dax: fix conversion of holes to PMDs
[linux-drm-fsl-dcu.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31 #include <linux/pfn_t.h>
32 #include <linux/sizes.h>
33
34 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
35 {
36         struct request_queue *q = bdev->bd_queue;
37         long rc = -EIO;
38
39         dax->addr = (void __pmem *) ERR_PTR(-EIO);
40         if (blk_queue_enter(q, true) != 0)
41                 return rc;
42
43         rc = bdev_direct_access(bdev, dax);
44         if (rc < 0) {
45                 dax->addr = (void __pmem *) ERR_PTR(rc);
46                 blk_queue_exit(q);
47                 return rc;
48         }
49         return rc;
50 }
51
52 static void dax_unmap_atomic(struct block_device *bdev,
53                 const struct blk_dax_ctl *dax)
54 {
55         if (IS_ERR(dax->addr))
56                 return;
57         blk_queue_exit(bdev->bd_queue);
58 }
59
60 /*
61  * dax_clear_blocks() is called from within transaction context from XFS,
62  * and hence this means the stack from this point must follow GFP_NOFS
63  * semantics for all operations.
64  */
65 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
66 {
67         struct block_device *bdev = inode->i_sb->s_bdev;
68         struct blk_dax_ctl dax = {
69                 .sector = block << (inode->i_blkbits - 9),
70                 .size = _size,
71         };
72
73         might_sleep();
74         do {
75                 long count, sz;
76
77                 count = dax_map_atomic(bdev, &dax);
78                 if (count < 0)
79                         return count;
80                 sz = min_t(long, count, SZ_128K);
81                 clear_pmem(dax.addr, sz);
82                 dax.size -= sz;
83                 dax.sector += sz / 512;
84                 dax_unmap_atomic(bdev, &dax);
85                 cond_resched();
86         } while (dax.size);
87
88         wmb_pmem();
89         return 0;
90 }
91 EXPORT_SYMBOL_GPL(dax_clear_blocks);
92
93 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
94 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
95                 loff_t pos, loff_t end)
96 {
97         loff_t final = end - pos + first; /* The final byte of the buffer */
98
99         if (first > 0)
100                 clear_pmem(addr, first);
101         if (final < size)
102                 clear_pmem(addr + final, size - final);
103 }
104
105 static bool buffer_written(struct buffer_head *bh)
106 {
107         return buffer_mapped(bh) && !buffer_unwritten(bh);
108 }
109
110 /*
111  * When ext4 encounters a hole, it returns without modifying the buffer_head
112  * which means that we can't trust b_size.  To cope with this, we set b_state
113  * to 0 before calling get_block and, if any bit is set, we know we can trust
114  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
115  * and would save us time calling get_block repeatedly.
116  */
117 static bool buffer_size_valid(struct buffer_head *bh)
118 {
119         return bh->b_state != 0;
120 }
121
122
123 static sector_t to_sector(const struct buffer_head *bh,
124                 const struct inode *inode)
125 {
126         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
127
128         return sector;
129 }
130
131 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
132                       loff_t start, loff_t end, get_block_t get_block,
133                       struct buffer_head *bh)
134 {
135         loff_t pos = start, max = start, bh_max = start;
136         bool hole = false, need_wmb = false;
137         struct block_device *bdev = NULL;
138         int rw = iov_iter_rw(iter), rc;
139         long map_len = 0;
140         struct blk_dax_ctl dax = {
141                 .addr = (void __pmem *) ERR_PTR(-EIO),
142         };
143
144         if (rw == READ)
145                 end = min(end, i_size_read(inode));
146
147         while (pos < end) {
148                 size_t len;
149                 if (pos == max) {
150                         unsigned blkbits = inode->i_blkbits;
151                         long page = pos >> PAGE_SHIFT;
152                         sector_t block = page << (PAGE_SHIFT - blkbits);
153                         unsigned first = pos - (block << blkbits);
154                         long size;
155
156                         if (pos == bh_max) {
157                                 bh->b_size = PAGE_ALIGN(end - pos);
158                                 bh->b_state = 0;
159                                 rc = get_block(inode, block, bh, rw == WRITE);
160                                 if (rc)
161                                         break;
162                                 if (!buffer_size_valid(bh))
163                                         bh->b_size = 1 << blkbits;
164                                 bh_max = pos - first + bh->b_size;
165                                 bdev = bh->b_bdev;
166                         } else {
167                                 unsigned done = bh->b_size -
168                                                 (bh_max - (pos - first));
169                                 bh->b_blocknr += done >> blkbits;
170                                 bh->b_size -= done;
171                         }
172
173                         hole = rw == READ && !buffer_written(bh);
174                         if (hole) {
175                                 size = bh->b_size - first;
176                         } else {
177                                 dax_unmap_atomic(bdev, &dax);
178                                 dax.sector = to_sector(bh, inode);
179                                 dax.size = bh->b_size;
180                                 map_len = dax_map_atomic(bdev, &dax);
181                                 if (map_len < 0) {
182                                         rc = map_len;
183                                         break;
184                                 }
185                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
186                                         dax_new_buf(dax.addr, map_len, first,
187                                                         pos, end);
188                                         need_wmb = true;
189                                 }
190                                 dax.addr += first;
191                                 size = map_len - first;
192                         }
193                         max = min(pos + size, end);
194                 }
195
196                 if (iov_iter_rw(iter) == WRITE) {
197                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
198                         need_wmb = true;
199                 } else if (!hole)
200                         len = copy_to_iter((void __force *) dax.addr, max - pos,
201                                         iter);
202                 else
203                         len = iov_iter_zero(max - pos, iter);
204
205                 if (!len) {
206                         rc = -EFAULT;
207                         break;
208                 }
209
210                 pos += len;
211                 if (!IS_ERR(dax.addr))
212                         dax.addr += len;
213         }
214
215         if (need_wmb)
216                 wmb_pmem();
217         dax_unmap_atomic(bdev, &dax);
218
219         return (pos == start) ? rc : pos - start;
220 }
221
222 /**
223  * dax_do_io - Perform I/O to a DAX file
224  * @iocb: The control block for this I/O
225  * @inode: The file which the I/O is directed at
226  * @iter: The addresses to do I/O from or to
227  * @pos: The file offset where the I/O starts
228  * @get_block: The filesystem method used to translate file offsets to blocks
229  * @end_io: A filesystem callback for I/O completion
230  * @flags: See below
231  *
232  * This function uses the same locking scheme as do_blockdev_direct_IO:
233  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
234  * caller for writes.  For reads, we take and release the i_mutex ourselves.
235  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
236  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
237  * is in progress.
238  */
239 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
240                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
241                   dio_iodone_t end_io, int flags)
242 {
243         struct buffer_head bh;
244         ssize_t retval = -EINVAL;
245         loff_t end = pos + iov_iter_count(iter);
246
247         memset(&bh, 0, sizeof(bh));
248
249         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
250                 struct address_space *mapping = inode->i_mapping;
251                 mutex_lock(&inode->i_mutex);
252                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
253                 if (retval) {
254                         mutex_unlock(&inode->i_mutex);
255                         goto out;
256                 }
257         }
258
259         /* Protects against truncate */
260         if (!(flags & DIO_SKIP_DIO_COUNT))
261                 inode_dio_begin(inode);
262
263         retval = dax_io(inode, iter, pos, end, get_block, &bh);
264
265         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
266                 mutex_unlock(&inode->i_mutex);
267
268         if ((retval > 0) && end_io)
269                 end_io(iocb, pos, retval, bh.b_private);
270
271         if (!(flags & DIO_SKIP_DIO_COUNT))
272                 inode_dio_end(inode);
273  out:
274         return retval;
275 }
276 EXPORT_SYMBOL_GPL(dax_do_io);
277
278 /*
279  * The user has performed a load from a hole in the file.  Allocating
280  * a new page in the file would cause excessive storage usage for
281  * workloads with sparse files.  We allocate a page cache page instead.
282  * We'll kick it out of the page cache if it's ever written to,
283  * otherwise it will simply fall out of the page cache under memory
284  * pressure without ever having been dirtied.
285  */
286 static int dax_load_hole(struct address_space *mapping, struct page *page,
287                                                         struct vm_fault *vmf)
288 {
289         unsigned long size;
290         struct inode *inode = mapping->host;
291         if (!page)
292                 page = find_or_create_page(mapping, vmf->pgoff,
293                                                 GFP_KERNEL | __GFP_ZERO);
294         if (!page)
295                 return VM_FAULT_OOM;
296         /* Recheck i_size under page lock to avoid truncate race */
297         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
298         if (vmf->pgoff >= size) {
299                 unlock_page(page);
300                 page_cache_release(page);
301                 return VM_FAULT_SIGBUS;
302         }
303
304         vmf->page = page;
305         return VM_FAULT_LOCKED;
306 }
307
308 static int copy_user_bh(struct page *to, struct inode *inode,
309                 struct buffer_head *bh, unsigned long vaddr)
310 {
311         struct blk_dax_ctl dax = {
312                 .sector = to_sector(bh, inode),
313                 .size = bh->b_size,
314         };
315         struct block_device *bdev = bh->b_bdev;
316         void *vto;
317
318         if (dax_map_atomic(bdev, &dax) < 0)
319                 return PTR_ERR(dax.addr);
320         vto = kmap_atomic(to);
321         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
322         kunmap_atomic(vto);
323         dax_unmap_atomic(bdev, &dax);
324         return 0;
325 }
326
327 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
328                         struct vm_area_struct *vma, struct vm_fault *vmf)
329 {
330         unsigned long vaddr = (unsigned long)vmf->virtual_address;
331         struct address_space *mapping = inode->i_mapping;
332         struct block_device *bdev = bh->b_bdev;
333         struct blk_dax_ctl dax = {
334                 .sector = to_sector(bh, inode),
335                 .size = bh->b_size,
336         };
337         pgoff_t size;
338         int error;
339
340         i_mmap_lock_read(mapping);
341
342         /*
343          * Check truncate didn't happen while we were allocating a block.
344          * If it did, this block may or may not be still allocated to the
345          * file.  We can't tell the filesystem to free it because we can't
346          * take i_mutex here.  In the worst case, the file still has blocks
347          * allocated past the end of the file.
348          */
349         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
350         if (unlikely(vmf->pgoff >= size)) {
351                 error = -EIO;
352                 goto out;
353         }
354
355         if (dax_map_atomic(bdev, &dax) < 0) {
356                 error = PTR_ERR(dax.addr);
357                 goto out;
358         }
359
360         if (buffer_unwritten(bh) || buffer_new(bh)) {
361                 clear_pmem(dax.addr, PAGE_SIZE);
362                 wmb_pmem();
363         }
364         dax_unmap_atomic(bdev, &dax);
365
366         error = vm_insert_mixed(vma, vaddr, dax.pfn);
367
368  out:
369         i_mmap_unlock_read(mapping);
370
371         return error;
372 }
373
374 /**
375  * __dax_fault - handle a page fault on a DAX file
376  * @vma: The virtual memory area where the fault occurred
377  * @vmf: The description of the fault
378  * @get_block: The filesystem method used to translate file offsets to blocks
379  * @complete_unwritten: The filesystem method used to convert unwritten blocks
380  *      to written so the data written to them is exposed. This is required for
381  *      required by write faults for filesystems that will return unwritten
382  *      extent mappings from @get_block, but it is optional for reads as
383  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
384  *      not support unwritten extents, the it should pass NULL.
385  *
386  * When a page fault occurs, filesystems may call this helper in their
387  * fault handler for DAX files. __dax_fault() assumes the caller has done all
388  * the necessary locking for the page fault to proceed successfully.
389  */
390 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
391                         get_block_t get_block, dax_iodone_t complete_unwritten)
392 {
393         struct file *file = vma->vm_file;
394         struct address_space *mapping = file->f_mapping;
395         struct inode *inode = mapping->host;
396         struct page *page;
397         struct buffer_head bh;
398         unsigned long vaddr = (unsigned long)vmf->virtual_address;
399         unsigned blkbits = inode->i_blkbits;
400         sector_t block;
401         pgoff_t size;
402         int error;
403         int major = 0;
404
405         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
406         if (vmf->pgoff >= size)
407                 return VM_FAULT_SIGBUS;
408
409         memset(&bh, 0, sizeof(bh));
410         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
411         bh.b_size = PAGE_SIZE;
412
413  repeat:
414         page = find_get_page(mapping, vmf->pgoff);
415         if (page) {
416                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
417                         page_cache_release(page);
418                         return VM_FAULT_RETRY;
419                 }
420                 if (unlikely(page->mapping != mapping)) {
421                         unlock_page(page);
422                         page_cache_release(page);
423                         goto repeat;
424                 }
425                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
426                 if (unlikely(vmf->pgoff >= size)) {
427                         /*
428                          * We have a struct page covering a hole in the file
429                          * from a read fault and we've raced with a truncate
430                          */
431                         error = -EIO;
432                         goto unlock_page;
433                 }
434         }
435
436         error = get_block(inode, block, &bh, 0);
437         if (!error && (bh.b_size < PAGE_SIZE))
438                 error = -EIO;           /* fs corruption? */
439         if (error)
440                 goto unlock_page;
441
442         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
443                 if (vmf->flags & FAULT_FLAG_WRITE) {
444                         error = get_block(inode, block, &bh, 1);
445                         count_vm_event(PGMAJFAULT);
446                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
447                         major = VM_FAULT_MAJOR;
448                         if (!error && (bh.b_size < PAGE_SIZE))
449                                 error = -EIO;
450                         if (error)
451                                 goto unlock_page;
452                 } else {
453                         return dax_load_hole(mapping, page, vmf);
454                 }
455         }
456
457         if (vmf->cow_page) {
458                 struct page *new_page = vmf->cow_page;
459                 if (buffer_written(&bh))
460                         error = copy_user_bh(new_page, inode, &bh, vaddr);
461                 else
462                         clear_user_highpage(new_page, vaddr);
463                 if (error)
464                         goto unlock_page;
465                 vmf->page = page;
466                 if (!page) {
467                         i_mmap_lock_read(mapping);
468                         /* Check we didn't race with truncate */
469                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
470                                                                 PAGE_SHIFT;
471                         if (vmf->pgoff >= size) {
472                                 i_mmap_unlock_read(mapping);
473                                 error = -EIO;
474                                 goto out;
475                         }
476                 }
477                 return VM_FAULT_LOCKED;
478         }
479
480         /* Check we didn't race with a read fault installing a new page */
481         if (!page && major)
482                 page = find_lock_page(mapping, vmf->pgoff);
483
484         if (page) {
485                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
486                                                         PAGE_CACHE_SIZE, 0);
487                 delete_from_page_cache(page);
488                 unlock_page(page);
489                 page_cache_release(page);
490         }
491
492         /*
493          * If we successfully insert the new mapping over an unwritten extent,
494          * we need to ensure we convert the unwritten extent. If there is an
495          * error inserting the mapping, the filesystem needs to leave it as
496          * unwritten to prevent exposure of the stale underlying data to
497          * userspace, but we still need to call the completion function so
498          * the private resources on the mapping buffer can be released. We
499          * indicate what the callback should do via the uptodate variable, same
500          * as for normal BH based IO completions.
501          */
502         error = dax_insert_mapping(inode, &bh, vma, vmf);
503         if (buffer_unwritten(&bh)) {
504                 if (complete_unwritten)
505                         complete_unwritten(&bh, !error);
506                 else
507                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
508         }
509
510  out:
511         if (error == -ENOMEM)
512                 return VM_FAULT_OOM | major;
513         /* -EBUSY is fine, somebody else faulted on the same PTE */
514         if ((error < 0) && (error != -EBUSY))
515                 return VM_FAULT_SIGBUS | major;
516         return VM_FAULT_NOPAGE | major;
517
518  unlock_page:
519         if (page) {
520                 unlock_page(page);
521                 page_cache_release(page);
522         }
523         goto out;
524 }
525 EXPORT_SYMBOL(__dax_fault);
526
527 /**
528  * dax_fault - handle a page fault on a DAX file
529  * @vma: The virtual memory area where the fault occurred
530  * @vmf: The description of the fault
531  * @get_block: The filesystem method used to translate file offsets to blocks
532  *
533  * When a page fault occurs, filesystems may call this helper in their
534  * fault handler for DAX files.
535  */
536 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
537               get_block_t get_block, dax_iodone_t complete_unwritten)
538 {
539         int result;
540         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
541
542         if (vmf->flags & FAULT_FLAG_WRITE) {
543                 sb_start_pagefault(sb);
544                 file_update_time(vma->vm_file);
545         }
546         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
547         if (vmf->flags & FAULT_FLAG_WRITE)
548                 sb_end_pagefault(sb);
549
550         return result;
551 }
552 EXPORT_SYMBOL_GPL(dax_fault);
553
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 /*
556  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
557  * more often than one might expect in the below function.
558  */
559 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
560
561 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
562                 const char *reason, const char *fn)
563 {
564         if (bh) {
565                 char bname[BDEVNAME_SIZE];
566                 bdevname(bh->b_bdev, bname);
567                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
568                         "length %zd fallback: %s\n", fn, current->comm,
569                         address, bname, bh->b_state, (u64)bh->b_blocknr,
570                         bh->b_size, reason);
571         } else {
572                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
573                         current->comm, address, reason);
574         }
575 }
576
577 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
578
579 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
580                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
581                 dax_iodone_t complete_unwritten)
582 {
583         struct file *file = vma->vm_file;
584         struct address_space *mapping = file->f_mapping;
585         struct inode *inode = mapping->host;
586         struct buffer_head bh;
587         unsigned blkbits = inode->i_blkbits;
588         unsigned long pmd_addr = address & PMD_MASK;
589         bool write = flags & FAULT_FLAG_WRITE;
590         struct block_device *bdev;
591         pgoff_t size, pgoff;
592         loff_t lstart, lend;
593         sector_t block;
594         int result = 0;
595
596         /* dax pmd mappings require pfn_t_devmap() */
597         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
598                 return VM_FAULT_FALLBACK;
599
600         /* Fall back to PTEs if we're going to COW */
601         if (write && !(vma->vm_flags & VM_SHARED)) {
602                 split_huge_pmd(vma, pmd, address);
603                 dax_pmd_dbg(NULL, address, "cow write");
604                 return VM_FAULT_FALLBACK;
605         }
606         /* If the PMD would extend outside the VMA */
607         if (pmd_addr < vma->vm_start) {
608                 dax_pmd_dbg(NULL, address, "vma start unaligned");
609                 return VM_FAULT_FALLBACK;
610         }
611         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
612                 dax_pmd_dbg(NULL, address, "vma end unaligned");
613                 return VM_FAULT_FALLBACK;
614         }
615
616         pgoff = linear_page_index(vma, pmd_addr);
617         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
618         if (pgoff >= size)
619                 return VM_FAULT_SIGBUS;
620         /* If the PMD would cover blocks out of the file */
621         if ((pgoff | PG_PMD_COLOUR) >= size) {
622                 dax_pmd_dbg(NULL, address,
623                                 "offset + huge page size > file size");
624                 return VM_FAULT_FALLBACK;
625         }
626
627         memset(&bh, 0, sizeof(bh));
628         bh.b_bdev = inode->i_sb->s_bdev;
629         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
630
631         bh.b_size = PMD_SIZE;
632         if (get_block(inode, block, &bh, write) != 0)
633                 return VM_FAULT_SIGBUS;
634         bdev = bh.b_bdev;
635         i_mmap_lock_read(mapping);
636
637         /*
638          * If the filesystem isn't willing to tell us the length of a hole,
639          * just fall back to PTEs.  Calling get_block 512 times in a loop
640          * would be silly.
641          */
642         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
643                 dax_pmd_dbg(&bh, address, "allocated block too small");
644                 goto fallback;
645         }
646
647         /* make sure no process has any zero pages covering this hole */
648         lstart = pgoff << PAGE_SHIFT;
649         lend = lstart + PMD_SIZE - 1; /* inclusive */
650         i_mmap_unlock_read(mapping);
651         unmap_mapping_range(mapping, lstart, PMD_SIZE, 0);
652         truncate_inode_pages_range(mapping, lstart, lend);
653         i_mmap_lock_read(mapping);
654
655         /*
656          * If a truncate happened while we were allocating blocks, we may
657          * leave blocks allocated to the file that are beyond EOF.  We can't
658          * take i_mutex here, so just leave them hanging; they'll be freed
659          * when the file is deleted.
660          */
661         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
662         if (pgoff >= size) {
663                 result = VM_FAULT_SIGBUS;
664                 goto out;
665         }
666         if ((pgoff | PG_PMD_COLOUR) >= size) {
667                 dax_pmd_dbg(&bh, address,
668                                 "offset + huge page size > file size");
669                 goto fallback;
670         }
671
672         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
673                 spinlock_t *ptl;
674                 pmd_t entry;
675                 struct page *zero_page = get_huge_zero_page();
676
677                 if (unlikely(!zero_page)) {
678                         dax_pmd_dbg(&bh, address, "no zero page");
679                         goto fallback;
680                 }
681
682                 ptl = pmd_lock(vma->vm_mm, pmd);
683                 if (!pmd_none(*pmd)) {
684                         spin_unlock(ptl);
685                         dax_pmd_dbg(&bh, address, "pmd already present");
686                         goto fallback;
687                 }
688
689                 dev_dbg(part_to_dev(bdev->bd_part),
690                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
691                                 __func__, current->comm, address,
692                                 (unsigned long long) to_sector(&bh, inode));
693
694                 entry = mk_pmd(zero_page, vma->vm_page_prot);
695                 entry = pmd_mkhuge(entry);
696                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
697                 result = VM_FAULT_NOPAGE;
698                 spin_unlock(ptl);
699         } else {
700                 struct blk_dax_ctl dax = {
701                         .sector = to_sector(&bh, inode),
702                         .size = PMD_SIZE,
703                 };
704                 long length = dax_map_atomic(bdev, &dax);
705
706                 if (length < 0) {
707                         result = VM_FAULT_SIGBUS;
708                         goto out;
709                 }
710                 if (length < PMD_SIZE) {
711                         dax_pmd_dbg(&bh, address, "dax-length too small");
712                         dax_unmap_atomic(bdev, &dax);
713                         goto fallback;
714                 }
715                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
716                         dax_pmd_dbg(&bh, address, "pfn unaligned");
717                         dax_unmap_atomic(bdev, &dax);
718                         goto fallback;
719                 }
720
721                 if (!pfn_t_devmap(dax.pfn)) {
722                         dax_unmap_atomic(bdev, &dax);
723                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
724                         goto fallback;
725                 }
726
727                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
728                         clear_pmem(dax.addr, PMD_SIZE);
729                         wmb_pmem();
730                         count_vm_event(PGMAJFAULT);
731                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
732                         result |= VM_FAULT_MAJOR;
733                 }
734                 dax_unmap_atomic(bdev, &dax);
735
736                 dev_dbg(part_to_dev(bdev->bd_part),
737                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
738                                 __func__, current->comm, address,
739                                 pfn_t_to_pfn(dax.pfn),
740                                 (unsigned long long) dax.sector);
741                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
742                                 dax.pfn, write);
743         }
744
745  out:
746         i_mmap_unlock_read(mapping);
747
748         if (buffer_unwritten(&bh))
749                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
750
751         return result;
752
753  fallback:
754         count_vm_event(THP_FAULT_FALLBACK);
755         result = VM_FAULT_FALLBACK;
756         goto out;
757 }
758 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
759
760 /**
761  * dax_pmd_fault - handle a PMD fault on a DAX file
762  * @vma: The virtual memory area where the fault occurred
763  * @vmf: The description of the fault
764  * @get_block: The filesystem method used to translate file offsets to blocks
765  *
766  * When a page fault occurs, filesystems may call this helper in their
767  * pmd_fault handler for DAX files.
768  */
769 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
770                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
771                         dax_iodone_t complete_unwritten)
772 {
773         int result;
774         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
775
776         if (flags & FAULT_FLAG_WRITE) {
777                 sb_start_pagefault(sb);
778                 file_update_time(vma->vm_file);
779         }
780         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
781                                 complete_unwritten);
782         if (flags & FAULT_FLAG_WRITE)
783                 sb_end_pagefault(sb);
784
785         return result;
786 }
787 EXPORT_SYMBOL_GPL(dax_pmd_fault);
788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
789
790 /**
791  * dax_pfn_mkwrite - handle first write to DAX page
792  * @vma: The virtual memory area where the fault occurred
793  * @vmf: The description of the fault
794  *
795  */
796 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
797 {
798         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
799
800         sb_start_pagefault(sb);
801         file_update_time(vma->vm_file);
802         sb_end_pagefault(sb);
803         return VM_FAULT_NOPAGE;
804 }
805 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
806
807 /**
808  * dax_zero_page_range - zero a range within a page of a DAX file
809  * @inode: The file being truncated
810  * @from: The file offset that is being truncated to
811  * @length: The number of bytes to zero
812  * @get_block: The filesystem method used to translate file offsets to blocks
813  *
814  * This function can be called by a filesystem when it is zeroing part of a
815  * page in a DAX file.  This is intended for hole-punch operations.  If
816  * you are truncating a file, the helper function dax_truncate_page() may be
817  * more convenient.
818  *
819  * We work in terms of PAGE_CACHE_SIZE here for commonality with
820  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
821  * took care of disposing of the unnecessary blocks.  Even if the filesystem
822  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
823  * since the file might be mmapped.
824  */
825 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
826                                                         get_block_t get_block)
827 {
828         struct buffer_head bh;
829         pgoff_t index = from >> PAGE_CACHE_SHIFT;
830         unsigned offset = from & (PAGE_CACHE_SIZE-1);
831         int err;
832
833         /* Block boundary? Nothing to do */
834         if (!length)
835                 return 0;
836         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
837
838         memset(&bh, 0, sizeof(bh));
839         bh.b_size = PAGE_CACHE_SIZE;
840         err = get_block(inode, index, &bh, 0);
841         if (err < 0)
842                 return err;
843         if (buffer_written(&bh)) {
844                 struct block_device *bdev = bh.b_bdev;
845                 struct blk_dax_ctl dax = {
846                         .sector = to_sector(&bh, inode),
847                         .size = PAGE_CACHE_SIZE,
848                 };
849
850                 if (dax_map_atomic(bdev, &dax) < 0)
851                         return PTR_ERR(dax.addr);
852                 clear_pmem(dax.addr + offset, length);
853                 wmb_pmem();
854                 dax_unmap_atomic(bdev, &dax);
855         }
856
857         return 0;
858 }
859 EXPORT_SYMBOL_GPL(dax_zero_page_range);
860
861 /**
862  * dax_truncate_page - handle a partial page being truncated in a DAX file
863  * @inode: The file being truncated
864  * @from: The file offset that is being truncated to
865  * @get_block: The filesystem method used to translate file offsets to blocks
866  *
867  * Similar to block_truncate_page(), this function can be called by a
868  * filesystem when it is truncating a DAX file to handle the partial page.
869  *
870  * We work in terms of PAGE_CACHE_SIZE here for commonality with
871  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
872  * took care of disposing of the unnecessary blocks.  Even if the filesystem
873  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
874  * since the file might be mmapped.
875  */
876 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
877 {
878         unsigned length = PAGE_CACHE_ALIGN(from) - from;
879         return dax_zero_page_range(inode, from, length, get_block);
880 }
881 EXPORT_SYMBOL_GPL(dax_truncate_page);