Merge branch 'akpm' (fixes from Andrew)
[linux-drm-fsl-dcu.git] / fs / mbcache.c
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4  */
5
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
39
40
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43                 printk(KERN_DEBUG f); \
44                 printk("\n"); \
45         } while (0)
46 #define mb_assert(c) do { if (!(c)) \
47                 printk(KERN_ERR "assertion " #c " failed\n"); \
48         } while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54                 printk(KERN_ERR f); \
55                 printk("\n"); \
56         } while(0)
57
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61                 
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
65
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
78
79 /*
80  * Global data: list of all mbcache's, lru list, and a spinlock for
81  * accessing cache data structures on SMP machines. The lru list is
82  * global across all mbcaches.
83  */
84
85 static LIST_HEAD(mb_cache_list);
86 static LIST_HEAD(mb_cache_lru_list);
87 static DEFINE_SPINLOCK(mb_cache_spinlock);
88
89 static inline int
90 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
91 {
92         return !list_empty(&ce->e_block_list);
93 }
94
95
96 static void
97 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
98 {
99         if (__mb_cache_entry_is_hashed(ce)) {
100                 list_del_init(&ce->e_block_list);
101                 list_del(&ce->e_index.o_list);
102         }
103 }
104
105
106 static void
107 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
108 {
109         struct mb_cache *cache = ce->e_cache;
110
111         mb_assert(!(ce->e_used || ce->e_queued));
112         kmem_cache_free(cache->c_entry_cache, ce);
113         atomic_dec(&cache->c_entry_count);
114 }
115
116
117 static void
118 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
119         __releases(mb_cache_spinlock)
120 {
121         /* Wake up all processes queuing for this cache entry. */
122         if (ce->e_queued)
123                 wake_up_all(&mb_cache_queue);
124         if (ce->e_used >= MB_CACHE_WRITER)
125                 ce->e_used -= MB_CACHE_WRITER;
126         ce->e_used--;
127         if (!(ce->e_used || ce->e_queued)) {
128                 if (!__mb_cache_entry_is_hashed(ce))
129                         goto forget;
130                 mb_assert(list_empty(&ce->e_lru_list));
131                 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
132         }
133         spin_unlock(&mb_cache_spinlock);
134         return;
135 forget:
136         spin_unlock(&mb_cache_spinlock);
137         __mb_cache_entry_forget(ce, GFP_KERNEL);
138 }
139
140
141 /*
142  * mb_cache_shrink_scan()  memory pressure callback
143  *
144  * This function is called by the kernel memory management when memory
145  * gets low.
146  *
147  * @shrink: (ignored)
148  * @sc: shrink_control passed from reclaim
149  *
150  * Returns the number of objects freed.
151  */
152 static unsigned long
153 mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
154 {
155         LIST_HEAD(free_list);
156         struct mb_cache_entry *entry, *tmp;
157         int nr_to_scan = sc->nr_to_scan;
158         gfp_t gfp_mask = sc->gfp_mask;
159         unsigned long freed = 0;
160
161         mb_debug("trying to free %d entries", nr_to_scan);
162         spin_lock(&mb_cache_spinlock);
163         while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
164                 struct mb_cache_entry *ce =
165                         list_entry(mb_cache_lru_list.next,
166                                    struct mb_cache_entry, e_lru_list);
167                 list_move_tail(&ce->e_lru_list, &free_list);
168                 __mb_cache_entry_unhash(ce);
169                 freed++;
170         }
171         spin_unlock(&mb_cache_spinlock);
172         list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
173                 __mb_cache_entry_forget(entry, gfp_mask);
174         }
175         return freed;
176 }
177
178 static unsigned long
179 mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
180 {
181         struct mb_cache *cache;
182         unsigned long count = 0;
183
184         spin_lock(&mb_cache_spinlock);
185         list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
186                 mb_debug("cache %s (%d)", cache->c_name,
187                           atomic_read(&cache->c_entry_count));
188                 count += atomic_read(&cache->c_entry_count);
189         }
190         spin_unlock(&mb_cache_spinlock);
191
192         return vfs_pressure_ratio(count);
193 }
194
195 static struct shrinker mb_cache_shrinker = {
196         .count_objects = mb_cache_shrink_count,
197         .scan_objects = mb_cache_shrink_scan,
198         .seeks = DEFAULT_SEEKS,
199 };
200
201 /*
202  * mb_cache_create()  create a new cache
203  *
204  * All entries in one cache are equal size. Cache entries may be from
205  * multiple devices. If this is the first mbcache created, registers
206  * the cache with kernel memory management. Returns NULL if no more
207  * memory was available.
208  *
209  * @name: name of the cache (informal)
210  * @bucket_bits: log2(number of hash buckets)
211  */
212 struct mb_cache *
213 mb_cache_create(const char *name, int bucket_bits)
214 {
215         int n, bucket_count = 1 << bucket_bits;
216         struct mb_cache *cache = NULL;
217
218         cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
219         if (!cache)
220                 return NULL;
221         cache->c_name = name;
222         atomic_set(&cache->c_entry_count, 0);
223         cache->c_bucket_bits = bucket_bits;
224         cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
225                                       GFP_KERNEL);
226         if (!cache->c_block_hash)
227                 goto fail;
228         for (n=0; n<bucket_count; n++)
229                 INIT_LIST_HEAD(&cache->c_block_hash[n]);
230         cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
231                                       GFP_KERNEL);
232         if (!cache->c_index_hash)
233                 goto fail;
234         for (n=0; n<bucket_count; n++)
235                 INIT_LIST_HEAD(&cache->c_index_hash[n]);
236         cache->c_entry_cache = kmem_cache_create(name,
237                 sizeof(struct mb_cache_entry), 0,
238                 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
239         if (!cache->c_entry_cache)
240                 goto fail2;
241
242         /*
243          * Set an upper limit on the number of cache entries so that the hash
244          * chains won't grow too long.
245          */
246         cache->c_max_entries = bucket_count << 4;
247
248         spin_lock(&mb_cache_spinlock);
249         list_add(&cache->c_cache_list, &mb_cache_list);
250         spin_unlock(&mb_cache_spinlock);
251         return cache;
252
253 fail2:
254         kfree(cache->c_index_hash);
255
256 fail:
257         kfree(cache->c_block_hash);
258         kfree(cache);
259         return NULL;
260 }
261
262
263 /*
264  * mb_cache_shrink()
265  *
266  * Removes all cache entries of a device from the cache. All cache entries
267  * currently in use cannot be freed, and thus remain in the cache. All others
268  * are freed.
269  *
270  * @bdev: which device's cache entries to shrink
271  */
272 void
273 mb_cache_shrink(struct block_device *bdev)
274 {
275         LIST_HEAD(free_list);
276         struct list_head *l, *ltmp;
277
278         spin_lock(&mb_cache_spinlock);
279         list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
280                 struct mb_cache_entry *ce =
281                         list_entry(l, struct mb_cache_entry, e_lru_list);
282                 if (ce->e_bdev == bdev) {
283                         list_move_tail(&ce->e_lru_list, &free_list);
284                         __mb_cache_entry_unhash(ce);
285                 }
286         }
287         spin_unlock(&mb_cache_spinlock);
288         list_for_each_safe(l, ltmp, &free_list) {
289                 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
290                                                    e_lru_list), GFP_KERNEL);
291         }
292 }
293
294
295 /*
296  * mb_cache_destroy()
297  *
298  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
299  * and then destroys it. If this was the last mbcache, un-registers the
300  * mbcache from kernel memory management.
301  */
302 void
303 mb_cache_destroy(struct mb_cache *cache)
304 {
305         LIST_HEAD(free_list);
306         struct list_head *l, *ltmp;
307
308         spin_lock(&mb_cache_spinlock);
309         list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
310                 struct mb_cache_entry *ce =
311                         list_entry(l, struct mb_cache_entry, e_lru_list);
312                 if (ce->e_cache == cache) {
313                         list_move_tail(&ce->e_lru_list, &free_list);
314                         __mb_cache_entry_unhash(ce);
315                 }
316         }
317         list_del(&cache->c_cache_list);
318         spin_unlock(&mb_cache_spinlock);
319
320         list_for_each_safe(l, ltmp, &free_list) {
321                 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
322                                                    e_lru_list), GFP_KERNEL);
323         }
324
325         if (atomic_read(&cache->c_entry_count) > 0) {
326                 mb_error("cache %s: %d orphaned entries",
327                           cache->c_name,
328                           atomic_read(&cache->c_entry_count));
329         }
330
331         kmem_cache_destroy(cache->c_entry_cache);
332
333         kfree(cache->c_index_hash);
334         kfree(cache->c_block_hash);
335         kfree(cache);
336 }
337
338 /*
339  * mb_cache_entry_alloc()
340  *
341  * Allocates a new cache entry. The new entry will not be valid initially,
342  * and thus cannot be looked up yet. It should be filled with data, and
343  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
344  * if no more memory was available.
345  */
346 struct mb_cache_entry *
347 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
348 {
349         struct mb_cache_entry *ce = NULL;
350
351         if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
352                 spin_lock(&mb_cache_spinlock);
353                 if (!list_empty(&mb_cache_lru_list)) {
354                         ce = list_entry(mb_cache_lru_list.next,
355                                         struct mb_cache_entry, e_lru_list);
356                         list_del_init(&ce->e_lru_list);
357                         __mb_cache_entry_unhash(ce);
358                 }
359                 spin_unlock(&mb_cache_spinlock);
360         }
361         if (!ce) {
362                 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
363                 if (!ce)
364                         return NULL;
365                 atomic_inc(&cache->c_entry_count);
366                 INIT_LIST_HEAD(&ce->e_lru_list);
367                 INIT_LIST_HEAD(&ce->e_block_list);
368                 ce->e_cache = cache;
369                 ce->e_queued = 0;
370         }
371         ce->e_used = 1 + MB_CACHE_WRITER;
372         return ce;
373 }
374
375
376 /*
377  * mb_cache_entry_insert()
378  *
379  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
380  * the cache. After this, the cache entry can be looked up, but is not yet
381  * in the lru list as the caller still holds a handle to it. Returns 0 on
382  * success, or -EBUSY if a cache entry for that device + inode exists
383  * already (this may happen after a failed lookup, but when another process
384  * has inserted the same cache entry in the meantime).
385  *
386  * @bdev: device the cache entry belongs to
387  * @block: block number
388  * @key: lookup key
389  */
390 int
391 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
392                       sector_t block, unsigned int key)
393 {
394         struct mb_cache *cache = ce->e_cache;
395         unsigned int bucket;
396         struct list_head *l;
397         int error = -EBUSY;
398
399         bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
400                            cache->c_bucket_bits);
401         spin_lock(&mb_cache_spinlock);
402         list_for_each_prev(l, &cache->c_block_hash[bucket]) {
403                 struct mb_cache_entry *ce =
404                         list_entry(l, struct mb_cache_entry, e_block_list);
405                 if (ce->e_bdev == bdev && ce->e_block == block)
406                         goto out;
407         }
408         __mb_cache_entry_unhash(ce);
409         ce->e_bdev = bdev;
410         ce->e_block = block;
411         list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
412         ce->e_index.o_key = key;
413         bucket = hash_long(key, cache->c_bucket_bits);
414         list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
415         error = 0;
416 out:
417         spin_unlock(&mb_cache_spinlock);
418         return error;
419 }
420
421
422 /*
423  * mb_cache_entry_release()
424  *
425  * Release a handle to a cache entry. When the last handle to a cache entry
426  * is released it is either freed (if it is invalid) or otherwise inserted
427  * in to the lru list.
428  */
429 void
430 mb_cache_entry_release(struct mb_cache_entry *ce)
431 {
432         spin_lock(&mb_cache_spinlock);
433         __mb_cache_entry_release_unlock(ce);
434 }
435
436
437 /*
438  * mb_cache_entry_free()
439  *
440  * This is equivalent to the sequence mb_cache_entry_takeout() --
441  * mb_cache_entry_release().
442  */
443 void
444 mb_cache_entry_free(struct mb_cache_entry *ce)
445 {
446         spin_lock(&mb_cache_spinlock);
447         mb_assert(list_empty(&ce->e_lru_list));
448         __mb_cache_entry_unhash(ce);
449         __mb_cache_entry_release_unlock(ce);
450 }
451
452
453 /*
454  * mb_cache_entry_get()
455  *
456  * Get a cache entry  by device / block number. (There can only be one entry
457  * in the cache per device and block.) Returns NULL if no such cache entry
458  * exists. The returned cache entry is locked for exclusive access ("single
459  * writer").
460  */
461 struct mb_cache_entry *
462 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
463                    sector_t block)
464 {
465         unsigned int bucket;
466         struct list_head *l;
467         struct mb_cache_entry *ce;
468
469         bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
470                            cache->c_bucket_bits);
471         spin_lock(&mb_cache_spinlock);
472         list_for_each(l, &cache->c_block_hash[bucket]) {
473                 ce = list_entry(l, struct mb_cache_entry, e_block_list);
474                 if (ce->e_bdev == bdev && ce->e_block == block) {
475                         DEFINE_WAIT(wait);
476
477                         if (!list_empty(&ce->e_lru_list))
478                                 list_del_init(&ce->e_lru_list);
479
480                         while (ce->e_used > 0) {
481                                 ce->e_queued++;
482                                 prepare_to_wait(&mb_cache_queue, &wait,
483                                                 TASK_UNINTERRUPTIBLE);
484                                 spin_unlock(&mb_cache_spinlock);
485                                 schedule();
486                                 spin_lock(&mb_cache_spinlock);
487                                 ce->e_queued--;
488                         }
489                         finish_wait(&mb_cache_queue, &wait);
490                         ce->e_used += 1 + MB_CACHE_WRITER;
491
492                         if (!__mb_cache_entry_is_hashed(ce)) {
493                                 __mb_cache_entry_release_unlock(ce);
494                                 return NULL;
495                         }
496                         goto cleanup;
497                 }
498         }
499         ce = NULL;
500
501 cleanup:
502         spin_unlock(&mb_cache_spinlock);
503         return ce;
504 }
505
506 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
507
508 static struct mb_cache_entry *
509 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
510                       struct block_device *bdev, unsigned int key)
511 {
512         while (l != head) {
513                 struct mb_cache_entry *ce =
514                         list_entry(l, struct mb_cache_entry, e_index.o_list);
515                 if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
516                         DEFINE_WAIT(wait);
517
518                         if (!list_empty(&ce->e_lru_list))
519                                 list_del_init(&ce->e_lru_list);
520
521                         /* Incrementing before holding the lock gives readers
522                            priority over writers. */
523                         ce->e_used++;
524                         while (ce->e_used >= MB_CACHE_WRITER) {
525                                 ce->e_queued++;
526                                 prepare_to_wait(&mb_cache_queue, &wait,
527                                                 TASK_UNINTERRUPTIBLE);
528                                 spin_unlock(&mb_cache_spinlock);
529                                 schedule();
530                                 spin_lock(&mb_cache_spinlock);
531                                 ce->e_queued--;
532                         }
533                         finish_wait(&mb_cache_queue, &wait);
534
535                         if (!__mb_cache_entry_is_hashed(ce)) {
536                                 __mb_cache_entry_release_unlock(ce);
537                                 spin_lock(&mb_cache_spinlock);
538                                 return ERR_PTR(-EAGAIN);
539                         }
540                         return ce;
541                 }
542                 l = l->next;
543         }
544         return NULL;
545 }
546
547
548 /*
549  * mb_cache_entry_find_first()
550  *
551  * Find the first cache entry on a given device with a certain key in
552  * an additional index. Additional matches can be found with
553  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
554  * returned cache entry is locked for shared access ("multiple readers").
555  *
556  * @cache: the cache to search
557  * @bdev: the device the cache entry should belong to
558  * @key: the key in the index
559  */
560 struct mb_cache_entry *
561 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
562                           unsigned int key)
563 {
564         unsigned int bucket = hash_long(key, cache->c_bucket_bits);
565         struct list_head *l;
566         struct mb_cache_entry *ce;
567
568         spin_lock(&mb_cache_spinlock);
569         l = cache->c_index_hash[bucket].next;
570         ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
571         spin_unlock(&mb_cache_spinlock);
572         return ce;
573 }
574
575
576 /*
577  * mb_cache_entry_find_next()
578  *
579  * Find the next cache entry on a given device with a certain key in an
580  * additional index. Returns NULL if no match could be found. The previous
581  * entry is atomatically released, so that mb_cache_entry_find_next() can
582  * be called like this:
583  *
584  * entry = mb_cache_entry_find_first();
585  * while (entry) {
586  *      ...
587  *      entry = mb_cache_entry_find_next(entry, ...);
588  * }
589  *
590  * @prev: The previous match
591  * @bdev: the device the cache entry should belong to
592  * @key: the key in the index
593  */
594 struct mb_cache_entry *
595 mb_cache_entry_find_next(struct mb_cache_entry *prev,
596                          struct block_device *bdev, unsigned int key)
597 {
598         struct mb_cache *cache = prev->e_cache;
599         unsigned int bucket = hash_long(key, cache->c_bucket_bits);
600         struct list_head *l;
601         struct mb_cache_entry *ce;
602
603         spin_lock(&mb_cache_spinlock);
604         l = prev->e_index.o_list.next;
605         ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
606         __mb_cache_entry_release_unlock(prev);
607         return ce;
608 }
609
610 #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
611
612 static int __init init_mbcache(void)
613 {
614         register_shrinker(&mb_cache_shrinker);
615         return 0;
616 }
617
618 static void __exit exit_mbcache(void)
619 {
620         unregister_shrinker(&mb_cache_shrinker);
621 }
622
623 module_init(init_mbcache)
624 module_exit(exit_mbcache)
625