Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38         [TRANS_STATE_RUNNING]           = 0U,
39         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
40                                            __TRANS_START),
41         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
42                                            __TRANS_START |
43                                            __TRANS_ATTACH),
44         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
45                                            __TRANS_START |
46                                            __TRANS_ATTACH |
47                                            __TRANS_JOIN),
48         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
49                                            __TRANS_START |
50                                            __TRANS_ATTACH |
51                                            __TRANS_JOIN |
52                                            __TRANS_JOIN_NOLOCK),
53         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
54                                            __TRANS_START |
55                                            __TRANS_ATTACH |
56                                            __TRANS_JOIN |
57                                            __TRANS_JOIN_NOLOCK),
58 };
59
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62         WARN_ON(atomic_read(&transaction->use_count) == 0);
63         if (atomic_dec_and_test(&transaction->use_count)) {
64                 BUG_ON(!list_empty(&transaction->list));
65                 WARN_ON(transaction->delayed_refs.root.rb_node);
66                 while (!list_empty(&transaction->pending_chunks)) {
67                         struct extent_map *em;
68
69                         em = list_first_entry(&transaction->pending_chunks,
70                                               struct extent_map, list);
71                         list_del_init(&em->list);
72                         free_extent_map(em);
73                 }
74                 kmem_cache_free(btrfs_transaction_cachep, transaction);
75         }
76 }
77
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80         free_extent_buffer(root->commit_root);
81         root->commit_root = btrfs_root_node(root);
82 }
83
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85                                          unsigned int type)
86 {
87         if (type & TRANS_EXTWRITERS)
88                 atomic_inc(&trans->num_extwriters);
89 }
90
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92                                          unsigned int type)
93 {
94         if (type & TRANS_EXTWRITERS)
95                 atomic_dec(&trans->num_extwriters);
96 }
97
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99                                           unsigned int type)
100 {
101         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106         return atomic_read(&trans->num_extwriters);
107 }
108
109 /*
110  * either allocate a new transaction or hop into the existing one
111  */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114         struct btrfs_transaction *cur_trans;
115         struct btrfs_fs_info *fs_info = root->fs_info;
116
117         spin_lock(&fs_info->trans_lock);
118 loop:
119         /* The file system has been taken offline. No new transactions. */
120         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121                 spin_unlock(&fs_info->trans_lock);
122                 return -EROFS;
123         }
124
125         cur_trans = fs_info->running_transaction;
126         if (cur_trans) {
127                 if (cur_trans->aborted) {
128                         spin_unlock(&fs_info->trans_lock);
129                         return cur_trans->aborted;
130                 }
131                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132                         spin_unlock(&fs_info->trans_lock);
133                         return -EBUSY;
134                 }
135                 atomic_inc(&cur_trans->use_count);
136                 atomic_inc(&cur_trans->num_writers);
137                 extwriter_counter_inc(cur_trans, type);
138                 spin_unlock(&fs_info->trans_lock);
139                 return 0;
140         }
141         spin_unlock(&fs_info->trans_lock);
142
143         /*
144          * If we are ATTACH, we just want to catch the current transaction,
145          * and commit it. If there is no transaction, just return ENOENT.
146          */
147         if (type == TRANS_ATTACH)
148                 return -ENOENT;
149
150         /*
151          * JOIN_NOLOCK only happens during the transaction commit, so
152          * it is impossible that ->running_transaction is NULL
153          */
154         BUG_ON(type == TRANS_JOIN_NOLOCK);
155
156         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157         if (!cur_trans)
158                 return -ENOMEM;
159
160         spin_lock(&fs_info->trans_lock);
161         if (fs_info->running_transaction) {
162                 /*
163                  * someone started a transaction after we unlocked.  Make sure
164                  * to redo the checks above
165                  */
166                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167                 goto loop;
168         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169                 spin_unlock(&fs_info->trans_lock);
170                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171                 return -EROFS;
172         }
173
174         atomic_set(&cur_trans->num_writers, 1);
175         extwriter_counter_init(cur_trans, type);
176         init_waitqueue_head(&cur_trans->writer_wait);
177         init_waitqueue_head(&cur_trans->commit_wait);
178         cur_trans->state = TRANS_STATE_RUNNING;
179         /*
180          * One for this trans handle, one so it will live on until we
181          * commit the transaction.
182          */
183         atomic_set(&cur_trans->use_count, 2);
184         cur_trans->start_time = get_seconds();
185
186         cur_trans->delayed_refs.root = RB_ROOT;
187         cur_trans->delayed_refs.num_entries = 0;
188         cur_trans->delayed_refs.num_heads_ready = 0;
189         cur_trans->delayed_refs.num_heads = 0;
190         cur_trans->delayed_refs.flushing = 0;
191         cur_trans->delayed_refs.run_delayed_start = 0;
192
193         /*
194          * although the tree mod log is per file system and not per transaction,
195          * the log must never go across transaction boundaries.
196          */
197         smp_mb();
198         if (!list_empty(&fs_info->tree_mod_seq_list))
199                 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200                         "creating a fresh transaction\n");
201         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202                 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203                         "creating a fresh transaction\n");
204         atomic64_set(&fs_info->tree_mod_seq, 0);
205
206         spin_lock_init(&cur_trans->delayed_refs.lock);
207         atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208         atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209         init_waitqueue_head(&cur_trans->delayed_refs.wait);
210
211         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212         INIT_LIST_HEAD(&cur_trans->ordered_operations);
213         INIT_LIST_HEAD(&cur_trans->pending_chunks);
214         list_add_tail(&cur_trans->list, &fs_info->trans_list);
215         extent_io_tree_init(&cur_trans->dirty_pages,
216                              fs_info->btree_inode->i_mapping);
217         fs_info->generation++;
218         cur_trans->transid = fs_info->generation;
219         fs_info->running_transaction = cur_trans;
220         cur_trans->aborted = 0;
221         spin_unlock(&fs_info->trans_lock);
222
223         return 0;
224 }
225
226 /*
227  * this does all the record keeping required to make sure that a reference
228  * counted root is properly recorded in a given transaction.  This is required
229  * to make sure the old root from before we joined the transaction is deleted
230  * when the transaction commits
231  */
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233                                struct btrfs_root *root)
234 {
235         if (root->ref_cows && root->last_trans < trans->transid) {
236                 WARN_ON(root == root->fs_info->extent_root);
237                 WARN_ON(root->commit_root != root->node);
238
239                 /*
240                  * see below for in_trans_setup usage rules
241                  * we have the reloc mutex held now, so there
242                  * is only one writer in this function
243                  */
244                 root->in_trans_setup = 1;
245
246                 /* make sure readers find in_trans_setup before
247                  * they find our root->last_trans update
248                  */
249                 smp_wmb();
250
251                 spin_lock(&root->fs_info->fs_roots_radix_lock);
252                 if (root->last_trans == trans->transid) {
253                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
254                         return 0;
255                 }
256                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257                            (unsigned long)root->root_key.objectid,
258                            BTRFS_ROOT_TRANS_TAG);
259                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
260                 root->last_trans = trans->transid;
261
262                 /* this is pretty tricky.  We don't want to
263                  * take the relocation lock in btrfs_record_root_in_trans
264                  * unless we're really doing the first setup for this root in
265                  * this transaction.
266                  *
267                  * Normally we'd use root->last_trans as a flag to decide
268                  * if we want to take the expensive mutex.
269                  *
270                  * But, we have to set root->last_trans before we
271                  * init the relocation root, otherwise, we trip over warnings
272                  * in ctree.c.  The solution used here is to flag ourselves
273                  * with root->in_trans_setup.  When this is 1, we're still
274                  * fixing up the reloc trees and everyone must wait.
275                  *
276                  * When this is zero, they can trust root->last_trans and fly
277                  * through btrfs_record_root_in_trans without having to take the
278                  * lock.  smp_wmb() makes sure that all the writes above are
279                  * done before we pop in the zero below
280                  */
281                 btrfs_init_reloc_root(trans, root);
282                 smp_wmb();
283                 root->in_trans_setup = 0;
284         }
285         return 0;
286 }
287
288
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290                                struct btrfs_root *root)
291 {
292         if (!root->ref_cows)
293                 return 0;
294
295         /*
296          * see record_root_in_trans for comments about in_trans_setup usage
297          * and barriers
298          */
299         smp_rmb();
300         if (root->last_trans == trans->transid &&
301             !root->in_trans_setup)
302                 return 0;
303
304         mutex_lock(&root->fs_info->reloc_mutex);
305         record_root_in_trans(trans, root);
306         mutex_unlock(&root->fs_info->reloc_mutex);
307
308         return 0;
309 }
310
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
312 {
313         return (trans->state >= TRANS_STATE_BLOCKED &&
314                 trans->state < TRANS_STATE_UNBLOCKED &&
315                 !trans->aborted);
316 }
317
318 /* wait for commit against the current transaction to become unblocked
319  * when this is done, it is safe to start a new transaction, but the current
320  * transaction might not be fully on disk.
321  */
322 static void wait_current_trans(struct btrfs_root *root)
323 {
324         struct btrfs_transaction *cur_trans;
325
326         spin_lock(&root->fs_info->trans_lock);
327         cur_trans = root->fs_info->running_transaction;
328         if (cur_trans && is_transaction_blocked(cur_trans)) {
329                 atomic_inc(&cur_trans->use_count);
330                 spin_unlock(&root->fs_info->trans_lock);
331
332                 wait_event(root->fs_info->transaction_wait,
333                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334                            cur_trans->aborted);
335                 btrfs_put_transaction(cur_trans);
336         } else {
337                 spin_unlock(&root->fs_info->trans_lock);
338         }
339 }
340
341 static int may_wait_transaction(struct btrfs_root *root, int type)
342 {
343         if (root->fs_info->log_root_recovering)
344                 return 0;
345
346         if (type == TRANS_USERSPACE)
347                 return 1;
348
349         if (type == TRANS_START &&
350             !atomic_read(&root->fs_info->open_ioctl_trans))
351                 return 1;
352
353         return 0;
354 }
355
356 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
357 {
358         if (!root->fs_info->reloc_ctl ||
359             !root->ref_cows ||
360             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
361             root->reloc_root)
362                 return false;
363
364         return true;
365 }
366
367 static struct btrfs_trans_handle *
368 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
369                   enum btrfs_reserve_flush_enum flush)
370 {
371         struct btrfs_trans_handle *h;
372         struct btrfs_transaction *cur_trans;
373         u64 num_bytes = 0;
374         u64 qgroup_reserved = 0;
375         bool reloc_reserved = false;
376         int ret;
377
378         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
379                 return ERR_PTR(-EROFS);
380
381         if (current->journal_info) {
382                 WARN_ON(type & TRANS_EXTWRITERS);
383                 h = current->journal_info;
384                 h->use_count++;
385                 WARN_ON(h->use_count > 2);
386                 h->orig_rsv = h->block_rsv;
387                 h->block_rsv = NULL;
388                 goto got_it;
389         }
390
391         /*
392          * Do the reservation before we join the transaction so we can do all
393          * the appropriate flushing if need be.
394          */
395         if (num_items > 0 && root != root->fs_info->chunk_root) {
396                 if (root->fs_info->quota_enabled &&
397                     is_fstree(root->root_key.objectid)) {
398                         qgroup_reserved = num_items * root->leafsize;
399                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
400                         if (ret)
401                                 return ERR_PTR(ret);
402                 }
403
404                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
405                 /*
406                  * Do the reservation for the relocation root creation
407                  */
408                 if (unlikely(need_reserve_reloc_root(root))) {
409                         num_bytes += root->nodesize;
410                         reloc_reserved = true;
411                 }
412
413                 ret = btrfs_block_rsv_add(root,
414                                           &root->fs_info->trans_block_rsv,
415                                           num_bytes, flush);
416                 if (ret)
417                         goto reserve_fail;
418         }
419 again:
420         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
421         if (!h) {
422                 ret = -ENOMEM;
423                 goto alloc_fail;
424         }
425
426         /*
427          * If we are JOIN_NOLOCK we're already committing a transaction and
428          * waiting on this guy, so we don't need to do the sb_start_intwrite
429          * because we're already holding a ref.  We need this because we could
430          * have raced in and did an fsync() on a file which can kick a commit
431          * and then we deadlock with somebody doing a freeze.
432          *
433          * If we are ATTACH, it means we just want to catch the current
434          * transaction and commit it, so we needn't do sb_start_intwrite(). 
435          */
436         if (type & __TRANS_FREEZABLE)
437                 sb_start_intwrite(root->fs_info->sb);
438
439         if (may_wait_transaction(root, type))
440                 wait_current_trans(root);
441
442         do {
443                 ret = join_transaction(root, type);
444                 if (ret == -EBUSY) {
445                         wait_current_trans(root);
446                         if (unlikely(type == TRANS_ATTACH))
447                                 ret = -ENOENT;
448                 }
449         } while (ret == -EBUSY);
450
451         if (ret < 0) {
452                 /* We must get the transaction if we are JOIN_NOLOCK. */
453                 BUG_ON(type == TRANS_JOIN_NOLOCK);
454                 goto join_fail;
455         }
456
457         cur_trans = root->fs_info->running_transaction;
458
459         h->transid = cur_trans->transid;
460         h->transaction = cur_trans;
461         h->blocks_used = 0;
462         h->bytes_reserved = 0;
463         h->root = root;
464         h->delayed_ref_updates = 0;
465         h->use_count = 1;
466         h->adding_csums = 0;
467         h->block_rsv = NULL;
468         h->orig_rsv = NULL;
469         h->aborted = 0;
470         h->qgroup_reserved = 0;
471         h->delayed_ref_elem.seq = 0;
472         h->type = type;
473         h->allocating_chunk = false;
474         h->reloc_reserved = false;
475         INIT_LIST_HEAD(&h->qgroup_ref_list);
476         INIT_LIST_HEAD(&h->new_bgs);
477
478         smp_mb();
479         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
480             may_wait_transaction(root, type)) {
481                 btrfs_commit_transaction(h, root);
482                 goto again;
483         }
484
485         if (num_bytes) {
486                 trace_btrfs_space_reservation(root->fs_info, "transaction",
487                                               h->transid, num_bytes, 1);
488                 h->block_rsv = &root->fs_info->trans_block_rsv;
489                 h->bytes_reserved = num_bytes;
490                 h->reloc_reserved = reloc_reserved;
491         }
492         h->qgroup_reserved = qgroup_reserved;
493
494 got_it:
495         btrfs_record_root_in_trans(h, root);
496
497         if (!current->journal_info && type != TRANS_USERSPACE)
498                 current->journal_info = h;
499         return h;
500
501 join_fail:
502         if (type & __TRANS_FREEZABLE)
503                 sb_end_intwrite(root->fs_info->sb);
504         kmem_cache_free(btrfs_trans_handle_cachep, h);
505 alloc_fail:
506         if (num_bytes)
507                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
508                                         num_bytes);
509 reserve_fail:
510         if (qgroup_reserved)
511                 btrfs_qgroup_free(root, qgroup_reserved);
512         return ERR_PTR(ret);
513 }
514
515 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
516                                                    int num_items)
517 {
518         return start_transaction(root, num_items, TRANS_START,
519                                  BTRFS_RESERVE_FLUSH_ALL);
520 }
521
522 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
523                                         struct btrfs_root *root, int num_items)
524 {
525         return start_transaction(root, num_items, TRANS_START,
526                                  BTRFS_RESERVE_FLUSH_LIMIT);
527 }
528
529 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
530 {
531         return start_transaction(root, 0, TRANS_JOIN, 0);
532 }
533
534 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
535 {
536         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
537 }
538
539 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
540 {
541         return start_transaction(root, 0, TRANS_USERSPACE, 0);
542 }
543
544 /*
545  * btrfs_attach_transaction() - catch the running transaction
546  *
547  * It is used when we want to commit the current the transaction, but
548  * don't want to start a new one.
549  *
550  * Note: If this function return -ENOENT, it just means there is no
551  * running transaction. But it is possible that the inactive transaction
552  * is still in the memory, not fully on disk. If you hope there is no
553  * inactive transaction in the fs when -ENOENT is returned, you should
554  * invoke
555  *     btrfs_attach_transaction_barrier()
556  */
557 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
558 {
559         return start_transaction(root, 0, TRANS_ATTACH, 0);
560 }
561
562 /*
563  * btrfs_attach_transaction_barrier() - catch the running transaction
564  *
565  * It is similar to the above function, the differentia is this one
566  * will wait for all the inactive transactions until they fully
567  * complete.
568  */
569 struct btrfs_trans_handle *
570 btrfs_attach_transaction_barrier(struct btrfs_root *root)
571 {
572         struct btrfs_trans_handle *trans;
573
574         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
575         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
576                 btrfs_wait_for_commit(root, 0);
577
578         return trans;
579 }
580
581 /* wait for a transaction commit to be fully complete */
582 static noinline void wait_for_commit(struct btrfs_root *root,
583                                     struct btrfs_transaction *commit)
584 {
585         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
586 }
587
588 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
589 {
590         struct btrfs_transaction *cur_trans = NULL, *t;
591         int ret = 0;
592
593         if (transid) {
594                 if (transid <= root->fs_info->last_trans_committed)
595                         goto out;
596
597                 ret = -EINVAL;
598                 /* find specified transaction */
599                 spin_lock(&root->fs_info->trans_lock);
600                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
601                         if (t->transid == transid) {
602                                 cur_trans = t;
603                                 atomic_inc(&cur_trans->use_count);
604                                 ret = 0;
605                                 break;
606                         }
607                         if (t->transid > transid) {
608                                 ret = 0;
609                                 break;
610                         }
611                 }
612                 spin_unlock(&root->fs_info->trans_lock);
613                 /* The specified transaction doesn't exist */
614                 if (!cur_trans)
615                         goto out;
616         } else {
617                 /* find newest transaction that is committing | committed */
618                 spin_lock(&root->fs_info->trans_lock);
619                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
620                                             list) {
621                         if (t->state >= TRANS_STATE_COMMIT_START) {
622                                 if (t->state == TRANS_STATE_COMPLETED)
623                                         break;
624                                 cur_trans = t;
625                                 atomic_inc(&cur_trans->use_count);
626                                 break;
627                         }
628                 }
629                 spin_unlock(&root->fs_info->trans_lock);
630                 if (!cur_trans)
631                         goto out;  /* nothing committing|committed */
632         }
633
634         wait_for_commit(root, cur_trans);
635         btrfs_put_transaction(cur_trans);
636 out:
637         return ret;
638 }
639
640 void btrfs_throttle(struct btrfs_root *root)
641 {
642         if (!atomic_read(&root->fs_info->open_ioctl_trans))
643                 wait_current_trans(root);
644 }
645
646 static int should_end_transaction(struct btrfs_trans_handle *trans,
647                                   struct btrfs_root *root)
648 {
649         if (root->fs_info->global_block_rsv.space_info->full &&
650             btrfs_should_throttle_delayed_refs(trans, root))
651                 return 1;
652
653         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
654 }
655
656 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
657                                  struct btrfs_root *root)
658 {
659         struct btrfs_transaction *cur_trans = trans->transaction;
660         int updates;
661         int err;
662
663         smp_mb();
664         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
665             cur_trans->delayed_refs.flushing)
666                 return 1;
667
668         updates = trans->delayed_ref_updates;
669         trans->delayed_ref_updates = 0;
670         if (updates) {
671                 err = btrfs_run_delayed_refs(trans, root, updates);
672                 if (err) /* Error code will also eval true */
673                         return err;
674         }
675
676         return should_end_transaction(trans, root);
677 }
678
679 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
680                           struct btrfs_root *root, int throttle)
681 {
682         struct btrfs_transaction *cur_trans = trans->transaction;
683         struct btrfs_fs_info *info = root->fs_info;
684         unsigned long cur = trans->delayed_ref_updates;
685         int lock = (trans->type != TRANS_JOIN_NOLOCK);
686         int err = 0;
687
688         if (--trans->use_count) {
689                 trans->block_rsv = trans->orig_rsv;
690                 return 0;
691         }
692
693         /*
694          * do the qgroup accounting as early as possible
695          */
696         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
697
698         btrfs_trans_release_metadata(trans, root);
699         trans->block_rsv = NULL;
700
701         if (trans->qgroup_reserved) {
702                 /*
703                  * the same root has to be passed here between start_transaction
704                  * and end_transaction. Subvolume quota depends on this.
705                  */
706                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
707                 trans->qgroup_reserved = 0;
708         }
709
710         if (!list_empty(&trans->new_bgs))
711                 btrfs_create_pending_block_groups(trans, root);
712
713         trans->delayed_ref_updates = 0;
714         if (btrfs_should_throttle_delayed_refs(trans, root)) {
715                 cur = max_t(unsigned long, cur, 1);
716                 trans->delayed_ref_updates = 0;
717                 btrfs_run_delayed_refs(trans, root, cur);
718         }
719
720         btrfs_trans_release_metadata(trans, root);
721         trans->block_rsv = NULL;
722
723         if (!list_empty(&trans->new_bgs))
724                 btrfs_create_pending_block_groups(trans, root);
725
726         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
727             should_end_transaction(trans, root) &&
728             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
729                 spin_lock(&info->trans_lock);
730                 if (cur_trans->state == TRANS_STATE_RUNNING)
731                         cur_trans->state = TRANS_STATE_BLOCKED;
732                 spin_unlock(&info->trans_lock);
733         }
734
735         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
736                 if (throttle) {
737                         /*
738                          * We may race with somebody else here so end up having
739                          * to call end_transaction on ourselves again, so inc
740                          * our use_count.
741                          */
742                         trans->use_count++;
743                         return btrfs_commit_transaction(trans, root);
744                 } else {
745                         wake_up_process(info->transaction_kthread);
746                 }
747         }
748
749         if (trans->type & __TRANS_FREEZABLE)
750                 sb_end_intwrite(root->fs_info->sb);
751
752         WARN_ON(cur_trans != info->running_transaction);
753         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
754         atomic_dec(&cur_trans->num_writers);
755         extwriter_counter_dec(cur_trans, trans->type);
756
757         smp_mb();
758         if (waitqueue_active(&cur_trans->writer_wait))
759                 wake_up(&cur_trans->writer_wait);
760         btrfs_put_transaction(cur_trans);
761
762         if (current->journal_info == trans)
763                 current->journal_info = NULL;
764
765         if (throttle)
766                 btrfs_run_delayed_iputs(root);
767
768         if (trans->aborted ||
769             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
770                 wake_up_process(info->transaction_kthread);
771                 err = -EIO;
772         }
773         assert_qgroups_uptodate(trans);
774
775         kmem_cache_free(btrfs_trans_handle_cachep, trans);
776         return err;
777 }
778
779 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
780                           struct btrfs_root *root)
781 {
782         return __btrfs_end_transaction(trans, root, 0);
783 }
784
785 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
786                                    struct btrfs_root *root)
787 {
788         return __btrfs_end_transaction(trans, root, 1);
789 }
790
791 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
792                                 struct btrfs_root *root)
793 {
794         return __btrfs_end_transaction(trans, root, 1);
795 }
796
797 /*
798  * when btree blocks are allocated, they have some corresponding bits set for
799  * them in one of two extent_io trees.  This is used to make sure all of
800  * those extents are sent to disk but does not wait on them
801  */
802 int btrfs_write_marked_extents(struct btrfs_root *root,
803                                struct extent_io_tree *dirty_pages, int mark)
804 {
805         int err = 0;
806         int werr = 0;
807         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
808         struct extent_state *cached_state = NULL;
809         u64 start = 0;
810         u64 end;
811
812         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
813                                       mark, &cached_state)) {
814                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
815                                    mark, &cached_state, GFP_NOFS);
816                 cached_state = NULL;
817                 err = filemap_fdatawrite_range(mapping, start, end);
818                 if (err)
819                         werr = err;
820                 cond_resched();
821                 start = end + 1;
822         }
823         if (err)
824                 werr = err;
825         return werr;
826 }
827
828 /*
829  * when btree blocks are allocated, they have some corresponding bits set for
830  * them in one of two extent_io trees.  This is used to make sure all of
831  * those extents are on disk for transaction or log commit.  We wait
832  * on all the pages and clear them from the dirty pages state tree
833  */
834 int btrfs_wait_marked_extents(struct btrfs_root *root,
835                               struct extent_io_tree *dirty_pages, int mark)
836 {
837         int err = 0;
838         int werr = 0;
839         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
840         struct extent_state *cached_state = NULL;
841         u64 start = 0;
842         u64 end;
843
844         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
845                                       EXTENT_NEED_WAIT, &cached_state)) {
846                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
847                                  0, 0, &cached_state, GFP_NOFS);
848                 err = filemap_fdatawait_range(mapping, start, end);
849                 if (err)
850                         werr = err;
851                 cond_resched();
852                 start = end + 1;
853         }
854         if (err)
855                 werr = err;
856         return werr;
857 }
858
859 /*
860  * when btree blocks are allocated, they have some corresponding bits set for
861  * them in one of two extent_io trees.  This is used to make sure all of
862  * those extents are on disk for transaction or log commit
863  */
864 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
865                                 struct extent_io_tree *dirty_pages, int mark)
866 {
867         int ret;
868         int ret2;
869         struct blk_plug plug;
870
871         blk_start_plug(&plug);
872         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
873         blk_finish_plug(&plug);
874         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
875
876         if (ret)
877                 return ret;
878         if (ret2)
879                 return ret2;
880         return 0;
881 }
882
883 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
884                                      struct btrfs_root *root)
885 {
886         if (!trans || !trans->transaction) {
887                 struct inode *btree_inode;
888                 btree_inode = root->fs_info->btree_inode;
889                 return filemap_write_and_wait(btree_inode->i_mapping);
890         }
891         return btrfs_write_and_wait_marked_extents(root,
892                                            &trans->transaction->dirty_pages,
893                                            EXTENT_DIRTY);
894 }
895
896 /*
897  * this is used to update the root pointer in the tree of tree roots.
898  *
899  * But, in the case of the extent allocation tree, updating the root
900  * pointer may allocate blocks which may change the root of the extent
901  * allocation tree.
902  *
903  * So, this loops and repeats and makes sure the cowonly root didn't
904  * change while the root pointer was being updated in the metadata.
905  */
906 static int update_cowonly_root(struct btrfs_trans_handle *trans,
907                                struct btrfs_root *root)
908 {
909         int ret;
910         u64 old_root_bytenr;
911         u64 old_root_used;
912         struct btrfs_root *tree_root = root->fs_info->tree_root;
913
914         old_root_used = btrfs_root_used(&root->root_item);
915         btrfs_write_dirty_block_groups(trans, root);
916
917         while (1) {
918                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
919                 if (old_root_bytenr == root->node->start &&
920                     old_root_used == btrfs_root_used(&root->root_item))
921                         break;
922
923                 btrfs_set_root_node(&root->root_item, root->node);
924                 ret = btrfs_update_root(trans, tree_root,
925                                         &root->root_key,
926                                         &root->root_item);
927                 if (ret)
928                         return ret;
929
930                 old_root_used = btrfs_root_used(&root->root_item);
931                 ret = btrfs_write_dirty_block_groups(trans, root);
932                 if (ret)
933                         return ret;
934         }
935
936         if (root != root->fs_info->extent_root)
937                 switch_commit_root(root);
938
939         return 0;
940 }
941
942 /*
943  * update all the cowonly tree roots on disk
944  *
945  * The error handling in this function may not be obvious. Any of the
946  * failures will cause the file system to go offline. We still need
947  * to clean up the delayed refs.
948  */
949 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
950                                          struct btrfs_root *root)
951 {
952         struct btrfs_fs_info *fs_info = root->fs_info;
953         struct list_head *next;
954         struct extent_buffer *eb;
955         int ret;
956
957         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
958         if (ret)
959                 return ret;
960
961         eb = btrfs_lock_root_node(fs_info->tree_root);
962         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
963                               0, &eb);
964         btrfs_tree_unlock(eb);
965         free_extent_buffer(eb);
966
967         if (ret)
968                 return ret;
969
970         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
971         if (ret)
972                 return ret;
973
974         ret = btrfs_run_dev_stats(trans, root->fs_info);
975         if (ret)
976                 return ret;
977         ret = btrfs_run_dev_replace(trans, root->fs_info);
978         if (ret)
979                 return ret;
980         ret = btrfs_run_qgroups(trans, root->fs_info);
981         if (ret)
982                 return ret;
983
984         /* run_qgroups might have added some more refs */
985         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
986         if (ret)
987                 return ret;
988
989         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
990                 next = fs_info->dirty_cowonly_roots.next;
991                 list_del_init(next);
992                 root = list_entry(next, struct btrfs_root, dirty_list);
993
994                 ret = update_cowonly_root(trans, root);
995                 if (ret)
996                         return ret;
997         }
998
999         down_write(&fs_info->extent_commit_sem);
1000         switch_commit_root(fs_info->extent_root);
1001         up_write(&fs_info->extent_commit_sem);
1002
1003         btrfs_after_dev_replace_commit(fs_info);
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * dead roots are old snapshots that need to be deleted.  This allocates
1010  * a dirty root struct and adds it into the list of dead roots that need to
1011  * be deleted
1012  */
1013 void btrfs_add_dead_root(struct btrfs_root *root)
1014 {
1015         spin_lock(&root->fs_info->trans_lock);
1016         if (list_empty(&root->root_list))
1017                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1018         spin_unlock(&root->fs_info->trans_lock);
1019 }
1020
1021 /*
1022  * update all the cowonly tree roots on disk
1023  */
1024 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1025                                     struct btrfs_root *root)
1026 {
1027         struct btrfs_root *gang[8];
1028         struct btrfs_fs_info *fs_info = root->fs_info;
1029         int i;
1030         int ret;
1031         int err = 0;
1032
1033         spin_lock(&fs_info->fs_roots_radix_lock);
1034         while (1) {
1035                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1036                                                  (void **)gang, 0,
1037                                                  ARRAY_SIZE(gang),
1038                                                  BTRFS_ROOT_TRANS_TAG);
1039                 if (ret == 0)
1040                         break;
1041                 for (i = 0; i < ret; i++) {
1042                         root = gang[i];
1043                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1044                                         (unsigned long)root->root_key.objectid,
1045                                         BTRFS_ROOT_TRANS_TAG);
1046                         spin_unlock(&fs_info->fs_roots_radix_lock);
1047
1048                         btrfs_free_log(trans, root);
1049                         btrfs_update_reloc_root(trans, root);
1050                         btrfs_orphan_commit_root(trans, root);
1051
1052                         btrfs_save_ino_cache(root, trans);
1053
1054                         /* see comments in should_cow_block() */
1055                         root->force_cow = 0;
1056                         smp_wmb();
1057
1058                         if (root->commit_root != root->node) {
1059                                 mutex_lock(&root->fs_commit_mutex);
1060                                 switch_commit_root(root);
1061                                 btrfs_unpin_free_ino(root);
1062                                 mutex_unlock(&root->fs_commit_mutex);
1063
1064                                 btrfs_set_root_node(&root->root_item,
1065                                                     root->node);
1066                         }
1067
1068                         err = btrfs_update_root(trans, fs_info->tree_root,
1069                                                 &root->root_key,
1070                                                 &root->root_item);
1071                         spin_lock(&fs_info->fs_roots_radix_lock);
1072                         if (err)
1073                                 break;
1074                 }
1075         }
1076         spin_unlock(&fs_info->fs_roots_radix_lock);
1077         return err;
1078 }
1079
1080 /*
1081  * defrag a given btree.
1082  * Every leaf in the btree is read and defragged.
1083  */
1084 int btrfs_defrag_root(struct btrfs_root *root)
1085 {
1086         struct btrfs_fs_info *info = root->fs_info;
1087         struct btrfs_trans_handle *trans;
1088         int ret;
1089
1090         if (xchg(&root->defrag_running, 1))
1091                 return 0;
1092
1093         while (1) {
1094                 trans = btrfs_start_transaction(root, 0);
1095                 if (IS_ERR(trans))
1096                         return PTR_ERR(trans);
1097
1098                 ret = btrfs_defrag_leaves(trans, root);
1099
1100                 btrfs_end_transaction(trans, root);
1101                 btrfs_btree_balance_dirty(info->tree_root);
1102                 cond_resched();
1103
1104                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1105                         break;
1106
1107                 if (btrfs_defrag_cancelled(root->fs_info)) {
1108                         printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1109                         ret = -EAGAIN;
1110                         break;
1111                 }
1112         }
1113         root->defrag_running = 0;
1114         return ret;
1115 }
1116
1117 /*
1118  * new snapshots need to be created at a very specific time in the
1119  * transaction commit.  This does the actual creation.
1120  *
1121  * Note:
1122  * If the error which may affect the commitment of the current transaction
1123  * happens, we should return the error number. If the error which just affect
1124  * the creation of the pending snapshots, just return 0.
1125  */
1126 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1127                                    struct btrfs_fs_info *fs_info,
1128                                    struct btrfs_pending_snapshot *pending)
1129 {
1130         struct btrfs_key key;
1131         struct btrfs_root_item *new_root_item;
1132         struct btrfs_root *tree_root = fs_info->tree_root;
1133         struct btrfs_root *root = pending->root;
1134         struct btrfs_root *parent_root;
1135         struct btrfs_block_rsv *rsv;
1136         struct inode *parent_inode;
1137         struct btrfs_path *path;
1138         struct btrfs_dir_item *dir_item;
1139         struct dentry *dentry;
1140         struct extent_buffer *tmp;
1141         struct extent_buffer *old;
1142         struct timespec cur_time = CURRENT_TIME;
1143         int ret = 0;
1144         u64 to_reserve = 0;
1145         u64 index = 0;
1146         u64 objectid;
1147         u64 root_flags;
1148         uuid_le new_uuid;
1149
1150         path = btrfs_alloc_path();
1151         if (!path) {
1152                 pending->error = -ENOMEM;
1153                 return 0;
1154         }
1155
1156         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1157         if (!new_root_item) {
1158                 pending->error = -ENOMEM;
1159                 goto root_item_alloc_fail;
1160         }
1161
1162         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1163         if (pending->error)
1164                 goto no_free_objectid;
1165
1166         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1167
1168         if (to_reserve > 0) {
1169                 pending->error = btrfs_block_rsv_add(root,
1170                                                      &pending->block_rsv,
1171                                                      to_reserve,
1172                                                      BTRFS_RESERVE_NO_FLUSH);
1173                 if (pending->error)
1174                         goto no_free_objectid;
1175         }
1176
1177         pending->error = btrfs_qgroup_inherit(trans, fs_info,
1178                                               root->root_key.objectid,
1179                                               objectid, pending->inherit);
1180         if (pending->error)
1181                 goto no_free_objectid;
1182
1183         key.objectid = objectid;
1184         key.offset = (u64)-1;
1185         key.type = BTRFS_ROOT_ITEM_KEY;
1186
1187         rsv = trans->block_rsv;
1188         trans->block_rsv = &pending->block_rsv;
1189         trans->bytes_reserved = trans->block_rsv->reserved;
1190
1191         dentry = pending->dentry;
1192         parent_inode = pending->dir;
1193         parent_root = BTRFS_I(parent_inode)->root;
1194         record_root_in_trans(trans, parent_root);
1195
1196         /*
1197          * insert the directory item
1198          */
1199         ret = btrfs_set_inode_index(parent_inode, &index);
1200         BUG_ON(ret); /* -ENOMEM */
1201
1202         /* check if there is a file/dir which has the same name. */
1203         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1204                                          btrfs_ino(parent_inode),
1205                                          dentry->d_name.name,
1206                                          dentry->d_name.len, 0);
1207         if (dir_item != NULL && !IS_ERR(dir_item)) {
1208                 pending->error = -EEXIST;
1209                 goto dir_item_existed;
1210         } else if (IS_ERR(dir_item)) {
1211                 ret = PTR_ERR(dir_item);
1212                 btrfs_abort_transaction(trans, root, ret);
1213                 goto fail;
1214         }
1215         btrfs_release_path(path);
1216
1217         /*
1218          * pull in the delayed directory update
1219          * and the delayed inode item
1220          * otherwise we corrupt the FS during
1221          * snapshot
1222          */
1223         ret = btrfs_run_delayed_items(trans, root);
1224         if (ret) {      /* Transaction aborted */
1225                 btrfs_abort_transaction(trans, root, ret);
1226                 goto fail;
1227         }
1228
1229         record_root_in_trans(trans, root);
1230         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1231         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1232         btrfs_check_and_init_root_item(new_root_item);
1233
1234         root_flags = btrfs_root_flags(new_root_item);
1235         if (pending->readonly)
1236                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1237         else
1238                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1239         btrfs_set_root_flags(new_root_item, root_flags);
1240
1241         btrfs_set_root_generation_v2(new_root_item,
1242                         trans->transid);
1243         uuid_le_gen(&new_uuid);
1244         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1245         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1246                         BTRFS_UUID_SIZE);
1247         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1248                 memset(new_root_item->received_uuid, 0,
1249                        sizeof(new_root_item->received_uuid));
1250                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1251                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1252                 btrfs_set_root_stransid(new_root_item, 0);
1253                 btrfs_set_root_rtransid(new_root_item, 0);
1254         }
1255         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1256         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1257         btrfs_set_root_otransid(new_root_item, trans->transid);
1258
1259         old = btrfs_lock_root_node(root);
1260         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1261         if (ret) {
1262                 btrfs_tree_unlock(old);
1263                 free_extent_buffer(old);
1264                 btrfs_abort_transaction(trans, root, ret);
1265                 goto fail;
1266         }
1267
1268         btrfs_set_lock_blocking(old);
1269
1270         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1271         /* clean up in any case */
1272         btrfs_tree_unlock(old);
1273         free_extent_buffer(old);
1274         if (ret) {
1275                 btrfs_abort_transaction(trans, root, ret);
1276                 goto fail;
1277         }
1278
1279         /* see comments in should_cow_block() */
1280         root->force_cow = 1;
1281         smp_wmb();
1282
1283         btrfs_set_root_node(new_root_item, tmp);
1284         /* record when the snapshot was created in key.offset */
1285         key.offset = trans->transid;
1286         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1287         btrfs_tree_unlock(tmp);
1288         free_extent_buffer(tmp);
1289         if (ret) {
1290                 btrfs_abort_transaction(trans, root, ret);
1291                 goto fail;
1292         }
1293
1294         /*
1295          * insert root back/forward references
1296          */
1297         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1298                                  parent_root->root_key.objectid,
1299                                  btrfs_ino(parent_inode), index,
1300                                  dentry->d_name.name, dentry->d_name.len);
1301         if (ret) {
1302                 btrfs_abort_transaction(trans, root, ret);
1303                 goto fail;
1304         }
1305
1306         key.offset = (u64)-1;
1307         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1308         if (IS_ERR(pending->snap)) {
1309                 ret = PTR_ERR(pending->snap);
1310                 btrfs_abort_transaction(trans, root, ret);
1311                 goto fail;
1312         }
1313
1314         ret = btrfs_reloc_post_snapshot(trans, pending);
1315         if (ret) {
1316                 btrfs_abort_transaction(trans, root, ret);
1317                 goto fail;
1318         }
1319
1320         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1321         if (ret) {
1322                 btrfs_abort_transaction(trans, root, ret);
1323                 goto fail;
1324         }
1325
1326         ret = btrfs_insert_dir_item(trans, parent_root,
1327                                     dentry->d_name.name, dentry->d_name.len,
1328                                     parent_inode, &key,
1329                                     BTRFS_FT_DIR, index);
1330         /* We have check then name at the beginning, so it is impossible. */
1331         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1332         if (ret) {
1333                 btrfs_abort_transaction(trans, root, ret);
1334                 goto fail;
1335         }
1336
1337         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1338                                          dentry->d_name.len * 2);
1339         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1340         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1341         if (ret) {
1342                 btrfs_abort_transaction(trans, root, ret);
1343                 goto fail;
1344         }
1345         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1346                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1347         if (ret) {
1348                 btrfs_abort_transaction(trans, root, ret);
1349                 goto fail;
1350         }
1351         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1352                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1353                                           new_root_item->received_uuid,
1354                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1355                                           objectid);
1356                 if (ret && ret != -EEXIST) {
1357                         btrfs_abort_transaction(trans, root, ret);
1358                         goto fail;
1359                 }
1360         }
1361 fail:
1362         pending->error = ret;
1363 dir_item_existed:
1364         trans->block_rsv = rsv;
1365         trans->bytes_reserved = 0;
1366 no_free_objectid:
1367         kfree(new_root_item);
1368 root_item_alloc_fail:
1369         btrfs_free_path(path);
1370         return ret;
1371 }
1372
1373 /*
1374  * create all the snapshots we've scheduled for creation
1375  */
1376 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1377                                              struct btrfs_fs_info *fs_info)
1378 {
1379         struct btrfs_pending_snapshot *pending, *next;
1380         struct list_head *head = &trans->transaction->pending_snapshots;
1381         int ret = 0;
1382
1383         list_for_each_entry_safe(pending, next, head, list) {
1384                 list_del(&pending->list);
1385                 ret = create_pending_snapshot(trans, fs_info, pending);
1386                 if (ret)
1387                         break;
1388         }
1389         return ret;
1390 }
1391
1392 static void update_super_roots(struct btrfs_root *root)
1393 {
1394         struct btrfs_root_item *root_item;
1395         struct btrfs_super_block *super;
1396
1397         super = root->fs_info->super_copy;
1398
1399         root_item = &root->fs_info->chunk_root->root_item;
1400         super->chunk_root = root_item->bytenr;
1401         super->chunk_root_generation = root_item->generation;
1402         super->chunk_root_level = root_item->level;
1403
1404         root_item = &root->fs_info->tree_root->root_item;
1405         super->root = root_item->bytenr;
1406         super->generation = root_item->generation;
1407         super->root_level = root_item->level;
1408         if (btrfs_test_opt(root, SPACE_CACHE))
1409                 super->cache_generation = root_item->generation;
1410         if (root->fs_info->update_uuid_tree_gen)
1411                 super->uuid_tree_generation = root_item->generation;
1412 }
1413
1414 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1415 {
1416         struct btrfs_transaction *trans;
1417         int ret = 0;
1418
1419         spin_lock(&info->trans_lock);
1420         trans = info->running_transaction;
1421         if (trans)
1422                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1423         spin_unlock(&info->trans_lock);
1424         return ret;
1425 }
1426
1427 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1428 {
1429         struct btrfs_transaction *trans;
1430         int ret = 0;
1431
1432         spin_lock(&info->trans_lock);
1433         trans = info->running_transaction;
1434         if (trans)
1435                 ret = is_transaction_blocked(trans);
1436         spin_unlock(&info->trans_lock);
1437         return ret;
1438 }
1439
1440 /*
1441  * wait for the current transaction commit to start and block subsequent
1442  * transaction joins
1443  */
1444 static void wait_current_trans_commit_start(struct btrfs_root *root,
1445                                             struct btrfs_transaction *trans)
1446 {
1447         wait_event(root->fs_info->transaction_blocked_wait,
1448                    trans->state >= TRANS_STATE_COMMIT_START ||
1449                    trans->aborted);
1450 }
1451
1452 /*
1453  * wait for the current transaction to start and then become unblocked.
1454  * caller holds ref.
1455  */
1456 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1457                                          struct btrfs_transaction *trans)
1458 {
1459         wait_event(root->fs_info->transaction_wait,
1460                    trans->state >= TRANS_STATE_UNBLOCKED ||
1461                    trans->aborted);
1462 }
1463
1464 /*
1465  * commit transactions asynchronously. once btrfs_commit_transaction_async
1466  * returns, any subsequent transaction will not be allowed to join.
1467  */
1468 struct btrfs_async_commit {
1469         struct btrfs_trans_handle *newtrans;
1470         struct btrfs_root *root;
1471         struct work_struct work;
1472 };
1473
1474 static void do_async_commit(struct work_struct *work)
1475 {
1476         struct btrfs_async_commit *ac =
1477                 container_of(work, struct btrfs_async_commit, work);
1478
1479         /*
1480          * We've got freeze protection passed with the transaction.
1481          * Tell lockdep about it.
1482          */
1483         if (ac->newtrans->type & __TRANS_FREEZABLE)
1484                 rwsem_acquire_read(
1485                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1486                      0, 1, _THIS_IP_);
1487
1488         current->journal_info = ac->newtrans;
1489
1490         btrfs_commit_transaction(ac->newtrans, ac->root);
1491         kfree(ac);
1492 }
1493
1494 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1495                                    struct btrfs_root *root,
1496                                    int wait_for_unblock)
1497 {
1498         struct btrfs_async_commit *ac;
1499         struct btrfs_transaction *cur_trans;
1500
1501         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1502         if (!ac)
1503                 return -ENOMEM;
1504
1505         INIT_WORK(&ac->work, do_async_commit);
1506         ac->root = root;
1507         ac->newtrans = btrfs_join_transaction(root);
1508         if (IS_ERR(ac->newtrans)) {
1509                 int err = PTR_ERR(ac->newtrans);
1510                 kfree(ac);
1511                 return err;
1512         }
1513
1514         /* take transaction reference */
1515         cur_trans = trans->transaction;
1516         atomic_inc(&cur_trans->use_count);
1517
1518         btrfs_end_transaction(trans, root);
1519
1520         /*
1521          * Tell lockdep we've released the freeze rwsem, since the
1522          * async commit thread will be the one to unlock it.
1523          */
1524         if (ac->newtrans->type & __TRANS_FREEZABLE)
1525                 rwsem_release(
1526                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1527                         1, _THIS_IP_);
1528
1529         schedule_work(&ac->work);
1530
1531         /* wait for transaction to start and unblock */
1532         if (wait_for_unblock)
1533                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1534         else
1535                 wait_current_trans_commit_start(root, cur_trans);
1536
1537         if (current->journal_info == trans)
1538                 current->journal_info = NULL;
1539
1540         btrfs_put_transaction(cur_trans);
1541         return 0;
1542 }
1543
1544
1545 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1546                                 struct btrfs_root *root, int err)
1547 {
1548         struct btrfs_transaction *cur_trans = trans->transaction;
1549         DEFINE_WAIT(wait);
1550
1551         WARN_ON(trans->use_count > 1);
1552
1553         btrfs_abort_transaction(trans, root, err);
1554
1555         spin_lock(&root->fs_info->trans_lock);
1556
1557         /*
1558          * If the transaction is removed from the list, it means this
1559          * transaction has been committed successfully, so it is impossible
1560          * to call the cleanup function.
1561          */
1562         BUG_ON(list_empty(&cur_trans->list));
1563
1564         list_del_init(&cur_trans->list);
1565         if (cur_trans == root->fs_info->running_transaction) {
1566                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1567                 spin_unlock(&root->fs_info->trans_lock);
1568                 wait_event(cur_trans->writer_wait,
1569                            atomic_read(&cur_trans->num_writers) == 1);
1570
1571                 spin_lock(&root->fs_info->trans_lock);
1572         }
1573         spin_unlock(&root->fs_info->trans_lock);
1574
1575         btrfs_cleanup_one_transaction(trans->transaction, root);
1576
1577         spin_lock(&root->fs_info->trans_lock);
1578         if (cur_trans == root->fs_info->running_transaction)
1579                 root->fs_info->running_transaction = NULL;
1580         spin_unlock(&root->fs_info->trans_lock);
1581
1582         if (trans->type & __TRANS_FREEZABLE)
1583                 sb_end_intwrite(root->fs_info->sb);
1584         btrfs_put_transaction(cur_trans);
1585         btrfs_put_transaction(cur_trans);
1586
1587         trace_btrfs_transaction_commit(root);
1588
1589         btrfs_scrub_continue(root);
1590
1591         if (current->journal_info == trans)
1592                 current->journal_info = NULL;
1593
1594         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1595 }
1596
1597 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1598                                           struct btrfs_root *root)
1599 {
1600         int ret;
1601
1602         ret = btrfs_run_delayed_items(trans, root);
1603         /*
1604          * running the delayed items may have added new refs. account
1605          * them now so that they hinder processing of more delayed refs
1606          * as little as possible.
1607          */
1608         if (ret) {
1609                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1610                 return ret;
1611         }
1612
1613         ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1614         if (ret)
1615                 return ret;
1616
1617         /*
1618          * rename don't use btrfs_join_transaction, so, once we
1619          * set the transaction to blocked above, we aren't going
1620          * to get any new ordered operations.  We can safely run
1621          * it here and no for sure that nothing new will be added
1622          * to the list
1623          */
1624         ret = btrfs_run_ordered_operations(trans, root, 1);
1625
1626         return ret;
1627 }
1628
1629 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1630 {
1631         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632                 return btrfs_start_delalloc_roots(fs_info, 1);
1633         return 0;
1634 }
1635
1636 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1637 {
1638         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1639                 btrfs_wait_ordered_roots(fs_info, -1);
1640 }
1641
1642 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1643                              struct btrfs_root *root)
1644 {
1645         struct btrfs_transaction *cur_trans = trans->transaction;
1646         struct btrfs_transaction *prev_trans = NULL;
1647         int ret;
1648
1649         ret = btrfs_run_ordered_operations(trans, root, 0);
1650         if (ret) {
1651                 btrfs_abort_transaction(trans, root, ret);
1652                 btrfs_end_transaction(trans, root);
1653                 return ret;
1654         }
1655
1656         /* Stop the commit early if ->aborted is set */
1657         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1658                 ret = cur_trans->aborted;
1659                 btrfs_end_transaction(trans, root);
1660                 return ret;
1661         }
1662
1663         /* make a pass through all the delayed refs we have so far
1664          * any runnings procs may add more while we are here
1665          */
1666         ret = btrfs_run_delayed_refs(trans, root, 0);
1667         if (ret) {
1668                 btrfs_end_transaction(trans, root);
1669                 return ret;
1670         }
1671
1672         btrfs_trans_release_metadata(trans, root);
1673         trans->block_rsv = NULL;
1674         if (trans->qgroup_reserved) {
1675                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1676                 trans->qgroup_reserved = 0;
1677         }
1678
1679         cur_trans = trans->transaction;
1680
1681         /*
1682          * set the flushing flag so procs in this transaction have to
1683          * start sending their work down.
1684          */
1685         cur_trans->delayed_refs.flushing = 1;
1686         smp_wmb();
1687
1688         if (!list_empty(&trans->new_bgs))
1689                 btrfs_create_pending_block_groups(trans, root);
1690
1691         ret = btrfs_run_delayed_refs(trans, root, 0);
1692         if (ret) {
1693                 btrfs_end_transaction(trans, root);
1694                 return ret;
1695         }
1696
1697         spin_lock(&root->fs_info->trans_lock);
1698         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1699                 spin_unlock(&root->fs_info->trans_lock);
1700                 atomic_inc(&cur_trans->use_count);
1701                 ret = btrfs_end_transaction(trans, root);
1702
1703                 wait_for_commit(root, cur_trans);
1704
1705                 btrfs_put_transaction(cur_trans);
1706
1707                 return ret;
1708         }
1709
1710         cur_trans->state = TRANS_STATE_COMMIT_START;
1711         wake_up(&root->fs_info->transaction_blocked_wait);
1712
1713         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1714                 prev_trans = list_entry(cur_trans->list.prev,
1715                                         struct btrfs_transaction, list);
1716                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1717                         atomic_inc(&prev_trans->use_count);
1718                         spin_unlock(&root->fs_info->trans_lock);
1719
1720                         wait_for_commit(root, prev_trans);
1721
1722                         btrfs_put_transaction(prev_trans);
1723                 } else {
1724                         spin_unlock(&root->fs_info->trans_lock);
1725                 }
1726         } else {
1727                 spin_unlock(&root->fs_info->trans_lock);
1728         }
1729
1730         extwriter_counter_dec(cur_trans, trans->type);
1731
1732         ret = btrfs_start_delalloc_flush(root->fs_info);
1733         if (ret)
1734                 goto cleanup_transaction;
1735
1736         ret = btrfs_flush_all_pending_stuffs(trans, root);
1737         if (ret)
1738                 goto cleanup_transaction;
1739
1740         wait_event(cur_trans->writer_wait,
1741                    extwriter_counter_read(cur_trans) == 0);
1742
1743         /* some pending stuffs might be added after the previous flush. */
1744         ret = btrfs_flush_all_pending_stuffs(trans, root);
1745         if (ret)
1746                 goto cleanup_transaction;
1747
1748         btrfs_wait_delalloc_flush(root->fs_info);
1749         /*
1750          * Ok now we need to make sure to block out any other joins while we
1751          * commit the transaction.  We could have started a join before setting
1752          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1753          */
1754         spin_lock(&root->fs_info->trans_lock);
1755         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1756         spin_unlock(&root->fs_info->trans_lock);
1757         wait_event(cur_trans->writer_wait,
1758                    atomic_read(&cur_trans->num_writers) == 1);
1759
1760         /* ->aborted might be set after the previous check, so check it */
1761         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1762                 ret = cur_trans->aborted;
1763                 goto cleanup_transaction;
1764         }
1765         /*
1766          * the reloc mutex makes sure that we stop
1767          * the balancing code from coming in and moving
1768          * extents around in the middle of the commit
1769          */
1770         mutex_lock(&root->fs_info->reloc_mutex);
1771
1772         /*
1773          * We needn't worry about the delayed items because we will
1774          * deal with them in create_pending_snapshot(), which is the
1775          * core function of the snapshot creation.
1776          */
1777         ret = create_pending_snapshots(trans, root->fs_info);
1778         if (ret) {
1779                 mutex_unlock(&root->fs_info->reloc_mutex);
1780                 goto cleanup_transaction;
1781         }
1782
1783         /*
1784          * We insert the dir indexes of the snapshots and update the inode
1785          * of the snapshots' parents after the snapshot creation, so there
1786          * are some delayed items which are not dealt with. Now deal with
1787          * them.
1788          *
1789          * We needn't worry that this operation will corrupt the snapshots,
1790          * because all the tree which are snapshoted will be forced to COW
1791          * the nodes and leaves.
1792          */
1793         ret = btrfs_run_delayed_items(trans, root);
1794         if (ret) {
1795                 mutex_unlock(&root->fs_info->reloc_mutex);
1796                 goto cleanup_transaction;
1797         }
1798
1799         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1800         if (ret) {
1801                 mutex_unlock(&root->fs_info->reloc_mutex);
1802                 goto cleanup_transaction;
1803         }
1804
1805         /*
1806          * make sure none of the code above managed to slip in a
1807          * delayed item
1808          */
1809         btrfs_assert_delayed_root_empty(root);
1810
1811         WARN_ON(cur_trans != trans->transaction);
1812
1813         btrfs_scrub_pause(root);
1814         /* btrfs_commit_tree_roots is responsible for getting the
1815          * various roots consistent with each other.  Every pointer
1816          * in the tree of tree roots has to point to the most up to date
1817          * root for every subvolume and other tree.  So, we have to keep
1818          * the tree logging code from jumping in and changing any
1819          * of the trees.
1820          *
1821          * At this point in the commit, there can't be any tree-log
1822          * writers, but a little lower down we drop the trans mutex
1823          * and let new people in.  By holding the tree_log_mutex
1824          * from now until after the super is written, we avoid races
1825          * with the tree-log code.
1826          */
1827         mutex_lock(&root->fs_info->tree_log_mutex);
1828
1829         ret = commit_fs_roots(trans, root);
1830         if (ret) {
1831                 mutex_unlock(&root->fs_info->tree_log_mutex);
1832                 mutex_unlock(&root->fs_info->reloc_mutex);
1833                 goto cleanup_transaction;
1834         }
1835
1836         /* commit_fs_roots gets rid of all the tree log roots, it is now
1837          * safe to free the root of tree log roots
1838          */
1839         btrfs_free_log_root_tree(trans, root->fs_info);
1840
1841         ret = commit_cowonly_roots(trans, root);
1842         if (ret) {
1843                 mutex_unlock(&root->fs_info->tree_log_mutex);
1844                 mutex_unlock(&root->fs_info->reloc_mutex);
1845                 goto cleanup_transaction;
1846         }
1847
1848         /*
1849          * The tasks which save the space cache and inode cache may also
1850          * update ->aborted, check it.
1851          */
1852         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1853                 ret = cur_trans->aborted;
1854                 mutex_unlock(&root->fs_info->tree_log_mutex);
1855                 mutex_unlock(&root->fs_info->reloc_mutex);
1856                 goto cleanup_transaction;
1857         }
1858
1859         btrfs_prepare_extent_commit(trans, root);
1860
1861         cur_trans = root->fs_info->running_transaction;
1862
1863         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1864                             root->fs_info->tree_root->node);
1865         switch_commit_root(root->fs_info->tree_root);
1866
1867         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1868                             root->fs_info->chunk_root->node);
1869         switch_commit_root(root->fs_info->chunk_root);
1870
1871         assert_qgroups_uptodate(trans);
1872         update_super_roots(root);
1873
1874         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1875         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1876         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1877                sizeof(*root->fs_info->super_copy));
1878
1879         spin_lock(&root->fs_info->trans_lock);
1880         cur_trans->state = TRANS_STATE_UNBLOCKED;
1881         root->fs_info->running_transaction = NULL;
1882         spin_unlock(&root->fs_info->trans_lock);
1883         mutex_unlock(&root->fs_info->reloc_mutex);
1884
1885         wake_up(&root->fs_info->transaction_wait);
1886
1887         ret = btrfs_write_and_wait_transaction(trans, root);
1888         if (ret) {
1889                 btrfs_error(root->fs_info, ret,
1890                             "Error while writing out transaction");
1891                 mutex_unlock(&root->fs_info->tree_log_mutex);
1892                 goto cleanup_transaction;
1893         }
1894
1895         ret = write_ctree_super(trans, root, 0);
1896         if (ret) {
1897                 mutex_unlock(&root->fs_info->tree_log_mutex);
1898                 goto cleanup_transaction;
1899         }
1900
1901         /*
1902          * the super is written, we can safely allow the tree-loggers
1903          * to go about their business
1904          */
1905         mutex_unlock(&root->fs_info->tree_log_mutex);
1906
1907         btrfs_finish_extent_commit(trans, root);
1908
1909         root->fs_info->last_trans_committed = cur_trans->transid;
1910         /*
1911          * We needn't acquire the lock here because there is no other task
1912          * which can change it.
1913          */
1914         cur_trans->state = TRANS_STATE_COMPLETED;
1915         wake_up(&cur_trans->commit_wait);
1916
1917         spin_lock(&root->fs_info->trans_lock);
1918         list_del_init(&cur_trans->list);
1919         spin_unlock(&root->fs_info->trans_lock);
1920
1921         btrfs_put_transaction(cur_trans);
1922         btrfs_put_transaction(cur_trans);
1923
1924         if (trans->type & __TRANS_FREEZABLE)
1925                 sb_end_intwrite(root->fs_info->sb);
1926
1927         trace_btrfs_transaction_commit(root);
1928
1929         btrfs_scrub_continue(root);
1930
1931         if (current->journal_info == trans)
1932                 current->journal_info = NULL;
1933
1934         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1935
1936         if (current != root->fs_info->transaction_kthread)
1937                 btrfs_run_delayed_iputs(root);
1938
1939         return ret;
1940
1941 cleanup_transaction:
1942         btrfs_trans_release_metadata(trans, root);
1943         trans->block_rsv = NULL;
1944         if (trans->qgroup_reserved) {
1945                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1946                 trans->qgroup_reserved = 0;
1947         }
1948         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1949         if (current->journal_info == trans)
1950                 current->journal_info = NULL;
1951         cleanup_transaction(trans, root, ret);
1952
1953         return ret;
1954 }
1955
1956 /*
1957  * return < 0 if error
1958  * 0 if there are no more dead_roots at the time of call
1959  * 1 there are more to be processed, call me again
1960  *
1961  * The return value indicates there are certainly more snapshots to delete, but
1962  * if there comes a new one during processing, it may return 0. We don't mind,
1963  * because btrfs_commit_super will poke cleaner thread and it will process it a
1964  * few seconds later.
1965  */
1966 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1967 {
1968         int ret;
1969         struct btrfs_fs_info *fs_info = root->fs_info;
1970
1971         spin_lock(&fs_info->trans_lock);
1972         if (list_empty(&fs_info->dead_roots)) {
1973                 spin_unlock(&fs_info->trans_lock);
1974                 return 0;
1975         }
1976         root = list_first_entry(&fs_info->dead_roots,
1977                         struct btrfs_root, root_list);
1978         list_del_init(&root->root_list);
1979         spin_unlock(&fs_info->trans_lock);
1980
1981         pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1982
1983         btrfs_kill_all_delayed_nodes(root);
1984
1985         if (btrfs_header_backref_rev(root->node) <
1986                         BTRFS_MIXED_BACKREF_REV)
1987                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1988         else
1989                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1990         /*
1991          * If we encounter a transaction abort during snapshot cleaning, we
1992          * don't want to crash here
1993          */
1994         return (ret < 0) ? 0 : 1;
1995 }