No-op on UP.
2669  */
2670 #ifdef CONFIG_SMP
2671
2672 static inline unsigned int task_cpu(const struct task_struct *p)
2673 {
2674         return task_thread_info(p)->cpu;
2675 }
2676
2677 static inline int task_node(const struct task_struct *p)
2678 {
2679         return cpu_to_node(task_cpu(p));
2680 }
2681
2682 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2683
2684 #else
2685
2686 static inline unsigned int task_cpu(const struct task_struct *p)
2687 {
2688         return 0;
2689 }
2690
2691 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2692 {
2693 }
2694
2695 #endif /* CONFIG_SMP */
2696
2697 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2698 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2699
2700 #ifdef CONFIG_CGROUP_SCHED
2701 extern struct task_group root_task_group;
2702 #endif /* CONFIG_CGROUP_SCHED */
2703
2704 extern int task_can_switch_user(struct user_struct *up,
2705                                         struct task_struct *tsk);
2706
2707 #ifdef CONFIG_TASK_XACCT
2708 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2709 {
2710         tsk->ioac.rchar += amt;
2711 }
2712
2713 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2714 {
2715         tsk->ioac.wchar += amt;
2716 }
2717
2718 static inline void inc_syscr(struct task_struct *tsk)
2719 {
2720         tsk->ioac.syscr++;
2721 }
2722
2723 static inline void inc_syscw(struct task_struct *tsk)
2724 {
2725         tsk->ioac.syscw++;
2726 }
2727 #else
2728 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2729 {
2730 }
2731
2732 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2733 {
2734 }
2735
2736 static inline void inc_syscr(struct task_struct *tsk)
2737 {
2738 }
2739
2740 static inline void inc_syscw(struct task_struct *tsk)
2741 {
2742 }
2743 #endif
2744
2745 #ifndef TASK_SIZE_OF
2746 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2747 #endif
2748
2749 #ifdef CONFIG_MM_OWNER
2750 extern void mm_update_next_owner(struct mm_struct *mm);
2751 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2752 #else
2753 static inline void mm_update_next_owner(struct mm_struct *mm)
2754 {
2755 }
2756
2757 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2758 {
2759 }
2760 #endif /* CONFIG_MM_OWNER */
2761
2762 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2763                 unsigned int limit)
2764 {
2765         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2766 }
2767
2768 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2769                 unsigned int limit)
2770 {
2771         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2772 }
2773
2774 static inline unsigned long rlimit(unsigned int limit)
2775 {
2776         return task_rlimit(current, limit);
2777 }
2778
2779 static inline unsigned long rlimit_max(unsigned int limit)
2780 {
2781         return task_rlimit_max(current, limit);
2782 }
2783
2784 #endif