Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10         int sched_priority;
11 };
12
13 #include <asm/param.h>  /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0    48      /* sizeof first published struct */
66
67 /*
68  * Extended scheduling parameters data structure.
69  *
70  * This is needed because the original struct sched_param can not be
71  * altered without introducing ABI issues with legacy applications
72  * (e.g., in sched_getparam()).
73  *
74  * However, the possibility of specifying more than just a priority for
75  * the tasks may be useful for a wide variety of application fields, e.g.,
76  * multimedia, streaming, automation and control, and many others.
77  *
78  * This variant (sched_attr) is meant at describing a so-called
79  * sporadic time-constrained task. In such model a task is specified by:
80  *  - the activation period or minimum instance inter-arrival time;
81  *  - the maximum (or average, depending on the actual scheduling
82  *    discipline) computation time of all instances, a.k.a. runtime;
83  *  - the deadline (relative to the actual activation time) of each
84  *    instance.
85  * Very briefly, a periodic (sporadic) task asks for the execution of
86  * some specific computation --which is typically called an instance--
87  * (at most) every period. Moreover, each instance typically lasts no more
88  * than the runtime and must be completed by time instant t equal to
89  * the instance activation time + the deadline.
90  *
91  * This is reflected by the actual fields of the sched_attr structure:
92  *
93  *  @size               size of the structure, for fwd/bwd compat.
94  *
95  *  @sched_policy       task's scheduling policy
96  *  @sched_flags        for customizing the scheduler behaviour
97  *  @sched_nice         task's nice value      (SCHED_NORMAL/BATCH)
98  *  @sched_priority     task's static priority (SCHED_FIFO/RR)
99  *  @sched_deadline     representative of the task's deadline
100  *  @sched_runtime      representative of the task's runtime
101  *  @sched_period       representative of the task's period
102  *
103  * Given this task model, there are a multiplicity of scheduling algorithms
104  * and policies, that can be used to ensure all the tasks will make their
105  * timing constraints.
106  *
107  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108  * only user of this new interface. More information about the algorithm
109  * available in the scheduling class file or in Documentation/.
110  */
111 struct sched_attr {
112         u32 size;
113
114         u32 sched_policy;
115         u64 sched_flags;
116
117         /* SCHED_NORMAL, SCHED_BATCH */
118         s32 sched_nice;
119
120         /* SCHED_FIFO, SCHED_RR */
121         u32 sched_priority;
122
123         /* SCHED_DEADLINE */
124         u64 sched_runtime;
125         u64 sched_deadline;
126         u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143  * These are the constant used to fake the fixed-point load-average
144  * counting. Some notes:
145  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
146  *    a load-average precision of 10 bits integer + 11 bits fractional
147  *  - if you want to count load-averages more often, you need more
148  *    precision, or rounding will get you. With 2-second counting freq,
149  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
150  *    11 bit fractions.
151  */
152 extern unsigned long avenrun[];         /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT          11              /* nr of bits of precision */
156 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
157 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
158 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5           2014            /* 1/exp(5sec/5min) */
160 #define EXP_15          2037            /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163         load *= exp; \
164         load += n*(FIXED_1-exp); \
165         load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
181 #else
182 static inline void update_cpu_load_nohz(void) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198  * Task state bitmask. NOTE! These bits are also
199  * encoded in fs/proc/array.c: get_task_state().
200  *
201  * We have two separate sets of flags: task->state
202  * is about runnability, while task->exit_state are
203  * about the task exiting. Confusing, but this way
204  * modifying one set can't modify the other one by
205  * mistake.
206  */
207 #define TASK_RUNNING            0
208 #define TASK_INTERRUPTIBLE      1
209 #define TASK_UNINTERRUPTIBLE    2
210 #define __TASK_STOPPED          4
211 #define __TASK_TRACED           8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD               16
214 #define EXIT_ZOMBIE             32
215 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD               64
218 #define TASK_WAKEKILL           128
219 #define TASK_WAKING             256
220 #define TASK_PARKED             512
221 #define TASK_NOLOAD             1024
222 #define TASK_STATE_MAX          2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE               (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243                                  __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task)  \
250                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251                                  (task->flags & PF_FROZEN) == 0 && \
252                                  (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value)                      \
257         do {                                                    \
258                 (tsk)->task_state_change = _THIS_IP_;           \
259                 (tsk)->state = (state_value);                   \
260         } while (0)
261 #define set_task_state(tsk, state_value)                        \
262         do {                                                    \
263                 (tsk)->task_state_change = _THIS_IP_;           \
264                 smp_store_mb((tsk)->state, (state_value));              \
265         } while (0)
266
267 /*
268  * set_current_state() includes a barrier so that the write of current->state
269  * is correctly serialised wrt the caller's subsequent test of whether to
270  * actually sleep:
271  *
272  *      set_current_state(TASK_UNINTERRUPTIBLE);
273  *      if (do_i_need_to_sleep())
274  *              schedule();
275  *
276  * If the caller does not need such serialisation then use __set_current_state()
277  */
278 #define __set_current_state(state_value)                        \
279         do {                                                    \
280                 current->task_state_change = _THIS_IP_;         \
281                 current->state = (state_value);                 \
282         } while (0)
283 #define set_current_state(state_value)                          \
284         do {                                                    \
285                 current->task_state_change = _THIS_IP_;         \
286                 smp_store_mb(current->state, (state_value));            \
287         } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value)              \
292         do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value)                \
294         smp_store_mb((tsk)->state, (state_value))
295
296 /*
297  * set_current_state() includes a barrier so that the write of current->state
298  * is correctly serialised wrt the caller's subsequent test of whether to
299  * actually sleep:
300  *
301  *      set_current_state(TASK_UNINTERRUPTIBLE);
302  *      if (do_i_need_to_sleep())
303  *              schedule();
304  *
305  * If the caller does not need such serialisation then use __set_current_state()
306  */
307 #define __set_current_state(state_value)                \
308         do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value)                  \
310         smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320  * This serializes "schedule()" and also protects
321  * the run-queue from deletions/modifications (but
322  * _adding_ to the beginning of the run-queue has
323  * a separate lock).
324  */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354  * Only dump TASK_* tasks. (0 for all tasks)
355  */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360         show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367  * task), SP is the stack pointer of the first frame that should be shown in the back
368  * trace (or NULL if the entire call-chain of the task should be shown).
369  */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384                                   void __user *buffer,
385                                   size_t *lenp, loff_t *ppos);
386 extern unsigned int  softlockup_panic;
387 void lockup_detector_init(void);
388 #else
389 static inline void touch_softlockup_watchdog(void)
390 {
391 }
392 static inline void touch_softlockup_watchdog_sync(void)
393 {
394 }
395 static inline void touch_all_softlockup_watchdogs(void)
396 {
397 }
398 static inline void lockup_detector_init(void)
399 {
400 }
401 #endif
402
403 #ifdef CONFIG_DETECT_HUNG_TASK
404 void reset_hung_task_detector(void);
405 #else
406 static inline void reset_hung_task_detector(void)
407 {
408 }
409 #endif
410
411 /* Attach to any functions which should be ignored in wchan output. */
412 #define __sched         __attribute__((__section__(".sched.text")))
413
414 /* Linker adds these: start and end of __sched functions */
415 extern char __sched_text_start[], __sched_text_end[];
416
417 /* Is this address in the __sched functions? */
418 extern int in_sched_functions(unsigned long addr);
419
420 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
421 extern signed long schedule_timeout(signed long timeout);
422 extern signed long schedule_timeout_interruptible(signed long timeout);
423 extern signed long schedule_timeout_killable(signed long timeout);
424 extern signed long schedule_timeout_uninterruptible(signed long timeout);
425 asmlinkage void schedule(void);
426 extern void schedule_preempt_disabled(void);
427
428 extern long io_schedule_timeout(long timeout);
429
430 static inline void io_schedule(void)
431 {
432         io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433 }
434
435 struct nsproxy;
436 struct user_namespace;
437
438 #ifdef CONFIG_MMU
439 extern void arch_pick_mmap_layout(struct mm_struct *mm);
440 extern unsigned long
441 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442                        unsigned long, unsigned long);
443 extern unsigned long
444 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445                           unsigned long len, unsigned long pgoff,
446                           unsigned long flags);
447 #else
448 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449 #endif
450
451 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
452 #define SUID_DUMP_USER          1       /* Dump as user of process */
453 #define SUID_DUMP_ROOT          2       /* Dump as root */
454
455 /* mm flags */
456
457 /* for SUID_DUMP_* above */
458 #define MMF_DUMPABLE_BITS 2
459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
460
461 extern void set_dumpable(struct mm_struct *mm, int value);
462 /*
463  * This returns the actual value of the suid_dumpable flag. For things
464  * that are using this for checking for privilege transitions, it must
465  * test against SUID_DUMP_USER rather than treating it as a boolean
466  * value.
467  */
468 static inline int __get_dumpable(unsigned long mm_flags)
469 {
470         return mm_flags & MMF_DUMPABLE_MASK;
471 }
472
473 static inline int get_dumpable(struct mm_struct *mm)
474 {
475         return __get_dumpable(mm->flags);
476 }
477
478 /* coredump filter bits */
479 #define MMF_DUMP_ANON_PRIVATE   2
480 #define MMF_DUMP_ANON_SHARED    3
481 #define MMF_DUMP_MAPPED_PRIVATE 4
482 #define MMF_DUMP_MAPPED_SHARED  5
483 #define MMF_DUMP_ELF_HEADERS    6
484 #define MMF_DUMP_HUGETLB_PRIVATE 7
485 #define MMF_DUMP_HUGETLB_SHARED  8
486
487 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
488 #define MMF_DUMP_FILTER_BITS    7
489 #define MMF_DUMP_FILTER_MASK \
490         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491 #define MMF_DUMP_FILTER_DEFAULT \
492         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
493          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
497 #else
498 # define MMF_DUMP_MASK_DEFAULT_ELF      0
499 #endif
500                                         /* leave room for more dump flags */
501 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
502 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
503 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
504
505 #define MMF_HAS_UPROBES         19      /* has uprobes */
506 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
507
508 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
509
510 struct sighand_struct {
511         atomic_t                count;
512         struct k_sigaction      action[_NSIG];
513         spinlock_t              siglock;
514         wait_queue_head_t       signalfd_wqh;
515 };
516
517 struct pacct_struct {
518         int                     ac_flag;
519         long                    ac_exitcode;
520         unsigned long           ac_mem;
521         cputime_t               ac_utime, ac_stime;
522         unsigned long           ac_minflt, ac_majflt;
523 };
524
525 struct cpu_itimer {
526         cputime_t expires;
527         cputime_t incr;
528         u32 error;
529         u32 incr_error;
530 };
531
532 /**
533  * struct cputime - snaphsot of system and user cputime
534  * @utime: time spent in user mode
535  * @stime: time spent in system mode
536  *
537  * Gathers a generic snapshot of user and system time.
538  */
539 struct cputime {
540         cputime_t utime;
541         cputime_t stime;
542 };
543
544 /**
545  * struct task_cputime - collected CPU time counts
546  * @utime:              time spent in user mode, in &cputime_t units
547  * @stime:              time spent in kernel mode, in &cputime_t units
548  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
549  *
550  * This is an extension of struct cputime that includes the total runtime
551  * spent by the task from the scheduler point of view.
552  *
553  * As a result, this structure groups together three kinds of CPU time
554  * that are tracked for threads and thread groups.  Most things considering
555  * CPU time want to group these counts together and treat all three
556  * of them in parallel.
557  */
558 struct task_cputime {
559         cputime_t utime;
560         cputime_t stime;
561         unsigned long long sum_exec_runtime;
562 };
563 /* Alternate field names when used to cache expirations. */
564 #define prof_exp        stime
565 #define virt_exp        utime
566 #define sched_exp       sum_exec_runtime
567
568 #define INIT_CPUTIME    \
569         (struct task_cputime) {                                 \
570                 .utime = 0,                                     \
571                 .stime = 0,                                     \
572                 .sum_exec_runtime = 0,                          \
573         }
574
575 /*
576  * This is the atomic variant of task_cputime, which can be used for
577  * storing and updating task_cputime statistics without locking.
578  */
579 struct task_cputime_atomic {
580         atomic64_t utime;
581         atomic64_t stime;
582         atomic64_t sum_exec_runtime;
583 };
584
585 #define INIT_CPUTIME_ATOMIC \
586         (struct task_cputime_atomic) {                          \
587                 .utime = ATOMIC64_INIT(0),                      \
588                 .stime = ATOMIC64_INIT(0),                      \
589                 .sum_exec_runtime = ATOMIC64_INIT(0),           \
590         }
591
592 #ifdef CONFIG_PREEMPT_COUNT
593 #define PREEMPT_DISABLED        (1 + PREEMPT_ENABLED)
594 #else
595 #define PREEMPT_DISABLED        PREEMPT_ENABLED
596 #endif
597
598 /*
599  * Disable preemption until the scheduler is running.
600  * Reset by start_kernel()->sched_init()->init_idle().
601  *
602  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
603  * before the scheduler is active -- see should_resched().
604  */
605 #define INIT_PREEMPT_COUNT      (PREEMPT_DISABLED + PREEMPT_ACTIVE)
606
607 /**
608  * struct thread_group_cputimer - thread group interval timer counts
609  * @cputime_atomic:     atomic thread group interval timers.
610  * @running:            non-zero when there are timers running and
611  *                      @cputime receives updates.
612  *
613  * This structure contains the version of task_cputime, above, that is
614  * used for thread group CPU timer calculations.
615  */
616 struct thread_group_cputimer {
617         struct task_cputime_atomic cputime_atomic;
618         int running;
619 };
620
621 #include <linux/rwsem.h>
622 struct autogroup;
623
624 /*
625  * NOTE! "signal_struct" does not have its own
626  * locking, because a shared signal_struct always
627  * implies a shared sighand_struct, so locking
628  * sighand_struct is always a proper superset of
629  * the locking of signal_struct.
630  */
631 struct signal_struct {
632         atomic_t                sigcnt;
633         atomic_t                live;
634         int                     nr_threads;
635         struct list_head        thread_head;
636
637         wait_queue_head_t       wait_chldexit;  /* for wait4() */
638
639         /* current thread group signal load-balancing target: */
640         struct task_struct      *curr_target;
641
642         /* shared signal handling: */
643         struct sigpending       shared_pending;
644
645         /* thread group exit support */
646         int                     group_exit_code;
647         /* overloaded:
648          * - notify group_exit_task when ->count is equal to notify_count
649          * - everyone except group_exit_task is stopped during signal delivery
650          *   of fatal signals, group_exit_task processes the signal.
651          */
652         int                     notify_count;
653         struct task_struct      *group_exit_task;
654
655         /* thread group stop support, overloads group_exit_code too */
656         int                     group_stop_count;
657         unsigned int            flags; /* see SIGNAL_* flags below */
658
659         /*
660          * PR_SET_CHILD_SUBREAPER marks a process, like a service
661          * manager, to re-parent orphan (double-forking) child processes
662          * to this process instead of 'init'. The service manager is
663          * able to receive SIGCHLD signals and is able to investigate
664          * the process until it calls wait(). All children of this
665          * process will inherit a flag if they should look for a
666          * child_subreaper process at exit.
667          */
668         unsigned int            is_child_subreaper:1;
669         unsigned int            has_child_subreaper:1;
670
671         /* POSIX.1b Interval Timers */
672         int                     posix_timer_id;
673         struct list_head        posix_timers;
674
675         /* ITIMER_REAL timer for the process */
676         struct hrtimer real_timer;
677         struct pid *leader_pid;
678         ktime_t it_real_incr;
679
680         /*
681          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
682          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
683          * values are defined to 0 and 1 respectively
684          */
685         struct cpu_itimer it[2];
686
687         /*
688          * Thread group totals for process CPU timers.
689          * See thread_group_cputimer(), et al, for details.
690          */
691         struct thread_group_cputimer cputimer;
692
693         /* Earliest-expiration cache. */
694         struct task_cputime cputime_expires;
695
696         struct list_head cpu_timers[3];
697
698         struct pid *tty_old_pgrp;
699
700         /* boolean value for session group leader */
701         int leader;
702
703         struct tty_struct *tty; /* NULL if no tty */
704
705 #ifdef CONFIG_SCHED_AUTOGROUP
706         struct autogroup *autogroup;
707 #endif
708         /*
709          * Cumulative resource counters for dead threads in the group,
710          * and for reaped dead child processes forked by this group.
711          * Live threads maintain their own counters and add to these
712          * in __exit_signal, except for the group leader.
713          */
714         seqlock_t stats_lock;
715         cputime_t utime, stime, cutime, cstime;
716         cputime_t gtime;
717         cputime_t cgtime;
718 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
719         struct cputime prev_cputime;
720 #endif
721         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
722         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
723         unsigned long inblock, oublock, cinblock, coublock;
724         unsigned long maxrss, cmaxrss;
725         struct task_io_accounting ioac;
726
727         /*
728          * Cumulative ns of schedule CPU time fo dead threads in the
729          * group, not including a zombie group leader, (This only differs
730          * from jiffies_to_ns(utime + stime) if sched_clock uses something
731          * other than jiffies.)
732          */
733         unsigned long long sum_sched_runtime;
734
735         /*
736          * We don't bother to synchronize most readers of this at all,
737          * because there is no reader checking a limit that actually needs
738          * to get both rlim_cur and rlim_max atomically, and either one
739          * alone is a single word that can safely be read normally.
740          * getrlimit/setrlimit use task_lock(current->group_leader) to
741          * protect this instead of the siglock, because they really
742          * have no need to disable irqs.
743          */
744         struct rlimit rlim[RLIM_NLIMITS];
745
746 #ifdef CONFIG_BSD_PROCESS_ACCT
747         struct pacct_struct pacct;      /* per-process accounting information */
748 #endif
749 #ifdef CONFIG_TASKSTATS
750         struct taskstats *stats;
751 #endif
752 #ifdef CONFIG_AUDIT
753         unsigned audit_tty;
754         unsigned audit_tty_log_passwd;
755         struct tty_audit_buf *tty_audit_buf;
756 #endif
757
758         oom_flags_t oom_flags;
759         short oom_score_adj;            /* OOM kill score adjustment */
760         short oom_score_adj_min;        /* OOM kill score adjustment min value.
761                                          * Only settable by CAP_SYS_RESOURCE. */
762
763         struct mutex cred_guard_mutex;  /* guard against foreign influences on
764                                          * credential calculations
765                                          * (notably. ptrace) */
766 };
767
768 /*
769  * Bits in flags field of signal_struct.
770  */
771 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
772 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
773 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
774 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
775 /*
776  * Pending notifications to parent.
777  */
778 #define SIGNAL_CLD_STOPPED      0x00000010
779 #define SIGNAL_CLD_CONTINUED    0x00000020
780 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
781
782 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
783
784 /* If true, all threads except ->group_exit_task have pending SIGKILL */
785 static inline int signal_group_exit(const struct signal_struct *sig)
786 {
787         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
788                 (sig->group_exit_task != NULL);
789 }
790
791 /*
792  * Some day this will be a full-fledged user tracking system..
793  */
794 struct user_struct {
795         atomic_t __count;       /* reference count */
796         atomic_t processes;     /* How many processes does this user have? */
797         atomic_t sigpending;    /* How many pending signals does this user have? */
798 #ifdef CONFIG_INOTIFY_USER
799         atomic_t inotify_watches; /* How many inotify watches does this user have? */
800         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
801 #endif
802 #ifdef CONFIG_FANOTIFY
803         atomic_t fanotify_listeners;
804 #endif
805 #ifdef CONFIG_EPOLL
806         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
807 #endif
808 #ifdef CONFIG_POSIX_MQUEUE
809         /* protected by mq_lock */
810         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
811 #endif
812         unsigned long locked_shm; /* How many pages of mlocked shm ? */
813
814 #ifdef CONFIG_KEYS
815         struct key *uid_keyring;        /* UID specific keyring */
816         struct key *session_keyring;    /* UID's default session keyring */
817 #endif
818
819         /* Hash table maintenance information */
820         struct hlist_node uidhash_node;
821         kuid_t uid;
822
823 #ifdef CONFIG_PERF_EVENTS
824         atomic_long_t locked_vm;
825 #endif
826 };
827
828 extern int uids_sysfs_init(void);
829
830 extern struct user_struct *find_user(kuid_t);
831
832 extern struct user_struct root_user;
833 #define INIT_USER (&root_user)
834
835
836 struct backing_dev_info;
837 struct reclaim_state;
838
839 #ifdef CONFIG_SCHED_INFO
840 struct sched_info {
841         /* cumulative counters */
842         unsigned long pcount;         /* # of times run on this cpu */
843         unsigned long long run_delay; /* time spent waiting on a runqueue */
844
845         /* timestamps */
846         unsigned long long last_arrival,/* when we last ran on a cpu */
847                            last_queued; /* when we were last queued to run */
848 };
849 #endif /* CONFIG_SCHED_INFO */
850
851 #ifdef CONFIG_TASK_DELAY_ACCT
852 struct task_delay_info {
853         spinlock_t      lock;
854         unsigned int    flags;  /* Private per-task flags */
855
856         /* For each stat XXX, add following, aligned appropriately
857          *
858          * struct timespec XXX_start, XXX_end;
859          * u64 XXX_delay;
860          * u32 XXX_count;
861          *
862          * Atomicity of updates to XXX_delay, XXX_count protected by
863          * single lock above (split into XXX_lock if contention is an issue).
864          */
865
866         /*
867          * XXX_count is incremented on every XXX operation, the delay
868          * associated with the operation is added to XXX_delay.
869          * XXX_delay contains the accumulated delay time in nanoseconds.
870          */
871         u64 blkio_start;        /* Shared by blkio, swapin */
872         u64 blkio_delay;        /* wait for sync block io completion */
873         u64 swapin_delay;       /* wait for swapin block io completion */
874         u32 blkio_count;        /* total count of the number of sync block */
875                                 /* io operations performed */
876         u32 swapin_count;       /* total count of the number of swapin block */
877                                 /* io operations performed */
878
879         u64 freepages_start;
880         u64 freepages_delay;    /* wait for memory reclaim */
881         u32 freepages_count;    /* total count of memory reclaim */
882 };
883 #endif  /* CONFIG_TASK_DELAY_ACCT */
884
885 static inline int sched_info_on(void)
886 {
887 #ifdef CONFIG_SCHEDSTATS
888         return 1;
889 #elif defined(CONFIG_TASK_DELAY_ACCT)
890         extern int delayacct_on;
891         return delayacct_on;
892 #else
893         return 0;
894 #endif
895 }
896
897 enum cpu_idle_type {
898         CPU_IDLE,
899         CPU_NOT_IDLE,
900         CPU_NEWLY_IDLE,
901         CPU_MAX_IDLE_TYPES
902 };
903
904 /*
905  * Increase resolution of cpu_capacity calculations
906  */
907 #define SCHED_CAPACITY_SHIFT    10
908 #define SCHED_CAPACITY_SCALE    (1L << SCHED_CAPACITY_SHIFT)
909
910 /*
911  * Wake-queues are lists of tasks with a pending wakeup, whose
912  * callers have already marked the task as woken internally,
913  * and can thus carry on. A common use case is being able to
914  * do the wakeups once the corresponding user lock as been
915  * released.
916  *
917  * We hold reference to each task in the list across the wakeup,
918  * thus guaranteeing that the memory is still valid by the time
919  * the actual wakeups are performed in wake_up_q().
920  *
921  * One per task suffices, because there's never a need for a task to be
922  * in two wake queues simultaneously; it is forbidden to abandon a task
923  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
924  * already in a wake queue, the wakeup will happen soon and the second
925  * waker can just skip it.
926  *
927  * The WAKE_Q macro declares and initializes the list head.
928  * wake_up_q() does NOT reinitialize the list; it's expected to be
929  * called near the end of a function, where the fact that the queue is
930  * not used again will be easy to see by inspection.
931  *
932  * Note that this can cause spurious wakeups. schedule() callers
933  * must ensure the call is done inside a loop, confirming that the
934  * wakeup condition has in fact occurred.
935  */
936 struct wake_q_node {
937         struct wake_q_node *next;
938 };
939
940 struct wake_q_head {
941         struct wake_q_node *first;
942         struct wake_q_node **lastp;
943 };
944
945 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
946
947 #define WAKE_Q(name)                                    \
948         struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
949
950 extern void wake_q_add(struct wake_q_head *head,
951                        struct task_struct *task);
952 extern void wake_up_q(struct wake_q_head *head);
953
954 /*
955  * sched-domains (multiprocessor balancing) declarations:
956  */
957 #ifdef CONFIG_SMP
958 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
959 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
960 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
961 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
962 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
963 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
964 #define SD_SHARE_CPUCAPACITY    0x0080  /* Domain members share cpu power */
965 #define SD_SHARE_POWERDOMAIN    0x0100  /* Domain members share power domain */
966 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
967 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
968 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
969 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
970 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
971 #define SD_NUMA                 0x4000  /* cross-node balancing */
972
973 #ifdef CONFIG_SCHED_SMT
974 static inline int cpu_smt_flags(void)
975 {
976         return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
977 }
978 #endif
979
980 #ifdef CONFIG_SCHED_MC
981 static inline int cpu_core_flags(void)
982 {
983         return SD_SHARE_PKG_RESOURCES;
984 }
985 #endif
986
987 #ifdef CONFIG_NUMA
988 static inline int cpu_numa_flags(void)
989 {
990         return SD_NUMA;
991 }
992 #endif
993
994 struct sched_domain_attr {
995         int relax_domain_level;
996 };
997
998 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
999         .relax_domain_level = -1,                       \
1000 }
1001
1002 extern int sched_domain_level_max;
1003
1004 struct sched_group;
1005
1006 struct sched_domain {
1007         /* These fields must be setup */
1008         struct sched_domain *parent;    /* top domain must be null terminated */
1009         struct sched_domain *child;     /* bottom domain must be null terminated */
1010         struct sched_group *groups;     /* the balancing groups of the domain */
1011         unsigned long min_interval;     /* Minimum balance interval ms */
1012         unsigned long max_interval;     /* Maximum balance interval ms */
1013         unsigned int busy_factor;       /* less balancing by factor if busy */
1014         unsigned int imbalance_pct;     /* No balance until over watermark */
1015         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
1016         unsigned int busy_idx;
1017         unsigned int idle_idx;
1018         unsigned int newidle_idx;
1019         unsigned int wake_idx;
1020         unsigned int forkexec_idx;
1021         unsigned int smt_gain;
1022
1023         int nohz_idle;                  /* NOHZ IDLE status */
1024         int flags;                      /* See SD_* */
1025         int level;
1026
1027         /* Runtime fields. */
1028         unsigned long last_balance;     /* init to jiffies. units in jiffies */
1029         unsigned int balance_interval;  /* initialise to 1. units in ms. */
1030         unsigned int nr_balance_failed; /* initialise to 0 */
1031
1032         /* idle_balance() stats */
1033         u64 max_newidle_lb_cost;
1034         unsigned long next_decay_max_lb_cost;
1035
1036 #ifdef CONFIG_SCHEDSTATS
1037         /* load_balance() stats */
1038         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1039         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1040         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1041         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1042         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1043         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1044         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1045         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1046
1047         /* Active load balancing */
1048         unsigned int alb_count;
1049         unsigned int alb_failed;
1050         unsigned int alb_pushed;
1051
1052         /* SD_BALANCE_EXEC stats */
1053         unsigned int sbe_count;
1054         unsigned int sbe_balanced;
1055         unsigned int sbe_pushed;
1056
1057         /* SD_BALANCE_FORK stats */
1058         unsigned int sbf_count;
1059         unsigned int sbf_balanced;
1060         unsigned int sbf_pushed;
1061
1062         /* try_to_wake_up() stats */
1063         unsigned int ttwu_wake_remote;
1064         unsigned int ttwu_move_affine;
1065         unsigned int ttwu_move_balance;
1066 #endif
1067 #ifdef CONFIG_SCHED_DEBUG
1068         char *name;
1069 #endif
1070         union {
1071                 void *private;          /* used during construction */
1072                 struct rcu_head rcu;    /* used during destruction */
1073         };
1074
1075         unsigned int span_weight;
1076         /*
1077          * Span of all CPUs in this domain.
1078          *
1079          * NOTE: this field is variable length. (Allocated dynamically
1080          * by attaching extra space to the end of the structure,
1081          * depending on how many CPUs the kernel has booted up with)
1082          */
1083         unsigned long span[0];
1084 };
1085
1086 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1087 {
1088         return to_cpumask(sd->span);
1089 }
1090
1091 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1092                                     struct sched_domain_attr *dattr_new);
1093
1094 /* Allocate an array of sched domains, for partition_sched_domains(). */
1095 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1096 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1097
1098 bool cpus_share_cache(int this_cpu, int that_cpu);
1099
1100 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1101 typedef int (*sched_domain_flags_f)(void);
1102
1103 #define SDTL_OVERLAP    0x01
1104
1105 struct sd_data {
1106         struct sched_domain **__percpu sd;
1107         struct sched_group **__percpu sg;
1108         struct sched_group_capacity **__percpu sgc;
1109 };
1110
1111 struct sched_domain_topology_level {
1112         sched_domain_mask_f mask;
1113         sched_domain_flags_f sd_flags;
1114         int                 flags;
1115         int                 numa_level;
1116         struct sd_data      data;
1117 #ifdef CONFIG_SCHED_DEBUG
1118         char                *name;
1119 #endif
1120 };
1121
1122 extern struct sched_domain_topology_level *sched_domain_topology;
1123
1124 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1125 extern void wake_up_if_idle(int cpu);
1126
1127 #ifdef CONFIG_SCHED_DEBUG
1128 # define SD_INIT_NAME(type)             .name = #type
1129 #else
1130 # define SD_INIT_NAME(type)
1131 #endif
1132
1133 #else /* CONFIG_SMP */
1134
1135 struct sched_domain_attr;
1136
1137 static inline void
1138 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1139                         struct sched_domain_attr *dattr_new)
1140 {
1141 }
1142
1143 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1144 {
1145         return true;
1146 }
1147
1148 #endif  /* !CONFIG_SMP */
1149
1150
1151 struct io_context;                      /* See blkdev.h */
1152
1153
1154 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1155 extern void prefetch_stack(struct task_struct *t);
1156 #else
1157 static inline void prefetch_stack(struct task_struct *t) { }
1158 #endif
1159
1160 struct audit_context;           /* See audit.c */
1161 struct mempolicy;
1162 struct pipe_inode_info;
1163 struct uts_namespace;
1164
1165 struct load_weight {
1166         unsigned long weight;
1167         u32 inv_weight;
1168 };
1169
1170 struct sched_avg {
1171         u64 last_runnable_update;
1172         s64 decay_count;
1173         /*
1174          * utilization_avg_contrib describes the amount of time that a
1175          * sched_entity is running on a CPU. It is based on running_avg_sum
1176          * and is scaled in the range [0..SCHED_LOAD_SCALE].
1177          * load_avg_contrib described the amount of time that a sched_entity
1178          * is runnable on a rq. It is based on both runnable_avg_sum and the
1179          * weight of the task.
1180          */
1181         unsigned long load_avg_contrib, utilization_avg_contrib;
1182         /*
1183          * These sums represent an infinite geometric series and so are bound
1184          * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1185          * choices of y < 1-2^(-32)*1024.
1186          * running_avg_sum reflects the time that the sched_entity is
1187          * effectively running on the CPU.
1188          * runnable_avg_sum represents the amount of time a sched_entity is on
1189          * a runqueue which includes the running time that is monitored by
1190          * running_avg_sum.
1191          */
1192         u32 runnable_avg_sum, avg_period, running_avg_sum;
1193 };
1194
1195 #ifdef CONFIG_SCHEDSTATS
1196 struct sched_statistics {
1197         u64                     wait_start;
1198         u64                     wait_max;
1199         u64                     wait_count;
1200         u64                     wait_sum;
1201         u64                     iowait_count;
1202         u64                     iowait_sum;
1203
1204         u64                     sleep_start;
1205         u64                     sleep_max;
1206         s64                     sum_sleep_runtime;
1207
1208         u64                     block_start;
1209         u64                     block_max;
1210         u64                     exec_max;
1211         u64                     slice_max;
1212
1213         u64                     nr_migrations_cold;
1214         u64                     nr_failed_migrations_affine;
1215         u64                     nr_failed_migrations_running;
1216         u64                     nr_failed_migrations_hot;
1217         u64                     nr_forced_migrations;
1218
1219         u64                     nr_wakeups;
1220         u64                     nr_wakeups_sync;
1221         u64                     nr_wakeups_migrate;
1222         u64                     nr_wakeups_local;
1223         u64                     nr_wakeups_remote;
1224         u64                     nr_wakeups_affine;
1225         u64                     nr_wakeups_affine_attempts;
1226         u64                     nr_wakeups_passive;
1227         u64                     nr_wakeups_idle;
1228 };
1229 #endif
1230
1231 struct sched_entity {
1232         struct load_weight      load;           /* for load-balancing */
1233         struct rb_node          run_node;
1234         struct list_head        group_node;
1235         unsigned int            on_rq;
1236
1237         u64                     exec_start;
1238         u64                     sum_exec_runtime;
1239         u64                     vruntime;
1240         u64                     prev_sum_exec_runtime;
1241
1242         u64                     nr_migrations;
1243
1244 #ifdef CONFIG_SCHEDSTATS
1245         struct sched_statistics statistics;
1246 #endif
1247
1248 #ifdef CONFIG_FAIR_GROUP_SCHED
1249         int                     depth;
1250         struct sched_entity     *parent;
1251         /* rq on which this entity is (to be) queued: */
1252         struct cfs_rq           *cfs_rq;
1253         /* rq "owned" by this entity/group: */
1254         struct cfs_rq           *my_q;
1255 #endif
1256
1257 #ifdef CONFIG_SMP
1258         /* Per-entity load-tracking */
1259         struct sched_avg        avg;
1260 #endif
1261 };
1262
1263 struct sched_rt_entity {
1264         struct list_head run_list;
1265         unsigned long timeout;
1266         unsigned long watchdog_stamp;
1267         unsigned int time_slice;
1268
1269         struct sched_rt_entity *back;
1270 #ifdef CONFIG_RT_GROUP_SCHED
1271         struct sched_rt_entity  *parent;
1272         /* rq on which this entity is (to be) queued: */
1273         struct rt_rq            *rt_rq;
1274         /* rq "owned" by this entity/group: */
1275         struct rt_rq            *my_q;
1276 #endif
1277 };
1278
1279 struct sched_dl_entity {
1280         struct rb_node  rb_node;
1281
1282         /*
1283          * Original scheduling parameters. Copied here from sched_attr
1284          * during sched_setattr(), they will remain the same until
1285          * the next sched_setattr().
1286          */
1287         u64 dl_runtime;         /* maximum runtime for each instance    */
1288         u64 dl_deadline;        /* relative deadline of each instance   */
1289         u64 dl_period;          /* separation of two instances (period) */
1290         u64 dl_bw;              /* dl_runtime / dl_deadline             */
1291
1292         /*
1293          * Actual scheduling parameters. Initialized with the values above,
1294          * they are continously updated during task execution. Note that
1295          * the remaining runtime could be < 0 in case we are in overrun.
1296          */
1297         s64 runtime;            /* remaining runtime for this instance  */
1298         u64 deadline;           /* absolute deadline for this instance  */
1299         unsigned int flags;     /* specifying the scheduler behaviour   */
1300
1301         /*
1302          * Some bool flags:
1303          *
1304          * @dl_throttled tells if we exhausted the runtime. If so, the
1305          * task has to wait for a replenishment to be performed at the
1306          * next firing of dl_timer.
1307          *
1308          * @dl_new tells if a new instance arrived. If so we must
1309          * start executing it with full runtime and reset its absolute
1310          * deadline;
1311          *
1312          * @dl_boosted tells if we are boosted due to DI. If so we are
1313          * outside bandwidth enforcement mechanism (but only until we
1314          * exit the critical section);
1315          *
1316          * @dl_yielded tells if task gave up the cpu before consuming
1317          * all its available runtime during the last job.
1318          */
1319         int dl_throttled, dl_new, dl_boosted, dl_yielded;
1320
1321         /*
1322          * Bandwidth enforcement timer. Each -deadline task has its
1323          * own bandwidth to be enforced, thus we need one timer per task.
1324          */
1325         struct hrtimer dl_timer;
1326 };
1327
1328 union rcu_special {
1329         struct {
1330                 bool blocked;
1331                 bool need_qs;
1332         } b;
1333         short s;
1334 };
1335 struct rcu_node;
1336
1337 enum perf_event_task_context {
1338         perf_invalid_context = -1,
1339         perf_hw_context = 0,
1340         perf_sw_context,
1341         perf_nr_task_contexts,
1342 };
1343
1344 struct task_struct {
1345         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1346         void *stack;
1347         atomic_t usage;
1348         unsigned int flags;     /* per process flags, defined below */
1349         unsigned int ptrace;
1350
1351 #ifdef CONFIG_SMP
1352         struct llist_node wake_entry;
1353         int on_cpu;
1354         struct task_struct *last_wakee;
1355         unsigned long wakee_flips;
1356         unsigned long wakee_flip_decay_ts;
1357
1358         int wake_cpu;
1359 #endif
1360         int on_rq;
1361
1362         int prio, static_prio, normal_prio;
1363         unsigned int rt_priority;
1364         const struct sched_class *sched_class;
1365         struct sched_entity se;
1366         struct sched_rt_entity rt;
1367 #ifdef CONFIG_CGROUP_SCHED
1368         struct task_group *sched_task_group;
1369 #endif
1370         struct sched_dl_entity dl;
1371
1372 #ifdef CONFIG_PREEMPT_NOTIFIERS
1373         /* list of struct preempt_notifier: */
1374         struct hlist_head preempt_notifiers;
1375 #endif
1376
1377 #ifdef CONFIG_BLK_DEV_IO_TRACE
1378         unsigned int btrace_seq;
1379 #endif
1380
1381         unsigned int policy;
1382         int nr_cpus_allowed;
1383         cpumask_t cpus_allowed;
1384
1385 #ifdef CONFIG_PREEMPT_RCU
1386         int rcu_read_lock_nesting;
1387         union rcu_special rcu_read_unlock_special;
1388         struct list_head rcu_node_entry;
1389         struct rcu_node *rcu_blocked_node;
1390 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1391 #ifdef CONFIG_TASKS_RCU
1392         unsigned long rcu_tasks_nvcsw;
1393         bool rcu_tasks_holdout;
1394         struct list_head rcu_tasks_holdout_list;
1395         int rcu_tasks_idle_cpu;
1396 #endif /* #ifdef CONFIG_TASKS_RCU */
1397
1398 #ifdef CONFIG_SCHED_INFO
1399         struct sched_info sched_info;
1400 #endif
1401
1402         struct list_head tasks;
1403 #ifdef CONFIG_SMP
1404         struct plist_node pushable_tasks;
1405         struct rb_node pushable_dl_tasks;
1406 #endif
1407
1408         struct mm_struct *mm, *active_mm;
1409         /* per-thread vma caching */
1410         u32 vmacache_seqnum;
1411         struct vm_area_struct *vmacache[VMACACHE_SIZE];
1412 #if defined(SPLIT_RSS_COUNTING)
1413         struct task_rss_stat    rss_stat;
1414 #endif
1415 /* task state */
1416         int exit_state;
1417         int exit_code, exit_signal;
1418         int pdeath_signal;  /*  The signal sent when the parent dies  */
1419         unsigned long jobctl;   /* JOBCTL_*, siglock protected */
1420
1421         /* Used for emulating ABI behavior of previous Linux versions */
1422         unsigned int personality;
1423
1424         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1425                                  * execve */
1426         unsigned in_iowait:1;
1427
1428         /* Revert to default priority/policy when forking */
1429         unsigned sched_reset_on_fork:1;
1430         unsigned sched_contributes_to_load:1;
1431         unsigned sched_migrated:1;
1432
1433 #ifdef CONFIG_MEMCG_KMEM
1434         unsigned memcg_kmem_skip_account:1;
1435 #endif
1436 #ifdef CONFIG_COMPAT_BRK
1437         unsigned brk_randomized:1;
1438 #endif
1439
1440         unsigned long atomic_flags; /* Flags needing atomic access. */
1441
1442         struct restart_block restart_block;
1443
1444         pid_t pid;
1445         pid_t tgid;
1446
1447 #ifdef CONFIG_CC_STACKPROTECTOR
1448         /* Canary value for the -fstack-protector gcc feature */
1449         unsigned long stack_canary;
1450 #endif
1451         /*
1452          * pointers to (original) parent process, youngest child, younger sibling,
1453          * older sibling, respectively.  (p->father can be replaced with
1454          * p->real_parent->pid)
1455          */
1456         struct task_struct __rcu *real_parent; /* real parent process */
1457         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1458         /*
1459          * children/sibling forms the list of my natural children
1460          */
1461         struct list_head children;      /* list of my children */
1462         struct list_head sibling;       /* linkage in my parent's children list */
1463         struct task_struct *group_leader;       /* threadgroup leader */
1464
1465         /*
1466          * ptraced is the list of tasks this task is using ptrace on.
1467          * This includes both natural children and PTRACE_ATTACH targets.
1468          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1469          */
1470         struct list_head ptraced;
1471         struct list_head ptrace_entry;
1472
1473         /* PID/PID hash table linkage. */
1474         struct pid_link pids[PIDTYPE_MAX];
1475         struct list_head thread_group;
1476         struct list_head thread_node;
1477
1478         struct completion *vfork_done;          /* for vfork() */
1479         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1480         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1481
1482         cputime_t utime, stime, utimescaled, stimescaled;
1483         cputime_t gtime;
1484 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1485         struct cputime prev_cputime;
1486 #endif
1487 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1488         seqlock_t vtime_seqlock;
1489         unsigned long long vtime_snap;
1490         enum {
1491                 VTIME_SLEEPING = 0,
1492                 VTIME_USER,
1493                 VTIME_SYS,
1494         } vtime_snap_whence;
1495 #endif
1496         unsigned long nvcsw, nivcsw; /* context switch counts */
1497         u64 start_time;         /* monotonic time in nsec */
1498         u64 real_start_time;    /* boot based time in nsec */
1499 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1500         unsigned long min_flt, maj_flt;
1501
1502         struct task_cputime cputime_expires;
1503         struct list_head cpu_timers[3];
1504
1505 /* process credentials */
1506         const struct cred __rcu *real_cred; /* objective and real subjective task
1507                                          * credentials (COW) */
1508         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1509                                          * credentials (COW) */
1510         char comm[TASK_COMM_LEN]; /* executable name excluding path
1511                                      - access with [gs]et_task_comm (which lock
1512                                        it with task_lock())
1513                                      - initialized normally by setup_new_exec */
1514 /* file system info */
1515         struct nameidata *nameidata;
1516 #ifdef CONFIG_SYSVIPC
1517 /* ipc stuff */
1518         struct sysv_sem sysvsem;
1519         struct sysv_shm sysvshm;
1520 #endif
1521 #ifdef CONFIG_DETECT_HUNG_TASK
1522 /* hung task detection */
1523         unsigned long last_switch_count;
1524 #endif
1525 /* filesystem information */
1526         struct fs_struct *fs;
1527 /* open file information */
1528         struct files_struct *files;
1529 /* namespaces */
1530         struct nsproxy *nsproxy;
1531 /* signal handlers */
1532         struct signal_struct *signal;
1533         struct sighand_struct *sighand;
1534
1535         sigset_t blocked, real_blocked;
1536         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1537         struct sigpending pending;
1538
1539         unsigned long sas_ss_sp;
1540         size_t sas_ss_size;
1541         int (*notifier)(void *priv);
1542         void *notifier_data;
1543         sigset_t *notifier_mask;
1544         struct callback_head *task_works;
1545
1546         struct audit_context *audit_context;
1547 #ifdef CONFIG_AUDITSYSCALL
1548         kuid_t loginuid;
1549         unsigned int sessionid;
1550 #endif
1551         struct seccomp seccomp;
1552
1553 /* Thread group tracking */
1554         u32 parent_exec_id;
1555         u32 self_exec_id;
1556 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1557  * mempolicy */
1558         spinlock_t alloc_lock;
1559
1560         /* Protection of the PI data structures: */
1561         raw_spinlock_t pi_lock;
1562
1563         struct wake_q_node wake_q;
1564
1565 #ifdef CONFIG_RT_MUTEXES
1566         /* PI waiters blocked on a rt_mutex held by this task */
1567         struct rb_root pi_waiters;
1568         struct rb_node *pi_waiters_leftmost;
1569         /* Deadlock detection and priority inheritance handling */
1570         struct rt_mutex_waiter *pi_blocked_on;
1571 #endif
1572
1573 #ifdef CONFIG_DEBUG_MUTEXES
1574         /* mutex deadlock detection */
1575         struct mutex_waiter *blocked_on;
1576 #endif
1577 #ifdef CONFIG_TRACE_IRQFLAGS
1578         unsigned int irq_events;
1579         unsigned long hardirq_enable_ip;
1580         unsigned long hardirq_disable_ip;
1581         unsigned int hardirq_enable_event;
1582         unsigned int hardirq_disable_event;
1583         int hardirqs_enabled;
1584         int hardirq_context;
1585         unsigned long softirq_disable_ip;
1586         unsigned long softirq_enable_ip;
1587         unsigned int softirq_disable_event;
1588         unsigned int softirq_enable_event;
1589         int softirqs_enabled;
1590         int softirq_context;
1591 #endif
1592 #ifdef CONFIG_LOCKDEP
1593 # define MAX_LOCK_DEPTH 48UL
1594         u64 curr_chain_key;
1595         int lockdep_depth;
1596         unsigned int lockdep_recursion;
1597         struct held_lock held_locks[MAX_LOCK_DEPTH];
1598         gfp_t lockdep_reclaim_gfp;
1599 #endif
1600
1601 /* journalling filesystem info */
1602         void *journal_info;
1603
1604 /* stacked block device info */
1605         struct bio_list *bio_list;
1606
1607 #ifdef CONFIG_BLOCK
1608 /* stack plugging */
1609         struct blk_plug *plug;
1610 #endif
1611
1612 /* VM state */
1613         struct reclaim_state *reclaim_state;
1614
1615         struct backing_dev_info *backing_dev_info;
1616
1617         struct io_context *io_context;
1618
1619         unsigned long ptrace_message;
1620         siginfo_t *last_siginfo; /* For ptrace use.  */
1621         struct task_io_accounting ioac;
1622 #if defined(CONFIG_TASK_XACCT)
1623         u64 acct_rss_mem1;      /* accumulated rss usage */
1624         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1625         cputime_t acct_timexpd; /* stime + utime since last update */
1626 #endif
1627 #ifdef CONFIG_CPUSETS
1628         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1629         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1630         int cpuset_mem_spread_rotor;
1631         int cpuset_slab_spread_rotor;
1632 #endif
1633 #ifdef CONFIG_CGROUPS
1634         /* Control Group info protected by css_set_lock */
1635         struct css_set __rcu *cgroups;
1636         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1637         struct list_head cg_list;
1638 #endif
1639 #ifdef CONFIG_FUTEX
1640         struct robust_list_head __user *robust_list;
1641 #ifdef CONFIG_COMPAT
1642         struct compat_robust_list_head __user *compat_robust_list;
1643 #endif
1644         struct list_head pi_state_list;
1645         struct futex_pi_state *pi_state_cache;
1646 #endif
1647 #ifdef CONFIG_PERF_EVENTS
1648         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1649         struct mutex perf_event_mutex;
1650         struct list_head perf_event_list;
1651 #endif
1652 #ifdef CONFIG_DEBUG_PREEMPT
1653         unsigned long preempt_disable_ip;
1654 #endif
1655 #ifdef CONFIG_NUMA
1656         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1657         short il_next;
1658         short pref_node_fork;
1659 #endif
1660 #ifdef CONFIG_NUMA_BALANCING
1661         int numa_scan_seq;
1662         unsigned int numa_scan_period;
1663         unsigned int numa_scan_period_max;
1664         int numa_preferred_nid;
1665         unsigned long numa_migrate_retry;
1666         u64 node_stamp;                 /* migration stamp  */
1667         u64 last_task_numa_placement;
1668         u64 last_sum_exec_runtime;
1669         struct callback_head numa_work;
1670
1671         struct list_head numa_entry;
1672         struct numa_group *numa_group;
1673
1674         /*
1675          * numa_faults is an array split into four regions:
1676          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1677          * in this precise order.
1678          *
1679          * faults_memory: Exponential decaying average of faults on a per-node
1680          * basis. Scheduling placement decisions are made based on these
1681          * counts. The values remain static for the duration of a PTE scan.
1682          * faults_cpu: Track the nodes the process was running on when a NUMA
1683          * hinting fault was incurred.
1684          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1685          * during the current scan window. When the scan completes, the counts
1686          * in faults_memory and faults_cpu decay and these values are copied.
1687          */
1688         unsigned long *numa_faults;
1689         unsigned long total_numa_faults;
1690
1691         /*
1692          * numa_faults_locality tracks if faults recorded during the last
1693          * scan window were remote/local or failed to migrate. The task scan
1694          * period is adapted based on the locality of the faults with different
1695          * weights depending on whether they were shared or private faults
1696          */
1697         unsigned long numa_faults_locality[3];
1698
1699         unsigned long numa_pages_migrated;
1700 #endif /* CONFIG_NUMA_BALANCING */
1701
1702         struct rcu_head rcu;
1703
1704         /*
1705          * cache last used pipe for splice
1706          */
1707         struct pipe_inode_info *splice_pipe;
1708
1709         struct page_frag task_frag;
1710
1711 #ifdef  CONFIG_TASK_DELAY_ACCT
1712         struct task_delay_info *delays;
1713 #endif
1714 #ifdef CONFIG_FAULT_INJECTION
1715         int make_it_fail;
1716 #endif
1717         /*
1718          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1719          * balance_dirty_pages() for some dirty throttling pause
1720          */
1721         int nr_dirtied;
1722         int nr_dirtied_pause;
1723         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1724
1725 #ifdef CONFIG_LATENCYTOP
1726         int latency_record_count;
1727         struct latency_record latency_record[LT_SAVECOUNT];
1728 #endif
1729         /*
1730          * time slack values; these are used to round up poll() and
1731          * select() etc timeout values. These are in nanoseconds.
1732          */
1733         unsigned long timer_slack_ns;
1734         unsigned long default_timer_slack_ns;
1735
1736 #ifdef CONFIG_KASAN
1737         unsigned int kasan_depth;
1738 #endif
1739 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1740         /* Index of current stored address in ret_stack */
1741         int curr_ret_stack;
1742         /* Stack of return addresses for return function tracing */
1743         struct ftrace_ret_stack *ret_stack;
1744         /* time stamp for last schedule */
1745         unsigned long long ftrace_timestamp;
1746         /*
1747          * Number of functions that haven't been traced
1748          * because of depth overrun.
1749          */
1750         atomic_t trace_overrun;
1751         /* Pause for the tracing */
1752         atomic_t tracing_graph_pause;
1753 #endif
1754 #ifdef CONFIG_TRACING
1755         /* state flags for use by tracers */
1756         unsigned long trace;
1757         /* bitmask and counter of trace recursion */
1758         unsigned long trace_recursion;
1759 #endif /* CONFIG_TRACING */
1760 #ifdef CONFIG_MEMCG
1761         struct memcg_oom_info {
1762                 struct mem_cgroup *memcg;
1763                 gfp_t gfp_mask;
1764                 int order;
1765                 unsigned int may_oom:1;
1766         } memcg_oom;
1767 #endif
1768 #ifdef CONFIG_UPROBES
1769         struct uprobe_task *utask;
1770 #endif
1771 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1772         unsigned int    sequential_io;
1773         unsigned int    sequential_io_avg;
1774 #endif
1775 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1776         unsigned long   task_state_change;
1777 #endif
1778         int pagefault_disabled;
1779 /* CPU-specific state of this task */
1780         struct thread_struct thread;
1781 /*
1782  * WARNING: on x86, 'thread_struct' contains a variable-sized
1783  * structure.  It *MUST* be at the end of 'task_struct'.
1784  *
1785  * Do not put anything below here!
1786  */
1787 };
1788
1789 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1790 extern int arch_task_struct_size __read_mostly;
1791 #else
1792 # define arch_task_struct_size (sizeof(struct task_struct))
1793 #endif
1794
1795 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1796 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1797
1798 #define TNF_MIGRATED    0x01
1799 #define TNF_NO_GROUP    0x02
1800 #define TNF_SHARED      0x04
1801 #define TNF_FAULT_LOCAL 0x08
1802 #define TNF_MIGRATE_FAIL 0x10
1803
1804 #ifdef CONFIG_NUMA_BALANCING
1805 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1806 extern pid_t task_numa_group_id(struct task_struct *p);
1807 extern void set_numabalancing_state(bool enabled);
1808 extern void task_numa_free(struct task_struct *p);
1809 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1810                                         int src_nid, int dst_cpu);
1811 #else
1812 static inline void task_numa_fault(int last_node, int node, int pages,
1813                                    int flags)
1814 {
1815 }
1816 static inline pid_t task_numa_group_id(struct task_struct *p)
1817 {
1818         return 0;
1819 }
1820 static inline void set_numabalancing_state(bool enabled)
1821 {
1822 }
1823 static inline void task_numa_free(struct task_struct *p)
1824 {
1825 }
1826 static inline bool should_numa_migrate_memory(struct task_struct *p,
1827                                 struct page *page, int src_nid, int dst_cpu)
1828 {
1829         return true;
1830 }
1831 #endif
1832
1833 static inline struct pid *task_pid(struct task_struct *task)
1834 {
1835         return task->pids[PIDTYPE_PID].pid;
1836 }
1837
1838 static inline struct pid *task_tgid(struct task_struct *task)
1839 {
1840         return task->group_leader->pids[PIDTYPE_PID].pid;
1841 }
1842
1843 /*
1844  * Without tasklist or rcu lock it is not safe to dereference
1845  * the result of task_pgrp/task_session even if task == current,
1846  * we can race with another thread doing sys_setsid/sys_setpgid.
1847  */
1848 static inline struct pid *task_pgrp(struct task_struct *task)
1849 {
1850         return task->group_leader->pids[PIDTYPE_PGID].pid;
1851 }
1852
1853 static inline struct pid *task_session(struct task_struct *task)
1854 {
1855         return task->group_leader->pids[PIDTYPE_SID].pid;
1856 }
1857
1858 struct pid_namespace;
1859
1860 /*
1861  * the helpers to get the task's different pids as they are seen
1862  * from various namespaces
1863  *
1864  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1865  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1866  *                     current.
1867  * task_xid_nr_ns()  : id seen from the ns specified;
1868  *
1869  * set_task_vxid()   : assigns a virtual id to a task;
1870  *
1871  * see also pid_nr() etc in include/linux/pid.h
1872  */
1873 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1874                         struct pid_namespace *ns);
1875
1876 static inline pid_t task_pid_nr(struct task_struct *tsk)
1877 {
1878         return tsk->pid;
1879 }
1880
1881 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1882                                         struct pid_namespace *ns)
1883 {
1884         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1885 }
1886
1887 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1888 {
1889         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1890 }
1891
1892
1893 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1894 {
1895         return tsk->tgid;
1896 }
1897
1898 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1899
1900 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1901 {
1902         return pid_vnr(task_tgid(tsk));
1903 }
1904
1905
1906 static inline int pid_alive(const struct task_struct *p);
1907 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1908 {
1909         pid_t pid = 0;
1910
1911         rcu_read_lock();
1912         if (pid_alive(tsk))
1913                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1914         rcu_read_unlock();
1915
1916         return pid;
1917 }
1918
1919 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1920 {
1921         return task_ppid_nr_ns(tsk, &init_pid_ns);
1922 }
1923
1924 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1925                                         struct pid_namespace *ns)
1926 {
1927         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1928 }
1929
1930 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1931 {
1932         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1933 }
1934
1935
1936 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1937                                         struct pid_namespace *ns)
1938 {
1939         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1940 }
1941
1942 static inline pid_t task_session_vnr(struct task_struct *tsk)
1943 {
1944         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1945 }
1946
1947 /* obsolete, do not use */
1948 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1949 {
1950         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1951 }
1952
1953 /**
1954  * pid_alive - check that a task structure is not stale
1955  * @p: Task structure to be checked.
1956  *
1957  * Test if a process is not yet dead (at most zombie state)
1958  * If pid_alive fails, then pointers within the task structure
1959  * can be stale and must not be dereferenced.
1960  *
1961  * Return: 1 if the process is alive. 0 otherwise.
1962  */
1963 static inline int pid_alive(const struct task_struct *p)
1964 {
1965         return p->pids[PIDTYPE_PID].pid != NULL;
1966 }
1967
1968 /**
1969  * is_global_init - check if a task structure is init
1970  * @tsk: Task structure to be checked.
1971  *
1972  * Check if a task structure is the first user space task the kernel created.
1973  *
1974  * Return: 1 if the task structure is init. 0 otherwise.
1975  */
1976 static inline int is_global_init(struct task_struct *tsk)
1977 {
1978         return tsk->pid == 1;
1979 }
1980
1981 extern struct pid *cad_pid;
1982
1983 extern void free_task(struct task_struct *tsk);
1984 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1985
1986 extern void __put_task_struct(struct task_struct *t);
1987
1988 static inline void put_task_struct(struct task_struct *t)
1989 {
1990         if (atomic_dec_and_test(&t->usage))
1991                 __put_task_struct(t);
1992 }
1993
1994 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1995 extern void task_cputime(struct task_struct *t,
1996                          cputime_t *utime, cputime_t *stime);
1997 extern void task_cputime_scaled(struct task_struct *t,
1998                                 cputime_t *utimescaled, cputime_t *stimescaled);
1999 extern cputime_t task_gtime(struct task_struct *t);
2000 #else
2001 static inline void task_cputime(struct task_struct *t,
2002                                 cputime_t *utime, cputime_t *stime)
2003 {
2004         if (utime)
2005                 *utime = t->utime;
2006         if (stime)
2007                 *stime = t->stime;
2008 }
2009
2010 static inline void task_cputime_scaled(struct task_struct *t,
2011                                        cputime_t *utimescaled,
2012                                        cputime_t *stimescaled)
2013 {
2014         if (utimescaled)
2015                 *utimescaled = t->utimescaled;
2016         if (stimescaled)
2017                 *stimescaled = t->stimescaled;
2018 }
2019
2020 static inline cputime_t task_gtime(struct task_struct *t)
2021 {
2022         return t->gtime;
2023 }
2024 #endif
2025 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2026 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2027
2028 /*
2029  * Per process flags
2030  */
2031 #define PF_EXITING      0x00000004      /* getting shut down */
2032 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
2033 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
2034 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
2035 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
2036 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2037 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
2038 #define PF_DUMPCORE     0x00000200      /* dumped core */
2039 #define PF_SIGNALED     0x00000400      /* killed by a signal */
2040 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
2041 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
2042 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
2043 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
2044 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
2045 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
2046 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
2047 #define PF_KSWAPD       0x00040000      /* I am kswapd */
2048 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
2049 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
2050 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
2051 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
2052 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
2053 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
2054 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2055 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
2056 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
2057 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2058
2059 /*
2060  * Only the _current_ task can read/write to tsk->flags, but other
2061  * tasks can access tsk->flags in readonly mode for example
2062  * with tsk_used_math (like during threaded core dumping).
2063  * There is however an exception to this rule during ptrace
2064  * or during fork: the ptracer task is allowed to write to the
2065  * child->flags of its traced child (same goes for fork, the parent
2066  * can write to the child->flags), because we're guaranteed the
2067  * child is not running and in turn not changing child->flags
2068  * at the same time the parent does it.
2069  */
2070 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2071 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2072 #define clear_used_math() clear_stopped_child_used_math(current)
2073 #define set_used_math() set_stopped_child_used_math(current)
2074 #define conditional_stopped_child_used_math(condition, child) \
2075         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2076 #define conditional_used_math(condition) \
2077         conditional_stopped_child_used_math(condition, current)
2078 #define copy_to_stopped_child_used_math(child) \
2079         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2080 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2081 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2082 #define used_math() tsk_used_math(current)
2083
2084 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2085  * __GFP_FS is also cleared as it implies __GFP_IO.
2086  */
2087 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2088 {
2089         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2090                 flags &= ~(__GFP_IO | __GFP_FS);
2091         return flags;
2092 }
2093
2094 static inline unsigned int memalloc_noio_save(void)
2095 {
2096         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2097         current->flags |= PF_MEMALLOC_NOIO;
2098         return flags;
2099 }
2100
2101 static inline void memalloc_noio_restore(unsigned int flags)
2102 {
2103         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2104 }
2105
2106 /* Per-process atomic flags. */
2107 #define PFA_NO_NEW_PRIVS 0      /* May not gain new privileges. */
2108 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2109 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2110
2111
2112 #define TASK_PFA_TEST(name, func)                                       \
2113         static inline bool task_##func(struct task_struct *p)           \
2114         { return test_bit(PFA_##name, &p->atomic_flags); }
2115 #define TASK_PFA_SET(name, func)                                        \
2116         static inline void task_set_##func(struct task_struct *p)       \
2117         { set_bit(PFA_##name, &p->atomic_flags); }
2118 #define TASK_PFA_CLEAR(name, func)                                      \
2119         static inline void task_clear_##func(struct task_struct *p)     \
2120         { clear_bit(PFA_##name, &p->atomic_flags); }
2121
2122 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2123 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2124
2125 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2126 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2127 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2128
2129 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2130 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2131 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2132
2133 /*
2134  * task->jobctl flags
2135  */
2136 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
2137
2138 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
2139 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
2140 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
2141 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
2142 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
2143 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
2144 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
2145
2146 #define JOBCTL_STOP_DEQUEUED    (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2147 #define JOBCTL_STOP_PENDING     (1UL << JOBCTL_STOP_PENDING_BIT)
2148 #define JOBCTL_STOP_CONSUME     (1UL << JOBCTL_STOP_CONSUME_BIT)
2149 #define JOBCTL_TRAP_STOP        (1UL << JOBCTL_TRAP_STOP_BIT)
2150 #define JOBCTL_TRAP_NOTIFY      (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2151 #define JOBCTL_TRAPPING         (1UL << JOBCTL_TRAPPING_BIT)
2152 #define JOBCTL_LISTENING        (1UL << JOBCTL_LISTENING_BIT)
2153
2154 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2155 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2156
2157 extern bool task_set_jobctl_pending(struct task_struct *task,
2158                                     unsigned long mask);
2159 extern void task_clear_jobctl_trapping(struct task_struct *task);
2160 extern void task_clear_jobctl_pending(struct task_struct *task,
2161                                       unsigned long mask);
2162
2163 static inline void rcu_copy_process(struct task_struct *p)
2164 {
2165 #ifdef CONFIG_PREEMPT_RCU
2166         p->rcu_read_lock_nesting = 0;
2167         p->rcu_read_unlock_special.s = 0;
2168         p->rcu_blocked_node = NULL;
2169         INIT_LIST_HEAD(&p->rcu_node_entry);
2170 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2171 #ifdef CONFIG_TASKS_RCU
2172         p->rcu_tasks_holdout = false;
2173         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2174         p->rcu_tasks_idle_cpu = -1;
2175 #endif /* #ifdef CONFIG_TASKS_RCU */
2176 }
2177
2178 static inline void tsk_restore_flags(struct task_struct *task,
2179                                 unsigned long orig_flags, unsigned long flags)
2180 {
2181         task->flags &= ~flags;
2182         task->flags |= orig_flags & flags;
2183 }
2184
2185 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2186                                      const struct cpumask *trial);
2187 extern int task_can_attach(struct task_struct *p,
2188                            const struct cpumask *cs_cpus_allowed);
2189 #ifdef CONFIG_SMP
2190 extern void do_set_cpus_allowed(struct task_struct *p,
2191                                const struct cpumask *new_mask);
2192
2193 extern int set_cpus_allowed_ptr(struct task_struct *p,
2194                                 const struct cpumask *new_mask);
2195 #else
2196 static inline void do_set_cpus_allowed(struct task_struct *p,
2197                                       const struct cpumask *new_mask)
2198 {
2199 }
2200 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2201                                        const struct cpumask *new_mask)
2202 {
2203         if (!cpumask_test_cpu(0, new_mask))
2204                 return -EINVAL;
2205         return 0;
2206 }
2207 #endif
2208
2209 #ifdef CONFIG_NO_HZ_COMMON
2210 void calc_load_enter_idle(void);
2211 void calc_load_exit_idle(void);
2212 #else
2213 static inline void calc_load_enter_idle(void) { }
2214 static inline void calc_load_exit_idle(void) { }
2215 #endif /* CONFIG_NO_HZ_COMMON */
2216
2217 #ifndef CONFIG_CPUMASK_OFFSTACK
2218 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2219 {
2220         return set_cpus_allowed_ptr(p, &new_mask);
2221 }
2222 #endif
2223
2224 /*
2225  * Do not use outside of architecture code which knows its limitations.
2226  *
2227  * sched_clock() has no promise of monotonicity or bounded drift between
2228  * CPUs, use (which you should not) requires disabling IRQs.
2229  *
2230  * Please use one of the three interfaces below.
2231  */
2232 extern unsigned long long notrace sched_clock(void);
2233 /*
2234  * See the comment in kernel/sched/clock.c
2235  */
2236 extern u64 cpu_clock(int cpu);
2237 extern u64 local_clock(void);
2238 extern u64 running_clock(void);
2239 extern u64 sched_clock_cpu(int cpu);
2240
2241
2242 extern void sched_clock_init(void);
2243
2244 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2245 static inline void sched_clock_tick(void)
2246 {
2247 }
2248
2249 static inline void sched_clock_idle_sleep_event(void)
2250 {
2251 }
2252
2253 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2254 {
2255 }
2256 #else
2257 /*
2258  * Architectures can set this to 1 if they have specified
2259  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2260  * but then during bootup it turns out that sched_clock()
2261  * is reliable after all:
2262  */
2263 extern int sched_clock_stable(void);
2264 extern void set_sched_clock_stable(void);
2265 extern void clear_sched_clock_stable(void);
2266
2267 extern void sched_clock_tick(void);
2268 extern void sched_clock_idle_sleep_event(void);
2269 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2270 #endif
2271
2272 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2273 /*
2274  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2275  * The reason for this explicit opt-in is not to have perf penalty with
2276  * slow sched_clocks.
2277  */
2278 extern void enable_sched_clock_irqtime(void);
2279 extern void disable_sched_clock_irqtime(void);
2280 #else
2281 static inline void enable_sched_clock_irqtime(void) {}
2282 static inline void disable_sched_clock_irqtime(void) {}
2283 #endif
2284
2285 extern unsigned long long
2286 task_sched_runtime(struct task_struct *task);
2287
2288 /* sched_exec is called by processes performing an exec */
2289 #ifdef CONFIG_SMP
2290 extern void sched_exec(void);
2291 #else
2292 #define sched_exec()   {}
2293 #endif
2294
2295 extern void sched_clock_idle_sleep_event(void);
2296 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2297
2298 #ifdef CONFIG_HOTPLUG_CPU
2299 extern void idle_task_exit(void);
2300 #else
2301 static inline void idle_task_exit(void) {}
2302 #endif
2303
2304 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2305 extern void wake_up_nohz_cpu(int cpu);
2306 #else
2307 static inline void wake_up_nohz_cpu(int cpu) { }
2308 #endif
2309
2310 #ifdef CONFIG_NO_HZ_FULL
2311 extern bool sched_can_stop_tick(void);
2312 extern u64 scheduler_tick_max_deferment(void);
2313 #else
2314 static inline bool sched_can_stop_tick(void) { return false; }
2315 #endif
2316
2317 #ifdef CONFIG_SCHED_AUTOGROUP
2318 extern void sched_autogroup_create_attach(struct task_struct *p);
2319 extern void sched_autogroup_detach(struct task_struct *p);
2320 extern void sched_autogroup_fork(struct signal_struct *sig);
2321 extern void sched_autogroup_exit(struct signal_struct *sig);
2322 #ifdef CONFIG_PROC_FS
2323 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2324 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2325 #endif
2326 #else
2327 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2328 static inline void sched_autogroup_detach(struct task_struct *p) { }
2329 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2330 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2331 #endif
2332
2333 extern int yield_to(struct task_struct *p, bool preempt);
2334 extern void set_user_nice(struct task_struct *p, long nice);
2335 extern int task_prio(const struct task_struct *p);
2336 /**
2337  * task_nice - return the nice value of a given task.
2338  * @p: the task in question.
2339  *
2340  * Return: The nice value [ -20 ... 0 ... 19 ].
2341  */
2342 static inline int task_nice(const struct task_struct *p)
2343 {
2344         return PRIO_TO_NICE((p)->static_prio);
2345 }
2346 extern int can_nice(const struct task_struct *p, const int nice);
2347 extern int task_curr(const struct task_struct *p);
2348 extern int idle_cpu(int cpu);
2349 extern int sched_setscheduler(struct task_struct *, int,
2350                               const struct sched_param *);
2351 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2352                                       const struct sched_param *);
2353 extern int sched_setattr(struct task_struct *,
2354                          const struct sched_attr *);
2355 extern struct task_struct *idle_task(int cpu);
2356 /**
2357  * is_idle_task - is the specified task an idle task?
2358  * @p: the task in question.
2359  *
2360  * Return: 1 if @p is an idle task. 0 otherwise.
2361  */
2362 static inline bool is_idle_task(const struct task_struct *p)
2363 {
2364         return p->pid == 0;
2365 }
2366 extern struct task_struct *curr_task(int cpu);
2367 extern void set_curr_task(int cpu, struct task_struct *p);
2368
2369 void yield(void);
2370
2371 union thread_union {
2372         struct thread_info thread_info;
2373         unsigned long stack[THREAD_SIZE/sizeof(long)];
2374 };
2375
2376 #ifndef __HAVE_ARCH_KSTACK_END
2377 static inline int kstack_end(void *addr)
2378 {
2379         /* Reliable end of stack detection:
2380          * Some APM bios versions misalign the stack
2381          */
2382         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2383 }
2384 #endif
2385
2386 extern union thread_union init_thread_union;
2387 extern struct task_struct init_task;
2388
2389 extern struct   mm_struct init_mm;
2390
2391 extern struct pid_namespace init_pid_ns;
2392
2393 /*
2394  * find a task by one of its numerical ids
2395  *
2396  * find_task_by_pid_ns():
2397  *      finds a task by its pid in the specified namespace
2398  * find_task_by_vpid():
2399  *      finds a task by its virtual pid
2400  *
2401  * see also find_vpid() etc in include/linux/pid.h
2402  */
2403
2404 extern struct task_struct *find_task_by_vpid(pid_t nr);
2405 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2406                 struct pid_namespace *ns);
2407
2408 /* per-UID process charging. */
2409 extern struct user_struct * alloc_uid(kuid_t);
2410 static inline struct user_struct *get_uid(struct user_struct *u)
2411 {
2412         atomic_inc(&u->__count);
2413         return u;
2414 }
2415 extern void free_uid(struct user_struct *);
2416
2417 #include <asm/current.h>
2418
2419 extern void xtime_update(unsigned long ticks);
2420
2421 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2422 extern int wake_up_process(struct task_struct *tsk);
2423 extern void wake_up_new_task(struct task_struct *tsk);
2424 #ifdef CONFIG_SMP
2425  extern void kick_process(struct task_struct *tsk);
2426 #else
2427  static inline void kick_process(struct task_struct *tsk) { }
2428 #endif
2429 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2430 extern void sched_dead(struct task_struct *p);
2431
2432 extern void proc_caches_init(void);
2433 extern void flush_signals(struct task_struct *);
2434 extern void ignore_signals(struct task_struct *);
2435 extern void flush_signal_handlers(struct task_struct *, int force_default);
2436 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2437
2438 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2439 {
2440         unsigned long flags;
2441         int ret;
2442
2443         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2444         ret = dequeue_signal(tsk, mask, info);
2445         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2446
2447         return ret;
2448 }
2449
2450 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2451                               sigset_t *mask);
2452 extern void unblock_all_signals(void);
2453 extern void release_task(struct task_struct * p);
2454 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2455 extern int force_sigsegv(int, struct task_struct *);
2456 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2457 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2458 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2459 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2460                                 const struct cred *, u32);
2461 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2462 extern int kill_pid(struct pid *pid, int sig, int priv);
2463 extern int kill_proc_info(int, struct siginfo *, pid_t);
2464 extern __must_check bool do_notify_parent(struct task_struct *, int);
2465 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2466 extern void force_sig(int, struct task_struct *);
2467 extern int send_sig(int, struct task_struct *, int);
2468 extern int zap_other_threads(struct task_struct *p);
2469 extern struct sigqueue *sigqueue_alloc(void);
2470 extern void sigqueue_free(struct sigqueue *);
2471 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2472 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2473
2474 static inline void restore_saved_sigmask(void)
2475 {
2476         if (test_and_clear_restore_sigmask())
2477                 __set_current_blocked(&current->saved_sigmask);
2478 }
2479
2480 static inline sigset_t *sigmask_to_save(void)
2481 {
2482         sigset_t *res = &current->blocked;
2483         if (unlikely(test_restore_sigmask()))
2484                 res = &current->saved_sigmask;
2485         return res;
2486 }
2487
2488 static inline int kill_cad_pid(int sig, int priv)
2489 {
2490         return kill_pid(cad_pid, sig, priv);
2491 }
2492
2493 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2494 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2495 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2496 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2497
2498 /*
2499  * True if we are on the alternate signal stack.
2500  */
2501 static inline int on_sig_stack(unsigned long sp)
2502 {
2503 #ifdef CONFIG_STACK_GROWSUP
2504         return sp >= current->sas_ss_sp &&
2505                 sp - current->sas_ss_sp < current->sas_ss_size;
2506 #else
2507         return sp > current->sas_ss_sp &&
2508                 sp - current->sas_ss_sp <= current->sas_ss_size;
2509 #endif
2510 }
2511
2512 static inline int sas_ss_flags(unsigned long sp)
2513 {
2514         if (!current->sas_ss_size)
2515                 return SS_DISABLE;
2516
2517         return on_sig_stack(sp) ? SS_ONSTACK : 0;
2518 }
2519
2520 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2521 {
2522         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2523 #ifdef CONFIG_STACK_GROWSUP
2524                 return current->sas_ss_sp;
2525 #else
2526                 return current->sas_ss_sp + current->sas_ss_size;
2527 #endif
2528         return sp;
2529 }
2530
2531 /*
2532  * Routines for handling mm_structs
2533  */
2534 extern struct mm_struct * mm_alloc(void);
2535
2536 /* mmdrop drops the mm and the page tables */
2537 extern void __mmdrop(struct mm_struct *);
2538 static inline void mmdrop(struct mm_struct * mm)
2539 {
2540         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2541                 __mmdrop(mm);
2542 }
2543
2544 /* mmput gets rid of the mappings and all user-space */
2545 extern void mmput(struct mm_struct *);
2546 /* Grab a reference to a task's mm, if it is not already going away */
2547 extern struct mm_struct *get_task_mm(struct task_struct *task);
2548 /*
2549  * Grab a reference to a task's mm, if it is not already going away
2550  * and ptrace_may_access with the mode parameter passed to it
2551  * succeeds.
2552  */
2553 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2554 /* Remove the current tasks stale references to the old mm_struct */
2555 extern void mm_release(struct task_struct *, struct mm_struct *);
2556
2557 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2558 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2559                         struct task_struct *, unsigned long);
2560 #else
2561 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2562                         struct task_struct *);
2563
2564 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2565  * via pt_regs, so ignore the tls argument passed via C. */
2566 static inline int copy_thread_tls(
2567                 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2568                 struct task_struct *p, unsigned long tls)
2569 {
2570         return copy_thread(clone_flags, sp, arg, p);
2571 }
2572 #endif
2573 extern void flush_thread(void);
2574 extern void exit_thread(void);
2575
2576 extern void exit_files(struct task_struct *);
2577 extern void __cleanup_sighand(struct sighand_struct *);
2578
2579 extern void exit_itimers(struct signal_struct *);
2580 extern void flush_itimer_signals(void);
2581
2582 extern void do_group_exit(int);
2583
2584 extern int do_execve(struct filename *,
2585                      const char __user * const __user *,
2586                      const char __user * const __user *);
2587 extern int do_execveat(int, struct filename *,
2588                        const char __user * const __user *,
2589                        const char __user * const __user *,
2590                        int);
2591 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2592 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2593 struct task_struct *fork_idle(int);
2594 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2595
2596 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2597 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2598 {
2599         __set_task_comm(tsk, from, false);
2600 }
2601 extern char *get_task_comm(char *to, struct task_struct *tsk);
2602
2603 #ifdef CONFIG_SMP
2604 void scheduler_ipi(void);
2605 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2606 #else
2607 static inline void scheduler_ipi(void) { }
2608 static inline unsigned long wait_task_inactive(struct task_struct *p,
2609                                                long match_state)
2610 {
2611         return 1;
2612 }
2613 #endif
2614
2615 #define tasklist_empty() \
2616         list_empty(&init_task.tasks)
2617
2618 #define next_task(p) \
2619         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2620
2621 #define for_each_process(p) \
2622         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2623
2624 extern bool current_is_single_threaded(void);
2625
2626 /*
2627  * Careful: do_each_thread/while_each_thread is a double loop so
2628  *          'break' will not work as expected - use goto instead.
2629  */
2630 #define do_each_thread(g, t) \
2631         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2632
2633 #define while_each_thread(g, t) \
2634         while ((t = next_thread(t)) != g)
2635
2636 #define __for_each_thread(signal, t)    \
2637         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2638
2639 #define for_each_thread(p, t)           \
2640         __for_each_thread((p)->signal, t)
2641
2642 /* Careful: this is a double loop, 'break' won't work as expected. */
2643 #define for_each_process_thread(p, t)   \
2644         for_each_process(p) for_each_thread(p, t)
2645
2646 static inline int get_nr_threads(struct task_struct *tsk)
2647 {
2648         return tsk->signal->nr_threads;
2649 }
2650
2651 static inline bool thread_group_leader(struct task_struct *p)
2652 {
2653         return p->exit_signal >= 0;
2654 }
2655
2656 /* Do to the insanities of de_thread it is possible for a process
2657  * to have the pid of the thread group leader without actually being
2658  * the thread group leader.  For iteration through the pids in proc
2659  * all we care about is that we have a task with the appropriate
2660  * pid, we don't actually care if we have the right task.
2661  */
2662 static inline bool has_group_leader_pid(struct task_struct *p)
2663 {
2664         return task_pid(p) == p->signal->leader_pid;
2665 }
2666
2667 static inline
2668 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2669 {
2670         return p1->signal == p2->signal;
2671 }
2672
2673 static inline struct task_struct *next_thread(const struct task_struct *p)
2674 {
2675         return list_entry_rcu(p->thread_group.next,
2676                               struct task_struct, thread_group);
2677 }
2678
2679 static inline int thread_group_empty(struct task_struct *p)
2680 {
2681         return list_empty(&p->thread_group);
2682 }
2683
2684 #define delay_group_leader(p) \
2685                 (thread_group_leader(p) && !thread_group_empty(p))
2686
2687 /*
2688  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2689  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2690  * pins the final release of task.io_context.  Also protects ->cpuset and
2691  * ->cgroup.subsys[]. And ->vfork_done.
2692  *
2693  * Nests both inside and outside of read_lock(&tasklist_lock).
2694  * It must not be nested with write_lock_irq(&tasklist_lock),
2695  * neither inside nor outside.
2696  */
2697 static inline void task_lock(struct task_struct *p)
2698 {
2699         spin_lock(&p->alloc_lock);
2700 }
2701
2702 static inline void task_unlock(struct task_struct *p)
2703 {
2704         spin_unlock(&p->alloc_lock);
2705 }
2706
2707 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2708                                                         unsigned long *flags);
2709
2710 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2711                                                        unsigned long *flags)
2712 {
2713         struct sighand_struct *ret;
2714
2715         ret = __lock_task_sighand(tsk, flags);
2716         (void)__cond_lock(&tsk->sighand->siglock, ret);
2717         return ret;
2718 }
2719
2720 static inline void unlock_task_sighand(struct task_struct *tsk,
2721                                                 unsigned long *flags)
2722 {
2723         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2724 }
2725
2726 /**
2727  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2728  * @tsk: task causing the changes
2729  *
2730  * All operations which modify a threadgroup - a new thread joining the
2731  * group, death of a member thread (the assertion of PF_EXITING) and
2732  * exec(2) dethreading the process and replacing the leader - are wrapped
2733  * by threadgroup_change_{begin|end}().  This is to provide a place which
2734  * subsystems needing threadgroup stability can hook into for
2735  * synchronization.
2736  */
2737 static inline void threadgroup_change_begin(struct task_struct *tsk)
2738 {
2739         might_sleep();
2740         cgroup_threadgroup_change_begin(tsk);
2741 }
2742
2743 /**
2744  * threadgroup_change_end - mark the end of changes to a threadgroup
2745  * @tsk: task causing the changes
2746  *
2747  * See threadgroup_change_begin().
2748  */
2749 static inline void threadgroup_change_end(struct task_struct *tsk)
2750 {
2751         cgroup_threadgroup_change_end(tsk);
2752 }
2753
2754 #ifndef __HAVE_THREAD_FUNCTIONS
2755
2756 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2757 #define task_stack_page(task)   ((task)->stack)
2758
2759 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2760 {
2761         *task_thread_info(p) = *task_thread_info(org);
2762         task_thread_info(p)->task = p;
2763 }
2764
2765 /*
2766  * Return the address of the last usable long on the stack.
2767  *
2768  * When the stack grows down, this is just above the thread
2769  * info struct. Going any lower will corrupt the threadinfo.
2770  *
2771  * When the stack grows up, this is the highest address.
2772  * Beyond that position, we corrupt data on the next page.
2773  */
2774 static inline unsigned long *end_of_stack(struct task_struct *p)
2775 {
2776 #ifdef CONFIG_STACK_GROWSUP
2777         return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2778 #else
2779         return (unsigned long *)(task_thread_info(p) + 1);
2780 #endif
2781 }
2782
2783 #endif
2784 #define task_stack_end_corrupted(task) \
2785                 (*(end_of_stack(task)) != STACK_END_MAGIC)
2786
2787 static inline int object_is_on_stack(void *obj)
2788 {
2789         void *stack = task_stack_page(current);
2790
2791         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2792 }
2793
2794 extern void thread_info_cache_init(void);
2795
2796 #ifdef CONFIG_DEBUG_STACK_USAGE
2797 static inline unsigned long stack_not_used(struct task_struct *p)
2798 {
2799         unsigned long *n = end_of_stack(p);
2800
2801         do {    /* Skip over canary */
2802                 n++;
2803         } while (!*n);
2804
2805         return (unsigned long)n - (unsigned long)end_of_stack(p);
2806 }
2807 #endif
2808 extern void set_task_stack_end_magic(struct task_struct *tsk);
2809
2810 /* set thread flags in other task's structures
2811  * - see asm/thread_info.h for TIF_xxxx flags available
2812  */
2813 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2814 {
2815         set_ti_thread_flag(task_thread_info(tsk), flag);
2816 }
2817
2818 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2819 {
2820         clear_ti_thread_flag(task_thread_info(tsk), flag);
2821 }
2822
2823 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2824 {
2825         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2826 }
2827
2828 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2829 {
2830         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2831 }
2832
2833 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2834 {
2835         return test_ti_thread_flag(task_thread_info(tsk), flag);
2836 }
2837
2838 static inline void set_tsk_need_resched(struct task_struct *tsk)
2839 {
2840         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2841 }
2842
2843 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2844 {
2845         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2846 }
2847
2848 static inline int test_tsk_need_resched(struct task_struct *tsk)
2849 {
2850         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2851 }
2852
2853 static inline int restart_syscall(void)
2854 {
2855         set_tsk_thread_flag(current, TIF_SIGPENDING);
2856         return -ERESTARTNOINTR;
2857 }
2858
2859 static inline int signal_pending(struct task_struct *p)
2860 {
2861         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2862 }
2863
2864 static inline int __fatal_signal_pending(struct task_struct *p)
2865 {
2866         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2867 }
2868
2869 static inline int fatal_signal_pending(struct task_struct *p)
2870 {
2871         return signal_pending(p) && __fatal_signal_pending(p);
2872 }
2873
2874 static inline int signal_pending_state(long state, struct task_struct *p)
2875 {
2876         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2877                 return 0;
2878         if (!signal_pending(p))
2879                 return 0;
2880
2881         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2882 }
2883
2884 /*
2885  * cond_resched() and cond_resched_lock(): latency reduction via
2886  * explicit rescheduling in places that are safe. The return
2887  * value indicates whether a reschedule was done in fact.
2888  * cond_resched_lock() will drop the spinlock before scheduling,
2889  * cond_resched_softirq() will enable bhs before scheduling.
2890  */
2891 extern int _cond_resched(void);
2892
2893 #define cond_resched() ({                       \
2894         ___might_sleep(__FILE__, __LINE__, 0);  \
2895         _cond_resched();                        \
2896 })
2897
2898 extern int __cond_resched_lock(spinlock_t *lock);
2899
2900 #ifdef CONFIG_PREEMPT_COUNT
2901 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2902 #else
2903 #define PREEMPT_LOCK_OFFSET     0
2904 #endif
2905
2906 #define cond_resched_lock(lock) ({                              \
2907         ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2908         __cond_resched_lock(lock);                              \
2909 })
2910
2911 extern int __cond_resched_softirq(void);
2912
2913 #define cond_resched_softirq() ({                                       \
2914         ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);     \
2915         __cond_resched_softirq();                                       \
2916 })
2917
2918 static inline void cond_resched_rcu(void)
2919 {
2920 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2921         rcu_read_unlock();
2922         cond_resched();
2923         rcu_read_lock();
2924 #endif
2925 }
2926
2927 /*
2928  * Does a critical section need to be broken due to another
2929  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2930  * but a general need for low latency)
2931  */
2932 static inline int spin_needbreak(spinlock_t *lock)
2933 {
2934 #ifdef CONFIG_PREEMPT
2935         return spin_is_contended(lock);
2936 #else
2937         return 0;
2938 #endif
2939 }
2940
2941 /*
2942  * Idle thread specific functions to determine the need_resched
2943  * polling state.
2944  */
2945 #ifdef TIF_POLLING_NRFLAG
2946 static inline int tsk_is_polling(struct task_struct *p)
2947 {
2948         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2949 }
2950
2951 static inline void __current_set_polling(void)
2952 {
2953         set_thread_flag(TIF_POLLING_NRFLAG);
2954 }
2955
2956 static inline bool __must_check current_set_polling_and_test(void)
2957 {
2958         __current_set_polling();
2959
2960         /*
2961          * Polling state must be visible before we test NEED_RESCHED,
2962          * paired by resched_curr()
2963          */
2964         smp_mb__after_atomic();
2965
2966         return unlikely(tif_need_resched());
2967 }
2968
2969 static inline void __current_clr_polling(void)
2970 {
2971         clear_thread_flag(TIF_POLLING_NRFLAG);
2972 }
2973
2974 static inline bool __must_check current_clr_polling_and_test(void)
2975 {
2976         __current_clr_polling();
2977
2978         /*
2979          * Polling state must be visible before we test NEED_RESCHED,
2980          * paired by resched_curr()
2981          */
2982         smp_mb__after_atomic();
2983
2984         return unlikely(tif_need_resched());
2985 }
2986
2987 #else
2988 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2989 static inline void __current_set_polling(void) { }
2990 static inline void __current_clr_polling(void) { }
2991
2992 static inline bool __must_check current_set_polling_and_test(void)
2993 {
2994         return unlikely(tif_need_resched());
2995 }
2996 static inline bool __must_check current_clr_polling_and_test(void)
2997 {
2998         return unlikely(tif_need_resched());
2999 }
3000 #endif
3001
3002 static inline void current_clr_polling(void)
3003 {
3004         __current_clr_polling();
3005
3006         /*
3007          * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3008          * Once the bit is cleared, we'll get IPIs with every new
3009          * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3010          * fold.
3011          */
3012         smp_mb(); /* paired with resched_curr() */
3013
3014         preempt_fold_need_resched();
3015 }
3016
3017 static __always_inline bool need_resched(void)
3018 {
3019         return unlikely(tif_need_resched());
3020 }
3021
3022 /*
3023  * Thread group CPU time accounting.
3024  */
3025 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3026 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3027
3028 /*
3029  * Reevaluate whether the task has signals pending delivery.
3030  * Wake the task if so.
3031  * This is required every time the blocked sigset_t changes.
3032  * callers must hold sighand->siglock.
3033  */
3034 extern void recalc_sigpending_and_wake(struct task_struct *t);
3035 extern void recalc_sigpending(void);
3036
3037 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3038
3039 static inline void signal_wake_up(struct task_struct *t, bool resume)
3040 {
3041         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3042 }
3043 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3044 {
3045         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3046 }
3047
3048 /*
3049  * Wrappers for p->thread_info->cpu access. No-op on UP.
3050  */
3051 #ifdef CONFIG_SMP
3052
3053 static inline unsigned int task_cpu(const struct task_struct *p)
3054 {
3055         return task_thread_info(p)->cpu;
3056 }
3057
3058 static inline int task_node(const struct task_struct *p)
3059 {
3060         return cpu_to_node(task_cpu(p));
3061 }
3062
3063 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3064
3065 #else
3066
3067 static inline unsigned int task_cpu(const struct task_struct *p)
3068 {
3069         return 0;
3070 }
3071
3072 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3073 {
3074 }
3075
3076 #endif /* CONFIG_SMP */
3077
3078 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3079 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3080
3081 #ifdef CONFIG_CGROUP_SCHED
3082 extern struct task_group root_task_group;
3083 #endif /* CONFIG_CGROUP_SCHED */
3084
3085 extern int task_can_switch_user(struct user_struct *up,
3086                                         struct task_struct *tsk);
3087
3088 #ifdef CONFIG_TASK_XACCT
3089 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3090 {
3091         tsk->ioac.rchar += amt;
3092 }
3093
3094 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3095 {
3096         tsk->ioac.wchar += amt;
3097 }
3098
3099 static inline void inc_syscr(struct task_struct *tsk)
3100 {
3101         tsk->ioac.syscr++;
3102 }
3103
3104 static inline void inc_syscw(struct task_struct *tsk)
3105 {
3106         tsk->ioac.syscw++;
3107 }
3108 #else
3109 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3110 {
3111 }
3112
3113 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3114 {
3115 }
3116
3117 static inline void inc_syscr(struct task_struct *tsk)
3118 {
3119 }
3120
3121 static inline void inc_syscw(struct task_struct *tsk)
3122 {
3123 }
3124 #endif
3125
3126 #ifndef TASK_SIZE_OF
3127 #define TASK_SIZE_OF(tsk)       TASK_SIZE
3128 #endif
3129
3130 #ifdef CONFIG_MEMCG
3131 extern void mm_update_next_owner(struct mm_struct *mm);
3132 #else
3133 static inline void mm_update_next_owner(struct mm_struct *mm)
3134 {
3135 }
3136 #endif /* CONFIG_MEMCG */
3137
3138 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3139                 unsigned int limit)
3140 {
3141         return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3142 }
3143
3144 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3145                 unsigned int limit)
3146 {
3147         return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3148 }
3149
3150 static inline unsigned long rlimit(unsigned int limit)
3151 {
3152         return task_rlimit(current, limit);
3153 }
3154
3155 static inline unsigned long rlimit_max(unsigned int limit)
3156 {
3157         return task_rlimit_max(current, limit);
3158 }
3159
3160 #endif