Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61
62 struct btrfs_iget_args {
63         u64 ino;
64         struct btrfs_root *root;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_dir_ro_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct address_space_operations btrfs_symlink_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 static struct extent_io_ops btrfs_extent_io_ops;
76
77 static struct kmem_cache *btrfs_inode_cachep;
78 static struct kmem_cache *btrfs_delalloc_work_cachep;
79 struct kmem_cache *btrfs_trans_handle_cachep;
80 struct kmem_cache *btrfs_transaction_cachep;
81 struct kmem_cache *btrfs_path_cachep;
82 struct kmem_cache *btrfs_free_space_cachep;
83
84 #define S_SHIFT 12
85 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
87         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
88         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
89         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
90         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
91         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
92         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
93 };
94
95 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
96 static int btrfs_truncate(struct inode *inode);
97 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
98 static noinline int cow_file_range(struct inode *inode,
99                                    struct page *locked_page,
100                                    u64 start, u64 end, int *page_started,
101                                    unsigned long *nr_written, int unlock);
102 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103                                            u64 len, u64 orig_start,
104                                            u64 block_start, u64 block_len,
105                                            u64 orig_block_len, u64 ram_bytes,
106                                            int type);
107
108 static int btrfs_dirty_inode(struct inode *inode);
109
110 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
111                                      struct inode *inode,  struct inode *dir,
112                                      const struct qstr *qstr)
113 {
114         int err;
115
116         err = btrfs_init_acl(trans, inode, dir);
117         if (!err)
118                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
119         return err;
120 }
121
122 /*
123  * this does all the hard work for inserting an inline extent into
124  * the btree.  The caller should have done a btrfs_drop_extents so that
125  * no overlapping inline items exist in the btree
126  */
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128                                 struct btrfs_root *root, struct inode *inode,
129                                 u64 start, size_t size, size_t compressed_size,
130                                 int compress_type,
131                                 struct page **compressed_pages)
132 {
133         struct btrfs_key key;
134         struct btrfs_path *path;
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         size_t datasize;
144         unsigned long offset;
145
146         if (compressed_size && compressed_pages)
147                 cur_size = compressed_size;
148
149         path = btrfs_alloc_path();
150         if (!path)
151                 return -ENOMEM;
152
153         path->leave_spinning = 1;
154
155         key.objectid = btrfs_ino(inode);
156         key.offset = start;
157         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
158         datasize = btrfs_file_extent_calc_inline_size(cur_size);
159
160         inode_add_bytes(inode, size);
161         ret = btrfs_insert_empty_item(trans, root, path, &key,
162                                       datasize);
163         if (ret) {
164                 err = ret;
165                 goto fail;
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (compress_type != BTRFS_COMPRESS_NONE) {
178                 struct page *cpage;
179                 int i = 0;
180                 while (compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min_t(unsigned long, compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap_atomic(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap_atomic(kaddr);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   compress_type);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_free_path(path);
207
208         /*
209          * we're an inline extent, so nobody can
210          * extend the file past i_size without locking
211          * a page we already have locked.
212          *
213          * We must do any isize and inode updates
214          * before we unlock the pages.  Otherwise we
215          * could end up racing with unlink.
216          */
217         BTRFS_I(inode)->disk_i_size = inode->i_size;
218         ret = btrfs_update_inode(trans, root, inode);
219
220         return ret;
221 fail:
222         btrfs_free_path(path);
223         return err;
224 }
225
226
227 /*
228  * conditionally insert an inline extent into the file.  This
229  * does the checks required to make sure the data is small enough
230  * to fit as an inline extent.
231  */
232 static noinline int cow_file_range_inline(struct btrfs_root *root,
233                                           struct inode *inode, u64 start,
234                                           u64 end, size_t compressed_size,
235                                           int compress_type,
236                                           struct page **compressed_pages)
237 {
238         struct btrfs_trans_handle *trans;
239         u64 isize = i_size_read(inode);
240         u64 actual_end = min(end + 1, isize);
241         u64 inline_len = actual_end - start;
242         u64 aligned_end = ALIGN(end, root->sectorsize);
243         u64 data_len = inline_len;
244         int ret;
245
246         if (compressed_size)
247                 data_len = compressed_size;
248
249         if (start > 0 ||
250             actual_end >= PAGE_CACHE_SIZE ||
251             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252             (!compressed_size &&
253             (actual_end & (root->sectorsize - 1)) == 0) ||
254             end + 1 < isize ||
255             data_len > root->fs_info->max_inline) {
256                 return 1;
257         }
258
259         trans = btrfs_join_transaction(root);
260         if (IS_ERR(trans))
261                 return PTR_ERR(trans);
262         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
263
264         ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
265         if (ret) {
266                 btrfs_abort_transaction(trans, root, ret);
267                 goto out;
268         }
269
270         if (isize > actual_end)
271                 inline_len = min_t(u64, isize, actual_end);
272         ret = insert_inline_extent(trans, root, inode, start,
273                                    inline_len, compressed_size,
274                                    compress_type, compressed_pages);
275         if (ret && ret != -ENOSPC) {
276                 btrfs_abort_transaction(trans, root, ret);
277                 goto out;
278         } else if (ret == -ENOSPC) {
279                 ret = 1;
280                 goto out;
281         }
282
283         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
284         btrfs_delalloc_release_metadata(inode, end + 1 - start);
285         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
286 out:
287         btrfs_end_transaction(trans, root);
288         return ret;
289 }
290
291 struct async_extent {
292         u64 start;
293         u64 ram_size;
294         u64 compressed_size;
295         struct page **pages;
296         unsigned long nr_pages;
297         int compress_type;
298         struct list_head list;
299 };
300
301 struct async_cow {
302         struct inode *inode;
303         struct btrfs_root *root;
304         struct page *locked_page;
305         u64 start;
306         u64 end;
307         struct list_head extents;
308         struct btrfs_work work;
309 };
310
311 static noinline int add_async_extent(struct async_cow *cow,
312                                      u64 start, u64 ram_size,
313                                      u64 compressed_size,
314                                      struct page **pages,
315                                      unsigned long nr_pages,
316                                      int compress_type)
317 {
318         struct async_extent *async_extent;
319
320         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
321         BUG_ON(!async_extent); /* -ENOMEM */
322         async_extent->start = start;
323         async_extent->ram_size = ram_size;
324         async_extent->compressed_size = compressed_size;
325         async_extent->pages = pages;
326         async_extent->nr_pages = nr_pages;
327         async_extent->compress_type = compress_type;
328         list_add_tail(&async_extent->list, &cow->extents);
329         return 0;
330 }
331
332 /*
333  * we create compressed extents in two phases.  The first
334  * phase compresses a range of pages that have already been
335  * locked (both pages and state bits are locked).
336  *
337  * This is done inside an ordered work queue, and the compression
338  * is spread across many cpus.  The actual IO submission is step
339  * two, and the ordered work queue takes care of making sure that
340  * happens in the same order things were put onto the queue by
341  * writepages and friends.
342  *
343  * If this code finds it can't get good compression, it puts an
344  * entry onto the work queue to write the uncompressed bytes.  This
345  * makes sure that both compressed inodes and uncompressed inodes
346  * are written in the same order that the flusher thread sent them
347  * down.
348  */
349 static noinline int compress_file_range(struct inode *inode,
350                                         struct page *locked_page,
351                                         u64 start, u64 end,
352                                         struct async_cow *async_cow,
353                                         int *num_added)
354 {
355         struct btrfs_root *root = BTRFS_I(inode)->root;
356         u64 num_bytes;
357         u64 blocksize = root->sectorsize;
358         u64 actual_end;
359         u64 isize = i_size_read(inode);
360         int ret = 0;
361         struct page **pages = NULL;
362         unsigned long nr_pages;
363         unsigned long nr_pages_ret = 0;
364         unsigned long total_compressed = 0;
365         unsigned long total_in = 0;
366         unsigned long max_compressed = 128 * 1024;
367         unsigned long max_uncompressed = 128 * 1024;
368         int i;
369         int will_compress;
370         int compress_type = root->fs_info->compress_type;
371         int redirty = 0;
372
373         /* if this is a small write inside eof, kick off a defrag */
374         if ((end - start + 1) < 16 * 1024 &&
375             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
376                 btrfs_add_inode_defrag(NULL, inode);
377
378         actual_end = min_t(u64, isize, end + 1);
379 again:
380         will_compress = 0;
381         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
382         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
383
384         /*
385          * we don't want to send crud past the end of i_size through
386          * compression, that's just a waste of CPU time.  So, if the
387          * end of the file is before the start of our current
388          * requested range of bytes, we bail out to the uncompressed
389          * cleanup code that can deal with all of this.
390          *
391          * It isn't really the fastest way to fix things, but this is a
392          * very uncommon corner.
393          */
394         if (actual_end <= start)
395                 goto cleanup_and_bail_uncompressed;
396
397         total_compressed = actual_end - start;
398
399         /* we want to make sure that amount of ram required to uncompress
400          * an extent is reasonable, so we limit the total size in ram
401          * of a compressed extent to 128k.  This is a crucial number
402          * because it also controls how easily we can spread reads across
403          * cpus for decompression.
404          *
405          * We also want to make sure the amount of IO required to do
406          * a random read is reasonably small, so we limit the size of
407          * a compressed extent to 128k.
408          */
409         total_compressed = min(total_compressed, max_uncompressed);
410         num_bytes = ALIGN(end - start + 1, blocksize);
411         num_bytes = max(blocksize,  num_bytes);
412         total_in = 0;
413         ret = 0;
414
415         /*
416          * we do compression for mount -o compress and when the
417          * inode has not been flagged as nocompress.  This flag can
418          * change at any time if we discover bad compression ratios.
419          */
420         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
421             (btrfs_test_opt(root, COMPRESS) ||
422              (BTRFS_I(inode)->force_compress) ||
423              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
424                 WARN_ON(pages);
425                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
426                 if (!pages) {
427                         /* just bail out to the uncompressed code */
428                         goto cont;
429                 }
430
431                 if (BTRFS_I(inode)->force_compress)
432                         compress_type = BTRFS_I(inode)->force_compress;
433
434                 /*
435                  * we need to call clear_page_dirty_for_io on each
436                  * page in the range.  Otherwise applications with the file
437                  * mmap'd can wander in and change the page contents while
438                  * we are compressing them.
439                  *
440                  * If the compression fails for any reason, we set the pages
441                  * dirty again later on.
442                  */
443                 extent_range_clear_dirty_for_io(inode, start, end);
444                 redirty = 1;
445                 ret = btrfs_compress_pages(compress_type,
446                                            inode->i_mapping, start,
447                                            total_compressed, pages,
448                                            nr_pages, &nr_pages_ret,
449                                            &total_in,
450                                            &total_compressed,
451                                            max_compressed);
452
453                 if (!ret) {
454                         unsigned long offset = total_compressed &
455                                 (PAGE_CACHE_SIZE - 1);
456                         struct page *page = pages[nr_pages_ret - 1];
457                         char *kaddr;
458
459                         /* zero the tail end of the last page, we might be
460                          * sending it down to disk
461                          */
462                         if (offset) {
463                                 kaddr = kmap_atomic(page);
464                                 memset(kaddr + offset, 0,
465                                        PAGE_CACHE_SIZE - offset);
466                                 kunmap_atomic(kaddr);
467                         }
468                         will_compress = 1;
469                 }
470         }
471 cont:
472         if (start == 0) {
473                 /* lets try to make an inline extent */
474                 if (ret || total_in < (actual_end - start)) {
475                         /* we didn't compress the entire range, try
476                          * to make an uncompressed inline extent.
477                          */
478                         ret = cow_file_range_inline(root, inode, start, end,
479                                                     0, 0, NULL);
480                 } else {
481                         /* try making a compressed inline extent */
482                         ret = cow_file_range_inline(root, inode, start, end,
483                                                     total_compressed,
484                                                     compress_type, pages);
485                 }
486                 if (ret <= 0) {
487                         unsigned long clear_flags = EXTENT_DELALLOC |
488                                 EXTENT_DEFRAG;
489                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
491                         /*
492                          * inline extent creation worked or returned error,
493                          * we don't need to create any more async work items.
494                          * Unlock and free up our temp pages.
495                          */
496                         extent_clear_unlock_delalloc(inode, start, end, NULL,
497                                                      clear_flags, PAGE_UNLOCK |
498                                                      PAGE_CLEAR_DIRTY |
499                                                      PAGE_SET_WRITEBACK |
500                                                      PAGE_END_WRITEBACK);
501                         goto free_pages_out;
502                 }
503         }
504
505         if (will_compress) {
506                 /*
507                  * we aren't doing an inline extent round the compressed size
508                  * up to a block size boundary so the allocator does sane
509                  * things
510                  */
511                 total_compressed = ALIGN(total_compressed, blocksize);
512
513                 /*
514                  * one last check to make sure the compression is really a
515                  * win, compare the page count read with the blocks on disk
516                  */
517                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518                 if (total_compressed >= total_in) {
519                         will_compress = 0;
520                 } else {
521                         num_bytes = total_in;
522                 }
523         }
524         if (!will_compress && pages) {
525                 /*
526                  * the compression code ran but failed to make things smaller,
527                  * free any pages it allocated and our page pointer array
528                  */
529                 for (i = 0; i < nr_pages_ret; i++) {
530                         WARN_ON(pages[i]->mapping);
531                         page_cache_release(pages[i]);
532                 }
533                 kfree(pages);
534                 pages = NULL;
535                 total_compressed = 0;
536                 nr_pages_ret = 0;
537
538                 /* flag the file so we don't compress in the future */
539                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540                     !(BTRFS_I(inode)->force_compress)) {
541                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
542                 }
543         }
544         if (will_compress) {
545                 *num_added += 1;
546
547                 /* the async work queues will take care of doing actual
548                  * allocation on disk for these compressed pages,
549                  * and will submit them to the elevator.
550                  */
551                 add_async_extent(async_cow, start, num_bytes,
552                                  total_compressed, pages, nr_pages_ret,
553                                  compress_type);
554
555                 if (start + num_bytes < end) {
556                         start += num_bytes;
557                         pages = NULL;
558                         cond_resched();
559                         goto again;
560                 }
561         } else {
562 cleanup_and_bail_uncompressed:
563                 /*
564                  * No compression, but we still need to write the pages in
565                  * the file we've been given so far.  redirty the locked
566                  * page if it corresponds to our extent and set things up
567                  * for the async work queue to run cow_file_range to do
568                  * the normal delalloc dance
569                  */
570                 if (page_offset(locked_page) >= start &&
571                     page_offset(locked_page) <= end) {
572                         __set_page_dirty_nobuffers(locked_page);
573                         /* unlocked later on in the async handlers */
574                 }
575                 if (redirty)
576                         extent_range_redirty_for_io(inode, start, end);
577                 add_async_extent(async_cow, start, end - start + 1,
578                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
579                 *num_added += 1;
580         }
581
582 out:
583         return ret;
584
585 free_pages_out:
586         for (i = 0; i < nr_pages_ret; i++) {
587                 WARN_ON(pages[i]->mapping);
588                 page_cache_release(pages[i]);
589         }
590         kfree(pages);
591
592         goto out;
593 }
594
595 /*
596  * phase two of compressed writeback.  This is the ordered portion
597  * of the code, which only gets called in the order the work was
598  * queued.  We walk all the async extents created by compress_file_range
599  * and send them down to the disk.
600  */
601 static noinline int submit_compressed_extents(struct inode *inode,
602                                               struct async_cow *async_cow)
603 {
604         struct async_extent *async_extent;
605         u64 alloc_hint = 0;
606         struct btrfs_key ins;
607         struct extent_map *em;
608         struct btrfs_root *root = BTRFS_I(inode)->root;
609         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610         struct extent_io_tree *io_tree;
611         int ret = 0;
612
613         if (list_empty(&async_cow->extents))
614                 return 0;
615
616 again:
617         while (!list_empty(&async_cow->extents)) {
618                 async_extent = list_entry(async_cow->extents.next,
619                                           struct async_extent, list);
620                 list_del(&async_extent->list);
621
622                 io_tree = &BTRFS_I(inode)->io_tree;
623
624 retry:
625                 /* did the compression code fall back to uncompressed IO? */
626                 if (!async_extent->pages) {
627                         int page_started = 0;
628                         unsigned long nr_written = 0;
629
630                         lock_extent(io_tree, async_extent->start,
631                                          async_extent->start +
632                                          async_extent->ram_size - 1);
633
634                         /* allocate blocks */
635                         ret = cow_file_range(inode, async_cow->locked_page,
636                                              async_extent->start,
637                                              async_extent->start +
638                                              async_extent->ram_size - 1,
639                                              &page_started, &nr_written, 0);
640
641                         /* JDM XXX */
642
643                         /*
644                          * if page_started, cow_file_range inserted an
645                          * inline extent and took care of all the unlocking
646                          * and IO for us.  Otherwise, we need to submit
647                          * all those pages down to the drive.
648                          */
649                         if (!page_started && !ret)
650                                 extent_write_locked_range(io_tree,
651                                                   inode, async_extent->start,
652                                                   async_extent->start +
653                                                   async_extent->ram_size - 1,
654                                                   btrfs_get_extent,
655                                                   WB_SYNC_ALL);
656                         else if (ret)
657                                 unlock_page(async_cow->locked_page);
658                         kfree(async_extent);
659                         cond_resched();
660                         continue;
661                 }
662
663                 lock_extent(io_tree, async_extent->start,
664                             async_extent->start + async_extent->ram_size - 1);
665
666                 ret = btrfs_reserve_extent(root,
667                                            async_extent->compressed_size,
668                                            async_extent->compressed_size,
669                                            0, alloc_hint, &ins, 1);
670                 if (ret) {
671                         int i;
672
673                         for (i = 0; i < async_extent->nr_pages; i++) {
674                                 WARN_ON(async_extent->pages[i]->mapping);
675                                 page_cache_release(async_extent->pages[i]);
676                         }
677                         kfree(async_extent->pages);
678                         async_extent->nr_pages = 0;
679                         async_extent->pages = NULL;
680
681                         if (ret == -ENOSPC) {
682                                 unlock_extent(io_tree, async_extent->start,
683                                               async_extent->start +
684                                               async_extent->ram_size - 1);
685                                 goto retry;
686                         }
687                         goto out_free;
688                 }
689
690                 /*
691                  * here we're doing allocation and writeback of the
692                  * compressed pages
693                  */
694                 btrfs_drop_extent_cache(inode, async_extent->start,
695                                         async_extent->start +
696                                         async_extent->ram_size - 1, 0);
697
698                 em = alloc_extent_map();
699                 if (!em) {
700                         ret = -ENOMEM;
701                         goto out_free_reserve;
702                 }
703                 em->start = async_extent->start;
704                 em->len = async_extent->ram_size;
705                 em->orig_start = em->start;
706                 em->mod_start = em->start;
707                 em->mod_len = em->len;
708
709                 em->block_start = ins.objectid;
710                 em->block_len = ins.offset;
711                 em->orig_block_len = ins.offset;
712                 em->ram_bytes = async_extent->ram_size;
713                 em->bdev = root->fs_info->fs_devices->latest_bdev;
714                 em->compress_type = async_extent->compress_type;
715                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
716                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
717                 em->generation = -1;
718
719                 while (1) {
720                         write_lock(&em_tree->lock);
721                         ret = add_extent_mapping(em_tree, em, 1);
722                         write_unlock(&em_tree->lock);
723                         if (ret != -EEXIST) {
724                                 free_extent_map(em);
725                                 break;
726                         }
727                         btrfs_drop_extent_cache(inode, async_extent->start,
728                                                 async_extent->start +
729                                                 async_extent->ram_size - 1, 0);
730                 }
731
732                 if (ret)
733                         goto out_free_reserve;
734
735                 ret = btrfs_add_ordered_extent_compress(inode,
736                                                 async_extent->start,
737                                                 ins.objectid,
738                                                 async_extent->ram_size,
739                                                 ins.offset,
740                                                 BTRFS_ORDERED_COMPRESSED,
741                                                 async_extent->compress_type);
742                 if (ret)
743                         goto out_free_reserve;
744
745                 /*
746                  * clear dirty, set writeback and unlock the pages.
747                  */
748                 extent_clear_unlock_delalloc(inode, async_extent->start,
749                                 async_extent->start +
750                                 async_extent->ram_size - 1,
751                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
752                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
753                                 PAGE_SET_WRITEBACK);
754                 ret = btrfs_submit_compressed_write(inode,
755                                     async_extent->start,
756                                     async_extent->ram_size,
757                                     ins.objectid,
758                                     ins.offset, async_extent->pages,
759                                     async_extent->nr_pages);
760                 alloc_hint = ins.objectid + ins.offset;
761                 kfree(async_extent);
762                 if (ret)
763                         goto out;
764                 cond_resched();
765         }
766         ret = 0;
767 out:
768         return ret;
769 out_free_reserve:
770         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
771 out_free:
772         extent_clear_unlock_delalloc(inode, async_extent->start,
773                                      async_extent->start +
774                                      async_extent->ram_size - 1,
775                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
776                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
777                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
778                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
779         kfree(async_extent);
780         goto again;
781 }
782
783 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
784                                       u64 num_bytes)
785 {
786         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787         struct extent_map *em;
788         u64 alloc_hint = 0;
789
790         read_lock(&em_tree->lock);
791         em = search_extent_mapping(em_tree, start, num_bytes);
792         if (em) {
793                 /*
794                  * if block start isn't an actual block number then find the
795                  * first block in this inode and use that as a hint.  If that
796                  * block is also bogus then just don't worry about it.
797                  */
798                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
799                         free_extent_map(em);
800                         em = search_extent_mapping(em_tree, 0, 0);
801                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
802                                 alloc_hint = em->block_start;
803                         if (em)
804                                 free_extent_map(em);
805                 } else {
806                         alloc_hint = em->block_start;
807                         free_extent_map(em);
808                 }
809         }
810         read_unlock(&em_tree->lock);
811
812         return alloc_hint;
813 }
814
815 /*
816  * when extent_io.c finds a delayed allocation range in the file,
817  * the call backs end up in this code.  The basic idea is to
818  * allocate extents on disk for the range, and create ordered data structs
819  * in ram to track those extents.
820  *
821  * locked_page is the page that writepage had locked already.  We use
822  * it to make sure we don't do extra locks or unlocks.
823  *
824  * *page_started is set to one if we unlock locked_page and do everything
825  * required to start IO on it.  It may be clean and already done with
826  * IO when we return.
827  */
828 static noinline int cow_file_range(struct inode *inode,
829                                    struct page *locked_page,
830                                    u64 start, u64 end, int *page_started,
831                                    unsigned long *nr_written,
832                                    int unlock)
833 {
834         struct btrfs_root *root = BTRFS_I(inode)->root;
835         u64 alloc_hint = 0;
836         u64 num_bytes;
837         unsigned long ram_size;
838         u64 disk_num_bytes;
839         u64 cur_alloc_size;
840         u64 blocksize = root->sectorsize;
841         struct btrfs_key ins;
842         struct extent_map *em;
843         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844         int ret = 0;
845
846         if (btrfs_is_free_space_inode(inode)) {
847                 WARN_ON_ONCE(1);
848                 return -EINVAL;
849         }
850
851         num_bytes = ALIGN(end - start + 1, blocksize);
852         num_bytes = max(blocksize,  num_bytes);
853         disk_num_bytes = num_bytes;
854
855         /* if this is a small write inside eof, kick off defrag */
856         if (num_bytes < 64 * 1024 &&
857             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
858                 btrfs_add_inode_defrag(NULL, inode);
859
860         if (start == 0) {
861                 /* lets try to make an inline extent */
862                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
863                                             NULL);
864                 if (ret == 0) {
865                         extent_clear_unlock_delalloc(inode, start, end, NULL,
866                                      EXTENT_LOCKED | EXTENT_DELALLOC |
867                                      EXTENT_DEFRAG, PAGE_UNLOCK |
868                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
869                                      PAGE_END_WRITEBACK);
870
871                         *nr_written = *nr_written +
872                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
873                         *page_started = 1;
874                         goto out;
875                 } else if (ret < 0) {
876                         goto out_unlock;
877                 }
878         }
879
880         BUG_ON(disk_num_bytes >
881                btrfs_super_total_bytes(root->fs_info->super_copy));
882
883         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
884         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885
886         while (disk_num_bytes > 0) {
887                 unsigned long op;
888
889                 cur_alloc_size = disk_num_bytes;
890                 ret = btrfs_reserve_extent(root, cur_alloc_size,
891                                            root->sectorsize, 0, alloc_hint,
892                                            &ins, 1);
893                 if (ret < 0)
894                         goto out_unlock;
895
896                 em = alloc_extent_map();
897                 if (!em) {
898                         ret = -ENOMEM;
899                         goto out_reserve;
900                 }
901                 em->start = start;
902                 em->orig_start = em->start;
903                 ram_size = ins.offset;
904                 em->len = ins.offset;
905                 em->mod_start = em->start;
906                 em->mod_len = em->len;
907
908                 em->block_start = ins.objectid;
909                 em->block_len = ins.offset;
910                 em->orig_block_len = ins.offset;
911                 em->ram_bytes = ram_size;
912                 em->bdev = root->fs_info->fs_devices->latest_bdev;
913                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
914                 em->generation = -1;
915
916                 while (1) {
917                         write_lock(&em_tree->lock);
918                         ret = add_extent_mapping(em_tree, em, 1);
919                         write_unlock(&em_tree->lock);
920                         if (ret != -EEXIST) {
921                                 free_extent_map(em);
922                                 break;
923                         }
924                         btrfs_drop_extent_cache(inode, start,
925                                                 start + ram_size - 1, 0);
926                 }
927                 if (ret)
928                         goto out_reserve;
929
930                 cur_alloc_size = ins.offset;
931                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
932                                                ram_size, cur_alloc_size, 0);
933                 if (ret)
934                         goto out_reserve;
935
936                 if (root->root_key.objectid ==
937                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
938                         ret = btrfs_reloc_clone_csums(inode, start,
939                                                       cur_alloc_size);
940                         if (ret)
941                                 goto out_reserve;
942                 }
943
944                 if (disk_num_bytes < cur_alloc_size)
945                         break;
946
947                 /* we're not doing compressed IO, don't unlock the first
948                  * page (which the caller expects to stay locked), don't
949                  * clear any dirty bits and don't set any writeback bits
950                  *
951                  * Do set the Private2 bit so we know this page was properly
952                  * setup for writepage
953                  */
954                 op = unlock ? PAGE_UNLOCK : 0;
955                 op |= PAGE_SET_PRIVATE2;
956
957                 extent_clear_unlock_delalloc(inode, start,
958                                              start + ram_size - 1, locked_page,
959                                              EXTENT_LOCKED | EXTENT_DELALLOC,
960                                              op);
961                 disk_num_bytes -= cur_alloc_size;
962                 num_bytes -= cur_alloc_size;
963                 alloc_hint = ins.objectid + ins.offset;
964                 start += cur_alloc_size;
965         }
966 out:
967         return ret;
968
969 out_reserve:
970         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
971 out_unlock:
972         extent_clear_unlock_delalloc(inode, start, end, locked_page,
973                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
974                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
975                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
976                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
977         goto out;
978 }
979
980 /*
981  * work queue call back to started compression on a file and pages
982  */
983 static noinline void async_cow_start(struct btrfs_work *work)
984 {
985         struct async_cow *async_cow;
986         int num_added = 0;
987         async_cow = container_of(work, struct async_cow, work);
988
989         compress_file_range(async_cow->inode, async_cow->locked_page,
990                             async_cow->start, async_cow->end, async_cow,
991                             &num_added);
992         if (num_added == 0) {
993                 btrfs_add_delayed_iput(async_cow->inode);
994                 async_cow->inode = NULL;
995         }
996 }
997
998 /*
999  * work queue call back to submit previously compressed pages
1000  */
1001 static noinline void async_cow_submit(struct btrfs_work *work)
1002 {
1003         struct async_cow *async_cow;
1004         struct btrfs_root *root;
1005         unsigned long nr_pages;
1006
1007         async_cow = container_of(work, struct async_cow, work);
1008
1009         root = async_cow->root;
1010         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1011                 PAGE_CACHE_SHIFT;
1012
1013         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1014             5 * 1024 * 1024 &&
1015             waitqueue_active(&root->fs_info->async_submit_wait))
1016                 wake_up(&root->fs_info->async_submit_wait);
1017
1018         if (async_cow->inode)
1019                 submit_compressed_extents(async_cow->inode, async_cow);
1020 }
1021
1022 static noinline void async_cow_free(struct btrfs_work *work)
1023 {
1024         struct async_cow *async_cow;
1025         async_cow = container_of(work, struct async_cow, work);
1026         if (async_cow->inode)
1027                 btrfs_add_delayed_iput(async_cow->inode);
1028         kfree(async_cow);
1029 }
1030
1031 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032                                 u64 start, u64 end, int *page_started,
1033                                 unsigned long *nr_written)
1034 {
1035         struct async_cow *async_cow;
1036         struct btrfs_root *root = BTRFS_I(inode)->root;
1037         unsigned long nr_pages;
1038         u64 cur_end;
1039         int limit = 10 * 1024 * 1024;
1040
1041         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042                          1, 0, NULL, GFP_NOFS);
1043         while (start < end) {
1044                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1045                 BUG_ON(!async_cow); /* -ENOMEM */
1046                 async_cow->inode = igrab(inode);
1047                 async_cow->root = root;
1048                 async_cow->locked_page = locked_page;
1049                 async_cow->start = start;
1050
1051                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1052                         cur_end = end;
1053                 else
1054                         cur_end = min(end, start + 512 * 1024 - 1);
1055
1056                 async_cow->end = cur_end;
1057                 INIT_LIST_HEAD(&async_cow->extents);
1058
1059                 async_cow->work.func = async_cow_start;
1060                 async_cow->work.ordered_func = async_cow_submit;
1061                 async_cow->work.ordered_free = async_cow_free;
1062                 async_cow->work.flags = 0;
1063
1064                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1065                         PAGE_CACHE_SHIFT;
1066                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1067
1068                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1069                                    &async_cow->work);
1070
1071                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072                         wait_event(root->fs_info->async_submit_wait,
1073                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1074                             limit));
1075                 }
1076
1077                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1078                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1079                         wait_event(root->fs_info->async_submit_wait,
1080                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1081                            0));
1082                 }
1083
1084                 *nr_written += nr_pages;
1085                 start = cur_end + 1;
1086         }
1087         *page_started = 1;
1088         return 0;
1089 }
1090
1091 static noinline int csum_exist_in_range(struct btrfs_root *root,
1092                                         u64 bytenr, u64 num_bytes)
1093 {
1094         int ret;
1095         struct btrfs_ordered_sum *sums;
1096         LIST_HEAD(list);
1097
1098         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1099                                        bytenr + num_bytes - 1, &list, 0);
1100         if (ret == 0 && list_empty(&list))
1101                 return 0;
1102
1103         while (!list_empty(&list)) {
1104                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105                 list_del(&sums->list);
1106                 kfree(sums);
1107         }
1108         return 1;
1109 }
1110
1111 /*
1112  * when nowcow writeback call back.  This checks for snapshots or COW copies
1113  * of the extents that exist in the file, and COWs the file as required.
1114  *
1115  * If no cow copies or snapshots exist, we write directly to the existing
1116  * blocks on disk
1117  */
1118 static noinline int run_delalloc_nocow(struct inode *inode,
1119                                        struct page *locked_page,
1120                               u64 start, u64 end, int *page_started, int force,
1121                               unsigned long *nr_written)
1122 {
1123         struct btrfs_root *root = BTRFS_I(inode)->root;
1124         struct btrfs_trans_handle *trans;
1125         struct extent_buffer *leaf;
1126         struct btrfs_path *path;
1127         struct btrfs_file_extent_item *fi;
1128         struct btrfs_key found_key;
1129         u64 cow_start;
1130         u64 cur_offset;
1131         u64 extent_end;
1132         u64 extent_offset;
1133         u64 disk_bytenr;
1134         u64 num_bytes;
1135         u64 disk_num_bytes;
1136         u64 ram_bytes;
1137         int extent_type;
1138         int ret, err;
1139         int type;
1140         int nocow;
1141         int check_prev = 1;
1142         bool nolock;
1143         u64 ino = btrfs_ino(inode);
1144
1145         path = btrfs_alloc_path();
1146         if (!path) {
1147                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1149                                              EXTENT_DO_ACCOUNTING |
1150                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1151                                              PAGE_CLEAR_DIRTY |
1152                                              PAGE_SET_WRITEBACK |
1153                                              PAGE_END_WRITEBACK);
1154                 return -ENOMEM;
1155         }
1156
1157         nolock = btrfs_is_free_space_inode(inode);
1158
1159         if (nolock)
1160                 trans = btrfs_join_transaction_nolock(root);
1161         else
1162                 trans = btrfs_join_transaction(root);
1163
1164         if (IS_ERR(trans)) {
1165                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1167                                              EXTENT_DO_ACCOUNTING |
1168                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1169                                              PAGE_CLEAR_DIRTY |
1170                                              PAGE_SET_WRITEBACK |
1171                                              PAGE_END_WRITEBACK);
1172                 btrfs_free_path(path);
1173                 return PTR_ERR(trans);
1174         }
1175
1176         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1177
1178         cow_start = (u64)-1;
1179         cur_offset = start;
1180         while (1) {
1181                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1182                                                cur_offset, 0);
1183                 if (ret < 0)
1184                         goto error;
1185                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186                         leaf = path->nodes[0];
1187                         btrfs_item_key_to_cpu(leaf, &found_key,
1188                                               path->slots[0] - 1);
1189                         if (found_key.objectid == ino &&
1190                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1191                                 path->slots[0]--;
1192                 }
1193                 check_prev = 0;
1194 next_slot:
1195                 leaf = path->nodes[0];
1196                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197                         ret = btrfs_next_leaf(root, path);
1198                         if (ret < 0)
1199                                 goto error;
1200                         if (ret > 0)
1201                                 break;
1202                         leaf = path->nodes[0];
1203                 }
1204
1205                 nocow = 0;
1206                 disk_bytenr = 0;
1207                 num_bytes = 0;
1208                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1209
1210                 if (found_key.objectid > ino ||
1211                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1212                     found_key.offset > end)
1213                         break;
1214
1215                 if (found_key.offset > cur_offset) {
1216                         extent_end = found_key.offset;
1217                         extent_type = 0;
1218                         goto out_check;
1219                 }
1220
1221                 fi = btrfs_item_ptr(leaf, path->slots[0],
1222                                     struct btrfs_file_extent_item);
1223                 extent_type = btrfs_file_extent_type(leaf, fi);
1224
1225                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1226                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1227                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1228                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1229                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1230                         extent_end = found_key.offset +
1231                                 btrfs_file_extent_num_bytes(leaf, fi);
1232                         disk_num_bytes =
1233                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1234                         if (extent_end <= start) {
1235                                 path->slots[0]++;
1236                                 goto next_slot;
1237                         }
1238                         if (disk_bytenr == 0)
1239                                 goto out_check;
1240                         if (btrfs_file_extent_compression(leaf, fi) ||
1241                             btrfs_file_extent_encryption(leaf, fi) ||
1242                             btrfs_file_extent_other_encoding(leaf, fi))
1243                                 goto out_check;
1244                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245                                 goto out_check;
1246                         if (btrfs_extent_readonly(root, disk_bytenr))
1247                                 goto out_check;
1248                         if (btrfs_cross_ref_exist(trans, root, ino,
1249                                                   found_key.offset -
1250                                                   extent_offset, disk_bytenr))
1251                                 goto out_check;
1252                         disk_bytenr += extent_offset;
1253                         disk_bytenr += cur_offset - found_key.offset;
1254                         num_bytes = min(end + 1, extent_end) - cur_offset;
1255                         /*
1256                          * force cow if csum exists in the range.
1257                          * this ensure that csum for a given extent are
1258                          * either valid or do not exist.
1259                          */
1260                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261                                 goto out_check;
1262                         nocow = 1;
1263                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264                         extent_end = found_key.offset +
1265                                 btrfs_file_extent_inline_len(leaf, fi);
1266                         extent_end = ALIGN(extent_end, root->sectorsize);
1267                 } else {
1268                         BUG_ON(1);
1269                 }
1270 out_check:
1271                 if (extent_end <= start) {
1272                         path->slots[0]++;
1273                         goto next_slot;
1274                 }
1275                 if (!nocow) {
1276                         if (cow_start == (u64)-1)
1277                                 cow_start = cur_offset;
1278                         cur_offset = extent_end;
1279                         if (cur_offset > end)
1280                                 break;
1281                         path->slots[0]++;
1282                         goto next_slot;
1283                 }
1284
1285                 btrfs_release_path(path);
1286                 if (cow_start != (u64)-1) {
1287                         ret = cow_file_range(inode, locked_page,
1288                                              cow_start, found_key.offset - 1,
1289                                              page_started, nr_written, 1);
1290                         if (ret)
1291                                 goto error;
1292                         cow_start = (u64)-1;
1293                 }
1294
1295                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1296                         struct extent_map *em;
1297                         struct extent_map_tree *em_tree;
1298                         em_tree = &BTRFS_I(inode)->extent_tree;
1299                         em = alloc_extent_map();
1300                         BUG_ON(!em); /* -ENOMEM */
1301                         em->start = cur_offset;
1302                         em->orig_start = found_key.offset - extent_offset;
1303                         em->len = num_bytes;
1304                         em->block_len = num_bytes;
1305                         em->block_start = disk_bytenr;
1306                         em->orig_block_len = disk_num_bytes;
1307                         em->ram_bytes = ram_bytes;
1308                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1309                         em->mod_start = em->start;
1310                         em->mod_len = em->len;
1311                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1313                         em->generation = -1;
1314                         while (1) {
1315                                 write_lock(&em_tree->lock);
1316                                 ret = add_extent_mapping(em_tree, em, 1);
1317                                 write_unlock(&em_tree->lock);
1318                                 if (ret != -EEXIST) {
1319                                         free_extent_map(em);
1320                                         break;
1321                                 }
1322                                 btrfs_drop_extent_cache(inode, em->start,
1323                                                 em->start + em->len - 1, 0);
1324                         }
1325                         type = BTRFS_ORDERED_PREALLOC;
1326                 } else {
1327                         type = BTRFS_ORDERED_NOCOW;
1328                 }
1329
1330                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1331                                                num_bytes, num_bytes, type);
1332                 BUG_ON(ret); /* -ENOMEM */
1333
1334                 if (root->root_key.objectid ==
1335                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1336                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1337                                                       num_bytes);
1338                         if (ret)
1339                                 goto error;
1340                 }
1341
1342                 extent_clear_unlock_delalloc(inode, cur_offset,
1343                                              cur_offset + num_bytes - 1,
1344                                              locked_page, EXTENT_LOCKED |
1345                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1346                                              PAGE_SET_PRIVATE2);
1347                 cur_offset = extent_end;
1348                 if (cur_offset > end)
1349                         break;
1350         }
1351         btrfs_release_path(path);
1352
1353         if (cur_offset <= end && cow_start == (u64)-1) {
1354                 cow_start = cur_offset;
1355                 cur_offset = end;
1356         }
1357
1358         if (cow_start != (u64)-1) {
1359                 ret = cow_file_range(inode, locked_page, cow_start, end,
1360                                      page_started, nr_written, 1);
1361                 if (ret)
1362                         goto error;
1363         }
1364
1365 error:
1366         err = btrfs_end_transaction(trans, root);
1367         if (!ret)
1368                 ret = err;
1369
1370         if (ret && cur_offset < end)
1371                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1372                                              locked_page, EXTENT_LOCKED |
1373                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1374                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1375                                              PAGE_CLEAR_DIRTY |
1376                                              PAGE_SET_WRITEBACK |
1377                                              PAGE_END_WRITEBACK);
1378         btrfs_free_path(path);
1379         return ret;
1380 }
1381
1382 /*
1383  * extent_io.c call back to do delayed allocation processing
1384  */
1385 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1386                               u64 start, u64 end, int *page_started,
1387                               unsigned long *nr_written)
1388 {
1389         int ret;
1390         struct btrfs_root *root = BTRFS_I(inode)->root;
1391
1392         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1393                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1394                                          page_started, 1, nr_written);
1395         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1396                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1397                                          page_started, 0, nr_written);
1398         } else if (!btrfs_test_opt(root, COMPRESS) &&
1399                    !(BTRFS_I(inode)->force_compress) &&
1400                    !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1401                 ret = cow_file_range(inode, locked_page, start, end,
1402                                       page_started, nr_written, 1);
1403         } else {
1404                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1405                         &BTRFS_I(inode)->runtime_flags);
1406                 ret = cow_file_range_async(inode, locked_page, start, end,
1407                                            page_started, nr_written);
1408         }
1409         return ret;
1410 }
1411
1412 static void btrfs_split_extent_hook(struct inode *inode,
1413                                     struct extent_state *orig, u64 split)
1414 {
1415         /* not delalloc, ignore it */
1416         if (!(orig->state & EXTENT_DELALLOC))
1417                 return;
1418
1419         spin_lock(&BTRFS_I(inode)->lock);
1420         BTRFS_I(inode)->outstanding_extents++;
1421         spin_unlock(&BTRFS_I(inode)->lock);
1422 }
1423
1424 /*
1425  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1426  * extents so we can keep track of new extents that are just merged onto old
1427  * extents, such as when we are doing sequential writes, so we can properly
1428  * account for the metadata space we'll need.
1429  */
1430 static void btrfs_merge_extent_hook(struct inode *inode,
1431                                     struct extent_state *new,
1432                                     struct extent_state *other)
1433 {
1434         /* not delalloc, ignore it */
1435         if (!(other->state & EXTENT_DELALLOC))
1436                 return;
1437
1438         spin_lock(&BTRFS_I(inode)->lock);
1439         BTRFS_I(inode)->outstanding_extents--;
1440         spin_unlock(&BTRFS_I(inode)->lock);
1441 }
1442
1443 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1444                                       struct inode *inode)
1445 {
1446         spin_lock(&root->delalloc_lock);
1447         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1448                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1449                               &root->delalloc_inodes);
1450                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1451                         &BTRFS_I(inode)->runtime_flags);
1452                 root->nr_delalloc_inodes++;
1453                 if (root->nr_delalloc_inodes == 1) {
1454                         spin_lock(&root->fs_info->delalloc_root_lock);
1455                         BUG_ON(!list_empty(&root->delalloc_root));
1456                         list_add_tail(&root->delalloc_root,
1457                                       &root->fs_info->delalloc_roots);
1458                         spin_unlock(&root->fs_info->delalloc_root_lock);
1459                 }
1460         }
1461         spin_unlock(&root->delalloc_lock);
1462 }
1463
1464 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1465                                      struct inode *inode)
1466 {
1467         spin_lock(&root->delalloc_lock);
1468         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1470                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1471                           &BTRFS_I(inode)->runtime_flags);
1472                 root->nr_delalloc_inodes--;
1473                 if (!root->nr_delalloc_inodes) {
1474                         spin_lock(&root->fs_info->delalloc_root_lock);
1475                         BUG_ON(list_empty(&root->delalloc_root));
1476                         list_del_init(&root->delalloc_root);
1477                         spin_unlock(&root->fs_info->delalloc_root_lock);
1478                 }
1479         }
1480         spin_unlock(&root->delalloc_lock);
1481 }
1482
1483 /*
1484  * extent_io.c set_bit_hook, used to track delayed allocation
1485  * bytes in this file, and to maintain the list of inodes that
1486  * have pending delalloc work to be done.
1487  */
1488 static void btrfs_set_bit_hook(struct inode *inode,
1489                                struct extent_state *state, unsigned long *bits)
1490 {
1491
1492         /*
1493          * set_bit and clear bit hooks normally require _irqsave/restore
1494          * but in this case, we are only testing for the DELALLOC
1495          * bit, which is only set or cleared with irqs on
1496          */
1497         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1498                 struct btrfs_root *root = BTRFS_I(inode)->root;
1499                 u64 len = state->end + 1 - state->start;
1500                 bool do_list = !btrfs_is_free_space_inode(inode);
1501
1502                 if (*bits & EXTENT_FIRST_DELALLOC) {
1503                         *bits &= ~EXTENT_FIRST_DELALLOC;
1504                 } else {
1505                         spin_lock(&BTRFS_I(inode)->lock);
1506                         BTRFS_I(inode)->outstanding_extents++;
1507                         spin_unlock(&BTRFS_I(inode)->lock);
1508                 }
1509
1510                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1511                                      root->fs_info->delalloc_batch);
1512                 spin_lock(&BTRFS_I(inode)->lock);
1513                 BTRFS_I(inode)->delalloc_bytes += len;
1514                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1515                                          &BTRFS_I(inode)->runtime_flags))
1516                         btrfs_add_delalloc_inodes(root, inode);
1517                 spin_unlock(&BTRFS_I(inode)->lock);
1518         }
1519 }
1520
1521 /*
1522  * extent_io.c clear_bit_hook, see set_bit_hook for why
1523  */
1524 static void btrfs_clear_bit_hook(struct inode *inode,
1525                                  struct extent_state *state,
1526                                  unsigned long *bits)
1527 {
1528         /*
1529          * set_bit and clear bit hooks normally require _irqsave/restore
1530          * but in this case, we are only testing for the DELALLOC
1531          * bit, which is only set or cleared with irqs on
1532          */
1533         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1534                 struct btrfs_root *root = BTRFS_I(inode)->root;
1535                 u64 len = state->end + 1 - state->start;
1536                 bool do_list = !btrfs_is_free_space_inode(inode);
1537
1538                 if (*bits & EXTENT_FIRST_DELALLOC) {
1539                         *bits &= ~EXTENT_FIRST_DELALLOC;
1540                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541                         spin_lock(&BTRFS_I(inode)->lock);
1542                         BTRFS_I(inode)->outstanding_extents--;
1543                         spin_unlock(&BTRFS_I(inode)->lock);
1544                 }
1545
1546                 /*
1547                  * We don't reserve metadata space for space cache inodes so we
1548                  * don't need to call dellalloc_release_metadata if there is an
1549                  * error.
1550                  */
1551                 if (*bits & EXTENT_DO_ACCOUNTING &&
1552                     root != root->fs_info->tree_root)
1553                         btrfs_delalloc_release_metadata(inode, len);
1554
1555                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1556                     && do_list && !(state->state & EXTENT_NORESERVE))
1557                         btrfs_free_reserved_data_space(inode, len);
1558
1559                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1560                                      root->fs_info->delalloc_batch);
1561                 spin_lock(&BTRFS_I(inode)->lock);
1562                 BTRFS_I(inode)->delalloc_bytes -= len;
1563                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1564                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1565                              &BTRFS_I(inode)->runtime_flags))
1566                         btrfs_del_delalloc_inode(root, inode);
1567                 spin_unlock(&BTRFS_I(inode)->lock);
1568         }
1569 }
1570
1571 /*
1572  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573  * we don't create bios that span stripes or chunks
1574  */
1575 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1576                          size_t size, struct bio *bio,
1577                          unsigned long bio_flags)
1578 {
1579         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1580         u64 logical = (u64)bio->bi_sector << 9;
1581         u64 length = 0;
1582         u64 map_length;
1583         int ret;
1584
1585         if (bio_flags & EXTENT_BIO_COMPRESSED)
1586                 return 0;
1587
1588         length = bio->bi_size;
1589         map_length = length;
1590         ret = btrfs_map_block(root->fs_info, rw, logical,
1591                               &map_length, NULL, 0);
1592         /* Will always return 0 with map_multi == NULL */
1593         BUG_ON(ret < 0);
1594         if (map_length < length + size)
1595                 return 1;
1596         return 0;
1597 }
1598
1599 /*
1600  * in order to insert checksums into the metadata in large chunks,
1601  * we wait until bio submission time.   All the pages in the bio are
1602  * checksummed and sums are attached onto the ordered extent record.
1603  *
1604  * At IO completion time the cums attached on the ordered extent record
1605  * are inserted into the btree
1606  */
1607 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608                                     struct bio *bio, int mirror_num,
1609                                     unsigned long bio_flags,
1610                                     u64 bio_offset)
1611 {
1612         struct btrfs_root *root = BTRFS_I(inode)->root;
1613         int ret = 0;
1614
1615         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1616         BUG_ON(ret); /* -ENOMEM */
1617         return 0;
1618 }
1619
1620 /*
1621  * in order to insert checksums into the metadata in large chunks,
1622  * we wait until bio submission time.   All the pages in the bio are
1623  * checksummed and sums are attached onto the ordered extent record.
1624  *
1625  * At IO completion time the cums attached on the ordered extent record
1626  * are inserted into the btree
1627  */
1628 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1629                           int mirror_num, unsigned long bio_flags,
1630                           u64 bio_offset)
1631 {
1632         struct btrfs_root *root = BTRFS_I(inode)->root;
1633         int ret;
1634
1635         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636         if (ret)
1637                 bio_endio(bio, ret);
1638         return ret;
1639 }
1640
1641 /*
1642  * extent_io.c submission hook. This does the right thing for csum calculation
1643  * on write, or reading the csums from the tree before a read
1644  */
1645 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1646                           int mirror_num, unsigned long bio_flags,
1647                           u64 bio_offset)
1648 {
1649         struct btrfs_root *root = BTRFS_I(inode)->root;
1650         int ret = 0;
1651         int skip_sum;
1652         int metadata = 0;
1653         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1654
1655         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1656
1657         if (btrfs_is_free_space_inode(inode))
1658                 metadata = 2;
1659
1660         if (!(rw & REQ_WRITE)) {
1661                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662                 if (ret)
1663                         goto out;
1664
1665                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1666                         ret = btrfs_submit_compressed_read(inode, bio,
1667                                                            mirror_num,
1668                                                            bio_flags);
1669                         goto out;
1670                 } else if (!skip_sum) {
1671                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672                         if (ret)
1673                                 goto out;
1674                 }
1675                 goto mapit;
1676         } else if (async && !skip_sum) {
1677                 /* csum items have already been cloned */
1678                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679                         goto mapit;
1680                 /* we're doing a write, do the async checksumming */
1681                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1682                                    inode, rw, bio, mirror_num,
1683                                    bio_flags, bio_offset,
1684                                    __btrfs_submit_bio_start,
1685                                    __btrfs_submit_bio_done);
1686                 goto out;
1687         } else if (!skip_sum) {
1688                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689                 if (ret)
1690                         goto out;
1691         }
1692
1693 mapit:
1694         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696 out:
1697         if (ret < 0)
1698                 bio_endio(bio, ret);
1699         return ret;
1700 }
1701
1702 /*
1703  * given a list of ordered sums record them in the inode.  This happens
1704  * at IO completion time based on sums calculated at bio submission time.
1705  */
1706 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1707                              struct inode *inode, u64 file_offset,
1708                              struct list_head *list)
1709 {
1710         struct btrfs_ordered_sum *sum;
1711
1712         list_for_each_entry(sum, list, list) {
1713                 trans->adding_csums = 1;
1714                 btrfs_csum_file_blocks(trans,
1715                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1716                 trans->adding_csums = 0;
1717         }
1718         return 0;
1719 }
1720
1721 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1722                               struct extent_state **cached_state)
1723 {
1724         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1725         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1726                                    cached_state, GFP_NOFS);
1727 }
1728
1729 /* see btrfs_writepage_start_hook for details on why this is required */
1730 struct btrfs_writepage_fixup {
1731         struct page *page;
1732         struct btrfs_work work;
1733 };
1734
1735 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1736 {
1737         struct btrfs_writepage_fixup *fixup;
1738         struct btrfs_ordered_extent *ordered;
1739         struct extent_state *cached_state = NULL;
1740         struct page *page;
1741         struct inode *inode;
1742         u64 page_start;
1743         u64 page_end;
1744         int ret;
1745
1746         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1747         page = fixup->page;
1748 again:
1749         lock_page(page);
1750         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1751                 ClearPageChecked(page);
1752                 goto out_page;
1753         }
1754
1755         inode = page->mapping->host;
1756         page_start = page_offset(page);
1757         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1758
1759         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1760                          &cached_state);
1761
1762         /* already ordered? We're done */
1763         if (PagePrivate2(page))
1764                 goto out;
1765
1766         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1767         if (ordered) {
1768                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1769                                      page_end, &cached_state, GFP_NOFS);
1770                 unlock_page(page);
1771                 btrfs_start_ordered_extent(inode, ordered, 1);
1772                 btrfs_put_ordered_extent(ordered);
1773                 goto again;
1774         }
1775
1776         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1777         if (ret) {
1778                 mapping_set_error(page->mapping, ret);
1779                 end_extent_writepage(page, ret, page_start, page_end);
1780                 ClearPageChecked(page);
1781                 goto out;
1782          }
1783
1784         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1785         ClearPageChecked(page);
1786         set_page_dirty(page);
1787 out:
1788         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1789                              &cached_state, GFP_NOFS);
1790 out_page:
1791         unlock_page(page);
1792         page_cache_release(page);
1793         kfree(fixup);
1794 }
1795
1796 /*
1797  * There are a few paths in the higher layers of the kernel that directly
1798  * set the page dirty bit without asking the filesystem if it is a
1799  * good idea.  This causes problems because we want to make sure COW
1800  * properly happens and the data=ordered rules are followed.
1801  *
1802  * In our case any range that doesn't have the ORDERED bit set
1803  * hasn't been properly setup for IO.  We kick off an async process
1804  * to fix it up.  The async helper will wait for ordered extents, set
1805  * the delalloc bit and make it safe to write the page.
1806  */
1807 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1808 {
1809         struct inode *inode = page->mapping->host;
1810         struct btrfs_writepage_fixup *fixup;
1811         struct btrfs_root *root = BTRFS_I(inode)->root;
1812
1813         /* this page is properly in the ordered list */
1814         if (TestClearPagePrivate2(page))
1815                 return 0;
1816
1817         if (PageChecked(page))
1818                 return -EAGAIN;
1819
1820         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1821         if (!fixup)
1822                 return -EAGAIN;
1823
1824         SetPageChecked(page);
1825         page_cache_get(page);
1826         fixup->work.func = btrfs_writepage_fixup_worker;
1827         fixup->page = page;
1828         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1829         return -EBUSY;
1830 }
1831
1832 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1833                                        struct inode *inode, u64 file_pos,
1834                                        u64 disk_bytenr, u64 disk_num_bytes,
1835                                        u64 num_bytes, u64 ram_bytes,
1836                                        u8 compression, u8 encryption,
1837                                        u16 other_encoding, int extent_type)
1838 {
1839         struct btrfs_root *root = BTRFS_I(inode)->root;
1840         struct btrfs_file_extent_item *fi;
1841         struct btrfs_path *path;
1842         struct extent_buffer *leaf;
1843         struct btrfs_key ins;
1844         int ret;
1845
1846         path = btrfs_alloc_path();
1847         if (!path)
1848                 return -ENOMEM;
1849
1850         path->leave_spinning = 1;
1851
1852         /*
1853          * we may be replacing one extent in the tree with another.
1854          * The new extent is pinned in the extent map, and we don't want
1855          * to drop it from the cache until it is completely in the btree.
1856          *
1857          * So, tell btrfs_drop_extents to leave this extent in the cache.
1858          * the caller is expected to unpin it and allow it to be merged
1859          * with the others.
1860          */
1861         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1862                                  file_pos + num_bytes, 0);
1863         if (ret)
1864                 goto out;
1865
1866         ins.objectid = btrfs_ino(inode);
1867         ins.offset = file_pos;
1868         ins.type = BTRFS_EXTENT_DATA_KEY;
1869         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1870         if (ret)
1871                 goto out;
1872         leaf = path->nodes[0];
1873         fi = btrfs_item_ptr(leaf, path->slots[0],
1874                             struct btrfs_file_extent_item);
1875         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1876         btrfs_set_file_extent_type(leaf, fi, extent_type);
1877         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1878         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1879         btrfs_set_file_extent_offset(leaf, fi, 0);
1880         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1881         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1882         btrfs_set_file_extent_compression(leaf, fi, compression);
1883         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1884         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1885
1886         btrfs_mark_buffer_dirty(leaf);
1887         btrfs_release_path(path);
1888
1889         inode_add_bytes(inode, num_bytes);
1890
1891         ins.objectid = disk_bytenr;
1892         ins.offset = disk_num_bytes;
1893         ins.type = BTRFS_EXTENT_ITEM_KEY;
1894         ret = btrfs_alloc_reserved_file_extent(trans, root,
1895                                         root->root_key.objectid,
1896                                         btrfs_ino(inode), file_pos, &ins);
1897 out:
1898         btrfs_free_path(path);
1899
1900         return ret;
1901 }
1902
1903 /* snapshot-aware defrag */
1904 struct sa_defrag_extent_backref {
1905         struct rb_node node;
1906         struct old_sa_defrag_extent *old;
1907         u64 root_id;
1908         u64 inum;
1909         u64 file_pos;
1910         u64 extent_offset;
1911         u64 num_bytes;
1912         u64 generation;
1913 };
1914
1915 struct old_sa_defrag_extent {
1916         struct list_head list;
1917         struct new_sa_defrag_extent *new;
1918
1919         u64 extent_offset;
1920         u64 bytenr;
1921         u64 offset;
1922         u64 len;
1923         int count;
1924 };
1925
1926 struct new_sa_defrag_extent {
1927         struct rb_root root;
1928         struct list_head head;
1929         struct btrfs_path *path;
1930         struct inode *inode;
1931         u64 file_pos;
1932         u64 len;
1933         u64 bytenr;
1934         u64 disk_len;
1935         u8 compress_type;
1936 };
1937
1938 static int backref_comp(struct sa_defrag_extent_backref *b1,
1939                         struct sa_defrag_extent_backref *b2)
1940 {
1941         if (b1->root_id < b2->root_id)
1942                 return -1;
1943         else if (b1->root_id > b2->root_id)
1944                 return 1;
1945
1946         if (b1->inum < b2->inum)
1947                 return -1;
1948         else if (b1->inum > b2->inum)
1949                 return 1;
1950
1951         if (b1->file_pos < b2->file_pos)
1952                 return -1;
1953         else if (b1->file_pos > b2->file_pos)
1954                 return 1;
1955
1956         /*
1957          * [------------------------------] ===> (a range of space)
1958          *     |<--->|   |<---->| =============> (fs/file tree A)
1959          * |<---------------------------->| ===> (fs/file tree B)
1960          *
1961          * A range of space can refer to two file extents in one tree while
1962          * refer to only one file extent in another tree.
1963          *
1964          * So we may process a disk offset more than one time(two extents in A)
1965          * and locate at the same extent(one extent in B), then insert two same
1966          * backrefs(both refer to the extent in B).
1967          */
1968         return 0;
1969 }
1970
1971 static void backref_insert(struct rb_root *root,
1972                            struct sa_defrag_extent_backref *backref)
1973 {
1974         struct rb_node **p = &root->rb_node;
1975         struct rb_node *parent = NULL;
1976         struct sa_defrag_extent_backref *entry;
1977         int ret;
1978
1979         while (*p) {
1980                 parent = *p;
1981                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1982
1983                 ret = backref_comp(backref, entry);
1984                 if (ret < 0)
1985                         p = &(*p)->rb_left;
1986                 else
1987                         p = &(*p)->rb_right;
1988         }
1989
1990         rb_link_node(&backref->node, parent, p);
1991         rb_insert_color(&backref->node, root);
1992 }
1993
1994 /*
1995  * Note the backref might has changed, and in this case we just return 0.
1996  */
1997 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
1998                                        void *ctx)
1999 {
2000         struct btrfs_file_extent_item *extent;
2001         struct btrfs_fs_info *fs_info;
2002         struct old_sa_defrag_extent *old = ctx;
2003         struct new_sa_defrag_extent *new = old->new;
2004         struct btrfs_path *path = new->path;
2005         struct btrfs_key key;
2006         struct btrfs_root *root;
2007         struct sa_defrag_extent_backref *backref;
2008         struct extent_buffer *leaf;
2009         struct inode *inode = new->inode;
2010         int slot;
2011         int ret;
2012         u64 extent_offset;
2013         u64 num_bytes;
2014
2015         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2016             inum == btrfs_ino(inode))
2017                 return 0;
2018
2019         key.objectid = root_id;
2020         key.type = BTRFS_ROOT_ITEM_KEY;
2021         key.offset = (u64)-1;
2022
2023         fs_info = BTRFS_I(inode)->root->fs_info;
2024         root = btrfs_read_fs_root_no_name(fs_info, &key);
2025         if (IS_ERR(root)) {
2026                 if (PTR_ERR(root) == -ENOENT)
2027                         return 0;
2028                 WARN_ON(1);
2029                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2030                          inum, offset, root_id);
2031                 return PTR_ERR(root);
2032         }
2033
2034         key.objectid = inum;
2035         key.type = BTRFS_EXTENT_DATA_KEY;
2036         if (offset > (u64)-1 << 32)
2037                 key.offset = 0;
2038         else
2039                 key.offset = offset;
2040
2041         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2042         if (WARN_ON(ret < 0))
2043                 return ret;
2044         ret = 0;
2045
2046         while (1) {
2047                 cond_resched();
2048
2049                 leaf = path->nodes[0];
2050                 slot = path->slots[0];
2051
2052                 if (slot >= btrfs_header_nritems(leaf)) {
2053                         ret = btrfs_next_leaf(root, path);
2054                         if (ret < 0) {
2055                                 goto out;
2056                         } else if (ret > 0) {
2057                                 ret = 0;
2058                                 goto out;
2059                         }
2060                         continue;
2061                 }
2062
2063                 path->slots[0]++;
2064
2065                 btrfs_item_key_to_cpu(leaf, &key, slot);
2066
2067                 if (key.objectid > inum)
2068                         goto out;
2069
2070                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2071                         continue;
2072
2073                 extent = btrfs_item_ptr(leaf, slot,
2074                                         struct btrfs_file_extent_item);
2075
2076                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2077                         continue;
2078
2079                 /*
2080                  * 'offset' refers to the exact key.offset,
2081                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2082                  * (key.offset - extent_offset).
2083                  */
2084                 if (key.offset != offset)
2085                         continue;
2086
2087                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2088                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2089
2090                 if (extent_offset >= old->extent_offset + old->offset +
2091                     old->len || extent_offset + num_bytes <=
2092                     old->extent_offset + old->offset)
2093                         continue;
2094                 break;
2095         }
2096
2097         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2098         if (!backref) {
2099                 ret = -ENOENT;
2100                 goto out;
2101         }
2102
2103         backref->root_id = root_id;
2104         backref->inum = inum;
2105         backref->file_pos = offset;
2106         backref->num_bytes = num_bytes;
2107         backref->extent_offset = extent_offset;
2108         backref->generation = btrfs_file_extent_generation(leaf, extent);
2109         backref->old = old;
2110         backref_insert(&new->root, backref);
2111         old->count++;
2112 out:
2113         btrfs_release_path(path);
2114         WARN_ON(ret);
2115         return ret;
2116 }
2117
2118 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2119                                    struct new_sa_defrag_extent *new)
2120 {
2121         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2122         struct old_sa_defrag_extent *old, *tmp;
2123         int ret;
2124
2125         new->path = path;
2126
2127         list_for_each_entry_safe(old, tmp, &new->head, list) {
2128                 ret = iterate_inodes_from_logical(old->bytenr +
2129                                                   old->extent_offset, fs_info,
2130                                                   path, record_one_backref,
2131                                                   old);
2132                 if (ret < 0 && ret != -ENOENT)
2133                         return false;
2134
2135                 /* no backref to be processed for this extent */
2136                 if (!old->count) {
2137                         list_del(&old->list);
2138                         kfree(old);
2139                 }
2140         }
2141
2142         if (list_empty(&new->head))
2143                 return false;
2144
2145         return true;
2146 }
2147
2148 static int relink_is_mergable(struct extent_buffer *leaf,
2149                               struct btrfs_file_extent_item *fi,
2150                               struct new_sa_defrag_extent *new)
2151 {
2152         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2153                 return 0;
2154
2155         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2156                 return 0;
2157
2158         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2159                 return 0;
2160
2161         if (btrfs_file_extent_encryption(leaf, fi) ||
2162             btrfs_file_extent_other_encoding(leaf, fi))
2163                 return 0;
2164
2165         return 1;
2166 }
2167
2168 /*
2169  * Note the backref might has changed, and in this case we just return 0.
2170  */
2171 static noinline int relink_extent_backref(struct btrfs_path *path,
2172                                  struct sa_defrag_extent_backref *prev,
2173                                  struct sa_defrag_extent_backref *backref)
2174 {
2175         struct btrfs_file_extent_item *extent;
2176         struct btrfs_file_extent_item *item;
2177         struct btrfs_ordered_extent *ordered;
2178         struct btrfs_trans_handle *trans;
2179         struct btrfs_fs_info *fs_info;
2180         struct btrfs_root *root;
2181         struct btrfs_key key;
2182         struct extent_buffer *leaf;
2183         struct old_sa_defrag_extent *old = backref->old;
2184         struct new_sa_defrag_extent *new = old->new;
2185         struct inode *src_inode = new->inode;
2186         struct inode *inode;
2187         struct extent_state *cached = NULL;
2188         int ret = 0;
2189         u64 start;
2190         u64 len;
2191         u64 lock_start;
2192         u64 lock_end;
2193         bool merge = false;
2194         int index;
2195
2196         if (prev && prev->root_id == backref->root_id &&
2197             prev->inum == backref->inum &&
2198             prev->file_pos + prev->num_bytes == backref->file_pos)
2199                 merge = true;
2200
2201         /* step 1: get root */
2202         key.objectid = backref->root_id;
2203         key.type = BTRFS_ROOT_ITEM_KEY;
2204         key.offset = (u64)-1;
2205
2206         fs_info = BTRFS_I(src_inode)->root->fs_info;
2207         index = srcu_read_lock(&fs_info->subvol_srcu);
2208
2209         root = btrfs_read_fs_root_no_name(fs_info, &key);
2210         if (IS_ERR(root)) {
2211                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2212                 if (PTR_ERR(root) == -ENOENT)
2213                         return 0;
2214                 return PTR_ERR(root);
2215         }
2216
2217         /* step 2: get inode */
2218         key.objectid = backref->inum;
2219         key.type = BTRFS_INODE_ITEM_KEY;
2220         key.offset = 0;
2221
2222         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2223         if (IS_ERR(inode)) {
2224                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2225                 return 0;
2226         }
2227
2228         srcu_read_unlock(&fs_info->subvol_srcu, index);
2229
2230         /* step 3: relink backref */
2231         lock_start = backref->file_pos;
2232         lock_end = backref->file_pos + backref->num_bytes - 1;
2233         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2234                          0, &cached);
2235
2236         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2237         if (ordered) {
2238                 btrfs_put_ordered_extent(ordered);
2239                 goto out_unlock;
2240         }
2241
2242         trans = btrfs_join_transaction(root);
2243         if (IS_ERR(trans)) {
2244                 ret = PTR_ERR(trans);
2245                 goto out_unlock;
2246         }
2247
2248         key.objectid = backref->inum;
2249         key.type = BTRFS_EXTENT_DATA_KEY;
2250         key.offset = backref->file_pos;
2251
2252         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2253         if (ret < 0) {
2254                 goto out_free_path;
2255         } else if (ret > 0) {
2256                 ret = 0;
2257                 goto out_free_path;
2258         }
2259
2260         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2261                                 struct btrfs_file_extent_item);
2262
2263         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2264             backref->generation)
2265                 goto out_free_path;
2266
2267         btrfs_release_path(path);
2268
2269         start = backref->file_pos;
2270         if (backref->extent_offset < old->extent_offset + old->offset)
2271                 start += old->extent_offset + old->offset -
2272                          backref->extent_offset;
2273
2274         len = min(backref->extent_offset + backref->num_bytes,
2275                   old->extent_offset + old->offset + old->len);
2276         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2277
2278         ret = btrfs_drop_extents(trans, root, inode, start,
2279                                  start + len, 1);
2280         if (ret)
2281                 goto out_free_path;
2282 again:
2283         key.objectid = btrfs_ino(inode);
2284         key.type = BTRFS_EXTENT_DATA_KEY;
2285         key.offset = start;
2286
2287         path->leave_spinning = 1;
2288         if (merge) {
2289                 struct btrfs_file_extent_item *fi;
2290                 u64 extent_len;
2291                 struct btrfs_key found_key;
2292
2293                 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2294                 if (ret < 0)
2295                         goto out_free_path;
2296
2297                 path->slots[0]--;
2298                 leaf = path->nodes[0];
2299                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2300
2301                 fi = btrfs_item_ptr(leaf, path->slots[0],
2302                                     struct btrfs_file_extent_item);
2303                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2304
2305                 if (extent_len + found_key.offset == start &&
2306                     relink_is_mergable(leaf, fi, new)) {
2307                         btrfs_set_file_extent_num_bytes(leaf, fi,
2308                                                         extent_len + len);
2309                         btrfs_mark_buffer_dirty(leaf);
2310                         inode_add_bytes(inode, len);
2311
2312                         ret = 1;
2313                         goto out_free_path;
2314                 } else {
2315                         merge = false;
2316                         btrfs_release_path(path);
2317                         goto again;
2318                 }
2319         }
2320
2321         ret = btrfs_insert_empty_item(trans, root, path, &key,
2322                                         sizeof(*extent));
2323         if (ret) {
2324                 btrfs_abort_transaction(trans, root, ret);
2325                 goto out_free_path;
2326         }
2327
2328         leaf = path->nodes[0];
2329         item = btrfs_item_ptr(leaf, path->slots[0],
2330                                 struct btrfs_file_extent_item);
2331         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2332         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2333         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2334         btrfs_set_file_extent_num_bytes(leaf, item, len);
2335         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2336         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2337         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2338         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2339         btrfs_set_file_extent_encryption(leaf, item, 0);
2340         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2341
2342         btrfs_mark_buffer_dirty(leaf);
2343         inode_add_bytes(inode, len);
2344         btrfs_release_path(path);
2345
2346         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2347                         new->disk_len, 0,
2348                         backref->root_id, backref->inum,
2349                         new->file_pos, 0);      /* start - extent_offset */
2350         if (ret) {
2351                 btrfs_abort_transaction(trans, root, ret);
2352                 goto out_free_path;
2353         }
2354
2355         ret = 1;
2356 out_free_path:
2357         btrfs_release_path(path);
2358         path->leave_spinning = 0;
2359         btrfs_end_transaction(trans, root);
2360 out_unlock:
2361         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2362                              &cached, GFP_NOFS);
2363         iput(inode);
2364         return ret;
2365 }
2366
2367 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2368 {
2369         struct old_sa_defrag_extent *old, *tmp;
2370
2371         if (!new)
2372                 return;
2373
2374         list_for_each_entry_safe(old, tmp, &new->head, list) {
2375                 list_del(&old->list);
2376                 kfree(old);
2377         }
2378         kfree(new);
2379 }
2380
2381 static void relink_file_extents(struct new_sa_defrag_extent *new)
2382 {
2383         struct btrfs_path *path;
2384         struct sa_defrag_extent_backref *backref;
2385         struct sa_defrag_extent_backref *prev = NULL;
2386         struct inode *inode;
2387         struct btrfs_root *root;
2388         struct rb_node *node;
2389         int ret;
2390
2391         inode = new->inode;
2392         root = BTRFS_I(inode)->root;
2393
2394         path = btrfs_alloc_path();
2395         if (!path)
2396                 return;
2397
2398         if (!record_extent_backrefs(path, new)) {
2399                 btrfs_free_path(path);
2400                 goto out;
2401         }
2402         btrfs_release_path(path);
2403
2404         while (1) {
2405                 node = rb_first(&new->root);
2406                 if (!node)
2407                         break;
2408                 rb_erase(node, &new->root);
2409
2410                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2411
2412                 ret = relink_extent_backref(path, prev, backref);
2413                 WARN_ON(ret < 0);
2414
2415                 kfree(prev);
2416
2417                 if (ret == 1)
2418                         prev = backref;
2419                 else
2420                         prev = NULL;
2421                 cond_resched();
2422         }
2423         kfree(prev);
2424
2425         btrfs_free_path(path);
2426 out:
2427         free_sa_defrag_extent(new);
2428
2429         atomic_dec(&root->fs_info->defrag_running);
2430         wake_up(&root->fs_info->transaction_wait);
2431 }
2432
2433 static struct new_sa_defrag_extent *
2434 record_old_file_extents(struct inode *inode,
2435                         struct btrfs_ordered_extent *ordered)
2436 {
2437         struct btrfs_root *root = BTRFS_I(inode)->root;
2438         struct btrfs_path *path;
2439         struct btrfs_key key;
2440         struct old_sa_defrag_extent *old;
2441         struct new_sa_defrag_extent *new;
2442         int ret;
2443
2444         new = kmalloc(sizeof(*new), GFP_NOFS);
2445         if (!new)
2446                 return NULL;
2447
2448         new->inode = inode;
2449         new->file_pos = ordered->file_offset;
2450         new->len = ordered->len;
2451         new->bytenr = ordered->start;
2452         new->disk_len = ordered->disk_len;
2453         new->compress_type = ordered->compress_type;
2454         new->root = RB_ROOT;
2455         INIT_LIST_HEAD(&new->head);
2456
2457         path = btrfs_alloc_path();
2458         if (!path)
2459                 goto out_kfree;
2460
2461         key.objectid = btrfs_ino(inode);
2462         key.type = BTRFS_EXTENT_DATA_KEY;
2463         key.offset = new->file_pos;
2464
2465         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2466         if (ret < 0)
2467                 goto out_free_path;
2468         if (ret > 0 && path->slots[0] > 0)
2469                 path->slots[0]--;
2470
2471         /* find out all the old extents for the file range */
2472         while (1) {
2473                 struct btrfs_file_extent_item *extent;
2474                 struct extent_buffer *l;
2475                 int slot;
2476                 u64 num_bytes;
2477                 u64 offset;
2478                 u64 end;
2479                 u64 disk_bytenr;
2480                 u64 extent_offset;
2481
2482                 l = path->nodes[0];
2483                 slot = path->slots[0];
2484
2485                 if (slot >= btrfs_header_nritems(l)) {
2486                         ret = btrfs_next_leaf(root, path);
2487                         if (ret < 0)
2488                                 goto out_free_path;
2489                         else if (ret > 0)
2490                                 break;
2491                         continue;
2492                 }
2493
2494                 btrfs_item_key_to_cpu(l, &key, slot);
2495
2496                 if (key.objectid != btrfs_ino(inode))
2497                         break;
2498                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2499                         break;
2500                 if (key.offset >= new->file_pos + new->len)
2501                         break;
2502
2503                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2504
2505                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2506                 if (key.offset + num_bytes < new->file_pos)
2507                         goto next;
2508
2509                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2510                 if (!disk_bytenr)
2511                         goto next;
2512
2513                 extent_offset = btrfs_file_extent_offset(l, extent);
2514
2515                 old = kmalloc(sizeof(*old), GFP_NOFS);
2516                 if (!old)
2517                         goto out_free_path;
2518
2519                 offset = max(new->file_pos, key.offset);
2520                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2521
2522                 old->bytenr = disk_bytenr;
2523                 old->extent_offset = extent_offset;
2524                 old->offset = offset - key.offset;
2525                 old->len = end - offset;
2526                 old->new = new;
2527                 old->count = 0;
2528                 list_add_tail(&old->list, &new->head);
2529 next:
2530                 path->slots[0]++;
2531                 cond_resched();
2532         }
2533
2534         btrfs_free_path(path);
2535         atomic_inc(&root->fs_info->defrag_running);
2536
2537         return new;
2538
2539 out_free_path:
2540         btrfs_free_path(path);
2541 out_kfree:
2542         free_sa_defrag_extent(new);
2543         return NULL;
2544 }
2545
2546 /*
2547  * helper function for btrfs_finish_ordered_io, this
2548  * just reads in some of the csum leaves to prime them into ram
2549  * before we start the transaction.  It limits the amount of btree
2550  * reads required while inside the transaction.
2551  */
2552 /* as ordered data IO finishes, this gets called so we can finish
2553  * an ordered extent if the range of bytes in the file it covers are
2554  * fully written.
2555  */
2556 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2557 {
2558         struct inode *inode = ordered_extent->inode;
2559         struct btrfs_root *root = BTRFS_I(inode)->root;
2560         struct btrfs_trans_handle *trans = NULL;
2561         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2562         struct extent_state *cached_state = NULL;
2563         struct new_sa_defrag_extent *new = NULL;
2564         int compress_type = 0;
2565         int ret = 0;
2566         u64 logical_len = ordered_extent->len;
2567         bool nolock;
2568         bool truncated = false;
2569
2570         nolock = btrfs_is_free_space_inode(inode);
2571
2572         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2573                 ret = -EIO;
2574                 goto out;
2575         }
2576
2577         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2578                 truncated = true;
2579                 logical_len = ordered_extent->truncated_len;
2580                 /* Truncated the entire extent, don't bother adding */
2581                 if (!logical_len)
2582                         goto out;
2583         }
2584
2585         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2586                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2587                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2588                 if (nolock)
2589                         trans = btrfs_join_transaction_nolock(root);
2590                 else
2591                         trans = btrfs_join_transaction(root);
2592                 if (IS_ERR(trans)) {
2593                         ret = PTR_ERR(trans);
2594                         trans = NULL;
2595                         goto out;
2596                 }
2597                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2598                 ret = btrfs_update_inode_fallback(trans, root, inode);
2599                 if (ret) /* -ENOMEM or corruption */
2600                         btrfs_abort_transaction(trans, root, ret);
2601                 goto out;
2602         }
2603
2604         lock_extent_bits(io_tree, ordered_extent->file_offset,
2605                          ordered_extent->file_offset + ordered_extent->len - 1,
2606                          0, &cached_state);
2607
2608         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2609                         ordered_extent->file_offset + ordered_extent->len - 1,
2610                         EXTENT_DEFRAG, 1, cached_state);
2611         if (ret) {
2612                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2613                 if (last_snapshot >= BTRFS_I(inode)->generation)
2614                         /* the inode is shared */
2615                         new = record_old_file_extents(inode, ordered_extent);
2616
2617                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2618                         ordered_extent->file_offset + ordered_extent->len - 1,
2619                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2620         }
2621
2622         if (nolock)
2623                 trans = btrfs_join_transaction_nolock(root);
2624         else
2625                 trans = btrfs_join_transaction(root);
2626         if (IS_ERR(trans)) {
2627                 ret = PTR_ERR(trans);
2628                 trans = NULL;
2629                 goto out_unlock;
2630         }
2631         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2632
2633         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2634                 compress_type = ordered_extent->compress_type;
2635         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2636                 BUG_ON(compress_type);
2637                 ret = btrfs_mark_extent_written(trans, inode,
2638                                                 ordered_extent->file_offset,
2639                                                 ordered_extent->file_offset +
2640                                                 logical_len);
2641         } else {
2642                 BUG_ON(root == root->fs_info->tree_root);
2643                 ret = insert_reserved_file_extent(trans, inode,
2644                                                 ordered_extent->file_offset,
2645                                                 ordered_extent->start,
2646                                                 ordered_extent->disk_len,
2647                                                 logical_len, logical_len,
2648                                                 compress_type, 0, 0,
2649                                                 BTRFS_FILE_EXTENT_REG);
2650         }
2651         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2652                            ordered_extent->file_offset, ordered_extent->len,
2653                            trans->transid);
2654         if (ret < 0) {
2655                 btrfs_abort_transaction(trans, root, ret);
2656                 goto out_unlock;
2657         }
2658
2659         add_pending_csums(trans, inode, ordered_extent->file_offset,
2660                           &ordered_extent->list);
2661
2662         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2663         ret = btrfs_update_inode_fallback(trans, root, inode);
2664         if (ret) { /* -ENOMEM or corruption */
2665                 btrfs_abort_transaction(trans, root, ret);
2666                 goto out_unlock;
2667         }
2668         ret = 0;
2669 out_unlock:
2670         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2671                              ordered_extent->file_offset +
2672                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2673 out:
2674         if (root != root->fs_info->tree_root)
2675                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2676         if (trans)
2677                 btrfs_end_transaction(trans, root);
2678
2679         if (ret || truncated) {
2680                 u64 start, end;
2681
2682                 if (truncated)
2683                         start = ordered_extent->file_offset + logical_len;
2684                 else
2685                         start = ordered_extent->file_offset;
2686                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2687                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2688
2689                 /* Drop the cache for the part of the extent we didn't write. */
2690                 btrfs_drop_extent_cache(inode, start, end, 0);
2691
2692                 /*
2693                  * If the ordered extent had an IOERR or something else went
2694                  * wrong we need to return the space for this ordered extent
2695                  * back to the allocator.  We only free the extent in the
2696                  * truncated case if we didn't write out the extent at all.
2697                  */
2698                 if ((ret || !logical_len) &&
2699                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2700                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2701                         btrfs_free_reserved_extent(root, ordered_extent->start,
2702                                                    ordered_extent->disk_len);
2703         }
2704
2705
2706         /*
2707          * This needs to be done to make sure anybody waiting knows we are done
2708          * updating everything for this ordered extent.
2709          */
2710         btrfs_remove_ordered_extent(inode, ordered_extent);
2711
2712         /* for snapshot-aware defrag */
2713         if (new) {
2714                 if (ret) {
2715                         free_sa_defrag_extent(new);
2716                         atomic_dec(&root->fs_info->defrag_running);
2717                 } else {
2718                         relink_file_extents(new);
2719                 }
2720         }
2721
2722         /* once for us */
2723         btrfs_put_ordered_extent(ordered_extent);
2724         /* once for the tree */
2725         btrfs_put_ordered_extent(ordered_extent);
2726
2727         return ret;
2728 }
2729
2730 static void finish_ordered_fn(struct btrfs_work *work)
2731 {
2732         struct btrfs_ordered_extent *ordered_extent;
2733         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2734         btrfs_finish_ordered_io(ordered_extent);
2735 }
2736
2737 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2738                                 struct extent_state *state, int uptodate)
2739 {
2740         struct inode *inode = page->mapping->host;
2741         struct btrfs_root *root = BTRFS_I(inode)->root;
2742         struct btrfs_ordered_extent *ordered_extent = NULL;
2743         struct btrfs_workers *workers;
2744
2745         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2746
2747         ClearPagePrivate2(page);
2748         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2749                                             end - start + 1, uptodate))
2750                 return 0;
2751
2752         ordered_extent->work.func = finish_ordered_fn;
2753         ordered_extent->work.flags = 0;
2754
2755         if (btrfs_is_free_space_inode(inode))
2756                 workers = &root->fs_info->endio_freespace_worker;
2757         else
2758                 workers = &root->fs_info->endio_write_workers;
2759         btrfs_queue_worker(workers, &ordered_extent->work);
2760
2761         return 0;
2762 }
2763
2764 /*
2765  * when reads are done, we need to check csums to verify the data is correct
2766  * if there's a match, we allow the bio to finish.  If not, the code in
2767  * extent_io.c will try to find good copies for us.
2768  */
2769 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2770                                       u64 phy_offset, struct page *page,
2771                                       u64 start, u64 end, int mirror)
2772 {
2773         size_t offset = start - page_offset(page);
2774         struct inode *inode = page->mapping->host;
2775         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2776         char *kaddr;
2777         struct btrfs_root *root = BTRFS_I(inode)->root;
2778         u32 csum_expected;
2779         u32 csum = ~(u32)0;
2780         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2781                                       DEFAULT_RATELIMIT_BURST);
2782
2783         if (PageChecked(page)) {
2784                 ClearPageChecked(page);
2785                 goto good;
2786         }
2787
2788         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2789                 goto good;
2790
2791         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2792             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2793                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2794                                   GFP_NOFS);
2795                 return 0;
2796         }
2797
2798         phy_offset >>= inode->i_sb->s_blocksize_bits;
2799         csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2800
2801         kaddr = kmap_atomic(page);
2802         csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2803         btrfs_csum_final(csum, (char *)&csum);
2804         if (csum != csum_expected)
2805                 goto zeroit;
2806
2807         kunmap_atomic(kaddr);
2808 good:
2809         return 0;
2810
2811 zeroit:
2812         if (__ratelimit(&_rs))
2813                 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2814                         btrfs_ino(page->mapping->host), start, csum, csum_expected);
2815         memset(kaddr + offset, 1, end - start + 1);
2816         flush_dcache_page(page);
2817         kunmap_atomic(kaddr);
2818         if (csum_expected == 0)
2819                 return 0;
2820         return -EIO;
2821 }
2822
2823 struct delayed_iput {
2824         struct list_head list;
2825         struct inode *inode;
2826 };
2827
2828 /* JDM: If this is fs-wide, why can't we add a pointer to
2829  * btrfs_inode instead and avoid the allocation? */
2830 void btrfs_add_delayed_iput(struct inode *inode)
2831 {
2832         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2833         struct delayed_iput *delayed;
2834
2835         if (atomic_add_unless(&inode->i_count, -1, 1))
2836                 return;
2837
2838         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2839         delayed->inode = inode;
2840
2841         spin_lock(&fs_info->delayed_iput_lock);
2842         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2843         spin_unlock(&fs_info->delayed_iput_lock);
2844 }
2845
2846 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2847 {
2848         LIST_HEAD(list);
2849         struct btrfs_fs_info *fs_info = root->fs_info;
2850         struct delayed_iput *delayed;
2851         int empty;
2852
2853         spin_lock(&fs_info->delayed_iput_lock);
2854         empty = list_empty(&fs_info->delayed_iputs);
2855         spin_unlock(&fs_info->delayed_iput_lock);
2856         if (empty)
2857                 return;
2858
2859         spin_lock(&fs_info->delayed_iput_lock);
2860         list_splice_init(&fs_info->delayed_iputs, &list);
2861         spin_unlock(&fs_info->delayed_iput_lock);
2862
2863         while (!list_empty(&list)) {
2864                 delayed = list_entry(list.next, struct delayed_iput, list);
2865                 list_del(&delayed->list);
2866                 iput(delayed->inode);
2867                 kfree(delayed);
2868         }
2869 }
2870
2871 /*
2872  * This is called in transaction commit time. If there are no orphan
2873  * files in the subvolume, it removes orphan item and frees block_rsv
2874  * structure.
2875  */
2876 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2877                               struct btrfs_root *root)
2878 {
2879         struct btrfs_block_rsv *block_rsv;
2880         int ret;
2881
2882         if (atomic_read(&root->orphan_inodes) ||
2883             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2884                 return;
2885
2886         spin_lock(&root->orphan_lock);
2887         if (atomic_read(&root->orphan_inodes)) {
2888                 spin_unlock(&root->orphan_lock);
2889                 return;
2890         }
2891
2892         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2893                 spin_unlock(&root->orphan_lock);
2894                 return;
2895         }
2896
2897         block_rsv = root->orphan_block_rsv;
2898         root->orphan_block_rsv = NULL;
2899         spin_unlock(&root->orphan_lock);
2900
2901         if (root->orphan_item_inserted &&
2902             btrfs_root_refs(&root->root_item) > 0) {
2903                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2904                                             root->root_key.objectid);
2905                 if (ret)
2906                         btrfs_abort_transaction(trans, root, ret);
2907                 else
2908                         root->orphan_item_inserted = 0;
2909         }
2910
2911         if (block_rsv) {
2912                 WARN_ON(block_rsv->size > 0);
2913                 btrfs_free_block_rsv(root, block_rsv);
2914         }
2915 }
2916
2917 /*
2918  * This creates an orphan entry for the given inode in case something goes
2919  * wrong in the middle of an unlink/truncate.
2920  *
2921  * NOTE: caller of this function should reserve 5 units of metadata for
2922  *       this function.
2923  */
2924 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2925 {
2926         struct btrfs_root *root = BTRFS_I(inode)->root;
2927         struct btrfs_block_rsv *block_rsv = NULL;
2928         int reserve = 0;
2929         int insert = 0;
2930         int ret;
2931
2932         if (!root->orphan_block_rsv) {
2933                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2934                 if (!block_rsv)
2935                         return -ENOMEM;
2936         }
2937
2938         spin_lock(&root->orphan_lock);
2939         if (!root->orphan_block_rsv) {
2940                 root->orphan_block_rsv = block_rsv;
2941         } else if (block_rsv) {
2942                 btrfs_free_block_rsv(root, block_rsv);
2943                 block_rsv = NULL;
2944         }
2945
2946         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2947                               &BTRFS_I(inode)->runtime_flags)) {
2948 #if 0
2949                 /*
2950                  * For proper ENOSPC handling, we should do orphan
2951                  * cleanup when mounting. But this introduces backward
2952                  * compatibility issue.
2953                  */
2954                 if (!xchg(&root->orphan_item_inserted, 1))
2955                         insert = 2;
2956                 else
2957                         insert = 1;
2958 #endif
2959                 insert = 1;
2960                 atomic_inc(&root->orphan_inodes);
2961         }
2962
2963         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2964                               &BTRFS_I(inode)->runtime_flags))
2965                 reserve = 1;
2966         spin_unlock(&root->orphan_lock);
2967
2968         /* grab metadata reservation from transaction handle */
2969         if (reserve) {
2970                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2971                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2972         }
2973
2974         /* insert an orphan item to track this unlinked/truncated file */
2975         if (insert >= 1) {
2976                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2977                 if (ret) {
2978                         atomic_dec(&root->orphan_inodes);
2979                         if (reserve) {
2980                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2981                                           &BTRFS_I(inode)->runtime_flags);
2982                                 btrfs_orphan_release_metadata(inode);
2983                         }
2984                         if (ret != -EEXIST) {
2985                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2986                                           &BTRFS_I(inode)->runtime_flags);
2987                                 btrfs_abort_transaction(trans, root, ret);
2988                                 return ret;
2989                         }
2990                 }
2991                 ret = 0;
2992         }
2993
2994         /* insert an orphan item to track subvolume contains orphan files */
2995         if (insert >= 2) {
2996                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2997                                                root->root_key.objectid);
2998                 if (ret && ret != -EEXIST) {
2999                         btrfs_abort_transaction(trans, root, ret);
3000                         return ret;
3001                 }
3002         }
3003         return 0;
3004 }
3005
3006 /*
3007  * We have done the truncate/delete so we can go ahead and remove the orphan
3008  * item for this particular inode.
3009  */
3010 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3011                             struct inode *inode)
3012 {
3013         struct btrfs_root *root = BTRFS_I(inode)->root;
3014         int delete_item = 0;
3015         int release_rsv = 0;
3016         int ret = 0;
3017
3018         spin_lock(&root->orphan_lock);
3019         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3020                                &BTRFS_I(inode)->runtime_flags))
3021                 delete_item = 1;
3022
3023         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3024                                &BTRFS_I(inode)->runtime_flags))
3025                 release_rsv = 1;
3026         spin_unlock(&root->orphan_lock);
3027
3028         if (delete_item) {
3029                 atomic_dec(&root->orphan_inodes);
3030                 if (trans)
3031                         ret = btrfs_del_orphan_item(trans, root,
3032                                                     btrfs_ino(inode));
3033         }
3034
3035         if (release_rsv)
3036                 btrfs_orphan_release_metadata(inode);
3037
3038         return ret;
3039 }
3040
3041 /*
3042  * this cleans up any orphans that may be left on the list from the last use
3043  * of this root.
3044  */
3045 int btrfs_orphan_cleanup(struct btrfs_root *root)
3046 {
3047         struct btrfs_path *path;
3048         struct extent_buffer *leaf;
3049         struct btrfs_key key, found_key;
3050         struct btrfs_trans_handle *trans;
3051         struct inode *inode;
3052         u64 last_objectid = 0;
3053         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3054
3055         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3056                 return 0;
3057
3058         path = btrfs_alloc_path();
3059         if (!path) {
3060                 ret = -ENOMEM;
3061                 goto out;
3062         }
3063         path->reada = -1;
3064
3065         key.objectid = BTRFS_ORPHAN_OBJECTID;
3066         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3067         key.offset = (u64)-1;
3068
3069         while (1) {
3070                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3071                 if (ret < 0)
3072                         goto out;
3073
3074                 /*
3075                  * if ret == 0 means we found what we were searching for, which
3076                  * is weird, but possible, so only screw with path if we didn't
3077                  * find the key and see if we have stuff that matches
3078                  */
3079                 if (ret > 0) {
3080                         ret = 0;
3081                         if (path->slots[0] == 0)
3082                                 break;
3083                         path->slots[0]--;
3084                 }
3085
3086                 /* pull out the item */
3087                 leaf = path->nodes[0];
3088                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3089
3090                 /* make sure the item matches what we want */
3091                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3092                         break;
3093                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3094                         break;
3095
3096                 /* release the path since we're done with it */
3097                 btrfs_release_path(path);
3098
3099                 /*
3100                  * this is where we are basically btrfs_lookup, without the
3101                  * crossing root thing.  we store the inode number in the
3102                  * offset of the orphan item.
3103                  */
3104
3105                 if (found_key.offset == last_objectid) {
3106                         btrfs_err(root->fs_info,
3107                                 "Error removing orphan entry, stopping orphan cleanup");
3108                         ret = -EINVAL;
3109                         goto out;
3110                 }
3111
3112                 last_objectid = found_key.offset;
3113
3114                 found_key.objectid = found_key.offset;
3115                 found_key.type = BTRFS_INODE_ITEM_KEY;
3116                 found_key.offset = 0;
3117                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3118                 ret = PTR_ERR_OR_ZERO(inode);
3119                 if (ret && ret != -ESTALE)
3120                         goto out;
3121
3122                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3123                         struct btrfs_root *dead_root;
3124                         struct btrfs_fs_info *fs_info = root->fs_info;
3125                         int is_dead_root = 0;
3126
3127                         /*
3128                          * this is an orphan in the tree root. Currently these
3129                          * could come from 2 sources:
3130                          *  a) a snapshot deletion in progress
3131                          *  b) a free space cache inode
3132                          * We need to distinguish those two, as the snapshot
3133                          * orphan must not get deleted.
3134                          * find_dead_roots already ran before us, so if this
3135                          * is a snapshot deletion, we should find the root
3136                          * in the dead_roots list
3137                          */
3138                         spin_lock(&fs_info->trans_lock);
3139                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3140                                             root_list) {
3141                                 if (dead_root->root_key.objectid ==
3142                                     found_key.objectid) {
3143                                         is_dead_root = 1;
3144                                         break;
3145                                 }
3146                         }
3147                         spin_unlock(&fs_info->trans_lock);
3148                         if (is_dead_root) {
3149                                 /* prevent this orphan from being found again */
3150                                 key.offset = found_key.objectid - 1;
3151                                 continue;
3152                         }
3153                 }
3154                 /*
3155                  * Inode is already gone but the orphan item is still there,
3156                  * kill the orphan item.
3157                  */
3158                 if (ret == -ESTALE) {
3159                         trans = btrfs_start_transaction(root, 1);
3160                         if (IS_ERR(trans)) {
3161                                 ret = PTR_ERR(trans);
3162                                 goto out;
3163                         }
3164                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3165                                 found_key.objectid);
3166                         ret = btrfs_del_orphan_item(trans, root,
3167                                                     found_key.objectid);
3168                         btrfs_end_transaction(trans, root);
3169                         if (ret)
3170                                 goto out;
3171                         continue;
3172                 }
3173
3174                 /*
3175                  * add this inode to the orphan list so btrfs_orphan_del does
3176                  * the proper thing when we hit it
3177                  */
3178                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3179                         &BTRFS_I(inode)->runtime_flags);
3180                 atomic_inc(&root->orphan_inodes);
3181
3182                 /* if we have links, this was a truncate, lets do that */
3183                 if (inode->i_nlink) {
3184                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3185                                 iput(inode);
3186                                 continue;
3187                         }
3188                         nr_truncate++;
3189
3190                         /* 1 for the orphan item deletion. */
3191                         trans = btrfs_start_transaction(root, 1);
3192                         if (IS_ERR(trans)) {
3193                                 iput(inode);
3194                                 ret = PTR_ERR(trans);
3195                                 goto out;
3196                         }
3197                         ret = btrfs_orphan_add(trans, inode);
3198                         btrfs_end_transaction(trans, root);
3199                         if (ret) {
3200                                 iput(inode);
3201                                 goto out;
3202                         }
3203
3204                         ret = btrfs_truncate(inode);
3205                         if (ret)
3206                                 btrfs_orphan_del(NULL, inode);
3207                 } else {
3208                         nr_unlink++;
3209                 }
3210
3211                 /* this will do delete_inode and everything for us */
3212                 iput(inode);
3213                 if (ret)
3214                         goto out;
3215         }
3216         /* release the path since we're done with it */
3217         btrfs_release_path(path);
3218
3219         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3220
3221         if (root->orphan_block_rsv)
3222                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3223                                         (u64)-1);
3224
3225         if (root->orphan_block_rsv || root->orphan_item_inserted) {
3226                 trans = btrfs_join_transaction(root);
3227                 if (!IS_ERR(trans))
3228                         btrfs_end_transaction(trans, root);
3229         }
3230
3231         if (nr_unlink)
3232                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3233         if (nr_truncate)
3234                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3235
3236 out:
3237         if (ret)
3238                 btrfs_crit(root->fs_info,
3239                         "could not do orphan cleanup %d", ret);
3240         btrfs_free_path(path);
3241         return ret;
3242 }
3243
3244 /*
3245  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3246  * don't find any xattrs, we know there can't be any acls.
3247  *
3248  * slot is the slot the inode is in, objectid is the objectid of the inode
3249  */
3250 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3251                                           int slot, u64 objectid)
3252 {
3253         u32 nritems = btrfs_header_nritems(leaf);
3254         struct btrfs_key found_key;
3255         static u64 xattr_access = 0;
3256         static u64 xattr_default = 0;
3257         int scanned = 0;
3258
3259         if (!xattr_access) {
3260                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3261                                         strlen(POSIX_ACL_XATTR_ACCESS));
3262                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3263                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3264         }
3265
3266         slot++;
3267         while (slot < nritems) {
3268                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3269
3270                 /* we found a different objectid, there must not be acls */
3271                 if (found_key.objectid != objectid)
3272                         return 0;
3273
3274                 /* we found an xattr, assume we've got an acl */
3275                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3276                         if (found_key.offset == xattr_access ||
3277                             found_key.offset == xattr_default)
3278                                 return 1;
3279                 }
3280
3281                 /*
3282                  * we found a key greater than an xattr key, there can't
3283                  * be any acls later on
3284                  */
3285                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3286                         return 0;
3287
3288                 slot++;
3289                 scanned++;
3290
3291                 /*
3292                  * it goes inode, inode backrefs, xattrs, extents,
3293                  * so if there are a ton of hard links to an inode there can
3294                  * be a lot of backrefs.  Don't waste time searching too hard,
3295                  * this is just an optimization
3296                  */
3297                 if (scanned >= 8)
3298                         break;
3299         }
3300         /* we hit the end of the leaf before we found an xattr or
3301          * something larger than an xattr.  We have to assume the inode
3302          * has acls
3303          */
3304         return 1;
3305 }
3306
3307 /*
3308  * read an inode from the btree into the in-memory inode
3309  */
3310 static void btrfs_read_locked_inode(struct inode *inode)
3311 {
3312         struct btrfs_path *path;
3313         struct extent_buffer *leaf;
3314         struct btrfs_inode_item *inode_item;
3315         struct btrfs_timespec *tspec;
3316         struct btrfs_root *root = BTRFS_I(inode)->root;
3317         struct btrfs_key location;
3318         int maybe_acls;
3319         u32 rdev;
3320         int ret;
3321         bool filled = false;
3322
3323         ret = btrfs_fill_inode(inode, &rdev);
3324         if (!ret)
3325                 filled = true;
3326
3327         path = btrfs_alloc_path();
3328         if (!path)
3329                 goto make_bad;
3330
3331         path->leave_spinning = 1;
3332         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3333
3334         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3335         if (ret)
3336                 goto make_bad;
3337
3338         leaf = path->nodes[0];
3339
3340         if (filled)
3341                 goto cache_acl;
3342
3343         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3344                                     struct btrfs_inode_item);
3345         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3346         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3347         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3348         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3349         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3350
3351         tspec = btrfs_inode_atime(inode_item);
3352         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3353         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3354
3355         tspec = btrfs_inode_mtime(inode_item);
3356         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3357         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3358
3359         tspec = btrfs_inode_ctime(inode_item);
3360         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3361         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3362
3363         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3364         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3365         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3366
3367         /*
3368          * If we were modified in the current generation and evicted from memory
3369          * and then re-read we need to do a full sync since we don't have any
3370          * idea about which extents were modified before we were evicted from
3371          * cache.
3372          */
3373         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3374                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3375                         &BTRFS_I(inode)->runtime_flags);
3376
3377         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3378         inode->i_generation = BTRFS_I(inode)->generation;
3379         inode->i_rdev = 0;
3380         rdev = btrfs_inode_rdev(leaf, inode_item);
3381
3382         BTRFS_I(inode)->index_cnt = (u64)-1;
3383         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3384 cache_acl:
3385         /*
3386          * try to precache a NULL acl entry for files that don't have
3387          * any xattrs or acls
3388          */
3389         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3390                                            btrfs_ino(inode));
3391         if (!maybe_acls)
3392                 cache_no_acl(inode);
3393
3394         btrfs_free_path(path);
3395
3396         switch (inode->i_mode & S_IFMT) {
3397         case S_IFREG:
3398                 inode->i_mapping->a_ops = &btrfs_aops;
3399                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3400                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3401                 inode->i_fop = &btrfs_file_operations;
3402                 inode->i_op = &btrfs_file_inode_operations;
3403                 break;
3404         case S_IFDIR:
3405                 inode->i_fop = &btrfs_dir_file_operations;
3406                 if (root == root->fs_info->tree_root)
3407                         inode->i_op = &btrfs_dir_ro_inode_operations;
3408                 else
3409                         inode->i_op = &btrfs_dir_inode_operations;
3410                 break;
3411         case S_IFLNK:
3412                 inode->i_op = &btrfs_symlink_inode_operations;
3413                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3414                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3415                 break;
3416         default:
3417                 inode->i_op = &btrfs_special_inode_operations;
3418                 init_special_inode(inode, inode->i_mode, rdev);
3419                 break;
3420         }
3421
3422         btrfs_update_iflags(inode);
3423         return;
3424
3425 make_bad:
3426         btrfs_free_path(path);
3427         make_bad_inode(inode);
3428 }
3429
3430 /*
3431  * given a leaf and an inode, copy the inode fields into the leaf
3432  */
3433 static void fill_inode_item(struct btrfs_trans_handle *trans,
3434                             struct extent_buffer *leaf,
3435                             struct btrfs_inode_item *item,
3436                             struct inode *inode)
3437 {
3438         struct btrfs_map_token token;
3439
3440         btrfs_init_map_token(&token);
3441
3442         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3443         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3444         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3445                                    &token);
3446         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3447         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3448
3449         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3450                                      inode->i_atime.tv_sec, &token);
3451         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3452                                       inode->i_atime.tv_nsec, &token);
3453
3454         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3455                                      inode->i_mtime.tv_sec, &token);
3456         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3457                                       inode->i_mtime.tv_nsec, &token);
3458
3459         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3460                                      inode->i_ctime.tv_sec, &token);
3461         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3462                                       inode->i_ctime.tv_nsec, &token);
3463
3464         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3465                                      &token);
3466         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3467                                          &token);
3468         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3469         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3470         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3471         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3472         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3473 }
3474
3475 /*
3476  * copy everything in the in-memory inode into the btree.
3477  */
3478 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3479                                 struct btrfs_root *root, struct inode *inode)
3480 {
3481         struct btrfs_inode_item *inode_item;
3482         struct btrfs_path *path;
3483         struct extent_buffer *leaf;
3484         int ret;
3485
3486         path = btrfs_alloc_path();
3487         if (!path)
3488                 return -ENOMEM;
3489
3490         path->leave_spinning = 1;
3491         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3492                                  1);
3493         if (ret) {
3494                 if (ret > 0)
3495                         ret = -ENOENT;
3496                 goto failed;
3497         }
3498
3499         btrfs_unlock_up_safe(path, 1);
3500         leaf = path->nodes[0];
3501         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3502                                     struct btrfs_inode_item);
3503
3504         fill_inode_item(trans, leaf, inode_item, inode);
3505         btrfs_mark_buffer_dirty(leaf);
3506         btrfs_set_inode_last_trans(trans, inode);
3507         ret = 0;
3508 failed:
3509         btrfs_free_path(path);
3510         return ret;
3511 }
3512
3513 /*
3514  * copy everything in the in-memory inode into the btree.
3515  */
3516 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3517                                 struct btrfs_root *root, struct inode *inode)
3518 {
3519         int ret;
3520
3521         /*
3522          * If the inode is a free space inode, we can deadlock during commit
3523          * if we put it into the delayed code.
3524          *
3525          * The data relocation inode should also be directly updated
3526          * without delay
3527          */
3528         if (!btrfs_is_free_space_inode(inode)
3529             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3530                 btrfs_update_root_times(trans, root);
3531
3532                 ret = btrfs_delayed_update_inode(trans, root, inode);
3533                 if (!ret)
3534                         btrfs_set_inode_last_trans(trans, inode);
3535                 return ret;
3536         }
3537
3538         return btrfs_update_inode_item(trans, root, inode);
3539 }
3540
3541 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3542                                          struct btrfs_root *root,
3543                                          struct inode *inode)
3544 {
3545         int ret;
3546
3547         ret = btrfs_update_inode(trans, root, inode);
3548         if (ret == -ENOSPC)
3549                 return btrfs_update_inode_item(trans, root, inode);
3550         return ret;
3551 }
3552
3553 /*
3554  * unlink helper that gets used here in inode.c and in the tree logging
3555  * recovery code.  It remove a link in a directory with a given name, and
3556  * also drops the back refs in the inode to the directory
3557  */
3558 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3559                                 struct btrfs_root *root,
3560                                 struct inode *dir, struct inode *inode,
3561                                 const char *name, int name_len)
3562 {
3563         struct btrfs_path *path;
3564         int ret = 0;
3565         struct extent_buffer *leaf;
3566         struct btrfs_dir_item *di;
3567         struct btrfs_key key;
3568         u64 index;
3569         u64 ino = btrfs_ino(inode);
3570         u64 dir_ino = btrfs_ino(dir);
3571
3572         path = btrfs_alloc_path();
3573         if (!path) {
3574                 ret = -ENOMEM;
3575                 goto out;
3576         }
3577
3578         path->leave_spinning = 1;
3579         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3580                                     name, name_len, -1);
3581         if (IS_ERR(di)) {
3582                 ret = PTR_ERR(di);
3583                 goto err;
3584         }
3585         if (!di) {
3586                 ret = -ENOENT;
3587                 goto err;
3588         }
3589         leaf = path->nodes[0];
3590         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3591         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3592         if (ret)
3593                 goto err;
3594         btrfs_release_path(path);
3595
3596         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3597                                   dir_ino, &index);
3598         if (ret) {
3599                 btrfs_info(root->fs_info,
3600                         "failed to delete reference to %.*s, inode %llu parent %llu",
3601                         name_len, name, ino, dir_ino);
3602                 btrfs_abort_transaction(trans, root, ret);
3603                 goto err;
3604         }
3605
3606         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3607         if (ret) {
3608                 btrfs_abort_transaction(trans, root, ret);
3609                 goto err;
3610         }
3611
3612         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3613                                          inode, dir_ino);
3614         if (ret != 0 && ret != -ENOENT) {
3615                 btrfs_abort_transaction(trans, root, ret);
3616                 goto err;
3617         }
3618
3619         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3620                                            dir, index);
3621         if (ret == -ENOENT)
3622                 ret = 0;
3623         else if (ret)
3624                 btrfs_abort_transaction(trans, root, ret);
3625 err:
3626         btrfs_free_path(path);
3627         if (ret)
3628                 goto out;
3629
3630         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3631         inode_inc_iversion(inode);
3632         inode_inc_iversion(dir);
3633         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3634         ret = btrfs_update_inode(trans, root, dir);
3635 out:
3636         return ret;
3637 }
3638
3639 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3640                        struct btrfs_root *root,
3641                        struct inode *dir, struct inode *inode,
3642                        const char *name, int name_len)
3643 {
3644         int ret;
3645         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3646         if (!ret) {
3647                 drop_nlink(inode);
3648                 ret = btrfs_update_inode(trans, root, inode);
3649         }
3650         return ret;
3651 }
3652
3653 /*
3654  * helper to start transaction for unlink and rmdir.
3655  *
3656  * unlink and rmdir are special in btrfs, they do not always free space, so
3657  * if we cannot make our reservations the normal way try and see if there is
3658  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3659  * allow the unlink to occur.
3660  */
3661 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3662 {
3663         struct btrfs_trans_handle *trans;
3664         struct btrfs_root *root = BTRFS_I(dir)->root;
3665         int ret;
3666
3667         /*
3668          * 1 for the possible orphan item
3669          * 1 for the dir item
3670          * 1 for the dir index
3671          * 1 for the inode ref
3672          * 1 for the inode
3673          */
3674         trans = btrfs_start_transaction(root, 5);
3675         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3676                 return trans;
3677
3678         if (PTR_ERR(trans) == -ENOSPC) {
3679                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3680
3681                 trans = btrfs_start_transaction(root, 0);
3682                 if (IS_ERR(trans))
3683                         return trans;
3684                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3685                                                &root->fs_info->trans_block_rsv,
3686                                                num_bytes, 5);
3687                 if (ret) {
3688                         btrfs_end_transaction(trans, root);
3689                         return ERR_PTR(ret);
3690                 }
3691                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3692                 trans->bytes_reserved = num_bytes;
3693         }
3694         return trans;
3695 }
3696
3697 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3698 {
3699         struct btrfs_root *root = BTRFS_I(dir)->root;
3700         struct btrfs_trans_handle *trans;
3701         struct inode *inode = dentry->d_inode;
3702         int ret;
3703
3704         trans = __unlink_start_trans(dir);
3705         if (IS_ERR(trans))
3706                 return PTR_ERR(trans);
3707
3708         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3709
3710         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3711                                  dentry->d_name.name, dentry->d_name.len);
3712         if (ret)
3713                 goto out;
3714
3715         if (inode->i_nlink == 0) {
3716                 ret = btrfs_orphan_add(trans, inode);
3717                 if (ret)
3718                         goto out;
3719         }
3720
3721 out:
3722         btrfs_end_transaction(trans, root);
3723         btrfs_btree_balance_dirty(root);
3724         return ret;
3725 }
3726
3727 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3728                         struct btrfs_root *root,
3729                         struct inode *dir, u64 objectid,
3730                         const char *name, int name_len)
3731 {
3732         struct btrfs_path *path;
3733         struct extent_buffer *leaf;
3734         struct btrfs_dir_item *di;
3735         struct btrfs_key key;
3736         u64 index;
3737         int ret;
3738         u64 dir_ino = btrfs_ino(dir);
3739
3740         path = btrfs_alloc_path();
3741         if (!path)
3742                 return -ENOMEM;
3743
3744         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3745                                    name, name_len, -1);
3746         if (IS_ERR_OR_NULL(di)) {
3747                 if (!di)
3748                         ret = -ENOENT;
3749                 else
3750                         ret = PTR_ERR(di);
3751                 goto out;
3752         }
3753
3754         leaf = path->nodes[0];
3755         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3756         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3757         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3758         if (ret) {
3759                 btrfs_abort_transaction(trans, root, ret);
3760                 goto out;
3761         }
3762         btrfs_release_path(path);
3763
3764         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3765                                  objectid, root->root_key.objectid,
3766                                  dir_ino, &index, name, name_len);
3767         if (ret < 0) {
3768                 if (ret != -ENOENT) {
3769                         btrfs_abort_transaction(trans, root, ret);
3770                         goto out;
3771                 }
3772                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3773                                                  name, name_len);
3774                 if (IS_ERR_OR_NULL(di)) {
3775                         if (!di)
3776                                 ret = -ENOENT;
3777                         else
3778                                 ret = PTR_ERR(di);
3779                         btrfs_abort_transaction(trans, root, ret);
3780                         goto out;
3781                 }
3782
3783                 leaf = path->nodes[0];
3784                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3785                 btrfs_release_path(path);
3786                 index = key.offset;
3787         }
3788         btrfs_release_path(path);
3789
3790         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3791         if (ret) {
3792                 btrfs_abort_transaction(trans, root, ret);
3793                 goto out;
3794         }
3795
3796         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3797         inode_inc_iversion(dir);
3798         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3799         ret = btrfs_update_inode_fallback(trans, root, dir);
3800         if (ret)
3801                 btrfs_abort_transaction(trans, root, ret);
3802 out:
3803         btrfs_free_path(path);
3804         return ret;
3805 }
3806
3807 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3808 {
3809         struct inode *inode = dentry->d_inode;
3810         int err = 0;
3811         struct btrfs_root *root = BTRFS_I(dir)->root;
3812         struct btrfs_trans_handle *trans;
3813
3814         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3815                 return -ENOTEMPTY;
3816         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3817                 return -EPERM;
3818
3819         trans = __unlink_start_trans(dir);
3820         if (IS_ERR(trans))
3821                 return PTR_ERR(trans);
3822
3823         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3824                 err = btrfs_unlink_subvol(trans, root, dir,
3825                                           BTRFS_I(inode)->location.objectid,
3826                                           dentry->d_name.name,
3827                                           dentry->d_name.len);
3828                 goto out;
3829         }
3830
3831         err = btrfs_orphan_add(trans, inode);
3832         if (err)
3833                 goto out;
3834
3835         /* now the directory is empty */
3836         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3837                                  dentry->d_name.name, dentry->d_name.len);
3838         if (!err)
3839                 btrfs_i_size_write(inode, 0);
3840 out:
3841         btrfs_end_transaction(trans, root);
3842         btrfs_btree_balance_dirty(root);
3843
3844         return err;
3845 }
3846
3847 /*
3848  * this can truncate away extent items, csum items and directory items.
3849  * It starts at a high offset and removes keys until it can't find
3850  * any higher than new_size
3851  *
3852  * csum items that cross the new i_size are truncated to the new size
3853  * as well.
3854  *
3855  * min_type is the minimum key type to truncate down to.  If set to 0, this
3856  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3857  */
3858 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3859                                struct btrfs_root *root,
3860                                struct inode *inode,
3861                                u64 new_size, u32 min_type)
3862 {
3863         struct btrfs_path *path;
3864         struct extent_buffer *leaf;
3865         struct btrfs_file_extent_item *fi;
3866         struct btrfs_key key;
3867         struct btrfs_key found_key;
3868         u64 extent_start = 0;
3869         u64 extent_num_bytes = 0;
3870         u64 extent_offset = 0;
3871         u64 item_end = 0;
3872         u64 last_size = (u64)-1;
3873         u32 found_type = (u8)-1;
3874         int found_extent;
3875         int del_item;
3876         int pending_del_nr = 0;
3877         int pending_del_slot = 0;
3878         int extent_type = -1;
3879         int ret;
3880         int err = 0;
3881         u64 ino = btrfs_ino(inode);
3882
3883         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3884
3885         path = btrfs_alloc_path();
3886         if (!path)
3887                 return -ENOMEM;
3888         path->reada = -1;
3889
3890         /*
3891          * We want to drop from the next block forward in case this new size is
3892          * not block aligned since we will be keeping the last block of the
3893          * extent just the way it is.
3894          */
3895         if (root->ref_cows || root == root->fs_info->tree_root)
3896                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3897                                         root->sectorsize), (u64)-1, 0);
3898
3899         /*
3900          * This function is also used to drop the items in the log tree before
3901          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3902          * it is used to drop the loged items. So we shouldn't kill the delayed
3903          * items.
3904          */
3905         if (min_type == 0 && root == BTRFS_I(inode)->root)
3906                 btrfs_kill_delayed_inode_items(inode);
3907
3908         key.objectid = ino;
3909         key.offset = (u64)-1;
3910         key.type = (u8)-1;
3911
3912 search_again:
3913         path->leave_spinning = 1;
3914         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3915         if (ret < 0) {
3916                 err = ret;
3917                 goto out;
3918         }
3919
3920         if (ret > 0) {
3921                 /* there are no items in the tree for us to truncate, we're
3922                  * done
3923                  */
3924                 if (path->slots[0] == 0)
3925                         goto out;
3926                 path->slots[0]--;
3927         }
3928
3929         while (1) {
3930                 fi = NULL;
3931                 leaf = path->nodes[0];
3932                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3933                 found_type = btrfs_key_type(&found_key);
3934
3935                 if (found_key.objectid != ino)
3936                         break;
3937
3938                 if (found_type < min_type)
3939                         break;
3940
3941                 item_end = found_key.offset;
3942                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3943                         fi = btrfs_item_ptr(leaf, path->slots[0],
3944                                             struct btrfs_file_extent_item);
3945                         extent_type = btrfs_file_extent_type(leaf, fi);
3946                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3947                                 item_end +=
3948                                     btrfs_file_extent_num_bytes(leaf, fi);
3949                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3950                                 item_end += btrfs_file_extent_inline_len(leaf,
3951                                                                          fi);
3952                         }
3953                         item_end--;
3954                 }
3955                 if (found_type > min_type) {
3956                         del_item = 1;
3957                 } else {
3958                         if (item_end < new_size)
3959                                 break;
3960                         if (found_key.offset >= new_size)
3961                                 del_item = 1;
3962                         else
3963                                 del_item = 0;
3964                 }
3965                 found_extent = 0;
3966                 /* FIXME, shrink the extent if the ref count is only 1 */
3967                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3968                         goto delete;
3969
3970                 if (del_item)
3971                         last_size = found_key.offset;
3972                 else
3973                         last_size = new_size;
3974
3975                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3976                         u64 num_dec;
3977                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3978                         if (!del_item) {
3979                                 u64 orig_num_bytes =
3980                                         btrfs_file_extent_num_bytes(leaf, fi);
3981                                 extent_num_bytes = ALIGN(new_size -
3982                                                 found_key.offset,
3983                                                 root->sectorsize);
3984                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3985                                                          extent_num_bytes);
3986                                 num_dec = (orig_num_bytes -
3987                                            extent_num_bytes);
3988                                 if (root->ref_cows && extent_start != 0)
3989                                         inode_sub_bytes(inode, num_dec);
3990                                 btrfs_mark_buffer_dirty(leaf);
3991                         } else {
3992                                 extent_num_bytes =
3993                                         btrfs_file_extent_disk_num_bytes(leaf,
3994                                                                          fi);
3995                                 extent_offset = found_key.offset -
3996                                         btrfs_file_extent_offset(leaf, fi);
3997
3998                                 /* FIXME blocksize != 4096 */
3999                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4000                                 if (extent_start != 0) {
4001                                         found_extent = 1;
4002                                         if (root->ref_cows)
4003                                                 inode_sub_bytes(inode, num_dec);
4004                                 }
4005                         }
4006                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4007                         /*
4008                          * we can't truncate inline items that have had
4009                          * special encodings
4010                          */
4011                         if (!del_item &&
4012                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4013                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4014                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4015                                 u32 size = new_size - found_key.offset;
4016
4017                                 if (root->ref_cows) {
4018                                         inode_sub_bytes(inode, item_end + 1 -
4019                                                         new_size);
4020                                 }
4021                                 size =
4022                                     btrfs_file_extent_calc_inline_size(size);
4023                                 btrfs_truncate_item(root, path, size, 1);
4024                         } else if (root->ref_cows) {
4025                                 inode_sub_bytes(inode, item_end + 1 -
4026                                                 found_key.offset);
4027                         }
4028                 }
4029 delete:
4030                 if (del_item) {
4031                         if (!pending_del_nr) {
4032                                 /* no pending yet, add ourselves */
4033                                 pending_del_slot = path->slots[0];
4034                                 pending_del_nr = 1;
4035                         } else if (pending_del_nr &&
4036                                    path->slots[0] + 1 == pending_del_slot) {
4037                                 /* hop on the pending chunk */
4038                                 pending_del_nr++;
4039                                 pending_del_slot = path->slots[0];
4040                         } else {
4041                                 BUG();
4042                         }
4043                 } else {
4044                         break;
4045                 }
4046                 if (found_extent && (root->ref_cows ||
4047                                      root == root->fs_info->tree_root)) {
4048                         btrfs_set_path_blocking(path);
4049                         ret = btrfs_free_extent(trans, root, extent_start,
4050                                                 extent_num_bytes, 0,
4051                                                 btrfs_header_owner(leaf),
4052                                                 ino, extent_offset, 0);
4053                         BUG_ON(ret);
4054                 }
4055
4056                 if (found_type == BTRFS_INODE_ITEM_KEY)
4057                         break;
4058
4059                 if (path->slots[0] == 0 ||
4060                     path->slots[0] != pending_del_slot) {
4061                         if (pending_del_nr) {
4062                                 ret = btrfs_del_items(trans, root, path,
4063                                                 pending_del_slot,
4064                                                 pending_del_nr);
4065                                 if (ret) {
4066                                         btrfs_abort_transaction(trans,
4067                                                                 root, ret);
4068                                         goto error;
4069                                 }
4070                                 pending_del_nr = 0;
4071                         }
4072                         btrfs_release_path(path);
4073                         goto search_again;
4074                 } else {
4075                         path->slots[0]--;
4076                 }
4077         }
4078 out:
4079         if (pending_del_nr) {
4080                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4081                                       pending_del_nr);
4082                 if (ret)
4083                         btrfs_abort_transaction(trans, root, ret);
4084         }
4085 error:
4086         if (last_size != (u64)-1)
4087                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4088         btrfs_free_path(path);
4089         return err;
4090 }
4091
4092 /*
4093  * btrfs_truncate_page - read, zero a chunk and write a page
4094  * @inode - inode that we're zeroing
4095  * @from - the offset to start zeroing
4096  * @len - the length to zero, 0 to zero the entire range respective to the
4097  *      offset
4098  * @front - zero up to the offset instead of from the offset on
4099  *
4100  * This will find the page for the "from" offset and cow the page and zero the
4101  * part we want to zero.  This is used with truncate and hole punching.
4102  */
4103 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4104                         int front)
4105 {
4106         struct address_space *mapping = inode->i_mapping;
4107         struct btrfs_root *root = BTRFS_I(inode)->root;
4108         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4109         struct btrfs_ordered_extent *ordered;
4110         struct extent_state *cached_state = NULL;
4111         char *kaddr;
4112         u32 blocksize = root->sectorsize;
4113         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4114         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4115         struct page *page;
4116         gfp_t mask = btrfs_alloc_write_mask(mapping);
4117         int ret = 0;
4118         u64 page_start;
4119         u64 page_end;
4120
4121         if ((offset & (blocksize - 1)) == 0 &&
4122             (!len || ((len & (blocksize - 1)) == 0)))
4123                 goto out;
4124         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4125         if (ret)
4126                 goto out;
4127
4128 again:
4129         page = find_or_create_page(mapping, index, mask);
4130         if (!page) {
4131                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4132                 ret = -ENOMEM;
4133                 goto out;
4134         }
4135
4136         page_start = page_offset(page);
4137         page_end = page_start + PAGE_CACHE_SIZE - 1;
4138
4139         if (!PageUptodate(page)) {
4140                 ret = btrfs_readpage(NULL, page);
4141                 lock_page(page);
4142                 if (page->mapping != mapping) {
4143                         unlock_page(page);
4144                         page_cache_release(page);
4145                         goto again;
4146                 }
4147                 if (!PageUptodate(page)) {
4148                         ret = -EIO;
4149                         goto out_unlock;
4150                 }
4151         }
4152         wait_on_page_writeback(page);
4153
4154         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4155         set_page_extent_mapped(page);
4156
4157         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4158         if (ordered) {
4159                 unlock_extent_cached(io_tree, page_start, page_end,
4160                                      &cached_state, GFP_NOFS);
4161                 unlock_page(page);
4162                 page_cache_release(page);
4163                 btrfs_start_ordered_extent(inode, ordered, 1);
4164                 btrfs_put_ordered_extent(ordered);
4165                 goto again;
4166         }
4167
4168         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4169                           EXTENT_DIRTY | EXTENT_DELALLOC |
4170                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4171                           0, 0, &cached_state, GFP_NOFS);
4172
4173         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4174                                         &cached_state);
4175         if (ret) {
4176                 unlock_extent_cached(io_tree, page_start, page_end,
4177                                      &cached_state, GFP_NOFS);
4178                 goto out_unlock;
4179         }
4180
4181         if (offset != PAGE_CACHE_SIZE) {
4182                 if (!len)
4183                         len = PAGE_CACHE_SIZE - offset;
4184                 kaddr = kmap(page);
4185                 if (front)
4186                         memset(kaddr, 0, offset);
4187                 else
4188                         memset(kaddr + offset, 0, len);
4189                 flush_dcache_page(page);
4190                 kunmap(page);
4191         }
4192         ClearPageChecked(page);
4193         set_page_dirty(page);
4194         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4195                              GFP_NOFS);
4196
4197 out_unlock:
4198         if (ret)
4199                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4200         unlock_page(page);
4201         page_cache_release(page);
4202 out:
4203         return ret;
4204 }
4205
4206 /*
4207  * This function puts in dummy file extents for the area we're creating a hole
4208  * for.  So if we are truncating this file to a larger size we need to insert
4209  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4210  * the range between oldsize and size
4211  */
4212 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4213 {
4214         struct btrfs_trans_handle *trans;
4215         struct btrfs_root *root = BTRFS_I(inode)->root;
4216         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4217         struct extent_map *em = NULL;
4218         struct extent_state *cached_state = NULL;
4219         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4220         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4221         u64 block_end = ALIGN(size, root->sectorsize);
4222         u64 last_byte;
4223         u64 cur_offset;
4224         u64 hole_size;
4225         int err = 0;
4226
4227         /*
4228          * If our size started in the middle of a page we need to zero out the
4229          * rest of the page before we expand the i_size, otherwise we could
4230          * expose stale data.
4231          */
4232         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4233         if (err)
4234                 return err;
4235
4236         if (size <= hole_start)
4237                 return 0;
4238
4239         while (1) {
4240                 struct btrfs_ordered_extent *ordered;
4241
4242                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4243                                  &cached_state);
4244                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4245                                                      block_end - hole_start);
4246                 if (!ordered)
4247                         break;
4248                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4249                                      &cached_state, GFP_NOFS);
4250                 btrfs_start_ordered_extent(inode, ordered, 1);
4251                 btrfs_put_ordered_extent(ordered);
4252         }
4253
4254         cur_offset = hole_start;
4255         while (1) {
4256                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4257                                 block_end - cur_offset, 0);
4258                 if (IS_ERR(em)) {
4259                         err = PTR_ERR(em);
4260                         em = NULL;
4261                         break;
4262                 }
4263                 last_byte = min(extent_map_end(em), block_end);
4264                 last_byte = ALIGN(last_byte , root->sectorsize);
4265                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4266                         struct extent_map *hole_em;
4267                         hole_size = last_byte - cur_offset;
4268
4269                         trans = btrfs_start_transaction(root, 3);
4270                         if (IS_ERR(trans)) {
4271                                 err = PTR_ERR(trans);
4272                                 break;
4273                         }
4274
4275                         err = btrfs_drop_extents(trans, root, inode,
4276                                                  cur_offset,
4277                                                  cur_offset + hole_size, 1);
4278                         if (err) {
4279                                 btrfs_abort_transaction(trans, root, err);
4280                                 btrfs_end_transaction(trans, root);
4281                                 break;
4282                         }
4283
4284                         err = btrfs_insert_file_extent(trans, root,
4285                                         btrfs_ino(inode), cur_offset, 0,
4286                                         0, hole_size, 0, hole_size,
4287                                         0, 0, 0);
4288                         if (err) {
4289                                 btrfs_abort_transaction(trans, root, err);
4290                                 btrfs_end_transaction(trans, root);
4291                                 break;
4292                         }
4293
4294                         btrfs_drop_extent_cache(inode, cur_offset,
4295                                                 cur_offset + hole_size - 1, 0);
4296                         hole_em = alloc_extent_map();
4297                         if (!hole_em) {
4298                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4299                                         &BTRFS_I(inode)->runtime_flags);
4300                                 goto next;
4301                         }
4302                         hole_em->start = cur_offset;
4303                         hole_em->len = hole_size;
4304                         hole_em->orig_start = cur_offset;
4305
4306                         hole_em->block_start = EXTENT_MAP_HOLE;
4307                         hole_em->block_len = 0;
4308                         hole_em->orig_block_len = 0;
4309                         hole_em->ram_bytes = hole_size;
4310                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4311                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4312                         hole_em->generation = trans->transid;
4313
4314                         while (1) {
4315                                 write_lock(&em_tree->lock);
4316                                 err = add_extent_mapping(em_tree, hole_em, 1);
4317                                 write_unlock(&em_tree->lock);
4318                                 if (err != -EEXIST)
4319                                         break;
4320                                 btrfs_drop_extent_cache(inode, cur_offset,
4321                                                         cur_offset +
4322                                                         hole_size - 1, 0);
4323                         }
4324                         free_extent_map(hole_em);
4325 next:
4326                         btrfs_update_inode(trans, root, inode);
4327                         btrfs_end_transaction(trans, root);
4328                 }
4329                 free_extent_map(em);
4330                 em = NULL;
4331                 cur_offset = last_byte;
4332                 if (cur_offset >= block_end)
4333                         break;
4334         }
4335
4336         free_extent_map(em);
4337         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4338                              GFP_NOFS);
4339         return err;
4340 }
4341
4342 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4343 {
4344         struct btrfs_root *root = BTRFS_I(inode)->root;
4345         struct btrfs_trans_handle *trans;
4346         loff_t oldsize = i_size_read(inode);
4347         loff_t newsize = attr->ia_size;
4348         int mask = attr->ia_valid;
4349         int ret;
4350
4351         /*
4352          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4353          * special case where we need to update the times despite not having
4354          * these flags set.  For all other operations the VFS set these flags
4355          * explicitly if it wants a timestamp update.
4356          */
4357         if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4358                 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4359
4360         if (newsize > oldsize) {
4361                 truncate_pagecache(inode, newsize);
4362                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4363                 if (ret)
4364                         return ret;
4365
4366                 trans = btrfs_start_transaction(root, 1);
4367                 if (IS_ERR(trans))
4368                         return PTR_ERR(trans);
4369
4370                 i_size_write(inode, newsize);
4371                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4372                 ret = btrfs_update_inode(trans, root, inode);
4373                 btrfs_end_transaction(trans, root);
4374         } else {
4375
4376                 /*
4377                  * We're truncating a file that used to have good data down to
4378                  * zero. Make sure it gets into the ordered flush list so that
4379                  * any new writes get down to disk quickly.
4380                  */
4381                 if (newsize == 0)
4382                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4383                                 &BTRFS_I(inode)->runtime_flags);
4384
4385                 /*
4386                  * 1 for the orphan item we're going to add
4387                  * 1 for the orphan item deletion.
4388                  */
4389                 trans = btrfs_start_transaction(root, 2);
4390                 if (IS_ERR(trans))
4391                         return PTR_ERR(trans);
4392
4393                 /*
4394                  * We need to do this in case we fail at _any_ point during the
4395                  * actual truncate.  Once we do the truncate_setsize we could
4396                  * invalidate pages which forces any outstanding ordered io to
4397                  * be instantly completed which will give us extents that need
4398                  * to be truncated.  If we fail to get an orphan inode down we
4399                  * could have left over extents that were never meant to live,
4400                  * so we need to garuntee from this point on that everything
4401                  * will be consistent.
4402                  */
4403                 ret = btrfs_orphan_add(trans, inode);
4404                 btrfs_end_transaction(trans, root);
4405                 if (ret)
4406                         return ret;
4407
4408                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4409                 truncate_setsize(inode, newsize);
4410
4411                 /* Disable nonlocked read DIO to avoid the end less truncate */
4412                 btrfs_inode_block_unlocked_dio(inode);
4413                 inode_dio_wait(inode);
4414                 btrfs_inode_resume_unlocked_dio(inode);
4415
4416                 ret = btrfs_truncate(inode);
4417                 if (ret && inode->i_nlink) {
4418                         int err;
4419
4420                         /*
4421                          * failed to truncate, disk_i_size is only adjusted down
4422                          * as we remove extents, so it should represent the true
4423                          * size of the inode, so reset the in memory size and
4424                          * delete our orphan entry.
4425                          */
4426                         trans = btrfs_join_transaction(root);
4427                         if (IS_ERR(trans)) {
4428                                 btrfs_orphan_del(NULL, inode);
4429                                 return ret;
4430                         }
4431                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4432                         err = btrfs_orphan_del(trans, inode);
4433                         if (err)
4434                                 btrfs_abort_transaction(trans, root, err);
4435                         btrfs_end_transaction(trans, root);
4436                 }
4437         }
4438
4439         return ret;
4440 }
4441
4442 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4443 {
4444         struct inode *inode = dentry->d_inode;
4445         struct btrfs_root *root = BTRFS_I(inode)->root;
4446         int err;
4447
4448         if (btrfs_root_readonly(root))
4449                 return -EROFS;
4450
4451         err = inode_change_ok(inode, attr);
4452         if (err)
4453                 return err;
4454
4455         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4456                 err = btrfs_setsize(inode, attr);
4457                 if (err)
4458                         return err;
4459         }
4460
4461         if (attr->ia_valid) {
4462                 setattr_copy(inode, attr);
4463                 inode_inc_iversion(inode);
4464                 err = btrfs_dirty_inode(inode);
4465
4466                 if (!err && attr->ia_valid & ATTR_MODE)
4467                         err = btrfs_acl_chmod(inode);
4468         }
4469
4470         return err;
4471 }
4472
4473 void btrfs_evict_inode(struct inode *inode)
4474 {
4475         struct btrfs_trans_handle *trans;
4476         struct btrfs_root *root = BTRFS_I(inode)->root;
4477         struct btrfs_block_rsv *rsv, *global_rsv;
4478         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4479         int ret;
4480
4481         trace_btrfs_inode_evict(inode);
4482
4483         truncate_inode_pages(&inode->i_data, 0);
4484         if (inode->i_nlink &&
4485             ((btrfs_root_refs(&root->root_item) != 0 &&
4486               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4487              btrfs_is_free_space_inode(inode)))
4488                 goto no_delete;
4489
4490         if (is_bad_inode(inode)) {
4491                 btrfs_orphan_del(NULL, inode);
4492                 goto no_delete;
4493         }
4494         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4495         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4496
4497         if (root->fs_info->log_root_recovering) {
4498                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4499                                  &BTRFS_I(inode)->runtime_flags));
4500                 goto no_delete;
4501         }
4502
4503         if (inode->i_nlink > 0) {
4504                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4505                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4506                 goto no_delete;
4507         }
4508
4509         ret = btrfs_commit_inode_delayed_inode(inode);
4510         if (ret) {
4511                 btrfs_orphan_del(NULL, inode);
4512                 goto no_delete;
4513         }
4514
4515         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4516         if (!rsv) {
4517                 btrfs_orphan_del(NULL, inode);
4518                 goto no_delete;
4519         }
4520         rsv->size = min_size;
4521         rsv->failfast = 1;
4522         global_rsv = &root->fs_info->global_block_rsv;
4523
4524         btrfs_i_size_write(inode, 0);
4525
4526         /*
4527          * This is a bit simpler than btrfs_truncate since we've already
4528          * reserved our space for our orphan item in the unlink, so we just
4529          * need to reserve some slack space in case we add bytes and update
4530          * inode item when doing the truncate.
4531          */
4532         while (1) {
4533                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4534                                              BTRFS_RESERVE_FLUSH_LIMIT);
4535
4536                 /*
4537                  * Try and steal from the global reserve since we will
4538                  * likely not use this space anyway, we want to try as
4539                  * hard as possible to get this to work.
4540                  */
4541                 if (ret)
4542                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4543
4544                 if (ret) {
4545                         btrfs_warn(root->fs_info,
4546                                 "Could not get space for a delete, will truncate on mount %d",
4547                                 ret);
4548                         btrfs_orphan_del(NULL, inode);
4549                         btrfs_free_block_rsv(root, rsv);
4550                         goto no_delete;
4551                 }
4552
4553                 trans = btrfs_join_transaction(root);
4554                 if (IS_ERR(trans)) {
4555                         btrfs_orphan_del(NULL, inode);
4556                         btrfs_free_block_rsv(root, rsv);
4557                         goto no_delete;
4558                 }
4559
4560                 trans->block_rsv = rsv;
4561
4562                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4563                 if (ret != -ENOSPC)
4564                         break;
4565
4566                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4567                 btrfs_end_transaction(trans, root);
4568                 trans = NULL;
4569                 btrfs_btree_balance_dirty(root);
4570         }
4571
4572         btrfs_free_block_rsv(root, rsv);
4573
4574         /*
4575          * Errors here aren't a big deal, it just means we leave orphan items
4576          * in the tree.  They will be cleaned up on the next mount.
4577          */
4578         if (ret == 0) {
4579                 trans->block_rsv = root->orphan_block_rsv;
4580                 btrfs_orphan_del(trans, inode);
4581         } else {
4582                 btrfs_orphan_del(NULL, inode);
4583         }
4584
4585         trans->block_rsv = &root->fs_info->trans_block_rsv;
4586         if (!(root == root->fs_info->tree_root ||
4587               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4588                 btrfs_return_ino(root, btrfs_ino(inode));
4589
4590         btrfs_end_transaction(trans, root);
4591         btrfs_btree_balance_dirty(root);
4592 no_delete:
4593         btrfs_remove_delayed_node(inode);
4594         clear_inode(inode);
4595         return;
4596 }
4597
4598 /*
4599  * this returns the key found in the dir entry in the location pointer.
4600  * If no dir entries were found, location->objectid is 0.
4601  */
4602 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4603                                struct btrfs_key *location)
4604 {
4605         const char *name = dentry->d_name.name;
4606         int namelen = dentry->d_name.len;
4607         struct btrfs_dir_item *di;
4608         struct btrfs_path *path;
4609         struct btrfs_root *root = BTRFS_I(dir)->root;
4610         int ret = 0;
4611
4612         path = btrfs_alloc_path();
4613         if (!path)
4614                 return -ENOMEM;
4615
4616         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4617                                     namelen, 0);
4618         if (IS_ERR(di))
4619                 ret = PTR_ERR(di);
4620
4621         if (IS_ERR_OR_NULL(di))
4622                 goto out_err;
4623
4624         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4625 out:
4626         btrfs_free_path(path);
4627         return ret;
4628 out_err:
4629         location->objectid = 0;
4630         goto out;
4631 }
4632
4633 /*
4634  * when we hit a tree root in a directory, the btrfs part of the inode
4635  * needs to be changed to reflect the root directory of the tree root.  This
4636  * is kind of like crossing a mount point.
4637  */
4638 static int fixup_tree_root_location(struct btrfs_root *root,
4639                                     struct inode *dir,
4640                                     struct dentry *dentry,
4641                                     struct btrfs_key *location,
4642                                     struct btrfs_root **sub_root)
4643 {
4644         struct btrfs_path *path;
4645         struct btrfs_root *new_root;
4646         struct btrfs_root_ref *ref;
4647         struct extent_buffer *leaf;
4648         int ret;
4649         int err = 0;
4650
4651         path = btrfs_alloc_path();
4652         if (!path) {
4653                 err = -ENOMEM;
4654                 goto out;
4655         }
4656
4657         err = -ENOENT;
4658         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4659                                   BTRFS_I(dir)->root->root_key.objectid,
4660                                   location->objectid);
4661         if (ret) {
4662                 if (ret < 0)
4663                         err = ret;
4664                 goto out;
4665         }
4666
4667         leaf = path->nodes[0];
4668         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4669         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4670             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4671                 goto out;
4672
4673         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4674                                    (unsigned long)(ref + 1),
4675                                    dentry->d_name.len);
4676         if (ret)
4677                 goto out;
4678
4679         btrfs_release_path(path);
4680
4681         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4682         if (IS_ERR(new_root)) {
4683                 err = PTR_ERR(new_root);
4684                 goto out;
4685         }
4686
4687         *sub_root = new_root;
4688         location->objectid = btrfs_root_dirid(&new_root->root_item);
4689         location->type = BTRFS_INODE_ITEM_KEY;
4690         location->offset = 0;
4691         err = 0;
4692 out:
4693         btrfs_free_path(path);
4694         return err;
4695 }
4696
4697 static void inode_tree_add(struct inode *inode)
4698 {
4699         struct btrfs_root *root = BTRFS_I(inode)->root;
4700         struct btrfs_inode *entry;
4701         struct rb_node **p;
4702         struct rb_node *parent;
4703         struct rb_node *new = &BTRFS_I(inode)->rb_node;
4704         u64 ino = btrfs_ino(inode);
4705
4706         if (inode_unhashed(inode))
4707                 return;
4708         parent = NULL;
4709         spin_lock(&root->inode_lock);
4710         p = &root->inode_tree.rb_node;
4711         while (*p) {
4712                 parent = *p;
4713                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4714
4715                 if (ino < btrfs_ino(&entry->vfs_inode))
4716                         p = &parent->rb_left;
4717                 else if (ino > btrfs_ino(&entry->vfs_inode))
4718                         p = &parent->rb_right;
4719                 else {
4720                         WARN_ON(!(entry->vfs_inode.i_state &
4721                                   (I_WILL_FREE | I_FREEING)));
4722                         rb_replace_node(parent, new, &root->inode_tree);
4723                         RB_CLEAR_NODE(parent);
4724                         spin_unlock(&root->inode_lock);
4725                         return;
4726                 }
4727         }
4728         rb_link_node(new, parent, p);
4729         rb_insert_color(new, &root->inode_tree);
4730         spin_unlock(&root->inode_lock);
4731 }
4732
4733 static void inode_tree_del(struct inode *inode)
4734 {
4735         struct btrfs_root *root = BTRFS_I(inode)->root;
4736         int empty = 0;
4737
4738         spin_lock(&root->inode_lock);
4739         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4740                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4741                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4742                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4743         }
4744         spin_unlock(&root->inode_lock);
4745
4746         if (empty && btrfs_root_refs(&root->root_item) == 0) {
4747                 synchronize_srcu(&root->fs_info->subvol_srcu);
4748                 spin_lock(&root->inode_lock);
4749                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4750                 spin_unlock(&root->inode_lock);
4751                 if (empty)
4752                         btrfs_add_dead_root(root);
4753         }
4754 }
4755
4756 void btrfs_invalidate_inodes(struct btrfs_root *root)
4757 {
4758         struct rb_node *node;
4759         struct rb_node *prev;
4760         struct btrfs_inode *entry;
4761         struct inode *inode;
4762         u64 objectid = 0;
4763
4764         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4765
4766         spin_lock(&root->inode_lock);
4767 again:
4768         node = root->inode_tree.rb_node;
4769         prev = NULL;
4770         while (node) {
4771                 prev = node;
4772                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4773
4774                 if (objectid < btrfs_ino(&entry->vfs_inode))
4775                         node = node->rb_left;
4776                 else if (objectid > btrfs_ino(&entry->vfs_inode))
4777                         node = node->rb_right;
4778                 else
4779                         break;
4780         }
4781         if (!node) {
4782                 while (prev) {
4783                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4784                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4785                                 node = prev;
4786                                 break;
4787                         }
4788                         prev = rb_next(prev);
4789                 }
4790         }
4791         while (node) {
4792                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4793                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4794                 inode = igrab(&entry->vfs_inode);
4795                 if (inode) {
4796                         spin_unlock(&root->inode_lock);
4797                         if (atomic_read(&inode->i_count) > 1)
4798                                 d_prune_aliases(inode);
4799                         /*
4800                          * btrfs_drop_inode will have it removed from
4801                          * the inode cache when its usage count
4802                          * hits zero.
4803                          */
4804                         iput(inode);
4805                         cond_resched();
4806                         spin_lock(&root->inode_lock);
4807                         goto again;
4808                 }
4809
4810                 if (cond_resched_lock(&root->inode_lock))
4811                         goto again;
4812
4813                 node = rb_next(node);
4814         }
4815         spin_unlock(&root->inode_lock);
4816 }
4817
4818 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4819 {
4820         struct btrfs_iget_args *args = p;
4821         inode->i_ino = args->ino;
4822         BTRFS_I(inode)->root = args->root;
4823         return 0;
4824 }
4825
4826 static int btrfs_find_actor(struct inode *inode, void *opaque)
4827 {
4828         struct btrfs_iget_args *args = opaque;
4829         return args->ino == btrfs_ino(inode) &&
4830                 args->root == BTRFS_I(inode)->root;
4831 }
4832
4833 static struct inode *btrfs_iget_locked(struct super_block *s,
4834                                        u64 objectid,
4835                                        struct btrfs_root *root)
4836 {
4837         struct inode *inode;
4838         struct btrfs_iget_args args;
4839         unsigned long hashval = btrfs_inode_hash(objectid, root);
4840
4841         args.ino = objectid;
4842         args.root = root;
4843
4844         inode = iget5_locked(s, hashval, btrfs_find_actor,
4845                              btrfs_init_locked_inode,
4846                              (void *)&args);
4847         return inode;
4848 }
4849
4850 /* Get an inode object given its location and corresponding root.
4851  * Returns in *is_new if the inode was read from disk
4852  */
4853 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4854                          struct btrfs_root *root, int *new)
4855 {
4856         struct inode *inode;
4857
4858         inode = btrfs_iget_locked(s, location->objectid, root);
4859         if (!inode)
4860                 return ERR_PTR(-ENOMEM);
4861
4862         if (inode->i_state & I_NEW) {
4863                 BTRFS_I(inode)->root = root;
4864                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4865                 btrfs_read_locked_inode(inode);
4866                 if (!is_bad_inode(inode)) {
4867                         inode_tree_add(inode);
4868                         unlock_new_inode(inode);
4869                         if (new)
4870                                 *new = 1;
4871                 } else {
4872                         unlock_new_inode(inode);
4873                         iput(inode);
4874                         inode = ERR_PTR(-ESTALE);
4875                 }
4876         }
4877
4878         return inode;
4879 }
4880
4881 static struct inode *new_simple_dir(struct super_block *s,
4882                                     struct btrfs_key *key,
4883                                     struct btrfs_root *root)
4884 {
4885         struct inode *inode = new_inode(s);
4886
4887         if (!inode)
4888                 return ERR_PTR(-ENOMEM);
4889
4890         BTRFS_I(inode)->root = root;
4891         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4892         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4893
4894         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4895         inode->i_op = &btrfs_dir_ro_inode_operations;
4896         inode->i_fop = &simple_dir_operations;
4897         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4898         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4899
4900         return inode;
4901 }
4902
4903 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4904 {
4905         struct inode *inode;
4906         struct btrfs_root *root = BTRFS_I(dir)->root;
4907         struct btrfs_root *sub_root = root;
4908         struct btrfs_key location;
4909         int index;
4910         int ret = 0;
4911
4912         if (dentry->d_name.len > BTRFS_NAME_LEN)
4913                 return ERR_PTR(-ENAMETOOLONG);
4914
4915         ret = btrfs_inode_by_name(dir, dentry, &location);
4916         if (ret < 0)
4917                 return ERR_PTR(ret);
4918
4919         if (location.objectid == 0)
4920                 return NULL;
4921
4922         if (location.type == BTRFS_INODE_ITEM_KEY) {
4923                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4924                 return inode;
4925         }
4926
4927         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4928
4929         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4930         ret = fixup_tree_root_location(root, dir, dentry,
4931                                        &location, &sub_root);
4932         if (ret < 0) {
4933                 if (ret != -ENOENT)
4934                         inode = ERR_PTR(ret);
4935                 else
4936                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4937         } else {
4938                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4939         }
4940         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4941
4942         if (!IS_ERR(inode) && root != sub_root) {
4943                 down_read(&root->fs_info->cleanup_work_sem);
4944                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4945                         ret = btrfs_orphan_cleanup(sub_root);
4946                 up_read(&root->fs_info->cleanup_work_sem);
4947                 if (ret) {
4948                         iput(inode);
4949                         inode = ERR_PTR(ret);
4950                 }
4951         }
4952
4953         return inode;
4954 }
4955
4956 static int btrfs_dentry_delete(const struct dentry *dentry)
4957 {
4958         struct btrfs_root *root;
4959         struct inode *inode = dentry->d_inode;
4960
4961         if (!inode && !IS_ROOT(dentry))
4962                 inode = dentry->d_parent->d_inode;
4963
4964         if (inode) {
4965                 root = BTRFS_I(inode)->root;
4966                 if (btrfs_root_refs(&root->root_item) == 0)
4967                         return 1;
4968
4969                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4970                         return 1;
4971         }
4972         return 0;
4973 }
4974
4975 static void btrfs_dentry_release(struct dentry *dentry)
4976 {
4977         if (dentry->d_fsdata)
4978                 kfree(dentry->d_fsdata);
4979 }
4980
4981 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4982                                    unsigned int flags)
4983 {
4984         struct dentry *ret;
4985
4986         ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4987         return ret;
4988 }
4989
4990 unsigned char btrfs_filetype_table[] = {
4991         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4992 };
4993
4994 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
4995 {
4996         struct inode *inode = file_inode(file);
4997         struct btrfs_root *root = BTRFS_I(inode)->root;
4998         struct btrfs_item *item;
4999         struct btrfs_dir_item *di;
5000         struct btrfs_key key;
5001         struct btrfs_key found_key;
5002         struct btrfs_path *path;
5003         struct list_head ins_list;
5004         struct list_head del_list;
5005         int ret;
5006         struct extent_buffer *leaf;
5007         int slot;
5008         unsigned char d_type;
5009         int over = 0;
5010         u32 di_cur;
5011         u32 di_total;
5012         u32 di_len;
5013         int key_type = BTRFS_DIR_INDEX_KEY;
5014         char tmp_name[32];
5015         char *name_ptr;
5016         int name_len;
5017         int is_curr = 0;        /* ctx->pos points to the current index? */
5018
5019         /* FIXME, use a real flag for deciding about the key type */
5020         if (root->fs_info->tree_root == root)
5021                 key_type = BTRFS_DIR_ITEM_KEY;
5022
5023         if (!dir_emit_dots(file, ctx))
5024                 return 0;
5025
5026         path = btrfs_alloc_path();
5027         if (!path)
5028                 return -ENOMEM;
5029
5030         path->reada = 1;
5031
5032         if (key_type == BTRFS_DIR_INDEX_KEY) {
5033                 INIT_LIST_HEAD(&ins_list);
5034                 INIT_LIST_HEAD(&del_list);
5035                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5036         }
5037
5038         btrfs_set_key_type(&key, key_type);
5039         key.offset = ctx->pos;
5040         key.objectid = btrfs_ino(inode);
5041
5042         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5043         if (ret < 0)
5044                 goto err;
5045
5046         while (1) {
5047                 leaf = path->nodes[0];
5048                 slot = path->slots[0];
5049                 if (slot >= btrfs_header_nritems(leaf)) {
5050                         ret = btrfs_next_leaf(root, path);
5051                         if (ret < 0)
5052                                 goto err;
5053                         else if (ret > 0)
5054                                 break;
5055                         continue;
5056                 }
5057
5058                 item = btrfs_item_nr(slot);
5059                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5060
5061                 if (found_key.objectid != key.objectid)
5062                         break;
5063                 if (btrfs_key_type(&found_key) != key_type)
5064                         break;
5065                 if (found_key.offset < ctx->pos)
5066                         goto next;
5067                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5068                     btrfs_should_delete_dir_index(&del_list,
5069                                                   found_key.offset))
5070                         goto next;
5071
5072                 ctx->pos = found_key.offset;
5073                 is_curr = 1;
5074
5075                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5076                 di_cur = 0;
5077                 di_total = btrfs_item_size(leaf, item);
5078
5079                 while (di_cur < di_total) {
5080                         struct btrfs_key location;
5081
5082                         if (verify_dir_item(root, leaf, di))
5083                                 break;
5084
5085                         name_len = btrfs_dir_name_len(leaf, di);
5086                         if (name_len <= sizeof(tmp_name)) {
5087                                 name_ptr = tmp_name;
5088                         } else {
5089                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5090                                 if (!name_ptr) {
5091                                         ret = -ENOMEM;
5092                                         goto err;
5093                                 }
5094                         }
5095                         read_extent_buffer(leaf, name_ptr,
5096                                            (unsigned long)(di + 1), name_len);
5097
5098                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5099                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5100
5101
5102                         /* is this a reference to our own snapshot? If so
5103                          * skip it.
5104                          *
5105                          * In contrast to old kernels, we insert the snapshot's
5106                          * dir item and dir index after it has been created, so
5107                          * we won't find a reference to our own snapshot. We
5108                          * still keep the following code for backward
5109                          * compatibility.
5110                          */
5111                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5112                             location.objectid == root->root_key.objectid) {
5113                                 over = 0;
5114                                 goto skip;
5115                         }
5116                         over = !dir_emit(ctx, name_ptr, name_len,
5117                                        location.objectid, d_type);
5118
5119 skip:
5120                         if (name_ptr != tmp_name)
5121                                 kfree(name_ptr);
5122
5123                         if (over)
5124                                 goto nopos;
5125                         di_len = btrfs_dir_name_len(leaf, di) +
5126                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5127                         di_cur += di_len;
5128                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5129                 }
5130 next:
5131                 path->slots[0]++;
5132         }
5133
5134         if (key_type == BTRFS_DIR_INDEX_KEY) {
5135                 if (is_curr)
5136                         ctx->pos++;
5137                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5138                 if (ret)
5139                         goto nopos;
5140         }
5141
5142         /* Reached end of directory/root. Bump pos past the last item. */
5143         ctx->pos++;
5144
5145         /*
5146          * Stop new entries from being returned after we return the last
5147          * entry.
5148          *
5149          * New directory entries are assigned a strictly increasing
5150          * offset.  This means that new entries created during readdir
5151          * are *guaranteed* to be seen in the future by that readdir.
5152          * This has broken buggy programs which operate on names as
5153          * they're returned by readdir.  Until we re-use freed offsets
5154          * we have this hack to stop new entries from being returned
5155          * under the assumption that they'll never reach this huge
5156          * offset.
5157          *
5158          * This is being careful not to overflow 32bit loff_t unless the
5159          * last entry requires it because doing so has broken 32bit apps
5160          * in the past.
5161          */
5162         if (key_type == BTRFS_DIR_INDEX_KEY) {
5163                 if (ctx->pos >= INT_MAX)
5164                         ctx->pos = LLONG_MAX;
5165                 else
5166                         ctx->pos = INT_MAX;
5167         }
5168 nopos:
5169         ret = 0;
5170 err:
5171         if (key_type == BTRFS_DIR_INDEX_KEY)
5172                 btrfs_put_delayed_items(&ins_list, &del_list);
5173         btrfs_free_path(path);
5174         return ret;
5175 }
5176
5177 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5178 {
5179         struct btrfs_root *root = BTRFS_I(inode)->root;
5180         struct btrfs_trans_handle *trans;
5181         int ret = 0;
5182         bool nolock = false;
5183
5184         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5185                 return 0;
5186
5187         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5188                 nolock = true;
5189
5190         if (wbc->sync_mode == WB_SYNC_ALL) {
5191                 if (nolock)
5192                         trans = btrfs_join_transaction_nolock(root);
5193                 else
5194                         trans = btrfs_join_transaction(root);
5195                 if (IS_ERR(trans))
5196                         return PTR_ERR(trans);
5197                 ret = btrfs_commit_transaction(trans, root);
5198         }
5199         return ret;
5200 }
5201
5202 /*
5203  * This is somewhat expensive, updating the tree every time the
5204  * inode changes.  But, it is most likely to find the inode in cache.
5205  * FIXME, needs more benchmarking...there are no reasons other than performance
5206  * to keep or drop this code.
5207  */
5208 static int btrfs_dirty_inode(struct inode *inode)
5209 {
5210         struct btrfs_root *root = BTRFS_I(inode)->root;
5211         struct btrfs_trans_handle *trans;
5212         int ret;
5213
5214         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5215                 return 0;
5216
5217         trans = btrfs_join_transaction(root);
5218         if (IS_ERR(trans))
5219                 return PTR_ERR(trans);
5220
5221         ret = btrfs_update_inode(trans, root, inode);
5222         if (ret && ret == -ENOSPC) {
5223                 /* whoops, lets try again with the full transaction */
5224                 btrfs_end_transaction(trans, root);
5225                 trans = btrfs_start_transaction(root, 1);
5226                 if (IS_ERR(trans))
5227                         return PTR_ERR(trans);
5228
5229                 ret = btrfs_update_inode(trans, root, inode);
5230         }
5231         btrfs_end_transaction(trans, root);
5232         if (BTRFS_I(inode)->delayed_node)
5233                 btrfs_balance_delayed_items(root);
5234
5235         return ret;
5236 }
5237
5238 /*
5239  * This is a copy of file_update_time.  We need this so we can return error on
5240  * ENOSPC for updating the inode in the case of file write and mmap writes.
5241  */
5242 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5243                              int flags)
5244 {
5245         struct btrfs_root *root = BTRFS_I(inode)->root;
5246
5247         if (btrfs_root_readonly(root))
5248                 return -EROFS;
5249
5250         if (flags & S_VERSION)
5251                 inode_inc_iversion(inode);
5252         if (flags & S_CTIME)
5253                 inode->i_ctime = *now;
5254         if (flags & S_MTIME)
5255                 inode->i_mtime = *now;
5256         if (flags & S_ATIME)
5257                 inode->i_atime = *now;
5258         return btrfs_dirty_inode(inode);
5259 }
5260
5261 /*
5262  * find the highest existing sequence number in a directory
5263  * and then set the in-memory index_cnt variable to reflect
5264  * free sequence numbers
5265  */
5266 static int btrfs_set_inode_index_count(struct inode *inode)
5267 {
5268         struct btrfs_root *root = BTRFS_I(inode)->root;
5269         struct btrfs_key key, found_key;
5270         struct btrfs_path *path;
5271         struct extent_buffer *leaf;
5272         int ret;
5273
5274         key.objectid = btrfs_ino(inode);
5275         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5276         key.offset = (u64)-1;
5277
5278         path = btrfs_alloc_path();
5279         if (!path)
5280                 return -ENOMEM;
5281
5282         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5283         if (ret < 0)
5284                 goto out;
5285         /* FIXME: we should be able to handle this */
5286         if (ret == 0)
5287                 goto out;
5288         ret = 0;
5289
5290         /*
5291          * MAGIC NUMBER EXPLANATION:
5292          * since we search a directory based on f_pos we have to start at 2
5293          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5294          * else has to start at 2
5295          */
5296         if (path->slots[0] == 0) {
5297                 BTRFS_I(inode)->index_cnt = 2;
5298                 goto out;
5299         }
5300
5301         path->slots[0]--;
5302
5303         leaf = path->nodes[0];
5304         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5305
5306         if (found_key.objectid != btrfs_ino(inode) ||
5307             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5308                 BTRFS_I(inode)->index_cnt = 2;
5309                 goto out;
5310         }
5311
5312         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5313 out:
5314         btrfs_free_path(path);
5315         return ret;
5316 }
5317
5318 /*
5319  * helper to find a free sequence number in a given directory.  This current
5320  * code is very simple, later versions will do smarter things in the btree
5321  */
5322 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5323 {
5324         int ret = 0;
5325
5326         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5327                 ret = btrfs_inode_delayed_dir_index_count(dir);
5328                 if (ret) {
5329                         ret = btrfs_set_inode_index_count(dir);
5330                         if (ret)
5331                                 return ret;
5332                 }
5333         }
5334
5335         *index = BTRFS_I(dir)->index_cnt;
5336         BTRFS_I(dir)->index_cnt++;
5337
5338         return ret;
5339 }
5340
5341 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5342                                      struct btrfs_root *root,
5343                                      struct inode *dir,
5344                                      const char *name, int name_len,
5345                                      u64 ref_objectid, u64 objectid,
5346                                      umode_t mode, u64 *index)
5347 {
5348         struct inode *inode;
5349         struct btrfs_inode_item *inode_item;
5350         struct btrfs_key *location;
5351         struct btrfs_path *path;
5352         struct btrfs_inode_ref *ref;
5353         struct btrfs_key key[2];
5354         u32 sizes[2];
5355         unsigned long ptr;
5356         int ret;
5357         int owner;
5358
5359         path = btrfs_alloc_path();
5360         if (!path)
5361                 return ERR_PTR(-ENOMEM);
5362
5363         inode = new_inode(root->fs_info->sb);
5364         if (!inode) {
5365                 btrfs_free_path(path);
5366                 return ERR_PTR(-ENOMEM);
5367         }
5368
5369         /*
5370          * we have to initialize this early, so we can reclaim the inode
5371          * number if we fail afterwards in this function.
5372          */
5373         inode->i_ino = objectid;
5374
5375         if (dir) {
5376                 trace_btrfs_inode_request(dir);
5377
5378                 ret = btrfs_set_inode_index(dir, index);
5379                 if (ret) {
5380                         btrfs_free_path(path);
5381                         iput(inode);
5382                         return ERR_PTR(ret);
5383                 }
5384         }
5385         /*
5386          * index_cnt is ignored for everything but a dir,
5387          * btrfs_get_inode_index_count has an explanation for the magic
5388          * number
5389          */
5390         BTRFS_I(inode)->index_cnt = 2;
5391         BTRFS_I(inode)->root = root;
5392         BTRFS_I(inode)->generation = trans->transid;
5393         inode->i_generation = BTRFS_I(inode)->generation;
5394
5395         /*
5396          * We could have gotten an inode number from somebody who was fsynced
5397          * and then removed in this same transaction, so let's just set full
5398          * sync since it will be a full sync anyway and this will blow away the
5399          * old info in the log.
5400          */
5401         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5402
5403         if (S_ISDIR(mode))
5404                 owner = 0;
5405         else
5406                 owner = 1;
5407
5408         key[0].objectid = objectid;
5409         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5410         key[0].offset = 0;
5411
5412         /*
5413          * Start new inodes with an inode_ref. This is slightly more
5414          * efficient for small numbers of hard links since they will
5415          * be packed into one item. Extended refs will kick in if we
5416          * add more hard links than can fit in the ref item.
5417          */
5418         key[1].objectid = objectid;
5419         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5420         key[1].offset = ref_objectid;
5421
5422         sizes[0] = sizeof(struct btrfs_inode_item);
5423         sizes[1] = name_len + sizeof(*ref);
5424
5425         path->leave_spinning = 1;
5426         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5427         if (ret != 0)
5428                 goto fail;
5429
5430         inode_init_owner(inode, dir, mode);
5431         inode_set_bytes(inode, 0);
5432         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5433         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5434                                   struct btrfs_inode_item);
5435         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5436                              sizeof(*inode_item));
5437         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5438
5439         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5440                              struct btrfs_inode_ref);
5441         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5442         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5443         ptr = (unsigned long)(ref + 1);
5444         write_extent_buffer(path->nodes[0], name, ptr, name_len);
5445
5446         btrfs_mark_buffer_dirty(path->nodes[0]);
5447         btrfs_free_path(path);
5448
5449         location = &BTRFS_I(inode)->location;
5450         location->objectid = objectid;
5451         location->offset = 0;
5452         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5453
5454         btrfs_inherit_iflags(inode, dir);
5455
5456         if (S_ISREG(mode)) {
5457                 if (btrfs_test_opt(root, NODATASUM))
5458                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5459                 if (btrfs_test_opt(root, NODATACOW))
5460                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5461                                 BTRFS_INODE_NODATASUM;
5462         }
5463
5464         btrfs_insert_inode_hash(inode);
5465         inode_tree_add(inode);
5466
5467         trace_btrfs_inode_new(inode);
5468         btrfs_set_inode_last_trans(trans, inode);
5469
5470         btrfs_update_root_times(trans, root);
5471
5472         return inode;
5473 fail:
5474         if (dir)
5475                 BTRFS_I(dir)->index_cnt--;
5476         btrfs_free_path(path);
5477         iput(inode);
5478         return ERR_PTR(ret);
5479 }
5480
5481 static inline u8 btrfs_inode_type(struct inode *inode)
5482 {
5483         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5484 }
5485
5486 /*
5487  * utility function to add 'inode' into 'parent_inode' with
5488  * a give name and a given sequence number.
5489  * if 'add_backref' is true, also insert a backref from the
5490  * inode to the parent directory.
5491  */
5492 int btrfs_add_link(struct btrfs_trans_handle *trans,
5493                    struct inode *parent_inode, struct inode *inode,
5494                    const char *name, int name_len, int add_backref, u64 index)
5495 {
5496         int ret = 0;
5497         struct btrfs_key key;
5498         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5499         u64 ino = btrfs_ino(inode);
5500         u64 parent_ino = btrfs_ino(parent_inode);
5501
5502         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5503                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5504         } else {
5505                 key.objectid = ino;
5506                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5507                 key.offset = 0;
5508         }
5509
5510         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5511                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5512                                          key.objectid, root->root_key.objectid,
5513                                          parent_ino, index, name, name_len);
5514         } else if (add_backref) {
5515                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5516                                              parent_ino, index);
5517         }
5518
5519         /* Nothing to clean up yet */
5520         if (ret)
5521                 return ret;
5522
5523         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5524                                     parent_inode, &key,
5525                                     btrfs_inode_type(inode), index);
5526         if (ret == -EEXIST || ret == -EOVERFLOW)
5527                 goto fail_dir_item;
5528         else if (ret) {
5529                 btrfs_abort_transaction(trans, root, ret);
5530                 return ret;
5531         }
5532
5533         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5534                            name_len * 2);
5535         inode_inc_iversion(parent_inode);
5536         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5537         ret = btrfs_update_inode(trans, root, parent_inode);
5538         if (ret)
5539                 btrfs_abort_transaction(trans, root, ret);
5540         return ret;
5541
5542 fail_dir_item:
5543         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5544                 u64 local_index;
5545                 int err;
5546                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5547                                  key.objectid, root->root_key.objectid,
5548                                  parent_ino, &local_index, name, name_len);
5549
5550         } else if (add_backref) {
5551                 u64 local_index;
5552                 int err;
5553
5554                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5555                                           ino, parent_ino, &local_index);
5556         }
5557         return ret;
5558 }
5559
5560 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5561                             struct inode *dir, struct dentry *dentry,
5562                             struct inode *inode, int backref, u64 index)
5563 {
5564         int err = btrfs_add_link(trans, dir, inode,
5565                                  dentry->d_name.name, dentry->d_name.len,
5566                                  backref, index);
5567         if (err > 0)
5568                 err = -EEXIST;
5569         return err;
5570 }
5571
5572 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5573                         umode_t mode, dev_t rdev)
5574 {
5575         struct btrfs_trans_handle *trans;
5576         struct btrfs_root *root = BTRFS_I(dir)->root;
5577         struct inode *inode = NULL;
5578         int err;
5579         int drop_inode = 0;
5580         u64 objectid;
5581         u64 index = 0;
5582
5583         if (!new_valid_dev(rdev))
5584                 return -EINVAL;
5585
5586         /*
5587          * 2 for inode item and ref
5588          * 2 for dir items
5589          * 1 for xattr if selinux is on
5590          */
5591         trans = btrfs_start_transaction(root, 5);
5592         if (IS_ERR(trans))
5593                 return PTR_ERR(trans);
5594
5595         err = btrfs_find_free_ino(root, &objectid);
5596         if (err)
5597                 goto out_unlock;
5598
5599         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5600                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5601                                 mode, &index);
5602         if (IS_ERR(inode)) {
5603                 err = PTR_ERR(inode);
5604                 goto out_unlock;
5605         }
5606
5607         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5608         if (err) {
5609                 drop_inode = 1;
5610                 goto out_unlock;
5611         }
5612
5613         /*
5614         * If the active LSM wants to access the inode during
5615         * d_instantiate it needs these. Smack checks to see
5616         * if the filesystem supports xattrs by looking at the
5617         * ops vector.
5618         */
5619
5620         inode->i_op = &btrfs_special_inode_operations;
5621         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5622         if (err)
5623                 drop_inode = 1;
5624         else {
5625                 init_special_inode(inode, inode->i_mode, rdev);
5626                 btrfs_update_inode(trans, root, inode);
5627                 d_instantiate(dentry, inode);
5628         }
5629 out_unlock:
5630         btrfs_end_transaction(trans, root);
5631         btrfs_btree_balance_dirty(root);
5632         if (drop_inode) {
5633                 inode_dec_link_count(inode);
5634                 iput(inode);
5635         }
5636         return err;
5637 }
5638
5639 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5640                         umode_t mode, bool excl)
5641 {
5642         struct btrfs_trans_handle *trans;
5643         struct btrfs_root *root = BTRFS_I(dir)->root;
5644         struct inode *inode = NULL;
5645         int drop_inode_on_err = 0;
5646         int err;
5647         u64 objectid;
5648         u64 index = 0;
5649
5650         /*
5651          * 2 for inode item and ref
5652          * 2 for dir items
5653          * 1 for xattr if selinux is on
5654          */
5655         trans = btrfs_start_transaction(root, 5);
5656         if (IS_ERR(trans))
5657                 return PTR_ERR(trans);
5658
5659         err = btrfs_find_free_ino(root, &objectid);
5660         if (err)
5661                 goto out_unlock;
5662
5663         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5664                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5665                                 mode, &index);
5666         if (IS_ERR(inode)) {
5667                 err = PTR_ERR(inode);
5668                 goto out_unlock;
5669         }
5670         drop_inode_on_err = 1;
5671
5672         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5673         if (err)
5674                 goto out_unlock;
5675
5676         err = btrfs_update_inode(trans, root, inode);
5677         if (err)
5678                 goto out_unlock;
5679
5680         /*
5681         * If the active LSM wants to access the inode during
5682         * d_instantiate it needs these. Smack checks to see
5683         * if the filesystem supports xattrs by looking at the
5684         * ops vector.
5685         */
5686         inode->i_fop = &btrfs_file_operations;
5687         inode->i_op = &btrfs_file_inode_operations;
5688
5689         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5690         if (err)
5691                 goto out_unlock;
5692
5693         inode->i_mapping->a_ops = &btrfs_aops;
5694         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5695         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5696         d_instantiate(dentry, inode);
5697
5698 out_unlock:
5699         btrfs_end_transaction(trans, root);
5700         if (err && drop_inode_on_err) {
5701                 inode_dec_link_count(inode);
5702                 iput(inode);
5703         }
5704         btrfs_btree_balance_dirty(root);
5705         return err;
5706 }
5707
5708 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5709                       struct dentry *dentry)
5710 {
5711         struct btrfs_trans_handle *trans;
5712         struct btrfs_root *root = BTRFS_I(dir)->root;
5713         struct inode *inode = old_dentry->d_inode;
5714         u64 index;
5715         int err;
5716         int drop_inode = 0;
5717
5718         /* do not allow sys_link's with other subvols of the same device */
5719         if (root->objectid != BTRFS_I(inode)->root->objectid)
5720                 return -EXDEV;
5721
5722         if (inode->i_nlink >= BTRFS_LINK_MAX)
5723                 return -EMLINK;
5724
5725         err = btrfs_set_inode_index(dir, &index);
5726         if (err)
5727                 goto fail;
5728
5729         /*
5730          * 2 items for inode and inode ref
5731          * 2 items for dir items
5732          * 1 item for parent inode
5733          */
5734         trans = btrfs_start_transaction(root, 5);
5735         if (IS_ERR(trans)) {
5736                 err = PTR_ERR(trans);
5737                 goto fail;
5738         }
5739
5740         inc_nlink(inode);
5741         inode_inc_iversion(inode);
5742         inode->i_ctime = CURRENT_TIME;
5743         ihold(inode);
5744         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5745
5746         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5747
5748         if (err) {
5749                 drop_inode = 1;
5750         } else {
5751                 struct dentry *parent = dentry->d_parent;
5752                 err = btrfs_update_inode(trans, root, inode);
5753                 if (err)
5754                         goto fail;
5755                 d_instantiate(dentry, inode);
5756                 btrfs_log_new_name(trans, inode, NULL, parent);
5757         }
5758
5759         btrfs_end_transaction(trans, root);
5760 fail:
5761         if (drop_inode) {
5762                 inode_dec_link_count(inode);
5763                 iput(inode);
5764         }
5765         btrfs_btree_balance_dirty(root);
5766         return err;
5767 }
5768
5769 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5770 {
5771         struct inode *inode = NULL;
5772         struct btrfs_trans_handle *trans;
5773         struct btrfs_root *root = BTRFS_I(dir)->root;
5774         int err = 0;
5775         int drop_on_err = 0;
5776         u64 objectid = 0;
5777         u64 index = 0;
5778
5779         /*
5780          * 2 items for inode and ref
5781          * 2 items for dir items
5782          * 1 for xattr if selinux is on
5783          */
5784         trans = btrfs_start_transaction(root, 5);
5785         if (IS_ERR(trans))
5786                 return PTR_ERR(trans);
5787
5788         err = btrfs_find_free_ino(root, &objectid);
5789         if (err)
5790                 goto out_fail;
5791
5792         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5793                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5794                                 S_IFDIR | mode, &index);
5795         if (IS_ERR(inode)) {
5796                 err = PTR_ERR(inode);
5797                 goto out_fail;
5798         }
5799
5800         drop_on_err = 1;
5801
5802         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5803         if (err)
5804                 goto out_fail;
5805
5806         inode->i_op = &btrfs_dir_inode_operations;
5807         inode->i_fop = &btrfs_dir_file_operations;
5808
5809         btrfs_i_size_write(inode, 0);
5810         err = btrfs_update_inode(trans, root, inode);
5811         if (err)
5812                 goto out_fail;
5813
5814         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5815                              dentry->d_name.len, 0, index);
5816         if (err)
5817                 goto out_fail;
5818
5819         d_instantiate(dentry, inode);
5820         drop_on_err = 0;
5821
5822 out_fail:
5823         btrfs_end_transaction(trans, root);
5824         if (drop_on_err)
5825                 iput(inode);
5826         btrfs_btree_balance_dirty(root);
5827         return err;
5828 }
5829
5830 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5831  * and an extent that you want to insert, deal with overlap and insert
5832  * the new extent into the tree.
5833  */
5834 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5835                                 struct extent_map *existing,
5836                                 struct extent_map *em,
5837                                 u64 map_start, u64 map_len)
5838 {
5839         u64 start_diff;
5840
5841         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5842         start_diff = map_start - em->start;
5843         em->start = map_start;
5844         em->len = map_len;
5845         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5846             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5847                 em->block_start += start_diff;
5848                 em->block_len -= start_diff;
5849         }
5850         return add_extent_mapping(em_tree, em, 0);
5851 }
5852
5853 static noinline int uncompress_inline(struct btrfs_path *path,
5854                                       struct inode *inode, struct page *page,
5855                                       size_t pg_offset, u64 extent_offset,
5856                                       struct btrfs_file_extent_item *item)
5857 {
5858         int ret;
5859         struct extent_buffer *leaf = path->nodes[0];
5860         char *tmp;
5861         size_t max_size;
5862         unsigned long inline_size;
5863         unsigned long ptr;
5864         int compress_type;
5865
5866         WARN_ON(pg_offset != 0);
5867         compress_type = btrfs_file_extent_compression(leaf, item);
5868         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5869         inline_size = btrfs_file_extent_inline_item_len(leaf,
5870                                         btrfs_item_nr(path->slots[0]));
5871         tmp = kmalloc(inline_size, GFP_NOFS);
5872         if (!tmp)
5873                 return -ENOMEM;
5874         ptr = btrfs_file_extent_inline_start(item);
5875
5876         read_extent_buffer(leaf, tmp, ptr, inline_size);
5877
5878         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5879         ret = btrfs_decompress(compress_type, tmp, page,
5880                                extent_offset, inline_size, max_size);
5881         if (ret) {
5882                 char *kaddr = kmap_atomic(page);
5883                 unsigned long copy_size = min_t(u64,
5884                                   PAGE_CACHE_SIZE - pg_offset,
5885                                   max_size - extent_offset);
5886                 memset(kaddr + pg_offset, 0, copy_size);
5887                 kunmap_atomic(kaddr);
5888         }
5889         kfree(tmp);
5890         return 0;
5891 }
5892
5893 /*
5894  * a bit scary, this does extent mapping from logical file offset to the disk.
5895  * the ugly parts come from merging extents from the disk with the in-ram
5896  * representation.  This gets more complex because of the data=ordered code,
5897  * where the in-ram extents might be locked pending data=ordered completion.
5898  *
5899  * This also copies inline extents directly into the page.
5900  */
5901
5902 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5903                                     size_t pg_offset, u64 start, u64 len,
5904                                     int create)
5905 {
5906         int ret;
5907         int err = 0;
5908         u64 bytenr;
5909         u64 extent_start = 0;
5910         u64 extent_end = 0;
5911         u64 objectid = btrfs_ino(inode);
5912         u32 found_type;
5913         struct btrfs_path *path = NULL;
5914         struct btrfs_root *root = BTRFS_I(inode)->root;
5915         struct btrfs_file_extent_item *item;
5916         struct extent_buffer *leaf;
5917         struct btrfs_key found_key;
5918         struct extent_map *em = NULL;
5919         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5920         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5921         struct btrfs_trans_handle *trans = NULL;
5922         int compress_type;
5923
5924 again:
5925         read_lock(&em_tree->lock);
5926         em = lookup_extent_mapping(em_tree, start, len);
5927         if (em)
5928                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5929         read_unlock(&em_tree->lock);
5930
5931         if (em) {
5932                 if (em->start > start || em->start + em->len <= start)
5933                         free_extent_map(em);
5934                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5935                         free_extent_map(em);
5936                 else
5937                         goto out;
5938         }
5939         em = alloc_extent_map();
5940         if (!em) {
5941                 err = -ENOMEM;
5942                 goto out;
5943         }
5944         em->bdev = root->fs_info->fs_devices->latest_bdev;
5945         em->start = EXTENT_MAP_HOLE;
5946         em->orig_start = EXTENT_MAP_HOLE;
5947         em->len = (u64)-1;
5948         em->block_len = (u64)-1;
5949
5950         if (!path) {
5951                 path = btrfs_alloc_path();
5952                 if (!path) {
5953                         err = -ENOMEM;
5954                         goto out;
5955                 }
5956                 /*
5957                  * Chances are we'll be called again, so go ahead and do
5958                  * readahead
5959                  */
5960                 path->reada = 1;
5961         }
5962
5963         ret = btrfs_lookup_file_extent(trans, root, path,
5964                                        objectid, start, trans != NULL);
5965         if (ret < 0) {
5966                 err = ret;
5967                 goto out;
5968         }
5969
5970         if (ret != 0) {
5971                 if (path->slots[0] == 0)
5972                         goto not_found;
5973                 path->slots[0]--;
5974         }
5975
5976         leaf = path->nodes[0];
5977         item = btrfs_item_ptr(leaf, path->slots[0],
5978                               struct btrfs_file_extent_item);
5979         /* are we inside the extent that was found? */
5980         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5981         found_type = btrfs_key_type(&found_key);
5982         if (found_key.objectid != objectid ||
5983             found_type != BTRFS_EXTENT_DATA_KEY) {
5984                 /*
5985                  * If we backup past the first extent we want to move forward
5986                  * and see if there is an extent in front of us, otherwise we'll
5987                  * say there is a hole for our whole search range which can
5988                  * cause problems.
5989                  */
5990                 extent_end = start;
5991                 goto next;
5992         }
5993
5994         found_type = btrfs_file_extent_type(leaf, item);
5995         extent_start = found_key.offset;
5996         compress_type = btrfs_file_extent_compression(leaf, item);
5997         if (found_type == BTRFS_FILE_EXTENT_REG ||
5998             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5999                 extent_end = extent_start +
6000                        btrfs_file_extent_num_bytes(leaf, item);
6001         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6002                 size_t size;
6003                 size = btrfs_file_extent_inline_len(leaf, item);
6004                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6005         }
6006 next:
6007         if (start >= extent_end) {
6008                 path->slots[0]++;
6009                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6010                         ret = btrfs_next_leaf(root, path);
6011                         if (ret < 0) {
6012                                 err = ret;
6013                                 goto out;
6014                         }
6015                         if (ret > 0)
6016                                 goto not_found;
6017                         leaf = path->nodes[0];
6018                 }
6019                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6020                 if (found_key.objectid != objectid ||
6021                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6022                         goto not_found;
6023                 if (start + len <= found_key.offset)
6024                         goto not_found;
6025                 em->start = start;
6026                 em->orig_start = start;
6027                 em->len = found_key.offset - start;
6028                 goto not_found_em;
6029         }
6030
6031         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6032         if (found_type == BTRFS_FILE_EXTENT_REG ||
6033             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6034                 em->start = extent_start;
6035                 em->len = extent_end - extent_start;
6036                 em->orig_start = extent_start -
6037                                  btrfs_file_extent_offset(leaf, item);
6038                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6039                                                                       item);
6040                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6041                 if (bytenr == 0) {
6042                         em->block_start = EXTENT_MAP_HOLE;
6043                         goto insert;
6044                 }
6045                 if (compress_type != BTRFS_COMPRESS_NONE) {
6046                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6047                         em->compress_type = compress_type;
6048                         em->block_start = bytenr;
6049                         em->block_len = em->orig_block_len;
6050                 } else {
6051                         bytenr += btrfs_file_extent_offset(leaf, item);
6052                         em->block_start = bytenr;
6053                         em->block_len = em->len;
6054                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6055                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6056                 }
6057                 goto insert;
6058         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6059                 unsigned long ptr;
6060                 char *map;
6061                 size_t size;
6062                 size_t extent_offset;
6063                 size_t copy_size;
6064
6065                 em->block_start = EXTENT_MAP_INLINE;
6066                 if (!page || create) {
6067                         em->start = extent_start;
6068                         em->len = extent_end - extent_start;
6069                         goto out;
6070                 }
6071
6072                 size = btrfs_file_extent_inline_len(leaf, item);
6073                 extent_offset = page_offset(page) + pg_offset - extent_start;
6074                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6075                                 size - extent_offset);
6076                 em->start = extent_start + extent_offset;
6077                 em->len = ALIGN(copy_size, root->sectorsize);
6078                 em->orig_block_len = em->len;
6079                 em->orig_start = em->start;
6080                 if (compress_type) {
6081                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6082                         em->compress_type = compress_type;
6083                 }
6084                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6085                 if (create == 0 && !PageUptodate(page)) {
6086                         if (btrfs_file_extent_compression(leaf, item) !=
6087                             BTRFS_COMPRESS_NONE) {
6088                                 ret = uncompress_inline(path, inode, page,
6089                                                         pg_offset,
6090                                                         extent_offset, item);
6091                                 BUG_ON(ret); /* -ENOMEM */
6092                         } else {
6093                                 map = kmap(page);
6094                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6095                                                    copy_size);
6096                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6097                                         memset(map + pg_offset + copy_size, 0,
6098                                                PAGE_CACHE_SIZE - pg_offset -
6099                                                copy_size);
6100                                 }
6101                                 kunmap(page);
6102                         }
6103                         flush_dcache_page(page);
6104                 } else if (create && PageUptodate(page)) {
6105                         BUG();
6106                         if (!trans) {
6107                                 kunmap(page);
6108                                 free_extent_map(em);
6109                                 em = NULL;
6110
6111                                 btrfs_release_path(path);
6112                                 trans = btrfs_join_transaction(root);
6113
6114                                 if (IS_ERR(trans))
6115                                         return ERR_CAST(trans);
6116                                 goto again;
6117                         }
6118                         map = kmap(page);
6119                         write_extent_buffer(leaf, map + pg_offset, ptr,
6120                                             copy_size);
6121                         kunmap(page);
6122                         btrfs_mark_buffer_dirty(leaf);
6123                 }
6124                 set_extent_uptodate(io_tree, em->start,
6125                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6126                 goto insert;
6127         } else {
6128                 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6129         }
6130 not_found:
6131         em->start = start;
6132         em->orig_start = start;
6133         em->len = len;
6134 not_found_em:
6135         em->block_start = EXTENT_MAP_HOLE;
6136         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6137 insert:
6138         btrfs_release_path(path);
6139         if (em->start > start || extent_map_end(em) <= start) {
6140                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6141                         em->start, em->len, start, len);
6142                 err = -EIO;
6143                 goto out;
6144         }
6145
6146         err = 0;
6147         write_lock(&em_tree->lock);
6148         ret = add_extent_mapping(em_tree, em, 0);
6149         /* it is possible that someone inserted the extent into the tree
6150          * while we had the lock dropped.  It is also possible that
6151          * an overlapping map exists in the tree
6152          */
6153         if (ret == -EEXIST) {
6154                 struct extent_map *existing;
6155
6156                 ret = 0;
6157
6158                 existing = lookup_extent_mapping(em_tree, start, len);
6159                 if (existing && (existing->start > start ||
6160                     existing->start + existing->len <= start)) {
6161                         free_extent_map(existing);
6162                         existing = NULL;
6163                 }
6164                 if (!existing) {
6165                         existing = lookup_extent_mapping(em_tree, em->start,
6166                                                          em->len);
6167                         if (existing) {
6168                                 err = merge_extent_mapping(em_tree, existing,
6169                                                            em, start,
6170                                                            root->sectorsize);
6171                                 free_extent_map(existing);
6172                                 if (err) {
6173                                         free_extent_map(em);
6174                                         em = NULL;
6175                                 }
6176                         } else {
6177                                 err = -EIO;
6178                                 free_extent_map(em);
6179                                 em = NULL;
6180                         }
6181                 } else {
6182                         free_extent_map(em);
6183                         em = existing;
6184                         err = 0;
6185                 }
6186         }
6187         write_unlock(&em_tree->lock);
6188 out:
6189
6190         trace_btrfs_get_extent(root, em);
6191
6192         if (path)
6193                 btrfs_free_path(path);
6194         if (trans) {
6195                 ret = btrfs_end_transaction(trans, root);
6196                 if (!err)
6197                         err = ret;
6198         }
6199         if (err) {
6200                 free_extent_map(em);
6201                 return ERR_PTR(err);
6202         }
6203         BUG_ON(!em); /* Error is always set */
6204         return em;
6205 }
6206
6207 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6208                                            size_t pg_offset, u64 start, u64 len,
6209                                            int create)
6210 {
6211         struct extent_map *em;
6212         struct extent_map *hole_em = NULL;
6213         u64 range_start = start;
6214         u64 end;
6215         u64 found;
6216         u64 found_end;
6217         int err = 0;
6218
6219         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6220         if (IS_ERR(em))
6221                 return em;
6222         if (em) {
6223                 /*
6224                  * if our em maps to
6225                  * -  a hole or
6226                  * -  a pre-alloc extent,
6227                  * there might actually be delalloc bytes behind it.
6228                  */
6229                 if (em->block_start != EXTENT_MAP_HOLE &&
6230                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6231                         return em;
6232                 else
6233                         hole_em = em;
6234         }
6235
6236         /* check to see if we've wrapped (len == -1 or similar) */
6237         end = start + len;
6238         if (end < start)
6239                 end = (u64)-1;
6240         else
6241                 end -= 1;
6242
6243         em = NULL;
6244
6245         /* ok, we didn't find anything, lets look for delalloc */
6246         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6247                                  end, len, EXTENT_DELALLOC, 1);
6248         found_end = range_start + found;
6249         if (found_end < range_start)
6250                 found_end = (u64)-1;
6251
6252         /*
6253          * we didn't find anything useful, return
6254          * the original results from get_extent()
6255          */
6256         if (range_start > end || found_end <= start) {
6257                 em = hole_em;
6258                 hole_em = NULL;
6259                 goto out;
6260         }
6261
6262         /* adjust the range_start to make sure it doesn't
6263          * go backwards from the start they passed in
6264          */
6265         range_start = max(start, range_start);
6266         found = found_end - range_start;
6267
6268         if (found > 0) {
6269                 u64 hole_start = start;
6270                 u64 hole_len = len;
6271
6272                 em = alloc_extent_map();
6273                 if (!em) {
6274                         err = -ENOMEM;
6275                         goto out;
6276                 }
6277                 /*
6278                  * when btrfs_get_extent can't find anything it
6279                  * returns one huge hole
6280                  *
6281                  * make sure what it found really fits our range, and
6282                  * adjust to make sure it is based on the start from
6283                  * the caller
6284                  */
6285                 if (hole_em) {
6286                         u64 calc_end = extent_map_end(hole_em);
6287
6288                         if (calc_end <= start || (hole_em->start > end)) {
6289                                 free_extent_map(hole_em);
6290                                 hole_em = NULL;
6291                         } else {
6292                                 hole_start = max(hole_em->start, start);
6293                                 hole_len = calc_end - hole_start;
6294                         }
6295                 }
6296                 em->bdev = NULL;
6297                 if (hole_em && range_start > hole_start) {
6298                         /* our hole starts before our delalloc, so we
6299                          * have to return just the parts of the hole
6300                          * that go until  the delalloc starts
6301                          */
6302                         em->len = min(hole_len,
6303                                       range_start - hole_start);
6304                         em->start = hole_start;
6305                         em->orig_start = hole_start;
6306                         /*
6307                          * don't adjust block start at all,
6308                          * it is fixed at EXTENT_MAP_HOLE
6309                          */
6310                         em->block_start = hole_em->block_start;
6311                         em->block_len = hole_len;
6312                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6313                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6314                 } else {
6315                         em->start = range_start;
6316                         em->len = found;
6317                         em->orig_start = range_start;
6318                         em->block_start = EXTENT_MAP_DELALLOC;
6319                         em->block_len = found;
6320                 }
6321         } else if (hole_em) {
6322                 return hole_em;
6323         }
6324 out:
6325
6326         free_extent_map(hole_em);
6327         if (err) {
6328                 free_extent_map(em);
6329                 return ERR_PTR(err);
6330         }
6331         return em;
6332 }
6333
6334 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6335                                                   u64 start, u64 len)
6336 {
6337         struct btrfs_root *root = BTRFS_I(inode)->root;
6338         struct extent_map *em;
6339         struct btrfs_key ins;
6340         u64 alloc_hint;
6341         int ret;
6342
6343         alloc_hint = get_extent_allocation_hint(inode, start, len);
6344         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6345                                    alloc_hint, &ins, 1);
6346         if (ret)
6347                 return ERR_PTR(ret);
6348
6349         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6350                               ins.offset, ins.offset, ins.offset, 0);
6351         if (IS_ERR(em)) {
6352                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6353                 return em;
6354         }
6355
6356         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6357                                            ins.offset, ins.offset, 0);
6358         if (ret) {
6359                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6360                 free_extent_map(em);
6361                 return ERR_PTR(ret);
6362         }
6363
6364         return em;
6365 }
6366
6367 /*
6368  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6369  * block must be cow'd
6370  */
6371 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6372                               u64 *orig_start, u64 *orig_block_len,
6373                               u64 *ram_bytes)
6374 {
6375         struct btrfs_trans_handle *trans;
6376         struct btrfs_path *path;
6377         int ret;
6378         struct extent_buffer *leaf;
6379         struct btrfs_root *root = BTRFS_I(inode)->root;
6380         struct btrfs_file_extent_item *fi;
6381         struct btrfs_key key;
6382         u64 disk_bytenr;
6383         u64 backref_offset;
6384         u64 extent_end;
6385         u64 num_bytes;
6386         int slot;
6387         int found_type;
6388         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6389         path = btrfs_alloc_path();
6390         if (!path)
6391                 return -ENOMEM;
6392
6393         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6394                                        offset, 0);
6395         if (ret < 0)
6396                 goto out;
6397
6398         slot = path->slots[0];
6399         if (ret == 1) {
6400                 if (slot == 0) {
6401                         /* can't find the item, must cow */
6402                         ret = 0;
6403                         goto out;
6404                 }
6405                 slot--;
6406         }
6407         ret = 0;
6408         leaf = path->nodes[0];
6409         btrfs_item_key_to_cpu(leaf, &key, slot);
6410         if (key.objectid != btrfs_ino(inode) ||
6411             key.type != BTRFS_EXTENT_DATA_KEY) {
6412                 /* not our file or wrong item type, must cow */
6413                 goto out;
6414         }
6415
6416         if (key.offset > offset) {
6417                 /* Wrong offset, must cow */
6418                 goto out;
6419         }
6420
6421         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6422         found_type = btrfs_file_extent_type(leaf, fi);
6423         if (found_type != BTRFS_FILE_EXTENT_REG &&
6424             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6425                 /* not a regular extent, must cow */
6426                 goto out;
6427         }
6428
6429         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6430                 goto out;
6431
6432         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6433         if (disk_bytenr == 0)
6434                 goto out;
6435
6436         if (btrfs_file_extent_compression(leaf, fi) ||
6437             btrfs_file_extent_encryption(leaf, fi) ||
6438             btrfs_file_extent_other_encoding(leaf, fi))
6439                 goto out;
6440
6441         backref_offset = btrfs_file_extent_offset(leaf, fi);
6442
6443         if (orig_start) {
6444                 *orig_start = key.offset - backref_offset;
6445                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6446                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6447         }
6448
6449         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6450
6451         if (btrfs_extent_readonly(root, disk_bytenr))
6452                 goto out;
6453         btrfs_release_path(path);
6454
6455         /*
6456          * look for other files referencing this extent, if we
6457          * find any we must cow
6458          */
6459         trans = btrfs_join_transaction(root);
6460         if (IS_ERR(trans)) {
6461                 ret = 0;
6462                 goto out;
6463         }
6464
6465         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6466                                     key.offset - backref_offset, disk_bytenr);
6467         btrfs_end_transaction(trans, root);
6468         if (ret) {
6469                 ret = 0;
6470                 goto out;
6471         }
6472
6473         /*
6474          * adjust disk_bytenr and num_bytes to cover just the bytes
6475          * in this extent we are about to write.  If there
6476          * are any csums in that range we have to cow in order
6477          * to keep the csums correct
6478          */
6479         disk_bytenr += backref_offset;
6480         disk_bytenr += offset - key.offset;
6481         num_bytes = min(offset + *len, extent_end) - offset;
6482         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6483                                 goto out;
6484         /*
6485          * all of the above have passed, it is safe to overwrite this extent
6486          * without cow
6487          */
6488         *len = num_bytes;
6489         ret = 1;
6490 out:
6491         btrfs_free_path(path);
6492         return ret;
6493 }
6494
6495 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6496                               struct extent_state **cached_state, int writing)
6497 {
6498         struct btrfs_ordered_extent *ordered;
6499         int ret = 0;
6500
6501         while (1) {
6502                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6503                                  0, cached_state);
6504                 /*
6505                  * We're concerned with the entire range that we're going to be
6506                  * doing DIO to, so we need to make sure theres no ordered
6507                  * extents in this range.
6508                  */
6509                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6510                                                      lockend - lockstart + 1);
6511
6512                 /*
6513                  * We need to make sure there are no buffered pages in this
6514                  * range either, we could have raced between the invalidate in
6515                  * generic_file_direct_write and locking the extent.  The
6516                  * invalidate needs to happen so that reads after a write do not
6517                  * get stale data.
6518                  */
6519                 if (!ordered && (!writing ||
6520                     !test_range_bit(&BTRFS_I(inode)->io_tree,
6521                                     lockstart, lockend, EXTENT_UPTODATE, 0,
6522                                     *cached_state)))
6523                         break;
6524
6525                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6526                                      cached_state, GFP_NOFS);
6527
6528                 if (ordered) {
6529                         btrfs_start_ordered_extent(inode, ordered, 1);
6530                         btrfs_put_ordered_extent(ordered);
6531                 } else {
6532                         /* Screw you mmap */
6533                         ret = filemap_write_and_wait_range(inode->i_mapping,
6534                                                            lockstart,
6535                                                            lockend);
6536                         if (ret)
6537                                 break;
6538
6539                         /*
6540                          * If we found a page that couldn't be invalidated just
6541                          * fall back to buffered.
6542                          */
6543                         ret = invalidate_inode_pages2_range(inode->i_mapping,
6544                                         lockstart >> PAGE_CACHE_SHIFT,
6545                                         lockend >> PAGE_CACHE_SHIFT);
6546                         if (ret)
6547                                 break;
6548                 }
6549
6550                 cond_resched();
6551         }
6552
6553         return ret;
6554 }
6555
6556 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6557                                            u64 len, u64 orig_start,
6558                                            u64 block_start, u64 block_len,
6559                                            u64 orig_block_len, u64 ram_bytes,
6560                                            int type)
6561 {
6562         struct extent_map_tree *em_tree;
6563         struct extent_map *em;
6564         struct btrfs_root *root = BTRFS_I(inode)->root;
6565         int ret;
6566
6567         em_tree = &BTRFS_I(inode)->extent_tree;
6568         em = alloc_extent_map();
6569         if (!em)
6570                 return ERR_PTR(-ENOMEM);
6571
6572         em->start = start;
6573         em->orig_start = orig_start;
6574         em->mod_start = start;
6575         em->mod_len = len;
6576         em->len = len;
6577         em->block_len = block_len;
6578         em->block_start = block_start;
6579         em->bdev = root->fs_info->fs_devices->latest_bdev;
6580         em->orig_block_len = orig_block_len;
6581         em->ram_bytes = ram_bytes;
6582         em->generation = -1;
6583         set_bit(EXTENT_FLAG_PINNED, &em->flags);
6584         if (type == BTRFS_ORDERED_PREALLOC)
6585                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6586
6587         do {
6588                 btrfs_drop_extent_cache(inode, em->start,
6589                                 em->start + em->len - 1, 0);
6590                 write_lock(&em_tree->lock);
6591                 ret = add_extent_mapping(em_tree, em, 1);
6592                 write_unlock(&em_tree->lock);
6593         } while (ret == -EEXIST);
6594
6595         if (ret) {
6596                 free_extent_map(em);
6597                 return ERR_PTR(ret);
6598         }
6599
6600         return em;
6601 }
6602
6603
6604 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6605                                    struct buffer_head *bh_result, int create)
6606 {
6607         struct extent_map *em;
6608         struct btrfs_root *root = BTRFS_I(inode)->root;
6609         struct extent_state *cached_state = NULL;
6610         u64 start = iblock << inode->i_blkbits;
6611         u64 lockstart, lockend;
6612         u64 len = bh_result->b_size;
6613         int unlock_bits = EXTENT_LOCKED;
6614         int ret = 0;
6615
6616         if (create)
6617                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6618         else
6619                 len = min_t(u64, len, root->sectorsize);
6620
6621         lockstart = start;
6622         lockend = start + len - 1;
6623
6624         /*
6625          * If this errors out it's because we couldn't invalidate pagecache for
6626          * this range and we need to fallback to buffered.
6627          */
6628         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6629                 return -ENOTBLK;
6630
6631         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6632         if (IS_ERR(em)) {
6633                 ret = PTR_ERR(em);
6634                 goto unlock_err;
6635         }
6636
6637         /*
6638          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6639          * io.  INLINE is special, and we could probably kludge it in here, but
6640          * it's still buffered so for safety lets just fall back to the generic
6641          * buffered path.
6642          *
6643          * For COMPRESSED we _have_ to read the entire extent in so we can
6644          * decompress it, so there will be buffering required no matter what we
6645          * do, so go ahead and fallback to buffered.
6646          *
6647          * We return -ENOTBLK because thats what makes DIO go ahead and go back
6648          * to buffered IO.  Don't blame me, this is the price we pay for using
6649          * the generic code.
6650          */
6651         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6652             em->block_start == EXTENT_MAP_INLINE) {
6653                 free_extent_map(em);
6654                 ret = -ENOTBLK;
6655                 goto unlock_err;
6656         }
6657
6658         /* Just a good old fashioned hole, return */
6659         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6660                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6661                 free_extent_map(em);
6662                 goto unlock_err;
6663         }
6664
6665         /*
6666          * We don't allocate a new extent in the following cases
6667          *
6668          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6669          * existing extent.
6670          * 2) The extent is marked as PREALLOC.  We're good to go here and can
6671          * just use the extent.
6672          *
6673          */
6674         if (!create) {
6675                 len = min(len, em->len - (start - em->start));
6676                 lockstart = start + len;
6677                 goto unlock;
6678         }
6679
6680         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6681             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6682              em->block_start != EXTENT_MAP_HOLE)) {
6683                 int type;
6684                 int ret;
6685                 u64 block_start, orig_start, orig_block_len, ram_bytes;
6686
6687                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6688                         type = BTRFS_ORDERED_PREALLOC;
6689                 else
6690                         type = BTRFS_ORDERED_NOCOW;
6691                 len = min(len, em->len - (start - em->start));
6692                 block_start = em->block_start + (start - em->start);
6693
6694                 if (can_nocow_extent(inode, start, &len, &orig_start,
6695                                      &orig_block_len, &ram_bytes) == 1) {
6696                         if (type == BTRFS_ORDERED_PREALLOC) {
6697                                 free_extent_map(em);
6698                                 em = create_pinned_em(inode, start, len,
6699                                                        orig_start,
6700                                                        block_start, len,
6701                                                        orig_block_len,
6702                                                        ram_bytes, type);
6703                                 if (IS_ERR(em))
6704                                         goto unlock_err;
6705                         }
6706
6707                         ret = btrfs_add_ordered_extent_dio(inode, start,
6708                                            block_start, len, len, type);
6709                         if (ret) {
6710                                 free_extent_map(em);
6711                                 goto unlock_err;
6712                         }
6713                         goto unlock;
6714                 }
6715         }
6716
6717         /*
6718          * this will cow the extent, reset the len in case we changed
6719          * it above
6720          */
6721         len = bh_result->b_size;
6722         free_extent_map(em);
6723         em = btrfs_new_extent_direct(inode, start, len);
6724         if (IS_ERR(em)) {
6725                 ret = PTR_ERR(em);
6726                 goto unlock_err;
6727         }
6728         len = min(len, em->len - (start - em->start));
6729 unlock:
6730         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6731                 inode->i_blkbits;
6732         bh_result->b_size = len;
6733         bh_result->b_bdev = em->bdev;
6734         set_buffer_mapped(bh_result);
6735         if (create) {
6736                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6737                         set_buffer_new(bh_result);
6738
6739                 /*
6740                  * Need to update the i_size under the extent lock so buffered
6741                  * readers will get the updated i_size when we unlock.
6742                  */
6743                 if (start + len > i_size_read(inode))
6744                         i_size_write(inode, start + len);
6745
6746                 spin_lock(&BTRFS_I(inode)->lock);
6747                 BTRFS_I(inode)->outstanding_extents++;
6748                 spin_unlock(&BTRFS_I(inode)->lock);
6749
6750                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6751                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
6752                                      &cached_state, GFP_NOFS);
6753                 BUG_ON(ret);
6754         }
6755
6756         /*
6757          * In the case of write we need to clear and unlock the entire range,
6758          * in the case of read we need to unlock only the end area that we
6759          * aren't using if there is any left over space.
6760          */
6761         if (lockstart < lockend) {
6762                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6763                                  lockend, unlock_bits, 1, 0,
6764                                  &cached_state, GFP_NOFS);
6765         } else {
6766                 free_extent_state(cached_state);
6767         }
6768
6769         free_extent_map(em);
6770
6771         return 0;
6772
6773 unlock_err:
6774         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6775                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6776         return ret;
6777 }
6778
6779 static void btrfs_endio_direct_read(struct bio *bio, int err)
6780 {
6781         struct btrfs_dio_private *dip = bio->bi_private;
6782         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6783         struct bio_vec *bvec = bio->bi_io_vec;
6784         struct inode *inode = dip->inode;
6785         struct btrfs_root *root = BTRFS_I(inode)->root;
6786         struct bio *dio_bio;
6787         u32 *csums = (u32 *)dip->csum;
6788         int index = 0;
6789         u64 start;
6790
6791         start = dip->logical_offset;
6792         do {
6793                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6794                         struct page *page = bvec->bv_page;
6795                         char *kaddr;
6796                         u32 csum = ~(u32)0;
6797                         unsigned long flags;
6798
6799                         local_irq_save(flags);
6800                         kaddr = kmap_atomic(page);
6801                         csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6802                                                csum, bvec->bv_len);
6803                         btrfs_csum_final(csum, (char *)&csum);
6804                         kunmap_atomic(kaddr);
6805                         local_irq_restore(flags);
6806
6807                         flush_dcache_page(bvec->bv_page);
6808                         if (csum != csums[index]) {
6809                                 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6810                                           btrfs_ino(inode), start, csum,
6811                                           csums[index]);
6812                                 err = -EIO;
6813                         }
6814                 }
6815
6816                 start += bvec->bv_len;
6817                 bvec++;
6818                 index++;
6819         } while (bvec <= bvec_end);
6820
6821         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6822                       dip->logical_offset + dip->bytes - 1);
6823         dio_bio = dip->dio_bio;
6824
6825         kfree(dip);
6826
6827         /* If we had a csum failure make sure to clear the uptodate flag */
6828         if (err)
6829                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6830         dio_end_io(dio_bio, err);
6831         bio_put(bio);
6832 }
6833
6834 static void btrfs_endio_direct_write(struct bio *bio, int err)
6835 {
6836         struct btrfs_dio_private *dip = bio->bi_private;
6837         struct inode *inode = dip->inode;
6838         struct btrfs_root *root = BTRFS_I(inode)->root;
6839         struct btrfs_ordered_extent *ordered = NULL;
6840         u64 ordered_offset = dip->logical_offset;
6841         u64 ordered_bytes = dip->bytes;
6842         struct bio *dio_bio;
6843         int ret;
6844
6845         if (err)
6846                 goto out_done;
6847 again:
6848         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6849                                                    &ordered_offset,
6850                                                    ordered_bytes, !err);
6851         if (!ret)
6852                 goto out_test;
6853
6854         ordered->work.func = finish_ordered_fn;
6855         ordered->work.flags = 0;
6856         btrfs_queue_worker(&root->fs_info->endio_write_workers,
6857                            &ordered->work);
6858 out_test:
6859         /*
6860          * our bio might span multiple ordered extents.  If we haven't
6861          * completed the accounting for the whole dio, go back and try again
6862          */
6863         if (ordered_offset < dip->logical_offset + dip->bytes) {
6864                 ordered_bytes = dip->logical_offset + dip->bytes -
6865                         ordered_offset;
6866                 ordered = NULL;
6867                 goto again;
6868         }
6869 out_done:
6870         dio_bio = dip->dio_bio;
6871
6872         kfree(dip);
6873
6874         /* If we had an error make sure to clear the uptodate flag */
6875         if (err)
6876                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6877         dio_end_io(dio_bio, err);
6878         bio_put(bio);
6879 }
6880
6881 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6882                                     struct bio *bio, int mirror_num,
6883                                     unsigned long bio_flags, u64 offset)
6884 {
6885         int ret;
6886         struct btrfs_root *root = BTRFS_I(inode)->root;
6887         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6888         BUG_ON(ret); /* -ENOMEM */
6889         return 0;
6890 }
6891
6892 static void btrfs_end_dio_bio(struct bio *bio, int err)
6893 {
6894         struct btrfs_dio_private *dip = bio->bi_private;
6895
6896         if (err) {
6897                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6898                       "sector %#Lx len %u err no %d\n",
6899                       btrfs_ino(dip->inode), bio->bi_rw,
6900                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
6901                 dip->errors = 1;
6902
6903                 /*
6904                  * before atomic variable goto zero, we must make sure
6905                  * dip->errors is perceived to be set.
6906                  */
6907                 smp_mb__before_atomic_dec();
6908         }
6909
6910         /* if there are more bios still pending for this dio, just exit */
6911         if (!atomic_dec_and_test(&dip->pending_bios))
6912                 goto out;
6913
6914         if (dip->errors) {
6915                 bio_io_error(dip->orig_bio);
6916         } else {
6917                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6918                 bio_endio(dip->orig_bio, 0);
6919         }
6920 out:
6921         bio_put(bio);
6922 }
6923
6924 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6925                                        u64 first_sector, gfp_t gfp_flags)
6926 {
6927         int nr_vecs = bio_get_nr_vecs(bdev);
6928         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6929 }
6930
6931 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6932                                          int rw, u64 file_offset, int skip_sum,
6933                                          int async_submit)
6934 {
6935         struct btrfs_dio_private *dip = bio->bi_private;
6936         int write = rw & REQ_WRITE;
6937         struct btrfs_root *root = BTRFS_I(inode)->root;
6938         int ret;
6939
6940         if (async_submit)
6941                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6942
6943         bio_get(bio);
6944
6945         if (!write) {
6946                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6947                 if (ret)
6948                         goto err;
6949         }
6950
6951         if (skip_sum)
6952                 goto map;
6953
6954         if (write && async_submit) {
6955                 ret = btrfs_wq_submit_bio(root->fs_info,
6956                                    inode, rw, bio, 0, 0,
6957                                    file_offset,
6958                                    __btrfs_submit_bio_start_direct_io,
6959                                    __btrfs_submit_bio_done);
6960                 goto err;
6961         } else if (write) {
6962                 /*
6963                  * If we aren't doing async submit, calculate the csum of the
6964                  * bio now.
6965                  */
6966                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6967                 if (ret)
6968                         goto err;
6969         } else if (!skip_sum) {
6970                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6971                                                 file_offset);
6972                 if (ret)
6973                         goto err;
6974         }
6975
6976 map:
6977         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6978 err:
6979         bio_put(bio);
6980         return ret;
6981 }
6982
6983 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6984                                     int skip_sum)
6985 {
6986         struct inode *inode = dip->inode;
6987         struct btrfs_root *root = BTRFS_I(inode)->root;
6988         struct bio *bio;
6989         struct bio *orig_bio = dip->orig_bio;
6990         struct bio_vec *bvec = orig_bio->bi_io_vec;
6991         u64 start_sector = orig_bio->bi_sector;
6992         u64 file_offset = dip->logical_offset;
6993         u64 submit_len = 0;
6994         u64 map_length;
6995         int nr_pages = 0;
6996         int ret = 0;
6997         int async_submit = 0;
6998
6999         map_length = orig_bio->bi_size;
7000         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7001                               &map_length, NULL, 0);
7002         if (ret) {
7003                 bio_put(orig_bio);
7004                 return -EIO;
7005         }
7006
7007         if (map_length >= orig_bio->bi_size) {
7008                 bio = orig_bio;
7009                 goto submit;
7010         }
7011
7012         /* async crcs make it difficult to collect full stripe writes. */
7013         if (btrfs_get_alloc_profile(root, 1) &
7014             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7015                 async_submit = 0;
7016         else
7017                 async_submit = 1;
7018
7019         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7020         if (!bio)
7021                 return -ENOMEM;
7022         bio->bi_private = dip;
7023         bio->bi_end_io = btrfs_end_dio_bio;
7024         atomic_inc(&dip->pending_bios);
7025
7026         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7027                 if (unlikely(map_length < submit_len + bvec->bv_len ||
7028                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7029                                  bvec->bv_offset) < bvec->bv_len)) {
7030                         /*
7031                          * inc the count before we submit the bio so
7032                          * we know the end IO handler won't happen before
7033                          * we inc the count. Otherwise, the dip might get freed
7034                          * before we're done setting it up
7035                          */
7036                         atomic_inc(&dip->pending_bios);
7037                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7038                                                      file_offset, skip_sum,
7039                                                      async_submit);
7040                         if (ret) {
7041                                 bio_put(bio);
7042                                 atomic_dec(&dip->pending_bios);
7043                                 goto out_err;
7044                         }
7045
7046                         start_sector += submit_len >> 9;
7047                         file_offset += submit_len;
7048
7049                         submit_len = 0;
7050                         nr_pages = 0;
7051
7052                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7053                                                   start_sector, GFP_NOFS);
7054                         if (!bio)
7055                                 goto out_err;
7056                         bio->bi_private = dip;
7057                         bio->bi_end_io = btrfs_end_dio_bio;
7058
7059                         map_length = orig_bio->bi_size;
7060                         ret = btrfs_map_block(root->fs_info, rw,
7061                                               start_sector << 9,
7062                                               &map_length, NULL, 0);
7063                         if (ret) {
7064                                 bio_put(bio);
7065                                 goto out_err;
7066                         }
7067                 } else {
7068                         submit_len += bvec->bv_len;
7069                         nr_pages++;
7070                         bvec++;
7071                 }
7072         }
7073
7074 submit:
7075         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7076                                      async_submit);
7077         if (!ret)
7078                 return 0;
7079
7080         bio_put(bio);
7081 out_err:
7082         dip->errors = 1;
7083         /*
7084          * before atomic variable goto zero, we must
7085          * make sure dip->errors is perceived to be set.
7086          */
7087         smp_mb__before_atomic_dec();
7088         if (atomic_dec_and_test(&dip->pending_bios))
7089                 bio_io_error(dip->orig_bio);
7090
7091         /* bio_end_io() will handle error, so we needn't return it */
7092         return 0;
7093 }
7094
7095 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7096                                 struct inode *inode, loff_t file_offset)
7097 {
7098         struct btrfs_root *root = BTRFS_I(inode)->root;
7099         struct btrfs_dio_private *dip;
7100         struct bio *io_bio;
7101         int skip_sum;
7102         int sum_len;
7103         int write = rw & REQ_WRITE;
7104         int ret = 0;
7105         u16 csum_size;
7106
7107         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7108
7109         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7110         if (!io_bio) {
7111                 ret = -ENOMEM;
7112                 goto free_ordered;
7113         }
7114
7115         if (!skip_sum && !write) {
7116                 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7117                 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7118                 sum_len *= csum_size;
7119         } else {
7120                 sum_len = 0;
7121         }
7122
7123         dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7124         if (!dip) {
7125                 ret = -ENOMEM;
7126                 goto free_io_bio;
7127         }
7128
7129         dip->private = dio_bio->bi_private;
7130         dip->inode = inode;
7131         dip->logical_offset = file_offset;
7132         dip->bytes = dio_bio->bi_size;
7133         dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7134         io_bio->bi_private = dip;
7135         dip->errors = 0;
7136         dip->orig_bio = io_bio;
7137         dip->dio_bio = dio_bio;
7138         atomic_set(&dip->pending_bios, 0);
7139
7140         if (write)
7141                 io_bio->bi_end_io = btrfs_endio_direct_write;
7142         else
7143                 io_bio->bi_end_io = btrfs_endio_direct_read;
7144
7145         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7146         if (!ret)
7147                 return;
7148
7149 free_io_bio:
7150         bio_put(io_bio);
7151
7152 free_ordered:
7153         /*
7154          * If this is a write, we need to clean up the reserved space and kill
7155          * the ordered extent.
7156          */
7157         if (write) {
7158                 struct btrfs_ordered_extent *ordered;
7159                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7160                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7161                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7162                         btrfs_free_reserved_extent(root, ordered->start,
7163                                                    ordered->disk_len);
7164                 btrfs_put_ordered_extent(ordered);
7165                 btrfs_put_ordered_extent(ordered);
7166         }
7167         bio_endio(dio_bio, ret);
7168 }
7169
7170 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7171                         const struct iovec *iov, loff_t offset,
7172                         unsigned long nr_segs)
7173 {
7174         int seg;
7175         int i;
7176         size_t size;
7177         unsigned long addr;
7178         unsigned blocksize_mask = root->sectorsize - 1;
7179         ssize_t retval = -EINVAL;
7180         loff_t end = offset;
7181
7182         if (offset & blocksize_mask)
7183                 goto out;
7184
7185         /* Check the memory alignment.  Blocks cannot straddle pages */
7186         for (seg = 0; seg < nr_segs; seg++) {
7187                 addr = (unsigned long)iov[seg].iov_base;
7188                 size = iov[seg].iov_len;
7189                 end += size;
7190                 if ((addr & blocksize_mask) || (size & blocksize_mask))
7191                         goto out;
7192
7193                 /* If this is a write we don't need to check anymore */
7194                 if (rw & WRITE)
7195                         continue;
7196
7197                 /*
7198                  * Check to make sure we don't have duplicate iov_base's in this
7199                  * iovec, if so return EINVAL, otherwise we'll get csum errors
7200                  * when reading back.
7201                  */
7202                 for (i = seg + 1; i < nr_segs; i++) {
7203                         if (iov[seg].iov_base == iov[i].iov_base)
7204                                 goto out;
7205                 }
7206         }
7207         retval = 0;
7208 out:
7209         return retval;
7210 }
7211
7212 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7213                         const struct iovec *iov, loff_t offset,
7214                         unsigned long nr_segs)
7215 {
7216         struct file *file = iocb->ki_filp;
7217         struct inode *inode = file->f_mapping->host;
7218         size_t count = 0;
7219         int flags = 0;
7220         bool wakeup = true;
7221         bool relock = false;
7222         ssize_t ret;
7223
7224         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7225                             offset, nr_segs))
7226                 return 0;
7227
7228         atomic_inc(&inode->i_dio_count);
7229         smp_mb__after_atomic_inc();
7230
7231         /*
7232          * The generic stuff only does filemap_write_and_wait_range, which isn't
7233          * enough if we've written compressed pages to this area, so we need to
7234          * call btrfs_wait_ordered_range to make absolutely sure that any
7235          * outstanding dirty pages are on disk.
7236          */
7237         count = iov_length(iov, nr_segs);
7238         ret = btrfs_wait_ordered_range(inode, offset, count);
7239         if (ret)
7240                 return ret;
7241
7242         if (rw & WRITE) {
7243                 /*
7244                  * If the write DIO is beyond the EOF, we need update
7245                  * the isize, but it is protected by i_mutex. So we can
7246                  * not unlock the i_mutex at this case.
7247                  */
7248                 if (offset + count <= inode->i_size) {
7249                         mutex_unlock(&inode->i_mutex);
7250                         relock = true;
7251                 }
7252                 ret = btrfs_delalloc_reserve_space(inode, count);
7253                 if (ret)
7254                         goto out;
7255         } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7256                                      &BTRFS_I(inode)->runtime_flags))) {
7257                 inode_dio_done(inode);
7258                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7259                 wakeup = false;
7260         }
7261
7262         ret = __blockdev_direct_IO(rw, iocb, inode,
7263                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7264                         iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7265                         btrfs_submit_direct, flags);
7266         if (rw & WRITE) {
7267                 if (ret < 0 && ret != -EIOCBQUEUED)
7268                         btrfs_delalloc_release_space(inode, count);
7269                 else if (ret >= 0 && (size_t)ret < count)
7270                         btrfs_delalloc_release_space(inode,
7271                                                      count - (size_t)ret);
7272                 else
7273                         btrfs_delalloc_release_metadata(inode, 0);
7274         }
7275 out:
7276         if (wakeup)
7277                 inode_dio_done(inode);
7278         if (relock)
7279                 mutex_lock(&inode->i_mutex);
7280
7281         return ret;
7282 }
7283
7284 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7285
7286 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7287                 __u64 start, __u64 len)
7288 {
7289         int     ret;
7290
7291         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7292         if (ret)
7293                 return ret;
7294
7295         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7296 }
7297
7298 int btrfs_readpage(struct file *file, struct page *page)
7299 {
7300         struct extent_io_tree *tree;
7301         tree = &BTRFS_I(page->mapping->host)->io_tree;
7302         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7303 }
7304
7305 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7306 {
7307         struct extent_io_tree *tree;
7308
7309
7310         if (current->flags & PF_MEMALLOC) {
7311                 redirty_page_for_writepage(wbc, page);
7312                 unlock_page(page);
7313                 return 0;
7314         }
7315         tree = &BTRFS_I(page->mapping->host)->io_tree;
7316         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7317 }
7318
7319 static int btrfs_writepages(struct address_space *mapping,
7320                             struct writeback_control *wbc)
7321 {
7322         struct extent_io_tree *tree;
7323
7324         tree = &BTRFS_I(mapping->host)->io_tree;
7325         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7326 }
7327
7328 static int
7329 btrfs_readpages(struct file *file, struct address_space *mapping,
7330                 struct list_head *pages, unsigned nr_pages)
7331 {
7332         struct extent_io_tree *tree;
7333         tree = &BTRFS_I(mapping->host)->io_tree;
7334         return extent_readpages(tree, mapping, pages, nr_pages,
7335                                 btrfs_get_extent);
7336 }
7337 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7338 {
7339         struct extent_io_tree *tree;
7340         struct extent_map_tree *map;
7341         int ret;
7342
7343         tree = &BTRFS_I(page->mapping->host)->io_tree;
7344         map = &BTRFS_I(page->mapping->host)->extent_tree;
7345         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7346         if (ret == 1) {
7347                 ClearPagePrivate(page);
7348                 set_page_private(page, 0);
7349                 page_cache_release(page);
7350         }
7351         return ret;
7352 }
7353
7354 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7355 {
7356         if (PageWriteback(page) || PageDirty(page))
7357                 return 0;
7358         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7359 }
7360
7361 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7362                                  unsigned int length)
7363 {
7364         struct inode *inode = page->mapping->host;
7365         struct extent_io_tree *tree;
7366         struct btrfs_ordered_extent *ordered;
7367         struct extent_state *cached_state = NULL;
7368         u64 page_start = page_offset(page);
7369         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7370
7371         /*
7372          * we have the page locked, so new writeback can't start,
7373          * and the dirty bit won't be cleared while we are here.
7374          *
7375          * Wait for IO on this page so that we can safely clear
7376          * the PagePrivate2 bit and do ordered accounting
7377          */
7378         wait_on_page_writeback(page);
7379
7380         tree = &BTRFS_I(inode)->io_tree;
7381         if (offset) {
7382                 btrfs_releasepage(page, GFP_NOFS);
7383                 return;
7384         }
7385         lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7386         ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7387         if (ordered) {
7388                 /*
7389                  * IO on this page will never be started, so we need
7390                  * to account for any ordered extents now
7391                  */
7392                 clear_extent_bit(tree, page_start, page_end,
7393                                  EXTENT_DIRTY | EXTENT_DELALLOC |
7394                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7395                                  EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7396                 /*
7397                  * whoever cleared the private bit is responsible
7398                  * for the finish_ordered_io
7399                  */
7400                 if (TestClearPagePrivate2(page)) {
7401                         struct btrfs_ordered_inode_tree *tree;
7402                         u64 new_len;
7403
7404                         tree = &BTRFS_I(inode)->ordered_tree;
7405
7406                         spin_lock_irq(&tree->lock);
7407                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7408                         new_len = page_start - ordered->file_offset;
7409                         if (new_len < ordered->truncated_len)
7410                                 ordered->truncated_len = new_len;
7411                         spin_unlock_irq(&tree->lock);
7412
7413                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
7414                                                            page_start,
7415                                                            PAGE_CACHE_SIZE, 1))
7416                                 btrfs_finish_ordered_io(ordered);
7417                 }
7418                 btrfs_put_ordered_extent(ordered);
7419                 cached_state = NULL;
7420                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7421         }
7422         clear_extent_bit(tree, page_start, page_end,
7423                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7424                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7425                  &cached_state, GFP_NOFS);
7426         __btrfs_releasepage(page, GFP_NOFS);
7427
7428         ClearPageChecked(page);
7429         if (PagePrivate(page)) {
7430                 ClearPagePrivate(page);
7431                 set_page_private(page, 0);
7432                 page_cache_release(page);
7433         }
7434 }
7435
7436 /*
7437  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7438  * called from a page fault handler when a page is first dirtied. Hence we must
7439  * be careful to check for EOF conditions here. We set the page up correctly
7440  * for a written page which means we get ENOSPC checking when writing into
7441  * holes and correct delalloc and unwritten extent mapping on filesystems that
7442  * support these features.
7443  *
7444  * We are not allowed to take the i_mutex here so we have to play games to
7445  * protect against truncate races as the page could now be beyond EOF.  Because
7446  * vmtruncate() writes the inode size before removing pages, once we have the
7447  * page lock we can determine safely if the page is beyond EOF. If it is not
7448  * beyond EOF, then the page is guaranteed safe against truncation until we
7449  * unlock the page.
7450  */
7451 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7452 {
7453         struct page *page = vmf->page;
7454         struct inode *inode = file_inode(vma->vm_file);
7455         struct btrfs_root *root = BTRFS_I(inode)->root;
7456         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7457         struct btrfs_ordered_extent *ordered;
7458         struct extent_state *cached_state = NULL;
7459         char *kaddr;
7460         unsigned long zero_start;
7461         loff_t size;
7462         int ret;
7463         int reserved = 0;
7464         u64 page_start;
7465         u64 page_end;
7466
7467         sb_start_pagefault(inode->i_sb);
7468         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7469         if (!ret) {
7470                 ret = file_update_time(vma->vm_file);
7471                 reserved = 1;
7472         }
7473         if (ret) {
7474                 if (ret == -ENOMEM)
7475                         ret = VM_FAULT_OOM;
7476                 else /* -ENOSPC, -EIO, etc */
7477                         ret = VM_FAULT_SIGBUS;
7478                 if (reserved)
7479                         goto out;
7480                 goto out_noreserve;
7481         }
7482
7483         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7484 again:
7485         lock_page(page);
7486         size = i_size_read(inode);
7487         page_start = page_offset(page);
7488         page_end = page_start + PAGE_CACHE_SIZE - 1;
7489
7490         if ((page->mapping != inode->i_mapping) ||
7491             (page_start >= size)) {
7492                 /* page got truncated out from underneath us */
7493                 goto out_unlock;
7494         }
7495         wait_on_page_writeback(page);
7496
7497         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7498         set_page_extent_mapped(page);
7499
7500         /*
7501          * we can't set the delalloc bits if there are pending ordered
7502          * extents.  Drop our locks and wait for them to finish
7503          */
7504         ordered = btrfs_lookup_ordered_extent(inode, page_start);
7505         if (ordered) {
7506                 unlock_extent_cached(io_tree, page_start, page_end,
7507                                      &cached_state, GFP_NOFS);
7508                 unlock_page(page);
7509                 btrfs_start_ordered_extent(inode, ordered, 1);
7510                 btrfs_put_ordered_extent(ordered);
7511                 goto again;
7512         }
7513
7514         /*
7515          * XXX - page_mkwrite gets called every time the page is dirtied, even
7516          * if it was already dirty, so for space accounting reasons we need to
7517          * clear any delalloc bits for the range we are fixing to save.  There
7518          * is probably a better way to do this, but for now keep consistent with
7519          * prepare_pages in the normal write path.
7520          */
7521         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7522                           EXTENT_DIRTY | EXTENT_DELALLOC |
7523                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7524                           0, 0, &cached_state, GFP_NOFS);
7525
7526         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7527                                         &cached_state);
7528         if (ret) {
7529                 unlock_extent_cached(io_tree, page_start, page_end,
7530                                      &cached_state, GFP_NOFS);
7531                 ret = VM_FAULT_SIGBUS;
7532                 goto out_unlock;
7533         }
7534         ret = 0;
7535
7536         /* page is wholly or partially inside EOF */
7537         if (page_start + PAGE_CACHE_SIZE > size)
7538                 zero_start = size & ~PAGE_CACHE_MASK;
7539         else
7540                 zero_start = PAGE_CACHE_SIZE;
7541
7542         if (zero_start != PAGE_CACHE_SIZE) {
7543                 kaddr = kmap(page);
7544                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7545                 flush_dcache_page(page);
7546                 kunmap(page);
7547         }
7548         ClearPageChecked(page);
7549         set_page_dirty(page);
7550         SetPageUptodate(page);
7551
7552         BTRFS_I(inode)->last_trans = root->fs_info->generation;
7553         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7554         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7555
7556         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7557
7558 out_unlock:
7559         if (!ret) {
7560                 sb_end_pagefault(inode->i_sb);
7561                 return VM_FAULT_LOCKED;
7562         }
7563         unlock_page(page);
7564 out:
7565         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7566 out_noreserve:
7567         sb_end_pagefault(inode->i_sb);
7568         return ret;
7569 }
7570
7571 static int btrfs_truncate(struct inode *inode)
7572 {
7573         struct btrfs_root *root = BTRFS_I(inode)->root;
7574         struct btrfs_block_rsv *rsv;
7575         int ret = 0;
7576         int err = 0;
7577         struct btrfs_trans_handle *trans;
7578         u64 mask = root->sectorsize - 1;
7579         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7580
7581         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7582                                        (u64)-1);
7583         if (ret)
7584                 return ret;
7585
7586         /*
7587          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7588          * 3 things going on here
7589          *
7590          * 1) We need to reserve space for our orphan item and the space to
7591          * delete our orphan item.  Lord knows we don't want to have a dangling
7592          * orphan item because we didn't reserve space to remove it.
7593          *
7594          * 2) We need to reserve space to update our inode.
7595          *
7596          * 3) We need to have something to cache all the space that is going to
7597          * be free'd up by the truncate operation, but also have some slack
7598          * space reserved in case it uses space during the truncate (thank you
7599          * very much snapshotting).
7600          *
7601          * And we need these to all be seperate.  The fact is we can use alot of
7602          * space doing the truncate, and we have no earthly idea how much space
7603          * we will use, so we need the truncate reservation to be seperate so it
7604          * doesn't end up using space reserved for updating the inode or
7605          * removing the orphan item.  We also need to be able to stop the
7606          * transaction and start a new one, which means we need to be able to
7607          * update the inode several times, and we have no idea of knowing how
7608          * many times that will be, so we can't just reserve 1 item for the
7609          * entirety of the opration, so that has to be done seperately as well.
7610          * Then there is the orphan item, which does indeed need to be held on
7611          * to for the whole operation, and we need nobody to touch this reserved
7612          * space except the orphan code.
7613          *
7614          * So that leaves us with
7615          *
7616          * 1) root->orphan_block_rsv - for the orphan deletion.
7617          * 2) rsv - for the truncate reservation, which we will steal from the
7618          * transaction reservation.
7619          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7620          * updating the inode.
7621          */
7622         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7623         if (!rsv)
7624                 return -ENOMEM;
7625         rsv->size = min_size;
7626         rsv->failfast = 1;
7627
7628         /*
7629          * 1 for the truncate slack space
7630          * 1 for updating the inode.
7631          */
7632         trans = btrfs_start_transaction(root, 2);
7633         if (IS_ERR(trans)) {
7634                 err = PTR_ERR(trans);
7635                 goto out;
7636         }
7637
7638         /* Migrate the slack space for the truncate to our reserve */
7639         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7640                                       min_size);
7641         BUG_ON(ret);
7642
7643         /*
7644          * setattr is responsible for setting the ordered_data_close flag,
7645          * but that is only tested during the last file release.  That
7646          * could happen well after the next commit, leaving a great big
7647          * window where new writes may get lost if someone chooses to write
7648          * to this file after truncating to zero
7649          *
7650          * The inode doesn't have any dirty data here, and so if we commit
7651          * this is a noop.  If someone immediately starts writing to the inode
7652          * it is very likely we'll catch some of their writes in this
7653          * transaction, and the commit will find this file on the ordered
7654          * data list with good things to send down.
7655          *
7656          * This is a best effort solution, there is still a window where
7657          * using truncate to replace the contents of the file will
7658          * end up with a zero length file after a crash.
7659          */
7660         if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7661                                            &BTRFS_I(inode)->runtime_flags))
7662                 btrfs_add_ordered_operation(trans, root, inode);
7663
7664         /*
7665          * So if we truncate and then write and fsync we normally would just
7666          * write the extents that changed, which is a problem if we need to
7667          * first truncate that entire inode.  So set this flag so we write out
7668          * all of the extents in the inode to the sync log so we're completely
7669          * safe.
7670          */
7671         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7672         trans->block_rsv = rsv;
7673
7674         while (1) {
7675                 ret = btrfs_truncate_inode_items(trans, root, inode,
7676                                                  inode->i_size,
7677                                                  BTRFS_EXTENT_DATA_KEY);
7678                 if (ret != -ENOSPC) {
7679                         err = ret;
7680                         break;
7681                 }
7682
7683                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7684                 ret = btrfs_update_inode(trans, root, inode);
7685                 if (ret) {
7686                         err = ret;
7687                         break;
7688                 }
7689
7690                 btrfs_end_transaction(trans, root);
7691                 btrfs_btree_balance_dirty(root);
7692
7693                 trans = btrfs_start_transaction(root, 2);
7694                 if (IS_ERR(trans)) {
7695                         ret = err = PTR_ERR(trans);
7696                         trans = NULL;
7697                         break;
7698                 }
7699
7700                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7701                                               rsv, min_size);
7702                 BUG_ON(ret);    /* shouldn't happen */
7703                 trans->block_rsv = rsv;
7704         }
7705
7706         if (ret == 0 && inode->i_nlink > 0) {
7707                 trans->block_rsv = root->orphan_block_rsv;
7708                 ret = btrfs_orphan_del(trans, inode);
7709                 if (ret)
7710                         err = ret;
7711         }
7712
7713         if (trans) {
7714                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7715                 ret = btrfs_update_inode(trans, root, inode);
7716                 if (ret && !err)
7717                         err = ret;
7718
7719                 ret = btrfs_end_transaction(trans, root);
7720                 btrfs_btree_balance_dirty(root);
7721         }
7722
7723 out:
7724         btrfs_free_block_rsv(root, rsv);
7725
7726         if (ret && !err)
7727                 err = ret;
7728
7729         return err;
7730 }
7731
7732 /*
7733  * create a new subvolume directory/inode (helper for the ioctl).
7734  */
7735 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7736                              struct btrfs_root *new_root, u64 new_dirid)
7737 {
7738         struct inode *inode;
7739         int err;
7740         u64 index = 0;
7741
7742         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7743                                 new_dirid, new_dirid,
7744                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
7745                                 &index);
7746         if (IS_ERR(inode))
7747                 return PTR_ERR(inode);
7748         inode->i_op = &btrfs_dir_inode_operations;
7749         inode->i_fop = &btrfs_dir_file_operations;
7750
7751         set_nlink(inode, 1);
7752         btrfs_i_size_write(inode, 0);
7753
7754         err = btrfs_update_inode(trans, new_root, inode);
7755
7756         iput(inode);
7757         return err;
7758 }
7759
7760 struct inode *btrfs_alloc_inode(struct super_block *sb)
7761 {
7762         struct btrfs_inode *ei;
7763         struct inode *inode;
7764
7765         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7766         if (!ei)
7767                 return NULL;
7768
7769         ei->root = NULL;
7770         ei->generation = 0;
7771         ei->last_trans = 0;
7772         ei->last_sub_trans = 0;
7773         ei->logged_trans = 0;
7774         ei->delalloc_bytes = 0;
7775         ei->disk_i_size = 0;
7776         ei->flags = 0;
7777         ei->csum_bytes = 0;
7778         ei->index_cnt = (u64)-1;
7779         ei->last_unlink_trans = 0;
7780         ei->last_log_commit = 0;
7781
7782         spin_lock_init(&ei->lock);
7783         ei->outstanding_extents = 0;
7784         ei->reserved_extents = 0;
7785
7786         ei->runtime_flags = 0;
7787         ei->force_compress = BTRFS_COMPRESS_NONE;
7788
7789         ei->delayed_node = NULL;
7790
7791         inode = &ei->vfs_inode;
7792         extent_map_tree_init(&ei->extent_tree);
7793         extent_io_tree_init(&ei->io_tree, &inode->i_data);
7794         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7795         ei->io_tree.track_uptodate = 1;
7796         ei->io_failure_tree.track_uptodate = 1;
7797         atomic_set(&ei->sync_writers, 0);
7798         mutex_init(&ei->log_mutex);
7799         mutex_init(&ei->delalloc_mutex);
7800         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7801         INIT_LIST_HEAD(&ei->delalloc_inodes);
7802         INIT_LIST_HEAD(&ei->ordered_operations);
7803         RB_CLEAR_NODE(&ei->rb_node);
7804
7805         return inode;
7806 }
7807
7808 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7809 void btrfs_test_destroy_inode(struct inode *inode)
7810 {
7811         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7812         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7813 }
7814 #endif
7815
7816 static void btrfs_i_callback(struct rcu_head *head)
7817 {
7818         struct inode *inode = container_of(head, struct inode, i_rcu);
7819         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7820 }
7821
7822 void btrfs_destroy_inode(struct inode *inode)
7823 {
7824         struct btrfs_ordered_extent *ordered;
7825         struct btrfs_root *root = BTRFS_I(inode)->root;
7826
7827         WARN_ON(!hlist_empty(&inode->i_dentry));
7828         WARN_ON(inode->i_data.nrpages);
7829         WARN_ON(BTRFS_I(inode)->outstanding_extents);
7830         WARN_ON(BTRFS_I(inode)->reserved_extents);
7831         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7832         WARN_ON(BTRFS_I(inode)->csum_bytes);
7833
7834         /*
7835          * This can happen where we create an inode, but somebody else also
7836          * created the same inode and we need to destroy the one we already
7837          * created.
7838          */
7839         if (!root)
7840                 goto free;
7841
7842         /*
7843          * Make sure we're properly removed from the ordered operation
7844          * lists.
7845          */
7846         smp_mb();
7847         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7848                 spin_lock(&root->fs_info->ordered_root_lock);
7849                 list_del_init(&BTRFS_I(inode)->ordered_operations);
7850                 spin_unlock(&root->fs_info->ordered_root_lock);
7851         }
7852
7853         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7854                      &BTRFS_I(inode)->runtime_flags)) {
7855                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7856                         btrfs_ino(inode));
7857                 atomic_dec(&root->orphan_inodes);
7858         }
7859
7860         while (1) {
7861                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7862                 if (!ordered)
7863                         break;
7864                 else {
7865                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7866                                 ordered->file_offset, ordered->len);
7867                         btrfs_remove_ordered_extent(inode, ordered);
7868                         btrfs_put_ordered_extent(ordered);
7869                         btrfs_put_ordered_extent(ordered);
7870                 }
7871         }
7872         inode_tree_del(inode);
7873         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7874 free:
7875         call_rcu(&inode->i_rcu, btrfs_i_callback);
7876 }
7877
7878 int btrfs_drop_inode(struct inode *inode)
7879 {
7880         struct btrfs_root *root = BTRFS_I(inode)->root;
7881
7882         if (root == NULL)
7883                 return 1;
7884
7885         /* the snap/subvol tree is on deleting */
7886         if (btrfs_root_refs(&root->root_item) == 0)
7887                 return 1;
7888         else
7889                 return generic_drop_inode(inode);
7890 }
7891
7892 static void init_once(void *foo)
7893 {
7894         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7895
7896         inode_init_once(&ei->vfs_inode);
7897 }
7898
7899 void btrfs_destroy_cachep(void)
7900 {
7901         /*
7902          * Make sure all delayed rcu free inodes are flushed before we
7903          * destroy cache.
7904          */
7905         rcu_barrier();
7906         if (btrfs_inode_cachep)
7907                 kmem_cache_destroy(btrfs_inode_cachep);
7908         if (btrfs_trans_handle_cachep)
7909                 kmem_cache_destroy(btrfs_trans_handle_cachep);
7910         if (btrfs_transaction_cachep)
7911                 kmem_cache_destroy(btrfs_transaction_cachep);
7912         if (btrfs_path_cachep)
7913                 kmem_cache_destroy(btrfs_path_cachep);
7914         if (btrfs_free_space_cachep)
7915                 kmem_cache_destroy(btrfs_free_space_cachep);
7916         if (btrfs_delalloc_work_cachep)
7917                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7918 }
7919
7920 int btrfs_init_cachep(void)
7921 {
7922         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7923                         sizeof(struct btrfs_inode), 0,
7924                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7925         if (!btrfs_inode_cachep)
7926                 goto fail;
7927
7928         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7929                         sizeof(struct btrfs_trans_handle), 0,
7930                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7931         if (!btrfs_trans_handle_cachep)
7932                 goto fail;
7933
7934         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7935                         sizeof(struct btrfs_transaction), 0,
7936                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7937         if (!btrfs_transaction_cachep)
7938                 goto fail;
7939
7940         btrfs_path_cachep = kmem_cache_create("btrfs_path",
7941                         sizeof(struct btrfs_path), 0,
7942                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7943         if (!btrfs_path_cachep)
7944                 goto fail;
7945
7946         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7947                         sizeof(struct btrfs_free_space), 0,
7948                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7949         if (!btrfs_free_space_cachep)
7950                 goto fail;
7951
7952         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7953                         sizeof(struct btrfs_delalloc_work), 0,
7954                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7955                         NULL);
7956         if (!btrfs_delalloc_work_cachep)
7957                 goto fail;
7958
7959         return 0;
7960 fail:
7961         btrfs_destroy_cachep();
7962         return -ENOMEM;
7963 }
7964
7965 static int btrfs_getattr(struct vfsmount *mnt,
7966                          struct dentry *dentry, struct kstat *stat)
7967 {
7968         u64 delalloc_bytes;
7969         struct inode *inode = dentry->d_inode;
7970         u32 blocksize = inode->i_sb->s_blocksize;
7971
7972         generic_fillattr(inode, stat);
7973         stat->dev = BTRFS_I(inode)->root->anon_dev;
7974         stat->blksize = PAGE_CACHE_SIZE;
7975
7976         spin_lock(&BTRFS_I(inode)->lock);
7977         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7978         spin_unlock(&BTRFS_I(inode)->lock);
7979         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7980                         ALIGN(delalloc_bytes, blocksize)) >> 9;
7981         return 0;
7982 }
7983
7984 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7985                            struct inode *new_dir, struct dentry *new_dentry)
7986 {
7987         struct btrfs_trans_handle *trans;
7988         struct btrfs_root *root = BTRFS_I(old_dir)->root;
7989         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7990         struct inode *new_inode = new_dentry->d_inode;
7991         struct inode *old_inode = old_dentry->d_inode;
7992         struct timespec ctime = CURRENT_TIME;
7993         u64 index = 0;
7994         u64 root_objectid;
7995         int ret;
7996         u64 old_ino = btrfs_ino(old_inode);
7997
7998         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7999                 return -EPERM;
8000
8001         /* we only allow rename subvolume link between subvolumes */
8002         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8003                 return -EXDEV;
8004
8005         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8006             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8007                 return -ENOTEMPTY;
8008
8009         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8010             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8011                 return -ENOTEMPTY;
8012
8013
8014         /* check for collisions, even if the  name isn't there */
8015         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8016                              new_dentry->d_name.name,
8017                              new_dentry->d_name.len);
8018
8019         if (ret) {
8020                 if (ret == -EEXIST) {
8021                         /* we shouldn't get
8022                          * eexist without a new_inode */
8023                         if (WARN_ON(!new_inode)) {
8024                                 return ret;
8025                         }
8026                 } else {
8027                         /* maybe -EOVERFLOW */
8028                         return ret;
8029                 }
8030         }
8031         ret = 0;
8032
8033         /*
8034          * we're using rename to replace one file with another.
8035          * and the replacement file is large.  Start IO on it now so
8036          * we don't add too much work to the end of the transaction
8037          */
8038         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8039             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8040                 filemap_flush(old_inode->i_mapping);
8041
8042         /* close the racy window with snapshot create/destroy ioctl */
8043         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8044                 down_read(&root->fs_info->subvol_sem);
8045         /*
8046          * We want to reserve the absolute worst case amount of items.  So if
8047          * both inodes are subvols and we need to unlink them then that would
8048          * require 4 item modifications, but if they are both normal inodes it
8049          * would require 5 item modifications, so we'll assume their normal
8050          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8051          * should cover the worst case number of items we'll modify.
8052          */
8053         trans = btrfs_start_transaction(root, 11);
8054         if (IS_ERR(trans)) {
8055                 ret = PTR_ERR(trans);
8056                 goto out_notrans;
8057         }
8058
8059         if (dest != root)
8060                 btrfs_record_root_in_trans(trans, dest);
8061
8062         ret = btrfs_set_inode_index(new_dir, &index);
8063         if (ret)
8064                 goto out_fail;
8065
8066         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8067                 /* force full log commit if subvolume involved. */
8068                 root->fs_info->last_trans_log_full_commit = trans->transid;
8069         } else {
8070                 ret = btrfs_insert_inode_ref(trans, dest,
8071                                              new_dentry->d_name.name,
8072                                              new_dentry->d_name.len,
8073                                              old_ino,
8074                                              btrfs_ino(new_dir), index);
8075                 if (ret)
8076                         goto out_fail;
8077                 /*
8078                  * this is an ugly little race, but the rename is required
8079                  * to make sure that if we crash, the inode is either at the
8080                  * old name or the new one.  pinning the log transaction lets
8081                  * us make sure we don't allow a log commit to come in after
8082                  * we unlink the name but before we add the new name back in.
8083                  */
8084                 btrfs_pin_log_trans(root);
8085         }
8086         /*
8087          * make sure the inode gets flushed if it is replacing
8088          * something.
8089          */
8090         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8091                 btrfs_add_ordered_operation(trans, root, old_inode);
8092
8093         inode_inc_iversion(old_dir);
8094         inode_inc_iversion(new_dir);
8095         inode_inc_iversion(old_inode);
8096         old_dir->i_ctime = old_dir->i_mtime = ctime;
8097         new_dir->i_ctime = new_dir->i_mtime = ctime;
8098         old_inode->i_ctime = ctime;
8099
8100         if (old_dentry->d_parent != new_dentry->d_parent)
8101                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8102
8103         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8104                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8105                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8106                                         old_dentry->d_name.name,
8107                                         old_dentry->d_name.len);
8108         } else {
8109                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8110                                         old_dentry->d_inode,
8111                                         old_dentry->d_name.name,
8112                                         old_dentry->d_name.len);
8113                 if (!ret)
8114                         ret = btrfs_update_inode(trans, root, old_inode);
8115         }
8116         if (ret) {
8117                 btrfs_abort_transaction(trans, root, ret);
8118                 goto out_fail;
8119         }
8120
8121         if (new_inode) {
8122                 inode_inc_iversion(new_inode);
8123                 new_inode->i_ctime = CURRENT_TIME;
8124                 if (unlikely(btrfs_ino(new_inode) ==
8125                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8126                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8127                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8128                                                 root_objectid,
8129                                                 new_dentry->d_name.name,
8130                                                 new_dentry->d_name.len);
8131                         BUG_ON(new_inode->i_nlink == 0);
8132                 } else {
8133                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8134                                                  new_dentry->d_inode,
8135                                                  new_dentry->d_name.name,
8136                                                  new_dentry->d_name.len);
8137                 }
8138                 if (!ret && new_inode->i_nlink == 0)
8139                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8140                 if (ret) {
8141                         btrfs_abort_transaction(trans, root, ret);
8142                         goto out_fail;
8143                 }
8144         }
8145
8146         ret = btrfs_add_link(trans, new_dir, old_inode,
8147                              new_dentry->d_name.name,
8148                              new_dentry->d_name.len, 0, index);
8149         if (ret) {
8150                 btrfs_abort_transaction(trans, root, ret);
8151                 goto out_fail;
8152         }
8153
8154         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8155                 struct dentry *parent = new_dentry->d_parent;
8156                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8157                 btrfs_end_log_trans(root);
8158         }
8159 out_fail:
8160         btrfs_end_transaction(trans, root);
8161 out_notrans:
8162         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8163                 up_read(&root->fs_info->subvol_sem);
8164
8165         return ret;
8166 }
8167
8168 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8169 {
8170         struct btrfs_delalloc_work *delalloc_work;
8171         struct inode *inode;
8172
8173         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8174                                      work);
8175         inode = delalloc_work->inode;
8176         if (delalloc_work->wait) {
8177                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8178         } else {
8179                 filemap_flush(inode->i_mapping);
8180                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8181                              &BTRFS_I(inode)->runtime_flags))
8182                         filemap_flush(inode->i_mapping);
8183         }
8184
8185         if (delalloc_work->delay_iput)
8186                 btrfs_add_delayed_iput(inode);
8187         else
8188                 iput(inode);
8189         complete(&delalloc_work->completion);
8190 }
8191
8192 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8193                                                     int wait, int delay_iput)
8194 {
8195         struct btrfs_delalloc_work *work;
8196
8197         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8198         if (!work)
8199                 return NULL;
8200
8201         init_completion(&work->completion);
8202         INIT_LIST_HEAD(&work->list);
8203         work->inode = inode;
8204         work->wait = wait;
8205         work->delay_iput = delay_iput;
8206         work->work.func = btrfs_run_delalloc_work;
8207
8208         return work;
8209 }
8210
8211 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8212 {
8213         wait_for_completion(&work->completion);
8214         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8215 }
8216
8217 /*
8218  * some fairly slow code that needs optimization. This walks the list
8219  * of all the inodes with pending delalloc and forces them to disk.
8220  */
8221 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8222 {
8223         struct btrfs_inode *binode;
8224         struct inode *inode;
8225         struct btrfs_delalloc_work *work, *next;
8226         struct list_head works;
8227         struct list_head splice;
8228         int ret = 0;
8229
8230         INIT_LIST_HEAD(&works);
8231         INIT_LIST_HEAD(&splice);
8232
8233         spin_lock(&root->delalloc_lock);
8234         list_splice_init(&root->delalloc_inodes, &splice);
8235         while (!list_empty(&splice)) {
8236                 binode = list_entry(splice.next, struct btrfs_inode,
8237                                     delalloc_inodes);
8238
8239                 list_move_tail(&binode->delalloc_inodes,
8240                                &root->delalloc_inodes);
8241                 inode = igrab(&binode->vfs_inode);
8242                 if (!inode) {
8243                         cond_resched_lock(&root->delalloc_lock);
8244                         continue;
8245                 }
8246                 spin_unlock(&root->delalloc_lock);
8247
8248                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8249                 if (unlikely(!work)) {
8250                         if (delay_iput)
8251                                 btrfs_add_delayed_iput(inode);
8252                         else
8253                                 iput(inode);
8254                         ret = -ENOMEM;
8255                         goto out;
8256                 }
8257                 list_add_tail(&work->list, &works);
8258                 btrfs_queue_worker(&root->fs_info->flush_workers,
8259                                    &work->work);
8260
8261                 cond_resched();
8262                 spin_lock(&root->delalloc_lock);
8263         }
8264         spin_unlock(&root->delalloc_lock);
8265
8266         list_for_each_entry_safe(work, next, &works, list) {
8267                 list_del_init(&work->list);
8268                 btrfs_wait_and_free_delalloc_work(work);
8269         }
8270         return 0;
8271 out:
8272         list_for_each_entry_safe(work, next, &works, list) {
8273                 list_del_init(&work->list);
8274                 btrfs_wait_and_free_delalloc_work(work);
8275         }
8276
8277         if (!list_empty_careful(&splice)) {
8278                 spin_lock(&root->delalloc_lock);
8279                 list_splice_tail(&splice, &root->delalloc_inodes);
8280                 spin_unlock(&root->delalloc_lock);
8281         }
8282         return ret;
8283 }
8284
8285 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8286 {
8287         int ret;
8288
8289         if (root->fs_info->sb->s_flags & MS_RDONLY)
8290                 return -EROFS;
8291
8292         ret = __start_delalloc_inodes(root, delay_iput);
8293         /*
8294          * the filemap_flush will queue IO into the worker threads, but
8295          * we have to make sure the IO is actually started and that
8296          * ordered extents get created before we return
8297          */
8298         atomic_inc(&root->fs_info->async_submit_draining);
8299         while (atomic_read(&root->fs_info->nr_async_submits) ||
8300               atomic_read(&root->fs_info->async_delalloc_pages)) {
8301                 wait_event(root->fs_info->async_submit_wait,
8302                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8303                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8304         }
8305         atomic_dec(&root->fs_info->async_submit_draining);
8306         return ret;
8307 }
8308
8309 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
8310 {
8311         struct btrfs_root *root;
8312         struct list_head splice;
8313         int ret;
8314
8315         if (fs_info->sb->s_flags & MS_RDONLY)
8316                 return -EROFS;
8317
8318         INIT_LIST_HEAD(&splice);
8319
8320         spin_lock(&fs_info->delalloc_root_lock);
8321         list_splice_init(&fs_info->delalloc_roots, &splice);
8322         while (!list_empty(&splice)) {
8323                 root = list_first_entry(&splice, struct btrfs_root,
8324                                         delalloc_root);
8325                 root = btrfs_grab_fs_root(root);
8326                 BUG_ON(!root);
8327                 list_move_tail(&root->delalloc_root,
8328                                &fs_info->delalloc_roots);
8329                 spin_unlock(&fs_info->delalloc_root_lock);
8330
8331                 ret = __start_delalloc_inodes(root, delay_iput);
8332                 btrfs_put_fs_root(root);
8333                 if (ret)
8334                         goto out;
8335
8336                 spin_lock(&fs_info->delalloc_root_lock);
8337         }
8338         spin_unlock(&fs_info->delalloc_root_lock);
8339
8340         atomic_inc(&fs_info->async_submit_draining);
8341         while (atomic_read(&fs_info->nr_async_submits) ||
8342               atomic_read(&fs_info->async_delalloc_pages)) {
8343                 wait_event(fs_info->async_submit_wait,
8344                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
8345                     atomic_read(&fs_info->async_delalloc_pages) == 0));
8346         }
8347         atomic_dec(&fs_info->async_submit_draining);
8348         return 0;
8349 out:
8350         if (!list_empty_careful(&splice)) {
8351                 spin_lock(&fs_info->delalloc_root_lock);
8352                 list_splice_tail(&splice, &fs_info->delalloc_roots);
8353                 spin_unlock(&fs_info->delalloc_root_lock);
8354         }
8355         return ret;
8356 }
8357
8358 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8359                          const char *symname)
8360 {
8361         struct btrfs_trans_handle *trans;
8362         struct btrfs_root *root = BTRFS_I(dir)->root;
8363         struct btrfs_path *path;
8364         struct btrfs_key key;
8365         struct inode *inode = NULL;
8366         int err;
8367         int drop_inode = 0;
8368         u64 objectid;
8369         u64 index = 0;
8370         int name_len;
8371         int datasize;
8372         unsigned long ptr;
8373         struct btrfs_file_extent_item *ei;
8374         struct extent_buffer *leaf;
8375
8376         name_len = strlen(symname);
8377         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8378                 return -ENAMETOOLONG;
8379
8380         /*
8381          * 2 items for inode item and ref
8382          * 2 items for dir items
8383          * 1 item for xattr if selinux is on
8384          */
8385         trans = btrfs_start_transaction(root, 5);
8386         if (IS_ERR(trans))
8387                 return PTR_ERR(trans);
8388
8389         err = btrfs_find_free_ino(root, &objectid);
8390         if (err)
8391                 goto out_unlock;
8392
8393         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8394                                 dentry->d_name.len, btrfs_ino(dir), objectid,
8395                                 S_IFLNK|S_IRWXUGO, &index);
8396         if (IS_ERR(inode)) {
8397                 err = PTR_ERR(inode);
8398                 goto out_unlock;
8399         }
8400
8401         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8402         if (err) {
8403                 drop_inode = 1;
8404                 goto out_unlock;
8405         }
8406
8407         /*
8408         * If the active LSM wants to access the inode during
8409         * d_instantiate it needs these. Smack checks to see
8410         * if the filesystem supports xattrs by looking at the
8411         * ops vector.
8412         */
8413         inode->i_fop = &btrfs_file_operations;
8414         inode->i_op = &btrfs_file_inode_operations;
8415
8416         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8417         if (err)
8418                 drop_inode = 1;
8419         else {
8420                 inode->i_mapping->a_ops = &btrfs_aops;
8421                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8422                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8423         }
8424         if (drop_inode)
8425                 goto out_unlock;
8426
8427         path = btrfs_alloc_path();
8428         if (!path) {
8429                 err = -ENOMEM;
8430                 drop_inode = 1;
8431                 goto out_unlock;
8432         }
8433         key.objectid = btrfs_ino(inode);
8434         key.offset = 0;
8435         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8436         datasize = btrfs_file_extent_calc_inline_size(name_len);
8437         err = btrfs_insert_empty_item(trans, root, path, &key,
8438                                       datasize);
8439         if (err) {
8440                 drop_inode = 1;
8441                 btrfs_free_path(path);
8442                 goto out_unlock;
8443         }
8444         leaf = path->nodes[0];
8445         ei = btrfs_item_ptr(leaf, path->slots[0],
8446                             struct btrfs_file_extent_item);
8447         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8448         btrfs_set_file_extent_type(leaf, ei,
8449                                    BTRFS_FILE_EXTENT_INLINE);
8450         btrfs_set_file_extent_encryption(leaf, ei, 0);
8451         btrfs_set_file_extent_compression(leaf, ei, 0);
8452         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8453         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8454
8455         ptr = btrfs_file_extent_inline_start(ei);
8456         write_extent_buffer(leaf, symname, ptr, name_len);
8457         btrfs_mark_buffer_dirty(leaf);
8458         btrfs_free_path(path);
8459
8460         inode->i_op = &btrfs_symlink_inode_operations;
8461         inode->i_mapping->a_ops = &btrfs_symlink_aops;
8462         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8463         inode_set_bytes(inode, name_len);
8464         btrfs_i_size_write(inode, name_len);
8465         err = btrfs_update_inode(trans, root, inode);
8466         if (err)
8467                 drop_inode = 1;
8468
8469 out_unlock:
8470         if (!err)
8471                 d_instantiate(dentry, inode);
8472         btrfs_end_transaction(trans, root);
8473         if (drop_inode) {
8474                 inode_dec_link_count(inode);
8475                 iput(inode);
8476         }
8477         btrfs_btree_balance_dirty(root);
8478         return err;
8479 }
8480
8481 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8482                                        u64 start, u64 num_bytes, u64 min_size,
8483                                        loff_t actual_len, u64 *alloc_hint,
8484                                        struct btrfs_trans_handle *trans)
8485 {
8486         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8487         struct extent_map *em;
8488         struct btrfs_root *root = BTRFS_I(inode)->root;
8489         struct btrfs_key ins;
8490         u64 cur_offset = start;
8491         u64 i_size;
8492         u64 cur_bytes;
8493         int ret = 0;
8494         bool own_trans = true;
8495
8496         if (trans)
8497                 own_trans = false;
8498         while (num_bytes > 0) {
8499                 if (own_trans) {
8500                         trans = btrfs_start_transaction(root, 3);
8501                         if (IS_ERR(trans)) {
8502                                 ret = PTR_ERR(trans);
8503                                 break;
8504                         }
8505                 }
8506
8507                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8508                 cur_bytes = max(cur_bytes, min_size);
8509                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8510                                            *alloc_hint, &ins, 1);
8511                 if (ret) {
8512                         if (own_trans)
8513                                 btrfs_end_transaction(trans, root);
8514                         break;
8515                 }
8516
8517                 ret = insert_reserved_file_extent(trans, inode,
8518                                                   cur_offset, ins.objectid,
8519                                                   ins.offset, ins.offset,
8520                                                   ins.offset, 0, 0, 0,
8521                                                   BTRFS_FILE_EXTENT_PREALLOC);
8522                 if (ret) {
8523                         btrfs_free_reserved_extent(root, ins.objectid,
8524                                                    ins.offset);
8525                         btrfs_abort_transaction(trans, root, ret);
8526                         if (own_trans)
8527                                 btrfs_end_transaction(trans, root);
8528                         break;
8529                 }
8530                 btrfs_drop_extent_cache(inode, cur_offset,
8531                                         cur_offset + ins.offset -1, 0);
8532
8533                 em = alloc_extent_map();
8534                 if (!em) {
8535                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8536                                 &BTRFS_I(inode)->runtime_flags);
8537                         goto next;
8538                 }
8539
8540                 em->start = cur_offset;
8541                 em->orig_start = cur_offset;
8542                 em->len = ins.offset;
8543                 em->block_start = ins.objectid;
8544                 em->block_len = ins.offset;
8545                 em->orig_block_len = ins.offset;
8546                 em->ram_bytes = ins.offset;
8547                 em->bdev = root->fs_info->fs_devices->latest_bdev;
8548                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8549                 em->generation = trans->transid;
8550
8551                 while (1) {
8552                         write_lock(&em_tree->lock);
8553                         ret = add_extent_mapping(em_tree, em, 1);
8554                         write_unlock(&em_tree->lock);
8555                         if (ret != -EEXIST)
8556                                 break;
8557                         btrfs_drop_extent_cache(inode, cur_offset,
8558                                                 cur_offset + ins.offset - 1,
8559                                                 0);
8560                 }
8561                 free_extent_map(em);
8562 next:
8563                 num_bytes -= ins.offset;
8564                 cur_offset += ins.offset;
8565                 *alloc_hint = ins.objectid + ins.offset;
8566
8567                 inode_inc_iversion(inode);
8568                 inode->i_ctime = CURRENT_TIME;
8569                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8570                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8571                     (actual_len > inode->i_size) &&
8572                     (cur_offset > inode->i_size)) {
8573                         if (cur_offset > actual_len)
8574                                 i_size = actual_len;
8575                         else
8576                                 i_size = cur_offset;
8577                         i_size_write(inode, i_size);
8578                         btrfs_ordered_update_i_size(inode, i_size, NULL);
8579                 }
8580
8581                 ret = btrfs_update_inode(trans, root, inode);
8582
8583                 if (ret) {
8584                         btrfs_abort_transaction(trans, root, ret);
8585                         if (own_trans)
8586                                 btrfs_end_transaction(trans, root);
8587                         break;
8588                 }
8589
8590                 if (own_trans)
8591                         btrfs_end_transaction(trans, root);
8592         }
8593         return ret;
8594 }
8595
8596 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8597                               u64 start, u64 num_bytes, u64 min_size,
8598                               loff_t actual_len, u64 *alloc_hint)
8599 {
8600         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8601                                            min_size, actual_len, alloc_hint,
8602                                            NULL);
8603 }
8604
8605 int btrfs_prealloc_file_range_trans(struct inode *inode,
8606                                     struct btrfs_trans_handle *trans, int mode,
8607                                     u64 start, u64 num_bytes, u64 min_size,
8608                                     loff_t actual_len, u64 *alloc_hint)
8609 {
8610         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8611                                            min_size, actual_len, alloc_hint, trans);
8612 }
8613
8614 static int btrfs_set_page_dirty(struct page *page)
8615 {
8616         return __set_page_dirty_nobuffers(page);
8617 }
8618
8619 static int btrfs_permission(struct inode *inode, int mask)
8620 {
8621         struct btrfs_root *root = BTRFS_I(inode)->root;
8622         umode_t mode = inode->i_mode;
8623
8624         if (mask & MAY_WRITE &&
8625             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8626                 if (btrfs_root_readonly(root))
8627                         return -EROFS;
8628                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8629                         return -EACCES;
8630         }
8631         return generic_permission(inode, mask);
8632 }
8633
8634 static const struct inode_operations btrfs_dir_inode_operations = {
8635         .getattr        = btrfs_getattr,
8636         .lookup         = btrfs_lookup,
8637         .create         = btrfs_create,
8638         .unlink         = btrfs_unlink,
8639         .link           = btrfs_link,
8640         .mkdir          = btrfs_mkdir,
8641         .rmdir          = btrfs_rmdir,
8642         .rename         = btrfs_rename,
8643         .symlink        = btrfs_symlink,
8644         .setattr        = btrfs_setattr,
8645         .mknod          = btrfs_mknod,
8646         .setxattr       = btrfs_setxattr,
8647         .getxattr       = btrfs_getxattr,
8648         .listxattr      = btrfs_listxattr,
8649         .removexattr    = btrfs_removexattr,
8650         .permission     = btrfs_permission,
8651         .get_acl        = btrfs_get_acl,
8652         .update_time    = btrfs_update_time,
8653 };
8654 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8655         .lookup         = btrfs_lookup,
8656         .permission     = btrfs_permission,
8657         .get_acl        = btrfs_get_acl,
8658         .update_time    = btrfs_update_time,
8659 };
8660
8661 static const struct file_operations btrfs_dir_file_operations = {
8662         .llseek         = generic_file_llseek,
8663         .read           = generic_read_dir,
8664         .iterate        = btrfs_real_readdir,
8665         .unlocked_ioctl = btrfs_ioctl,
8666 #ifdef CONFIG_COMPAT
8667         .compat_ioctl   = btrfs_ioctl,
8668 #endif
8669         .release        = btrfs_release_file,
8670         .fsync          = btrfs_sync_file,
8671 };
8672
8673 static struct extent_io_ops btrfs_extent_io_ops = {
8674         .fill_delalloc = run_delalloc_range,
8675         .submit_bio_hook = btrfs_submit_bio_hook,
8676         .merge_bio_hook = btrfs_merge_bio_hook,
8677         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8678         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8679         .writepage_start_hook = btrfs_writepage_start_hook,
8680         .set_bit_hook = btrfs_set_bit_hook,
8681         .clear_bit_hook = btrfs_clear_bit_hook,
8682         .merge_extent_hook = btrfs_merge_extent_hook,
8683         .split_extent_hook = btrfs_split_extent_hook,
8684 };
8685
8686 /*
8687  * btrfs doesn't support the bmap operation because swapfiles
8688  * use bmap to make a mapping of extents in the file.  They assume
8689  * these extents won't change over the life of the file and they
8690  * use the bmap result to do IO directly to the drive.
8691  *
8692  * the btrfs bmap call would return logical addresses that aren't
8693  * suitable for IO and they also will change frequently as COW
8694  * operations happen.  So, swapfile + btrfs == corruption.
8695  *
8696  * For now we're avoiding this by dropping bmap.
8697  */
8698 static const struct address_space_operations btrfs_aops = {
8699         .readpage       = btrfs_readpage,
8700         .writepage      = btrfs_writepage,
8701         .writepages     = btrfs_writepages,
8702         .readpages      = btrfs_readpages,
8703         .direct_IO      = btrfs_direct_IO,
8704         .invalidatepage = btrfs_invalidatepage,
8705         .releasepage    = btrfs_releasepage,
8706         .set_page_dirty = btrfs_set_page_dirty,
8707         .error_remove_page = generic_error_remove_page,
8708 };
8709
8710 static const struct address_space_operations btrfs_symlink_aops = {
8711         .readpage       = btrfs_readpage,
8712         .writepage      = btrfs_writepage,
8713         .invalidatepage = btrfs_invalidatepage,
8714         .releasepage    = btrfs_releasepage,
8715 };
8716
8717 static const struct inode_operations btrfs_file_inode_operations = {
8718         .getattr        = btrfs_getattr,
8719         .setattr        = btrfs_setattr,
8720         .setxattr       = btrfs_setxattr,
8721         .getxattr       = btrfs_getxattr,
8722         .listxattr      = btrfs_listxattr,
8723         .removexattr    = btrfs_removexattr,
8724         .permission     = btrfs_permission,
8725         .fiemap         = btrfs_fiemap,
8726         .get_acl        = btrfs_get_acl,
8727         .update_time    = btrfs_update_time,
8728 };
8729 static const struct inode_operations btrfs_special_inode_operations = {
8730         .getattr        = btrfs_getattr,
8731         .setattr        = btrfs_setattr,
8732         .permission     = btrfs_permission,
8733         .setxattr       = btrfs_setxattr,
8734         .getxattr       = btrfs_getxattr,
8735         .listxattr      = btrfs_listxattr,
8736         .removexattr    = btrfs_removexattr,
8737         .get_acl        = btrfs_get_acl,
8738         .update_time    = btrfs_update_time,
8739 };
8740 static const struct inode_operations btrfs_symlink_inode_operations = {
8741         .readlink       = generic_readlink,
8742         .follow_link    = page_follow_link_light,
8743         .put_link       = page_put_link,
8744         .getattr        = btrfs_getattr,
8745         .setattr        = btrfs_setattr,
8746         .permission     = btrfs_permission,
8747         .setxattr       = btrfs_setxattr,
8748         .getxattr       = btrfs_getxattr,
8749         .listxattr      = btrfs_listxattr,
8750         .removexattr    = btrfs_removexattr,
8751         .get_acl        = btrfs_get_acl,
8752         .update_time    = btrfs_update_time,
8753 };
8754
8755 const struct dentry_operations btrfs_dentry_operations = {
8756         .d_delete       = btrfs_dentry_delete,
8757         .d_release      = btrfs_dentry_release,
8758 };