tree wide: use kvfree() than conditional kfree()/vfree()
[linux-drm-fsl-dcu.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90                             struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92                              struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101         struct logicalVolIntegrityDesc *lvid;
102         unsigned int partnum;
103         unsigned int offset;
104
105         if (!UDF_SB(sb)->s_lvid_bh)
106                 return NULL;
107         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108         partnum = le32_to_cpu(lvid->numOfPartitions);
109         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110              offsetof(struct logicalVolIntegrityDesc, impUse)) /
111              (2 * sizeof(uint32_t)) < partnum) {
112                 udf_err(sb, "Logical volume integrity descriptor corrupted "
113                         "(numOfPartitions = %u)!\n", partnum);
114                 return NULL;
115         }
116         /* The offset is to skip freeSpaceTable and sizeTable arrays */
117         offset = partnum * 2 * sizeof(uint32_t);
118         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_next_alloc_block = 0;
149         ei->i_next_alloc_goal = 0;
150         ei->i_strat4096 = 0;
151         init_rwsem(&ei->i_data_sem);
152         ei->cached_extent.lstart = -1;
153         spin_lock_init(&ei->i_extent_cache_lock);
154
155         return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160         struct inode *inode = container_of(head, struct inode, i_rcu);
161         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166         call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD |
183                                                  SLAB_ACCOUNT),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234         int err;
235
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242
243         return 0;
244
245 out:
246         destroy_inodecache();
247
248 out1:
249         return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273
274         sbi->s_partitions = count;
275         return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282
283         for (i = 0; i < nr_groups; i++)
284                 if (bitmap->s_block_bitmap[i])
285                         brelse(bitmap->s_block_bitmap[i]);
286
287         kvfree(bitmap);
288 }
289
290 static void udf_free_partition(struct udf_part_map *map)
291 {
292         int i;
293         struct udf_meta_data *mdata;
294
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
296                 iput(map->s_uspace.s_table);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
298                 iput(map->s_fspace.s_table);
299         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
300                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
301         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
302                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
303         if (map->s_partition_type == UDF_SPARABLE_MAP15)
304                 for (i = 0; i < 4; i++)
305                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
306         else if (map->s_partition_type == UDF_METADATA_MAP25) {
307                 mdata = &map->s_type_specific.s_metadata;
308                 iput(mdata->s_metadata_fe);
309                 mdata->s_metadata_fe = NULL;
310
311                 iput(mdata->s_mirror_fe);
312                 mdata->s_mirror_fe = NULL;
313
314                 iput(mdata->s_bitmap_fe);
315                 mdata->s_bitmap_fe = NULL;
316         }
317 }
318
319 static void udf_sb_free_partitions(struct super_block *sb)
320 {
321         struct udf_sb_info *sbi = UDF_SB(sb);
322         int i;
323         if (sbi->s_partmaps == NULL)
324                 return;
325         for (i = 0; i < sbi->s_partitions; i++)
326                 udf_free_partition(&sbi->s_partmaps[i]);
327         kfree(sbi->s_partmaps);
328         sbi->s_partmaps = NULL;
329 }
330
331 static int udf_show_options(struct seq_file *seq, struct dentry *root)
332 {
333         struct super_block *sb = root->d_sb;
334         struct udf_sb_info *sbi = UDF_SB(sb);
335
336         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
337                 seq_puts(seq, ",nostrict");
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
339                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
341                 seq_puts(seq, ",unhide");
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
343                 seq_puts(seq, ",undelete");
344         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
345                 seq_puts(seq, ",noadinicb");
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
347                 seq_puts(seq, ",shortad");
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
349                 seq_puts(seq, ",uid=forget");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
351                 seq_puts(seq, ",uid=ignore");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
353                 seq_puts(seq, ",gid=forget");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
355                 seq_puts(seq, ",gid=ignore");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
357                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
359                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
360         if (sbi->s_umask != 0)
361                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
362         if (sbi->s_fmode != UDF_INVALID_MODE)
363                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
364         if (sbi->s_dmode != UDF_INVALID_MODE)
365                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
366         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
367                 seq_printf(seq, ",session=%u", sbi->s_session);
368         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
369                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
370         if (sbi->s_anchor != 0)
371                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
372         /*
373          * volume, partition, fileset and rootdir seem to be ignored
374          * currently
375          */
376         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
377                 seq_puts(seq, ",utf8");
378         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
379                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
380
381         return 0;
382 }
383
384 /*
385  * udf_parse_options
386  *
387  * PURPOSE
388  *      Parse mount options.
389  *
390  * DESCRIPTION
391  *      The following mount options are supported:
392  *
393  *      gid=            Set the default group.
394  *      umask=          Set the default umask.
395  *      mode=           Set the default file permissions.
396  *      dmode=          Set the default directory permissions.
397  *      uid=            Set the default user.
398  *      bs=             Set the block size.
399  *      unhide          Show otherwise hidden files.
400  *      undelete        Show deleted files in lists.
401  *      adinicb         Embed data in the inode (default)
402  *      noadinicb       Don't embed data in the inode
403  *      shortad         Use short ad's
404  *      longad          Use long ad's (default)
405  *      nostrict        Unset strict conformance
406  *      iocharset=      Set the NLS character set
407  *
408  *      The remaining are for debugging and disaster recovery:
409  *
410  *      novrs           Skip volume sequence recognition
411  *
412  *      The following expect a offset from 0.
413  *
414  *      session=        Set the CDROM session (default= last session)
415  *      anchor=         Override standard anchor location. (default= 256)
416  *      volume=         Override the VolumeDesc location. (unused)
417  *      partition=      Override the PartitionDesc location. (unused)
418  *      lastblock=      Set the last block of the filesystem/
419  *
420  *      The following expect a offset from the partition root.
421  *
422  *      fileset=        Override the fileset block location. (unused)
423  *      rootdir=        Override the root directory location. (unused)
424  *              WARNING: overriding the rootdir to a non-directory may
425  *              yield highly unpredictable results.
426  *
427  * PRE-CONDITIONS
428  *      options         Pointer to mount options string.
429  *      uopts           Pointer to mount options variable.
430  *
431  * POST-CONDITIONS
432  *      <return>        1       Mount options parsed okay.
433  *      <return>        0       Error parsing mount options.
434  *
435  * HISTORY
436  *      July 1, 1997 - Andrew E. Mileski
437  *      Written, tested, and released.
438  */
439
440 enum {
441         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
442         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
443         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
444         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
445         Opt_rootdir, Opt_utf8, Opt_iocharset,
446         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
447         Opt_fmode, Opt_dmode
448 };
449
450 static const match_table_t tokens = {
451         {Opt_novrs,     "novrs"},
452         {Opt_nostrict,  "nostrict"},
453         {Opt_bs,        "bs=%u"},
454         {Opt_unhide,    "unhide"},
455         {Opt_undelete,  "undelete"},
456         {Opt_noadinicb, "noadinicb"},
457         {Opt_adinicb,   "adinicb"},
458         {Opt_shortad,   "shortad"},
459         {Opt_longad,    "longad"},
460         {Opt_uforget,   "uid=forget"},
461         {Opt_uignore,   "uid=ignore"},
462         {Opt_gforget,   "gid=forget"},
463         {Opt_gignore,   "gid=ignore"},
464         {Opt_gid,       "gid=%u"},
465         {Opt_uid,       "uid=%u"},
466         {Opt_umask,     "umask=%o"},
467         {Opt_session,   "session=%u"},
468         {Opt_lastblock, "lastblock=%u"},
469         {Opt_anchor,    "anchor=%u"},
470         {Opt_volume,    "volume=%u"},
471         {Opt_partition, "partition=%u"},
472         {Opt_fileset,   "fileset=%u"},
473         {Opt_rootdir,   "rootdir=%u"},
474         {Opt_utf8,      "utf8"},
475         {Opt_iocharset, "iocharset=%s"},
476         {Opt_fmode,     "mode=%o"},
477         {Opt_dmode,     "dmode=%o"},
478         {Opt_err,       NULL}
479 };
480
481 static int udf_parse_options(char *options, struct udf_options *uopt,
482                              bool remount)
483 {
484         char *p;
485         int option;
486
487         uopt->novrs = 0;
488         uopt->partition = 0xFFFF;
489         uopt->session = 0xFFFFFFFF;
490         uopt->lastblock = 0;
491         uopt->anchor = 0;
492         uopt->volume = 0xFFFFFFFF;
493         uopt->rootdir = 0xFFFFFFFF;
494         uopt->fileset = 0xFFFFFFFF;
495         uopt->nls_map = NULL;
496
497         if (!options)
498                 return 1;
499
500         while ((p = strsep(&options, ",")) != NULL) {
501                 substring_t args[MAX_OPT_ARGS];
502                 int token;
503                 unsigned n;
504                 if (!*p)
505                         continue;
506
507                 token = match_token(p, tokens, args);
508                 switch (token) {
509                 case Opt_novrs:
510                         uopt->novrs = 1;
511                         break;
512                 case Opt_bs:
513                         if (match_int(&args[0], &option))
514                                 return 0;
515                         n = option;
516                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
517                                 return 0;
518                         uopt->blocksize = n;
519                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
520                         break;
521                 case Opt_unhide:
522                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
523                         break;
524                 case Opt_undelete:
525                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
526                         break;
527                 case Opt_noadinicb:
528                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
529                         break;
530                 case Opt_adinicb:
531                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
532                         break;
533                 case Opt_shortad:
534                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
535                         break;
536                 case Opt_longad:
537                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
538                         break;
539                 case Opt_gid:
540                         if (match_int(args, &option))
541                                 return 0;
542                         uopt->gid = make_kgid(current_user_ns(), option);
543                         if (!gid_valid(uopt->gid))
544                                 return 0;
545                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
546                         break;
547                 case Opt_uid:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->uid = make_kuid(current_user_ns(), option);
551                         if (!uid_valid(uopt->uid))
552                                 return 0;
553                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
554                         break;
555                 case Opt_umask:
556                         if (match_octal(args, &option))
557                                 return 0;
558                         uopt->umask = option;
559                         break;
560                 case Opt_nostrict:
561                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
562                         break;
563                 case Opt_session:
564                         if (match_int(args, &option))
565                                 return 0;
566                         uopt->session = option;
567                         if (!remount)
568                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
569                         break;
570                 case Opt_lastblock:
571                         if (match_int(args, &option))
572                                 return 0;
573                         uopt->lastblock = option;
574                         if (!remount)
575                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
576                         break;
577                 case Opt_anchor:
578                         if (match_int(args, &option))
579                                 return 0;
580                         uopt->anchor = option;
581                         break;
582                 case Opt_volume:
583                         if (match_int(args, &option))
584                                 return 0;
585                         uopt->volume = option;
586                         break;
587                 case Opt_partition:
588                         if (match_int(args, &option))
589                                 return 0;
590                         uopt->partition = option;
591                         break;
592                 case Opt_fileset:
593                         if (match_int(args, &option))
594                                 return 0;
595                         uopt->fileset = option;
596                         break;
597                 case Opt_rootdir:
598                         if (match_int(args, &option))
599                                 return 0;
600                         uopt->rootdir = option;
601                         break;
602                 case Opt_utf8:
603                         uopt->flags |= (1 << UDF_FLAG_UTF8);
604                         break;
605 #ifdef CONFIG_UDF_NLS
606                 case Opt_iocharset:
607                         uopt->nls_map = load_nls(args[0].from);
608                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
609                         break;
610 #endif
611                 case Opt_uignore:
612                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
613                         break;
614                 case Opt_uforget:
615                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
616                         break;
617                 case Opt_gignore:
618                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
619                         break;
620                 case Opt_gforget:
621                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
622                         break;
623                 case Opt_fmode:
624                         if (match_octal(args, &option))
625                                 return 0;
626                         uopt->fmode = option & 0777;
627                         break;
628                 case Opt_dmode:
629                         if (match_octal(args, &option))
630                                 return 0;
631                         uopt->dmode = option & 0777;
632                         break;
633                 default:
634                         pr_err("bad mount option \"%s\" or missing value\n", p);
635                         return 0;
636                 }
637         }
638         return 1;
639 }
640
641 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
642 {
643         struct udf_options uopt;
644         struct udf_sb_info *sbi = UDF_SB(sb);
645         int error = 0;
646         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
647
648         sync_filesystem(sb);
649         if (lvidiu) {
650                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652                         return -EACCES;
653         }
654
655         uopt.flags = sbi->s_flags;
656         uopt.uid   = sbi->s_uid;
657         uopt.gid   = sbi->s_gid;
658         uopt.umask = sbi->s_umask;
659         uopt.fmode = sbi->s_fmode;
660         uopt.dmode = sbi->s_dmode;
661
662         if (!udf_parse_options(options, &uopt, true))
663                 return -EINVAL;
664
665         write_lock(&sbi->s_cred_lock);
666         sbi->s_flags = uopt.flags;
667         sbi->s_uid   = uopt.uid;
668         sbi->s_gid   = uopt.gid;
669         sbi->s_umask = uopt.umask;
670         sbi->s_fmode = uopt.fmode;
671         sbi->s_dmode = uopt.dmode;
672         write_unlock(&sbi->s_cred_lock);
673
674         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675                 goto out_unlock;
676
677         if (*flags & MS_RDONLY)
678                 udf_close_lvid(sb);
679         else
680                 udf_open_lvid(sb);
681
682 out_unlock:
683         return error;
684 }
685
686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688 static loff_t udf_check_vsd(struct super_block *sb)
689 {
690         struct volStructDesc *vsd = NULL;
691         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692         int sectorsize;
693         struct buffer_head *bh = NULL;
694         int nsr02 = 0;
695         int nsr03 = 0;
696         struct udf_sb_info *sbi;
697
698         sbi = UDF_SB(sb);
699         if (sb->s_blocksize < sizeof(struct volStructDesc))
700                 sectorsize = sizeof(struct volStructDesc);
701         else
702                 sectorsize = sb->s_blocksize;
703
704         sector += (sbi->s_session << sb->s_blocksize_bits);
705
706         udf_debug("Starting at sector %u (%ld byte sectors)\n",
707                   (unsigned int)(sector >> sb->s_blocksize_bits),
708                   sb->s_blocksize);
709         /* Process the sequence (if applicable). The hard limit on the sector
710          * offset is arbitrary, hopefully large enough so that all valid UDF
711          * filesystems will be recognised. There is no mention of an upper
712          * bound to the size of the volume recognition area in the standard.
713          *  The limit will prevent the code to read all the sectors of a
714          * specially crafted image (like a bluray disc full of CD001 sectors),
715          * potentially causing minutes or even hours of uninterruptible I/O
716          * activity. This actually happened with uninitialised SSD partitions
717          * (all 0xFF) before the check for the limit and all valid IDs were
718          * added */
719         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720              sector += sectorsize) {
721                 /* Read a block */
722                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723                 if (!bh)
724                         break;
725
726                 /* Look for ISO  descriptors */
727                 vsd = (struct volStructDesc *)(bh->b_data +
728                                               (sector & (sb->s_blocksize - 1)));
729
730                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731                                     VSD_STD_ID_LEN)) {
732                         switch (vsd->structType) {
733                         case 0:
734                                 udf_debug("ISO9660 Boot Record found\n");
735                                 break;
736                         case 1:
737                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
738                                 break;
739                         case 2:
740                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741                                 break;
742                         case 3:
743                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
744                                 break;
745                         case 255:
746                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747                                 break;
748                         default:
749                                 udf_debug("ISO9660 VRS (%u) found\n",
750                                           vsd->structType);
751                                 break;
752                         }
753                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754                                     VSD_STD_ID_LEN))
755                         ; /* nothing */
756                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757                                     VSD_STD_ID_LEN)) {
758                         brelse(bh);
759                         break;
760                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761                                     VSD_STD_ID_LEN))
762                         nsr02 = sector;
763                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764                                     VSD_STD_ID_LEN))
765                         nsr03 = sector;
766                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767                                     VSD_STD_ID_LEN))
768                         ; /* nothing */
769                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770                                     VSD_STD_ID_LEN))
771                         ; /* nothing */
772                 else {
773                         /* invalid id : end of volume recognition area */
774                         brelse(bh);
775                         break;
776                 }
777                 brelse(bh);
778         }
779
780         if (nsr03)
781                 return nsr03;
782         else if (nsr02)
783                 return nsr02;
784         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785                         VSD_FIRST_SECTOR_OFFSET)
786                 return -1;
787         else
788                 return 0;
789 }
790
791 static int udf_find_fileset(struct super_block *sb,
792                             struct kernel_lb_addr *fileset,
793                             struct kernel_lb_addr *root)
794 {
795         struct buffer_head *bh = NULL;
796         long lastblock;
797         uint16_t ident;
798         struct udf_sb_info *sbi;
799
800         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801             fileset->partitionReferenceNum != 0xFFFF) {
802                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
803
804                 if (!bh) {
805                         return 1;
806                 } else if (ident != TAG_IDENT_FSD) {
807                         brelse(bh);
808                         return 1;
809                 }
810
811         }
812
813         sbi = UDF_SB(sb);
814         if (!bh) {
815                 /* Search backwards through the partitions */
816                 struct kernel_lb_addr newfileset;
817
818 /* --> cvg: FIXME - is it reasonable? */
819                 return 1;
820
821                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822                      (newfileset.partitionReferenceNum != 0xFFFF &&
823                       fileset->logicalBlockNum == 0xFFFFFFFF &&
824                       fileset->partitionReferenceNum == 0xFFFF);
825                      newfileset.partitionReferenceNum--) {
826                         lastblock = sbi->s_partmaps
827                                         [newfileset.partitionReferenceNum]
828                                                 .s_partition_len;
829                         newfileset.logicalBlockNum = 0;
830
831                         do {
832                                 bh = udf_read_ptagged(sb, &newfileset, 0,
833                                                       &ident);
834                                 if (!bh) {
835                                         newfileset.logicalBlockNum++;
836                                         continue;
837                                 }
838
839                                 switch (ident) {
840                                 case TAG_IDENT_SBD:
841                                 {
842                                         struct spaceBitmapDesc *sp;
843                                         sp = (struct spaceBitmapDesc *)
844                                                                 bh->b_data;
845                                         newfileset.logicalBlockNum += 1 +
846                                                 ((le32_to_cpu(sp->numOfBytes) +
847                                                   sizeof(struct spaceBitmapDesc)
848                                                   - 1) >> sb->s_blocksize_bits);
849                                         brelse(bh);
850                                         break;
851                                 }
852                                 case TAG_IDENT_FSD:
853                                         *fileset = newfileset;
854                                         break;
855                                 default:
856                                         newfileset.logicalBlockNum++;
857                                         brelse(bh);
858                                         bh = NULL;
859                                         break;
860                                 }
861                         } while (newfileset.logicalBlockNum < lastblock &&
862                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
863                                  fileset->partitionReferenceNum == 0xFFFF);
864                 }
865         }
866
867         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868              fileset->partitionReferenceNum != 0xFFFF) && bh) {
869                 udf_debug("Fileset at block=%d, partition=%d\n",
870                           fileset->logicalBlockNum,
871                           fileset->partitionReferenceNum);
872
873                 sbi->s_partition = fileset->partitionReferenceNum;
874                 udf_load_fileset(sb, bh, root);
875                 brelse(bh);
876                 return 0;
877         }
878         return 1;
879 }
880
881 /*
882  * Load primary Volume Descriptor Sequence
883  *
884  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885  * should be tried.
886  */
887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888 {
889         struct primaryVolDesc *pvoldesc;
890         struct ustr *instr, *outstr;
891         struct buffer_head *bh;
892         uint16_t ident;
893         int ret = -ENOMEM;
894
895         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
896         if (!instr)
897                 return -ENOMEM;
898
899         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900         if (!outstr)
901                 goto out1;
902
903         bh = udf_read_tagged(sb, block, block, &ident);
904         if (!bh) {
905                 ret = -EAGAIN;
906                 goto out2;
907         }
908
909         if (ident != TAG_IDENT_PVD) {
910                 ret = -EIO;
911                 goto out_bh;
912         }
913
914         pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917                               pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924         }
925
926         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
927                 ret = udf_CS0toUTF8(outstr, instr);
928                 if (ret < 0)
929                         goto out_bh;
930
931                 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
932                         outstr->u_len > 31 ? 31 : outstr->u_len);
933                 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934         }
935
936         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
937                 ret = udf_CS0toUTF8(outstr, instr);
938                 if (ret < 0)
939                         goto out_bh;
940
941                 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942         }
943
944         ret = 0;
945 out_bh:
946         brelse(bh);
947 out2:
948         kfree(outstr);
949 out1:
950         kfree(instr);
951         return ret;
952 }
953
954 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
955                                         u32 meta_file_loc, u32 partition_num)
956 {
957         struct kernel_lb_addr addr;
958         struct inode *metadata_fe;
959
960         addr.logicalBlockNum = meta_file_loc;
961         addr.partitionReferenceNum = partition_num;
962
963         metadata_fe = udf_iget_special(sb, &addr);
964
965         if (IS_ERR(metadata_fe)) {
966                 udf_warn(sb, "metadata inode efe not found\n");
967                 return metadata_fe;
968         }
969         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
970                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
971                 iput(metadata_fe);
972                 return ERR_PTR(-EIO);
973         }
974
975         return metadata_fe;
976 }
977
978 static int udf_load_metadata_files(struct super_block *sb, int partition)
979 {
980         struct udf_sb_info *sbi = UDF_SB(sb);
981         struct udf_part_map *map;
982         struct udf_meta_data *mdata;
983         struct kernel_lb_addr addr;
984         struct inode *fe;
985
986         map = &sbi->s_partmaps[partition];
987         mdata = &map->s_type_specific.s_metadata;
988
989         /* metadata address */
990         udf_debug("Metadata file location: block = %d part = %d\n",
991                   mdata->s_meta_file_loc, map->s_partition_num);
992
993         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
994                                          map->s_partition_num);
995         if (IS_ERR(fe)) {
996                 /* mirror file entry */
997                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
998                           mdata->s_mirror_file_loc, map->s_partition_num);
999
1000                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1001                                                  map->s_partition_num);
1002
1003                 if (IS_ERR(fe)) {
1004                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1005                         return PTR_ERR(fe);
1006                 }
1007                 mdata->s_mirror_fe = fe;
1008         } else
1009                 mdata->s_metadata_fe = fe;
1010
1011
1012         /*
1013          * bitmap file entry
1014          * Note:
1015          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1016         */
1017         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1018                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1019                 addr.partitionReferenceNum = map->s_partition_num;
1020
1021                 udf_debug("Bitmap file location: block = %d part = %d\n",
1022                           addr.logicalBlockNum, addr.partitionReferenceNum);
1023
1024                 fe = udf_iget_special(sb, &addr);
1025                 if (IS_ERR(fe)) {
1026                         if (sb->s_flags & MS_RDONLY)
1027                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1028                         else {
1029                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1030                                 return PTR_ERR(fe);
1031                         }
1032                 } else
1033                         mdata->s_bitmap_fe = fe;
1034         }
1035
1036         udf_debug("udf_load_metadata_files Ok\n");
1037         return 0;
1038 }
1039
1040 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1041                              struct kernel_lb_addr *root)
1042 {
1043         struct fileSetDesc *fset;
1044
1045         fset = (struct fileSetDesc *)bh->b_data;
1046
1047         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1048
1049         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1050
1051         udf_debug("Rootdir at block=%d, partition=%d\n",
1052                   root->logicalBlockNum, root->partitionReferenceNum);
1053 }
1054
1055 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1056 {
1057         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1058         return DIV_ROUND_UP(map->s_partition_len +
1059                             (sizeof(struct spaceBitmapDesc) << 3),
1060                             sb->s_blocksize * 8);
1061 }
1062
1063 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1064 {
1065         struct udf_bitmap *bitmap;
1066         int nr_groups;
1067         int size;
1068
1069         nr_groups = udf_compute_nr_groups(sb, index);
1070         size = sizeof(struct udf_bitmap) +
1071                 (sizeof(struct buffer_head *) * nr_groups);
1072
1073         if (size <= PAGE_SIZE)
1074                 bitmap = kzalloc(size, GFP_KERNEL);
1075         else
1076                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1077
1078         if (bitmap == NULL)
1079                 return NULL;
1080
1081         bitmap->s_nr_groups = nr_groups;
1082         return bitmap;
1083 }
1084
1085 static int udf_fill_partdesc_info(struct super_block *sb,
1086                 struct partitionDesc *p, int p_index)
1087 {
1088         struct udf_part_map *map;
1089         struct udf_sb_info *sbi = UDF_SB(sb);
1090         struct partitionHeaderDesc *phd;
1091
1092         map = &sbi->s_partmaps[p_index];
1093
1094         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1095         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1096
1097         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1098                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1099         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1100                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1101         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1102                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1103         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1104                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1105
1106         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1107                   p_index, map->s_partition_type,
1108                   map->s_partition_root, map->s_partition_len);
1109
1110         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1111             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1112                 return 0;
1113
1114         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115         if (phd->unallocSpaceTable.extLength) {
1116                 struct kernel_lb_addr loc = {
1117                         .logicalBlockNum = le32_to_cpu(
1118                                 phd->unallocSpaceTable.extPosition),
1119                         .partitionReferenceNum = p_index,
1120                 };
1121                 struct inode *inode;
1122
1123                 inode = udf_iget_special(sb, &loc);
1124                 if (IS_ERR(inode)) {
1125                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126                                   p_index);
1127                         return PTR_ERR(inode);
1128                 }
1129                 map->s_uspace.s_table = inode;
1130                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1132                           p_index, map->s_uspace.s_table->i_ino);
1133         }
1134
1135         if (phd->unallocSpaceBitmap.extLength) {
1136                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137                 if (!bitmap)
1138                         return -ENOMEM;
1139                 map->s_uspace.s_bitmap = bitmap;
1140                 bitmap->s_extPosition = le32_to_cpu(
1141                                 phd->unallocSpaceBitmap.extPosition);
1142                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1144                           p_index, bitmap->s_extPosition);
1145         }
1146
1147         if (phd->partitionIntegrityTable.extLength)
1148                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1149
1150         if (phd->freedSpaceTable.extLength) {
1151                 struct kernel_lb_addr loc = {
1152                         .logicalBlockNum = le32_to_cpu(
1153                                 phd->freedSpaceTable.extPosition),
1154                         .partitionReferenceNum = p_index,
1155                 };
1156                 struct inode *inode;
1157
1158                 inode = udf_iget_special(sb, &loc);
1159                 if (IS_ERR(inode)) {
1160                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1161                                   p_index);
1162                         return PTR_ERR(inode);
1163                 }
1164                 map->s_fspace.s_table = inode;
1165                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1166                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1167                           p_index, map->s_fspace.s_table->i_ino);
1168         }
1169
1170         if (phd->freedSpaceBitmap.extLength) {
1171                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1172                 if (!bitmap)
1173                         return -ENOMEM;
1174                 map->s_fspace.s_bitmap = bitmap;
1175                 bitmap->s_extPosition = le32_to_cpu(
1176                                 phd->freedSpaceBitmap.extPosition);
1177                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1178                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1179                           p_index, bitmap->s_extPosition);
1180         }
1181         return 0;
1182 }
1183
1184 static void udf_find_vat_block(struct super_block *sb, int p_index,
1185                                int type1_index, sector_t start_block)
1186 {
1187         struct udf_sb_info *sbi = UDF_SB(sb);
1188         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1189         sector_t vat_block;
1190         struct kernel_lb_addr ino;
1191         struct inode *inode;
1192
1193         /*
1194          * VAT file entry is in the last recorded block. Some broken disks have
1195          * it a few blocks before so try a bit harder...
1196          */
1197         ino.partitionReferenceNum = type1_index;
1198         for (vat_block = start_block;
1199              vat_block >= map->s_partition_root &&
1200              vat_block >= start_block - 3; vat_block--) {
1201                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1202                 inode = udf_iget_special(sb, &ino);
1203                 if (!IS_ERR(inode)) {
1204                         sbi->s_vat_inode = inode;
1205                         break;
1206                 }
1207         }
1208 }
1209
1210 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1211 {
1212         struct udf_sb_info *sbi = UDF_SB(sb);
1213         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1214         struct buffer_head *bh = NULL;
1215         struct udf_inode_info *vati;
1216         uint32_t pos;
1217         struct virtualAllocationTable20 *vat20;
1218         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1219
1220         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1221         if (!sbi->s_vat_inode &&
1222             sbi->s_last_block != blocks - 1) {
1223                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1224                           (unsigned long)sbi->s_last_block,
1225                           (unsigned long)blocks - 1);
1226                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1227         }
1228         if (!sbi->s_vat_inode)
1229                 return -EIO;
1230
1231         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1232                 map->s_type_specific.s_virtual.s_start_offset = 0;
1233                 map->s_type_specific.s_virtual.s_num_entries =
1234                         (sbi->s_vat_inode->i_size - 36) >> 2;
1235         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1236                 vati = UDF_I(sbi->s_vat_inode);
1237                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1238                         pos = udf_block_map(sbi->s_vat_inode, 0);
1239                         bh = sb_bread(sb, pos);
1240                         if (!bh)
1241                                 return -EIO;
1242                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1243                 } else {
1244                         vat20 = (struct virtualAllocationTable20 *)
1245                                                         vati->i_ext.i_data;
1246                 }
1247
1248                 map->s_type_specific.s_virtual.s_start_offset =
1249                         le16_to_cpu(vat20->lengthHeader);
1250                 map->s_type_specific.s_virtual.s_num_entries =
1251                         (sbi->s_vat_inode->i_size -
1252                                 map->s_type_specific.s_virtual.
1253                                         s_start_offset) >> 2;
1254                 brelse(bh);
1255         }
1256         return 0;
1257 }
1258
1259 /*
1260  * Load partition descriptor block
1261  *
1262  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1263  * sequence.
1264  */
1265 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1266 {
1267         struct buffer_head *bh;
1268         struct partitionDesc *p;
1269         struct udf_part_map *map;
1270         struct udf_sb_info *sbi = UDF_SB(sb);
1271         int i, type1_idx;
1272         uint16_t partitionNumber;
1273         uint16_t ident;
1274         int ret;
1275
1276         bh = udf_read_tagged(sb, block, block, &ident);
1277         if (!bh)
1278                 return -EAGAIN;
1279         if (ident != TAG_IDENT_PD) {
1280                 ret = 0;
1281                 goto out_bh;
1282         }
1283
1284         p = (struct partitionDesc *)bh->b_data;
1285         partitionNumber = le16_to_cpu(p->partitionNumber);
1286
1287         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1288         for (i = 0; i < sbi->s_partitions; i++) {
1289                 map = &sbi->s_partmaps[i];
1290                 udf_debug("Searching map: (%d == %d)\n",
1291                           map->s_partition_num, partitionNumber);
1292                 if (map->s_partition_num == partitionNumber &&
1293                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1294                      map->s_partition_type == UDF_SPARABLE_MAP15))
1295                         break;
1296         }
1297
1298         if (i >= sbi->s_partitions) {
1299                 udf_debug("Partition (%d) not found in partition map\n",
1300                           partitionNumber);
1301                 ret = 0;
1302                 goto out_bh;
1303         }
1304
1305         ret = udf_fill_partdesc_info(sb, p, i);
1306         if (ret < 0)
1307                 goto out_bh;
1308
1309         /*
1310          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1311          * PHYSICAL partitions are already set up
1312          */
1313         type1_idx = i;
1314 #ifdef UDFFS_DEBUG
1315         map = NULL; /* supress 'maybe used uninitialized' warning */
1316 #endif
1317         for (i = 0; i < sbi->s_partitions; i++) {
1318                 map = &sbi->s_partmaps[i];
1319
1320                 if (map->s_partition_num == partitionNumber &&
1321                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1322                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1323                      map->s_partition_type == UDF_METADATA_MAP25))
1324                         break;
1325         }
1326
1327         if (i >= sbi->s_partitions) {
1328                 ret = 0;
1329                 goto out_bh;
1330         }
1331
1332         ret = udf_fill_partdesc_info(sb, p, i);
1333         if (ret < 0)
1334                 goto out_bh;
1335
1336         if (map->s_partition_type == UDF_METADATA_MAP25) {
1337                 ret = udf_load_metadata_files(sb, i);
1338                 if (ret < 0) {
1339                         udf_err(sb, "error loading MetaData partition map %d\n",
1340                                 i);
1341                         goto out_bh;
1342                 }
1343         } else {
1344                 /*
1345                  * If we have a partition with virtual map, we don't handle
1346                  * writing to it (we overwrite blocks instead of relocating
1347                  * them).
1348                  */
1349                 if (!(sb->s_flags & MS_RDONLY)) {
1350                         ret = -EACCES;
1351                         goto out_bh;
1352                 }
1353                 ret = udf_load_vat(sb, i, type1_idx);
1354                 if (ret < 0)
1355                         goto out_bh;
1356         }
1357         ret = 0;
1358 out_bh:
1359         /* In case loading failed, we handle cleanup in udf_fill_super */
1360         brelse(bh);
1361         return ret;
1362 }
1363
1364 static int udf_load_sparable_map(struct super_block *sb,
1365                                  struct udf_part_map *map,
1366                                  struct sparablePartitionMap *spm)
1367 {
1368         uint32_t loc;
1369         uint16_t ident;
1370         struct sparingTable *st;
1371         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1372         int i;
1373         struct buffer_head *bh;
1374
1375         map->s_partition_type = UDF_SPARABLE_MAP15;
1376         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1377         if (!is_power_of_2(sdata->s_packet_len)) {
1378                 udf_err(sb, "error loading logical volume descriptor: "
1379                         "Invalid packet length %u\n",
1380                         (unsigned)sdata->s_packet_len);
1381                 return -EIO;
1382         }
1383         if (spm->numSparingTables > 4) {
1384                 udf_err(sb, "error loading logical volume descriptor: "
1385                         "Too many sparing tables (%d)\n",
1386                         (int)spm->numSparingTables);
1387                 return -EIO;
1388         }
1389
1390         for (i = 0; i < spm->numSparingTables; i++) {
1391                 loc = le32_to_cpu(spm->locSparingTable[i]);
1392                 bh = udf_read_tagged(sb, loc, loc, &ident);
1393                 if (!bh)
1394                         continue;
1395
1396                 st = (struct sparingTable *)bh->b_data;
1397                 if (ident != 0 ||
1398                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1399                             strlen(UDF_ID_SPARING)) ||
1400                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1401                                                         sb->s_blocksize) {
1402                         brelse(bh);
1403                         continue;
1404                 }
1405
1406                 sdata->s_spar_map[i] = bh;
1407         }
1408         map->s_partition_func = udf_get_pblock_spar15;
1409         return 0;
1410 }
1411
1412 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1413                                struct kernel_lb_addr *fileset)
1414 {
1415         struct logicalVolDesc *lvd;
1416         int i, offset;
1417         uint8_t type;
1418         struct udf_sb_info *sbi = UDF_SB(sb);
1419         struct genericPartitionMap *gpm;
1420         uint16_t ident;
1421         struct buffer_head *bh;
1422         unsigned int table_len;
1423         int ret;
1424
1425         bh = udf_read_tagged(sb, block, block, &ident);
1426         if (!bh)
1427                 return -EAGAIN;
1428         BUG_ON(ident != TAG_IDENT_LVD);
1429         lvd = (struct logicalVolDesc *)bh->b_data;
1430         table_len = le32_to_cpu(lvd->mapTableLength);
1431         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1432                 udf_err(sb, "error loading logical volume descriptor: "
1433                         "Partition table too long (%u > %lu)\n", table_len,
1434                         sb->s_blocksize - sizeof(*lvd));
1435                 ret = -EIO;
1436                 goto out_bh;
1437         }
1438
1439         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1440         if (ret)
1441                 goto out_bh;
1442
1443         for (i = 0, offset = 0;
1444              i < sbi->s_partitions && offset < table_len;
1445              i++, offset += gpm->partitionMapLength) {
1446                 struct udf_part_map *map = &sbi->s_partmaps[i];
1447                 gpm = (struct genericPartitionMap *)
1448                                 &(lvd->partitionMaps[offset]);
1449                 type = gpm->partitionMapType;
1450                 if (type == 1) {
1451                         struct genericPartitionMap1 *gpm1 =
1452                                 (struct genericPartitionMap1 *)gpm;
1453                         map->s_partition_type = UDF_TYPE1_MAP15;
1454                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1455                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1456                         map->s_partition_func = NULL;
1457                 } else if (type == 2) {
1458                         struct udfPartitionMap2 *upm2 =
1459                                                 (struct udfPartitionMap2 *)gpm;
1460                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1461                                                 strlen(UDF_ID_VIRTUAL))) {
1462                                 u16 suf =
1463                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1464                                                         identSuffix)[0]);
1465                                 if (suf < 0x0200) {
1466                                         map->s_partition_type =
1467                                                         UDF_VIRTUAL_MAP15;
1468                                         map->s_partition_func =
1469                                                         udf_get_pblock_virt15;
1470                                 } else {
1471                                         map->s_partition_type =
1472                                                         UDF_VIRTUAL_MAP20;
1473                                         map->s_partition_func =
1474                                                         udf_get_pblock_virt20;
1475                                 }
1476                         } else if (!strncmp(upm2->partIdent.ident,
1477                                                 UDF_ID_SPARABLE,
1478                                                 strlen(UDF_ID_SPARABLE))) {
1479                                 ret = udf_load_sparable_map(sb, map,
1480                                         (struct sparablePartitionMap *)gpm);
1481                                 if (ret < 0)
1482                                         goto out_bh;
1483                         } else if (!strncmp(upm2->partIdent.ident,
1484                                                 UDF_ID_METADATA,
1485                                                 strlen(UDF_ID_METADATA))) {
1486                                 struct udf_meta_data *mdata =
1487                                         &map->s_type_specific.s_metadata;
1488                                 struct metadataPartitionMap *mdm =
1489                                                 (struct metadataPartitionMap *)
1490                                                 &(lvd->partitionMaps[offset]);
1491                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1492                                           i, type, UDF_ID_METADATA);
1493
1494                                 map->s_partition_type = UDF_METADATA_MAP25;
1495                                 map->s_partition_func = udf_get_pblock_meta25;
1496
1497                                 mdata->s_meta_file_loc   =
1498                                         le32_to_cpu(mdm->metadataFileLoc);
1499                                 mdata->s_mirror_file_loc =
1500                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1501                                 mdata->s_bitmap_file_loc =
1502                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1503                                 mdata->s_alloc_unit_size =
1504                                         le32_to_cpu(mdm->allocUnitSize);
1505                                 mdata->s_align_unit_size =
1506                                         le16_to_cpu(mdm->alignUnitSize);
1507                                 if (mdm->flags & 0x01)
1508                                         mdata->s_flags |= MF_DUPLICATE_MD;
1509
1510                                 udf_debug("Metadata Ident suffix=0x%x\n",
1511                                           le16_to_cpu(*(__le16 *)
1512                                                       mdm->partIdent.identSuffix));
1513                                 udf_debug("Metadata part num=%d\n",
1514                                           le16_to_cpu(mdm->partitionNum));
1515                                 udf_debug("Metadata part alloc unit size=%d\n",
1516                                           le32_to_cpu(mdm->allocUnitSize));
1517                                 udf_debug("Metadata file loc=%d\n",
1518                                           le32_to_cpu(mdm->metadataFileLoc));
1519                                 udf_debug("Mirror file loc=%d\n",
1520                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1521                                 udf_debug("Bitmap file loc=%d\n",
1522                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1523                                 udf_debug("Flags: %d %d\n",
1524                                           mdata->s_flags, mdm->flags);
1525                         } else {
1526                                 udf_debug("Unknown ident: %s\n",
1527                                           upm2->partIdent.ident);
1528                                 continue;
1529                         }
1530                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1531                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1532                 }
1533                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1534                           i, map->s_partition_num, type, map->s_volumeseqnum);
1535         }
1536
1537         if (fileset) {
1538                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1539
1540                 *fileset = lelb_to_cpu(la->extLocation);
1541                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1542                           fileset->logicalBlockNum,
1543                           fileset->partitionReferenceNum);
1544         }
1545         if (lvd->integritySeqExt.extLength)
1546                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1547         ret = 0;
1548 out_bh:
1549         brelse(bh);
1550         return ret;
1551 }
1552
1553 /*
1554  * udf_load_logicalvolint
1555  *
1556  */
1557 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558 {
1559         struct buffer_head *bh = NULL;
1560         uint16_t ident;
1561         struct udf_sb_info *sbi = UDF_SB(sb);
1562         struct logicalVolIntegrityDesc *lvid;
1563
1564         while (loc.extLength > 0 &&
1565                (bh = udf_read_tagged(sb, loc.extLocation,
1566                                      loc.extLocation, &ident)) &&
1567                ident == TAG_IDENT_LVID) {
1568                 sbi->s_lvid_bh = bh;
1569                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1570
1571                 if (lvid->nextIntegrityExt.extLength)
1572                         udf_load_logicalvolint(sb,
1573                                 leea_to_cpu(lvid->nextIntegrityExt));
1574
1575                 if (sbi->s_lvid_bh != bh)
1576                         brelse(bh);
1577                 loc.extLength -= sb->s_blocksize;
1578                 loc.extLocation++;
1579         }
1580         if (sbi->s_lvid_bh != bh)
1581                 brelse(bh);
1582 }
1583
1584 /*
1585  * Maximum number of Terminating Descriptor redirections. The chosen number is
1586  * arbitrary - just that we hopefully don't limit any real use of rewritten
1587  * inode on write-once media but avoid looping for too long on corrupted media.
1588  */
1589 #define UDF_MAX_TD_NESTING 64
1590
1591 /*
1592  * Process a main/reserve volume descriptor sequence.
1593  *   @block             First block of first extent of the sequence.
1594  *   @lastblock         Lastblock of first extent of the sequence.
1595  *   @fileset           There we store extent containing root fileset
1596  *
1597  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1598  * sequence
1599  */
1600 static noinline int udf_process_sequence(
1601                 struct super_block *sb,
1602                 sector_t block, sector_t lastblock,
1603                 struct kernel_lb_addr *fileset)
1604 {
1605         struct buffer_head *bh = NULL;
1606         struct udf_vds_record vds[VDS_POS_LENGTH];
1607         struct udf_vds_record *curr;
1608         struct generic_desc *gd;
1609         struct volDescPtr *vdp;
1610         bool done = false;
1611         uint32_t vdsn;
1612         uint16_t ident;
1613         long next_s = 0, next_e = 0;
1614         int ret;
1615         unsigned int indirections = 0;
1616
1617         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1618
1619         /*
1620          * Read the main descriptor sequence and find which descriptors
1621          * are in it.
1622          */
1623         for (; (!done && block <= lastblock); block++) {
1624
1625                 bh = udf_read_tagged(sb, block, block, &ident);
1626                 if (!bh) {
1627                         udf_err(sb,
1628                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1629                                 (unsigned long long)block);
1630                         return -EAGAIN;
1631                 }
1632
1633                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1634                 gd = (struct generic_desc *)bh->b_data;
1635                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1636                 switch (ident) {
1637                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1638                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1639                         if (vdsn >= curr->volDescSeqNum) {
1640                                 curr->volDescSeqNum = vdsn;
1641                                 curr->block = block;
1642                         }
1643                         break;
1644                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1645                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1646                         if (vdsn >= curr->volDescSeqNum) {
1647                                 curr->volDescSeqNum = vdsn;
1648                                 curr->block = block;
1649
1650                                 vdp = (struct volDescPtr *)bh->b_data;
1651                                 next_s = le32_to_cpu(
1652                                         vdp->nextVolDescSeqExt.extLocation);
1653                                 next_e = le32_to_cpu(
1654                                         vdp->nextVolDescSeqExt.extLength);
1655                                 next_e = next_e >> sb->s_blocksize_bits;
1656                                 next_e += next_s;
1657                         }
1658                         break;
1659                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1660                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1661                         if (vdsn >= curr->volDescSeqNum) {
1662                                 curr->volDescSeqNum = vdsn;
1663                                 curr->block = block;
1664                         }
1665                         break;
1666                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1667                         curr = &vds[VDS_POS_PARTITION_DESC];
1668                         if (!curr->block)
1669                                 curr->block = block;
1670                         break;
1671                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1672                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1673                         if (vdsn >= curr->volDescSeqNum) {
1674                                 curr->volDescSeqNum = vdsn;
1675                                 curr->block = block;
1676                         }
1677                         break;
1678                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1679                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1680                         if (vdsn >= curr->volDescSeqNum) {
1681                                 curr->volDescSeqNum = vdsn;
1682                                 curr->block = block;
1683                         }
1684                         break;
1685                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1686                         if (++indirections > UDF_MAX_TD_NESTING) {
1687                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1688                                 brelse(bh);
1689                                 return -EIO;
1690                         }
1691
1692                         vds[VDS_POS_TERMINATING_DESC].block = block;
1693                         if (next_e) {
1694                                 block = next_s;
1695                                 lastblock = next_e;
1696                                 next_s = next_e = 0;
1697                         } else
1698                                 done = true;
1699                         break;
1700                 }
1701                 brelse(bh);
1702         }
1703         /*
1704          * Now read interesting descriptors again and process them
1705          * in a suitable order
1706          */
1707         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1708                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1709                 return -EAGAIN;
1710         }
1711         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1712         if (ret < 0)
1713                 return ret;
1714
1715         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1716                 ret = udf_load_logicalvol(sb,
1717                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1718                                           fileset);
1719                 if (ret < 0)
1720                         return ret;
1721         }
1722
1723         if (vds[VDS_POS_PARTITION_DESC].block) {
1724                 /*
1725                  * We rescan the whole descriptor sequence to find
1726                  * partition descriptor blocks and process them.
1727                  */
1728                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1729                      block < vds[VDS_POS_TERMINATING_DESC].block;
1730                      block++) {
1731                         ret = udf_load_partdesc(sb, block);
1732                         if (ret < 0)
1733                                 return ret;
1734                 }
1735         }
1736
1737         return 0;
1738 }
1739
1740 /*
1741  * Load Volume Descriptor Sequence described by anchor in bh
1742  *
1743  * Returns <0 on error, 0 on success
1744  */
1745 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1746                              struct kernel_lb_addr *fileset)
1747 {
1748         struct anchorVolDescPtr *anchor;
1749         sector_t main_s, main_e, reserve_s, reserve_e;
1750         int ret;
1751
1752         anchor = (struct anchorVolDescPtr *)bh->b_data;
1753
1754         /* Locate the main sequence */
1755         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1756         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1757         main_e = main_e >> sb->s_blocksize_bits;
1758         main_e += main_s;
1759
1760         /* Locate the reserve sequence */
1761         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1762         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1763         reserve_e = reserve_e >> sb->s_blocksize_bits;
1764         reserve_e += reserve_s;
1765
1766         /* Process the main & reserve sequences */
1767         /* responsible for finding the PartitionDesc(s) */
1768         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1769         if (ret != -EAGAIN)
1770                 return ret;
1771         udf_sb_free_partitions(sb);
1772         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1773         if (ret < 0) {
1774                 udf_sb_free_partitions(sb);
1775                 /* No sequence was OK, return -EIO */
1776                 if (ret == -EAGAIN)
1777                         ret = -EIO;
1778         }
1779         return ret;
1780 }
1781
1782 /*
1783  * Check whether there is an anchor block in the given block and
1784  * load Volume Descriptor Sequence if so.
1785  *
1786  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1787  * block
1788  */
1789 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1790                                   struct kernel_lb_addr *fileset)
1791 {
1792         struct buffer_head *bh;
1793         uint16_t ident;
1794         int ret;
1795
1796         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1797             udf_fixed_to_variable(block) >=
1798             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1799                 return -EAGAIN;
1800
1801         bh = udf_read_tagged(sb, block, block, &ident);
1802         if (!bh)
1803                 return -EAGAIN;
1804         if (ident != TAG_IDENT_AVDP) {
1805                 brelse(bh);
1806                 return -EAGAIN;
1807         }
1808         ret = udf_load_sequence(sb, bh, fileset);
1809         brelse(bh);
1810         return ret;
1811 }
1812
1813 /*
1814  * Search for an anchor volume descriptor pointer.
1815  *
1816  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1817  * of anchors.
1818  */
1819 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1820                             struct kernel_lb_addr *fileset)
1821 {
1822         sector_t last[6];
1823         int i;
1824         struct udf_sb_info *sbi = UDF_SB(sb);
1825         int last_count = 0;
1826         int ret;
1827
1828         /* First try user provided anchor */
1829         if (sbi->s_anchor) {
1830                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1831                 if (ret != -EAGAIN)
1832                         return ret;
1833         }
1834         /*
1835          * according to spec, anchor is in either:
1836          *     block 256
1837          *     lastblock-256
1838          *     lastblock
1839          *  however, if the disc isn't closed, it could be 512.
1840          */
1841         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1842         if (ret != -EAGAIN)
1843                 return ret;
1844         /*
1845          * The trouble is which block is the last one. Drives often misreport
1846          * this so we try various possibilities.
1847          */
1848         last[last_count++] = *lastblock;
1849         if (*lastblock >= 1)
1850                 last[last_count++] = *lastblock - 1;
1851         last[last_count++] = *lastblock + 1;
1852         if (*lastblock >= 2)
1853                 last[last_count++] = *lastblock - 2;
1854         if (*lastblock >= 150)
1855                 last[last_count++] = *lastblock - 150;
1856         if (*lastblock >= 152)
1857                 last[last_count++] = *lastblock - 152;
1858
1859         for (i = 0; i < last_count; i++) {
1860                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1861                                 sb->s_blocksize_bits)
1862                         continue;
1863                 ret = udf_check_anchor_block(sb, last[i], fileset);
1864                 if (ret != -EAGAIN) {
1865                         if (!ret)
1866                                 *lastblock = last[i];
1867                         return ret;
1868                 }
1869                 if (last[i] < 256)
1870                         continue;
1871                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1872                 if (ret != -EAGAIN) {
1873                         if (!ret)
1874                                 *lastblock = last[i];
1875                         return ret;
1876                 }
1877         }
1878
1879         /* Finally try block 512 in case media is open */
1880         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1881 }
1882
1883 /*
1884  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1885  * area specified by it. The function expects sbi->s_lastblock to be the last
1886  * block on the media.
1887  *
1888  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1889  * was not found.
1890  */
1891 static int udf_find_anchor(struct super_block *sb,
1892                            struct kernel_lb_addr *fileset)
1893 {
1894         struct udf_sb_info *sbi = UDF_SB(sb);
1895         sector_t lastblock = sbi->s_last_block;
1896         int ret;
1897
1898         ret = udf_scan_anchors(sb, &lastblock, fileset);
1899         if (ret != -EAGAIN)
1900                 goto out;
1901
1902         /* No anchor found? Try VARCONV conversion of block numbers */
1903         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1904         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1905         /* Firstly, we try to not convert number of the last block */
1906         ret = udf_scan_anchors(sb, &lastblock, fileset);
1907         if (ret != -EAGAIN)
1908                 goto out;
1909
1910         lastblock = sbi->s_last_block;
1911         /* Secondly, we try with converted number of the last block */
1912         ret = udf_scan_anchors(sb, &lastblock, fileset);
1913         if (ret < 0) {
1914                 /* VARCONV didn't help. Clear it. */
1915                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1916         }
1917 out:
1918         if (ret == 0)
1919                 sbi->s_last_block = lastblock;
1920         return ret;
1921 }
1922
1923 /*
1924  * Check Volume Structure Descriptor, find Anchor block and load Volume
1925  * Descriptor Sequence.
1926  *
1927  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1928  * block was not found.
1929  */
1930 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1931                         int silent, struct kernel_lb_addr *fileset)
1932 {
1933         struct udf_sb_info *sbi = UDF_SB(sb);
1934         loff_t nsr_off;
1935         int ret;
1936
1937         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1938                 if (!silent)
1939                         udf_warn(sb, "Bad block size\n");
1940                 return -EINVAL;
1941         }
1942         sbi->s_last_block = uopt->lastblock;
1943         if (!uopt->novrs) {
1944                 /* Check that it is NSR02 compliant */
1945                 nsr_off = udf_check_vsd(sb);
1946                 if (!nsr_off) {
1947                         if (!silent)
1948                                 udf_warn(sb, "No VRS found\n");
1949                         return 0;
1950                 }
1951                 if (nsr_off == -1)
1952                         udf_debug("Failed to read sector at offset %d. "
1953                                   "Assuming open disc. Skipping validity "
1954                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1955                 if (!sbi->s_last_block)
1956                         sbi->s_last_block = udf_get_last_block(sb);
1957         } else {
1958                 udf_debug("Validity check skipped because of novrs option\n");
1959         }
1960
1961         /* Look for anchor block and load Volume Descriptor Sequence */
1962         sbi->s_anchor = uopt->anchor;
1963         ret = udf_find_anchor(sb, fileset);
1964         if (ret < 0) {
1965                 if (!silent && ret == -EAGAIN)
1966                         udf_warn(sb, "No anchor found\n");
1967                 return ret;
1968         }
1969         return 0;
1970 }
1971
1972 static void udf_open_lvid(struct super_block *sb)
1973 {
1974         struct udf_sb_info *sbi = UDF_SB(sb);
1975         struct buffer_head *bh = sbi->s_lvid_bh;
1976         struct logicalVolIntegrityDesc *lvid;
1977         struct logicalVolIntegrityDescImpUse *lvidiu;
1978
1979         if (!bh)
1980                 return;
1981         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1982         lvidiu = udf_sb_lvidiu(sb);
1983         if (!lvidiu)
1984                 return;
1985
1986         mutex_lock(&sbi->s_alloc_mutex);
1987         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1988         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1989         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1990                                 CURRENT_TIME);
1991         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1992
1993         lvid->descTag.descCRC = cpu_to_le16(
1994                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1995                         le16_to_cpu(lvid->descTag.descCRCLength)));
1996
1997         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1998         mark_buffer_dirty(bh);
1999         sbi->s_lvid_dirty = 0;
2000         mutex_unlock(&sbi->s_alloc_mutex);
2001         /* Make opening of filesystem visible on the media immediately */
2002         sync_dirty_buffer(bh);
2003 }
2004
2005 static void udf_close_lvid(struct super_block *sb)
2006 {
2007         struct udf_sb_info *sbi = UDF_SB(sb);
2008         struct buffer_head *bh = sbi->s_lvid_bh;
2009         struct logicalVolIntegrityDesc *lvid;
2010         struct logicalVolIntegrityDescImpUse *lvidiu;
2011
2012         if (!bh)
2013                 return;
2014         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2015         lvidiu = udf_sb_lvidiu(sb);
2016         if (!lvidiu)
2017                 return;
2018
2019         mutex_lock(&sbi->s_alloc_mutex);
2020         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2021         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2022         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2023         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2024                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2025         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2026                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2027         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2028                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2029         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2030
2031         lvid->descTag.descCRC = cpu_to_le16(
2032                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2033                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2034
2035         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2036         /*
2037          * We set buffer uptodate unconditionally here to avoid spurious
2038          * warnings from mark_buffer_dirty() when previous EIO has marked
2039          * the buffer as !uptodate
2040          */
2041         set_buffer_uptodate(bh);
2042         mark_buffer_dirty(bh);
2043         sbi->s_lvid_dirty = 0;
2044         mutex_unlock(&sbi->s_alloc_mutex);
2045         /* Make closing of filesystem visible on the media immediately */
2046         sync_dirty_buffer(bh);
2047 }
2048
2049 u64 lvid_get_unique_id(struct super_block *sb)
2050 {
2051         struct buffer_head *bh;
2052         struct udf_sb_info *sbi = UDF_SB(sb);
2053         struct logicalVolIntegrityDesc *lvid;
2054         struct logicalVolHeaderDesc *lvhd;
2055         u64 uniqueID;
2056         u64 ret;
2057
2058         bh = sbi->s_lvid_bh;
2059         if (!bh)
2060                 return 0;
2061
2062         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2063         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2064
2065         mutex_lock(&sbi->s_alloc_mutex);
2066         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2067         if (!(++uniqueID & 0xFFFFFFFF))
2068                 uniqueID += 16;
2069         lvhd->uniqueID = cpu_to_le64(uniqueID);
2070         mutex_unlock(&sbi->s_alloc_mutex);
2071         mark_buffer_dirty(bh);
2072
2073         return ret;
2074 }
2075
2076 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2077 {
2078         int ret = -EINVAL;
2079         struct inode *inode = NULL;
2080         struct udf_options uopt;
2081         struct kernel_lb_addr rootdir, fileset;
2082         struct udf_sb_info *sbi;
2083         bool lvid_open = false;
2084
2085         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2086         uopt.uid = INVALID_UID;
2087         uopt.gid = INVALID_GID;
2088         uopt.umask = 0;
2089         uopt.fmode = UDF_INVALID_MODE;
2090         uopt.dmode = UDF_INVALID_MODE;
2091
2092         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2093         if (!sbi)
2094                 return -ENOMEM;
2095
2096         sb->s_fs_info = sbi;
2097
2098         mutex_init(&sbi->s_alloc_mutex);
2099
2100         if (!udf_parse_options((char *)options, &uopt, false))
2101                 goto parse_options_failure;
2102
2103         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2104             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2105                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2106                 goto parse_options_failure;
2107         }
2108 #ifdef CONFIG_UDF_NLS
2109         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2110                 uopt.nls_map = load_nls_default();
2111                 if (!uopt.nls_map)
2112                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2113                 else
2114                         udf_debug("Using default NLS map\n");
2115         }
2116 #endif
2117         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2118                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2119
2120         fileset.logicalBlockNum = 0xFFFFFFFF;
2121         fileset.partitionReferenceNum = 0xFFFF;
2122
2123         sbi->s_flags = uopt.flags;
2124         sbi->s_uid = uopt.uid;
2125         sbi->s_gid = uopt.gid;
2126         sbi->s_umask = uopt.umask;
2127         sbi->s_fmode = uopt.fmode;
2128         sbi->s_dmode = uopt.dmode;
2129         sbi->s_nls_map = uopt.nls_map;
2130         rwlock_init(&sbi->s_cred_lock);
2131
2132         if (uopt.session == 0xFFFFFFFF)
2133                 sbi->s_session = udf_get_last_session(sb);
2134         else
2135                 sbi->s_session = uopt.session;
2136
2137         udf_debug("Multi-session=%d\n", sbi->s_session);
2138
2139         /* Fill in the rest of the superblock */
2140         sb->s_op = &udf_sb_ops;
2141         sb->s_export_op = &udf_export_ops;
2142
2143         sb->s_magic = UDF_SUPER_MAGIC;
2144         sb->s_time_gran = 1000;
2145
2146         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2147                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148         } else {
2149                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2150                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2151                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2152                         if (!silent)
2153                                 pr_notice("Rescanning with blocksize %d\n",
2154                                           UDF_DEFAULT_BLOCKSIZE);
2155                         brelse(sbi->s_lvid_bh);
2156                         sbi->s_lvid_bh = NULL;
2157                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2158                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159                 }
2160         }
2161         if (ret < 0) {
2162                 if (ret == -EAGAIN) {
2163                         udf_warn(sb, "No partition found (1)\n");
2164                         ret = -EINVAL;
2165                 }
2166                 goto error_out;
2167         }
2168
2169         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2170
2171         if (sbi->s_lvid_bh) {
2172                 struct logicalVolIntegrityDescImpUse *lvidiu =
2173                                                         udf_sb_lvidiu(sb);
2174                 uint16_t minUDFReadRev;
2175                 uint16_t minUDFWriteRev;
2176
2177                 if (!lvidiu) {
2178                         ret = -EINVAL;
2179                         goto error_out;
2180                 }
2181                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2182                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2183                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2184                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2185                                 minUDFReadRev,
2186                                 UDF_MAX_READ_VERSION);
2187                         ret = -EINVAL;
2188                         goto error_out;
2189                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2190                            !(sb->s_flags & MS_RDONLY)) {
2191                         ret = -EACCES;
2192                         goto error_out;
2193                 }
2194
2195                 sbi->s_udfrev = minUDFWriteRev;
2196
2197                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2198                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2199                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2200                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2201         }
2202
2203         if (!sbi->s_partitions) {
2204                 udf_warn(sb, "No partition found (2)\n");
2205                 ret = -EINVAL;
2206                 goto error_out;
2207         }
2208
2209         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2210                         UDF_PART_FLAG_READ_ONLY &&
2211             !(sb->s_flags & MS_RDONLY)) {
2212                 ret = -EACCES;
2213                 goto error_out;
2214         }
2215
2216         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2217                 udf_warn(sb, "No fileset found\n");
2218                 ret = -EINVAL;
2219                 goto error_out;
2220         }
2221
2222         if (!silent) {
2223                 struct timestamp ts;
2224                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2225                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2226                          sbi->s_volume_ident,
2227                          le16_to_cpu(ts.year), ts.month, ts.day,
2228                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2229         }
2230         if (!(sb->s_flags & MS_RDONLY)) {
2231                 udf_open_lvid(sb);
2232                 lvid_open = true;
2233         }
2234
2235         /* Assign the root inode */
2236         /* assign inodes by physical block number */
2237         /* perhaps it's not extensible enough, but for now ... */
2238         inode = udf_iget(sb, &rootdir);
2239         if (IS_ERR(inode)) {
2240                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2241                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2242                 ret = PTR_ERR(inode);
2243                 goto error_out;
2244         }
2245
2246         /* Allocate a dentry for the root inode */
2247         sb->s_root = d_make_root(inode);
2248         if (!sb->s_root) {
2249                 udf_err(sb, "Couldn't allocate root dentry\n");
2250                 ret = -ENOMEM;
2251                 goto error_out;
2252         }
2253         sb->s_maxbytes = MAX_LFS_FILESIZE;
2254         sb->s_max_links = UDF_MAX_LINKS;
2255         return 0;
2256
2257 error_out:
2258         iput(sbi->s_vat_inode);
2259 parse_options_failure:
2260 #ifdef CONFIG_UDF_NLS
2261         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2262                 unload_nls(sbi->s_nls_map);
2263 #endif
2264         if (lvid_open)
2265                 udf_close_lvid(sb);
2266         brelse(sbi->s_lvid_bh);
2267         udf_sb_free_partitions(sb);
2268         kfree(sbi);
2269         sb->s_fs_info = NULL;
2270
2271         return ret;
2272 }
2273
2274 void _udf_err(struct super_block *sb, const char *function,
2275               const char *fmt, ...)
2276 {
2277         struct va_format vaf;
2278         va_list args;
2279
2280         va_start(args, fmt);
2281
2282         vaf.fmt = fmt;
2283         vaf.va = &args;
2284
2285         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2286
2287         va_end(args);
2288 }
2289
2290 void _udf_warn(struct super_block *sb, const char *function,
2291                const char *fmt, ...)
2292 {
2293         struct va_format vaf;
2294         va_list args;
2295
2296         va_start(args, fmt);
2297
2298         vaf.fmt = fmt;
2299         vaf.va = &args;
2300
2301         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2302
2303         va_end(args);
2304 }
2305
2306 static void udf_put_super(struct super_block *sb)
2307 {
2308         struct udf_sb_info *sbi;
2309
2310         sbi = UDF_SB(sb);
2311
2312         iput(sbi->s_vat_inode);
2313 #ifdef CONFIG_UDF_NLS
2314         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2315                 unload_nls(sbi->s_nls_map);
2316 #endif
2317         if (!(sb->s_flags & MS_RDONLY))
2318                 udf_close_lvid(sb);
2319         brelse(sbi->s_lvid_bh);
2320         udf_sb_free_partitions(sb);
2321         mutex_destroy(&sbi->s_alloc_mutex);
2322         kfree(sb->s_fs_info);
2323         sb->s_fs_info = NULL;
2324 }
2325
2326 static int udf_sync_fs(struct super_block *sb, int wait)
2327 {
2328         struct udf_sb_info *sbi = UDF_SB(sb);
2329
2330         mutex_lock(&sbi->s_alloc_mutex);
2331         if (sbi->s_lvid_dirty) {
2332                 /*
2333                  * Blockdevice will be synced later so we don't have to submit
2334                  * the buffer for IO
2335                  */
2336                 mark_buffer_dirty(sbi->s_lvid_bh);
2337                 sbi->s_lvid_dirty = 0;
2338         }
2339         mutex_unlock(&sbi->s_alloc_mutex);
2340
2341         return 0;
2342 }
2343
2344 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2345 {
2346         struct super_block *sb = dentry->d_sb;
2347         struct udf_sb_info *sbi = UDF_SB(sb);
2348         struct logicalVolIntegrityDescImpUse *lvidiu;
2349         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2350
2351         lvidiu = udf_sb_lvidiu(sb);
2352         buf->f_type = UDF_SUPER_MAGIC;
2353         buf->f_bsize = sb->s_blocksize;
2354         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2355         buf->f_bfree = udf_count_free(sb);
2356         buf->f_bavail = buf->f_bfree;
2357         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2358                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2359                         + buf->f_bfree;
2360         buf->f_ffree = buf->f_bfree;
2361         buf->f_namelen = UDF_NAME_LEN - 2;
2362         buf->f_fsid.val[0] = (u32)id;
2363         buf->f_fsid.val[1] = (u32)(id >> 32);
2364
2365         return 0;
2366 }
2367
2368 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2369                                           struct udf_bitmap *bitmap)
2370 {
2371         struct buffer_head *bh = NULL;
2372         unsigned int accum = 0;
2373         int index;
2374         int block = 0, newblock;
2375         struct kernel_lb_addr loc;
2376         uint32_t bytes;
2377         uint8_t *ptr;
2378         uint16_t ident;
2379         struct spaceBitmapDesc *bm;
2380
2381         loc.logicalBlockNum = bitmap->s_extPosition;
2382         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2383         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2384
2385         if (!bh) {
2386                 udf_err(sb, "udf_count_free failed\n");
2387                 goto out;
2388         } else if (ident != TAG_IDENT_SBD) {
2389                 brelse(bh);
2390                 udf_err(sb, "udf_count_free failed\n");
2391                 goto out;
2392         }
2393
2394         bm = (struct spaceBitmapDesc *)bh->b_data;
2395         bytes = le32_to_cpu(bm->numOfBytes);
2396         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2397         ptr = (uint8_t *)bh->b_data;
2398
2399         while (bytes > 0) {
2400                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2401                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2402                                         cur_bytes * 8);
2403                 bytes -= cur_bytes;
2404                 if (bytes) {
2405                         brelse(bh);
2406                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2407                         bh = udf_tread(sb, newblock);
2408                         if (!bh) {
2409                                 udf_debug("read failed\n");
2410                                 goto out;
2411                         }
2412                         index = 0;
2413                         ptr = (uint8_t *)bh->b_data;
2414                 }
2415         }
2416         brelse(bh);
2417 out:
2418         return accum;
2419 }
2420
2421 static unsigned int udf_count_free_table(struct super_block *sb,
2422                                          struct inode *table)
2423 {
2424         unsigned int accum = 0;
2425         uint32_t elen;
2426         struct kernel_lb_addr eloc;
2427         int8_t etype;
2428         struct extent_position epos;
2429
2430         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2431         epos.block = UDF_I(table)->i_location;
2432         epos.offset = sizeof(struct unallocSpaceEntry);
2433         epos.bh = NULL;
2434
2435         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2436                 accum += (elen >> table->i_sb->s_blocksize_bits);
2437
2438         brelse(epos.bh);
2439         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2440
2441         return accum;
2442 }
2443
2444 static unsigned int udf_count_free(struct super_block *sb)
2445 {
2446         unsigned int accum = 0;
2447         struct udf_sb_info *sbi;
2448         struct udf_part_map *map;
2449
2450         sbi = UDF_SB(sb);
2451         if (sbi->s_lvid_bh) {
2452                 struct logicalVolIntegrityDesc *lvid =
2453                         (struct logicalVolIntegrityDesc *)
2454                         sbi->s_lvid_bh->b_data;
2455                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2456                         accum = le32_to_cpu(
2457                                         lvid->freeSpaceTable[sbi->s_partition]);
2458                         if (accum == 0xFFFFFFFF)
2459                                 accum = 0;
2460                 }
2461         }
2462
2463         if (accum)
2464                 return accum;
2465
2466         map = &sbi->s_partmaps[sbi->s_partition];
2467         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2468                 accum += udf_count_free_bitmap(sb,
2469                                                map->s_uspace.s_bitmap);
2470         }
2471         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2472                 accum += udf_count_free_bitmap(sb,
2473                                                map->s_fspace.s_bitmap);
2474         }
2475         if (accum)
2476                 return accum;
2477
2478         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2479                 accum += udf_count_free_table(sb,
2480                                               map->s_uspace.s_table);
2481         }
2482         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2483                 accum += udf_count_free_table(sb,
2484                                               map->s_fspace.s_table);
2485         }
2486
2487         return accum;
2488 }