Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[linux-drm-fsl-dcu.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EFSCORRUPTED;
382         }
383         return 0;
384 }
385
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387                        ext4_lblk_t len)
388 {
389         int ret;
390
391         if (ext4_encrypted_inode(inode))
392                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395         if (ret > 0)
396                 ret = 0;
397
398         return ret;
399 }
400
401 #define check_block_validity(inode, map)        \
402         __check_block_validity((inode), __func__, __LINE__, (map))
403
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406                                        struct inode *inode,
407                                        struct ext4_map_blocks *es_map,
408                                        struct ext4_map_blocks *map,
409                                        int flags)
410 {
411         int retval;
412
413         map->m_flags = 0;
414         /*
415          * There is a race window that the result is not the same.
416          * e.g. xfstests #223 when dioread_nolock enables.  The reason
417          * is that we lookup a block mapping in extent status tree with
418          * out taking i_data_sem.  So at the time the unwritten extent
419          * could be converted.
420          */
421         down_read(&EXT4_I(inode)->i_data_sem);
422         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         } else {
426                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427                                              EXT4_GET_BLOCKS_KEEP_SIZE);
428         }
429         up_read((&EXT4_I(inode)->i_data_sem));
430
431         /*
432          * We don't check m_len because extent will be collpased in status
433          * tree.  So the m_len might not equal.
434          */
435         if (es_map->m_lblk != map->m_lblk ||
436             es_map->m_flags != map->m_flags ||
437             es_map->m_pblk != map->m_pblk) {
438                 printk("ES cache assertion failed for inode: %lu "
439                        "es_cached ex [%d/%d/%llu/%x] != "
440                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441                        inode->i_ino, es_map->m_lblk, es_map->m_len,
442                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
443                        map->m_len, map->m_pblk, map->m_flags,
444                        retval, flags);
445         }
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448
449 /*
450  * The ext4_map_blocks() function tries to look up the requested blocks,
451  * and returns if the blocks are already mapped.
452  *
453  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454  * and store the allocated blocks in the result buffer head and mark it
455  * mapped.
456  *
457  * If file type is extents based, it will call ext4_ext_map_blocks(),
458  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459  * based files
460  *
461  * On success, it returns the number of blocks being mapped or allocated.
462  * if create==0 and the blocks are pre-allocated and unwritten block,
463  * the result buffer head is unmapped. If the create ==1, it will make sure
464  * the buffer head is mapped.
465  *
466  * It returns 0 if plain look up failed (blocks have not been allocated), in
467  * that case, buffer head is unmapped
468  *
469  * It returns the error in case of allocation failure.
470  */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472                     struct ext4_map_blocks *map, int flags)
473 {
474         struct extent_status es;
475         int retval;
476         int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478         struct ext4_map_blocks orig_map;
479
480         memcpy(&orig_map, map, sizeof(*map));
481 #endif
482
483         map->m_flags = 0;
484         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
486                   (unsigned long) map->m_lblk);
487
488         /*
489          * ext4_map_blocks returns an int, and m_len is an unsigned int
490          */
491         if (unlikely(map->m_len > INT_MAX))
492                 map->m_len = INT_MAX;
493
494         /* We can handle the block number less than EXT_MAX_BLOCKS */
495         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496                 return -EFSCORRUPTED;
497
498         /* Lookup extent status tree firstly */
499         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501                         map->m_pblk = ext4_es_pblock(&es) +
502                                         map->m_lblk - es.es_lblk;
503                         map->m_flags |= ext4_es_is_written(&es) ?
504                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505                         retval = es.es_len - (map->m_lblk - es.es_lblk);
506                         if (retval > map->m_len)
507                                 retval = map->m_len;
508                         map->m_len = retval;
509                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510                         retval = 0;
511                 } else {
512                         BUG_ON(1);
513                 }
514 #ifdef ES_AGGRESSIVE_TEST
515                 ext4_map_blocks_es_recheck(handle, inode, map,
516                                            &orig_map, flags);
517 #endif
518                 goto found;
519         }
520
521         /*
522          * Try to see if we can get the block without requesting a new
523          * file system block.
524          */
525         down_read(&EXT4_I(inode)->i_data_sem);
526         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528                                              EXT4_GET_BLOCKS_KEEP_SIZE);
529         } else {
530                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531                                              EXT4_GET_BLOCKS_KEEP_SIZE);
532         }
533         if (retval > 0) {
534                 unsigned int status;
535
536                 if (unlikely(retval != map->m_len)) {
537                         ext4_warning(inode->i_sb,
538                                      "ES len assertion failed for inode "
539                                      "%lu: retval %d != map->m_len %d",
540                                      inode->i_ino, retval, map->m_len);
541                         WARN_ON(1);
542                 }
543
544                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547                     !(status & EXTENT_STATUS_WRITTEN) &&
548                     ext4_find_delalloc_range(inode, map->m_lblk,
549                                              map->m_lblk + map->m_len - 1))
550                         status |= EXTENT_STATUS_DELAYED;
551                 ret = ext4_es_insert_extent(inode, map->m_lblk,
552                                             map->m_len, map->m_pblk, status);
553                 if (ret < 0)
554                         retval = ret;
555         }
556         up_read((&EXT4_I(inode)->i_data_sem));
557
558 found:
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560                 ret = check_block_validity(inode, map);
561                 if (ret != 0)
562                         return ret;
563         }
564
565         /* If it is only a block(s) look up */
566         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567                 return retval;
568
569         /*
570          * Returns if the blocks have already allocated
571          *
572          * Note that if blocks have been preallocated
573          * ext4_ext_get_block() returns the create = 0
574          * with buffer head unmapped.
575          */
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577                 /*
578                  * If we need to convert extent to unwritten
579                  * we continue and do the actual work in
580                  * ext4_ext_map_blocks()
581                  */
582                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583                         return retval;
584
585         /*
586          * Here we clear m_flags because after allocating an new extent,
587          * it will be set again.
588          */
589         map->m_flags &= ~EXT4_MAP_FLAGS;
590
591         /*
592          * New blocks allocate and/or writing to unwritten extent
593          * will possibly result in updating i_data, so we take
594          * the write lock of i_data_sem, and call get_block()
595          * with create == 1 flag.
596          */
597         down_write(&EXT4_I(inode)->i_data_sem);
598
599         /*
600          * We need to check for EXT4 here because migrate
601          * could have changed the inode type in between
602          */
603         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
605         } else {
606                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
607
608                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609                         /*
610                          * We allocated new blocks which will result in
611                          * i_data's format changing.  Force the migrate
612                          * to fail by clearing migrate flags
613                          */
614                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615                 }
616
617                 /*
618                  * Update reserved blocks/metadata blocks after successful
619                  * block allocation which had been deferred till now. We don't
620                  * support fallocate for non extent files. So we can update
621                  * reserve space here.
622                  */
623                 if ((retval > 0) &&
624                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625                         ext4_da_update_reserve_space(inode, retval, 1);
626         }
627
628         if (retval > 0) {
629                 unsigned int status;
630
631                 if (unlikely(retval != map->m_len)) {
632                         ext4_warning(inode->i_sb,
633                                      "ES len assertion failed for inode "
634                                      "%lu: retval %d != map->m_len %d",
635                                      inode->i_ino, retval, map->m_len);
636                         WARN_ON(1);
637                 }
638
639                 /*
640                  * We have to zeroout blocks before inserting them into extent
641                  * status tree. Otherwise someone could look them up there and
642                  * use them before they are really zeroed.
643                  */
644                 if (flags & EXT4_GET_BLOCKS_ZERO &&
645                     map->m_flags & EXT4_MAP_MAPPED &&
646                     map->m_flags & EXT4_MAP_NEW) {
647                         ret = ext4_issue_zeroout(inode, map->m_lblk,
648                                                  map->m_pblk, map->m_len);
649                         if (ret) {
650                                 retval = ret;
651                                 goto out_sem;
652                         }
653                 }
654
655                 /*
656                  * If the extent has been zeroed out, we don't need to update
657                  * extent status tree.
658                  */
659                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661                         if (ext4_es_is_written(&es))
662                                 goto out_sem;
663                 }
664                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
667                     !(status & EXTENT_STATUS_WRITTEN) &&
668                     ext4_find_delalloc_range(inode, map->m_lblk,
669                                              map->m_lblk + map->m_len - 1))
670                         status |= EXTENT_STATUS_DELAYED;
671                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672                                             map->m_pblk, status);
673                 if (ret < 0) {
674                         retval = ret;
675                         goto out_sem;
676                 }
677         }
678
679 out_sem:
680         up_write((&EXT4_I(inode)->i_data_sem));
681         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682                 ret = check_block_validity(inode, map);
683                 if (ret != 0)
684                         return ret;
685         }
686         return retval;
687 }
688
689 /* Maximum number of blocks we map for direct IO at once. */
690 #define DIO_MAX_BLOCKS 4096
691
692 static int _ext4_get_block(struct inode *inode, sector_t iblock,
693                            struct buffer_head *bh, int flags)
694 {
695         handle_t *handle = ext4_journal_current_handle();
696         struct ext4_map_blocks map;
697         int ret = 0, started = 0;
698         int dio_credits;
699
700         if (ext4_has_inline_data(inode))
701                 return -ERANGE;
702
703         map.m_lblk = iblock;
704         map.m_len = bh->b_size >> inode->i_blkbits;
705
706         if (flags && !handle) {
707                 /* Direct IO write... */
708                 if (map.m_len > DIO_MAX_BLOCKS)
709                         map.m_len = DIO_MAX_BLOCKS;
710                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
711                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
712                                             dio_credits);
713                 if (IS_ERR(handle)) {
714                         ret = PTR_ERR(handle);
715                         return ret;
716                 }
717                 started = 1;
718         }
719
720         ret = ext4_map_blocks(handle, inode, &map, flags);
721         if (ret > 0) {
722                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
723
724                 map_bh(bh, inode->i_sb, map.m_pblk);
725                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
726                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
727                         set_buffer_defer_completion(bh);
728                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
729                 ret = 0;
730         }
731         if (started)
732                 ext4_journal_stop(handle);
733         return ret;
734 }
735
736 int ext4_get_block(struct inode *inode, sector_t iblock,
737                    struct buffer_head *bh, int create)
738 {
739         return _ext4_get_block(inode, iblock, bh,
740                                create ? EXT4_GET_BLOCKS_CREATE : 0);
741 }
742
743 /*
744  * `handle' can be NULL if create is zero
745  */
746 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
747                                 ext4_lblk_t block, int map_flags)
748 {
749         struct ext4_map_blocks map;
750         struct buffer_head *bh;
751         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
752         int err;
753
754         J_ASSERT(handle != NULL || create == 0);
755
756         map.m_lblk = block;
757         map.m_len = 1;
758         err = ext4_map_blocks(handle, inode, &map, map_flags);
759
760         if (err == 0)
761                 return create ? ERR_PTR(-ENOSPC) : NULL;
762         if (err < 0)
763                 return ERR_PTR(err);
764
765         bh = sb_getblk(inode->i_sb, map.m_pblk);
766         if (unlikely(!bh))
767                 return ERR_PTR(-ENOMEM);
768         if (map.m_flags & EXT4_MAP_NEW) {
769                 J_ASSERT(create != 0);
770                 J_ASSERT(handle != NULL);
771
772                 /*
773                  * Now that we do not always journal data, we should
774                  * keep in mind whether this should always journal the
775                  * new buffer as metadata.  For now, regular file
776                  * writes use ext4_get_block instead, so it's not a
777                  * problem.
778                  */
779                 lock_buffer(bh);
780                 BUFFER_TRACE(bh, "call get_create_access");
781                 err = ext4_journal_get_create_access(handle, bh);
782                 if (unlikely(err)) {
783                         unlock_buffer(bh);
784                         goto errout;
785                 }
786                 if (!buffer_uptodate(bh)) {
787                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
788                         set_buffer_uptodate(bh);
789                 }
790                 unlock_buffer(bh);
791                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
792                 err = ext4_handle_dirty_metadata(handle, inode, bh);
793                 if (unlikely(err))
794                         goto errout;
795         } else
796                 BUFFER_TRACE(bh, "not a new buffer");
797         return bh;
798 errout:
799         brelse(bh);
800         return ERR_PTR(err);
801 }
802
803 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
804                                ext4_lblk_t block, int map_flags)
805 {
806         struct buffer_head *bh;
807
808         bh = ext4_getblk(handle, inode, block, map_flags);
809         if (IS_ERR(bh))
810                 return bh;
811         if (!bh || buffer_uptodate(bh))
812                 return bh;
813         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
814         wait_on_buffer(bh);
815         if (buffer_uptodate(bh))
816                 return bh;
817         put_bh(bh);
818         return ERR_PTR(-EIO);
819 }
820
821 int ext4_walk_page_buffers(handle_t *handle,
822                            struct buffer_head *head,
823                            unsigned from,
824                            unsigned to,
825                            int *partial,
826                            int (*fn)(handle_t *handle,
827                                      struct buffer_head *bh))
828 {
829         struct buffer_head *bh;
830         unsigned block_start, block_end;
831         unsigned blocksize = head->b_size;
832         int err, ret = 0;
833         struct buffer_head *next;
834
835         for (bh = head, block_start = 0;
836              ret == 0 && (bh != head || !block_start);
837              block_start = block_end, bh = next) {
838                 next = bh->b_this_page;
839                 block_end = block_start + blocksize;
840                 if (block_end <= from || block_start >= to) {
841                         if (partial && !buffer_uptodate(bh))
842                                 *partial = 1;
843                         continue;
844                 }
845                 err = (*fn)(handle, bh);
846                 if (!ret)
847                         ret = err;
848         }
849         return ret;
850 }
851
852 /*
853  * To preserve ordering, it is essential that the hole instantiation and
854  * the data write be encapsulated in a single transaction.  We cannot
855  * close off a transaction and start a new one between the ext4_get_block()
856  * and the commit_write().  So doing the jbd2_journal_start at the start of
857  * prepare_write() is the right place.
858  *
859  * Also, this function can nest inside ext4_writepage().  In that case, we
860  * *know* that ext4_writepage() has generated enough buffer credits to do the
861  * whole page.  So we won't block on the journal in that case, which is good,
862  * because the caller may be PF_MEMALLOC.
863  *
864  * By accident, ext4 can be reentered when a transaction is open via
865  * quota file writes.  If we were to commit the transaction while thus
866  * reentered, there can be a deadlock - we would be holding a quota
867  * lock, and the commit would never complete if another thread had a
868  * transaction open and was blocking on the quota lock - a ranking
869  * violation.
870  *
871  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
872  * will _not_ run commit under these circumstances because handle->h_ref
873  * is elevated.  We'll still have enough credits for the tiny quotafile
874  * write.
875  */
876 int do_journal_get_write_access(handle_t *handle,
877                                 struct buffer_head *bh)
878 {
879         int dirty = buffer_dirty(bh);
880         int ret;
881
882         if (!buffer_mapped(bh) || buffer_freed(bh))
883                 return 0;
884         /*
885          * __block_write_begin() could have dirtied some buffers. Clean
886          * the dirty bit as jbd2_journal_get_write_access() could complain
887          * otherwise about fs integrity issues. Setting of the dirty bit
888          * by __block_write_begin() isn't a real problem here as we clear
889          * the bit before releasing a page lock and thus writeback cannot
890          * ever write the buffer.
891          */
892         if (dirty)
893                 clear_buffer_dirty(bh);
894         BUFFER_TRACE(bh, "get write access");
895         ret = ext4_journal_get_write_access(handle, bh);
896         if (!ret && dirty)
897                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
898         return ret;
899 }
900
901 #ifdef CONFIG_EXT4_FS_ENCRYPTION
902 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
903                                   get_block_t *get_block)
904 {
905         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
906         unsigned to = from + len;
907         struct inode *inode = page->mapping->host;
908         unsigned block_start, block_end;
909         sector_t block;
910         int err = 0;
911         unsigned blocksize = inode->i_sb->s_blocksize;
912         unsigned bbits;
913         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
914         bool decrypt = false;
915
916         BUG_ON(!PageLocked(page));
917         BUG_ON(from > PAGE_CACHE_SIZE);
918         BUG_ON(to > PAGE_CACHE_SIZE);
919         BUG_ON(from > to);
920
921         if (!page_has_buffers(page))
922                 create_empty_buffers(page, blocksize, 0);
923         head = page_buffers(page);
924         bbits = ilog2(blocksize);
925         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
926
927         for (bh = head, block_start = 0; bh != head || !block_start;
928             block++, block_start = block_end, bh = bh->b_this_page) {
929                 block_end = block_start + blocksize;
930                 if (block_end <= from || block_start >= to) {
931                         if (PageUptodate(page)) {
932                                 if (!buffer_uptodate(bh))
933                                         set_buffer_uptodate(bh);
934                         }
935                         continue;
936                 }
937                 if (buffer_new(bh))
938                         clear_buffer_new(bh);
939                 if (!buffer_mapped(bh)) {
940                         WARN_ON(bh->b_size != blocksize);
941                         err = get_block(inode, block, bh, 1);
942                         if (err)
943                                 break;
944                         if (buffer_new(bh)) {
945                                 unmap_underlying_metadata(bh->b_bdev,
946                                                           bh->b_blocknr);
947                                 if (PageUptodate(page)) {
948                                         clear_buffer_new(bh);
949                                         set_buffer_uptodate(bh);
950                                         mark_buffer_dirty(bh);
951                                         continue;
952                                 }
953                                 if (block_end > to || block_start < from)
954                                         zero_user_segments(page, to, block_end,
955                                                            block_start, from);
956                                 continue;
957                         }
958                 }
959                 if (PageUptodate(page)) {
960                         if (!buffer_uptodate(bh))
961                                 set_buffer_uptodate(bh);
962                         continue;
963                 }
964                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
965                     !buffer_unwritten(bh) &&
966                     (block_start < from || block_end > to)) {
967                         ll_rw_block(READ, 1, &bh);
968                         *wait_bh++ = bh;
969                         decrypt = ext4_encrypted_inode(inode) &&
970                                 S_ISREG(inode->i_mode);
971                 }
972         }
973         /*
974          * If we issued read requests, let them complete.
975          */
976         while (wait_bh > wait) {
977                 wait_on_buffer(*--wait_bh);
978                 if (!buffer_uptodate(*wait_bh))
979                         err = -EIO;
980         }
981         if (unlikely(err))
982                 page_zero_new_buffers(page, from, to);
983         else if (decrypt)
984                 err = ext4_decrypt(page);
985         return err;
986 }
987 #endif
988
989 static int ext4_write_begin(struct file *file, struct address_space *mapping,
990                             loff_t pos, unsigned len, unsigned flags,
991                             struct page **pagep, void **fsdata)
992 {
993         struct inode *inode = mapping->host;
994         int ret, needed_blocks;
995         handle_t *handle;
996         int retries = 0;
997         struct page *page;
998         pgoff_t index;
999         unsigned from, to;
1000
1001         trace_ext4_write_begin(inode, pos, len, flags);
1002         /*
1003          * Reserve one block more for addition to orphan list in case
1004          * we allocate blocks but write fails for some reason
1005          */
1006         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1007         index = pos >> PAGE_CACHE_SHIFT;
1008         from = pos & (PAGE_CACHE_SIZE - 1);
1009         to = from + len;
1010
1011         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1012                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1013                                                     flags, pagep);
1014                 if (ret < 0)
1015                         return ret;
1016                 if (ret == 1)
1017                         return 0;
1018         }
1019
1020         /*
1021          * grab_cache_page_write_begin() can take a long time if the
1022          * system is thrashing due to memory pressure, or if the page
1023          * is being written back.  So grab it first before we start
1024          * the transaction handle.  This also allows us to allocate
1025          * the page (if needed) without using GFP_NOFS.
1026          */
1027 retry_grab:
1028         page = grab_cache_page_write_begin(mapping, index, flags);
1029         if (!page)
1030                 return -ENOMEM;
1031         unlock_page(page);
1032
1033 retry_journal:
1034         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1035         if (IS_ERR(handle)) {
1036                 page_cache_release(page);
1037                 return PTR_ERR(handle);
1038         }
1039
1040         lock_page(page);
1041         if (page->mapping != mapping) {
1042                 /* The page got truncated from under us */
1043                 unlock_page(page);
1044                 page_cache_release(page);
1045                 ext4_journal_stop(handle);
1046                 goto retry_grab;
1047         }
1048         /* In case writeback began while the page was unlocked */
1049         wait_for_stable_page(page);
1050
1051 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1052         if (ext4_should_dioread_nolock(inode))
1053                 ret = ext4_block_write_begin(page, pos, len,
1054                                              ext4_get_block_write);
1055         else
1056                 ret = ext4_block_write_begin(page, pos, len,
1057                                              ext4_get_block);
1058 #else
1059         if (ext4_should_dioread_nolock(inode))
1060                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1061         else
1062                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1063 #endif
1064         if (!ret && ext4_should_journal_data(inode)) {
1065                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1066                                              from, to, NULL,
1067                                              do_journal_get_write_access);
1068         }
1069
1070         if (ret) {
1071                 unlock_page(page);
1072                 /*
1073                  * __block_write_begin may have instantiated a few blocks
1074                  * outside i_size.  Trim these off again. Don't need
1075                  * i_size_read because we hold i_mutex.
1076                  *
1077                  * Add inode to orphan list in case we crash before
1078                  * truncate finishes
1079                  */
1080                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1081                         ext4_orphan_add(handle, inode);
1082
1083                 ext4_journal_stop(handle);
1084                 if (pos + len > inode->i_size) {
1085                         ext4_truncate_failed_write(inode);
1086                         /*
1087                          * If truncate failed early the inode might
1088                          * still be on the orphan list; we need to
1089                          * make sure the inode is removed from the
1090                          * orphan list in that case.
1091                          */
1092                         if (inode->i_nlink)
1093                                 ext4_orphan_del(NULL, inode);
1094                 }
1095
1096                 if (ret == -ENOSPC &&
1097                     ext4_should_retry_alloc(inode->i_sb, &retries))
1098                         goto retry_journal;
1099                 page_cache_release(page);
1100                 return ret;
1101         }
1102         *pagep = page;
1103         return ret;
1104 }
1105
1106 /* For write_end() in data=journal mode */
1107 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1108 {
1109         int ret;
1110         if (!buffer_mapped(bh) || buffer_freed(bh))
1111                 return 0;
1112         set_buffer_uptodate(bh);
1113         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1114         clear_buffer_meta(bh);
1115         clear_buffer_prio(bh);
1116         return ret;
1117 }
1118
1119 /*
1120  * We need to pick up the new inode size which generic_commit_write gave us
1121  * `file' can be NULL - eg, when called from page_symlink().
1122  *
1123  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1124  * buffers are managed internally.
1125  */
1126 static int ext4_write_end(struct file *file,
1127                           struct address_space *mapping,
1128                           loff_t pos, unsigned len, unsigned copied,
1129                           struct page *page, void *fsdata)
1130 {
1131         handle_t *handle = ext4_journal_current_handle();
1132         struct inode *inode = mapping->host;
1133         loff_t old_size = inode->i_size;
1134         int ret = 0, ret2;
1135         int i_size_changed = 0;
1136
1137         trace_ext4_write_end(inode, pos, len, copied);
1138         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1139                 ret = ext4_jbd2_file_inode(handle, inode);
1140                 if (ret) {
1141                         unlock_page(page);
1142                         page_cache_release(page);
1143                         goto errout;
1144                 }
1145         }
1146
1147         if (ext4_has_inline_data(inode)) {
1148                 ret = ext4_write_inline_data_end(inode, pos, len,
1149                                                  copied, page);
1150                 if (ret < 0)
1151                         goto errout;
1152                 copied = ret;
1153         } else
1154                 copied = block_write_end(file, mapping, pos,
1155                                          len, copied, page, fsdata);
1156         /*
1157          * it's important to update i_size while still holding page lock:
1158          * page writeout could otherwise come in and zero beyond i_size.
1159          */
1160         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1161         unlock_page(page);
1162         page_cache_release(page);
1163
1164         if (old_size < pos)
1165                 pagecache_isize_extended(inode, old_size, pos);
1166         /*
1167          * Don't mark the inode dirty under page lock. First, it unnecessarily
1168          * makes the holding time of page lock longer. Second, it forces lock
1169          * ordering of page lock and transaction start for journaling
1170          * filesystems.
1171          */
1172         if (i_size_changed)
1173                 ext4_mark_inode_dirty(handle, inode);
1174
1175         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176                 /* if we have allocated more blocks and copied
1177                  * less. We will have blocks allocated outside
1178                  * inode->i_size. So truncate them
1179                  */
1180                 ext4_orphan_add(handle, inode);
1181 errout:
1182         ret2 = ext4_journal_stop(handle);
1183         if (!ret)
1184                 ret = ret2;
1185
1186         if (pos + len > inode->i_size) {
1187                 ext4_truncate_failed_write(inode);
1188                 /*
1189                  * If truncate failed early the inode might still be
1190                  * on the orphan list; we need to make sure the inode
1191                  * is removed from the orphan list in that case.
1192                  */
1193                 if (inode->i_nlink)
1194                         ext4_orphan_del(NULL, inode);
1195         }
1196
1197         return ret ? ret : copied;
1198 }
1199
1200 /*
1201  * This is a private version of page_zero_new_buffers() which doesn't
1202  * set the buffer to be dirty, since in data=journalled mode we need
1203  * to call ext4_handle_dirty_metadata() instead.
1204  */
1205 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1206 {
1207         unsigned int block_start = 0, block_end;
1208         struct buffer_head *head, *bh;
1209
1210         bh = head = page_buffers(page);
1211         do {
1212                 block_end = block_start + bh->b_size;
1213                 if (buffer_new(bh)) {
1214                         if (block_end > from && block_start < to) {
1215                                 if (!PageUptodate(page)) {
1216                                         unsigned start, size;
1217
1218                                         start = max(from, block_start);
1219                                         size = min(to, block_end) - start;
1220
1221                                         zero_user(page, start, size);
1222                                         set_buffer_uptodate(bh);
1223                                 }
1224                                 clear_buffer_new(bh);
1225                         }
1226                 }
1227                 block_start = block_end;
1228                 bh = bh->b_this_page;
1229         } while (bh != head);
1230 }
1231
1232 static int ext4_journalled_write_end(struct file *file,
1233                                      struct address_space *mapping,
1234                                      loff_t pos, unsigned len, unsigned copied,
1235                                      struct page *page, void *fsdata)
1236 {
1237         handle_t *handle = ext4_journal_current_handle();
1238         struct inode *inode = mapping->host;
1239         loff_t old_size = inode->i_size;
1240         int ret = 0, ret2;
1241         int partial = 0;
1242         unsigned from, to;
1243         int size_changed = 0;
1244
1245         trace_ext4_journalled_write_end(inode, pos, len, copied);
1246         from = pos & (PAGE_CACHE_SIZE - 1);
1247         to = from + len;
1248
1249         BUG_ON(!ext4_handle_valid(handle));
1250
1251         if (ext4_has_inline_data(inode))
1252                 copied = ext4_write_inline_data_end(inode, pos, len,
1253                                                     copied, page);
1254         else {
1255                 if (copied < len) {
1256                         if (!PageUptodate(page))
1257                                 copied = 0;
1258                         zero_new_buffers(page, from+copied, to);
1259                 }
1260
1261                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1262                                              to, &partial, write_end_fn);
1263                 if (!partial)
1264                         SetPageUptodate(page);
1265         }
1266         size_changed = ext4_update_inode_size(inode, pos + copied);
1267         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1268         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1269         unlock_page(page);
1270         page_cache_release(page);
1271
1272         if (old_size < pos)
1273                 pagecache_isize_extended(inode, old_size, pos);
1274
1275         if (size_changed) {
1276                 ret2 = ext4_mark_inode_dirty(handle, inode);
1277                 if (!ret)
1278                         ret = ret2;
1279         }
1280
1281         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1282                 /* if we have allocated more blocks and copied
1283                  * less. We will have blocks allocated outside
1284                  * inode->i_size. So truncate them
1285                  */
1286                 ext4_orphan_add(handle, inode);
1287
1288         ret2 = ext4_journal_stop(handle);
1289         if (!ret)
1290                 ret = ret2;
1291         if (pos + len > inode->i_size) {
1292                 ext4_truncate_failed_write(inode);
1293                 /*
1294                  * If truncate failed early the inode might still be
1295                  * on the orphan list; we need to make sure the inode
1296                  * is removed from the orphan list in that case.
1297                  */
1298                 if (inode->i_nlink)
1299                         ext4_orphan_del(NULL, inode);
1300         }
1301
1302         return ret ? ret : copied;
1303 }
1304
1305 /*
1306  * Reserve space for a single cluster
1307  */
1308 static int ext4_da_reserve_space(struct inode *inode)
1309 {
1310         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312         int ret;
1313
1314         /*
1315          * We will charge metadata quota at writeout time; this saves
1316          * us from metadata over-estimation, though we may go over by
1317          * a small amount in the end.  Here we just reserve for data.
1318          */
1319         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1320         if (ret)
1321                 return ret;
1322
1323         spin_lock(&ei->i_block_reservation_lock);
1324         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1325                 spin_unlock(&ei->i_block_reservation_lock);
1326                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1327                 return -ENOSPC;
1328         }
1329         ei->i_reserved_data_blocks++;
1330         trace_ext4_da_reserve_space(inode);
1331         spin_unlock(&ei->i_block_reservation_lock);
1332
1333         return 0;       /* success */
1334 }
1335
1336 static void ext4_da_release_space(struct inode *inode, int to_free)
1337 {
1338         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1339         struct ext4_inode_info *ei = EXT4_I(inode);
1340
1341         if (!to_free)
1342                 return;         /* Nothing to release, exit */
1343
1344         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1345
1346         trace_ext4_da_release_space(inode, to_free);
1347         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1348                 /*
1349                  * if there aren't enough reserved blocks, then the
1350                  * counter is messed up somewhere.  Since this
1351                  * function is called from invalidate page, it's
1352                  * harmless to return without any action.
1353                  */
1354                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1355                          "ino %lu, to_free %d with only %d reserved "
1356                          "data blocks", inode->i_ino, to_free,
1357                          ei->i_reserved_data_blocks);
1358                 WARN_ON(1);
1359                 to_free = ei->i_reserved_data_blocks;
1360         }
1361         ei->i_reserved_data_blocks -= to_free;
1362
1363         /* update fs dirty data blocks counter */
1364         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1365
1366         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1367
1368         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1369 }
1370
1371 static void ext4_da_page_release_reservation(struct page *page,
1372                                              unsigned int offset,
1373                                              unsigned int length)
1374 {
1375         int to_release = 0, contiguous_blks = 0;
1376         struct buffer_head *head, *bh;
1377         unsigned int curr_off = 0;
1378         struct inode *inode = page->mapping->host;
1379         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380         unsigned int stop = offset + length;
1381         int num_clusters;
1382         ext4_fsblk_t lblk;
1383
1384         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1385
1386         head = page_buffers(page);
1387         bh = head;
1388         do {
1389                 unsigned int next_off = curr_off + bh->b_size;
1390
1391                 if (next_off > stop)
1392                         break;
1393
1394                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1395                         to_release++;
1396                         contiguous_blks++;
1397                         clear_buffer_delay(bh);
1398                 } else if (contiguous_blks) {
1399                         lblk = page->index <<
1400                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1401                         lblk += (curr_off >> inode->i_blkbits) -
1402                                 contiguous_blks;
1403                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1404                         contiguous_blks = 0;
1405                 }
1406                 curr_off = next_off;
1407         } while ((bh = bh->b_this_page) != head);
1408
1409         if (contiguous_blks) {
1410                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1411                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1412                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1413         }
1414
1415         /* If we have released all the blocks belonging to a cluster, then we
1416          * need to release the reserved space for that cluster. */
1417         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1418         while (num_clusters > 0) {
1419                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1420                         ((num_clusters - 1) << sbi->s_cluster_bits);
1421                 if (sbi->s_cluster_ratio == 1 ||
1422                     !ext4_find_delalloc_cluster(inode, lblk))
1423                         ext4_da_release_space(inode, 1);
1424
1425                 num_clusters--;
1426         }
1427 }
1428
1429 /*
1430  * Delayed allocation stuff
1431  */
1432
1433 struct mpage_da_data {
1434         struct inode *inode;
1435         struct writeback_control *wbc;
1436
1437         pgoff_t first_page;     /* The first page to write */
1438         pgoff_t next_page;      /* Current page to examine */
1439         pgoff_t last_page;      /* Last page to examine */
1440         /*
1441          * Extent to map - this can be after first_page because that can be
1442          * fully mapped. We somewhat abuse m_flags to store whether the extent
1443          * is delalloc or unwritten.
1444          */
1445         struct ext4_map_blocks map;
1446         struct ext4_io_submit io_submit;        /* IO submission data */
1447 };
1448
1449 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1450                                        bool invalidate)
1451 {
1452         int nr_pages, i;
1453         pgoff_t index, end;
1454         struct pagevec pvec;
1455         struct inode *inode = mpd->inode;
1456         struct address_space *mapping = inode->i_mapping;
1457
1458         /* This is necessary when next_page == 0. */
1459         if (mpd->first_page >= mpd->next_page)
1460                 return;
1461
1462         index = mpd->first_page;
1463         end   = mpd->next_page - 1;
1464         if (invalidate) {
1465                 ext4_lblk_t start, last;
1466                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1467                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1468                 ext4_es_remove_extent(inode, start, last - start + 1);
1469         }
1470
1471         pagevec_init(&pvec, 0);
1472         while (index <= end) {
1473                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1474                 if (nr_pages == 0)
1475                         break;
1476                 for (i = 0; i < nr_pages; i++) {
1477                         struct page *page = pvec.pages[i];
1478                         if (page->index > end)
1479                                 break;
1480                         BUG_ON(!PageLocked(page));
1481                         BUG_ON(PageWriteback(page));
1482                         if (invalidate) {
1483                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1484                                 ClearPageUptodate(page);
1485                         }
1486                         unlock_page(page);
1487                 }
1488                 index = pvec.pages[nr_pages - 1]->index + 1;
1489                 pagevec_release(&pvec);
1490         }
1491 }
1492
1493 static void ext4_print_free_blocks(struct inode *inode)
1494 {
1495         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1496         struct super_block *sb = inode->i_sb;
1497         struct ext4_inode_info *ei = EXT4_I(inode);
1498
1499         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1500                EXT4_C2B(EXT4_SB(inode->i_sb),
1501                         ext4_count_free_clusters(sb)));
1502         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1503         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1504                (long long) EXT4_C2B(EXT4_SB(sb),
1505                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1506         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1507                (long long) EXT4_C2B(EXT4_SB(sb),
1508                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1509         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1510         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1511                  ei->i_reserved_data_blocks);
1512         return;
1513 }
1514
1515 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1516 {
1517         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1518 }
1519
1520 /*
1521  * This function is grabs code from the very beginning of
1522  * ext4_map_blocks, but assumes that the caller is from delayed write
1523  * time. This function looks up the requested blocks and sets the
1524  * buffer delay bit under the protection of i_data_sem.
1525  */
1526 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1527                               struct ext4_map_blocks *map,
1528                               struct buffer_head *bh)
1529 {
1530         struct extent_status es;
1531         int retval;
1532         sector_t invalid_block = ~((sector_t) 0xffff);
1533 #ifdef ES_AGGRESSIVE_TEST
1534         struct ext4_map_blocks orig_map;
1535
1536         memcpy(&orig_map, map, sizeof(*map));
1537 #endif
1538
1539         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1540                 invalid_block = ~0;
1541
1542         map->m_flags = 0;
1543         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1544                   "logical block %lu\n", inode->i_ino, map->m_len,
1545                   (unsigned long) map->m_lblk);
1546
1547         /* Lookup extent status tree firstly */
1548         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1549                 if (ext4_es_is_hole(&es)) {
1550                         retval = 0;
1551                         down_read(&EXT4_I(inode)->i_data_sem);
1552                         goto add_delayed;
1553                 }
1554
1555                 /*
1556                  * Delayed extent could be allocated by fallocate.
1557                  * So we need to check it.
1558                  */
1559                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1560                         map_bh(bh, inode->i_sb, invalid_block);
1561                         set_buffer_new(bh);
1562                         set_buffer_delay(bh);
1563                         return 0;
1564                 }
1565
1566                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1567                 retval = es.es_len - (iblock - es.es_lblk);
1568                 if (retval > map->m_len)
1569                         retval = map->m_len;
1570                 map->m_len = retval;
1571                 if (ext4_es_is_written(&es))
1572                         map->m_flags |= EXT4_MAP_MAPPED;
1573                 else if (ext4_es_is_unwritten(&es))
1574                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1575                 else
1576                         BUG_ON(1);
1577
1578 #ifdef ES_AGGRESSIVE_TEST
1579                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1580 #endif
1581                 return retval;
1582         }
1583
1584         /*
1585          * Try to see if we can get the block without requesting a new
1586          * file system block.
1587          */
1588         down_read(&EXT4_I(inode)->i_data_sem);
1589         if (ext4_has_inline_data(inode))
1590                 retval = 0;
1591         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1592                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1593         else
1594                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1595
1596 add_delayed:
1597         if (retval == 0) {
1598                 int ret;
1599                 /*
1600                  * XXX: __block_prepare_write() unmaps passed block,
1601                  * is it OK?
1602                  */
1603                 /*
1604                  * If the block was allocated from previously allocated cluster,
1605                  * then we don't need to reserve it again. However we still need
1606                  * to reserve metadata for every block we're going to write.
1607                  */
1608                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1609                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1610                         ret = ext4_da_reserve_space(inode);
1611                         if (ret) {
1612                                 /* not enough space to reserve */
1613                                 retval = ret;
1614                                 goto out_unlock;
1615                         }
1616                 }
1617
1618                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1619                                             ~0, EXTENT_STATUS_DELAYED);
1620                 if (ret) {
1621                         retval = ret;
1622                         goto out_unlock;
1623                 }
1624
1625                 map_bh(bh, inode->i_sb, invalid_block);
1626                 set_buffer_new(bh);
1627                 set_buffer_delay(bh);
1628         } else if (retval > 0) {
1629                 int ret;
1630                 unsigned int status;
1631
1632                 if (unlikely(retval != map->m_len)) {
1633                         ext4_warning(inode->i_sb,
1634                                      "ES len assertion failed for inode "
1635                                      "%lu: retval %d != map->m_len %d",
1636                                      inode->i_ino, retval, map->m_len);
1637                         WARN_ON(1);
1638                 }
1639
1640                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1641                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1642                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1643                                             map->m_pblk, status);
1644                 if (ret != 0)
1645                         retval = ret;
1646         }
1647
1648 out_unlock:
1649         up_read((&EXT4_I(inode)->i_data_sem));
1650
1651         return retval;
1652 }
1653
1654 /*
1655  * This is a special get_block_t callback which is used by
1656  * ext4_da_write_begin().  It will either return mapped block or
1657  * reserve space for a single block.
1658  *
1659  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1660  * We also have b_blocknr = -1 and b_bdev initialized properly
1661  *
1662  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1663  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1664  * initialized properly.
1665  */
1666 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1667                            struct buffer_head *bh, int create)
1668 {
1669         struct ext4_map_blocks map;
1670         int ret = 0;
1671
1672         BUG_ON(create == 0);
1673         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1674
1675         map.m_lblk = iblock;
1676         map.m_len = 1;
1677
1678         /*
1679          * first, we need to know whether the block is allocated already
1680          * preallocated blocks are unmapped but should treated
1681          * the same as allocated blocks.
1682          */
1683         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1684         if (ret <= 0)
1685                 return ret;
1686
1687         map_bh(bh, inode->i_sb, map.m_pblk);
1688         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1689
1690         if (buffer_unwritten(bh)) {
1691                 /* A delayed write to unwritten bh should be marked
1692                  * new and mapped.  Mapped ensures that we don't do
1693                  * get_block multiple times when we write to the same
1694                  * offset and new ensures that we do proper zero out
1695                  * for partial write.
1696                  */
1697                 set_buffer_new(bh);
1698                 set_buffer_mapped(bh);
1699         }
1700         return 0;
1701 }
1702
1703 static int bget_one(handle_t *handle, struct buffer_head *bh)
1704 {
1705         get_bh(bh);
1706         return 0;
1707 }
1708
1709 static int bput_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711         put_bh(bh);
1712         return 0;
1713 }
1714
1715 static int __ext4_journalled_writepage(struct page *page,
1716                                        unsigned int len)
1717 {
1718         struct address_space *mapping = page->mapping;
1719         struct inode *inode = mapping->host;
1720         struct buffer_head *page_bufs = NULL;
1721         handle_t *handle = NULL;
1722         int ret = 0, err = 0;
1723         int inline_data = ext4_has_inline_data(inode);
1724         struct buffer_head *inode_bh = NULL;
1725
1726         ClearPageChecked(page);
1727
1728         if (inline_data) {
1729                 BUG_ON(page->index != 0);
1730                 BUG_ON(len > ext4_get_max_inline_size(inode));
1731                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1732                 if (inode_bh == NULL)
1733                         goto out;
1734         } else {
1735                 page_bufs = page_buffers(page);
1736                 if (!page_bufs) {
1737                         BUG();
1738                         goto out;
1739                 }
1740                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1741                                        NULL, bget_one);
1742         }
1743         /*
1744          * We need to release the page lock before we start the
1745          * journal, so grab a reference so the page won't disappear
1746          * out from under us.
1747          */
1748         get_page(page);
1749         unlock_page(page);
1750
1751         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1752                                     ext4_writepage_trans_blocks(inode));
1753         if (IS_ERR(handle)) {
1754                 ret = PTR_ERR(handle);
1755                 put_page(page);
1756                 goto out_no_pagelock;
1757         }
1758         BUG_ON(!ext4_handle_valid(handle));
1759
1760         lock_page(page);
1761         put_page(page);
1762         if (page->mapping != mapping) {
1763                 /* The page got truncated from under us */
1764                 ext4_journal_stop(handle);
1765                 ret = 0;
1766                 goto out;
1767         }
1768
1769         if (inline_data) {
1770                 BUFFER_TRACE(inode_bh, "get write access");
1771                 ret = ext4_journal_get_write_access(handle, inode_bh);
1772
1773                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1774
1775         } else {
1776                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777                                              do_journal_get_write_access);
1778
1779                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1780                                              write_end_fn);
1781         }
1782         if (ret == 0)
1783                 ret = err;
1784         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1785         err = ext4_journal_stop(handle);
1786         if (!ret)
1787                 ret = err;
1788
1789         if (!ext4_has_inline_data(inode))
1790                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1791                                        NULL, bput_one);
1792         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1793 out:
1794         unlock_page(page);
1795 out_no_pagelock:
1796         brelse(inode_bh);
1797         return ret;
1798 }
1799
1800 /*
1801  * Note that we don't need to start a transaction unless we're journaling data
1802  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1803  * need to file the inode to the transaction's list in ordered mode because if
1804  * we are writing back data added by write(), the inode is already there and if
1805  * we are writing back data modified via mmap(), no one guarantees in which
1806  * transaction the data will hit the disk. In case we are journaling data, we
1807  * cannot start transaction directly because transaction start ranks above page
1808  * lock so we have to do some magic.
1809  *
1810  * This function can get called via...
1811  *   - ext4_writepages after taking page lock (have journal handle)
1812  *   - journal_submit_inode_data_buffers (no journal handle)
1813  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1814  *   - grab_page_cache when doing write_begin (have journal handle)
1815  *
1816  * We don't do any block allocation in this function. If we have page with
1817  * multiple blocks we need to write those buffer_heads that are mapped. This
1818  * is important for mmaped based write. So if we do with blocksize 1K
1819  * truncate(f, 1024);
1820  * a = mmap(f, 0, 4096);
1821  * a[0] = 'a';
1822  * truncate(f, 4096);
1823  * we have in the page first buffer_head mapped via page_mkwrite call back
1824  * but other buffer_heads would be unmapped but dirty (dirty done via the
1825  * do_wp_page). So writepage should write the first block. If we modify
1826  * the mmap area beyond 1024 we will again get a page_fault and the
1827  * page_mkwrite callback will do the block allocation and mark the
1828  * buffer_heads mapped.
1829  *
1830  * We redirty the page if we have any buffer_heads that is either delay or
1831  * unwritten in the page.
1832  *
1833  * We can get recursively called as show below.
1834  *
1835  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1836  *              ext4_writepage()
1837  *
1838  * But since we don't do any block allocation we should not deadlock.
1839  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1840  */
1841 static int ext4_writepage(struct page *page,
1842                           struct writeback_control *wbc)
1843 {
1844         int ret = 0;
1845         loff_t size;
1846         unsigned int len;
1847         struct buffer_head *page_bufs = NULL;
1848         struct inode *inode = page->mapping->host;
1849         struct ext4_io_submit io_submit;
1850         bool keep_towrite = false;
1851
1852         trace_ext4_writepage(page);
1853         size = i_size_read(inode);
1854         if (page->index == size >> PAGE_CACHE_SHIFT)
1855                 len = size & ~PAGE_CACHE_MASK;
1856         else
1857                 len = PAGE_CACHE_SIZE;
1858
1859         page_bufs = page_buffers(page);
1860         /*
1861          * We cannot do block allocation or other extent handling in this
1862          * function. If there are buffers needing that, we have to redirty
1863          * the page. But we may reach here when we do a journal commit via
1864          * journal_submit_inode_data_buffers() and in that case we must write
1865          * allocated buffers to achieve data=ordered mode guarantees.
1866          *
1867          * Also, if there is only one buffer per page (the fs block
1868          * size == the page size), if one buffer needs block
1869          * allocation or needs to modify the extent tree to clear the
1870          * unwritten flag, we know that the page can't be written at
1871          * all, so we might as well refuse the write immediately.
1872          * Unfortunately if the block size != page size, we can't as
1873          * easily detect this case using ext4_walk_page_buffers(), but
1874          * for the extremely common case, this is an optimization that
1875          * skips a useless round trip through ext4_bio_write_page().
1876          */
1877         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1878                                    ext4_bh_delay_or_unwritten)) {
1879                 redirty_page_for_writepage(wbc, page);
1880                 if ((current->flags & PF_MEMALLOC) ||
1881                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1882                         /*
1883                          * For memory cleaning there's no point in writing only
1884                          * some buffers. So just bail out. Warn if we came here
1885                          * from direct reclaim.
1886                          */
1887                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1888                                                         == PF_MEMALLOC);
1889                         unlock_page(page);
1890                         return 0;
1891                 }
1892                 keep_towrite = true;
1893         }
1894
1895         if (PageChecked(page) && ext4_should_journal_data(inode))
1896                 /*
1897                  * It's mmapped pagecache.  Add buffers and journal it.  There
1898                  * doesn't seem much point in redirtying the page here.
1899                  */
1900                 return __ext4_journalled_writepage(page, len);
1901
1902         ext4_io_submit_init(&io_submit, wbc);
1903         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1904         if (!io_submit.io_end) {
1905                 redirty_page_for_writepage(wbc, page);
1906                 unlock_page(page);
1907                 return -ENOMEM;
1908         }
1909         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1910         ext4_io_submit(&io_submit);
1911         /* Drop io_end reference we got from init */
1912         ext4_put_io_end_defer(io_submit.io_end);
1913         return ret;
1914 }
1915
1916 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1917 {
1918         int len;
1919         loff_t size = i_size_read(mpd->inode);
1920         int err;
1921
1922         BUG_ON(page->index != mpd->first_page);
1923         if (page->index == size >> PAGE_CACHE_SHIFT)
1924                 len = size & ~PAGE_CACHE_MASK;
1925         else
1926                 len = PAGE_CACHE_SIZE;
1927         clear_page_dirty_for_io(page);
1928         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1929         if (!err)
1930                 mpd->wbc->nr_to_write--;
1931         mpd->first_page++;
1932
1933         return err;
1934 }
1935
1936 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1937
1938 /*
1939  * mballoc gives us at most this number of blocks...
1940  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1941  * The rest of mballoc seems to handle chunks up to full group size.
1942  */
1943 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1944
1945 /*
1946  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1947  *
1948  * @mpd - extent of blocks
1949  * @lblk - logical number of the block in the file
1950  * @bh - buffer head we want to add to the extent
1951  *
1952  * The function is used to collect contig. blocks in the same state. If the
1953  * buffer doesn't require mapping for writeback and we haven't started the
1954  * extent of buffers to map yet, the function returns 'true' immediately - the
1955  * caller can write the buffer right away. Otherwise the function returns true
1956  * if the block has been added to the extent, false if the block couldn't be
1957  * added.
1958  */
1959 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1960                                    struct buffer_head *bh)
1961 {
1962         struct ext4_map_blocks *map = &mpd->map;
1963
1964         /* Buffer that doesn't need mapping for writeback? */
1965         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1966             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1967                 /* So far no extent to map => we write the buffer right away */
1968                 if (map->m_len == 0)
1969                         return true;
1970                 return false;
1971         }
1972
1973         /* First block in the extent? */
1974         if (map->m_len == 0) {
1975                 map->m_lblk = lblk;
1976                 map->m_len = 1;
1977                 map->m_flags = bh->b_state & BH_FLAGS;
1978                 return true;
1979         }
1980
1981         /* Don't go larger than mballoc is willing to allocate */
1982         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1983                 return false;
1984
1985         /* Can we merge the block to our big extent? */
1986         if (lblk == map->m_lblk + map->m_len &&
1987             (bh->b_state & BH_FLAGS) == map->m_flags) {
1988                 map->m_len++;
1989                 return true;
1990         }
1991         return false;
1992 }
1993
1994 /*
1995  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1996  *
1997  * @mpd - extent of blocks for mapping
1998  * @head - the first buffer in the page
1999  * @bh - buffer we should start processing from
2000  * @lblk - logical number of the block in the file corresponding to @bh
2001  *
2002  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2003  * the page for IO if all buffers in this page were mapped and there's no
2004  * accumulated extent of buffers to map or add buffers in the page to the
2005  * extent of buffers to map. The function returns 1 if the caller can continue
2006  * by processing the next page, 0 if it should stop adding buffers to the
2007  * extent to map because we cannot extend it anymore. It can also return value
2008  * < 0 in case of error during IO submission.
2009  */
2010 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2011                                    struct buffer_head *head,
2012                                    struct buffer_head *bh,
2013                                    ext4_lblk_t lblk)
2014 {
2015         struct inode *inode = mpd->inode;
2016         int err;
2017         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2018                                                         >> inode->i_blkbits;
2019
2020         do {
2021                 BUG_ON(buffer_locked(bh));
2022
2023                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2024                         /* Found extent to map? */
2025                         if (mpd->map.m_len)
2026                                 return 0;
2027                         /* Everything mapped so far and we hit EOF */
2028                         break;
2029                 }
2030         } while (lblk++, (bh = bh->b_this_page) != head);
2031         /* So far everything mapped? Submit the page for IO. */
2032         if (mpd->map.m_len == 0) {
2033                 err = mpage_submit_page(mpd, head->b_page);
2034                 if (err < 0)
2035                         return err;
2036         }
2037         return lblk < blocks;
2038 }
2039
2040 /*
2041  * mpage_map_buffers - update buffers corresponding to changed extent and
2042  *                     submit fully mapped pages for IO
2043  *
2044  * @mpd - description of extent to map, on return next extent to map
2045  *
2046  * Scan buffers corresponding to changed extent (we expect corresponding pages
2047  * to be already locked) and update buffer state according to new extent state.
2048  * We map delalloc buffers to their physical location, clear unwritten bits,
2049  * and mark buffers as uninit when we perform writes to unwritten extents
2050  * and do extent conversion after IO is finished. If the last page is not fully
2051  * mapped, we update @map to the next extent in the last page that needs
2052  * mapping. Otherwise we submit the page for IO.
2053  */
2054 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2055 {
2056         struct pagevec pvec;
2057         int nr_pages, i;
2058         struct inode *inode = mpd->inode;
2059         struct buffer_head *head, *bh;
2060         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2061         pgoff_t start, end;
2062         ext4_lblk_t lblk;
2063         sector_t pblock;
2064         int err;
2065
2066         start = mpd->map.m_lblk >> bpp_bits;
2067         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2068         lblk = start << bpp_bits;
2069         pblock = mpd->map.m_pblk;
2070
2071         pagevec_init(&pvec, 0);
2072         while (start <= end) {
2073                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2074                                           PAGEVEC_SIZE);
2075                 if (nr_pages == 0)
2076                         break;
2077                 for (i = 0; i < nr_pages; i++) {
2078                         struct page *page = pvec.pages[i];
2079
2080                         if (page->index > end)
2081                                 break;
2082                         /* Up to 'end' pages must be contiguous */
2083                         BUG_ON(page->index != start);
2084                         bh = head = page_buffers(page);
2085                         do {
2086                                 if (lblk < mpd->map.m_lblk)
2087                                         continue;
2088                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2089                                         /*
2090                                          * Buffer after end of mapped extent.
2091                                          * Find next buffer in the page to map.
2092                                          */
2093                                         mpd->map.m_len = 0;
2094                                         mpd->map.m_flags = 0;
2095                                         /*
2096                                          * FIXME: If dioread_nolock supports
2097                                          * blocksize < pagesize, we need to make
2098                                          * sure we add size mapped so far to
2099                                          * io_end->size as the following call
2100                                          * can submit the page for IO.
2101                                          */
2102                                         err = mpage_process_page_bufs(mpd, head,
2103                                                                       bh, lblk);
2104                                         pagevec_release(&pvec);
2105                                         if (err > 0)
2106                                                 err = 0;
2107                                         return err;
2108                                 }
2109                                 if (buffer_delay(bh)) {
2110                                         clear_buffer_delay(bh);
2111                                         bh->b_blocknr = pblock++;
2112                                 }
2113                                 clear_buffer_unwritten(bh);
2114                         } while (lblk++, (bh = bh->b_this_page) != head);
2115
2116                         /*
2117                          * FIXME: This is going to break if dioread_nolock
2118                          * supports blocksize < pagesize as we will try to
2119                          * convert potentially unmapped parts of inode.
2120                          */
2121                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2122                         /* Page fully mapped - let IO run! */
2123                         err = mpage_submit_page(mpd, page);
2124                         if (err < 0) {
2125                                 pagevec_release(&pvec);
2126                                 return err;
2127                         }
2128                         start++;
2129                 }
2130                 pagevec_release(&pvec);
2131         }
2132         /* Extent fully mapped and matches with page boundary. We are done. */
2133         mpd->map.m_len = 0;
2134         mpd->map.m_flags = 0;
2135         return 0;
2136 }
2137
2138 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2139 {
2140         struct inode *inode = mpd->inode;
2141         struct ext4_map_blocks *map = &mpd->map;
2142         int get_blocks_flags;
2143         int err, dioread_nolock;
2144
2145         trace_ext4_da_write_pages_extent(inode, map);
2146         /*
2147          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2148          * to convert an unwritten extent to be initialized (in the case
2149          * where we have written into one or more preallocated blocks).  It is
2150          * possible that we're going to need more metadata blocks than
2151          * previously reserved. However we must not fail because we're in
2152          * writeback and there is nothing we can do about it so it might result
2153          * in data loss.  So use reserved blocks to allocate metadata if
2154          * possible.
2155          *
2156          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2157          * the blocks in question are delalloc blocks.  This indicates
2158          * that the blocks and quotas has already been checked when
2159          * the data was copied into the page cache.
2160          */
2161         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2162                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2163         dioread_nolock = ext4_should_dioread_nolock(inode);
2164         if (dioread_nolock)
2165                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2166         if (map->m_flags & (1 << BH_Delay))
2167                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2168
2169         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2170         if (err < 0)
2171                 return err;
2172         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2173                 if (!mpd->io_submit.io_end->handle &&
2174                     ext4_handle_valid(handle)) {
2175                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2176                         handle->h_rsv_handle = NULL;
2177                 }
2178                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2179         }
2180
2181         BUG_ON(map->m_len == 0);
2182         if (map->m_flags & EXT4_MAP_NEW) {
2183                 struct block_device *bdev = inode->i_sb->s_bdev;
2184                 int i;
2185
2186                 for (i = 0; i < map->m_len; i++)
2187                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2188         }
2189         return 0;
2190 }
2191
2192 /*
2193  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2194  *                               mpd->len and submit pages underlying it for IO
2195  *
2196  * @handle - handle for journal operations
2197  * @mpd - extent to map
2198  * @give_up_on_write - we set this to true iff there is a fatal error and there
2199  *                     is no hope of writing the data. The caller should discard
2200  *                     dirty pages to avoid infinite loops.
2201  *
2202  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2203  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2204  * them to initialized or split the described range from larger unwritten
2205  * extent. Note that we need not map all the described range since allocation
2206  * can return less blocks or the range is covered by more unwritten extents. We
2207  * cannot map more because we are limited by reserved transaction credits. On
2208  * the other hand we always make sure that the last touched page is fully
2209  * mapped so that it can be written out (and thus forward progress is
2210  * guaranteed). After mapping we submit all mapped pages for IO.
2211  */
2212 static int mpage_map_and_submit_extent(handle_t *handle,
2213                                        struct mpage_da_data *mpd,
2214                                        bool *give_up_on_write)
2215 {
2216         struct inode *inode = mpd->inode;
2217         struct ext4_map_blocks *map = &mpd->map;
2218         int err;
2219         loff_t disksize;
2220         int progress = 0;
2221
2222         mpd->io_submit.io_end->offset =
2223                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2224         do {
2225                 err = mpage_map_one_extent(handle, mpd);
2226                 if (err < 0) {
2227                         struct super_block *sb = inode->i_sb;
2228
2229                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2230                                 goto invalidate_dirty_pages;
2231                         /*
2232                          * Let the uper layers retry transient errors.
2233                          * In the case of ENOSPC, if ext4_count_free_blocks()
2234                          * is non-zero, a commit should free up blocks.
2235                          */
2236                         if ((err == -ENOMEM) ||
2237                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2238                                 if (progress)
2239                                         goto update_disksize;
2240                                 return err;
2241                         }
2242                         ext4_msg(sb, KERN_CRIT,
2243                                  "Delayed block allocation failed for "
2244                                  "inode %lu at logical offset %llu with"
2245                                  " max blocks %u with error %d",
2246                                  inode->i_ino,
2247                                  (unsigned long long)map->m_lblk,
2248                                  (unsigned)map->m_len, -err);
2249                         ext4_msg(sb, KERN_CRIT,
2250                                  "This should not happen!! Data will "
2251                                  "be lost\n");
2252                         if (err == -ENOSPC)
2253                                 ext4_print_free_blocks(inode);
2254                 invalidate_dirty_pages:
2255                         *give_up_on_write = true;
2256                         return err;
2257                 }
2258                 progress = 1;
2259                 /*
2260                  * Update buffer state, submit mapped pages, and get us new
2261                  * extent to map
2262                  */
2263                 err = mpage_map_and_submit_buffers(mpd);
2264                 if (err < 0)
2265                         goto update_disksize;
2266         } while (map->m_len);
2267
2268 update_disksize:
2269         /*
2270          * Update on-disk size after IO is submitted.  Races with
2271          * truncate are avoided by checking i_size under i_data_sem.
2272          */
2273         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2274         if (disksize > EXT4_I(inode)->i_disksize) {
2275                 int err2;
2276                 loff_t i_size;
2277
2278                 down_write(&EXT4_I(inode)->i_data_sem);
2279                 i_size = i_size_read(inode);
2280                 if (disksize > i_size)
2281                         disksize = i_size;
2282                 if (disksize > EXT4_I(inode)->i_disksize)
2283                         EXT4_I(inode)->i_disksize = disksize;
2284                 err2 = ext4_mark_inode_dirty(handle, inode);
2285                 up_write(&EXT4_I(inode)->i_data_sem);
2286                 if (err2)
2287                         ext4_error(inode->i_sb,
2288                                    "Failed to mark inode %lu dirty",
2289                                    inode->i_ino);
2290                 if (!err)
2291                         err = err2;
2292         }
2293         return err;
2294 }
2295
2296 /*
2297  * Calculate the total number of credits to reserve for one writepages
2298  * iteration. This is called from ext4_writepages(). We map an extent of
2299  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2300  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2301  * bpp - 1 blocks in bpp different extents.
2302  */
2303 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2304 {
2305         int bpp = ext4_journal_blocks_per_page(inode);
2306
2307         return ext4_meta_trans_blocks(inode,
2308                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2309 }
2310
2311 /*
2312  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2313  *                               and underlying extent to map
2314  *
2315  * @mpd - where to look for pages
2316  *
2317  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2318  * IO immediately. When we find a page which isn't mapped we start accumulating
2319  * extent of buffers underlying these pages that needs mapping (formed by
2320  * either delayed or unwritten buffers). We also lock the pages containing
2321  * these buffers. The extent found is returned in @mpd structure (starting at
2322  * mpd->lblk with length mpd->len blocks).
2323  *
2324  * Note that this function can attach bios to one io_end structure which are
2325  * neither logically nor physically contiguous. Although it may seem as an
2326  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2327  * case as we need to track IO to all buffers underlying a page in one io_end.
2328  */
2329 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2330 {
2331         struct address_space *mapping = mpd->inode->i_mapping;
2332         struct pagevec pvec;
2333         unsigned int nr_pages;
2334         long left = mpd->wbc->nr_to_write;
2335         pgoff_t index = mpd->first_page;
2336         pgoff_t end = mpd->last_page;
2337         int tag;
2338         int i, err = 0;
2339         int blkbits = mpd->inode->i_blkbits;
2340         ext4_lblk_t lblk;
2341         struct buffer_head *head;
2342
2343         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2344                 tag = PAGECACHE_TAG_TOWRITE;
2345         else
2346                 tag = PAGECACHE_TAG_DIRTY;
2347
2348         pagevec_init(&pvec, 0);
2349         mpd->map.m_len = 0;
2350         mpd->next_page = index;
2351         while (index <= end) {
2352                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2353                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2354                 if (nr_pages == 0)
2355                         goto out;
2356
2357                 for (i = 0; i < nr_pages; i++) {
2358                         struct page *page = pvec.pages[i];
2359
2360                         /*
2361                          * At this point, the page may be truncated or
2362                          * invalidated (changing page->mapping to NULL), or
2363                          * even swizzled back from swapper_space to tmpfs file
2364                          * mapping. However, page->index will not change
2365                          * because we have a reference on the page.
2366                          */
2367                         if (page->index > end)
2368                                 goto out;
2369
2370                         /*
2371                          * Accumulated enough dirty pages? This doesn't apply
2372                          * to WB_SYNC_ALL mode. For integrity sync we have to
2373                          * keep going because someone may be concurrently
2374                          * dirtying pages, and we might have synced a lot of
2375                          * newly appeared dirty pages, but have not synced all
2376                          * of the old dirty pages.
2377                          */
2378                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2379                                 goto out;
2380
2381                         /* If we can't merge this page, we are done. */
2382                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2383                                 goto out;
2384
2385                         lock_page(page);
2386                         /*
2387                          * If the page is no longer dirty, or its mapping no
2388                          * longer corresponds to inode we are writing (which
2389                          * means it has been truncated or invalidated), or the
2390                          * page is already under writeback and we are not doing
2391                          * a data integrity writeback, skip the page
2392                          */
2393                         if (!PageDirty(page) ||
2394                             (PageWriteback(page) &&
2395                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2396                             unlikely(page->mapping != mapping)) {
2397                                 unlock_page(page);
2398                                 continue;
2399                         }
2400
2401                         wait_on_page_writeback(page);
2402                         BUG_ON(PageWriteback(page));
2403
2404                         if (mpd->map.m_len == 0)
2405                                 mpd->first_page = page->index;
2406                         mpd->next_page = page->index + 1;
2407                         /* Add all dirty buffers to mpd */
2408                         lblk = ((ext4_lblk_t)page->index) <<
2409                                 (PAGE_CACHE_SHIFT - blkbits);
2410                         head = page_buffers(page);
2411                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2412                         if (err <= 0)
2413                                 goto out;
2414                         err = 0;
2415                         left--;
2416                 }
2417                 pagevec_release(&pvec);
2418                 cond_resched();
2419         }
2420         return 0;
2421 out:
2422         pagevec_release(&pvec);
2423         return err;
2424 }
2425
2426 static int __writepage(struct page *page, struct writeback_control *wbc,
2427                        void *data)
2428 {
2429         struct address_space *mapping = data;
2430         int ret = ext4_writepage(page, wbc);
2431         mapping_set_error(mapping, ret);
2432         return ret;
2433 }
2434
2435 static int ext4_writepages(struct address_space *mapping,
2436                            struct writeback_control *wbc)
2437 {
2438         pgoff_t writeback_index = 0;
2439         long nr_to_write = wbc->nr_to_write;
2440         int range_whole = 0;
2441         int cycled = 1;
2442         handle_t *handle = NULL;
2443         struct mpage_da_data mpd;
2444         struct inode *inode = mapping->host;
2445         int needed_blocks, rsv_blocks = 0, ret = 0;
2446         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2447         bool done;
2448         struct blk_plug plug;
2449         bool give_up_on_write = false;
2450
2451         trace_ext4_writepages(inode, wbc);
2452
2453         /*
2454          * No pages to write? This is mainly a kludge to avoid starting
2455          * a transaction for special inodes like journal inode on last iput()
2456          * because that could violate lock ordering on umount
2457          */
2458         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2459                 goto out_writepages;
2460
2461         if (ext4_should_journal_data(inode)) {
2462                 struct blk_plug plug;
2463
2464                 blk_start_plug(&plug);
2465                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2466                 blk_finish_plug(&plug);
2467                 goto out_writepages;
2468         }
2469
2470         /*
2471          * If the filesystem has aborted, it is read-only, so return
2472          * right away instead of dumping stack traces later on that
2473          * will obscure the real source of the problem.  We test
2474          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2475          * the latter could be true if the filesystem is mounted
2476          * read-only, and in that case, ext4_writepages should
2477          * *never* be called, so if that ever happens, we would want
2478          * the stack trace.
2479          */
2480         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2481                 ret = -EROFS;
2482                 goto out_writepages;
2483         }
2484
2485         if (ext4_should_dioread_nolock(inode)) {
2486                 /*
2487                  * We may need to convert up to one extent per block in
2488                  * the page and we may dirty the inode.
2489                  */
2490                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2491         }
2492
2493         /*
2494          * If we have inline data and arrive here, it means that
2495          * we will soon create the block for the 1st page, so
2496          * we'd better clear the inline data here.
2497          */
2498         if (ext4_has_inline_data(inode)) {
2499                 /* Just inode will be modified... */
2500                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2501                 if (IS_ERR(handle)) {
2502                         ret = PTR_ERR(handle);
2503                         goto out_writepages;
2504                 }
2505                 BUG_ON(ext4_test_inode_state(inode,
2506                                 EXT4_STATE_MAY_INLINE_DATA));
2507                 ext4_destroy_inline_data(handle, inode);
2508                 ext4_journal_stop(handle);
2509         }
2510
2511         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2512                 range_whole = 1;
2513
2514         if (wbc->range_cyclic) {
2515                 writeback_index = mapping->writeback_index;
2516                 if (writeback_index)
2517                         cycled = 0;
2518                 mpd.first_page = writeback_index;
2519                 mpd.last_page = -1;
2520         } else {
2521                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2522                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2523         }
2524
2525         mpd.inode = inode;
2526         mpd.wbc = wbc;
2527         ext4_io_submit_init(&mpd.io_submit, wbc);
2528 retry:
2529         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2530                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2531         done = false;
2532         blk_start_plug(&plug);
2533         while (!done && mpd.first_page <= mpd.last_page) {
2534                 /* For each extent of pages we use new io_end */
2535                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2536                 if (!mpd.io_submit.io_end) {
2537                         ret = -ENOMEM;
2538                         break;
2539                 }
2540
2541                 /*
2542                  * We have two constraints: We find one extent to map and we
2543                  * must always write out whole page (makes a difference when
2544                  * blocksize < pagesize) so that we don't block on IO when we
2545                  * try to write out the rest of the page. Journalled mode is
2546                  * not supported by delalloc.
2547                  */
2548                 BUG_ON(ext4_should_journal_data(inode));
2549                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2550
2551                 /* start a new transaction */
2552                 handle = ext4_journal_start_with_reserve(inode,
2553                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2554                 if (IS_ERR(handle)) {
2555                         ret = PTR_ERR(handle);
2556                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2557                                "%ld pages, ino %lu; err %d", __func__,
2558                                 wbc->nr_to_write, inode->i_ino, ret);
2559                         /* Release allocated io_end */
2560                         ext4_put_io_end(mpd.io_submit.io_end);
2561                         break;
2562                 }
2563
2564                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2565                 ret = mpage_prepare_extent_to_map(&mpd);
2566                 if (!ret) {
2567                         if (mpd.map.m_len)
2568                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2569                                         &give_up_on_write);
2570                         else {
2571                                 /*
2572                                  * We scanned the whole range (or exhausted
2573                                  * nr_to_write), submitted what was mapped and
2574                                  * didn't find anything needing mapping. We are
2575                                  * done.
2576                                  */
2577                                 done = true;
2578                         }
2579                 }
2580                 ext4_journal_stop(handle);
2581                 /* Submit prepared bio */
2582                 ext4_io_submit(&mpd.io_submit);
2583                 /* Unlock pages we didn't use */
2584                 mpage_release_unused_pages(&mpd, give_up_on_write);
2585                 /* Drop our io_end reference we got from init */
2586                 ext4_put_io_end(mpd.io_submit.io_end);
2587
2588                 if (ret == -ENOSPC && sbi->s_journal) {
2589                         /*
2590                          * Commit the transaction which would
2591                          * free blocks released in the transaction
2592                          * and try again
2593                          */
2594                         jbd2_journal_force_commit_nested(sbi->s_journal);
2595                         ret = 0;
2596                         continue;
2597                 }
2598                 /* Fatal error - ENOMEM, EIO... */
2599                 if (ret)
2600                         break;
2601         }
2602         blk_finish_plug(&plug);
2603         if (!ret && !cycled && wbc->nr_to_write > 0) {
2604                 cycled = 1;
2605                 mpd.last_page = writeback_index - 1;
2606                 mpd.first_page = 0;
2607                 goto retry;
2608         }
2609
2610         /* Update index */
2611         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2612                 /*
2613                  * Set the writeback_index so that range_cyclic
2614                  * mode will write it back later
2615                  */
2616                 mapping->writeback_index = mpd.first_page;
2617
2618 out_writepages:
2619         trace_ext4_writepages_result(inode, wbc, ret,
2620                                      nr_to_write - wbc->nr_to_write);
2621         return ret;
2622 }
2623
2624 static int ext4_nonda_switch(struct super_block *sb)
2625 {
2626         s64 free_clusters, dirty_clusters;
2627         struct ext4_sb_info *sbi = EXT4_SB(sb);
2628
2629         /*
2630          * switch to non delalloc mode if we are running low
2631          * on free block. The free block accounting via percpu
2632          * counters can get slightly wrong with percpu_counter_batch getting
2633          * accumulated on each CPU without updating global counters
2634          * Delalloc need an accurate free block accounting. So switch
2635          * to non delalloc when we are near to error range.
2636          */
2637         free_clusters =
2638                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2639         dirty_clusters =
2640                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2641         /*
2642          * Start pushing delalloc when 1/2 of free blocks are dirty.
2643          */
2644         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2645                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2646
2647         if (2 * free_clusters < 3 * dirty_clusters ||
2648             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2649                 /*
2650                  * free block count is less than 150% of dirty blocks
2651                  * or free blocks is less than watermark
2652                  */
2653                 return 1;
2654         }
2655         return 0;
2656 }
2657
2658 /* We always reserve for an inode update; the superblock could be there too */
2659 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2660 {
2661         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2662                 return 1;
2663
2664         if (pos + len <= 0x7fffffffULL)
2665                 return 1;
2666
2667         /* We might need to update the superblock to set LARGE_FILE */
2668         return 2;
2669 }
2670
2671 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2672                                loff_t pos, unsigned len, unsigned flags,
2673                                struct page **pagep, void **fsdata)
2674 {
2675         int ret, retries = 0;
2676         struct page *page;
2677         pgoff_t index;
2678         struct inode *inode = mapping->host;
2679         handle_t *handle;
2680
2681         index = pos >> PAGE_CACHE_SHIFT;
2682
2683         if (ext4_nonda_switch(inode->i_sb)) {
2684                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2685                 return ext4_write_begin(file, mapping, pos,
2686                                         len, flags, pagep, fsdata);
2687         }
2688         *fsdata = (void *)0;
2689         trace_ext4_da_write_begin(inode, pos, len, flags);
2690
2691         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2692                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2693                                                       pos, len, flags,
2694                                                       pagep, fsdata);
2695                 if (ret < 0)
2696                         return ret;
2697                 if (ret == 1)
2698                         return 0;
2699         }
2700
2701         /*
2702          * grab_cache_page_write_begin() can take a long time if the
2703          * system is thrashing due to memory pressure, or if the page
2704          * is being written back.  So grab it first before we start
2705          * the transaction handle.  This also allows us to allocate
2706          * the page (if needed) without using GFP_NOFS.
2707          */
2708 retry_grab:
2709         page = grab_cache_page_write_begin(mapping, index, flags);
2710         if (!page)
2711                 return -ENOMEM;
2712         unlock_page(page);
2713
2714         /*
2715          * With delayed allocation, we don't log the i_disksize update
2716          * if there is delayed block allocation. But we still need
2717          * to journalling the i_disksize update if writes to the end
2718          * of file which has an already mapped buffer.
2719          */
2720 retry_journal:
2721         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2722                                 ext4_da_write_credits(inode, pos, len));
2723         if (IS_ERR(handle)) {
2724                 page_cache_release(page);
2725                 return PTR_ERR(handle);
2726         }
2727
2728         lock_page(page);
2729         if (page->mapping != mapping) {
2730                 /* The page got truncated from under us */
2731                 unlock_page(page);
2732                 page_cache_release(page);
2733                 ext4_journal_stop(handle);
2734                 goto retry_grab;
2735         }
2736         /* In case writeback began while the page was unlocked */
2737         wait_for_stable_page(page);
2738
2739 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2740         ret = ext4_block_write_begin(page, pos, len,
2741                                      ext4_da_get_block_prep);
2742 #else
2743         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2744 #endif
2745         if (ret < 0) {
2746                 unlock_page(page);
2747                 ext4_journal_stop(handle);
2748                 /*
2749                  * block_write_begin may have instantiated a few blocks
2750                  * outside i_size.  Trim these off again. Don't need
2751                  * i_size_read because we hold i_mutex.
2752                  */
2753                 if (pos + len > inode->i_size)
2754                         ext4_truncate_failed_write(inode);
2755
2756                 if (ret == -ENOSPC &&
2757                     ext4_should_retry_alloc(inode->i_sb, &retries))
2758                         goto retry_journal;
2759
2760                 page_cache_release(page);
2761                 return ret;
2762         }
2763
2764         *pagep = page;
2765         return ret;
2766 }
2767
2768 /*
2769  * Check if we should update i_disksize
2770  * when write to the end of file but not require block allocation
2771  */
2772 static int ext4_da_should_update_i_disksize(struct page *page,
2773                                             unsigned long offset)
2774 {
2775         struct buffer_head *bh;
2776         struct inode *inode = page->mapping->host;
2777         unsigned int idx;
2778         int i;
2779
2780         bh = page_buffers(page);
2781         idx = offset >> inode->i_blkbits;
2782
2783         for (i = 0; i < idx; i++)
2784                 bh = bh->b_this_page;
2785
2786         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2787                 return 0;
2788         return 1;
2789 }
2790
2791 static int ext4_da_write_end(struct file *file,
2792                              struct address_space *mapping,
2793                              loff_t pos, unsigned len, unsigned copied,
2794                              struct page *page, void *fsdata)
2795 {
2796         struct inode *inode = mapping->host;
2797         int ret = 0, ret2;
2798         handle_t *handle = ext4_journal_current_handle();
2799         loff_t new_i_size;
2800         unsigned long start, end;
2801         int write_mode = (int)(unsigned long)fsdata;
2802
2803         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2804                 return ext4_write_end(file, mapping, pos,
2805                                       len, copied, page, fsdata);
2806
2807         trace_ext4_da_write_end(inode, pos, len, copied);
2808         start = pos & (PAGE_CACHE_SIZE - 1);
2809         end = start + copied - 1;
2810
2811         /*
2812          * generic_write_end() will run mark_inode_dirty() if i_size
2813          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2814          * into that.
2815          */
2816         new_i_size = pos + copied;
2817         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2818                 if (ext4_has_inline_data(inode) ||
2819                     ext4_da_should_update_i_disksize(page, end)) {
2820                         ext4_update_i_disksize(inode, new_i_size);
2821                         /* We need to mark inode dirty even if
2822                          * new_i_size is less that inode->i_size
2823                          * bu greater than i_disksize.(hint delalloc)
2824                          */
2825                         ext4_mark_inode_dirty(handle, inode);
2826                 }
2827         }
2828
2829         if (write_mode != CONVERT_INLINE_DATA &&
2830             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2831             ext4_has_inline_data(inode))
2832                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2833                                                      page);
2834         else
2835                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2836                                                         page, fsdata);
2837
2838         copied = ret2;
2839         if (ret2 < 0)
2840                 ret = ret2;
2841         ret2 = ext4_journal_stop(handle);
2842         if (!ret)
2843                 ret = ret2;
2844
2845         return ret ? ret : copied;
2846 }
2847
2848 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2849                                    unsigned int length)
2850 {
2851         /*
2852          * Drop reserved blocks
2853          */
2854         BUG_ON(!PageLocked(page));
2855         if (!page_has_buffers(page))
2856                 goto out;
2857
2858         ext4_da_page_release_reservation(page, offset, length);
2859
2860 out:
2861         ext4_invalidatepage(page, offset, length);
2862
2863         return;
2864 }
2865
2866 /*
2867  * Force all delayed allocation blocks to be allocated for a given inode.
2868  */
2869 int ext4_alloc_da_blocks(struct inode *inode)
2870 {
2871         trace_ext4_alloc_da_blocks(inode);
2872
2873         if (!EXT4_I(inode)->i_reserved_data_blocks)
2874                 return 0;
2875
2876         /*
2877          * We do something simple for now.  The filemap_flush() will
2878          * also start triggering a write of the data blocks, which is
2879          * not strictly speaking necessary (and for users of
2880          * laptop_mode, not even desirable).  However, to do otherwise
2881          * would require replicating code paths in:
2882          *
2883          * ext4_writepages() ->
2884          *    write_cache_pages() ---> (via passed in callback function)
2885          *        __mpage_da_writepage() -->
2886          *           mpage_add_bh_to_extent()
2887          *           mpage_da_map_blocks()
2888          *
2889          * The problem is that write_cache_pages(), located in
2890          * mm/page-writeback.c, marks pages clean in preparation for
2891          * doing I/O, which is not desirable if we're not planning on
2892          * doing I/O at all.
2893          *
2894          * We could call write_cache_pages(), and then redirty all of
2895          * the pages by calling redirty_page_for_writepage() but that
2896          * would be ugly in the extreme.  So instead we would need to
2897          * replicate parts of the code in the above functions,
2898          * simplifying them because we wouldn't actually intend to
2899          * write out the pages, but rather only collect contiguous
2900          * logical block extents, call the multi-block allocator, and
2901          * then update the buffer heads with the block allocations.
2902          *
2903          * For now, though, we'll cheat by calling filemap_flush(),
2904          * which will map the blocks, and start the I/O, but not
2905          * actually wait for the I/O to complete.
2906          */
2907         return filemap_flush(inode->i_mapping);
2908 }
2909
2910 /*
2911  * bmap() is special.  It gets used by applications such as lilo and by
2912  * the swapper to find the on-disk block of a specific piece of data.
2913  *
2914  * Naturally, this is dangerous if the block concerned is still in the
2915  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2916  * filesystem and enables swap, then they may get a nasty shock when the
2917  * data getting swapped to that swapfile suddenly gets overwritten by
2918  * the original zero's written out previously to the journal and
2919  * awaiting writeback in the kernel's buffer cache.
2920  *
2921  * So, if we see any bmap calls here on a modified, data-journaled file,
2922  * take extra steps to flush any blocks which might be in the cache.
2923  */
2924 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2925 {
2926         struct inode *inode = mapping->host;
2927         journal_t *journal;
2928         int err;
2929
2930         /*
2931          * We can get here for an inline file via the FIBMAP ioctl
2932          */
2933         if (ext4_has_inline_data(inode))
2934                 return 0;
2935
2936         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2937                         test_opt(inode->i_sb, DELALLOC)) {
2938                 /*
2939                  * With delalloc we want to sync the file
2940                  * so that we can make sure we allocate
2941                  * blocks for file
2942                  */
2943                 filemap_write_and_wait(mapping);
2944         }
2945
2946         if (EXT4_JOURNAL(inode) &&
2947             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2948                 /*
2949                  * This is a REALLY heavyweight approach, but the use of
2950                  * bmap on dirty files is expected to be extremely rare:
2951                  * only if we run lilo or swapon on a freshly made file
2952                  * do we expect this to happen.
2953                  *
2954                  * (bmap requires CAP_SYS_RAWIO so this does not
2955                  * represent an unprivileged user DOS attack --- we'd be
2956                  * in trouble if mortal users could trigger this path at
2957                  * will.)
2958                  *
2959                  * NB. EXT4_STATE_JDATA is not set on files other than
2960                  * regular files.  If somebody wants to bmap a directory
2961                  * or symlink and gets confused because the buffer
2962                  * hasn't yet been flushed to disk, they deserve
2963                  * everything they get.
2964                  */
2965
2966                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2967                 journal = EXT4_JOURNAL(inode);
2968                 jbd2_journal_lock_updates(journal);
2969                 err = jbd2_journal_flush(journal);
2970                 jbd2_journal_unlock_updates(journal);
2971
2972                 if (err)
2973                         return 0;
2974         }
2975
2976         return generic_block_bmap(mapping, block, ext4_get_block);
2977 }
2978
2979 static int ext4_readpage(struct file *file, struct page *page)
2980 {
2981         int ret = -EAGAIN;
2982         struct inode *inode = page->mapping->host;
2983
2984         trace_ext4_readpage(page);
2985
2986         if (ext4_has_inline_data(inode))
2987                 ret = ext4_readpage_inline(inode, page);
2988
2989         if (ret == -EAGAIN)
2990                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2991
2992         return ret;
2993 }
2994
2995 static int
2996 ext4_readpages(struct file *file, struct address_space *mapping,
2997                 struct list_head *pages, unsigned nr_pages)
2998 {
2999         struct inode *inode = mapping->host;
3000
3001         /* If the file has inline data, no need to do readpages. */
3002         if (ext4_has_inline_data(inode))
3003                 return 0;
3004
3005         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3006 }
3007
3008 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3009                                 unsigned int length)
3010 {
3011         trace_ext4_invalidatepage(page, offset, length);
3012
3013         /* No journalling happens on data buffers when this function is used */
3014         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3015
3016         block_invalidatepage(page, offset, length);
3017 }
3018
3019 static int __ext4_journalled_invalidatepage(struct page *page,
3020                                             unsigned int offset,
3021                                             unsigned int length)
3022 {
3023         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3024
3025         trace_ext4_journalled_invalidatepage(page, offset, length);
3026
3027         /*
3028          * If it's a full truncate we just forget about the pending dirtying
3029          */
3030         if (offset == 0 && length == PAGE_CACHE_SIZE)
3031                 ClearPageChecked(page);
3032
3033         return jbd2_journal_invalidatepage(journal, page, offset, length);
3034 }
3035
3036 /* Wrapper for aops... */
3037 static void ext4_journalled_invalidatepage(struct page *page,
3038                                            unsigned int offset,
3039                                            unsigned int length)
3040 {
3041         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3042 }
3043
3044 static int ext4_releasepage(struct page *page, gfp_t wait)
3045 {
3046         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3047
3048         trace_ext4_releasepage(page);
3049
3050         /* Page has dirty journalled data -> cannot release */
3051         if (PageChecked(page))
3052                 return 0;
3053         if (journal)
3054                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3055         else
3056                 return try_to_free_buffers(page);
3057 }
3058
3059 /*
3060  * ext4_get_block used when preparing for a DIO write or buffer write.
3061  * We allocate an uinitialized extent if blocks haven't been allocated.
3062  * The extent will be converted to initialized after the IO is complete.
3063  */
3064 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3065                    struct buffer_head *bh_result, int create)
3066 {
3067         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3068                    inode->i_ino, create);
3069         return _ext4_get_block(inode, iblock, bh_result,
3070                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3071 }
3072
3073 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3074                    struct buffer_head *bh_result, int create)
3075 {
3076         int ret;
3077
3078         ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3079                    inode->i_ino, create);
3080         ret = _ext4_get_block(inode, iblock, bh_result, 0);
3081         /*
3082          * Blocks should have been preallocated! ext4_file_write_iter() checks
3083          * that.
3084          */
3085         WARN_ON_ONCE(!buffer_mapped(bh_result));
3086
3087         return ret;
3088 }
3089
3090 #ifdef CONFIG_FS_DAX
3091 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3092                             struct buffer_head *bh_result, int create)
3093 {
3094         int ret, err;
3095         int credits;
3096         struct ext4_map_blocks map;
3097         handle_t *handle = NULL;
3098         int flags = 0;
3099
3100         ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3101                    inode->i_ino, create);
3102         map.m_lblk = iblock;
3103         map.m_len = bh_result->b_size >> inode->i_blkbits;
3104         credits = ext4_chunk_trans_blocks(inode, map.m_len);
3105         if (create) {
3106                 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3107                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3108                 if (IS_ERR(handle)) {
3109                         ret = PTR_ERR(handle);
3110                         return ret;
3111                 }
3112         }
3113
3114         ret = ext4_map_blocks(handle, inode, &map, flags);
3115         if (create) {
3116                 err = ext4_journal_stop(handle);
3117                 if (ret >= 0 && err < 0)
3118                         ret = err;
3119         }
3120         if (ret <= 0)
3121                 goto out;
3122         if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3123                 int err2;
3124
3125                 /*
3126                  * We are protected by i_mmap_sem so we know block cannot go
3127                  * away from under us even though we dropped i_data_sem.
3128                  * Convert extent to written and write zeros there.
3129                  *
3130                  * Note: We may get here even when create == 0.
3131                  */
3132                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3133                 if (IS_ERR(handle)) {
3134                         ret = PTR_ERR(handle);
3135                         goto out;
3136                 }
3137
3138                 err = ext4_map_blocks(handle, inode, &map,
3139                       EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3140                 if (err < 0)
3141                         ret = err;
3142                 err2 = ext4_journal_stop(handle);
3143                 if (err2 < 0 && ret > 0)
3144                         ret = err2;
3145         }
3146 out:
3147         WARN_ON_ONCE(ret == 0 && create);
3148         if (ret > 0) {
3149                 map_bh(bh_result, inode->i_sb, map.m_pblk);
3150                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3151                                         map.m_flags;
3152                 /*
3153                  * At least for now we have to clear BH_New so that DAX code
3154                  * doesn't attempt to zero blocks again in a racy way.
3155                  */
3156                 bh_result->b_state &= ~(1 << BH_New);
3157                 bh_result->b_size = map.m_len << inode->i_blkbits;
3158                 ret = 0;
3159         }
3160         return ret;
3161 }
3162 #endif
3163
3164 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3165                             ssize_t size, void *private)
3166 {
3167         ext4_io_end_t *io_end = iocb->private;
3168
3169         /* if not async direct IO just return */
3170         if (!io_end)
3171                 return;
3172
3173         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3174                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3175                   iocb->private, io_end->inode->i_ino, iocb, offset,
3176                   size);
3177
3178         iocb->private = NULL;
3179         io_end->offset = offset;
3180         io_end->size = size;
3181         ext4_put_io_end(io_end);
3182 }
3183
3184 /*
3185  * For ext4 extent files, ext4 will do direct-io write to holes,
3186  * preallocated extents, and those write extend the file, no need to
3187  * fall back to buffered IO.
3188  *
3189  * For holes, we fallocate those blocks, mark them as unwritten
3190  * If those blocks were preallocated, we mark sure they are split, but
3191  * still keep the range to write as unwritten.
3192  *
3193  * The unwritten extents will be converted to written when DIO is completed.
3194  * For async direct IO, since the IO may still pending when return, we
3195  * set up an end_io call back function, which will do the conversion
3196  * when async direct IO completed.
3197  *
3198  * If the O_DIRECT write will extend the file then add this inode to the
3199  * orphan list.  So recovery will truncate it back to the original size
3200  * if the machine crashes during the write.
3201  *
3202  */
3203 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3204                                   loff_t offset)
3205 {
3206         struct file *file = iocb->ki_filp;
3207         struct inode *inode = file->f_mapping->host;
3208         ssize_t ret;
3209         size_t count = iov_iter_count(iter);
3210         int overwrite = 0;
3211         get_block_t *get_block_func = NULL;
3212         int dio_flags = 0;
3213         loff_t final_size = offset + count;
3214         ext4_io_end_t *io_end = NULL;
3215
3216         /* Use the old path for reads and writes beyond i_size. */
3217         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3218                 return ext4_ind_direct_IO(iocb, iter, offset);
3219
3220         BUG_ON(iocb->private == NULL);
3221
3222         /*
3223          * Make all waiters for direct IO properly wait also for extent
3224          * conversion. This also disallows race between truncate() and
3225          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3226          */
3227         if (iov_iter_rw(iter) == WRITE)
3228                 inode_dio_begin(inode);
3229
3230         /* If we do a overwrite dio, i_mutex locking can be released */
3231         overwrite = *((int *)iocb->private);
3232
3233         if (overwrite)
3234                 mutex_unlock(&inode->i_mutex);
3235
3236         /*
3237          * We could direct write to holes and fallocate.
3238          *
3239          * Allocated blocks to fill the hole are marked as
3240          * unwritten to prevent parallel buffered read to expose
3241          * the stale data before DIO complete the data IO.
3242          *
3243          * As to previously fallocated extents, ext4 get_block will
3244          * just simply mark the buffer mapped but still keep the
3245          * extents unwritten.
3246          *
3247          * For non AIO case, we will convert those unwritten extents
3248          * to written after return back from blockdev_direct_IO.
3249          *
3250          * For async DIO, the conversion needs to be deferred when the
3251          * IO is completed. The ext4 end_io callback function will be
3252          * called to take care of the conversion work.  Here for async
3253          * case, we allocate an io_end structure to hook to the iocb.
3254          */
3255         iocb->private = NULL;
3256         ext4_inode_aio_set(inode, NULL);
3257         if (!is_sync_kiocb(iocb)) {
3258                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3259                 if (!io_end) {
3260                         ret = -ENOMEM;
3261                         goto retake_lock;
3262                 }
3263                 /*
3264                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3265                  */
3266                 iocb->private = ext4_get_io_end(io_end);
3267                 /*
3268                  * we save the io structure for current async direct
3269                  * IO, so that later ext4_map_blocks() could flag the
3270                  * io structure whether there is a unwritten extents
3271                  * needs to be converted when IO is completed.
3272                  */
3273                 ext4_inode_aio_set(inode, io_end);
3274         }
3275
3276         if (overwrite) {
3277                 get_block_func = ext4_get_block_overwrite;
3278         } else {
3279                 get_block_func = ext4_get_block_write;
3280                 dio_flags = DIO_LOCKING;
3281         }
3282 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3283         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3284 #endif
3285         if (IS_DAX(inode))
3286                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3287                                 ext4_end_io_dio, dio_flags);
3288         else
3289                 ret = __blockdev_direct_IO(iocb, inode,
3290                                            inode->i_sb->s_bdev, iter, offset,
3291                                            get_block_func,
3292                                            ext4_end_io_dio, NULL, dio_flags);
3293
3294         /*
3295          * Put our reference to io_end. This can free the io_end structure e.g.
3296          * in sync IO case or in case of error. It can even perform extent
3297          * conversion if all bios we submitted finished before we got here.
3298          * Note that in that case iocb->private can be already set to NULL
3299          * here.
3300          */
3301         if (io_end) {
3302                 ext4_inode_aio_set(inode, NULL);
3303                 ext4_put_io_end(io_end);
3304                 /*
3305                  * When no IO was submitted ext4_end_io_dio() was not
3306                  * called so we have to put iocb's reference.
3307                  */
3308                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3309                         WARN_ON(iocb->private != io_end);
3310                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3311                         ext4_put_io_end(io_end);
3312                         iocb->private = NULL;
3313                 }
3314         }
3315         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3316                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3317                 int err;
3318                 /*
3319                  * for non AIO case, since the IO is already
3320                  * completed, we could do the conversion right here
3321                  */
3322                 err = ext4_convert_unwritten_extents(NULL, inode,
3323                                                      offset, ret);
3324                 if (err < 0)
3325                         ret = err;
3326                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3327         }
3328
3329 retake_lock:
3330         if (iov_iter_rw(iter) == WRITE)
3331                 inode_dio_end(inode);
3332         /* take i_mutex locking again if we do a ovewrite dio */
3333         if (overwrite)
3334                 mutex_lock(&inode->i_mutex);
3335
3336         return ret;
3337 }
3338
3339 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3340                               loff_t offset)
3341 {
3342         struct file *file = iocb->ki_filp;
3343         struct inode *inode = file->f_mapping->host;
3344         size_t count = iov_iter_count(iter);
3345         ssize_t ret;
3346
3347 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3348         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3349                 return 0;
3350 #endif
3351
3352         /*
3353          * If we are doing data journalling we don't support O_DIRECT
3354          */
3355         if (ext4_should_journal_data(inode))
3356                 return 0;
3357
3358         /* Let buffer I/O handle the inline data case. */
3359         if (ext4_has_inline_data(inode))
3360                 return 0;
3361
3362         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3363         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3364                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3365         else
3366                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3367         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3368         return ret;
3369 }
3370
3371 /*
3372  * Pages can be marked dirty completely asynchronously from ext4's journalling
3373  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3374  * much here because ->set_page_dirty is called under VFS locks.  The page is
3375  * not necessarily locked.
3376  *
3377  * We cannot just dirty the page and leave attached buffers clean, because the
3378  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3379  * or jbddirty because all the journalling code will explode.
3380  *
3381  * So what we do is to mark the page "pending dirty" and next time writepage
3382  * is called, propagate that into the buffers appropriately.
3383  */
3384 static int ext4_journalled_set_page_dirty(struct page *page)
3385 {
3386         SetPageChecked(page);
3387         return __set_page_dirty_nobuffers(page);
3388 }
3389
3390 static const struct address_space_operations ext4_aops = {
3391         .readpage               = ext4_readpage,
3392         .readpages              = ext4_readpages,
3393         .writepage              = ext4_writepage,
3394         .writepages             = ext4_writepages,
3395         .write_begin            = ext4_write_begin,
3396         .write_end              = ext4_write_end,
3397         .bmap                   = ext4_bmap,
3398         .invalidatepage         = ext4_invalidatepage,
3399         .releasepage            = ext4_releasepage,
3400         .direct_IO              = ext4_direct_IO,
3401         .migratepage            = buffer_migrate_page,
3402         .is_partially_uptodate  = block_is_partially_uptodate,
3403         .error_remove_page      = generic_error_remove_page,
3404 };
3405
3406 static const struct address_space_operations ext4_journalled_aops = {
3407         .readpage               = ext4_readpage,
3408         .readpages              = ext4_readpages,
3409         .writepage              = ext4_writepage,
3410         .writepages             = ext4_writepages,
3411         .write_begin            = ext4_write_begin,
3412         .write_end              = ext4_journalled_write_end,
3413         .set_page_dirty         = ext4_journalled_set_page_dirty,
3414         .bmap                   = ext4_bmap,
3415         .invalidatepage         = ext4_journalled_invalidatepage,
3416         .releasepage            = ext4_releasepage,
3417         .direct_IO              = ext4_direct_IO,
3418         .is_partially_uptodate  = block_is_partially_uptodate,
3419         .error_remove_page      = generic_error_remove_page,
3420 };
3421
3422 static const struct address_space_operations ext4_da_aops = {
3423         .readpage               = ext4_readpage,
3424         .readpages              = ext4_readpages,
3425         .writepage              = ext4_writepage,
3426         .writepages             = ext4_writepages,
3427         .write_begin            = ext4_da_write_begin,
3428         .write_end              = ext4_da_write_end,
3429         .bmap                   = ext4_bmap,
3430         .invalidatepage         = ext4_da_invalidatepage,
3431         .releasepage            = ext4_releasepage,
3432         .direct_IO              = ext4_direct_IO,
3433         .migratepage            = buffer_migrate_page,
3434         .is_partially_uptodate  = block_is_partially_uptodate,
3435         .error_remove_page      = generic_error_remove_page,
3436 };
3437
3438 void ext4_set_aops(struct inode *inode)
3439 {
3440         switch (ext4_inode_journal_mode(inode)) {
3441         case EXT4_INODE_ORDERED_DATA_MODE:
3442                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3443                 break;
3444         case EXT4_INODE_WRITEBACK_DATA_MODE:
3445                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3446                 break;
3447         case EXT4_INODE_JOURNAL_DATA_MODE:
3448                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3449                 return;
3450         default:
3451                 BUG();
3452         }
3453         if (test_opt(inode->i_sb, DELALLOC))
3454                 inode->i_mapping->a_ops = &ext4_da_aops;
3455         else
3456                 inode->i_mapping->a_ops = &ext4_aops;
3457 }
3458
3459 static int __ext4_block_zero_page_range(handle_t *handle,
3460                 struct address_space *mapping, loff_t from, loff_t length)
3461 {
3462         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3463         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3464         unsigned blocksize, pos;
3465         ext4_lblk_t iblock;
3466         struct inode *inode = mapping->host;
3467         struct buffer_head *bh;
3468         struct page *page;
3469         int err = 0;
3470
3471         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3472                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3473         if (!page)
3474                 return -ENOMEM;
3475
3476         blocksize = inode->i_sb->s_blocksize;
3477
3478         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3479
3480         if (!page_has_buffers(page))
3481                 create_empty_buffers(page, blocksize, 0);
3482
3483         /* Find the buffer that contains "offset" */
3484         bh = page_buffers(page);
3485         pos = blocksize;
3486         while (offset >= pos) {
3487                 bh = bh->b_this_page;
3488                 iblock++;
3489                 pos += blocksize;
3490         }
3491         if (buffer_freed(bh)) {
3492                 BUFFER_TRACE(bh, "freed: skip");
3493                 goto unlock;
3494         }
3495         if (!buffer_mapped(bh)) {
3496                 BUFFER_TRACE(bh, "unmapped");
3497                 ext4_get_block(inode, iblock, bh, 0);
3498                 /* unmapped? It's a hole - nothing to do */
3499                 if (!buffer_mapped(bh)) {
3500                         BUFFER_TRACE(bh, "still unmapped");
3501                         goto unlock;
3502                 }
3503         }
3504
3505         /* Ok, it's mapped. Make sure it's up-to-date */
3506         if (PageUptodate(page))
3507                 set_buffer_uptodate(bh);
3508
3509         if (!buffer_uptodate(bh)) {
3510                 err = -EIO;
3511                 ll_rw_block(READ, 1, &bh);
3512                 wait_on_buffer(bh);
3513                 /* Uhhuh. Read error. Complain and punt. */
3514                 if (!buffer_uptodate(bh))
3515                         goto unlock;
3516                 if (S_ISREG(inode->i_mode) &&
3517                     ext4_encrypted_inode(inode)) {
3518                         /* We expect the key to be set. */
3519                         BUG_ON(!ext4_has_encryption_key(inode));
3520                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3521                         WARN_ON_ONCE(ext4_decrypt(page));
3522                 }
3523         }
3524         if (ext4_should_journal_data(inode)) {
3525                 BUFFER_TRACE(bh, "get write access");
3526                 err = ext4_journal_get_write_access(handle, bh);
3527                 if (err)
3528                         goto unlock;
3529         }
3530         zero_user(page, offset, length);
3531         BUFFER_TRACE(bh, "zeroed end of block");
3532
3533         if (ext4_should_journal_data(inode)) {
3534                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3535         } else {
3536                 err = 0;
3537                 mark_buffer_dirty(bh);
3538                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3539                         err = ext4_jbd2_file_inode(handle, inode);
3540         }
3541
3542 unlock:
3543         unlock_page(page);
3544         page_cache_release(page);
3545         return err;
3546 }
3547
3548 /*
3549  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3550  * starting from file offset 'from'.  The range to be zero'd must
3551  * be contained with in one block.  If the specified range exceeds
3552  * the end of the block it will be shortened to end of the block
3553  * that cooresponds to 'from'
3554  */
3555 static int ext4_block_zero_page_range(handle_t *handle,
3556                 struct address_space *mapping, loff_t from, loff_t length)
3557 {
3558         struct inode *inode = mapping->host;
3559         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3560         unsigned blocksize = inode->i_sb->s_blocksize;
3561         unsigned max = blocksize - (offset & (blocksize - 1));
3562
3563         /*
3564          * correct length if it does not fall between
3565          * 'from' and the end of the block
3566          */
3567         if (length > max || length < 0)
3568                 length = max;
3569
3570         if (IS_DAX(inode))
3571                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3572         return __ext4_block_zero_page_range(handle, mapping, from, length);
3573 }
3574
3575 /*
3576  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3577  * up to the end of the block which corresponds to `from'.
3578  * This required during truncate. We need to physically zero the tail end
3579  * of that block so it doesn't yield old data if the file is later grown.
3580  */
3581 static int ext4_block_truncate_page(handle_t *handle,
3582                 struct address_space *mapping, loff_t from)
3583 {
3584         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3585         unsigned length;
3586         unsigned blocksize;
3587         struct inode *inode = mapping->host;
3588
3589         blocksize = inode->i_sb->s_blocksize;
3590         length = blocksize - (offset & (blocksize - 1));
3591
3592         return ext4_block_zero_page_range(handle, mapping, from, length);
3593 }
3594
3595 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3596                              loff_t lstart, loff_t length)
3597 {
3598         struct super_block *sb = inode->i_sb;
3599         struct address_space *mapping = inode->i_mapping;
3600         unsigned partial_start, partial_end;
3601         ext4_fsblk_t start, end;
3602         loff_t byte_end = (lstart + length - 1);
3603         int err = 0;
3604
3605         partial_start = lstart & (sb->s_blocksize - 1);
3606         partial_end = byte_end & (sb->s_blocksize - 1);
3607
3608         start = lstart >> sb->s_blocksize_bits;
3609         end = byte_end >> sb->s_blocksize_bits;
3610
3611         /* Handle partial zero within the single block */
3612         if (start == end &&
3613             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3614                 err = ext4_block_zero_page_range(handle, mapping,
3615                                                  lstart, length);
3616                 return err;
3617         }
3618         /* Handle partial zero out on the start of the range */
3619         if (partial_start) {
3620                 err = ext4_block_zero_page_range(handle, mapping,
3621                                                  lstart, sb->s_blocksize);
3622                 if (err)
3623                         return err;
3624         }
3625         /* Handle partial zero out on the end of the range */
3626         if (partial_end != sb->s_blocksize - 1)
3627                 err = ext4_block_zero_page_range(handle, mapping,
3628                                                  byte_end - partial_end,
3629                                                  partial_end + 1);
3630         return err;
3631 }
3632
3633 int ext4_can_truncate(struct inode *inode)
3634 {
3635         if (S_ISREG(inode->i_mode))
3636                 return 1;
3637         if (S_ISDIR(inode->i_mode))
3638                 return 1;
3639         if (S_ISLNK(inode->i_mode))
3640                 return !ext4_inode_is_fast_symlink(inode);
3641         return 0;
3642 }
3643
3644 /*
3645  * We have to make sure i_disksize gets properly updated before we truncate
3646  * page cache due to hole punching or zero range. Otherwise i_disksize update
3647  * can get lost as it may have been postponed to submission of writeback but
3648  * that will never happen after we truncate page cache.
3649  */
3650 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3651                                       loff_t len)
3652 {
3653         handle_t *handle;
3654         loff_t size = i_size_read(inode);
3655
3656         WARN_ON(!mutex_is_locked(&inode->i_mutex));
3657         if (offset > size || offset + len < size)
3658                 return 0;
3659
3660         if (EXT4_I(inode)->i_disksize >= size)
3661                 return 0;
3662
3663         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3664         if (IS_ERR(handle))
3665                 return PTR_ERR(handle);
3666         ext4_update_i_disksize(inode, size);
3667         ext4_mark_inode_dirty(handle, inode);
3668         ext4_journal_stop(handle);
3669
3670         return 0;
3671 }
3672
3673 /*
3674  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3675  * associated with the given offset and length
3676  *
3677  * @inode:  File inode
3678  * @offset: The offset where the hole will begin
3679  * @len:    The length of the hole
3680  *
3681  * Returns: 0 on success or negative on failure
3682  */
3683
3684 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3685 {
3686         struct super_block *sb = inode->i_sb;
3687         ext4_lblk_t first_block, stop_block;
3688         struct address_space *mapping = inode->i_mapping;
3689         loff_t first_block_offset, last_block_offset;
3690         handle_t *handle;
3691         unsigned int credits;
3692         int ret = 0;
3693
3694         if (!S_ISREG(inode->i_mode))
3695                 return -EOPNOTSUPP;
3696
3697         trace_ext4_punch_hole(inode, offset, length, 0);
3698
3699         /*
3700          * Write out all dirty pages to avoid race conditions
3701          * Then release them.
3702          */
3703         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3704                 ret = filemap_write_and_wait_range(mapping, offset,
3705                                                    offset + length - 1);
3706                 if (ret)
3707                         return ret;
3708         }
3709
3710         mutex_lock(&inode->i_mutex);
3711
3712         /* No need to punch hole beyond i_size */
3713         if (offset >= inode->i_size)
3714                 goto out_mutex;
3715
3716         /*
3717          * If the hole extends beyond i_size, set the hole
3718          * to end after the page that contains i_size
3719          */
3720         if (offset + length > inode->i_size) {
3721                 length = inode->i_size +
3722                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3723                    offset;
3724         }
3725
3726         if (offset & (sb->s_blocksize - 1) ||
3727             (offset + length) & (sb->s_blocksize - 1)) {
3728                 /*
3729                  * Attach jinode to inode for jbd2 if we do any zeroing of
3730                  * partial block
3731                  */
3732                 ret = ext4_inode_attach_jinode(inode);
3733                 if (ret < 0)
3734                         goto out_mutex;
3735
3736         }
3737
3738         /* Wait all existing dio workers, newcomers will block on i_mutex */
3739         ext4_inode_block_unlocked_dio(inode);
3740         inode_dio_wait(inode);
3741
3742         /*
3743          * Prevent page faults from reinstantiating pages we have released from
3744          * page cache.
3745          */
3746         down_write(&EXT4_I(inode)->i_mmap_sem);
3747         first_block_offset = round_up(offset, sb->s_blocksize);
3748         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3749
3750         /* Now release the pages and zero block aligned part of pages*/
3751         if (last_block_offset > first_block_offset) {
3752                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3753                 if (ret)
3754                         goto out_dio;
3755                 truncate_pagecache_range(inode, first_block_offset,
3756                                          last_block_offset);
3757         }
3758
3759         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760                 credits = ext4_writepage_trans_blocks(inode);
3761         else
3762                 credits = ext4_blocks_for_truncate(inode);
3763         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3764         if (IS_ERR(handle)) {
3765                 ret = PTR_ERR(handle);
3766                 ext4_std_error(sb, ret);
3767                 goto out_dio;
3768         }
3769
3770         ret = ext4_zero_partial_blocks(handle, inode, offset,
3771                                        length);
3772         if (ret)
3773                 goto out_stop;
3774
3775         first_block = (offset + sb->s_blocksize - 1) >>
3776                 EXT4_BLOCK_SIZE_BITS(sb);
3777         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3778
3779         /* If there are no blocks to remove, return now */
3780         if (first_block >= stop_block)
3781                 goto out_stop;
3782
3783         down_write(&EXT4_I(inode)->i_data_sem);
3784         ext4_discard_preallocations(inode);
3785
3786         ret = ext4_es_remove_extent(inode, first_block,
3787                                     stop_block - first_block);
3788         if (ret) {
3789                 up_write(&EXT4_I(inode)->i_data_sem);
3790                 goto out_stop;
3791         }
3792
3793         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3794                 ret = ext4_ext_remove_space(inode, first_block,
3795                                             stop_block - 1);
3796         else
3797                 ret = ext4_ind_remove_space(handle, inode, first_block,
3798                                             stop_block);
3799
3800         up_write(&EXT4_I(inode)->i_data_sem);
3801         if (IS_SYNC(inode))
3802                 ext4_handle_sync(handle);
3803
3804         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3805         ext4_mark_inode_dirty(handle, inode);
3806 out_stop:
3807         ext4_journal_stop(handle);
3808 out_dio:
3809         up_write(&EXT4_I(inode)->i_mmap_sem);
3810         ext4_inode_resume_unlocked_dio(inode);
3811 out_mutex:
3812         mutex_unlock(&inode->i_mutex);
3813         return ret;
3814 }
3815
3816 int ext4_inode_attach_jinode(struct inode *inode)
3817 {
3818         struct ext4_inode_info *ei = EXT4_I(inode);
3819         struct jbd2_inode *jinode;
3820
3821         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3822                 return 0;
3823
3824         jinode = jbd2_alloc_inode(GFP_KERNEL);
3825         spin_lock(&inode->i_lock);
3826         if (!ei->jinode) {
3827                 if (!jinode) {
3828                         spin_unlock(&inode->i_lock);
3829                         return -ENOMEM;
3830                 }
3831                 ei->jinode = jinode;
3832                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3833                 jinode = NULL;
3834         }
3835         spin_unlock(&inode->i_lock);
3836         if (unlikely(jinode != NULL))
3837                 jbd2_free_inode(jinode);
3838         return 0;
3839 }
3840
3841 /*
3842  * ext4_truncate()
3843  *
3844  * We block out ext4_get_block() block instantiations across the entire
3845  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3846  * simultaneously on behalf of the same inode.
3847  *
3848  * As we work through the truncate and commit bits of it to the journal there
3849  * is one core, guiding principle: the file's tree must always be consistent on
3850  * disk.  We must be able to restart the truncate after a crash.
3851  *
3852  * The file's tree may be transiently inconsistent in memory (although it
3853  * probably isn't), but whenever we close off and commit a journal transaction,
3854  * the contents of (the filesystem + the journal) must be consistent and
3855  * restartable.  It's pretty simple, really: bottom up, right to left (although
3856  * left-to-right works OK too).
3857  *
3858  * Note that at recovery time, journal replay occurs *before* the restart of
3859  * truncate against the orphan inode list.
3860  *
3861  * The committed inode has the new, desired i_size (which is the same as
3862  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3863  * that this inode's truncate did not complete and it will again call
3864  * ext4_truncate() to have another go.  So there will be instantiated blocks
3865  * to the right of the truncation point in a crashed ext4 filesystem.  But
3866  * that's fine - as long as they are linked from the inode, the post-crash
3867  * ext4_truncate() run will find them and release them.
3868  */
3869 void ext4_truncate(struct inode *inode)
3870 {
3871         struct ext4_inode_info *ei = EXT4_I(inode);
3872         unsigned int credits;
3873         handle_t *handle;
3874         struct address_space *mapping = inode->i_mapping;
3875
3876         /*
3877          * There is a possibility that we're either freeing the inode
3878          * or it's a completely new inode. In those cases we might not
3879          * have i_mutex locked because it's not necessary.
3880          */
3881         if (!(inode->i_state & (I_NEW|I_FREEING)))
3882                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3883         trace_ext4_truncate_enter(inode);
3884
3885         if (!ext4_can_truncate(inode))
3886                 return;
3887
3888         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3889
3890         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3891                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3892
3893         if (ext4_has_inline_data(inode)) {
3894                 int has_inline = 1;
3895
3896                 ext4_inline_data_truncate(inode, &has_inline);
3897                 if (has_inline)
3898                         return;
3899         }
3900
3901         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3902         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3903                 if (ext4_inode_attach_jinode(inode) < 0)
3904                         return;
3905         }
3906
3907         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3908                 credits = ext4_writepage_trans_blocks(inode);
3909         else
3910                 credits = ext4_blocks_for_truncate(inode);
3911
3912         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3913         if (IS_ERR(handle)) {
3914                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3915                 return;
3916         }
3917
3918         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3919                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3920
3921         /*
3922          * We add the inode to the orphan list, so that if this
3923          * truncate spans multiple transactions, and we crash, we will
3924          * resume the truncate when the filesystem recovers.  It also
3925          * marks the inode dirty, to catch the new size.
3926          *
3927          * Implication: the file must always be in a sane, consistent
3928          * truncatable state while each transaction commits.
3929          */
3930         if (ext4_orphan_add(handle, inode))
3931                 goto out_stop;
3932
3933         down_write(&EXT4_I(inode)->i_data_sem);
3934
3935         ext4_discard_preallocations(inode);
3936
3937         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3938                 ext4_ext_truncate(handle, inode);
3939         else
3940                 ext4_ind_truncate(handle, inode);
3941
3942         up_write(&ei->i_data_sem);
3943
3944         if (IS_SYNC(inode))
3945                 ext4_handle_sync(handle);
3946
3947 out_stop:
3948         /*
3949          * If this was a simple ftruncate() and the file will remain alive,
3950          * then we need to clear up the orphan record which we created above.
3951          * However, if this was a real unlink then we were called by
3952          * ext4_evict_inode(), and we allow that function to clean up the
3953          * orphan info for us.
3954          */
3955         if (inode->i_nlink)
3956                 ext4_orphan_del(handle, inode);
3957
3958         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3959         ext4_mark_inode_dirty(handle, inode);
3960         ext4_journal_stop(handle);
3961
3962         trace_ext4_truncate_exit(inode);
3963 }
3964
3965 /*
3966  * ext4_get_inode_loc returns with an extra refcount against the inode's
3967  * underlying buffer_head on success. If 'in_mem' is true, we have all
3968  * data in memory that is needed to recreate the on-disk version of this
3969  * inode.
3970  */
3971 static int __ext4_get_inode_loc(struct inode *inode,
3972                                 struct ext4_iloc *iloc, int in_mem)
3973 {
3974         struct ext4_group_desc  *gdp;
3975         struct buffer_head      *bh;
3976         struct super_block      *sb = inode->i_sb;
3977         ext4_fsblk_t            block;
3978         int                     inodes_per_block, inode_offset;
3979
3980         iloc->bh = NULL;
3981         if (!ext4_valid_inum(sb, inode->i_ino))
3982                 return -EFSCORRUPTED;
3983
3984         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3985         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3986         if (!gdp)
3987                 return -EIO;
3988
3989         /*
3990          * Figure out the offset within the block group inode table
3991          */
3992         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3993         inode_offset = ((inode->i_ino - 1) %
3994                         EXT4_INODES_PER_GROUP(sb));
3995         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3996         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3997
3998         bh = sb_getblk(sb, block);
3999         if (unlikely(!bh))
4000                 return -ENOMEM;
4001         if (!buffer_uptodate(bh)) {
4002                 lock_buffer(bh);
4003
4004                 /*
4005                  * If the buffer has the write error flag, we have failed
4006                  * to write out another inode in the same block.  In this
4007                  * case, we don't have to read the block because we may
4008                  * read the old inode data successfully.
4009                  */
4010                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4011                         set_buffer_uptodate(bh);
4012
4013                 if (buffer_uptodate(bh)) {
4014                         /* someone brought it uptodate while we waited */
4015                         unlock_buffer(bh);
4016                         goto has_buffer;
4017                 }
4018
4019                 /*
4020                  * If we have all information of the inode in memory and this
4021                  * is the only valid inode in the block, we need not read the
4022                  * block.
4023                  */
4024                 if (in_mem) {
4025                         struct buffer_head *bitmap_bh;
4026                         int i, start;
4027
4028                         start = inode_offset & ~(inodes_per_block - 1);
4029
4030                         /* Is the inode bitmap in cache? */
4031                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4032                         if (unlikely(!bitmap_bh))
4033                                 goto make_io;
4034
4035                         /*
4036                          * If the inode bitmap isn't in cache then the
4037                          * optimisation may end up performing two reads instead
4038                          * of one, so skip it.
4039                          */
4040                         if (!buffer_uptodate(bitmap_bh)) {
4041                                 brelse(bitmap_bh);
4042                                 goto make_io;
4043                         }
4044                         for (i = start; i < start + inodes_per_block; i++) {
4045                                 if (i == inode_offset)
4046                                         continue;
4047                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4048                                         break;
4049                         }
4050                         brelse(bitmap_bh);
4051                         if (i == start + inodes_per_block) {
4052                                 /* all other inodes are free, so skip I/O */
4053                                 memset(bh->b_data, 0, bh->b_size);
4054                                 set_buffer_uptodate(bh);
4055                                 unlock_buffer(bh);
4056                                 goto has_buffer;
4057                         }
4058                 }
4059
4060 make_io:
4061                 /*
4062                  * If we need to do any I/O, try to pre-readahead extra
4063                  * blocks from the inode table.
4064                  */
4065                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4066                         ext4_fsblk_t b, end, table;
4067                         unsigned num;
4068                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4069
4070                         table = ext4_inode_table(sb, gdp);
4071                         /* s_inode_readahead_blks is always a power of 2 */
4072                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4073                         if (table > b)
4074                                 b = table;
4075                         end = b + ra_blks;
4076                         num = EXT4_INODES_PER_GROUP(sb);
4077                         if (ext4_has_group_desc_csum(sb))
4078                                 num -= ext4_itable_unused_count(sb, gdp);
4079                         table += num / inodes_per_block;
4080                         if (end > table)
4081                                 end = table;
4082                         while (b <= end)
4083                                 sb_breadahead(sb, b++);
4084                 }
4085
4086                 /*
4087                  * There are other valid inodes in the buffer, this inode
4088                  * has in-inode xattrs, or we don't have this inode in memory.
4089                  * Read the block from disk.
4090                  */
4091                 trace_ext4_load_inode(inode);
4092                 get_bh(bh);
4093                 bh->b_end_io = end_buffer_read_sync;
4094                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4095                 wait_on_buffer(bh);
4096                 if (!buffer_uptodate(bh)) {
4097                         EXT4_ERROR_INODE_BLOCK(inode, block,
4098                                                "unable to read itable block");
4099                         brelse(bh);
4100                         return -EIO;
4101                 }
4102         }
4103 has_buffer:
4104         iloc->bh = bh;
4105         return 0;
4106 }
4107
4108 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4109 {
4110         /* We have all inode data except xattrs in memory here. */
4111         return __ext4_get_inode_loc(inode, iloc,
4112                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4113 }
4114
4115 void ext4_set_inode_flags(struct inode *inode)
4116 {
4117         unsigned int flags = EXT4_I(inode)->i_flags;
4118         unsigned int new_fl = 0;
4119
4120         if (flags & EXT4_SYNC_FL)
4121                 new_fl |= S_SYNC;
4122         if (flags & EXT4_APPEND_FL)
4123                 new_fl |= S_APPEND;
4124         if (flags & EXT4_IMMUTABLE_FL)
4125                 new_fl |= S_IMMUTABLE;
4126         if (flags & EXT4_NOATIME_FL)
4127                 new_fl |= S_NOATIME;
4128         if (flags & EXT4_DIRSYNC_FL)
4129                 new_fl |= S_DIRSYNC;
4130         if (test_opt(inode->i_sb, DAX))
4131                 new_fl |= S_DAX;
4132         inode_set_flags(inode, new_fl,
4133                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4134 }
4135
4136 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4137 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4138 {
4139         unsigned int vfs_fl;
4140         unsigned long old_fl, new_fl;
4141
4142         do {
4143                 vfs_fl = ei->vfs_inode.i_flags;
4144                 old_fl = ei->i_flags;
4145                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4146                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4147                                 EXT4_DIRSYNC_FL);
4148                 if (vfs_fl & S_SYNC)
4149                         new_fl |= EXT4_SYNC_FL;
4150                 if (vfs_fl & S_APPEND)
4151                         new_fl |= EXT4_APPEND_FL;
4152                 if (vfs_fl & S_IMMUTABLE)
4153                         new_fl |= EXT4_IMMUTABLE_FL;
4154                 if (vfs_fl & S_NOATIME)
4155                         new_fl |= EXT4_NOATIME_FL;
4156                 if (vfs_fl & S_DIRSYNC)
4157                         new_fl |= EXT4_DIRSYNC_FL;
4158         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4159 }
4160
4161 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4162                                   struct ext4_inode_info *ei)
4163 {
4164         blkcnt_t i_blocks ;
4165         struct inode *inode = &(ei->vfs_inode);
4166         struct super_block *sb = inode->i_sb;
4167
4168         if (ext4_has_feature_huge_file(sb)) {
4169                 /* we are using combined 48 bit field */
4170                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4171                                         le32_to_cpu(raw_inode->i_blocks_lo);
4172                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4173                         /* i_blocks represent file system block size */
4174                         return i_blocks  << (inode->i_blkbits - 9);
4175                 } else {
4176                         return i_blocks;
4177                 }
4178         } else {
4179                 return le32_to_cpu(raw_inode->i_blocks_lo);
4180         }
4181 }
4182
4183 static inline void ext4_iget_extra_inode(struct inode *inode,
4184                                          struct ext4_inode *raw_inode,
4185                                          struct ext4_inode_info *ei)
4186 {
4187         __le32 *magic = (void *)raw_inode +
4188                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4189         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4190                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4191                 ext4_find_inline_data_nolock(inode);
4192         } else
4193                 EXT4_I(inode)->i_inline_off = 0;
4194 }
4195
4196 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4197 {
4198         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4199                 return -EOPNOTSUPP;
4200         *projid = EXT4_I(inode)->i_projid;
4201         return 0;
4202 }
4203
4204 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4205 {
4206         struct ext4_iloc iloc;
4207         struct ext4_inode *raw_inode;
4208         struct ext4_inode_info *ei;
4209         struct inode *inode;
4210         journal_t *journal = EXT4_SB(sb)->s_journal;
4211         long ret;
4212         int block;
4213         uid_t i_uid;
4214         gid_t i_gid;
4215         projid_t i_projid;
4216
4217         inode = iget_locked(sb, ino);
4218         if (!inode)
4219                 return ERR_PTR(-ENOMEM);
4220         if (!(inode->i_state & I_NEW))
4221                 return inode;
4222
4223         ei = EXT4_I(inode);
4224         iloc.bh = NULL;
4225
4226         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4227         if (ret < 0)
4228                 goto bad_inode;
4229         raw_inode = ext4_raw_inode(&iloc);
4230
4231         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4232                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4233                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4234                     EXT4_INODE_SIZE(inode->i_sb)) {
4235                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4236                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4237                                 EXT4_INODE_SIZE(inode->i_sb));
4238                         ret = -EFSCORRUPTED;
4239                         goto bad_inode;
4240                 }
4241         } else
4242                 ei->i_extra_isize = 0;
4243
4244         /* Precompute checksum seed for inode metadata */
4245         if (ext4_has_metadata_csum(sb)) {
4246                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4247                 __u32 csum;
4248                 __le32 inum = cpu_to_le32(inode->i_ino);
4249                 __le32 gen = raw_inode->i_generation;
4250                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4251                                    sizeof(inum));
4252                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4253                                               sizeof(gen));
4254         }
4255
4256         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4257                 EXT4_ERROR_INODE(inode, "checksum invalid");
4258                 ret = -EFSBADCRC;
4259                 goto bad_inode;
4260         }
4261
4262         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4263         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4264         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4265         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4266             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4267             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4268                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4269         else
4270                 i_projid = EXT4_DEF_PROJID;
4271
4272         if (!(test_opt(inode->i_sb, NO_UID32))) {
4273                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4274                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4275         }
4276         i_uid_write(inode, i_uid);
4277         i_gid_write(inode, i_gid);
4278         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4279         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4280
4281         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4282         ei->i_inline_off = 0;
4283         ei->i_dir_start_lookup = 0;
4284         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4285         /* We now have enough fields to check if the inode was active or not.
4286          * This is needed because nfsd might try to access dead inodes
4287          * the test is that same one that e2fsck uses
4288          * NeilBrown 1999oct15
4289          */
4290         if (inode->i_nlink == 0) {
4291                 if ((inode->i_mode == 0 ||
4292                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4293                     ino != EXT4_BOOT_LOADER_INO) {
4294                         /* this inode is deleted */
4295                         ret = -ESTALE;
4296                         goto bad_inode;
4297                 }
4298                 /* The only unlinked inodes we let through here have
4299                  * valid i_mode and are being read by the orphan
4300                  * recovery code: that's fine, we're about to complete
4301                  * the process of deleting those.
4302                  * OR it is the EXT4_BOOT_LOADER_INO which is
4303                  * not initialized on a new filesystem. */
4304         }
4305         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4306         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4307         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4308         if (ext4_has_feature_64bit(sb))
4309                 ei->i_file_acl |=
4310                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4311         inode->i_size = ext4_isize(raw_inode);
4312         ei->i_disksize = inode->i_size;
4313 #ifdef CONFIG_QUOTA
4314         ei->i_reserved_quota = 0;
4315 #endif
4316         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4317         ei->i_block_group = iloc.block_group;
4318         ei->i_last_alloc_group = ~0;
4319         /*
4320          * NOTE! The in-memory inode i_data array is in little-endian order
4321          * even on big-endian machines: we do NOT byteswap the block numbers!
4322          */
4323         for (block = 0; block < EXT4_N_BLOCKS; block++)
4324                 ei->i_data[block] = raw_inode->i_block[block];
4325         INIT_LIST_HEAD(&ei->i_orphan);
4326
4327         /*
4328          * Set transaction id's of transactions that have to be committed
4329          * to finish f[data]sync. We set them to currently running transaction
4330          * as we cannot be sure that the inode or some of its metadata isn't
4331          * part of the transaction - the inode could have been reclaimed and
4332          * now it is reread from disk.
4333          */
4334         if (journal) {
4335                 transaction_t *transaction;
4336                 tid_t tid;
4337
4338                 read_lock(&journal->j_state_lock);
4339                 if (journal->j_running_transaction)
4340                         transaction = journal->j_running_transaction;
4341                 else
4342                         transaction = journal->j_committing_transaction;
4343                 if (transaction)
4344                         tid = transaction->t_tid;
4345                 else
4346                         tid = journal->j_commit_sequence;
4347                 read_unlock(&journal->j_state_lock);
4348                 ei->i_sync_tid = tid;
4349                 ei->i_datasync_tid = tid;
4350         }
4351
4352         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4353                 if (ei->i_extra_isize == 0) {
4354                         /* The extra space is currently unused. Use it. */
4355                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4356                                             EXT4_GOOD_OLD_INODE_SIZE;
4357                 } else {
4358                         ext4_iget_extra_inode(inode, raw_inode, ei);
4359                 }
4360         }
4361
4362         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4363         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4364         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4365         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4366
4367         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4368                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4369                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4370                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4371                                 inode->i_version |=
4372                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4373                 }
4374         }
4375
4376         ret = 0;
4377         if (ei->i_file_acl &&
4378             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4379                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4380                                  ei->i_file_acl);
4381                 ret = -EFSCORRUPTED;
4382                 goto bad_inode;
4383         } else if (!ext4_has_inline_data(inode)) {
4384                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4385                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4386                             (S_ISLNK(inode->i_mode) &&
4387                              !ext4_inode_is_fast_symlink(inode))))
4388                                 /* Validate extent which is part of inode */
4389                                 ret = ext4_ext_check_inode(inode);
4390                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4391                            (S_ISLNK(inode->i_mode) &&
4392                             !ext4_inode_is_fast_symlink(inode))) {
4393                         /* Validate block references which are part of inode */
4394                         ret = ext4_ind_check_inode(inode);
4395                 }
4396         }
4397         if (ret)
4398                 goto bad_inode;
4399
4400         if (S_ISREG(inode->i_mode)) {
4401                 inode->i_op = &ext4_file_inode_operations;
4402                 inode->i_fop = &ext4_file_operations;
4403                 ext4_set_aops(inode);
4404         } else if (S_ISDIR(inode->i_mode)) {
4405                 inode->i_op = &ext4_dir_inode_operations;
4406                 inode->i_fop = &ext4_dir_operations;
4407         } else if (S_ISLNK(inode->i_mode)) {
4408                 if (ext4_encrypted_inode(inode)) {
4409                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4410                         ext4_set_aops(inode);
4411                 } else if (ext4_inode_is_fast_symlink(inode)) {
4412                         inode->i_link = (char *)ei->i_data;
4413                         inode->i_op = &ext4_fast_symlink_inode_operations;
4414                         nd_terminate_link(ei->i_data, inode->i_size,
4415                                 sizeof(ei->i_data) - 1);
4416                 } else {
4417                         inode->i_op = &ext4_symlink_inode_operations;
4418                         ext4_set_aops(inode);
4419                 }
4420                 inode_nohighmem(inode);
4421         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4422               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4423                 inode->i_op = &ext4_special_inode_operations;
4424                 if (raw_inode->i_block[0])
4425                         init_special_inode(inode, inode->i_mode,
4426                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4427                 else
4428                         init_special_inode(inode, inode->i_mode,
4429                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4430         } else if (ino == EXT4_BOOT_LOADER_INO) {
4431                 make_bad_inode(inode);
4432         } else {
4433                 ret = -EFSCORRUPTED;
4434                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4435                 goto bad_inode;
4436         }
4437         brelse(iloc.bh);
4438         ext4_set_inode_flags(inode);
4439         unlock_new_inode(inode);
4440         return inode;
4441
4442 bad_inode:
4443         brelse(iloc.bh);
4444         iget_failed(inode);
4445         return ERR_PTR(ret);
4446 }
4447
4448 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4449 {
4450         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4451                 return ERR_PTR(-EFSCORRUPTED);
4452         return ext4_iget(sb, ino);
4453 }
4454
4455 static int ext4_inode_blocks_set(handle_t *handle,
4456                                 struct ext4_inode *raw_inode,
4457                                 struct ext4_inode_info *ei)
4458 {
4459         struct inode *inode = &(ei->vfs_inode);
4460         u64 i_blocks = inode->i_blocks;
4461         struct super_block *sb = inode->i_sb;
4462
4463         if (i_blocks <= ~0U) {
4464                 /*
4465                  * i_blocks can be represented in a 32 bit variable
4466                  * as multiple of 512 bytes
4467                  */
4468                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4469                 raw_inode->i_blocks_high = 0;
4470                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4471                 return 0;
4472         }
4473         if (!ext4_has_feature_huge_file(sb))
4474                 return -EFBIG;
4475
4476         if (i_blocks <= 0xffffffffffffULL) {
4477                 /*
4478                  * i_blocks can be represented in a 48 bit variable
4479                  * as multiple of 512 bytes
4480                  */
4481                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4482                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4483                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4484         } else {
4485                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4486                 /* i_block is stored in file system block size */
4487                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4488                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4489                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4490         }
4491         return 0;
4492 }
4493
4494 struct other_inode {
4495         unsigned long           orig_ino;
4496         struct ext4_inode       *raw_inode;
4497 };
4498
4499 static int other_inode_match(struct inode * inode, unsigned long ino,
4500                              void *data)
4501 {
4502         struct other_inode *oi = (struct other_inode *) data;
4503
4504         if ((inode->i_ino != ino) ||
4505             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4506                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4507             ((inode->i_state & I_DIRTY_TIME) == 0))
4508                 return 0;
4509         spin_lock(&inode->i_lock);
4510         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4511                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4512             (inode->i_state & I_DIRTY_TIME)) {
4513                 struct ext4_inode_info  *ei = EXT4_I(inode);
4514
4515                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4516                 spin_unlock(&inode->i_lock);
4517
4518                 spin_lock(&ei->i_raw_lock);
4519                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4520                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4521                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4522                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4523                 spin_unlock(&ei->i_raw_lock);
4524                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4525                 return -1;
4526         }
4527         spin_unlock(&inode->i_lock);
4528         return -1;
4529 }
4530
4531 /*
4532  * Opportunistically update the other time fields for other inodes in
4533  * the same inode table block.
4534  */
4535 static void ext4_update_other_inodes_time(struct super_block *sb,
4536                                           unsigned long orig_ino, char *buf)
4537 {
4538         struct other_inode oi;
4539         unsigned long ino;
4540         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4541         int inode_size = EXT4_INODE_SIZE(sb);
4542
4543         oi.orig_ino = orig_ino;
4544         /*
4545          * Calculate the first inode in the inode table block.  Inode
4546          * numbers are one-based.  That is, the first inode in a block
4547          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4548          */
4549         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4550         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4551                 if (ino == orig_ino)
4552                         continue;
4553                 oi.raw_inode = (struct ext4_inode *) buf;
4554                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4555         }
4556 }
4557
4558 /*
4559  * Post the struct inode info into an on-disk inode location in the
4560  * buffer-cache.  This gobbles the caller's reference to the
4561  * buffer_head in the inode location struct.
4562  *
4563  * The caller must have write access to iloc->bh.
4564  */
4565 static int ext4_do_update_inode(handle_t *handle,
4566                                 struct inode *inode,
4567                                 struct ext4_iloc *iloc)
4568 {
4569         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4570         struct ext4_inode_info *ei = EXT4_I(inode);
4571         struct buffer_head *bh = iloc->bh;
4572         struct super_block *sb = inode->i_sb;
4573         int err = 0, rc, block;
4574         int need_datasync = 0, set_large_file = 0;
4575         uid_t i_uid;
4576         gid_t i_gid;
4577         projid_t i_projid;
4578
4579         spin_lock(&ei->i_raw_lock);
4580
4581         /* For fields not tracked in the in-memory inode,
4582          * initialise them to zero for new inodes. */
4583         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4584                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4585
4586         ext4_get_inode_flags(ei);
4587         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4588         i_uid = i_uid_read(inode);
4589         i_gid = i_gid_read(inode);
4590         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4591         if (!(test_opt(inode->i_sb, NO_UID32))) {
4592                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4593                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4594 /*
4595  * Fix up interoperability with old kernels. Otherwise, old inodes get
4596  * re-used with the upper 16 bits of the uid/gid intact
4597  */
4598                 if (!ei->i_dtime) {
4599                         raw_inode->i_uid_high =
4600                                 cpu_to_le16(high_16_bits(i_uid));
4601                         raw_inode->i_gid_high =
4602                                 cpu_to_le16(high_16_bits(i_gid));
4603                 } else {
4604                         raw_inode->i_uid_high = 0;
4605                         raw_inode->i_gid_high = 0;
4606                 }
4607         } else {
4608                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4609                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4610                 raw_inode->i_uid_high = 0;
4611                 raw_inode->i_gid_high = 0;
4612         }
4613         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4614
4615         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4616         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4617         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4618         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4619
4620         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4621         if (err) {
4622                 spin_unlock(&ei->i_raw_lock);
4623                 goto out_brelse;
4624         }
4625         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4626         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4627         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4628                 raw_inode->i_file_acl_high =
4629                         cpu_to_le16(ei->i_file_acl >> 32);
4630         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4631         if (ei->i_disksize != ext4_isize(raw_inode)) {
4632                 ext4_isize_set(raw_inode, ei->i_disksize);
4633                 need_datasync = 1;
4634         }
4635         if (ei->i_disksize > 0x7fffffffULL) {
4636                 if (!ext4_has_feature_large_file(sb) ||
4637                                 EXT4_SB(sb)->s_es->s_rev_level ==
4638                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4639                         set_large_file = 1;
4640         }
4641         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4642         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4643                 if (old_valid_dev(inode->i_rdev)) {
4644                         raw_inode->i_block[0] =
4645                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4646                         raw_inode->i_block[1] = 0;
4647                 } else {
4648                         raw_inode->i_block[0] = 0;
4649                         raw_inode->i_block[1] =
4650                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4651                         raw_inode->i_block[2] = 0;
4652                 }
4653         } else if (!ext4_has_inline_data(inode)) {
4654                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4655                         raw_inode->i_block[block] = ei->i_data[block];
4656         }
4657
4658         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4659                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4660                 if (ei->i_extra_isize) {
4661                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4662                                 raw_inode->i_version_hi =
4663                                         cpu_to_le32(inode->i_version >> 32);
4664                         raw_inode->i_extra_isize =
4665                                 cpu_to_le16(ei->i_extra_isize);
4666                 }
4667         }
4668
4669         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4670                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4671                i_projid != EXT4_DEF_PROJID);
4672
4673         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4674             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4675                 raw_inode->i_projid = cpu_to_le32(i_projid);
4676
4677         ext4_inode_csum_set(inode, raw_inode, ei);
4678         spin_unlock(&ei->i_raw_lock);
4679         if (inode->i_sb->s_flags & MS_LAZYTIME)
4680                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4681                                               bh->b_data);
4682
4683         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4684         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4685         if (!err)
4686                 err = rc;
4687         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4688         if (set_large_file) {
4689                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4690                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4691                 if (err)
4692                         goto out_brelse;
4693                 ext4_update_dynamic_rev(sb);
4694                 ext4_set_feature_large_file(sb);
4695                 ext4_handle_sync(handle);
4696                 err = ext4_handle_dirty_super(handle, sb);
4697         }
4698         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4699 out_brelse:
4700         brelse(bh);
4701         ext4_std_error(inode->i_sb, err);
4702         return err;
4703 }
4704
4705 /*
4706  * ext4_write_inode()
4707  *
4708  * We are called from a few places:
4709  *
4710  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4711  *   Here, there will be no transaction running. We wait for any running
4712  *   transaction to commit.
4713  *
4714  * - Within flush work (sys_sync(), kupdate and such).
4715  *   We wait on commit, if told to.
4716  *
4717  * - Within iput_final() -> write_inode_now()
4718  *   We wait on commit, if told to.
4719  *
4720  * In all cases it is actually safe for us to return without doing anything,
4721  * because the inode has been copied into a raw inode buffer in
4722  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4723  * writeback.
4724  *
4725  * Note that we are absolutely dependent upon all inode dirtiers doing the
4726  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4727  * which we are interested.
4728  *
4729  * It would be a bug for them to not do this.  The code:
4730  *
4731  *      mark_inode_dirty(inode)
4732  *      stuff();
4733  *      inode->i_size = expr;
4734  *
4735  * is in error because write_inode() could occur while `stuff()' is running,
4736  * and the new i_size will be lost.  Plus the inode will no longer be on the
4737  * superblock's dirty inode list.
4738  */
4739 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4740 {
4741         int err;
4742
4743         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4744                 return 0;
4745
4746         if (EXT4_SB(inode->i_sb)->s_journal) {
4747                 if (ext4_journal_current_handle()) {
4748                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4749                         dump_stack();
4750                         return -EIO;
4751                 }
4752
4753                 /*
4754                  * No need to force transaction in WB_SYNC_NONE mode. Also
4755                  * ext4_sync_fs() will force the commit after everything is
4756                  * written.
4757                  */
4758                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4759                         return 0;
4760
4761                 err = ext4_force_commit(inode->i_sb);
4762         } else {
4763                 struct ext4_iloc iloc;
4764
4765                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4766                 if (err)
4767                         return err;
4768                 /*
4769                  * sync(2) will flush the whole buffer cache. No need to do
4770                  * it here separately for each inode.
4771                  */
4772                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4773                         sync_dirty_buffer(iloc.bh);
4774                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4775                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4776                                          "IO error syncing inode");
4777                         err = -EIO;
4778                 }
4779                 brelse(iloc.bh);
4780         }
4781         return err;
4782 }
4783
4784 /*
4785  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4786  * buffers that are attached to a page stradding i_size and are undergoing
4787  * commit. In that case we have to wait for commit to finish and try again.
4788  */
4789 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4790 {
4791         struct page *page;
4792         unsigned offset;
4793         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4794         tid_t commit_tid = 0;
4795         int ret;
4796
4797         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4798         /*
4799          * All buffers in the last page remain valid? Then there's nothing to
4800          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4801          * blocksize case
4802          */
4803         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4804                 return;
4805         while (1) {
4806                 page = find_lock_page(inode->i_mapping,
4807                                       inode->i_size >> PAGE_CACHE_SHIFT);
4808                 if (!page)
4809                         return;
4810                 ret = __ext4_journalled_invalidatepage(page, offset,
4811                                                 PAGE_CACHE_SIZE - offset);
4812                 unlock_page(page);
4813                 page_cache_release(page);
4814                 if (ret != -EBUSY)
4815                         return;
4816                 commit_tid = 0;
4817                 read_lock(&journal->j_state_lock);
4818                 if (journal->j_committing_transaction)
4819                         commit_tid = journal->j_committing_transaction->t_tid;
4820                 read_unlock(&journal->j_state_lock);
4821                 if (commit_tid)
4822                         jbd2_log_wait_commit(journal, commit_tid);
4823         }
4824 }
4825
4826 /*
4827  * ext4_setattr()
4828  *
4829  * Called from notify_change.
4830  *
4831  * We want to trap VFS attempts to truncate the file as soon as
4832  * possible.  In particular, we want to make sure that when the VFS
4833  * shrinks i_size, we put the inode on the orphan list and modify
4834  * i_disksize immediately, so that during the subsequent flushing of
4835  * dirty pages and freeing of disk blocks, we can guarantee that any
4836  * commit will leave the blocks being flushed in an unused state on
4837  * disk.  (On recovery, the inode will get truncated and the blocks will
4838  * be freed, so we have a strong guarantee that no future commit will
4839  * leave these blocks visible to the user.)
4840  *
4841  * Another thing we have to assure is that if we are in ordered mode
4842  * and inode is still attached to the committing transaction, we must
4843  * we start writeout of all the dirty pages which are being truncated.
4844  * This way we are sure that all the data written in the previous
4845  * transaction are already on disk (truncate waits for pages under
4846  * writeback).
4847  *
4848  * Called with inode->i_mutex down.
4849  */
4850 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4851 {
4852         struct inode *inode = d_inode(dentry);
4853         int error, rc = 0;
4854         int orphan = 0;
4855         const unsigned int ia_valid = attr->ia_valid;
4856
4857         error = inode_change_ok(inode, attr);
4858         if (error)
4859                 return error;
4860
4861         if (is_quota_modification(inode, attr)) {
4862                 error = dquot_initialize(inode);
4863                 if (error)
4864                         return error;
4865         }
4866         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4867             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4868                 handle_t *handle;
4869
4870                 /* (user+group)*(old+new) structure, inode write (sb,
4871                  * inode block, ? - but truncate inode update has it) */
4872                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4873                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4874                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4875                 if (IS_ERR(handle)) {
4876                         error = PTR_ERR(handle);
4877                         goto err_out;
4878                 }
4879                 error = dquot_transfer(inode, attr);
4880                 if (error) {
4881                         ext4_journal_stop(handle);
4882                         return error;
4883                 }
4884                 /* Update corresponding info in inode so that everything is in
4885                  * one transaction */
4886                 if (attr->ia_valid & ATTR_UID)
4887                         inode->i_uid = attr->ia_uid;
4888                 if (attr->ia_valid & ATTR_GID)
4889                         inode->i_gid = attr->ia_gid;
4890                 error = ext4_mark_inode_dirty(handle, inode);
4891                 ext4_journal_stop(handle);
4892         }
4893
4894         if (attr->ia_valid & ATTR_SIZE) {
4895                 handle_t *handle;
4896                 loff_t oldsize = inode->i_size;
4897                 int shrink = (attr->ia_size <= inode->i_size);
4898
4899                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4900                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4901
4902                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4903                                 return -EFBIG;
4904                 }
4905                 if (!S_ISREG(inode->i_mode))
4906                         return -EINVAL;
4907
4908                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4909                         inode_inc_iversion(inode);
4910
4911                 if (ext4_should_order_data(inode) &&
4912                     (attr->ia_size < inode->i_size)) {
4913                         error = ext4_begin_ordered_truncate(inode,
4914                                                             attr->ia_size);
4915                         if (error)
4916                                 goto err_out;
4917                 }
4918                 if (attr->ia_size != inode->i_size) {
4919                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4920                         if (IS_ERR(handle)) {
4921                                 error = PTR_ERR(handle);
4922                                 goto err_out;
4923                         }
4924                         if (ext4_handle_valid(handle) && shrink) {
4925                                 error = ext4_orphan_add(handle, inode);
4926                                 orphan = 1;
4927                         }
4928                         /*
4929                          * Update c/mtime on truncate up, ext4_truncate() will
4930                          * update c/mtime in shrink case below
4931                          */
4932                         if (!shrink) {
4933                                 inode->i_mtime = ext4_current_time(inode);
4934                                 inode->i_ctime = inode->i_mtime;
4935                         }
4936                         down_write(&EXT4_I(inode)->i_data_sem);
4937                         EXT4_I(inode)->i_disksize = attr->ia_size;
4938                         rc = ext4_mark_inode_dirty(handle, inode);
4939                         if (!error)
4940                                 error = rc;
4941                         /*
4942                          * We have to update i_size under i_data_sem together
4943                          * with i_disksize to avoid races with writeback code
4944                          * running ext4_wb_update_i_disksize().
4945                          */
4946                         if (!error)
4947                                 i_size_write(inode, attr->ia_size);
4948                         up_write(&EXT4_I(inode)->i_data_sem);
4949                         ext4_journal_stop(handle);
4950                         if (error) {
4951                                 if (orphan)
4952                                         ext4_orphan_del(NULL, inode);
4953                                 goto err_out;
4954                         }
4955                 }
4956                 if (!shrink)
4957                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4958
4959                 /*
4960                  * Blocks are going to be removed from the inode. Wait
4961                  * for dio in flight.  Temporarily disable
4962                  * dioread_nolock to prevent livelock.
4963                  */
4964                 if (orphan) {
4965                         if (!ext4_should_journal_data(inode)) {
4966                                 ext4_inode_block_unlocked_dio(inode);
4967                                 inode_dio_wait(inode);
4968                                 ext4_inode_resume_unlocked_dio(inode);
4969                         } else
4970                                 ext4_wait_for_tail_page_commit(inode);
4971                 }
4972                 down_write(&EXT4_I(inode)->i_mmap_sem);
4973                 /*
4974                  * Truncate pagecache after we've waited for commit
4975                  * in data=journal mode to make pages freeable.
4976                  */
4977                 truncate_pagecache(inode, inode->i_size);
4978                 if (shrink)
4979                         ext4_truncate(inode);
4980                 up_write(&EXT4_I(inode)->i_mmap_sem);
4981         }
4982
4983         if (!rc) {
4984                 setattr_copy(inode, attr);
4985                 mark_inode_dirty(inode);
4986         }
4987
4988         /*
4989          * If the call to ext4_truncate failed to get a transaction handle at
4990          * all, we need to clean up the in-core orphan list manually.
4991          */
4992         if (orphan && inode->i_nlink)
4993                 ext4_orphan_del(NULL, inode);
4994
4995         if (!rc && (ia_valid & ATTR_MODE))
4996                 rc = posix_acl_chmod(inode, inode->i_mode);
4997
4998 err_out:
4999         ext4_std_error(inode->i_sb, error);
5000         if (!error)
5001                 error = rc;
5002         return error;
5003 }
5004
5005 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5006                  struct kstat *stat)
5007 {
5008         struct inode *inode;
5009         unsigned long long delalloc_blocks;
5010
5011         inode = d_inode(dentry);
5012         generic_fillattr(inode, stat);
5013
5014         /*
5015          * If there is inline data in the inode, the inode will normally not
5016          * have data blocks allocated (it may have an external xattr block).
5017          * Report at least one sector for such files, so tools like tar, rsync,
5018          * others doen't incorrectly think the file is completely sparse.
5019          */
5020         if (unlikely(ext4_has_inline_data(inode)))
5021                 stat->blocks += (stat->size + 511) >> 9;
5022
5023         /*
5024          * We can't update i_blocks if the block allocation is delayed
5025          * otherwise in the case of system crash before the real block
5026          * allocation is done, we will have i_blocks inconsistent with
5027          * on-disk file blocks.
5028          * We always keep i_blocks updated together with real
5029          * allocation. But to not confuse with user, stat
5030          * will return the blocks that include the delayed allocation
5031          * blocks for this file.
5032          */
5033         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5034                                    EXT4_I(inode)->i_reserved_data_blocks);
5035         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5036         return 0;
5037 }
5038
5039 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5040                                    int pextents)
5041 {
5042         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5043                 return ext4_ind_trans_blocks(inode, lblocks);
5044         return ext4_ext_index_trans_blocks(inode, pextents);
5045 }
5046
5047 /*
5048  * Account for index blocks, block groups bitmaps and block group
5049  * descriptor blocks if modify datablocks and index blocks
5050  * worse case, the indexs blocks spread over different block groups
5051  *
5052  * If datablocks are discontiguous, they are possible to spread over
5053  * different block groups too. If they are contiguous, with flexbg,
5054  * they could still across block group boundary.
5055  *
5056  * Also account for superblock, inode, quota and xattr blocks
5057  */
5058 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5059                                   int pextents)
5060 {
5061         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5062         int gdpblocks;
5063         int idxblocks;
5064         int ret = 0;
5065
5066         /*
5067          * How many index blocks need to touch to map @lblocks logical blocks
5068          * to @pextents physical extents?
5069          */
5070         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5071
5072         ret = idxblocks;
5073
5074         /*
5075          * Now let's see how many group bitmaps and group descriptors need
5076          * to account
5077          */
5078         groups = idxblocks + pextents;
5079         gdpblocks = groups;
5080         if (groups > ngroups)
5081                 groups = ngroups;
5082         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5083                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5084
5085         /* bitmaps and block group descriptor blocks */
5086         ret += groups + gdpblocks;
5087
5088         /* Blocks for super block, inode, quota and xattr blocks */
5089         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5090
5091         return ret;
5092 }
5093
5094 /*
5095  * Calculate the total number of credits to reserve to fit
5096  * the modification of a single pages into a single transaction,
5097  * which may include multiple chunks of block allocations.
5098  *
5099  * This could be called via ext4_write_begin()
5100  *
5101  * We need to consider the worse case, when
5102  * one new block per extent.
5103  */
5104 int ext4_writepage_trans_blocks(struct inode *inode)
5105 {
5106         int bpp = ext4_journal_blocks_per_page(inode);
5107         int ret;
5108
5109         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5110
5111         /* Account for data blocks for journalled mode */
5112         if (ext4_should_journal_data(inode))
5113                 ret += bpp;
5114         return ret;
5115 }
5116
5117 /*
5118  * Calculate the journal credits for a chunk of data modification.
5119  *
5120  * This is called from DIO, fallocate or whoever calling
5121  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5122  *
5123  * journal buffers for data blocks are not included here, as DIO
5124  * and fallocate do no need to journal data buffers.
5125  */
5126 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5127 {
5128         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5129 }
5130
5131 /*
5132  * The caller must have previously called ext4_reserve_inode_write().
5133  * Give this, we know that the caller already has write access to iloc->bh.
5134  */
5135 int ext4_mark_iloc_dirty(handle_t *handle,
5136                          struct inode *inode, struct ext4_iloc *iloc)
5137 {
5138         int err = 0;
5139
5140         if (IS_I_VERSION(inode))
5141                 inode_inc_iversion(inode);
5142
5143         /* the do_update_inode consumes one bh->b_count */
5144         get_bh(iloc->bh);
5145
5146         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5147         err = ext4_do_update_inode(handle, inode, iloc);
5148         put_bh(iloc->bh);
5149         return err;
5150 }
5151
5152 /*
5153  * On success, We end up with an outstanding reference count against
5154  * iloc->bh.  This _must_ be cleaned up later.
5155  */
5156
5157 int
5158 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5159                          struct ext4_iloc *iloc)
5160 {
5161         int err;
5162
5163         err = ext4_get_inode_loc(inode, iloc);
5164         if (!err) {
5165                 BUFFER_TRACE(iloc->bh, "get_write_access");
5166                 err = ext4_journal_get_write_access(handle, iloc->bh);
5167                 if (err) {
5168                         brelse(iloc->bh);
5169                         iloc->bh = NULL;
5170                 }
5171         }
5172         ext4_std_error(inode->i_sb, err);
5173         return err;
5174 }
5175
5176 /*
5177  * Expand an inode by new_extra_isize bytes.
5178  * Returns 0 on success or negative error number on failure.
5179  */
5180 static int ext4_expand_extra_isize(struct inode *inode,
5181                                    unsigned int new_extra_isize,
5182                                    struct ext4_iloc iloc,
5183                                    handle_t *handle)
5184 {
5185         struct ext4_inode *raw_inode;
5186         struct ext4_xattr_ibody_header *header;
5187
5188         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5189                 return 0;
5190
5191         raw_inode = ext4_raw_inode(&iloc);
5192
5193         header = IHDR(inode, raw_inode);
5194
5195         /* No extended attributes present */
5196         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5197             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5198                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5199                         new_extra_isize);
5200                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5201                 return 0;
5202         }
5203
5204         /* try to expand with EAs present */
5205         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5206                                           raw_inode, handle);
5207 }
5208
5209 /*
5210  * What we do here is to mark the in-core inode as clean with respect to inode
5211  * dirtiness (it may still be data-dirty).
5212  * This means that the in-core inode may be reaped by prune_icache
5213  * without having to perform any I/O.  This is a very good thing,
5214  * because *any* task may call prune_icache - even ones which
5215  * have a transaction open against a different journal.
5216  *
5217  * Is this cheating?  Not really.  Sure, we haven't written the
5218  * inode out, but prune_icache isn't a user-visible syncing function.
5219  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5220  * we start and wait on commits.
5221  */
5222 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5223 {
5224         struct ext4_iloc iloc;
5225         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5226         static unsigned int mnt_count;
5227         int err, ret;
5228
5229         might_sleep();
5230         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5231         err = ext4_reserve_inode_write(handle, inode, &iloc);
5232         if (ext4_handle_valid(handle) &&
5233             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5234             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5235                 /*
5236                  * We need extra buffer credits since we may write into EA block
5237                  * with this same handle. If journal_extend fails, then it will
5238                  * only result in a minor loss of functionality for that inode.
5239                  * If this is felt to be critical, then e2fsck should be run to
5240                  * force a large enough s_min_extra_isize.
5241                  */
5242                 if ((jbd2_journal_extend(handle,
5243                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5244                         ret = ext4_expand_extra_isize(inode,
5245                                                       sbi->s_want_extra_isize,
5246                                                       iloc, handle);
5247                         if (ret) {
5248                                 ext4_set_inode_state(inode,
5249                                                      EXT4_STATE_NO_EXPAND);
5250                                 if (mnt_count !=
5251                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5252                                         ext4_warning(inode->i_sb,
5253                                         "Unable to expand inode %lu. Delete"
5254                                         " some EAs or run e2fsck.",
5255                                         inode->i_ino);
5256                                         mnt_count =
5257                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5258                                 }
5259                         }
5260                 }
5261         }
5262         if (!err)
5263                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5264         return err;
5265 }
5266
5267 /*
5268  * ext4_dirty_inode() is called from __mark_inode_dirty()
5269  *
5270  * We're really interested in the case where a file is being extended.
5271  * i_size has been changed by generic_commit_write() and we thus need
5272  * to include the updated inode in the current transaction.
5273  *
5274  * Also, dquot_alloc_block() will always dirty the inode when blocks
5275  * are allocated to the file.
5276  *
5277  * If the inode is marked synchronous, we don't honour that here - doing
5278  * so would cause a commit on atime updates, which we don't bother doing.
5279  * We handle synchronous inodes at the highest possible level.
5280  *
5281  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5282  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5283  * to copy into the on-disk inode structure are the timestamp files.
5284  */
5285 void ext4_dirty_inode(struct inode *inode, int flags)
5286 {
5287         handle_t *handle;
5288
5289         if (flags == I_DIRTY_TIME)
5290                 return;
5291         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5292         if (IS_ERR(handle))
5293                 goto out;
5294
5295         ext4_mark_inode_dirty(handle, inode);
5296
5297         ext4_journal_stop(handle);
5298 out:
5299         return;
5300 }
5301
5302 #if 0
5303 /*
5304  * Bind an inode's backing buffer_head into this transaction, to prevent
5305  * it from being flushed to disk early.  Unlike
5306  * ext4_reserve_inode_write, this leaves behind no bh reference and
5307  * returns no iloc structure, so the caller needs to repeat the iloc
5308  * lookup to mark the inode dirty later.
5309  */
5310 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5311 {
5312         struct ext4_iloc iloc;
5313
5314         int err = 0;
5315         if (handle) {
5316                 err = ext4_get_inode_loc(inode, &iloc);
5317                 if (!err) {
5318                         BUFFER_TRACE(iloc.bh, "get_write_access");
5319                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5320                         if (!err)
5321                                 err = ext4_handle_dirty_metadata(handle,
5322                                                                  NULL,
5323                                                                  iloc.bh);
5324                         brelse(iloc.bh);
5325                 }
5326         }
5327         ext4_std_error(inode->i_sb, err);
5328         return err;
5329 }
5330 #endif
5331
5332 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5333 {
5334         journal_t *journal;
5335         handle_t *handle;
5336         int err;
5337
5338         /*
5339          * We have to be very careful here: changing a data block's
5340          * journaling status dynamically is dangerous.  If we write a
5341          * data block to the journal, change the status and then delete
5342          * that block, we risk forgetting to revoke the old log record
5343          * from the journal and so a subsequent replay can corrupt data.
5344          * So, first we make sure that the journal is empty and that
5345          * nobody is changing anything.
5346          */
5347
5348         journal = EXT4_JOURNAL(inode);
5349         if (!journal)
5350                 return 0;
5351         if (is_journal_aborted(journal))
5352                 return -EROFS;
5353         /* We have to allocate physical blocks for delalloc blocks
5354          * before flushing journal. otherwise delalloc blocks can not
5355          * be allocated any more. even more truncate on delalloc blocks
5356          * could trigger BUG by flushing delalloc blocks in journal.
5357          * There is no delalloc block in non-journal data mode.
5358          */
5359         if (val && test_opt(inode->i_sb, DELALLOC)) {
5360                 err = ext4_alloc_da_blocks(inode);
5361                 if (err < 0)
5362                         return err;
5363         }
5364
5365         /* Wait for all existing dio workers */
5366         ext4_inode_block_unlocked_dio(inode);
5367         inode_dio_wait(inode);
5368
5369         jbd2_journal_lock_updates(journal);
5370
5371         /*
5372          * OK, there are no updates running now, and all cached data is
5373          * synced to disk.  We are now in a completely consistent state
5374          * which doesn't have anything in the journal, and we know that
5375          * no filesystem updates are running, so it is safe to modify
5376          * the inode's in-core data-journaling state flag now.
5377          */
5378
5379         if (val)
5380                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5381         else {
5382                 err = jbd2_journal_flush(journal);
5383                 if (err < 0) {
5384                         jbd2_journal_unlock_updates(journal);
5385                         ext4_inode_resume_unlocked_dio(inode);
5386                         return err;
5387                 }
5388                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5389         }
5390         ext4_set_aops(inode);
5391
5392         jbd2_journal_unlock_updates(journal);
5393         ext4_inode_resume_unlocked_dio(inode);
5394
5395         /* Finally we can mark the inode as dirty. */
5396
5397         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5398         if (IS_ERR(handle))
5399                 return PTR_ERR(handle);
5400
5401         err = ext4_mark_inode_dirty(handle, inode);
5402         ext4_handle_sync(handle);
5403         ext4_journal_stop(handle);
5404         ext4_std_error(inode->i_sb, err);
5405
5406         return err;
5407 }
5408
5409 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5410 {
5411         return !buffer_mapped(bh);
5412 }
5413
5414 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5415 {
5416         struct page *page = vmf->page;
5417         loff_t size;
5418         unsigned long len;
5419         int ret;
5420         struct file *file = vma->vm_file;
5421         struct inode *inode = file_inode(file);
5422         struct address_space *mapping = inode->i_mapping;
5423         handle_t *handle;
5424         get_block_t *get_block;
5425         int retries = 0;
5426
5427         sb_start_pagefault(inode->i_sb);
5428         file_update_time(vma->vm_file);
5429
5430         down_read(&EXT4_I(inode)->i_mmap_sem);
5431         /* Delalloc case is easy... */
5432         if (test_opt(inode->i_sb, DELALLOC) &&
5433             !ext4_should_journal_data(inode) &&
5434             !ext4_nonda_switch(inode->i_sb)) {
5435                 do {
5436                         ret = block_page_mkwrite(vma, vmf,
5437                                                    ext4_da_get_block_prep);
5438                 } while (ret == -ENOSPC &&
5439                        ext4_should_retry_alloc(inode->i_sb, &retries));
5440                 goto out_ret;
5441         }
5442
5443         lock_page(page);
5444         size = i_size_read(inode);
5445         /* Page got truncated from under us? */
5446         if (page->mapping != mapping || page_offset(page) > size) {
5447                 unlock_page(page);
5448                 ret = VM_FAULT_NOPAGE;
5449                 goto out;
5450         }
5451
5452         if (page->index == size >> PAGE_CACHE_SHIFT)
5453                 len = size & ~PAGE_CACHE_MASK;
5454         else
5455                 len = PAGE_CACHE_SIZE;
5456         /*
5457          * Return if we have all the buffers mapped. This avoids the need to do
5458          * journal_start/journal_stop which can block and take a long time
5459          */
5460         if (page_has_buffers(page)) {
5461                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5462                                             0, len, NULL,
5463                                             ext4_bh_unmapped)) {
5464                         /* Wait so that we don't change page under IO */
5465                         wait_for_stable_page(page);
5466                         ret = VM_FAULT_LOCKED;
5467                         goto out;
5468                 }
5469         }
5470         unlock_page(page);
5471         /* OK, we need to fill the hole... */
5472         if (ext4_should_dioread_nolock(inode))
5473                 get_block = ext4_get_block_write;
5474         else
5475                 get_block = ext4_get_block;
5476 retry_alloc:
5477         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5478                                     ext4_writepage_trans_blocks(inode));
5479         if (IS_ERR(handle)) {
5480                 ret = VM_FAULT_SIGBUS;
5481                 goto out;
5482         }
5483         ret = block_page_mkwrite(vma, vmf, get_block);
5484         if (!ret && ext4_should_journal_data(inode)) {
5485                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5486                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5487                         unlock_page(page);
5488                         ret = VM_FAULT_SIGBUS;
5489                         ext4_journal_stop(handle);
5490                         goto out;
5491                 }
5492                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5493         }
5494         ext4_journal_stop(handle);
5495         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5496                 goto retry_alloc;
5497 out_ret:
5498         ret = block_page_mkwrite_return(ret);
5499 out:
5500         up_read(&EXT4_I(inode)->i_mmap_sem);
5501         sb_end_pagefault(inode->i_sb);
5502         return ret;
5503 }
5504
5505 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5506 {
5507         struct inode *inode = file_inode(vma->vm_file);
5508         int err;
5509
5510         down_read(&EXT4_I(inode)->i_mmap_sem);
5511         err = filemap_fault(vma, vmf);
5512         up_read(&EXT4_I(inode)->i_mmap_sem);
5513
5514         return err;
5515 }