Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 while (!list_empty(&transaction->pending_chunks)) {
68                         struct extent_map *em;
69
70                         em = list_first_entry(&transaction->pending_chunks,
71                                               struct extent_map, list);
72                         list_del_init(&em->list);
73                         free_extent_map(em);
74                 }
75                 kmem_cache_free(btrfs_transaction_cachep, transaction);
76         }
77 }
78
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81         spin_lock(&tree->lock);
82         while (!RB_EMPTY_ROOT(&tree->state)) {
83                 struct rb_node *node;
84                 struct extent_state *state;
85
86                 node = rb_first(&tree->state);
87                 state = rb_entry(node, struct extent_state, rb_node);
88                 rb_erase(&state->rb_node, &tree->state);
89                 RB_CLEAR_NODE(&state->rb_node);
90                 /*
91                  * btree io trees aren't supposed to have tasks waiting for
92                  * changes in the flags of extent states ever.
93                  */
94                 ASSERT(!waitqueue_active(&state->wq));
95                 free_extent_state(state);
96                 if (need_resched()) {
97                         spin_unlock(&tree->lock);
98                         cond_resched();
99                         spin_lock(&tree->lock);
100                 }
101         }
102         spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106                                          struct btrfs_fs_info *fs_info)
107 {
108         struct btrfs_root *root, *tmp;
109
110         down_write(&fs_info->commit_root_sem);
111         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112                                  dirty_list) {
113                 list_del_init(&root->dirty_list);
114                 free_extent_buffer(root->commit_root);
115                 root->commit_root = btrfs_root_node(root);
116                 if (is_fstree(root->objectid))
117                         btrfs_unpin_free_ino(root);
118                 clear_btree_io_tree(&root->dirty_log_pages);
119         }
120         up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124                                          unsigned int type)
125 {
126         if (type & TRANS_EXTWRITERS)
127                 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131                                          unsigned int type)
132 {
133         if (type & TRANS_EXTWRITERS)
134                 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138                                           unsigned int type)
139 {
140         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145         return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153         struct btrfs_transaction *cur_trans;
154         struct btrfs_fs_info *fs_info = root->fs_info;
155
156         spin_lock(&fs_info->trans_lock);
157 loop:
158         /* The file system has been taken offline. No new transactions. */
159         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160                 spin_unlock(&fs_info->trans_lock);
161                 return -EROFS;
162         }
163
164         cur_trans = fs_info->running_transaction;
165         if (cur_trans) {
166                 if (cur_trans->aborted) {
167                         spin_unlock(&fs_info->trans_lock);
168                         return cur_trans->aborted;
169                 }
170                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171                         spin_unlock(&fs_info->trans_lock);
172                         return -EBUSY;
173                 }
174                 atomic_inc(&cur_trans->use_count);
175                 atomic_inc(&cur_trans->num_writers);
176                 extwriter_counter_inc(cur_trans, type);
177                 spin_unlock(&fs_info->trans_lock);
178                 return 0;
179         }
180         spin_unlock(&fs_info->trans_lock);
181
182         /*
183          * If we are ATTACH, we just want to catch the current transaction,
184          * and commit it. If there is no transaction, just return ENOENT.
185          */
186         if (type == TRANS_ATTACH)
187                 return -ENOENT;
188
189         /*
190          * JOIN_NOLOCK only happens during the transaction commit, so
191          * it is impossible that ->running_transaction is NULL
192          */
193         BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196         if (!cur_trans)
197                 return -ENOMEM;
198
199         spin_lock(&fs_info->trans_lock);
200         if (fs_info->running_transaction) {
201                 /*
202                  * someone started a transaction after we unlocked.  Make sure
203                  * to redo the checks above
204                  */
205                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206                 goto loop;
207         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208                 spin_unlock(&fs_info->trans_lock);
209                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210                 return -EROFS;
211         }
212
213         atomic_set(&cur_trans->num_writers, 1);
214         extwriter_counter_init(cur_trans, type);
215         init_waitqueue_head(&cur_trans->writer_wait);
216         init_waitqueue_head(&cur_trans->commit_wait);
217         cur_trans->state = TRANS_STATE_RUNNING;
218         /*
219          * One for this trans handle, one so it will live on until we
220          * commit the transaction.
221          */
222         atomic_set(&cur_trans->use_count, 2);
223         cur_trans->start_time = get_seconds();
224
225         cur_trans->delayed_refs.href_root = RB_ROOT;
226         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
227         cur_trans->delayed_refs.num_heads_ready = 0;
228         cur_trans->delayed_refs.num_heads = 0;
229         cur_trans->delayed_refs.flushing = 0;
230         cur_trans->delayed_refs.run_delayed_start = 0;
231
232         /*
233          * although the tree mod log is per file system and not per transaction,
234          * the log must never go across transaction boundaries.
235          */
236         smp_mb();
237         if (!list_empty(&fs_info->tree_mod_seq_list))
238                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
239                         "creating a fresh transaction\n");
240         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
241                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
242                         "creating a fresh transaction\n");
243         atomic64_set(&fs_info->tree_mod_seq, 0);
244
245         spin_lock_init(&cur_trans->delayed_refs.lock);
246
247         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
248         INIT_LIST_HEAD(&cur_trans->pending_chunks);
249         INIT_LIST_HEAD(&cur_trans->switch_commits);
250         INIT_LIST_HEAD(&cur_trans->pending_ordered);
251         list_add_tail(&cur_trans->list, &fs_info->trans_list);
252         extent_io_tree_init(&cur_trans->dirty_pages,
253                              fs_info->btree_inode->i_mapping);
254         fs_info->generation++;
255         cur_trans->transid = fs_info->generation;
256         fs_info->running_transaction = cur_trans;
257         cur_trans->aborted = 0;
258         spin_unlock(&fs_info->trans_lock);
259
260         return 0;
261 }
262
263 /*
264  * this does all the record keeping required to make sure that a reference
265  * counted root is properly recorded in a given transaction.  This is required
266  * to make sure the old root from before we joined the transaction is deleted
267  * when the transaction commits
268  */
269 static int record_root_in_trans(struct btrfs_trans_handle *trans,
270                                struct btrfs_root *root)
271 {
272         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
273             root->last_trans < trans->transid) {
274                 WARN_ON(root == root->fs_info->extent_root);
275                 WARN_ON(root->commit_root != root->node);
276
277                 /*
278                  * see below for IN_TRANS_SETUP usage rules
279                  * we have the reloc mutex held now, so there
280                  * is only one writer in this function
281                  */
282                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
283
284                 /* make sure readers find IN_TRANS_SETUP before
285                  * they find our root->last_trans update
286                  */
287                 smp_wmb();
288
289                 spin_lock(&root->fs_info->fs_roots_radix_lock);
290                 if (root->last_trans == trans->transid) {
291                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
292                         return 0;
293                 }
294                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
295                            (unsigned long)root->root_key.objectid,
296                            BTRFS_ROOT_TRANS_TAG);
297                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
298                 root->last_trans = trans->transid;
299
300                 /* this is pretty tricky.  We don't want to
301                  * take the relocation lock in btrfs_record_root_in_trans
302                  * unless we're really doing the first setup for this root in
303                  * this transaction.
304                  *
305                  * Normally we'd use root->last_trans as a flag to decide
306                  * if we want to take the expensive mutex.
307                  *
308                  * But, we have to set root->last_trans before we
309                  * init the relocation root, otherwise, we trip over warnings
310                  * in ctree.c.  The solution used here is to flag ourselves
311                  * with root IN_TRANS_SETUP.  When this is 1, we're still
312                  * fixing up the reloc trees and everyone must wait.
313                  *
314                  * When this is zero, they can trust root->last_trans and fly
315                  * through btrfs_record_root_in_trans without having to take the
316                  * lock.  smp_wmb() makes sure that all the writes above are
317                  * done before we pop in the zero below
318                  */
319                 btrfs_init_reloc_root(trans, root);
320                 smp_mb__before_atomic();
321                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
322         }
323         return 0;
324 }
325
326
327 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
328                                struct btrfs_root *root)
329 {
330         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
331                 return 0;
332
333         /*
334          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
335          * and barriers
336          */
337         smp_rmb();
338         if (root->last_trans == trans->transid &&
339             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
340                 return 0;
341
342         mutex_lock(&root->fs_info->reloc_mutex);
343         record_root_in_trans(trans, root);
344         mutex_unlock(&root->fs_info->reloc_mutex);
345
346         return 0;
347 }
348
349 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
350 {
351         return (trans->state >= TRANS_STATE_BLOCKED &&
352                 trans->state < TRANS_STATE_UNBLOCKED &&
353                 !trans->aborted);
354 }
355
356 /* wait for commit against the current transaction to become unblocked
357  * when this is done, it is safe to start a new transaction, but the current
358  * transaction might not be fully on disk.
359  */
360 static void wait_current_trans(struct btrfs_root *root)
361 {
362         struct btrfs_transaction *cur_trans;
363
364         spin_lock(&root->fs_info->trans_lock);
365         cur_trans = root->fs_info->running_transaction;
366         if (cur_trans && is_transaction_blocked(cur_trans)) {
367                 atomic_inc(&cur_trans->use_count);
368                 spin_unlock(&root->fs_info->trans_lock);
369
370                 wait_event(root->fs_info->transaction_wait,
371                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
372                            cur_trans->aborted);
373                 btrfs_put_transaction(cur_trans);
374         } else {
375                 spin_unlock(&root->fs_info->trans_lock);
376         }
377 }
378
379 static int may_wait_transaction(struct btrfs_root *root, int type)
380 {
381         if (root->fs_info->log_root_recovering)
382                 return 0;
383
384         if (type == TRANS_USERSPACE)
385                 return 1;
386
387         if (type == TRANS_START &&
388             !atomic_read(&root->fs_info->open_ioctl_trans))
389                 return 1;
390
391         return 0;
392 }
393
394 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
395 {
396         if (!root->fs_info->reloc_ctl ||
397             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
398             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
399             root->reloc_root)
400                 return false;
401
402         return true;
403 }
404
405 static struct btrfs_trans_handle *
406 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
407                   enum btrfs_reserve_flush_enum flush)
408 {
409         struct btrfs_trans_handle *h;
410         struct btrfs_transaction *cur_trans;
411         u64 num_bytes = 0;
412         u64 qgroup_reserved = 0;
413         bool reloc_reserved = false;
414         int ret;
415
416         /* Send isn't supposed to start transactions. */
417         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
418
419         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
420                 return ERR_PTR(-EROFS);
421
422         if (current->journal_info) {
423                 WARN_ON(type & TRANS_EXTWRITERS);
424                 h = current->journal_info;
425                 h->use_count++;
426                 WARN_ON(h->use_count > 2);
427                 h->orig_rsv = h->block_rsv;
428                 h->block_rsv = NULL;
429                 goto got_it;
430         }
431
432         /*
433          * Do the reservation before we join the transaction so we can do all
434          * the appropriate flushing if need be.
435          */
436         if (num_items > 0 && root != root->fs_info->chunk_root) {
437                 if (root->fs_info->quota_enabled &&
438                     is_fstree(root->root_key.objectid)) {
439                         qgroup_reserved = num_items * root->nodesize;
440                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
441                         if (ret)
442                                 return ERR_PTR(ret);
443                 }
444
445                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
446                 /*
447                  * Do the reservation for the relocation root creation
448                  */
449                 if (need_reserve_reloc_root(root)) {
450                         num_bytes += root->nodesize;
451                         reloc_reserved = true;
452                 }
453
454                 ret = btrfs_block_rsv_add(root,
455                                           &root->fs_info->trans_block_rsv,
456                                           num_bytes, flush);
457                 if (ret)
458                         goto reserve_fail;
459         }
460 again:
461         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
462         if (!h) {
463                 ret = -ENOMEM;
464                 goto alloc_fail;
465         }
466
467         /*
468          * If we are JOIN_NOLOCK we're already committing a transaction and
469          * waiting on this guy, so we don't need to do the sb_start_intwrite
470          * because we're already holding a ref.  We need this because we could
471          * have raced in and did an fsync() on a file which can kick a commit
472          * and then we deadlock with somebody doing a freeze.
473          *
474          * If we are ATTACH, it means we just want to catch the current
475          * transaction and commit it, so we needn't do sb_start_intwrite(). 
476          */
477         if (type & __TRANS_FREEZABLE)
478                 sb_start_intwrite(root->fs_info->sb);
479
480         if (may_wait_transaction(root, type))
481                 wait_current_trans(root);
482
483         do {
484                 ret = join_transaction(root, type);
485                 if (ret == -EBUSY) {
486                         wait_current_trans(root);
487                         if (unlikely(type == TRANS_ATTACH))
488                                 ret = -ENOENT;
489                 }
490         } while (ret == -EBUSY);
491
492         if (ret < 0) {
493                 /* We must get the transaction if we are JOIN_NOLOCK. */
494                 BUG_ON(type == TRANS_JOIN_NOLOCK);
495                 goto join_fail;
496         }
497
498         cur_trans = root->fs_info->running_transaction;
499
500         h->transid = cur_trans->transid;
501         h->transaction = cur_trans;
502         h->blocks_used = 0;
503         h->bytes_reserved = 0;
504         h->root = root;
505         h->delayed_ref_updates = 0;
506         h->use_count = 1;
507         h->adding_csums = 0;
508         h->block_rsv = NULL;
509         h->orig_rsv = NULL;
510         h->aborted = 0;
511         h->qgroup_reserved = 0;
512         h->delayed_ref_elem.seq = 0;
513         h->type = type;
514         h->allocating_chunk = false;
515         h->reloc_reserved = false;
516         h->sync = false;
517         INIT_LIST_HEAD(&h->qgroup_ref_list);
518         INIT_LIST_HEAD(&h->new_bgs);
519         INIT_LIST_HEAD(&h->ordered);
520
521         smp_mb();
522         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
523             may_wait_transaction(root, type)) {
524                 current->journal_info = h;
525                 btrfs_commit_transaction(h, root);
526                 goto again;
527         }
528
529         if (num_bytes) {
530                 trace_btrfs_space_reservation(root->fs_info, "transaction",
531                                               h->transid, num_bytes, 1);
532                 h->block_rsv = &root->fs_info->trans_block_rsv;
533                 h->bytes_reserved = num_bytes;
534                 h->reloc_reserved = reloc_reserved;
535         }
536         h->qgroup_reserved = qgroup_reserved;
537
538 got_it:
539         btrfs_record_root_in_trans(h, root);
540
541         if (!current->journal_info && type != TRANS_USERSPACE)
542                 current->journal_info = h;
543         return h;
544
545 join_fail:
546         if (type & __TRANS_FREEZABLE)
547                 sb_end_intwrite(root->fs_info->sb);
548         kmem_cache_free(btrfs_trans_handle_cachep, h);
549 alloc_fail:
550         if (num_bytes)
551                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
552                                         num_bytes);
553 reserve_fail:
554         if (qgroup_reserved)
555                 btrfs_qgroup_free(root, qgroup_reserved);
556         return ERR_PTR(ret);
557 }
558
559 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
560                                                    int num_items)
561 {
562         return start_transaction(root, num_items, TRANS_START,
563                                  BTRFS_RESERVE_FLUSH_ALL);
564 }
565
566 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
567                                         struct btrfs_root *root, int num_items)
568 {
569         return start_transaction(root, num_items, TRANS_START,
570                                  BTRFS_RESERVE_FLUSH_LIMIT);
571 }
572
573 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
574 {
575         return start_transaction(root, 0, TRANS_JOIN, 0);
576 }
577
578 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
579 {
580         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
581 }
582
583 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
584 {
585         return start_transaction(root, 0, TRANS_USERSPACE, 0);
586 }
587
588 /*
589  * btrfs_attach_transaction() - catch the running transaction
590  *
591  * It is used when we want to commit the current the transaction, but
592  * don't want to start a new one.
593  *
594  * Note: If this function return -ENOENT, it just means there is no
595  * running transaction. But it is possible that the inactive transaction
596  * is still in the memory, not fully on disk. If you hope there is no
597  * inactive transaction in the fs when -ENOENT is returned, you should
598  * invoke
599  *     btrfs_attach_transaction_barrier()
600  */
601 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
602 {
603         return start_transaction(root, 0, TRANS_ATTACH, 0);
604 }
605
606 /*
607  * btrfs_attach_transaction_barrier() - catch the running transaction
608  *
609  * It is similar to the above function, the differentia is this one
610  * will wait for all the inactive transactions until they fully
611  * complete.
612  */
613 struct btrfs_trans_handle *
614 btrfs_attach_transaction_barrier(struct btrfs_root *root)
615 {
616         struct btrfs_trans_handle *trans;
617
618         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
619         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
620                 btrfs_wait_for_commit(root, 0);
621
622         return trans;
623 }
624
625 /* wait for a transaction commit to be fully complete */
626 static noinline void wait_for_commit(struct btrfs_root *root,
627                                     struct btrfs_transaction *commit)
628 {
629         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
630 }
631
632 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
633 {
634         struct btrfs_transaction *cur_trans = NULL, *t;
635         int ret = 0;
636
637         if (transid) {
638                 if (transid <= root->fs_info->last_trans_committed)
639                         goto out;
640
641                 /* find specified transaction */
642                 spin_lock(&root->fs_info->trans_lock);
643                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
644                         if (t->transid == transid) {
645                                 cur_trans = t;
646                                 atomic_inc(&cur_trans->use_count);
647                                 ret = 0;
648                                 break;
649                         }
650                         if (t->transid > transid) {
651                                 ret = 0;
652                                 break;
653                         }
654                 }
655                 spin_unlock(&root->fs_info->trans_lock);
656
657                 /*
658                  * The specified transaction doesn't exist, or we
659                  * raced with btrfs_commit_transaction
660                  */
661                 if (!cur_trans) {
662                         if (transid > root->fs_info->last_trans_committed)
663                                 ret = -EINVAL;
664                         goto out;
665                 }
666         } else {
667                 /* find newest transaction that is committing | committed */
668                 spin_lock(&root->fs_info->trans_lock);
669                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
670                                             list) {
671                         if (t->state >= TRANS_STATE_COMMIT_START) {
672                                 if (t->state == TRANS_STATE_COMPLETED)
673                                         break;
674                                 cur_trans = t;
675                                 atomic_inc(&cur_trans->use_count);
676                                 break;
677                         }
678                 }
679                 spin_unlock(&root->fs_info->trans_lock);
680                 if (!cur_trans)
681                         goto out;  /* nothing committing|committed */
682         }
683
684         wait_for_commit(root, cur_trans);
685         btrfs_put_transaction(cur_trans);
686 out:
687         return ret;
688 }
689
690 void btrfs_throttle(struct btrfs_root *root)
691 {
692         if (!atomic_read(&root->fs_info->open_ioctl_trans))
693                 wait_current_trans(root);
694 }
695
696 static int should_end_transaction(struct btrfs_trans_handle *trans,
697                                   struct btrfs_root *root)
698 {
699         if (root->fs_info->global_block_rsv.space_info->full &&
700             btrfs_check_space_for_delayed_refs(trans, root))
701                 return 1;
702
703         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
704 }
705
706 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
707                                  struct btrfs_root *root)
708 {
709         struct btrfs_transaction *cur_trans = trans->transaction;
710         int updates;
711         int err;
712
713         smp_mb();
714         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
715             cur_trans->delayed_refs.flushing)
716                 return 1;
717
718         updates = trans->delayed_ref_updates;
719         trans->delayed_ref_updates = 0;
720         if (updates) {
721                 err = btrfs_run_delayed_refs(trans, root, updates);
722                 if (err) /* Error code will also eval true */
723                         return err;
724         }
725
726         return should_end_transaction(trans, root);
727 }
728
729 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
730                           struct btrfs_root *root, int throttle)
731 {
732         struct btrfs_transaction *cur_trans = trans->transaction;
733         struct btrfs_fs_info *info = root->fs_info;
734         unsigned long cur = trans->delayed_ref_updates;
735         int lock = (trans->type != TRANS_JOIN_NOLOCK);
736         int err = 0;
737         int must_run_delayed_refs = 0;
738
739         if (trans->use_count > 1) {
740                 trans->use_count--;
741                 trans->block_rsv = trans->orig_rsv;
742                 return 0;
743         }
744
745         btrfs_trans_release_metadata(trans, root);
746         trans->block_rsv = NULL;
747
748         if (!list_empty(&trans->new_bgs))
749                 btrfs_create_pending_block_groups(trans, root);
750
751         if (!list_empty(&trans->ordered)) {
752                 spin_lock(&info->trans_lock);
753                 list_splice(&trans->ordered, &cur_trans->pending_ordered);
754                 spin_unlock(&info->trans_lock);
755         }
756
757         trans->delayed_ref_updates = 0;
758         if (!trans->sync) {
759                 must_run_delayed_refs =
760                         btrfs_should_throttle_delayed_refs(trans, root);
761                 cur = max_t(unsigned long, cur, 32);
762
763                 /*
764                  * don't make the caller wait if they are from a NOLOCK
765                  * or ATTACH transaction, it will deadlock with commit
766                  */
767                 if (must_run_delayed_refs == 1 &&
768                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
769                         must_run_delayed_refs = 2;
770         }
771
772         if (trans->qgroup_reserved) {
773                 /*
774                  * the same root has to be passed here between start_transaction
775                  * and end_transaction. Subvolume quota depends on this.
776                  */
777                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
778                 trans->qgroup_reserved = 0;
779         }
780
781         btrfs_trans_release_metadata(trans, root);
782         trans->block_rsv = NULL;
783
784         if (!list_empty(&trans->new_bgs))
785                 btrfs_create_pending_block_groups(trans, root);
786
787         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
788             should_end_transaction(trans, root) &&
789             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
790                 spin_lock(&info->trans_lock);
791                 if (cur_trans->state == TRANS_STATE_RUNNING)
792                         cur_trans->state = TRANS_STATE_BLOCKED;
793                 spin_unlock(&info->trans_lock);
794         }
795
796         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
797                 if (throttle)
798                         return btrfs_commit_transaction(trans, root);
799                 else
800                         wake_up_process(info->transaction_kthread);
801         }
802
803         if (trans->type & __TRANS_FREEZABLE)
804                 sb_end_intwrite(root->fs_info->sb);
805
806         WARN_ON(cur_trans != info->running_transaction);
807         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
808         atomic_dec(&cur_trans->num_writers);
809         extwriter_counter_dec(cur_trans, trans->type);
810
811         smp_mb();
812         if (waitqueue_active(&cur_trans->writer_wait))
813                 wake_up(&cur_trans->writer_wait);
814         btrfs_put_transaction(cur_trans);
815
816         if (current->journal_info == trans)
817                 current->journal_info = NULL;
818
819         if (throttle)
820                 btrfs_run_delayed_iputs(root);
821
822         if (trans->aborted ||
823             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
824                 wake_up_process(info->transaction_kthread);
825                 err = -EIO;
826         }
827         assert_qgroups_uptodate(trans);
828
829         kmem_cache_free(btrfs_trans_handle_cachep, trans);
830         if (must_run_delayed_refs) {
831                 btrfs_async_run_delayed_refs(root, cur,
832                                              must_run_delayed_refs == 1);
833         }
834         return err;
835 }
836
837 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
838                           struct btrfs_root *root)
839 {
840         return __btrfs_end_transaction(trans, root, 0);
841 }
842
843 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
844                                    struct btrfs_root *root)
845 {
846         return __btrfs_end_transaction(trans, root, 1);
847 }
848
849 /*
850  * when btree blocks are allocated, they have some corresponding bits set for
851  * them in one of two extent_io trees.  This is used to make sure all of
852  * those extents are sent to disk but does not wait on them
853  */
854 int btrfs_write_marked_extents(struct btrfs_root *root,
855                                struct extent_io_tree *dirty_pages, int mark)
856 {
857         int err = 0;
858         int werr = 0;
859         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
860         struct extent_state *cached_state = NULL;
861         u64 start = 0;
862         u64 end;
863
864         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
865                                       mark, &cached_state)) {
866                 bool wait_writeback = false;
867
868                 err = convert_extent_bit(dirty_pages, start, end,
869                                          EXTENT_NEED_WAIT,
870                                          mark, &cached_state, GFP_NOFS);
871                 /*
872                  * convert_extent_bit can return -ENOMEM, which is most of the
873                  * time a temporary error. So when it happens, ignore the error
874                  * and wait for writeback of this range to finish - because we
875                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
876                  * to btrfs_wait_marked_extents() would not know that writeback
877                  * for this range started and therefore wouldn't wait for it to
878                  * finish - we don't want to commit a superblock that points to
879                  * btree nodes/leafs for which writeback hasn't finished yet
880                  * (and without errors).
881                  * We cleanup any entries left in the io tree when committing
882                  * the transaction (through clear_btree_io_tree()).
883                  */
884                 if (err == -ENOMEM) {
885                         err = 0;
886                         wait_writeback = true;
887                 }
888                 if (!err)
889                         err = filemap_fdatawrite_range(mapping, start, end);
890                 if (err)
891                         werr = err;
892                 else if (wait_writeback)
893                         werr = filemap_fdatawait_range(mapping, start, end);
894                 free_extent_state(cached_state);
895                 cached_state = NULL;
896                 cond_resched();
897                 start = end + 1;
898         }
899         return werr;
900 }
901
902 /*
903  * when btree blocks are allocated, they have some corresponding bits set for
904  * them in one of two extent_io trees.  This is used to make sure all of
905  * those extents are on disk for transaction or log commit.  We wait
906  * on all the pages and clear them from the dirty pages state tree
907  */
908 int btrfs_wait_marked_extents(struct btrfs_root *root,
909                               struct extent_io_tree *dirty_pages, int mark)
910 {
911         int err = 0;
912         int werr = 0;
913         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
914         struct extent_state *cached_state = NULL;
915         u64 start = 0;
916         u64 end;
917         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
918         bool errors = false;
919
920         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
921                                       EXTENT_NEED_WAIT, &cached_state)) {
922                 /*
923                  * Ignore -ENOMEM errors returned by clear_extent_bit().
924                  * When committing the transaction, we'll remove any entries
925                  * left in the io tree. For a log commit, we don't remove them
926                  * after committing the log because the tree can be accessed
927                  * concurrently - we do it only at transaction commit time when
928                  * it's safe to do it (through clear_btree_io_tree()).
929                  */
930                 err = clear_extent_bit(dirty_pages, start, end,
931                                        EXTENT_NEED_WAIT,
932                                        0, 0, &cached_state, GFP_NOFS);
933                 if (err == -ENOMEM)
934                         err = 0;
935                 if (!err)
936                         err = filemap_fdatawait_range(mapping, start, end);
937                 if (err)
938                         werr = err;
939                 free_extent_state(cached_state);
940                 cached_state = NULL;
941                 cond_resched();
942                 start = end + 1;
943         }
944         if (err)
945                 werr = err;
946
947         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
948                 if ((mark & EXTENT_DIRTY) &&
949                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
950                                        &btree_ino->runtime_flags))
951                         errors = true;
952
953                 if ((mark & EXTENT_NEW) &&
954                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
955                                        &btree_ino->runtime_flags))
956                         errors = true;
957         } else {
958                 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
959                                        &btree_ino->runtime_flags))
960                         errors = true;
961         }
962
963         if (errors && !werr)
964                 werr = -EIO;
965
966         return werr;
967 }
968
969 /*
970  * when btree blocks are allocated, they have some corresponding bits set for
971  * them in one of two extent_io trees.  This is used to make sure all of
972  * those extents are on disk for transaction or log commit
973  */
974 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
975                                 struct extent_io_tree *dirty_pages, int mark)
976 {
977         int ret;
978         int ret2;
979         struct blk_plug plug;
980
981         blk_start_plug(&plug);
982         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
983         blk_finish_plug(&plug);
984         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
985
986         if (ret)
987                 return ret;
988         if (ret2)
989                 return ret2;
990         return 0;
991 }
992
993 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
994                                      struct btrfs_root *root)
995 {
996         int ret;
997
998         ret = btrfs_write_and_wait_marked_extents(root,
999                                            &trans->transaction->dirty_pages,
1000                                            EXTENT_DIRTY);
1001         clear_btree_io_tree(&trans->transaction->dirty_pages);
1002
1003         return ret;
1004 }
1005
1006 /*
1007  * this is used to update the root pointer in the tree of tree roots.
1008  *
1009  * But, in the case of the extent allocation tree, updating the root
1010  * pointer may allocate blocks which may change the root of the extent
1011  * allocation tree.
1012  *
1013  * So, this loops and repeats and makes sure the cowonly root didn't
1014  * change while the root pointer was being updated in the metadata.
1015  */
1016 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1017                                struct btrfs_root *root)
1018 {
1019         int ret;
1020         u64 old_root_bytenr;
1021         u64 old_root_used;
1022         struct btrfs_root *tree_root = root->fs_info->tree_root;
1023
1024         old_root_used = btrfs_root_used(&root->root_item);
1025         btrfs_write_dirty_block_groups(trans, root);
1026
1027         while (1) {
1028                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1029                 if (old_root_bytenr == root->node->start &&
1030                     old_root_used == btrfs_root_used(&root->root_item))
1031                         break;
1032
1033                 btrfs_set_root_node(&root->root_item, root->node);
1034                 ret = btrfs_update_root(trans, tree_root,
1035                                         &root->root_key,
1036                                         &root->root_item);
1037                 if (ret)
1038                         return ret;
1039
1040                 old_root_used = btrfs_root_used(&root->root_item);
1041                 ret = btrfs_write_dirty_block_groups(trans, root);
1042                 if (ret)
1043                         return ret;
1044         }
1045
1046         return 0;
1047 }
1048
1049 /*
1050  * update all the cowonly tree roots on disk
1051  *
1052  * The error handling in this function may not be obvious. Any of the
1053  * failures will cause the file system to go offline. We still need
1054  * to clean up the delayed refs.
1055  */
1056 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1057                                          struct btrfs_root *root)
1058 {
1059         struct btrfs_fs_info *fs_info = root->fs_info;
1060         struct list_head *next;
1061         struct extent_buffer *eb;
1062         int ret;
1063
1064         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1065         if (ret)
1066                 return ret;
1067
1068         eb = btrfs_lock_root_node(fs_info->tree_root);
1069         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1070                               0, &eb);
1071         btrfs_tree_unlock(eb);
1072         free_extent_buffer(eb);
1073
1074         if (ret)
1075                 return ret;
1076
1077         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1078         if (ret)
1079                 return ret;
1080
1081         ret = btrfs_run_dev_stats(trans, root->fs_info);
1082         if (ret)
1083                 return ret;
1084         ret = btrfs_run_dev_replace(trans, root->fs_info);
1085         if (ret)
1086                 return ret;
1087         ret = btrfs_run_qgroups(trans, root->fs_info);
1088         if (ret)
1089                 return ret;
1090
1091         /* run_qgroups might have added some more refs */
1092         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1093         if (ret)
1094                 return ret;
1095
1096         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1097                 next = fs_info->dirty_cowonly_roots.next;
1098                 list_del_init(next);
1099                 root = list_entry(next, struct btrfs_root, dirty_list);
1100
1101                 if (root != fs_info->extent_root)
1102                         list_add_tail(&root->dirty_list,
1103                                       &trans->transaction->switch_commits);
1104                 ret = update_cowonly_root(trans, root);
1105                 if (ret)
1106                         return ret;
1107         }
1108
1109         list_add_tail(&fs_info->extent_root->dirty_list,
1110                       &trans->transaction->switch_commits);
1111         btrfs_after_dev_replace_commit(fs_info);
1112
1113         return 0;
1114 }
1115
1116 /*
1117  * dead roots are old snapshots that need to be deleted.  This allocates
1118  * a dirty root struct and adds it into the list of dead roots that need to
1119  * be deleted
1120  */
1121 void btrfs_add_dead_root(struct btrfs_root *root)
1122 {
1123         spin_lock(&root->fs_info->trans_lock);
1124         if (list_empty(&root->root_list))
1125                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1126         spin_unlock(&root->fs_info->trans_lock);
1127 }
1128
1129 /*
1130  * update all the cowonly tree roots on disk
1131  */
1132 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1133                                     struct btrfs_root *root)
1134 {
1135         struct btrfs_root *gang[8];
1136         struct btrfs_fs_info *fs_info = root->fs_info;
1137         int i;
1138         int ret;
1139         int err = 0;
1140
1141         spin_lock(&fs_info->fs_roots_radix_lock);
1142         while (1) {
1143                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1144                                                  (void **)gang, 0,
1145                                                  ARRAY_SIZE(gang),
1146                                                  BTRFS_ROOT_TRANS_TAG);
1147                 if (ret == 0)
1148                         break;
1149                 for (i = 0; i < ret; i++) {
1150                         root = gang[i];
1151                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1152                                         (unsigned long)root->root_key.objectid,
1153                                         BTRFS_ROOT_TRANS_TAG);
1154                         spin_unlock(&fs_info->fs_roots_radix_lock);
1155
1156                         btrfs_free_log(trans, root);
1157                         btrfs_update_reloc_root(trans, root);
1158                         btrfs_orphan_commit_root(trans, root);
1159
1160                         btrfs_save_ino_cache(root, trans);
1161
1162                         /* see comments in should_cow_block() */
1163                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1164                         smp_mb__after_atomic();
1165
1166                         if (root->commit_root != root->node) {
1167                                 list_add_tail(&root->dirty_list,
1168                                         &trans->transaction->switch_commits);
1169                                 btrfs_set_root_node(&root->root_item,
1170                                                     root->node);
1171                         }
1172
1173                         err = btrfs_update_root(trans, fs_info->tree_root,
1174                                                 &root->root_key,
1175                                                 &root->root_item);
1176                         spin_lock(&fs_info->fs_roots_radix_lock);
1177                         if (err)
1178                                 break;
1179                 }
1180         }
1181         spin_unlock(&fs_info->fs_roots_radix_lock);
1182         return err;
1183 }
1184
1185 /*
1186  * defrag a given btree.
1187  * Every leaf in the btree is read and defragged.
1188  */
1189 int btrfs_defrag_root(struct btrfs_root *root)
1190 {
1191         struct btrfs_fs_info *info = root->fs_info;
1192         struct btrfs_trans_handle *trans;
1193         int ret;
1194
1195         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1196                 return 0;
1197
1198         while (1) {
1199                 trans = btrfs_start_transaction(root, 0);
1200                 if (IS_ERR(trans))
1201                         return PTR_ERR(trans);
1202
1203                 ret = btrfs_defrag_leaves(trans, root);
1204
1205                 btrfs_end_transaction(trans, root);
1206                 btrfs_btree_balance_dirty(info->tree_root);
1207                 cond_resched();
1208
1209                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1210                         break;
1211
1212                 if (btrfs_defrag_cancelled(root->fs_info)) {
1213                         pr_debug("BTRFS: defrag_root cancelled\n");
1214                         ret = -EAGAIN;
1215                         break;
1216                 }
1217         }
1218         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1219         return ret;
1220 }
1221
1222 /*
1223  * new snapshots need to be created at a very specific time in the
1224  * transaction commit.  This does the actual creation.
1225  *
1226  * Note:
1227  * If the error which may affect the commitment of the current transaction
1228  * happens, we should return the error number. If the error which just affect
1229  * the creation of the pending snapshots, just return 0.
1230  */
1231 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1232                                    struct btrfs_fs_info *fs_info,
1233                                    struct btrfs_pending_snapshot *pending)
1234 {
1235         struct btrfs_key key;
1236         struct btrfs_root_item *new_root_item;
1237         struct btrfs_root *tree_root = fs_info->tree_root;
1238         struct btrfs_root *root = pending->root;
1239         struct btrfs_root *parent_root;
1240         struct btrfs_block_rsv *rsv;
1241         struct inode *parent_inode;
1242         struct btrfs_path *path;
1243         struct btrfs_dir_item *dir_item;
1244         struct dentry *dentry;
1245         struct extent_buffer *tmp;
1246         struct extent_buffer *old;
1247         struct timespec cur_time = CURRENT_TIME;
1248         int ret = 0;
1249         u64 to_reserve = 0;
1250         u64 index = 0;
1251         u64 objectid;
1252         u64 root_flags;
1253         uuid_le new_uuid;
1254
1255         path = btrfs_alloc_path();
1256         if (!path) {
1257                 pending->error = -ENOMEM;
1258                 return 0;
1259         }
1260
1261         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1262         if (!new_root_item) {
1263                 pending->error = -ENOMEM;
1264                 goto root_item_alloc_fail;
1265         }
1266
1267         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1268         if (pending->error)
1269                 goto no_free_objectid;
1270
1271         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1272
1273         if (to_reserve > 0) {
1274                 pending->error = btrfs_block_rsv_add(root,
1275                                                      &pending->block_rsv,
1276                                                      to_reserve,
1277                                                      BTRFS_RESERVE_NO_FLUSH);
1278                 if (pending->error)
1279                         goto no_free_objectid;
1280         }
1281
1282         key.objectid = objectid;
1283         key.offset = (u64)-1;
1284         key.type = BTRFS_ROOT_ITEM_KEY;
1285
1286         rsv = trans->block_rsv;
1287         trans->block_rsv = &pending->block_rsv;
1288         trans->bytes_reserved = trans->block_rsv->reserved;
1289
1290         dentry = pending->dentry;
1291         parent_inode = pending->dir;
1292         parent_root = BTRFS_I(parent_inode)->root;
1293         record_root_in_trans(trans, parent_root);
1294
1295         /*
1296          * insert the directory item
1297          */
1298         ret = btrfs_set_inode_index(parent_inode, &index);
1299         BUG_ON(ret); /* -ENOMEM */
1300
1301         /* check if there is a file/dir which has the same name. */
1302         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1303                                          btrfs_ino(parent_inode),
1304                                          dentry->d_name.name,
1305                                          dentry->d_name.len, 0);
1306         if (dir_item != NULL && !IS_ERR(dir_item)) {
1307                 pending->error = -EEXIST;
1308                 goto dir_item_existed;
1309         } else if (IS_ERR(dir_item)) {
1310                 ret = PTR_ERR(dir_item);
1311                 btrfs_abort_transaction(trans, root, ret);
1312                 goto fail;
1313         }
1314         btrfs_release_path(path);
1315
1316         /*
1317          * pull in the delayed directory update
1318          * and the delayed inode item
1319          * otherwise we corrupt the FS during
1320          * snapshot
1321          */
1322         ret = btrfs_run_delayed_items(trans, root);
1323         if (ret) {      /* Transaction aborted */
1324                 btrfs_abort_transaction(trans, root, ret);
1325                 goto fail;
1326         }
1327
1328         record_root_in_trans(trans, root);
1329         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1330         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1331         btrfs_check_and_init_root_item(new_root_item);
1332
1333         root_flags = btrfs_root_flags(new_root_item);
1334         if (pending->readonly)
1335                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1336         else
1337                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1338         btrfs_set_root_flags(new_root_item, root_flags);
1339
1340         btrfs_set_root_generation_v2(new_root_item,
1341                         trans->transid);
1342         uuid_le_gen(&new_uuid);
1343         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1344         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1345                         BTRFS_UUID_SIZE);
1346         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1347                 memset(new_root_item->received_uuid, 0,
1348                        sizeof(new_root_item->received_uuid));
1349                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1350                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1351                 btrfs_set_root_stransid(new_root_item, 0);
1352                 btrfs_set_root_rtransid(new_root_item, 0);
1353         }
1354         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1355         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1356         btrfs_set_root_otransid(new_root_item, trans->transid);
1357
1358         old = btrfs_lock_root_node(root);
1359         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1360         if (ret) {
1361                 btrfs_tree_unlock(old);
1362                 free_extent_buffer(old);
1363                 btrfs_abort_transaction(trans, root, ret);
1364                 goto fail;
1365         }
1366
1367         btrfs_set_lock_blocking(old);
1368
1369         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1370         /* clean up in any case */
1371         btrfs_tree_unlock(old);
1372         free_extent_buffer(old);
1373         if (ret) {
1374                 btrfs_abort_transaction(trans, root, ret);
1375                 goto fail;
1376         }
1377
1378         /*
1379          * We need to flush delayed refs in order to make sure all of our quota
1380          * operations have been done before we call btrfs_qgroup_inherit.
1381          */
1382         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1383         if (ret) {
1384                 btrfs_abort_transaction(trans, root, ret);
1385                 goto fail;
1386         }
1387
1388         ret = btrfs_qgroup_inherit(trans, fs_info,
1389                                    root->root_key.objectid,
1390                                    objectid, pending->inherit);
1391         if (ret) {
1392                 btrfs_abort_transaction(trans, root, ret);
1393                 goto fail;
1394         }
1395
1396         /* see comments in should_cow_block() */
1397         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1398         smp_wmb();
1399
1400         btrfs_set_root_node(new_root_item, tmp);
1401         /* record when the snapshot was created in key.offset */
1402         key.offset = trans->transid;
1403         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1404         btrfs_tree_unlock(tmp);
1405         free_extent_buffer(tmp);
1406         if (ret) {
1407                 btrfs_abort_transaction(trans, root, ret);
1408                 goto fail;
1409         }
1410
1411         /*
1412          * insert root back/forward references
1413          */
1414         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1415                                  parent_root->root_key.objectid,
1416                                  btrfs_ino(parent_inode), index,
1417                                  dentry->d_name.name, dentry->d_name.len);
1418         if (ret) {
1419                 btrfs_abort_transaction(trans, root, ret);
1420                 goto fail;
1421         }
1422
1423         key.offset = (u64)-1;
1424         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1425         if (IS_ERR(pending->snap)) {
1426                 ret = PTR_ERR(pending->snap);
1427                 btrfs_abort_transaction(trans, root, ret);
1428                 goto fail;
1429         }
1430
1431         ret = btrfs_reloc_post_snapshot(trans, pending);
1432         if (ret) {
1433                 btrfs_abort_transaction(trans, root, ret);
1434                 goto fail;
1435         }
1436
1437         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1438         if (ret) {
1439                 btrfs_abort_transaction(trans, root, ret);
1440                 goto fail;
1441         }
1442
1443         ret = btrfs_insert_dir_item(trans, parent_root,
1444                                     dentry->d_name.name, dentry->d_name.len,
1445                                     parent_inode, &key,
1446                                     BTRFS_FT_DIR, index);
1447         /* We have check then name at the beginning, so it is impossible. */
1448         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1449         if (ret) {
1450                 btrfs_abort_transaction(trans, root, ret);
1451                 goto fail;
1452         }
1453
1454         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1455                                          dentry->d_name.len * 2);
1456         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1457         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1458         if (ret) {
1459                 btrfs_abort_transaction(trans, root, ret);
1460                 goto fail;
1461         }
1462         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1463                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1464         if (ret) {
1465                 btrfs_abort_transaction(trans, root, ret);
1466                 goto fail;
1467         }
1468         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1469                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1470                                           new_root_item->received_uuid,
1471                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1472                                           objectid);
1473                 if (ret && ret != -EEXIST) {
1474                         btrfs_abort_transaction(trans, root, ret);
1475                         goto fail;
1476                 }
1477         }
1478 fail:
1479         pending->error = ret;
1480 dir_item_existed:
1481         trans->block_rsv = rsv;
1482         trans->bytes_reserved = 0;
1483 no_free_objectid:
1484         kfree(new_root_item);
1485 root_item_alloc_fail:
1486         btrfs_free_path(path);
1487         return ret;
1488 }
1489
1490 /*
1491  * create all the snapshots we've scheduled for creation
1492  */
1493 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1494                                              struct btrfs_fs_info *fs_info)
1495 {
1496         struct btrfs_pending_snapshot *pending, *next;
1497         struct list_head *head = &trans->transaction->pending_snapshots;
1498         int ret = 0;
1499
1500         list_for_each_entry_safe(pending, next, head, list) {
1501                 list_del(&pending->list);
1502                 ret = create_pending_snapshot(trans, fs_info, pending);
1503                 if (ret)
1504                         break;
1505         }
1506         return ret;
1507 }
1508
1509 static void update_super_roots(struct btrfs_root *root)
1510 {
1511         struct btrfs_root_item *root_item;
1512         struct btrfs_super_block *super;
1513
1514         super = root->fs_info->super_copy;
1515
1516         root_item = &root->fs_info->chunk_root->root_item;
1517         super->chunk_root = root_item->bytenr;
1518         super->chunk_root_generation = root_item->generation;
1519         super->chunk_root_level = root_item->level;
1520
1521         root_item = &root->fs_info->tree_root->root_item;
1522         super->root = root_item->bytenr;
1523         super->generation = root_item->generation;
1524         super->root_level = root_item->level;
1525         if (btrfs_test_opt(root, SPACE_CACHE))
1526                 super->cache_generation = root_item->generation;
1527         if (root->fs_info->update_uuid_tree_gen)
1528                 super->uuid_tree_generation = root_item->generation;
1529 }
1530
1531 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1532 {
1533         struct btrfs_transaction *trans;
1534         int ret = 0;
1535
1536         spin_lock(&info->trans_lock);
1537         trans = info->running_transaction;
1538         if (trans)
1539                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1540         spin_unlock(&info->trans_lock);
1541         return ret;
1542 }
1543
1544 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1545 {
1546         struct btrfs_transaction *trans;
1547         int ret = 0;
1548
1549         spin_lock(&info->trans_lock);
1550         trans = info->running_transaction;
1551         if (trans)
1552                 ret = is_transaction_blocked(trans);
1553         spin_unlock(&info->trans_lock);
1554         return ret;
1555 }
1556
1557 /*
1558  * wait for the current transaction commit to start and block subsequent
1559  * transaction joins
1560  */
1561 static void wait_current_trans_commit_start(struct btrfs_root *root,
1562                                             struct btrfs_transaction *trans)
1563 {
1564         wait_event(root->fs_info->transaction_blocked_wait,
1565                    trans->state >= TRANS_STATE_COMMIT_START ||
1566                    trans->aborted);
1567 }
1568
1569 /*
1570  * wait for the current transaction to start and then become unblocked.
1571  * caller holds ref.
1572  */
1573 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1574                                          struct btrfs_transaction *trans)
1575 {
1576         wait_event(root->fs_info->transaction_wait,
1577                    trans->state >= TRANS_STATE_UNBLOCKED ||
1578                    trans->aborted);
1579 }
1580
1581 /*
1582  * commit transactions asynchronously. once btrfs_commit_transaction_async
1583  * returns, any subsequent transaction will not be allowed to join.
1584  */
1585 struct btrfs_async_commit {
1586         struct btrfs_trans_handle *newtrans;
1587         struct btrfs_root *root;
1588         struct work_struct work;
1589 };
1590
1591 static void do_async_commit(struct work_struct *work)
1592 {
1593         struct btrfs_async_commit *ac =
1594                 container_of(work, struct btrfs_async_commit, work);
1595
1596         /*
1597          * We've got freeze protection passed with the transaction.
1598          * Tell lockdep about it.
1599          */
1600         if (ac->newtrans->type & __TRANS_FREEZABLE)
1601                 rwsem_acquire_read(
1602                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1603                      0, 1, _THIS_IP_);
1604
1605         current->journal_info = ac->newtrans;
1606
1607         btrfs_commit_transaction(ac->newtrans, ac->root);
1608         kfree(ac);
1609 }
1610
1611 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1612                                    struct btrfs_root *root,
1613                                    int wait_for_unblock)
1614 {
1615         struct btrfs_async_commit *ac;
1616         struct btrfs_transaction *cur_trans;
1617
1618         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1619         if (!ac)
1620                 return -ENOMEM;
1621
1622         INIT_WORK(&ac->work, do_async_commit);
1623         ac->root = root;
1624         ac->newtrans = btrfs_join_transaction(root);
1625         if (IS_ERR(ac->newtrans)) {
1626                 int err = PTR_ERR(ac->newtrans);
1627                 kfree(ac);
1628                 return err;
1629         }
1630
1631         /* take transaction reference */
1632         cur_trans = trans->transaction;
1633         atomic_inc(&cur_trans->use_count);
1634
1635         btrfs_end_transaction(trans, root);
1636
1637         /*
1638          * Tell lockdep we've released the freeze rwsem, since the
1639          * async commit thread will be the one to unlock it.
1640          */
1641         if (ac->newtrans->type & __TRANS_FREEZABLE)
1642                 rwsem_release(
1643                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1644                         1, _THIS_IP_);
1645
1646         schedule_work(&ac->work);
1647
1648         /* wait for transaction to start and unblock */
1649         if (wait_for_unblock)
1650                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1651         else
1652                 wait_current_trans_commit_start(root, cur_trans);
1653
1654         if (current->journal_info == trans)
1655                 current->journal_info = NULL;
1656
1657         btrfs_put_transaction(cur_trans);
1658         return 0;
1659 }
1660
1661
1662 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1663                                 struct btrfs_root *root, int err)
1664 {
1665         struct btrfs_transaction *cur_trans = trans->transaction;
1666         DEFINE_WAIT(wait);
1667
1668         WARN_ON(trans->use_count > 1);
1669
1670         btrfs_abort_transaction(trans, root, err);
1671
1672         spin_lock(&root->fs_info->trans_lock);
1673
1674         /*
1675          * If the transaction is removed from the list, it means this
1676          * transaction has been committed successfully, so it is impossible
1677          * to call the cleanup function.
1678          */
1679         BUG_ON(list_empty(&cur_trans->list));
1680
1681         list_del_init(&cur_trans->list);
1682         if (cur_trans == root->fs_info->running_transaction) {
1683                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1684                 spin_unlock(&root->fs_info->trans_lock);
1685                 wait_event(cur_trans->writer_wait,
1686                            atomic_read(&cur_trans->num_writers) == 1);
1687
1688                 spin_lock(&root->fs_info->trans_lock);
1689         }
1690         spin_unlock(&root->fs_info->trans_lock);
1691
1692         btrfs_cleanup_one_transaction(trans->transaction, root);
1693
1694         spin_lock(&root->fs_info->trans_lock);
1695         if (cur_trans == root->fs_info->running_transaction)
1696                 root->fs_info->running_transaction = NULL;
1697         spin_unlock(&root->fs_info->trans_lock);
1698
1699         if (trans->type & __TRANS_FREEZABLE)
1700                 sb_end_intwrite(root->fs_info->sb);
1701         btrfs_put_transaction(cur_trans);
1702         btrfs_put_transaction(cur_trans);
1703
1704         trace_btrfs_transaction_commit(root);
1705
1706         if (current->journal_info == trans)
1707                 current->journal_info = NULL;
1708         btrfs_scrub_cancel(root->fs_info);
1709
1710         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1711 }
1712
1713 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1714 {
1715         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1716                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1717         return 0;
1718 }
1719
1720 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1721 {
1722         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1723                 btrfs_wait_ordered_roots(fs_info, -1);
1724 }
1725
1726 static inline void
1727 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1728                            struct btrfs_fs_info *fs_info)
1729 {
1730         struct btrfs_ordered_extent *ordered;
1731
1732         spin_lock(&fs_info->trans_lock);
1733         while (!list_empty(&cur_trans->pending_ordered)) {
1734                 ordered = list_first_entry(&cur_trans->pending_ordered,
1735                                            struct btrfs_ordered_extent,
1736                                            trans_list);
1737                 list_del_init(&ordered->trans_list);
1738                 spin_unlock(&fs_info->trans_lock);
1739
1740                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1741                                                    &ordered->flags));
1742                 btrfs_put_ordered_extent(ordered);
1743                 spin_lock(&fs_info->trans_lock);
1744         }
1745         spin_unlock(&fs_info->trans_lock);
1746 }
1747
1748 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1749                              struct btrfs_root *root)
1750 {
1751         struct btrfs_transaction *cur_trans = trans->transaction;
1752         struct btrfs_transaction *prev_trans = NULL;
1753         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1754         int ret;
1755
1756         /* Stop the commit early if ->aborted is set */
1757         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1758                 ret = cur_trans->aborted;
1759                 btrfs_end_transaction(trans, root);
1760                 return ret;
1761         }
1762
1763         /* make a pass through all the delayed refs we have so far
1764          * any runnings procs may add more while we are here
1765          */
1766         ret = btrfs_run_delayed_refs(trans, root, 0);
1767         if (ret) {
1768                 btrfs_end_transaction(trans, root);
1769                 return ret;
1770         }
1771
1772         btrfs_trans_release_metadata(trans, root);
1773         trans->block_rsv = NULL;
1774         if (trans->qgroup_reserved) {
1775                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1776                 trans->qgroup_reserved = 0;
1777         }
1778
1779         cur_trans = trans->transaction;
1780
1781         /*
1782          * set the flushing flag so procs in this transaction have to
1783          * start sending their work down.
1784          */
1785         cur_trans->delayed_refs.flushing = 1;
1786         smp_wmb();
1787
1788         if (!list_empty(&trans->new_bgs))
1789                 btrfs_create_pending_block_groups(trans, root);
1790
1791         ret = btrfs_run_delayed_refs(trans, root, 0);
1792         if (ret) {
1793                 btrfs_end_transaction(trans, root);
1794                 return ret;
1795         }
1796
1797         spin_lock(&root->fs_info->trans_lock);
1798         list_splice(&trans->ordered, &cur_trans->pending_ordered);
1799         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1800                 spin_unlock(&root->fs_info->trans_lock);
1801                 atomic_inc(&cur_trans->use_count);
1802                 ret = btrfs_end_transaction(trans, root);
1803
1804                 wait_for_commit(root, cur_trans);
1805
1806                 btrfs_put_transaction(cur_trans);
1807
1808                 return ret;
1809         }
1810
1811         cur_trans->state = TRANS_STATE_COMMIT_START;
1812         wake_up(&root->fs_info->transaction_blocked_wait);
1813
1814         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1815                 prev_trans = list_entry(cur_trans->list.prev,
1816                                         struct btrfs_transaction, list);
1817                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1818                         atomic_inc(&prev_trans->use_count);
1819                         spin_unlock(&root->fs_info->trans_lock);
1820
1821                         wait_for_commit(root, prev_trans);
1822
1823                         btrfs_put_transaction(prev_trans);
1824                 } else {
1825                         spin_unlock(&root->fs_info->trans_lock);
1826                 }
1827         } else {
1828                 spin_unlock(&root->fs_info->trans_lock);
1829         }
1830
1831         extwriter_counter_dec(cur_trans, trans->type);
1832
1833         ret = btrfs_start_delalloc_flush(root->fs_info);
1834         if (ret)
1835                 goto cleanup_transaction;
1836
1837         ret = btrfs_run_delayed_items(trans, root);
1838         if (ret)
1839                 goto cleanup_transaction;
1840
1841         wait_event(cur_trans->writer_wait,
1842                    extwriter_counter_read(cur_trans) == 0);
1843
1844         /* some pending stuffs might be added after the previous flush. */
1845         ret = btrfs_run_delayed_items(trans, root);
1846         if (ret)
1847                 goto cleanup_transaction;
1848
1849         btrfs_wait_delalloc_flush(root->fs_info);
1850
1851         btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1852
1853         btrfs_scrub_pause(root);
1854         /*
1855          * Ok now we need to make sure to block out any other joins while we
1856          * commit the transaction.  We could have started a join before setting
1857          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1858          */
1859         spin_lock(&root->fs_info->trans_lock);
1860         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1861         spin_unlock(&root->fs_info->trans_lock);
1862         wait_event(cur_trans->writer_wait,
1863                    atomic_read(&cur_trans->num_writers) == 1);
1864
1865         /* ->aborted might be set after the previous check, so check it */
1866         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1867                 ret = cur_trans->aborted;
1868                 goto scrub_continue;
1869         }
1870         /*
1871          * the reloc mutex makes sure that we stop
1872          * the balancing code from coming in and moving
1873          * extents around in the middle of the commit
1874          */
1875         mutex_lock(&root->fs_info->reloc_mutex);
1876
1877         /*
1878          * We needn't worry about the delayed items because we will
1879          * deal with them in create_pending_snapshot(), which is the
1880          * core function of the snapshot creation.
1881          */
1882         ret = create_pending_snapshots(trans, root->fs_info);
1883         if (ret) {
1884                 mutex_unlock(&root->fs_info->reloc_mutex);
1885                 goto scrub_continue;
1886         }
1887
1888         /*
1889          * We insert the dir indexes of the snapshots and update the inode
1890          * of the snapshots' parents after the snapshot creation, so there
1891          * are some delayed items which are not dealt with. Now deal with
1892          * them.
1893          *
1894          * We needn't worry that this operation will corrupt the snapshots,
1895          * because all the tree which are snapshoted will be forced to COW
1896          * the nodes and leaves.
1897          */
1898         ret = btrfs_run_delayed_items(trans, root);
1899         if (ret) {
1900                 mutex_unlock(&root->fs_info->reloc_mutex);
1901                 goto scrub_continue;
1902         }
1903
1904         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1905         if (ret) {
1906                 mutex_unlock(&root->fs_info->reloc_mutex);
1907                 goto scrub_continue;
1908         }
1909
1910         /*
1911          * make sure none of the code above managed to slip in a
1912          * delayed item
1913          */
1914         btrfs_assert_delayed_root_empty(root);
1915
1916         WARN_ON(cur_trans != trans->transaction);
1917
1918         /* btrfs_commit_tree_roots is responsible for getting the
1919          * various roots consistent with each other.  Every pointer
1920          * in the tree of tree roots has to point to the most up to date
1921          * root for every subvolume and other tree.  So, we have to keep
1922          * the tree logging code from jumping in and changing any
1923          * of the trees.
1924          *
1925          * At this point in the commit, there can't be any tree-log
1926          * writers, but a little lower down we drop the trans mutex
1927          * and let new people in.  By holding the tree_log_mutex
1928          * from now until after the super is written, we avoid races
1929          * with the tree-log code.
1930          */
1931         mutex_lock(&root->fs_info->tree_log_mutex);
1932
1933         ret = commit_fs_roots(trans, root);
1934         if (ret) {
1935                 mutex_unlock(&root->fs_info->tree_log_mutex);
1936                 mutex_unlock(&root->fs_info->reloc_mutex);
1937                 goto scrub_continue;
1938         }
1939
1940         /*
1941          * Since the transaction is done, we can apply the pending changes
1942          * before the next transaction.
1943          */
1944         btrfs_apply_pending_changes(root->fs_info);
1945
1946         /* commit_fs_roots gets rid of all the tree log roots, it is now
1947          * safe to free the root of tree log roots
1948          */
1949         btrfs_free_log_root_tree(trans, root->fs_info);
1950
1951         ret = commit_cowonly_roots(trans, root);
1952         if (ret) {
1953                 mutex_unlock(&root->fs_info->tree_log_mutex);
1954                 mutex_unlock(&root->fs_info->reloc_mutex);
1955                 goto scrub_continue;
1956         }
1957
1958         /*
1959          * The tasks which save the space cache and inode cache may also
1960          * update ->aborted, check it.
1961          */
1962         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1963                 ret = cur_trans->aborted;
1964                 mutex_unlock(&root->fs_info->tree_log_mutex);
1965                 mutex_unlock(&root->fs_info->reloc_mutex);
1966                 goto scrub_continue;
1967         }
1968
1969         btrfs_prepare_extent_commit(trans, root);
1970
1971         cur_trans = root->fs_info->running_transaction;
1972
1973         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1974                             root->fs_info->tree_root->node);
1975         list_add_tail(&root->fs_info->tree_root->dirty_list,
1976                       &cur_trans->switch_commits);
1977
1978         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1979                             root->fs_info->chunk_root->node);
1980         list_add_tail(&root->fs_info->chunk_root->dirty_list,
1981                       &cur_trans->switch_commits);
1982
1983         switch_commit_roots(cur_trans, root->fs_info);
1984
1985         assert_qgroups_uptodate(trans);
1986         update_super_roots(root);
1987
1988         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1989         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1990         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1991                sizeof(*root->fs_info->super_copy));
1992
1993         btrfs_update_commit_device_size(root->fs_info);
1994         btrfs_update_commit_device_bytes_used(root, cur_trans);
1995
1996         clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
1997         clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
1998
1999         spin_lock(&root->fs_info->trans_lock);
2000         cur_trans->state = TRANS_STATE_UNBLOCKED;
2001         root->fs_info->running_transaction = NULL;
2002         spin_unlock(&root->fs_info->trans_lock);
2003         mutex_unlock(&root->fs_info->reloc_mutex);
2004
2005         wake_up(&root->fs_info->transaction_wait);
2006
2007         ret = btrfs_write_and_wait_transaction(trans, root);
2008         if (ret) {
2009                 btrfs_error(root->fs_info, ret,
2010                             "Error while writing out transaction");
2011                 mutex_unlock(&root->fs_info->tree_log_mutex);
2012                 goto scrub_continue;
2013         }
2014
2015         ret = write_ctree_super(trans, root, 0);
2016         if (ret) {
2017                 mutex_unlock(&root->fs_info->tree_log_mutex);
2018                 goto scrub_continue;
2019         }
2020
2021         /*
2022          * the super is written, we can safely allow the tree-loggers
2023          * to go about their business
2024          */
2025         mutex_unlock(&root->fs_info->tree_log_mutex);
2026
2027         btrfs_finish_extent_commit(trans, root);
2028
2029         root->fs_info->last_trans_committed = cur_trans->transid;
2030         /*
2031          * We needn't acquire the lock here because there is no other task
2032          * which can change it.
2033          */
2034         cur_trans->state = TRANS_STATE_COMPLETED;
2035         wake_up(&cur_trans->commit_wait);
2036
2037         spin_lock(&root->fs_info->trans_lock);
2038         list_del_init(&cur_trans->list);
2039         spin_unlock(&root->fs_info->trans_lock);
2040
2041         btrfs_put_transaction(cur_trans);
2042         btrfs_put_transaction(cur_trans);
2043
2044         if (trans->type & __TRANS_FREEZABLE)
2045                 sb_end_intwrite(root->fs_info->sb);
2046
2047         trace_btrfs_transaction_commit(root);
2048
2049         btrfs_scrub_continue(root);
2050
2051         if (current->journal_info == trans)
2052                 current->journal_info = NULL;
2053
2054         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2055
2056         if (current != root->fs_info->transaction_kthread)
2057                 btrfs_run_delayed_iputs(root);
2058
2059         return ret;
2060
2061 scrub_continue:
2062         btrfs_scrub_continue(root);
2063 cleanup_transaction:
2064         btrfs_trans_release_metadata(trans, root);
2065         trans->block_rsv = NULL;
2066         if (trans->qgroup_reserved) {
2067                 btrfs_qgroup_free(root, trans->qgroup_reserved);
2068                 trans->qgroup_reserved = 0;
2069         }
2070         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2071         if (current->journal_info == trans)
2072                 current->journal_info = NULL;
2073         cleanup_transaction(trans, root, ret);
2074
2075         return ret;
2076 }
2077
2078 /*
2079  * return < 0 if error
2080  * 0 if there are no more dead_roots at the time of call
2081  * 1 there are more to be processed, call me again
2082  *
2083  * The return value indicates there are certainly more snapshots to delete, but
2084  * if there comes a new one during processing, it may return 0. We don't mind,
2085  * because btrfs_commit_super will poke cleaner thread and it will process it a
2086  * few seconds later.
2087  */
2088 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2089 {
2090         int ret;
2091         struct btrfs_fs_info *fs_info = root->fs_info;
2092
2093         spin_lock(&fs_info->trans_lock);
2094         if (list_empty(&fs_info->dead_roots)) {
2095                 spin_unlock(&fs_info->trans_lock);
2096                 return 0;
2097         }
2098         root = list_first_entry(&fs_info->dead_roots,
2099                         struct btrfs_root, root_list);
2100         list_del_init(&root->root_list);
2101         spin_unlock(&fs_info->trans_lock);
2102
2103         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2104
2105         btrfs_kill_all_delayed_nodes(root);
2106
2107         if (btrfs_header_backref_rev(root->node) <
2108                         BTRFS_MIXED_BACKREF_REV)
2109                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2110         else
2111                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2112
2113         return (ret < 0) ? 0 : 1;
2114 }
2115
2116 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2117 {
2118         unsigned long prev;
2119         unsigned long bit;
2120
2121         prev = xchg(&fs_info->pending_changes, 0);
2122         if (!prev)
2123                 return;
2124
2125         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2126         if (prev & bit)
2127                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2128         prev &= ~bit;
2129
2130         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2131         if (prev & bit)
2132                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2133         prev &= ~bit;
2134
2135         bit = 1 << BTRFS_PENDING_COMMIT;
2136         if (prev & bit)
2137                 btrfs_debug(fs_info, "pending commit done");
2138         prev &= ~bit;
2139
2140         if (prev)
2141                 btrfs_warn(fs_info,
2142                         "unknown pending changes left 0x%lx, ignoring", prev);
2143 }