MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / fs / mbcache.c
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4  */
5
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28
29 /*
30  * Lock descriptions and usage:
31  *
32  * Each hash chain of both the block and index hash tables now contains
33  * a built-in lock used to serialize accesses to the hash chain.
34  *
35  * Accesses to global data structures mb_cache_list and mb_cache_lru_list
36  * are serialized via the global spinlock mb_cache_spinlock.
37  *
38  * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize
39  * accesses to its local data, such as e_used and e_queued.
40  *
41  * Lock ordering:
42  *
43  * Each block hash chain's lock has the highest lock order, followed by an
44  * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's
45  * lock), and mb_cach_spinlock, with the lowest order.  While holding
46  * either a block or index hash chain lock, a thread can acquire an
47  * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock.
48  *
49  * Synchronization:
50  *
51  * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and
52  * index hash chian, it needs to lock the corresponding hash chain.  For each
53  * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to
54  * prevent either any simultaneous release or free on the entry and also
55  * to serialize accesses to either the e_used or e_queued member of the entry.
56  *
57  * To avoid having a dangling reference to an already freed
58  * mb_cache_entry, an mb_cache_entry is only freed when it is not on a
59  * block hash chain and also no longer being referenced, both e_used,
60  * and e_queued are 0's.  When an mb_cache_entry is explicitly freed it is
61  * first removed from a block hash chain.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66
67 #include <linux/hash.h>
68 #include <linux/fs.h>
69 #include <linux/mm.h>
70 #include <linux/slab.h>
71 #include <linux/sched.h>
72 #include <linux/list_bl.h>
73 #include <linux/mbcache.h>
74 #include <linux/init.h>
75 #include <linux/blockgroup_lock.h>
76 #include <linux/log2.h>
77
78 #ifdef MB_CACHE_DEBUG
79 # define mb_debug(f...) do { \
80                 printk(KERN_DEBUG f); \
81                 printk("\n"); \
82         } while (0)
83 #define mb_assert(c) do { if (!(c)) \
84                 printk(KERN_ERR "assertion " #c " failed\n"); \
85         } while(0)
86 #else
87 # define mb_debug(f...) do { } while(0)
88 # define mb_assert(c) do { } while(0)
89 #endif
90 #define mb_error(f...) do { \
91                 printk(KERN_ERR f); \
92                 printk("\n"); \
93         } while(0)
94
95 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
96
97 #define MB_CACHE_ENTRY_LOCK_BITS        ilog2(NR_BG_LOCKS)
98 #define MB_CACHE_ENTRY_LOCK_INDEX(ce)                   \
99         (hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS))
100
101 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
102 static struct blockgroup_lock *mb_cache_bg_lock;
103 static struct kmem_cache *mb_cache_kmem_cache;
104
105 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
106 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
107 MODULE_LICENSE("GPL");
108
109 EXPORT_SYMBOL(mb_cache_create);
110 EXPORT_SYMBOL(mb_cache_shrink);
111 EXPORT_SYMBOL(mb_cache_destroy);
112 EXPORT_SYMBOL(mb_cache_entry_alloc);
113 EXPORT_SYMBOL(mb_cache_entry_insert);
114 EXPORT_SYMBOL(mb_cache_entry_release);
115 EXPORT_SYMBOL(mb_cache_entry_free);
116 EXPORT_SYMBOL(mb_cache_entry_get);
117 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
118 EXPORT_SYMBOL(mb_cache_entry_find_first);
119 EXPORT_SYMBOL(mb_cache_entry_find_next);
120 #endif
121
122 /*
123  * Global data: list of all mbcache's, lru list, and a spinlock for
124  * accessing cache data structures on SMP machines. The lru list is
125  * global across all mbcaches.
126  */
127
128 static LIST_HEAD(mb_cache_list);
129 static LIST_HEAD(mb_cache_lru_list);
130 static DEFINE_SPINLOCK(mb_cache_spinlock);
131
132 static inline void
133 __spin_lock_mb_cache_entry(struct mb_cache_entry *ce)
134 {
135         spin_lock(bgl_lock_ptr(mb_cache_bg_lock,
136                 MB_CACHE_ENTRY_LOCK_INDEX(ce)));
137 }
138
139 static inline void
140 __spin_unlock_mb_cache_entry(struct mb_cache_entry *ce)
141 {
142         spin_unlock(bgl_lock_ptr(mb_cache_bg_lock,
143                 MB_CACHE_ENTRY_LOCK_INDEX(ce)));
144 }
145
146 static inline int
147 __mb_cache_entry_is_block_hashed(struct mb_cache_entry *ce)
148 {
149         return !hlist_bl_unhashed(&ce->e_block_list);
150 }
151
152
153 static inline void
154 __mb_cache_entry_unhash_block(struct mb_cache_entry *ce)
155 {
156         if (__mb_cache_entry_is_block_hashed(ce))
157                 hlist_bl_del_init(&ce->e_block_list);
158 }
159
160 static inline int
161 __mb_cache_entry_is_index_hashed(struct mb_cache_entry *ce)
162 {
163         return !hlist_bl_unhashed(&ce->e_index.o_list);
164 }
165
166 static inline void
167 __mb_cache_entry_unhash_index(struct mb_cache_entry *ce)
168 {
169         if (__mb_cache_entry_is_index_hashed(ce))
170                 hlist_bl_del_init(&ce->e_index.o_list);
171 }
172
173 /*
174  * __mb_cache_entry_unhash_unlock()
175  *
176  * This function is called to unhash both the block and index hash
177  * chain.
178  * It assumes both the block and index hash chain is locked upon entry.
179  * It also unlock both hash chains both exit
180  */
181 static inline void
182 __mb_cache_entry_unhash_unlock(struct mb_cache_entry *ce)
183 {
184         __mb_cache_entry_unhash_index(ce);
185         hlist_bl_unlock(ce->e_index_hash_p);
186         __mb_cache_entry_unhash_block(ce);
187         hlist_bl_unlock(ce->e_block_hash_p);
188 }
189
190 static void
191 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
192 {
193         struct mb_cache *cache = ce->e_cache;
194
195         mb_assert(!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt)));
196         kmem_cache_free(cache->c_entry_cache, ce);
197         atomic_dec(&cache->c_entry_count);
198 }
199
200 static void
201 __mb_cache_entry_release(struct mb_cache_entry *ce)
202 {
203         /* First lock the entry to serialize access to its local data. */
204         __spin_lock_mb_cache_entry(ce);
205         /* Wake up all processes queuing for this cache entry. */
206         if (ce->e_queued)
207                 wake_up_all(&mb_cache_queue);
208         if (ce->e_used >= MB_CACHE_WRITER)
209                 ce->e_used -= MB_CACHE_WRITER;
210         /*
211          * Make sure that all cache entries on lru_list have
212          * both e_used and e_qued of 0s.
213          */
214         ce->e_used--;
215         if (!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))) {
216                 if (!__mb_cache_entry_is_block_hashed(ce)) {
217                         __spin_unlock_mb_cache_entry(ce);
218                         goto forget;
219                 }
220                 /*
221                  * Need access to lru list, first drop entry lock,
222                  * then reacquire the lock in the proper order.
223                  */
224                 spin_lock(&mb_cache_spinlock);
225                 if (list_empty(&ce->e_lru_list))
226                         list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
227                 spin_unlock(&mb_cache_spinlock);
228         }
229         __spin_unlock_mb_cache_entry(ce);
230         return;
231 forget:
232         mb_assert(list_empty(&ce->e_lru_list));
233         __mb_cache_entry_forget(ce, GFP_KERNEL);
234 }
235
236 /*
237  * mb_cache_shrink_scan()  memory pressure callback
238  *
239  * This function is called by the kernel memory management when memory
240  * gets low.
241  *
242  * @shrink: (ignored)
243  * @sc: shrink_control passed from reclaim
244  *
245  * Returns the number of objects freed.
246  */
247 static unsigned long
248 mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
249 {
250         LIST_HEAD(free_list);
251         struct mb_cache_entry *entry, *tmp;
252         int nr_to_scan = sc->nr_to_scan;
253         gfp_t gfp_mask = sc->gfp_mask;
254         unsigned long freed = 0;
255
256         mb_debug("trying to free %d entries", nr_to_scan);
257         spin_lock(&mb_cache_spinlock);
258         while ((nr_to_scan-- > 0) && !list_empty(&mb_cache_lru_list)) {
259                 struct mb_cache_entry *ce =
260                         list_entry(mb_cache_lru_list.next,
261                                 struct mb_cache_entry, e_lru_list);
262                 list_del_init(&ce->e_lru_list);
263                 if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))
264                         continue;
265                 spin_unlock(&mb_cache_spinlock);
266                 /* Prevent any find or get operation on the entry */
267                 hlist_bl_lock(ce->e_block_hash_p);
268                 hlist_bl_lock(ce->e_index_hash_p);
269                 /* Ignore if it is touched by a find/get */
270                 if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt) ||
271                         !list_empty(&ce->e_lru_list)) {
272                         hlist_bl_unlock(ce->e_index_hash_p);
273                         hlist_bl_unlock(ce->e_block_hash_p);
274                         spin_lock(&mb_cache_spinlock);
275                         continue;
276                 }
277                 __mb_cache_entry_unhash_unlock(ce);
278                 list_add_tail(&ce->e_lru_list, &free_list);
279                 spin_lock(&mb_cache_spinlock);
280         }
281         spin_unlock(&mb_cache_spinlock);
282
283         list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
284                 __mb_cache_entry_forget(entry, gfp_mask);
285                 freed++;
286         }
287         return freed;
288 }
289
290 static unsigned long
291 mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
292 {
293         struct mb_cache *cache;
294         unsigned long count = 0;
295
296         spin_lock(&mb_cache_spinlock);
297         list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
298                 mb_debug("cache %s (%d)", cache->c_name,
299                           atomic_read(&cache->c_entry_count));
300                 count += atomic_read(&cache->c_entry_count);
301         }
302         spin_unlock(&mb_cache_spinlock);
303
304         return vfs_pressure_ratio(count);
305 }
306
307 static struct shrinker mb_cache_shrinker = {
308         .count_objects = mb_cache_shrink_count,
309         .scan_objects = mb_cache_shrink_scan,
310         .seeks = DEFAULT_SEEKS,
311 };
312
313 /*
314  * mb_cache_create()  create a new cache
315  *
316  * All entries in one cache are equal size. Cache entries may be from
317  * multiple devices. If this is the first mbcache created, registers
318  * the cache with kernel memory management. Returns NULL if no more
319  * memory was available.
320  *
321  * @name: name of the cache (informal)
322  * @bucket_bits: log2(number of hash buckets)
323  */
324 struct mb_cache *
325 mb_cache_create(const char *name, int bucket_bits)
326 {
327         int n, bucket_count = 1 << bucket_bits;
328         struct mb_cache *cache = NULL;
329
330         if (!mb_cache_bg_lock) {
331                 mb_cache_bg_lock = kmalloc(sizeof(struct blockgroup_lock),
332                         GFP_KERNEL);
333                 if (!mb_cache_bg_lock)
334                         return NULL;
335                 bgl_lock_init(mb_cache_bg_lock);
336         }
337
338         cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
339         if (!cache)
340                 return NULL;
341         cache->c_name = name;
342         atomic_set(&cache->c_entry_count, 0);
343         cache->c_bucket_bits = bucket_bits;
344         cache->c_block_hash = kmalloc(bucket_count *
345                 sizeof(struct hlist_bl_head), GFP_KERNEL);
346         if (!cache->c_block_hash)
347                 goto fail;
348         for (n=0; n<bucket_count; n++)
349                 INIT_HLIST_BL_HEAD(&cache->c_block_hash[n]);
350         cache->c_index_hash = kmalloc(bucket_count *
351                 sizeof(struct hlist_bl_head), GFP_KERNEL);
352         if (!cache->c_index_hash)
353                 goto fail;
354         for (n=0; n<bucket_count; n++)
355                 INIT_HLIST_BL_HEAD(&cache->c_index_hash[n]);
356         if (!mb_cache_kmem_cache) {
357                 mb_cache_kmem_cache = kmem_cache_create(name,
358                         sizeof(struct mb_cache_entry), 0,
359                         SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
360                 if (!mb_cache_kmem_cache)
361                         goto fail2;
362         }
363         cache->c_entry_cache = mb_cache_kmem_cache;
364
365         /*
366          * Set an upper limit on the number of cache entries so that the hash
367          * chains won't grow too long.
368          */
369         cache->c_max_entries = bucket_count << 4;
370
371         spin_lock(&mb_cache_spinlock);
372         list_add(&cache->c_cache_list, &mb_cache_list);
373         spin_unlock(&mb_cache_spinlock);
374         return cache;
375
376 fail2:
377         kfree(cache->c_index_hash);
378
379 fail:
380         kfree(cache->c_block_hash);
381         kfree(cache);
382         return NULL;
383 }
384
385
386 /*
387  * mb_cache_shrink()
388  *
389  * Removes all cache entries of a device from the cache. All cache entries
390  * currently in use cannot be freed, and thus remain in the cache. All others
391  * are freed.
392  *
393  * @bdev: which device's cache entries to shrink
394  */
395 void
396 mb_cache_shrink(struct block_device *bdev)
397 {
398         LIST_HEAD(free_list);
399         struct list_head *l;
400         struct mb_cache_entry *ce, *tmp;
401
402         l = &mb_cache_lru_list;
403         spin_lock(&mb_cache_spinlock);
404         while (!list_is_last(l, &mb_cache_lru_list)) {
405                 l = l->next;
406                 ce = list_entry(l, struct mb_cache_entry, e_lru_list);
407                 if (ce->e_bdev == bdev) {
408                         list_del_init(&ce->e_lru_list);
409                         if (ce->e_used || ce->e_queued ||
410                                 atomic_read(&ce->e_refcnt))
411                                 continue;
412                         spin_unlock(&mb_cache_spinlock);
413                         /*
414                          * Prevent any find or get operation on the entry.
415                          */
416                         hlist_bl_lock(ce->e_block_hash_p);
417                         hlist_bl_lock(ce->e_index_hash_p);
418                         /* Ignore if it is touched by a find/get */
419                         if (ce->e_used || ce->e_queued ||
420                                 atomic_read(&ce->e_refcnt) ||
421                                 !list_empty(&ce->e_lru_list)) {
422                                 hlist_bl_unlock(ce->e_index_hash_p);
423                                 hlist_bl_unlock(ce->e_block_hash_p);
424                                 l = &mb_cache_lru_list;
425                                 spin_lock(&mb_cache_spinlock);
426                                 continue;
427                         }
428                         __mb_cache_entry_unhash_unlock(ce);
429                         mb_assert(!(ce->e_used || ce->e_queued ||
430                                 atomic_read(&ce->e_refcnt)));
431                         list_add_tail(&ce->e_lru_list, &free_list);
432                         l = &mb_cache_lru_list;
433                         spin_lock(&mb_cache_spinlock);
434                 }
435         }
436         spin_unlock(&mb_cache_spinlock);
437
438         list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
439                 __mb_cache_entry_forget(ce, GFP_KERNEL);
440         }
441 }
442
443
444 /*
445  * mb_cache_destroy()
446  *
447  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
448  * and then destroys it. If this was the last mbcache, un-registers the
449  * mbcache from kernel memory management.
450  */
451 void
452 mb_cache_destroy(struct mb_cache *cache)
453 {
454         LIST_HEAD(free_list);
455         struct mb_cache_entry *ce, *tmp;
456
457         spin_lock(&mb_cache_spinlock);
458         list_for_each_entry_safe(ce, tmp, &mb_cache_lru_list, e_lru_list) {
459                 if (ce->e_cache == cache)
460                         list_move_tail(&ce->e_lru_list, &free_list);
461         }
462         list_del(&cache->c_cache_list);
463         spin_unlock(&mb_cache_spinlock);
464
465         list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
466                 list_del_init(&ce->e_lru_list);
467                 /*
468                  * Prevent any find or get operation on the entry.
469                  */
470                 hlist_bl_lock(ce->e_block_hash_p);
471                 hlist_bl_lock(ce->e_index_hash_p);
472                 mb_assert(!(ce->e_used || ce->e_queued ||
473                         atomic_read(&ce->e_refcnt)));
474                 __mb_cache_entry_unhash_unlock(ce);
475                 __mb_cache_entry_forget(ce, GFP_KERNEL);
476         }
477
478         if (atomic_read(&cache->c_entry_count) > 0) {
479                 mb_error("cache %s: %d orphaned entries",
480                           cache->c_name,
481                           atomic_read(&cache->c_entry_count));
482         }
483
484         if (list_empty(&mb_cache_list)) {
485                 kmem_cache_destroy(mb_cache_kmem_cache);
486                 mb_cache_kmem_cache = NULL;
487         }
488         kfree(cache->c_index_hash);
489         kfree(cache->c_block_hash);
490         kfree(cache);
491 }
492
493 /*
494  * mb_cache_entry_alloc()
495  *
496  * Allocates a new cache entry. The new entry will not be valid initially,
497  * and thus cannot be looked up yet. It should be filled with data, and
498  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
499  * if no more memory was available.
500  */
501 struct mb_cache_entry *
502 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
503 {
504         struct mb_cache_entry *ce;
505
506         if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
507                 struct list_head *l;
508
509                 l = &mb_cache_lru_list;
510                 spin_lock(&mb_cache_spinlock);
511                 while (!list_is_last(l, &mb_cache_lru_list)) {
512                         l = l->next;
513                         ce = list_entry(l, struct mb_cache_entry, e_lru_list);
514                         if (ce->e_cache == cache) {
515                                 list_del_init(&ce->e_lru_list);
516                                 if (ce->e_used || ce->e_queued ||
517                                         atomic_read(&ce->e_refcnt))
518                                         continue;
519                                 spin_unlock(&mb_cache_spinlock);
520                                 /*
521                                  * Prevent any find or get operation on the
522                                  * entry.
523                                  */
524                                 hlist_bl_lock(ce->e_block_hash_p);
525                                 hlist_bl_lock(ce->e_index_hash_p);
526                                 /* Ignore if it is touched by a find/get */
527                                 if (ce->e_used || ce->e_queued ||
528                                         atomic_read(&ce->e_refcnt) ||
529                                         !list_empty(&ce->e_lru_list)) {
530                                         hlist_bl_unlock(ce->e_index_hash_p);
531                                         hlist_bl_unlock(ce->e_block_hash_p);
532                                         l = &mb_cache_lru_list;
533                                         spin_lock(&mb_cache_spinlock);
534                                         continue;
535                                 }
536                                 mb_assert(list_empty(&ce->e_lru_list));
537                                 mb_assert(!(ce->e_used || ce->e_queued ||
538                                         atomic_read(&ce->e_refcnt)));
539                                 __mb_cache_entry_unhash_unlock(ce);
540                                 goto found;
541                         }
542                 }
543                 spin_unlock(&mb_cache_spinlock);
544         }
545
546         ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
547         if (!ce)
548                 return NULL;
549         atomic_inc(&cache->c_entry_count);
550         INIT_LIST_HEAD(&ce->e_lru_list);
551         INIT_HLIST_BL_NODE(&ce->e_block_list);
552         INIT_HLIST_BL_NODE(&ce->e_index.o_list);
553         ce->e_cache = cache;
554         ce->e_queued = 0;
555         atomic_set(&ce->e_refcnt, 0);
556 found:
557         ce->e_block_hash_p = &cache->c_block_hash[0];
558         ce->e_index_hash_p = &cache->c_index_hash[0];
559         ce->e_used = 1 + MB_CACHE_WRITER;
560         return ce;
561 }
562
563
564 /*
565  * mb_cache_entry_insert()
566  *
567  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
568  * the cache. After this, the cache entry can be looked up, but is not yet
569  * in the lru list as the caller still holds a handle to it. Returns 0 on
570  * success, or -EBUSY if a cache entry for that device + inode exists
571  * already (this may happen after a failed lookup, but when another process
572  * has inserted the same cache entry in the meantime).
573  *
574  * @bdev: device the cache entry belongs to
575  * @block: block number
576  * @key: lookup key
577  */
578 int
579 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
580                       sector_t block, unsigned int key)
581 {
582         struct mb_cache *cache = ce->e_cache;
583         unsigned int bucket;
584         struct hlist_bl_node *l;
585         struct hlist_bl_head *block_hash_p;
586         struct hlist_bl_head *index_hash_p;
587         struct mb_cache_entry *lce;
588
589         mb_assert(ce);
590         bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
591                            cache->c_bucket_bits);
592         block_hash_p = &cache->c_block_hash[bucket];
593         hlist_bl_lock(block_hash_p);
594         hlist_bl_for_each_entry(lce, l, block_hash_p, e_block_list) {
595                 if (lce->e_bdev == bdev && lce->e_block == block) {
596                         hlist_bl_unlock(block_hash_p);
597                         return -EBUSY;
598                 }
599         }
600         mb_assert(!__mb_cache_entry_is_block_hashed(ce));
601         __mb_cache_entry_unhash_block(ce);
602         __mb_cache_entry_unhash_index(ce);
603         ce->e_bdev = bdev;
604         ce->e_block = block;
605         ce->e_block_hash_p = block_hash_p;
606         ce->e_index.o_key = key;
607         hlist_bl_add_head(&ce->e_block_list, block_hash_p);
608         hlist_bl_unlock(block_hash_p);
609         bucket = hash_long(key, cache->c_bucket_bits);
610         index_hash_p = &cache->c_index_hash[bucket];
611         hlist_bl_lock(index_hash_p);
612         ce->e_index_hash_p = index_hash_p;
613         hlist_bl_add_head(&ce->e_index.o_list, index_hash_p);
614         hlist_bl_unlock(index_hash_p);
615         return 0;
616 }
617
618
619 /*
620  * mb_cache_entry_release()
621  *
622  * Release a handle to a cache entry. When the last handle to a cache entry
623  * is released it is either freed (if it is invalid) or otherwise inserted
624  * in to the lru list.
625  */
626 void
627 mb_cache_entry_release(struct mb_cache_entry *ce)
628 {
629         __mb_cache_entry_release(ce);
630 }
631
632
633 /*
634  * mb_cache_entry_free()
635  *
636  */
637 void
638 mb_cache_entry_free(struct mb_cache_entry *ce)
639 {
640         mb_assert(ce);
641         mb_assert(list_empty(&ce->e_lru_list));
642         hlist_bl_lock(ce->e_index_hash_p);
643         __mb_cache_entry_unhash_index(ce);
644         hlist_bl_unlock(ce->e_index_hash_p);
645         hlist_bl_lock(ce->e_block_hash_p);
646         __mb_cache_entry_unhash_block(ce);
647         hlist_bl_unlock(ce->e_block_hash_p);
648         __mb_cache_entry_release(ce);
649 }
650
651
652 /*
653  * mb_cache_entry_get()
654  *
655  * Get a cache entry  by device / block number. (There can only be one entry
656  * in the cache per device and block.) Returns NULL if no such cache entry
657  * exists. The returned cache entry is locked for exclusive access ("single
658  * writer").
659  */
660 struct mb_cache_entry *
661 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
662                    sector_t block)
663 {
664         unsigned int bucket;
665         struct hlist_bl_node *l;
666         struct mb_cache_entry *ce;
667         struct hlist_bl_head *block_hash_p;
668
669         bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
670                            cache->c_bucket_bits);
671         block_hash_p = &cache->c_block_hash[bucket];
672         /* First serialize access to the block corresponding hash chain. */
673         hlist_bl_lock(block_hash_p);
674         hlist_bl_for_each_entry(ce, l, block_hash_p, e_block_list) {
675                 mb_assert(ce->e_block_hash_p == block_hash_p);
676                 if (ce->e_bdev == bdev && ce->e_block == block) {
677                         /*
678                          * Prevent a free from removing the entry.
679                          */
680                         atomic_inc(&ce->e_refcnt);
681                         hlist_bl_unlock(block_hash_p);
682                         __spin_lock_mb_cache_entry(ce);
683                         atomic_dec(&ce->e_refcnt);
684                         if (ce->e_used > 0) {
685                                 DEFINE_WAIT(wait);
686                                 while (ce->e_used > 0) {
687                                         ce->e_queued++;
688                                         prepare_to_wait(&mb_cache_queue, &wait,
689                                                         TASK_UNINTERRUPTIBLE);
690                                         __spin_unlock_mb_cache_entry(ce);
691                                         schedule();
692                                         __spin_lock_mb_cache_entry(ce);
693                                         ce->e_queued--;
694                                 }
695                                 finish_wait(&mb_cache_queue, &wait);
696                         }
697                         ce->e_used += 1 + MB_CACHE_WRITER;
698                         __spin_unlock_mb_cache_entry(ce);
699
700                         if (!list_empty(&ce->e_lru_list)) {
701                                 spin_lock(&mb_cache_spinlock);
702                                 list_del_init(&ce->e_lru_list);
703                                 spin_unlock(&mb_cache_spinlock);
704                         }
705                         if (!__mb_cache_entry_is_block_hashed(ce)) {
706                                 __mb_cache_entry_release(ce);
707                                 return NULL;
708                         }
709                         return ce;
710                 }
711         }
712         hlist_bl_unlock(block_hash_p);
713         return NULL;
714 }
715
716 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
717
718 static struct mb_cache_entry *
719 __mb_cache_entry_find(struct hlist_bl_node *l, struct hlist_bl_head *head,
720                       struct block_device *bdev, unsigned int key)
721 {
722
723         /* The index hash chain is alredy acquire by caller. */
724         while (l != NULL) {
725                 struct mb_cache_entry *ce =
726                         hlist_bl_entry(l, struct mb_cache_entry,
727                                 e_index.o_list);
728                 mb_assert(ce->e_index_hash_p == head);
729                 if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
730                         /*
731                          * Prevent a free from removing the entry.
732                          */
733                         atomic_inc(&ce->e_refcnt);
734                         hlist_bl_unlock(head);
735                         __spin_lock_mb_cache_entry(ce);
736                         atomic_dec(&ce->e_refcnt);
737                         ce->e_used++;
738                         /* Incrementing before holding the lock gives readers
739                            priority over writers. */
740                         if (ce->e_used >= MB_CACHE_WRITER) {
741                                 DEFINE_WAIT(wait);
742
743                                 while (ce->e_used >= MB_CACHE_WRITER) {
744                                         ce->e_queued++;
745                                         prepare_to_wait(&mb_cache_queue, &wait,
746                                                         TASK_UNINTERRUPTIBLE);
747                                         __spin_unlock_mb_cache_entry(ce);
748                                         schedule();
749                                         __spin_lock_mb_cache_entry(ce);
750                                         ce->e_queued--;
751                                 }
752                                 finish_wait(&mb_cache_queue, &wait);
753                         }
754                         __spin_unlock_mb_cache_entry(ce);
755                         if (!list_empty(&ce->e_lru_list)) {
756                                 spin_lock(&mb_cache_spinlock);
757                                 list_del_init(&ce->e_lru_list);
758                                 spin_unlock(&mb_cache_spinlock);
759                         }
760                         if (!__mb_cache_entry_is_block_hashed(ce)) {
761                                 __mb_cache_entry_release(ce);
762                                 return ERR_PTR(-EAGAIN);
763                         }
764                         return ce;
765                 }
766                 l = l->next;
767         }
768         hlist_bl_unlock(head);
769         return NULL;
770 }
771
772
773 /*
774  * mb_cache_entry_find_first()
775  *
776  * Find the first cache entry on a given device with a certain key in
777  * an additional index. Additional matches can be found with
778  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
779  * returned cache entry is locked for shared access ("multiple readers").
780  *
781  * @cache: the cache to search
782  * @bdev: the device the cache entry should belong to
783  * @key: the key in the index
784  */
785 struct mb_cache_entry *
786 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
787                           unsigned int key)
788 {
789         unsigned int bucket = hash_long(key, cache->c_bucket_bits);
790         struct hlist_bl_node *l;
791         struct mb_cache_entry *ce = NULL;
792         struct hlist_bl_head *index_hash_p;
793
794         index_hash_p = &cache->c_index_hash[bucket];
795         hlist_bl_lock(index_hash_p);
796         if (!hlist_bl_empty(index_hash_p)) {
797                 l = hlist_bl_first(index_hash_p);
798                 ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
799         } else
800                 hlist_bl_unlock(index_hash_p);
801         return ce;
802 }
803
804
805 /*
806  * mb_cache_entry_find_next()
807  *
808  * Find the next cache entry on a given device with a certain key in an
809  * additional index. Returns NULL if no match could be found. The previous
810  * entry is atomatically released, so that mb_cache_entry_find_next() can
811  * be called like this:
812  *
813  * entry = mb_cache_entry_find_first();
814  * while (entry) {
815  *      ...
816  *      entry = mb_cache_entry_find_next(entry, ...);
817  * }
818  *
819  * @prev: The previous match
820  * @bdev: the device the cache entry should belong to
821  * @key: the key in the index
822  */
823 struct mb_cache_entry *
824 mb_cache_entry_find_next(struct mb_cache_entry *prev,
825                          struct block_device *bdev, unsigned int key)
826 {
827         struct mb_cache *cache = prev->e_cache;
828         unsigned int bucket = hash_long(key, cache->c_bucket_bits);
829         struct hlist_bl_node *l;
830         struct mb_cache_entry *ce;
831         struct hlist_bl_head *index_hash_p;
832
833         index_hash_p = &cache->c_index_hash[bucket];
834         mb_assert(prev->e_index_hash_p == index_hash_p);
835         hlist_bl_lock(index_hash_p);
836         mb_assert(!hlist_bl_empty(index_hash_p));
837         l = prev->e_index.o_list.next;
838         ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
839         __mb_cache_entry_release(prev);
840         return ce;
841 }
842
843 #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
844
845 static int __init init_mbcache(void)
846 {
847         register_shrinker(&mb_cache_shrinker);
848         return 0;
849 }
850
851 static void __exit exit_mbcache(void)
852 {
853         unregister_shrinker(&mb_cache_shrinker);
854 }
855
856 module_init(init_mbcache)
857 module_exit(exit_mbcache)
858