Merge tag 'sunxi-fixes-for-4.3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-drm-fsl-dcu.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 printk_ratelimited(KERN_DEBUG
100                     "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138         if (!tree->mapping)
139                 return NULL;
140         return btrfs_sb(tree->mapping->host->i_sb);
141 }
142
143 int __init extent_io_init(void)
144 {
145         extent_state_cache = kmem_cache_create("btrfs_extent_state",
146                         sizeof(struct extent_state), 0,
147                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148         if (!extent_state_cache)
149                 return -ENOMEM;
150
151         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152                         sizeof(struct extent_buffer), 0,
153                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154         if (!extent_buffer_cache)
155                 goto free_state_cache;
156
157         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158                                      offsetof(struct btrfs_io_bio, bio));
159         if (!btrfs_bioset)
160                 goto free_buffer_cache;
161
162         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163                 goto free_bioset;
164
165         return 0;
166
167 free_bioset:
168         bioset_free(btrfs_bioset);
169         btrfs_bioset = NULL;
170
171 free_buffer_cache:
172         kmem_cache_destroy(extent_buffer_cache);
173         extent_buffer_cache = NULL;
174
175 free_state_cache:
176         kmem_cache_destroy(extent_state_cache);
177         extent_state_cache = NULL;
178         return -ENOMEM;
179 }
180
181 void extent_io_exit(void)
182 {
183         btrfs_leak_debug_check();
184
185         /*
186          * Make sure all delayed rcu free are flushed before we
187          * destroy caches.
188          */
189         rcu_barrier();
190         if (extent_state_cache)
191                 kmem_cache_destroy(extent_state_cache);
192         if (extent_buffer_cache)
193                 kmem_cache_destroy(extent_buffer_cache);
194         if (btrfs_bioset)
195                 bioset_free(btrfs_bioset);
196 }
197
198 void extent_io_tree_init(struct extent_io_tree *tree,
199                          struct address_space *mapping)
200 {
201         tree->state = RB_ROOT;
202         tree->ops = NULL;
203         tree->dirty_bytes = 0;
204         spin_lock_init(&tree->lock);
205         tree->mapping = mapping;
206 }
207
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210         struct extent_state *state;
211
212         state = kmem_cache_alloc(extent_state_cache, mask);
213         if (!state)
214                 return state;
215         state->state = 0;
216         state->private = 0;
217         RB_CLEAR_NODE(&state->rb_node);
218         btrfs_leak_debug_add(&state->leak_list, &states);
219         atomic_set(&state->refs, 1);
220         init_waitqueue_head(&state->wq);
221         trace_alloc_extent_state(state, mask, _RET_IP_);
222         return state;
223 }
224
225 void free_extent_state(struct extent_state *state)
226 {
227         if (!state)
228                 return;
229         if (atomic_dec_and_test(&state->refs)) {
230                 WARN_ON(extent_state_in_tree(state));
231                 btrfs_leak_debug_del(&state->leak_list);
232                 trace_free_extent_state(state, _RET_IP_);
233                 kmem_cache_free(extent_state_cache, state);
234         }
235 }
236
237 static struct rb_node *tree_insert(struct rb_root *root,
238                                    struct rb_node *search_start,
239                                    u64 offset,
240                                    struct rb_node *node,
241                                    struct rb_node ***p_in,
242                                    struct rb_node **parent_in)
243 {
244         struct rb_node **p;
245         struct rb_node *parent = NULL;
246         struct tree_entry *entry;
247
248         if (p_in && parent_in) {
249                 p = *p_in;
250                 parent = *parent_in;
251                 goto do_insert;
252         }
253
254         p = search_start ? &search_start : &root->rb_node;
255         while (*p) {
256                 parent = *p;
257                 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259                 if (offset < entry->start)
260                         p = &(*p)->rb_left;
261                 else if (offset > entry->end)
262                         p = &(*p)->rb_right;
263                 else
264                         return parent;
265         }
266
267 do_insert:
268         rb_link_node(node, parent, p);
269         rb_insert_color(node, root);
270         return NULL;
271 }
272
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274                                       struct rb_node **prev_ret,
275                                       struct rb_node **next_ret,
276                                       struct rb_node ***p_ret,
277                                       struct rb_node **parent_ret)
278 {
279         struct rb_root *root = &tree->state;
280         struct rb_node **n = &root->rb_node;
281         struct rb_node *prev = NULL;
282         struct rb_node *orig_prev = NULL;
283         struct tree_entry *entry;
284         struct tree_entry *prev_entry = NULL;
285
286         while (*n) {
287                 prev = *n;
288                 entry = rb_entry(prev, struct tree_entry, rb_node);
289                 prev_entry = entry;
290
291                 if (offset < entry->start)
292                         n = &(*n)->rb_left;
293                 else if (offset > entry->end)
294                         n = &(*n)->rb_right;
295                 else
296                         return *n;
297         }
298
299         if (p_ret)
300                 *p_ret = n;
301         if (parent_ret)
302                 *parent_ret = prev;
303
304         if (prev_ret) {
305                 orig_prev = prev;
306                 while (prev && offset > prev_entry->end) {
307                         prev = rb_next(prev);
308                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309                 }
310                 *prev_ret = prev;
311                 prev = orig_prev;
312         }
313
314         if (next_ret) {
315                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316                 while (prev && offset < prev_entry->start) {
317                         prev = rb_prev(prev);
318                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319                 }
320                 *next_ret = prev;
321         }
322         return NULL;
323 }
324
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327                        u64 offset,
328                        struct rb_node ***p_ret,
329                        struct rb_node **parent_ret)
330 {
331         struct rb_node *prev = NULL;
332         struct rb_node *ret;
333
334         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335         if (!ret)
336                 return prev;
337         return ret;
338 }
339
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341                                           u64 offset)
342 {
343         return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347                      struct extent_state *other)
348 {
349         if (tree->ops && tree->ops->merge_extent_hook)
350                 tree->ops->merge_extent_hook(tree->mapping->host, new,
351                                              other);
352 }
353
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364                         struct extent_state *state)
365 {
366         struct extent_state *other;
367         struct rb_node *other_node;
368
369         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370                 return;
371
372         other_node = rb_prev(&state->rb_node);
373         if (other_node) {
374                 other = rb_entry(other_node, struct extent_state, rb_node);
375                 if (other->end == state->start - 1 &&
376                     other->state == state->state) {
377                         merge_cb(tree, state, other);
378                         state->start = other->start;
379                         rb_erase(&other->rb_node, &tree->state);
380                         RB_CLEAR_NODE(&other->rb_node);
381                         free_extent_state(other);
382                 }
383         }
384         other_node = rb_next(&state->rb_node);
385         if (other_node) {
386                 other = rb_entry(other_node, struct extent_state, rb_node);
387                 if (other->start == state->end + 1 &&
388                     other->state == state->state) {
389                         merge_cb(tree, state, other);
390                         state->end = other->end;
391                         rb_erase(&other->rb_node, &tree->state);
392                         RB_CLEAR_NODE(&other->rb_node);
393                         free_extent_state(other);
394                 }
395         }
396 }
397
398 static void set_state_cb(struct extent_io_tree *tree,
399                          struct extent_state *state, unsigned *bits)
400 {
401         if (tree->ops && tree->ops->set_bit_hook)
402                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404
405 static void clear_state_cb(struct extent_io_tree *tree,
406                            struct extent_state *state, unsigned *bits)
407 {
408         if (tree->ops && tree->ops->clear_bit_hook)
409                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413                            struct extent_state *state, unsigned *bits);
414
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426                         struct extent_state *state, u64 start, u64 end,
427                         struct rb_node ***p,
428                         struct rb_node **parent,
429                         unsigned *bits)
430 {
431         struct rb_node *node;
432
433         if (end < start)
434                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435                        end, start);
436         state->start = start;
437         state->end = end;
438
439         set_state_bits(tree, state, bits);
440
441         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442         if (node) {
443                 struct extent_state *found;
444                 found = rb_entry(node, struct extent_state, rb_node);
445                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446                        "%llu %llu\n",
447                        found->start, found->end, start, end);
448                 return -EEXIST;
449         }
450         merge_state(tree, state);
451         return 0;
452 }
453
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455                      u64 split)
456 {
457         if (tree->ops && tree->ops->split_extent_hook)
458                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476                        struct extent_state *prealloc, u64 split)
477 {
478         struct rb_node *node;
479
480         split_cb(tree, orig, split);
481
482         prealloc->start = orig->start;
483         prealloc->end = split - 1;
484         prealloc->state = orig->state;
485         orig->start = split;
486
487         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488                            &prealloc->rb_node, NULL, NULL);
489         if (node) {
490                 free_extent_state(prealloc);
491                 return -EEXIST;
492         }
493         return 0;
494 }
495
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498         struct rb_node *next = rb_next(&state->rb_node);
499         if (next)
500                 return rb_entry(next, struct extent_state, rb_node);
501         else
502                 return NULL;
503 }
504
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513                                             struct extent_state *state,
514                                             unsigned *bits, int wake)
515 {
516         struct extent_state *next;
517         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
518
519         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520                 u64 range = state->end - state->start + 1;
521                 WARN_ON(range > tree->dirty_bytes);
522                 tree->dirty_bytes -= range;
523         }
524         clear_state_cb(tree, state, bits);
525         state->state &= ~bits_to_clear;
526         if (wake)
527                 wake_up(&state->wq);
528         if (state->state == 0) {
529                 next = next_state(state);
530                 if (extent_state_in_tree(state)) {
531                         rb_erase(&state->rb_node, &tree->state);
532                         RB_CLEAR_NODE(&state->rb_node);
533                         free_extent_state(state);
534                 } else {
535                         WARN_ON(1);
536                 }
537         } else {
538                 merge_state(tree, state);
539                 next = next_state(state);
540         }
541         return next;
542 }
543
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547         if (!prealloc)
548                 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550         return prealloc;
551 }
552
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556                     "Extent tree was modified by another "
557                     "thread while locked.");
558 }
559
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573                      unsigned bits, int wake, int delete,
574                      struct extent_state **cached_state,
575                      gfp_t mask)
576 {
577         struct extent_state *state;
578         struct extent_state *cached;
579         struct extent_state *prealloc = NULL;
580         struct rb_node *node;
581         u64 last_end;
582         int err;
583         int clear = 0;
584
585         btrfs_debug_check_extent_io_range(tree, start, end);
586
587         if (bits & EXTENT_DELALLOC)
588                 bits |= EXTENT_NORESERVE;
589
590         if (delete)
591                 bits |= ~EXTENT_CTLBITS;
592         bits |= EXTENT_FIRST_DELALLOC;
593
594         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595                 clear = 1;
596 again:
597         if (!prealloc && (mask & __GFP_WAIT)) {
598                 /*
599                  * Don't care for allocation failure here because we might end
600                  * up not needing the pre-allocated extent state at all, which
601                  * is the case if we only have in the tree extent states that
602                  * cover our input range and don't cover too any other range.
603                  * If we end up needing a new extent state we allocate it later.
604                  */
605                 prealloc = alloc_extent_state(mask);
606         }
607
608         spin_lock(&tree->lock);
609         if (cached_state) {
610                 cached = *cached_state;
611
612                 if (clear) {
613                         *cached_state = NULL;
614                         cached_state = NULL;
615                 }
616
617                 if (cached && extent_state_in_tree(cached) &&
618                     cached->start <= start && cached->end > start) {
619                         if (clear)
620                                 atomic_dec(&cached->refs);
621                         state = cached;
622                         goto hit_next;
623                 }
624                 if (clear)
625                         free_extent_state(cached);
626         }
627         /*
628          * this search will find the extents that end after
629          * our range starts
630          */
631         node = tree_search(tree, start);
632         if (!node)
633                 goto out;
634         state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636         if (state->start > end)
637                 goto out;
638         WARN_ON(state->end < start);
639         last_end = state->end;
640
641         /* the state doesn't have the wanted bits, go ahead */
642         if (!(state->state & bits)) {
643                 state = next_state(state);
644                 goto next;
645         }
646
647         /*
648          *     | ---- desired range ---- |
649          *  | state | or
650          *  | ------------- state -------------- |
651          *
652          * We need to split the extent we found, and may flip
653          * bits on second half.
654          *
655          * If the extent we found extends past our range, we
656          * just split and search again.  It'll get split again
657          * the next time though.
658          *
659          * If the extent we found is inside our range, we clear
660          * the desired bit on it.
661          */
662
663         if (state->start < start) {
664                 prealloc = alloc_extent_state_atomic(prealloc);
665                 BUG_ON(!prealloc);
666                 err = split_state(tree, state, prealloc, start);
667                 if (err)
668                         extent_io_tree_panic(tree, err);
669
670                 prealloc = NULL;
671                 if (err)
672                         goto out;
673                 if (state->end <= end) {
674                         state = clear_state_bit(tree, state, &bits, wake);
675                         goto next;
676                 }
677                 goto search_again;
678         }
679         /*
680          * | ---- desired range ---- |
681          *                        | state |
682          * We need to split the extent, and clear the bit
683          * on the first half
684          */
685         if (state->start <= end && state->end > end) {
686                 prealloc = alloc_extent_state_atomic(prealloc);
687                 BUG_ON(!prealloc);
688                 err = split_state(tree, state, prealloc, end + 1);
689                 if (err)
690                         extent_io_tree_panic(tree, err);
691
692                 if (wake)
693                         wake_up(&state->wq);
694
695                 clear_state_bit(tree, prealloc, &bits, wake);
696
697                 prealloc = NULL;
698                 goto out;
699         }
700
701         state = clear_state_bit(tree, state, &bits, wake);
702 next:
703         if (last_end == (u64)-1)
704                 goto out;
705         start = last_end + 1;
706         if (start <= end && state && !need_resched())
707                 goto hit_next;
708         goto search_again;
709
710 out:
711         spin_unlock(&tree->lock);
712         if (prealloc)
713                 free_extent_state(prealloc);
714
715         return 0;
716
717 search_again:
718         if (start > end)
719                 goto out;
720         spin_unlock(&tree->lock);
721         if (mask & __GFP_WAIT)
722                 cond_resched();
723         goto again;
724 }
725
726 static void wait_on_state(struct extent_io_tree *tree,
727                           struct extent_state *state)
728                 __releases(tree->lock)
729                 __acquires(tree->lock)
730 {
731         DEFINE_WAIT(wait);
732         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733         spin_unlock(&tree->lock);
734         schedule();
735         spin_lock(&tree->lock);
736         finish_wait(&state->wq, &wait);
737 }
738
739 /*
740  * waits for one or more bits to clear on a range in the state tree.
741  * The range [start, end] is inclusive.
742  * The tree lock is taken by this function
743  */
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745                             unsigned long bits)
746 {
747         struct extent_state *state;
748         struct rb_node *node;
749
750         btrfs_debug_check_extent_io_range(tree, start, end);
751
752         spin_lock(&tree->lock);
753 again:
754         while (1) {
755                 /*
756                  * this search will find all the extents that end after
757                  * our range starts
758                  */
759                 node = tree_search(tree, start);
760 process_node:
761                 if (!node)
762                         break;
763
764                 state = rb_entry(node, struct extent_state, rb_node);
765
766                 if (state->start > end)
767                         goto out;
768
769                 if (state->state & bits) {
770                         start = state->start;
771                         atomic_inc(&state->refs);
772                         wait_on_state(tree, state);
773                         free_extent_state(state);
774                         goto again;
775                 }
776                 start = state->end + 1;
777
778                 if (start > end)
779                         break;
780
781                 if (!cond_resched_lock(&tree->lock)) {
782                         node = rb_next(node);
783                         goto process_node;
784                 }
785         }
786 out:
787         spin_unlock(&tree->lock);
788 }
789
790 static void set_state_bits(struct extent_io_tree *tree,
791                            struct extent_state *state,
792                            unsigned *bits)
793 {
794         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
795
796         set_state_cb(tree, state, bits);
797         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798                 u64 range = state->end - state->start + 1;
799                 tree->dirty_bytes += range;
800         }
801         state->state |= bits_to_set;
802 }
803
804 static void cache_state_if_flags(struct extent_state *state,
805                                  struct extent_state **cached_ptr,
806                                  unsigned flags)
807 {
808         if (cached_ptr && !(*cached_ptr)) {
809                 if (!flags || (state->state & flags)) {
810                         *cached_ptr = state;
811                         atomic_inc(&state->refs);
812                 }
813         }
814 }
815
816 static void cache_state(struct extent_state *state,
817                         struct extent_state **cached_ptr)
818 {
819         return cache_state_if_flags(state, cached_ptr,
820                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
821 }
822
823 /*
824  * set some bits on a range in the tree.  This may require allocations or
825  * sleeping, so the gfp mask is used to indicate what is allowed.
826  *
827  * If any of the exclusive bits are set, this will fail with -EEXIST if some
828  * part of the range already has the desired bits set.  The start of the
829  * existing range is returned in failed_start in this case.
830  *
831  * [start, end] is inclusive This takes the tree lock.
832  */
833
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836                  unsigned bits, unsigned exclusive_bits,
837                  u64 *failed_start, struct extent_state **cached_state,
838                  gfp_t mask)
839 {
840         struct extent_state *state;
841         struct extent_state *prealloc = NULL;
842         struct rb_node *node;
843         struct rb_node **p;
844         struct rb_node *parent;
845         int err = 0;
846         u64 last_start;
847         u64 last_end;
848
849         btrfs_debug_check_extent_io_range(tree, start, end);
850
851         bits |= EXTENT_FIRST_DELALLOC;
852 again:
853         if (!prealloc && (mask & __GFP_WAIT)) {
854                 prealloc = alloc_extent_state(mask);
855                 BUG_ON(!prealloc);
856         }
857
858         spin_lock(&tree->lock);
859         if (cached_state && *cached_state) {
860                 state = *cached_state;
861                 if (state->start <= start && state->end > start &&
862                     extent_state_in_tree(state)) {
863                         node = &state->rb_node;
864                         goto hit_next;
865                 }
866         }
867         /*
868          * this search will find all the extents that end after
869          * our range starts.
870          */
871         node = tree_search_for_insert(tree, start, &p, &parent);
872         if (!node) {
873                 prealloc = alloc_extent_state_atomic(prealloc);
874                 BUG_ON(!prealloc);
875                 err = insert_state(tree, prealloc, start, end,
876                                    &p, &parent, &bits);
877                 if (err)
878                         extent_io_tree_panic(tree, err);
879
880                 cache_state(prealloc, cached_state);
881                 prealloc = NULL;
882                 goto out;
883         }
884         state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886         last_start = state->start;
887         last_end = state->end;
888
889         /*
890          * | ---- desired range ---- |
891          * | state |
892          *
893          * Just lock what we found and keep going
894          */
895         if (state->start == start && state->end <= end) {
896                 if (state->state & exclusive_bits) {
897                         *failed_start = state->start;
898                         err = -EEXIST;
899                         goto out;
900                 }
901
902                 set_state_bits(tree, state, &bits);
903                 cache_state(state, cached_state);
904                 merge_state(tree, state);
905                 if (last_end == (u64)-1)
906                         goto out;
907                 start = last_end + 1;
908                 state = next_state(state);
909                 if (start < end && state && state->start == start &&
910                     !need_resched())
911                         goto hit_next;
912                 goto search_again;
913         }
914
915         /*
916          *     | ---- desired range ---- |
917          * | state |
918          *   or
919          * | ------------- state -------------- |
920          *
921          * We need to split the extent we found, and may flip bits on
922          * second half.
923          *
924          * If the extent we found extends past our
925          * range, we just split and search again.  It'll get split
926          * again the next time though.
927          *
928          * If the extent we found is inside our range, we set the
929          * desired bit on it.
930          */
931         if (state->start < start) {
932                 if (state->state & exclusive_bits) {
933                         *failed_start = start;
934                         err = -EEXIST;
935                         goto out;
936                 }
937
938                 prealloc = alloc_extent_state_atomic(prealloc);
939                 BUG_ON(!prealloc);
940                 err = split_state(tree, state, prealloc, start);
941                 if (err)
942                         extent_io_tree_panic(tree, err);
943
944                 prealloc = NULL;
945                 if (err)
946                         goto out;
947                 if (state->end <= end) {
948                         set_state_bits(tree, state, &bits);
949                         cache_state(state, cached_state);
950                         merge_state(tree, state);
951                         if (last_end == (u64)-1)
952                                 goto out;
953                         start = last_end + 1;
954                         state = next_state(state);
955                         if (start < end && state && state->start == start &&
956                             !need_resched())
957                                 goto hit_next;
958                 }
959                 goto search_again;
960         }
961         /*
962          * | ---- desired range ---- |
963          *     | state | or               | state |
964          *
965          * There's a hole, we need to insert something in it and
966          * ignore the extent we found.
967          */
968         if (state->start > start) {
969                 u64 this_end;
970                 if (end < last_start)
971                         this_end = end;
972                 else
973                         this_end = last_start - 1;
974
975                 prealloc = alloc_extent_state_atomic(prealloc);
976                 BUG_ON(!prealloc);
977
978                 /*
979                  * Avoid to free 'prealloc' if it can be merged with
980                  * the later extent.
981                  */
982                 err = insert_state(tree, prealloc, start, this_end,
983                                    NULL, NULL, &bits);
984                 if (err)
985                         extent_io_tree_panic(tree, err);
986
987                 cache_state(prealloc, cached_state);
988                 prealloc = NULL;
989                 start = this_end + 1;
990                 goto search_again;
991         }
992         /*
993          * | ---- desired range ---- |
994          *                        | state |
995          * We need to split the extent, and set the bit
996          * on the first half
997          */
998         if (state->start <= end && state->end > end) {
999                 if (state->state & exclusive_bits) {
1000                         *failed_start = start;
1001                         err = -EEXIST;
1002                         goto out;
1003                 }
1004
1005                 prealloc = alloc_extent_state_atomic(prealloc);
1006                 BUG_ON(!prealloc);
1007                 err = split_state(tree, state, prealloc, end + 1);
1008                 if (err)
1009                         extent_io_tree_panic(tree, err);
1010
1011                 set_state_bits(tree, prealloc, &bits);
1012                 cache_state(prealloc, cached_state);
1013                 merge_state(tree, prealloc);
1014                 prealloc = NULL;
1015                 goto out;
1016         }
1017
1018         goto search_again;
1019
1020 out:
1021         spin_unlock(&tree->lock);
1022         if (prealloc)
1023                 free_extent_state(prealloc);
1024
1025         return err;
1026
1027 search_again:
1028         if (start > end)
1029                 goto out;
1030         spin_unlock(&tree->lock);
1031         if (mask & __GFP_WAIT)
1032                 cond_resched();
1033         goto again;
1034 }
1035
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037                    unsigned bits, u64 * failed_start,
1038                    struct extent_state **cached_state, gfp_t mask)
1039 {
1040         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041                                 cached_state, mask);
1042 }
1043
1044
1045 /**
1046  * convert_extent_bit - convert all bits in a given range from one bit to
1047  *                      another
1048  * @tree:       the io tree to search
1049  * @start:      the start offset in bytes
1050  * @end:        the end offset in bytes (inclusive)
1051  * @bits:       the bits to set in this range
1052  * @clear_bits: the bits to clear in this range
1053  * @cached_state:       state that we're going to cache
1054  * @mask:       the allocation mask
1055  *
1056  * This will go through and set bits for the given range.  If any states exist
1057  * already in this range they are set with the given bit and cleared of the
1058  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060  * boundary bits like LOCK.
1061  */
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063                        unsigned bits, unsigned clear_bits,
1064                        struct extent_state **cached_state, gfp_t mask)
1065 {
1066         struct extent_state *state;
1067         struct extent_state *prealloc = NULL;
1068         struct rb_node *node;
1069         struct rb_node **p;
1070         struct rb_node *parent;
1071         int err = 0;
1072         u64 last_start;
1073         u64 last_end;
1074         bool first_iteration = true;
1075
1076         btrfs_debug_check_extent_io_range(tree, start, end);
1077
1078 again:
1079         if (!prealloc && (mask & __GFP_WAIT)) {
1080                 /*
1081                  * Best effort, don't worry if extent state allocation fails
1082                  * here for the first iteration. We might have a cached state
1083                  * that matches exactly the target range, in which case no
1084                  * extent state allocations are needed. We'll only know this
1085                  * after locking the tree.
1086                  */
1087                 prealloc = alloc_extent_state(mask);
1088                 if (!prealloc && !first_iteration)
1089                         return -ENOMEM;
1090         }
1091
1092         spin_lock(&tree->lock);
1093         if (cached_state && *cached_state) {
1094                 state = *cached_state;
1095                 if (state->start <= start && state->end > start &&
1096                     extent_state_in_tree(state)) {
1097                         node = &state->rb_node;
1098                         goto hit_next;
1099                 }
1100         }
1101
1102         /*
1103          * this search will find all the extents that end after
1104          * our range starts.
1105          */
1106         node = tree_search_for_insert(tree, start, &p, &parent);
1107         if (!node) {
1108                 prealloc = alloc_extent_state_atomic(prealloc);
1109                 if (!prealloc) {
1110                         err = -ENOMEM;
1111                         goto out;
1112                 }
1113                 err = insert_state(tree, prealloc, start, end,
1114                                    &p, &parent, &bits);
1115                 if (err)
1116                         extent_io_tree_panic(tree, err);
1117                 cache_state(prealloc, cached_state);
1118                 prealloc = NULL;
1119                 goto out;
1120         }
1121         state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123         last_start = state->start;
1124         last_end = state->end;
1125
1126         /*
1127          * | ---- desired range ---- |
1128          * | state |
1129          *
1130          * Just lock what we found and keep going
1131          */
1132         if (state->start == start && state->end <= end) {
1133                 set_state_bits(tree, state, &bits);
1134                 cache_state(state, cached_state);
1135                 state = clear_state_bit(tree, state, &clear_bits, 0);
1136                 if (last_end == (u64)-1)
1137                         goto out;
1138                 start = last_end + 1;
1139                 if (start < end && state && state->start == start &&
1140                     !need_resched())
1141                         goto hit_next;
1142                 goto search_again;
1143         }
1144
1145         /*
1146          *     | ---- desired range ---- |
1147          * | state |
1148          *   or
1149          * | ------------- state -------------- |
1150          *
1151          * We need to split the extent we found, and may flip bits on
1152          * second half.
1153          *
1154          * If the extent we found extends past our
1155          * range, we just split and search again.  It'll get split
1156          * again the next time though.
1157          *
1158          * If the extent we found is inside our range, we set the
1159          * desired bit on it.
1160          */
1161         if (state->start < start) {
1162                 prealloc = alloc_extent_state_atomic(prealloc);
1163                 if (!prealloc) {
1164                         err = -ENOMEM;
1165                         goto out;
1166                 }
1167                 err = split_state(tree, state, prealloc, start);
1168                 if (err)
1169                         extent_io_tree_panic(tree, err);
1170                 prealloc = NULL;
1171                 if (err)
1172                         goto out;
1173                 if (state->end <= end) {
1174                         set_state_bits(tree, state, &bits);
1175                         cache_state(state, cached_state);
1176                         state = clear_state_bit(tree, state, &clear_bits, 0);
1177                         if (last_end == (u64)-1)
1178                                 goto out;
1179                         start = last_end + 1;
1180                         if (start < end && state && state->start == start &&
1181                             !need_resched())
1182                                 goto hit_next;
1183                 }
1184                 goto search_again;
1185         }
1186         /*
1187          * | ---- desired range ---- |
1188          *     | state | or               | state |
1189          *
1190          * There's a hole, we need to insert something in it and
1191          * ignore the extent we found.
1192          */
1193         if (state->start > start) {
1194                 u64 this_end;
1195                 if (end < last_start)
1196                         this_end = end;
1197                 else
1198                         this_end = last_start - 1;
1199
1200                 prealloc = alloc_extent_state_atomic(prealloc);
1201                 if (!prealloc) {
1202                         err = -ENOMEM;
1203                         goto out;
1204                 }
1205
1206                 /*
1207                  * Avoid to free 'prealloc' if it can be merged with
1208                  * the later extent.
1209                  */
1210                 err = insert_state(tree, prealloc, start, this_end,
1211                                    NULL, NULL, &bits);
1212                 if (err)
1213                         extent_io_tree_panic(tree, err);
1214                 cache_state(prealloc, cached_state);
1215                 prealloc = NULL;
1216                 start = this_end + 1;
1217                 goto search_again;
1218         }
1219         /*
1220          * | ---- desired range ---- |
1221          *                        | state |
1222          * We need to split the extent, and set the bit
1223          * on the first half
1224          */
1225         if (state->start <= end && state->end > end) {
1226                 prealloc = alloc_extent_state_atomic(prealloc);
1227                 if (!prealloc) {
1228                         err = -ENOMEM;
1229                         goto out;
1230                 }
1231
1232                 err = split_state(tree, state, prealloc, end + 1);
1233                 if (err)
1234                         extent_io_tree_panic(tree, err);
1235
1236                 set_state_bits(tree, prealloc, &bits);
1237                 cache_state(prealloc, cached_state);
1238                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1239                 prealloc = NULL;
1240                 goto out;
1241         }
1242
1243         goto search_again;
1244
1245 out:
1246         spin_unlock(&tree->lock);
1247         if (prealloc)
1248                 free_extent_state(prealloc);
1249
1250         return err;
1251
1252 search_again:
1253         if (start > end)
1254                 goto out;
1255         spin_unlock(&tree->lock);
1256         if (mask & __GFP_WAIT)
1257                 cond_resched();
1258         first_iteration = false;
1259         goto again;
1260 }
1261
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264                      gfp_t mask)
1265 {
1266         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267                               NULL, mask);
1268 }
1269
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271                     unsigned bits, gfp_t mask)
1272 {
1273         return set_extent_bit(tree, start, end, bits, NULL,
1274                               NULL, mask);
1275 }
1276
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278                       unsigned bits, gfp_t mask)
1279 {
1280         int wake = 0;
1281
1282         if (bits & EXTENT_LOCKED)
1283                 wake = 1;
1284
1285         return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1286 }
1287
1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1289                         struct extent_state **cached_state, gfp_t mask)
1290 {
1291         return set_extent_bit(tree, start, end,
1292                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1293                               NULL, cached_state, mask);
1294 }
1295
1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297                       struct extent_state **cached_state, gfp_t mask)
1298 {
1299         return set_extent_bit(tree, start, end,
1300                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301                               NULL, cached_state, mask);
1302 }
1303
1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1305                        gfp_t mask)
1306 {
1307         return clear_extent_bit(tree, start, end,
1308                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1309                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1310 }
1311
1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1313                      gfp_t mask)
1314 {
1315         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1316                               NULL, mask);
1317 }
1318
1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1320                         struct extent_state **cached_state, gfp_t mask)
1321 {
1322         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1323                               cached_state, mask);
1324 }
1325
1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327                           struct extent_state **cached_state, gfp_t mask)
1328 {
1329         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1330                                 cached_state, mask);
1331 }
1332
1333 /*
1334  * either insert or lock state struct between start and end use mask to tell
1335  * us if waiting is desired.
1336  */
1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338                      unsigned bits, struct extent_state **cached_state)
1339 {
1340         int err;
1341         u64 failed_start;
1342
1343         while (1) {
1344                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345                                        EXTENT_LOCKED, &failed_start,
1346                                        cached_state, GFP_NOFS);
1347                 if (err == -EEXIST) {
1348                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349                         start = failed_start;
1350                 } else
1351                         break;
1352                 WARN_ON(start > end);
1353         }
1354         return err;
1355 }
1356
1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359         return lock_extent_bits(tree, start, end, 0, NULL);
1360 }
1361
1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1363 {
1364         int err;
1365         u64 failed_start;
1366
1367         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368                                &failed_start, NULL, GFP_NOFS);
1369         if (err == -EEXIST) {
1370                 if (failed_start > start)
1371                         clear_extent_bit(tree, start, failed_start - 1,
1372                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1373                 return 0;
1374         }
1375         return 1;
1376 }
1377
1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379                          struct extent_state **cached, gfp_t mask)
1380 {
1381         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1382                                 mask);
1383 }
1384
1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1386 {
1387         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1388                                 GFP_NOFS);
1389 }
1390
1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1392 {
1393         unsigned long index = start >> PAGE_CACHE_SHIFT;
1394         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395         struct page *page;
1396
1397         while (index <= end_index) {
1398                 page = find_get_page(inode->i_mapping, index);
1399                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400                 clear_page_dirty_for_io(page);
1401                 page_cache_release(page);
1402                 index++;
1403         }
1404         return 0;
1405 }
1406
1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1408 {
1409         unsigned long index = start >> PAGE_CACHE_SHIFT;
1410         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411         struct page *page;
1412
1413         while (index <= end_index) {
1414                 page = find_get_page(inode->i_mapping, index);
1415                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416                 __set_page_dirty_nobuffers(page);
1417                 account_page_redirty(page);
1418                 page_cache_release(page);
1419                 index++;
1420         }
1421         return 0;
1422 }
1423
1424 /*
1425  * helper function to set both pages and extents in the tree writeback
1426  */
1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1428 {
1429         unsigned long index = start >> PAGE_CACHE_SHIFT;
1430         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1431         struct page *page;
1432
1433         while (index <= end_index) {
1434                 page = find_get_page(tree->mapping, index);
1435                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1436                 set_page_writeback(page);
1437                 page_cache_release(page);
1438                 index++;
1439         }
1440         return 0;
1441 }
1442
1443 /* find the first state struct with 'bits' set after 'start', and
1444  * return it.  tree->lock must be held.  NULL will returned if
1445  * nothing was found after 'start'
1446  */
1447 static struct extent_state *
1448 find_first_extent_bit_state(struct extent_io_tree *tree,
1449                             u64 start, unsigned bits)
1450 {
1451         struct rb_node *node;
1452         struct extent_state *state;
1453
1454         /*
1455          * this search will find all the extents that end after
1456          * our range starts.
1457          */
1458         node = tree_search(tree, start);
1459         if (!node)
1460                 goto out;
1461
1462         while (1) {
1463                 state = rb_entry(node, struct extent_state, rb_node);
1464                 if (state->end >= start && (state->state & bits))
1465                         return state;
1466
1467                 node = rb_next(node);
1468                 if (!node)
1469                         break;
1470         }
1471 out:
1472         return NULL;
1473 }
1474
1475 /*
1476  * find the first offset in the io tree with 'bits' set. zero is
1477  * returned if we find something, and *start_ret and *end_ret are
1478  * set to reflect the state struct that was found.
1479  *
1480  * If nothing was found, 1 is returned. If found something, return 0.
1481  */
1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1483                           u64 *start_ret, u64 *end_ret, unsigned bits,
1484                           struct extent_state **cached_state)
1485 {
1486         struct extent_state *state;
1487         struct rb_node *n;
1488         int ret = 1;
1489
1490         spin_lock(&tree->lock);
1491         if (cached_state && *cached_state) {
1492                 state = *cached_state;
1493                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1494                         n = rb_next(&state->rb_node);
1495                         while (n) {
1496                                 state = rb_entry(n, struct extent_state,
1497                                                  rb_node);
1498                                 if (state->state & bits)
1499                                         goto got_it;
1500                                 n = rb_next(n);
1501                         }
1502                         free_extent_state(*cached_state);
1503                         *cached_state = NULL;
1504                         goto out;
1505                 }
1506                 free_extent_state(*cached_state);
1507                 *cached_state = NULL;
1508         }
1509
1510         state = find_first_extent_bit_state(tree, start, bits);
1511 got_it:
1512         if (state) {
1513                 cache_state_if_flags(state, cached_state, 0);
1514                 *start_ret = state->start;
1515                 *end_ret = state->end;
1516                 ret = 0;
1517         }
1518 out:
1519         spin_unlock(&tree->lock);
1520         return ret;
1521 }
1522
1523 /*
1524  * find a contiguous range of bytes in the file marked as delalloc, not
1525  * more than 'max_bytes'.  start and end are used to return the range,
1526  *
1527  * 1 is returned if we find something, 0 if nothing was in the tree
1528  */
1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1530                                         u64 *start, u64 *end, u64 max_bytes,
1531                                         struct extent_state **cached_state)
1532 {
1533         struct rb_node *node;
1534         struct extent_state *state;
1535         u64 cur_start = *start;
1536         u64 found = 0;
1537         u64 total_bytes = 0;
1538
1539         spin_lock(&tree->lock);
1540
1541         /*
1542          * this search will find all the extents that end after
1543          * our range starts.
1544          */
1545         node = tree_search(tree, cur_start);
1546         if (!node) {
1547                 if (!found)
1548                         *end = (u64)-1;
1549                 goto out;
1550         }
1551
1552         while (1) {
1553                 state = rb_entry(node, struct extent_state, rb_node);
1554                 if (found && (state->start != cur_start ||
1555                               (state->state & EXTENT_BOUNDARY))) {
1556                         goto out;
1557                 }
1558                 if (!(state->state & EXTENT_DELALLOC)) {
1559                         if (!found)
1560                                 *end = state->end;
1561                         goto out;
1562                 }
1563                 if (!found) {
1564                         *start = state->start;
1565                         *cached_state = state;
1566                         atomic_inc(&state->refs);
1567                 }
1568                 found++;
1569                 *end = state->end;
1570                 cur_start = state->end + 1;
1571                 node = rb_next(node);
1572                 total_bytes += state->end - state->start + 1;
1573                 if (total_bytes >= max_bytes)
1574                         break;
1575                 if (!node)
1576                         break;
1577         }
1578 out:
1579         spin_unlock(&tree->lock);
1580         return found;
1581 }
1582
1583 static noinline void __unlock_for_delalloc(struct inode *inode,
1584                                            struct page *locked_page,
1585                                            u64 start, u64 end)
1586 {
1587         int ret;
1588         struct page *pages[16];
1589         unsigned long index = start >> PAGE_CACHE_SHIFT;
1590         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591         unsigned long nr_pages = end_index - index + 1;
1592         int i;
1593
1594         if (index == locked_page->index && end_index == index)
1595                 return;
1596
1597         while (nr_pages > 0) {
1598                 ret = find_get_pages_contig(inode->i_mapping, index,
1599                                      min_t(unsigned long, nr_pages,
1600                                      ARRAY_SIZE(pages)), pages);
1601                 for (i = 0; i < ret; i++) {
1602                         if (pages[i] != locked_page)
1603                                 unlock_page(pages[i]);
1604                         page_cache_release(pages[i]);
1605                 }
1606                 nr_pages -= ret;
1607                 index += ret;
1608                 cond_resched();
1609         }
1610 }
1611
1612 static noinline int lock_delalloc_pages(struct inode *inode,
1613                                         struct page *locked_page,
1614                                         u64 delalloc_start,
1615                                         u64 delalloc_end)
1616 {
1617         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618         unsigned long start_index = index;
1619         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620         unsigned long pages_locked = 0;
1621         struct page *pages[16];
1622         unsigned long nrpages;
1623         int ret;
1624         int i;
1625
1626         /* the caller is responsible for locking the start index */
1627         if (index == locked_page->index && index == end_index)
1628                 return 0;
1629
1630         /* skip the page at the start index */
1631         nrpages = end_index - index + 1;
1632         while (nrpages > 0) {
1633                 ret = find_get_pages_contig(inode->i_mapping, index,
1634                                      min_t(unsigned long,
1635                                      nrpages, ARRAY_SIZE(pages)), pages);
1636                 if (ret == 0) {
1637                         ret = -EAGAIN;
1638                         goto done;
1639                 }
1640                 /* now we have an array of pages, lock them all */
1641                 for (i = 0; i < ret; i++) {
1642                         /*
1643                          * the caller is taking responsibility for
1644                          * locked_page
1645                          */
1646                         if (pages[i] != locked_page) {
1647                                 lock_page(pages[i]);
1648                                 if (!PageDirty(pages[i]) ||
1649                                     pages[i]->mapping != inode->i_mapping) {
1650                                         ret = -EAGAIN;
1651                                         unlock_page(pages[i]);
1652                                         page_cache_release(pages[i]);
1653                                         goto done;
1654                                 }
1655                         }
1656                         page_cache_release(pages[i]);
1657                         pages_locked++;
1658                 }
1659                 nrpages -= ret;
1660                 index += ret;
1661                 cond_resched();
1662         }
1663         ret = 0;
1664 done:
1665         if (ret && pages_locked) {
1666                 __unlock_for_delalloc(inode, locked_page,
1667                               delalloc_start,
1668                               ((u64)(start_index + pages_locked - 1)) <<
1669                               PAGE_CACHE_SHIFT);
1670         }
1671         return ret;
1672 }
1673
1674 /*
1675  * find a contiguous range of bytes in the file marked as delalloc, not
1676  * more than 'max_bytes'.  start and end are used to return the range,
1677  *
1678  * 1 is returned if we find something, 0 if nothing was in the tree
1679  */
1680 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681                                     struct extent_io_tree *tree,
1682                                     struct page *locked_page, u64 *start,
1683                                     u64 *end, u64 max_bytes)
1684 {
1685         u64 delalloc_start;
1686         u64 delalloc_end;
1687         u64 found;
1688         struct extent_state *cached_state = NULL;
1689         int ret;
1690         int loops = 0;
1691
1692 again:
1693         /* step one, find a bunch of delalloc bytes starting at start */
1694         delalloc_start = *start;
1695         delalloc_end = 0;
1696         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1697                                     max_bytes, &cached_state);
1698         if (!found || delalloc_end <= *start) {
1699                 *start = delalloc_start;
1700                 *end = delalloc_end;
1701                 free_extent_state(cached_state);
1702                 return 0;
1703         }
1704
1705         /*
1706          * start comes from the offset of locked_page.  We have to lock
1707          * pages in order, so we can't process delalloc bytes before
1708          * locked_page
1709          */
1710         if (delalloc_start < *start)
1711                 delalloc_start = *start;
1712
1713         /*
1714          * make sure to limit the number of pages we try to lock down
1715          */
1716         if (delalloc_end + 1 - delalloc_start > max_bytes)
1717                 delalloc_end = delalloc_start + max_bytes - 1;
1718
1719         /* step two, lock all the pages after the page that has start */
1720         ret = lock_delalloc_pages(inode, locked_page,
1721                                   delalloc_start, delalloc_end);
1722         if (ret == -EAGAIN) {
1723                 /* some of the pages are gone, lets avoid looping by
1724                  * shortening the size of the delalloc range we're searching
1725                  */
1726                 free_extent_state(cached_state);
1727                 cached_state = NULL;
1728                 if (!loops) {
1729                         max_bytes = PAGE_CACHE_SIZE;
1730                         loops = 1;
1731                         goto again;
1732                 } else {
1733                         found = 0;
1734                         goto out_failed;
1735                 }
1736         }
1737         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1738
1739         /* step three, lock the state bits for the whole range */
1740         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1741
1742         /* then test to make sure it is all still delalloc */
1743         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1744                              EXTENT_DELALLOC, 1, cached_state);
1745         if (!ret) {
1746                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747                                      &cached_state, GFP_NOFS);
1748                 __unlock_for_delalloc(inode, locked_page,
1749                               delalloc_start, delalloc_end);
1750                 cond_resched();
1751                 goto again;
1752         }
1753         free_extent_state(cached_state);
1754         *start = delalloc_start;
1755         *end = delalloc_end;
1756 out_failed:
1757         return found;
1758 }
1759
1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761                                  struct page *locked_page,
1762                                  unsigned clear_bits,
1763                                  unsigned long page_ops)
1764 {
1765         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1766         int ret;
1767         struct page *pages[16];
1768         unsigned long index = start >> PAGE_CACHE_SHIFT;
1769         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770         unsigned long nr_pages = end_index - index + 1;
1771         int i;
1772
1773         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1774         if (page_ops == 0)
1775                 return 0;
1776
1777         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778                 mapping_set_error(inode->i_mapping, -EIO);
1779
1780         while (nr_pages > 0) {
1781                 ret = find_get_pages_contig(inode->i_mapping, index,
1782                                      min_t(unsigned long,
1783                                      nr_pages, ARRAY_SIZE(pages)), pages);
1784                 for (i = 0; i < ret; i++) {
1785
1786                         if (page_ops & PAGE_SET_PRIVATE2)
1787                                 SetPagePrivate2(pages[i]);
1788
1789                         if (pages[i] == locked_page) {
1790                                 page_cache_release(pages[i]);
1791                                 continue;
1792                         }
1793                         if (page_ops & PAGE_CLEAR_DIRTY)
1794                                 clear_page_dirty_for_io(pages[i]);
1795                         if (page_ops & PAGE_SET_WRITEBACK)
1796                                 set_page_writeback(pages[i]);
1797                         if (page_ops & PAGE_SET_ERROR)
1798                                 SetPageError(pages[i]);
1799                         if (page_ops & PAGE_END_WRITEBACK)
1800                                 end_page_writeback(pages[i]);
1801                         if (page_ops & PAGE_UNLOCK)
1802                                 unlock_page(pages[i]);
1803                         page_cache_release(pages[i]);
1804                 }
1805                 nr_pages -= ret;
1806                 index += ret;
1807                 cond_resched();
1808         }
1809         return 0;
1810 }
1811
1812 /*
1813  * count the number of bytes in the tree that have a given bit(s)
1814  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1815  * cached.  The total number found is returned.
1816  */
1817 u64 count_range_bits(struct extent_io_tree *tree,
1818                      u64 *start, u64 search_end, u64 max_bytes,
1819                      unsigned bits, int contig)
1820 {
1821         struct rb_node *node;
1822         struct extent_state *state;
1823         u64 cur_start = *start;
1824         u64 total_bytes = 0;
1825         u64 last = 0;
1826         int found = 0;
1827
1828         if (WARN_ON(search_end <= cur_start))
1829                 return 0;
1830
1831         spin_lock(&tree->lock);
1832         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833                 total_bytes = tree->dirty_bytes;
1834                 goto out;
1835         }
1836         /*
1837          * this search will find all the extents that end after
1838          * our range starts.
1839          */
1840         node = tree_search(tree, cur_start);
1841         if (!node)
1842                 goto out;
1843
1844         while (1) {
1845                 state = rb_entry(node, struct extent_state, rb_node);
1846                 if (state->start > search_end)
1847                         break;
1848                 if (contig && found && state->start > last + 1)
1849                         break;
1850                 if (state->end >= cur_start && (state->state & bits) == bits) {
1851                         total_bytes += min(search_end, state->end) + 1 -
1852                                        max(cur_start, state->start);
1853                         if (total_bytes >= max_bytes)
1854                                 break;
1855                         if (!found) {
1856                                 *start = max(cur_start, state->start);
1857                                 found = 1;
1858                         }
1859                         last = state->end;
1860                 } else if (contig && found) {
1861                         break;
1862                 }
1863                 node = rb_next(node);
1864                 if (!node)
1865                         break;
1866         }
1867 out:
1868         spin_unlock(&tree->lock);
1869         return total_bytes;
1870 }
1871
1872 /*
1873  * set the private field for a given byte offset in the tree.  If there isn't
1874  * an extent_state there already, this does nothing.
1875  */
1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1877 {
1878         struct rb_node *node;
1879         struct extent_state *state;
1880         int ret = 0;
1881
1882         spin_lock(&tree->lock);
1883         /*
1884          * this search will find all the extents that end after
1885          * our range starts.
1886          */
1887         node = tree_search(tree, start);
1888         if (!node) {
1889                 ret = -ENOENT;
1890                 goto out;
1891         }
1892         state = rb_entry(node, struct extent_state, rb_node);
1893         if (state->start != start) {
1894                 ret = -ENOENT;
1895                 goto out;
1896         }
1897         state->private = private;
1898 out:
1899         spin_unlock(&tree->lock);
1900         return ret;
1901 }
1902
1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1904 {
1905         struct rb_node *node;
1906         struct extent_state *state;
1907         int ret = 0;
1908
1909         spin_lock(&tree->lock);
1910         /*
1911          * this search will find all the extents that end after
1912          * our range starts.
1913          */
1914         node = tree_search(tree, start);
1915         if (!node) {
1916                 ret = -ENOENT;
1917                 goto out;
1918         }
1919         state = rb_entry(node, struct extent_state, rb_node);
1920         if (state->start != start) {
1921                 ret = -ENOENT;
1922                 goto out;
1923         }
1924         *private = state->private;
1925 out:
1926         spin_unlock(&tree->lock);
1927         return ret;
1928 }
1929
1930 /*
1931  * searches a range in the state tree for a given mask.
1932  * If 'filled' == 1, this returns 1 only if every extent in the tree
1933  * has the bits set.  Otherwise, 1 is returned if any bit in the
1934  * range is found set.
1935  */
1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1937                    unsigned bits, int filled, struct extent_state *cached)
1938 {
1939         struct extent_state *state = NULL;
1940         struct rb_node *node;
1941         int bitset = 0;
1942
1943         spin_lock(&tree->lock);
1944         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1945             cached->end > start)
1946                 node = &cached->rb_node;
1947         else
1948                 node = tree_search(tree, start);
1949         while (node && start <= end) {
1950                 state = rb_entry(node, struct extent_state, rb_node);
1951
1952                 if (filled && state->start > start) {
1953                         bitset = 0;
1954                         break;
1955                 }
1956
1957                 if (state->start > end)
1958                         break;
1959
1960                 if (state->state & bits) {
1961                         bitset = 1;
1962                         if (!filled)
1963                                 break;
1964                 } else if (filled) {
1965                         bitset = 0;
1966                         break;
1967                 }
1968
1969                 if (state->end == (u64)-1)
1970                         break;
1971
1972                 start = state->end + 1;
1973                 if (start > end)
1974                         break;
1975                 node = rb_next(node);
1976                 if (!node) {
1977                         if (filled)
1978                                 bitset = 0;
1979                         break;
1980                 }
1981         }
1982         spin_unlock(&tree->lock);
1983         return bitset;
1984 }
1985
1986 /*
1987  * helper function to set a given page up to date if all the
1988  * extents in the tree for that page are up to date
1989  */
1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1991 {
1992         u64 start = page_offset(page);
1993         u64 end = start + PAGE_CACHE_SIZE - 1;
1994         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1995                 SetPageUptodate(page);
1996 }
1997
1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1999 {
2000         int ret;
2001         int err = 0;
2002         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2003
2004         set_state_private(failure_tree, rec->start, 0);
2005         ret = clear_extent_bits(failure_tree, rec->start,
2006                                 rec->start + rec->len - 1,
2007                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2008         if (ret)
2009                 err = ret;
2010
2011         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012                                 rec->start + rec->len - 1,
2013                                 EXTENT_DAMAGED, GFP_NOFS);
2014         if (ret && !err)
2015                 err = ret;
2016
2017         kfree(rec);
2018         return err;
2019 }
2020
2021 /*
2022  * this bypasses the standard btrfs submit functions deliberately, as
2023  * the standard behavior is to write all copies in a raid setup. here we only
2024  * want to write the one bad copy. so we do the mapping for ourselves and issue
2025  * submit_bio directly.
2026  * to avoid any synchronization issues, wait for the data after writing, which
2027  * actually prevents the read that triggered the error from finishing.
2028  * currently, there can be no more than two copies of every data bit. thus,
2029  * exactly one rewrite is required.
2030  */
2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032                       struct page *page, unsigned int pg_offset, int mirror_num)
2033 {
2034         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2035         struct bio *bio;
2036         struct btrfs_device *dev;
2037         u64 map_length = 0;
2038         u64 sector;
2039         struct btrfs_bio *bbio = NULL;
2040         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2041         int ret;
2042
2043         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2044         BUG_ON(!mirror_num);
2045
2046         /* we can't repair anything in raid56 yet */
2047         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2048                 return 0;
2049
2050         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2051         if (!bio)
2052                 return -EIO;
2053         bio->bi_iter.bi_size = 0;
2054         map_length = length;
2055
2056         ret = btrfs_map_block(fs_info, WRITE, logical,
2057                               &map_length, &bbio, mirror_num);
2058         if (ret) {
2059                 bio_put(bio);
2060                 return -EIO;
2061         }
2062         BUG_ON(mirror_num != bbio->mirror_num);
2063         sector = bbio->stripes[mirror_num-1].physical >> 9;
2064         bio->bi_iter.bi_sector = sector;
2065         dev = bbio->stripes[mirror_num-1].dev;
2066         btrfs_put_bbio(bbio);
2067         if (!dev || !dev->bdev || !dev->writeable) {
2068                 bio_put(bio);
2069                 return -EIO;
2070         }
2071         bio->bi_bdev = dev->bdev;
2072         bio_add_page(bio, page, length, pg_offset);
2073
2074         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2075                 /* try to remap that extent elsewhere? */
2076                 bio_put(bio);
2077                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2078                 return -EIO;
2079         }
2080
2081         printk_ratelimited_in_rcu(KERN_INFO
2082                                   "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083                                   btrfs_ino(inode), start,
2084                                   rcu_str_deref(dev->name), sector);
2085         bio_put(bio);
2086         return 0;
2087 }
2088
2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2090                          int mirror_num)
2091 {
2092         u64 start = eb->start;
2093         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2094         int ret = 0;
2095
2096         if (root->fs_info->sb->s_flags & MS_RDONLY)
2097                 return -EROFS;
2098
2099         for (i = 0; i < num_pages; i++) {
2100                 struct page *p = eb->pages[i];
2101
2102                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2103                                         PAGE_CACHE_SIZE, start, p,
2104                                         start - page_offset(p), mirror_num);
2105                 if (ret)
2106                         break;
2107                 start += PAGE_CACHE_SIZE;
2108         }
2109
2110         return ret;
2111 }
2112
2113 /*
2114  * each time an IO finishes, we do a fast check in the IO failure tree
2115  * to see if we need to process or clean up an io_failure_record
2116  */
2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118                      unsigned int pg_offset)
2119 {
2120         u64 private;
2121         u64 private_failure;
2122         struct io_failure_record *failrec;
2123         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2124         struct extent_state *state;
2125         int num_copies;
2126         int ret;
2127
2128         private = 0;
2129         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2131         if (!ret)
2132                 return 0;
2133
2134         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2135                                 &private_failure);
2136         if (ret)
2137                 return 0;
2138
2139         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140         BUG_ON(!failrec->this_mirror);
2141
2142         if (failrec->in_validation) {
2143                 /* there was no real error, just free the record */
2144                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2145                          failrec->start);
2146                 goto out;
2147         }
2148         if (fs_info->sb->s_flags & MS_RDONLY)
2149                 goto out;
2150
2151         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2153                                             failrec->start,
2154                                             EXTENT_LOCKED);
2155         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2156
2157         if (state && state->start <= failrec->start &&
2158             state->end >= failrec->start + failrec->len - 1) {
2159                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2160                                               failrec->len);
2161                 if (num_copies > 1)  {
2162                         repair_io_failure(inode, start, failrec->len,
2163                                           failrec->logical, page,
2164                                           pg_offset, failrec->failed_mirror);
2165                 }
2166         }
2167
2168 out:
2169         free_io_failure(inode, failrec);
2170
2171         return 0;
2172 }
2173
2174 /*
2175  * Can be called when
2176  * - hold extent lock
2177  * - under ordered extent
2178  * - the inode is freeing
2179  */
2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2181 {
2182         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183         struct io_failure_record *failrec;
2184         struct extent_state *state, *next;
2185
2186         if (RB_EMPTY_ROOT(&failure_tree->state))
2187                 return;
2188
2189         spin_lock(&failure_tree->lock);
2190         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2191         while (state) {
2192                 if (state->start > end)
2193                         break;
2194
2195                 ASSERT(state->end <= end);
2196
2197                 next = next_state(state);
2198
2199                 failrec = (struct io_failure_record *)(unsigned long)state->private;
2200                 free_extent_state(state);
2201                 kfree(failrec);
2202
2203                 state = next;
2204         }
2205         spin_unlock(&failure_tree->lock);
2206 }
2207
2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209                                 struct io_failure_record **failrec_ret)
2210 {
2211         struct io_failure_record *failrec;
2212         u64 private;
2213         struct extent_map *em;
2214         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2217         int ret;
2218         u64 logical;
2219
2220         ret = get_state_private(failure_tree, start, &private);
2221         if (ret) {
2222                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2223                 if (!failrec)
2224                         return -ENOMEM;
2225
2226                 failrec->start = start;
2227                 failrec->len = end - start + 1;
2228                 failrec->this_mirror = 0;
2229                 failrec->bio_flags = 0;
2230                 failrec->in_validation = 0;
2231
2232                 read_lock(&em_tree->lock);
2233                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2234                 if (!em) {
2235                         read_unlock(&em_tree->lock);
2236                         kfree(failrec);
2237                         return -EIO;
2238                 }
2239
2240                 if (em->start > start || em->start + em->len <= start) {
2241                         free_extent_map(em);
2242                         em = NULL;
2243                 }
2244                 read_unlock(&em_tree->lock);
2245                 if (!em) {
2246                         kfree(failrec);
2247                         return -EIO;
2248                 }
2249
2250                 logical = start - em->start;
2251                 logical = em->block_start + logical;
2252                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253                         logical = em->block_start;
2254                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255                         extent_set_compress_type(&failrec->bio_flags,
2256                                                  em->compress_type);
2257                 }
2258
2259                 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260                          logical, start, failrec->len);
2261
2262                 failrec->logical = logical;
2263                 free_extent_map(em);
2264
2265                 /* set the bits in the private failure tree */
2266                 ret = set_extent_bits(failure_tree, start, end,
2267                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268                 if (ret >= 0)
2269                         ret = set_state_private(failure_tree, start,
2270                                                 (u64)(unsigned long)failrec);
2271                 /* set the bits in the inode's tree */
2272                 if (ret >= 0)
2273                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274                                                 GFP_NOFS);
2275                 if (ret < 0) {
2276                         kfree(failrec);
2277                         return ret;
2278                 }
2279         } else {
2280                 failrec = (struct io_failure_record *)(unsigned long)private;
2281                 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2282                          failrec->logical, failrec->start, failrec->len,
2283                          failrec->in_validation);
2284                 /*
2285                  * when data can be on disk more than twice, add to failrec here
2286                  * (e.g. with a list for failed_mirror) to make
2287                  * clean_io_failure() clean all those errors at once.
2288                  */
2289         }
2290
2291         *failrec_ret = failrec;
2292
2293         return 0;
2294 }
2295
2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297                            struct io_failure_record *failrec, int failed_mirror)
2298 {
2299         int num_copies;
2300
2301         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302                                       failrec->logical, failrec->len);
2303         if (num_copies == 1) {
2304                 /*
2305                  * we only have a single copy of the data, so don't bother with
2306                  * all the retry and error correction code that follows. no
2307                  * matter what the error is, it is very likely to persist.
2308                  */
2309                 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310                          num_copies, failrec->this_mirror, failed_mirror);
2311                 return 0;
2312         }
2313
2314         /*
2315          * there are two premises:
2316          *      a) deliver good data to the caller
2317          *      b) correct the bad sectors on disk
2318          */
2319         if (failed_bio->bi_vcnt > 1) {
2320                 /*
2321                  * to fulfill b), we need to know the exact failing sectors, as
2322                  * we don't want to rewrite any more than the failed ones. thus,
2323                  * we need separate read requests for the failed bio
2324                  *
2325                  * if the following BUG_ON triggers, our validation request got
2326                  * merged. we need separate requests for our algorithm to work.
2327                  */
2328                 BUG_ON(failrec->in_validation);
2329                 failrec->in_validation = 1;
2330                 failrec->this_mirror = failed_mirror;
2331         } else {
2332                 /*
2333                  * we're ready to fulfill a) and b) alongside. get a good copy
2334                  * of the failed sector and if we succeed, we have setup
2335                  * everything for repair_io_failure to do the rest for us.
2336                  */
2337                 if (failrec->in_validation) {
2338                         BUG_ON(failrec->this_mirror != failed_mirror);
2339                         failrec->in_validation = 0;
2340                         failrec->this_mirror = 0;
2341                 }
2342                 failrec->failed_mirror = failed_mirror;
2343                 failrec->this_mirror++;
2344                 if (failrec->this_mirror == failed_mirror)
2345                         failrec->this_mirror++;
2346         }
2347
2348         if (failrec->this_mirror > num_copies) {
2349                 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2350                          num_copies, failrec->this_mirror, failed_mirror);
2351                 return 0;
2352         }
2353
2354         return 1;
2355 }
2356
2357
2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359                                     struct io_failure_record *failrec,
2360                                     struct page *page, int pg_offset, int icsum,
2361                                     bio_end_io_t *endio_func, void *data)
2362 {
2363         struct bio *bio;
2364         struct btrfs_io_bio *btrfs_failed_bio;
2365         struct btrfs_io_bio *btrfs_bio;
2366
2367         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2368         if (!bio)
2369                 return NULL;
2370
2371         bio->bi_end_io = endio_func;
2372         bio->bi_iter.bi_sector = failrec->logical >> 9;
2373         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2374         bio->bi_iter.bi_size = 0;
2375         bio->bi_private = data;
2376
2377         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378         if (btrfs_failed_bio->csum) {
2379                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2381
2382                 btrfs_bio = btrfs_io_bio(bio);
2383                 btrfs_bio->csum = btrfs_bio->csum_inline;
2384                 icsum *= csum_size;
2385                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2386                        csum_size);
2387         }
2388
2389         bio_add_page(bio, page, failrec->len, pg_offset);
2390
2391         return bio;
2392 }
2393
2394 /*
2395  * this is a generic handler for readpage errors (default
2396  * readpage_io_failed_hook). if other copies exist, read those and write back
2397  * good data to the failed position. does not investigate in remapping the
2398  * failed extent elsewhere, hoping the device will be smart enough to do this as
2399  * needed
2400  */
2401
2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403                               struct page *page, u64 start, u64 end,
2404                               int failed_mirror)
2405 {
2406         struct io_failure_record *failrec;
2407         struct inode *inode = page->mapping->host;
2408         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2409         struct bio *bio;
2410         int read_mode;
2411         int ret;
2412
2413         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2414
2415         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416         if (ret)
2417                 return ret;
2418
2419         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2420         if (!ret) {
2421                 free_io_failure(inode, failrec);
2422                 return -EIO;
2423         }
2424
2425         if (failed_bio->bi_vcnt > 1)
2426                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2427         else
2428                 read_mode = READ_SYNC;
2429
2430         phy_offset >>= inode->i_sb->s_blocksize_bits;
2431         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432                                       start - page_offset(page),
2433                                       (int)phy_offset, failed_bio->bi_end_io,
2434                                       NULL);
2435         if (!bio) {
2436                 free_io_failure(inode, failrec);
2437                 return -EIO;
2438         }
2439
2440         pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441                  read_mode, failrec->this_mirror, failrec->in_validation);
2442
2443         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444                                          failrec->this_mirror,
2445                                          failrec->bio_flags, 0);
2446         if (ret) {
2447                 free_io_failure(inode, failrec);
2448                 bio_put(bio);
2449         }
2450
2451         return ret;
2452 }
2453
2454 /* lots and lots of room for performance fixes in the end_bio funcs */
2455
2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2457 {
2458         int uptodate = (err == 0);
2459         struct extent_io_tree *tree;
2460         int ret = 0;
2461
2462         tree = &BTRFS_I(page->mapping->host)->io_tree;
2463
2464         if (tree->ops && tree->ops->writepage_end_io_hook) {
2465                 ret = tree->ops->writepage_end_io_hook(page, start,
2466                                                end, NULL, uptodate);
2467                 if (ret)
2468                         uptodate = 0;
2469         }
2470
2471         if (!uptodate) {
2472                 ClearPageUptodate(page);
2473                 SetPageError(page);
2474                 ret = ret < 0 ? ret : -EIO;
2475                 mapping_set_error(page->mapping, ret);
2476         }
2477         return 0;
2478 }
2479
2480 /*
2481  * after a writepage IO is done, we need to:
2482  * clear the uptodate bits on error
2483  * clear the writeback bits in the extent tree for this IO
2484  * end_page_writeback if the page has no more pending IO
2485  *
2486  * Scheduling is not allowed, so the extent state tree is expected
2487  * to have one and only one object corresponding to this IO.
2488  */
2489 static void end_bio_extent_writepage(struct bio *bio)
2490 {
2491         struct bio_vec *bvec;
2492         u64 start;
2493         u64 end;
2494         int i;
2495
2496         bio_for_each_segment_all(bvec, bio, i) {
2497                 struct page *page = bvec->bv_page;
2498
2499                 /* We always issue full-page reads, but if some block
2500                  * in a page fails to read, blk_update_request() will
2501                  * advance bv_offset and adjust bv_len to compensate.
2502                  * Print a warning for nonzero offsets, and an error
2503                  * if they don't add up to a full page.  */
2504                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507                                    "partial page write in btrfs with offset %u and length %u",
2508                                         bvec->bv_offset, bvec->bv_len);
2509                         else
2510                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511                                    "incomplete page write in btrfs with offset %u and "
2512                                    "length %u",
2513                                         bvec->bv_offset, bvec->bv_len);
2514                 }
2515
2516                 start = page_offset(page);
2517                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2518
2519                 if (end_extent_writepage(page, bio->bi_error, start, end))
2520                         continue;
2521
2522                 end_page_writeback(page);
2523         }
2524
2525         bio_put(bio);
2526 }
2527
2528 static void
2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2530                               int uptodate)
2531 {
2532         struct extent_state *cached = NULL;
2533         u64 end = start + len - 1;
2534
2535         if (uptodate && tree->track_uptodate)
2536                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2538 }
2539
2540 /*
2541  * after a readpage IO is done, we need to:
2542  * clear the uptodate bits on error
2543  * set the uptodate bits if things worked
2544  * set the page up to date if all extents in the tree are uptodate
2545  * clear the lock bit in the extent tree
2546  * unlock the page if there are no other extents locked for it
2547  *
2548  * Scheduling is not allowed, so the extent state tree is expected
2549  * to have one and only one object corresponding to this IO.
2550  */
2551 static void end_bio_extent_readpage(struct bio *bio)
2552 {
2553         struct bio_vec *bvec;
2554         int uptodate = !bio->bi_error;
2555         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2556         struct extent_io_tree *tree;
2557         u64 offset = 0;
2558         u64 start;
2559         u64 end;
2560         u64 len;
2561         u64 extent_start = 0;
2562         u64 extent_len = 0;
2563         int mirror;
2564         int ret;
2565         int i;
2566
2567         bio_for_each_segment_all(bvec, bio, i) {
2568                 struct page *page = bvec->bv_page;
2569                 struct inode *inode = page->mapping->host;
2570
2571                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2572                          "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2573                          bio->bi_error, io_bio->mirror_num);
2574                 tree = &BTRFS_I(inode)->io_tree;
2575
2576                 /* We always issue full-page reads, but if some block
2577                  * in a page fails to read, blk_update_request() will
2578                  * advance bv_offset and adjust bv_len to compensate.
2579                  * Print a warning for nonzero offsets, and an error
2580                  * if they don't add up to a full page.  */
2581                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2582                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2583                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2584                                    "partial page read in btrfs with offset %u and length %u",
2585                                         bvec->bv_offset, bvec->bv_len);
2586                         else
2587                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2588                                    "incomplete page read in btrfs with offset %u and "
2589                                    "length %u",
2590                                         bvec->bv_offset, bvec->bv_len);
2591                 }
2592
2593                 start = page_offset(page);
2594                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2595                 len = bvec->bv_len;
2596
2597                 mirror = io_bio->mirror_num;
2598                 if (likely(uptodate && tree->ops &&
2599                            tree->ops->readpage_end_io_hook)) {
2600                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2601                                                               page, start, end,
2602                                                               mirror);
2603                         if (ret)
2604                                 uptodate = 0;
2605                         else
2606                                 clean_io_failure(inode, start, page, 0);
2607                 }
2608
2609                 if (likely(uptodate))
2610                         goto readpage_ok;
2611
2612                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2613                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2614                         if (!ret && !bio->bi_error)
2615                                 uptodate = 1;
2616                 } else {
2617                         /*
2618                          * The generic bio_readpage_error handles errors the
2619                          * following way: If possible, new read requests are
2620                          * created and submitted and will end up in
2621                          * end_bio_extent_readpage as well (if we're lucky, not
2622                          * in the !uptodate case). In that case it returns 0 and
2623                          * we just go on with the next page in our bio. If it
2624                          * can't handle the error it will return -EIO and we
2625                          * remain responsible for that page.
2626                          */
2627                         ret = bio_readpage_error(bio, offset, page, start, end,
2628                                                  mirror);
2629                         if (ret == 0) {
2630                                 uptodate = !bio->bi_error;
2631                                 offset += len;
2632                                 continue;
2633                         }
2634                 }
2635 readpage_ok:
2636                 if (likely(uptodate)) {
2637                         loff_t i_size = i_size_read(inode);
2638                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639                         unsigned off;
2640
2641                         /* Zero out the end if this page straddles i_size */
2642                         off = i_size & (PAGE_CACHE_SIZE-1);
2643                         if (page->index == end_index && off)
2644                                 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2645                         SetPageUptodate(page);
2646                 } else {
2647                         ClearPageUptodate(page);
2648                         SetPageError(page);
2649                 }
2650                 unlock_page(page);
2651                 offset += len;
2652
2653                 if (unlikely(!uptodate)) {
2654                         if (extent_len) {
2655                                 endio_readpage_release_extent(tree,
2656                                                               extent_start,
2657                                                               extent_len, 1);
2658                                 extent_start = 0;
2659                                 extent_len = 0;
2660                         }
2661                         endio_readpage_release_extent(tree, start,
2662                                                       end - start + 1, 0);
2663                 } else if (!extent_len) {
2664                         extent_start = start;
2665                         extent_len = end + 1 - start;
2666                 } else if (extent_start + extent_len == start) {
2667                         extent_len += end + 1 - start;
2668                 } else {
2669                         endio_readpage_release_extent(tree, extent_start,
2670                                                       extent_len, uptodate);
2671                         extent_start = start;
2672                         extent_len = end + 1 - start;
2673                 }
2674         }
2675
2676         if (extent_len)
2677                 endio_readpage_release_extent(tree, extent_start, extent_len,
2678                                               uptodate);
2679         if (io_bio->end_io)
2680                 io_bio->end_io(io_bio, bio->bi_error);
2681         bio_put(bio);
2682 }
2683
2684 /*
2685  * this allocates from the btrfs_bioset.  We're returning a bio right now
2686  * but you can call btrfs_io_bio for the appropriate container_of magic
2687  */
2688 struct bio *
2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2690                 gfp_t gfp_flags)
2691 {
2692         struct btrfs_io_bio *btrfs_bio;
2693         struct bio *bio;
2694
2695         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2696
2697         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2698                 while (!bio && (nr_vecs /= 2)) {
2699                         bio = bio_alloc_bioset(gfp_flags,
2700                                                nr_vecs, btrfs_bioset);
2701                 }
2702         }
2703
2704         if (bio) {
2705                 bio->bi_bdev = bdev;
2706                 bio->bi_iter.bi_sector = first_sector;
2707                 btrfs_bio = btrfs_io_bio(bio);
2708                 btrfs_bio->csum = NULL;
2709                 btrfs_bio->csum_allocated = NULL;
2710                 btrfs_bio->end_io = NULL;
2711         }
2712         return bio;
2713 }
2714
2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2716 {
2717         struct btrfs_io_bio *btrfs_bio;
2718         struct bio *new;
2719
2720         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2721         if (new) {
2722                 btrfs_bio = btrfs_io_bio(new);
2723                 btrfs_bio->csum = NULL;
2724                 btrfs_bio->csum_allocated = NULL;
2725                 btrfs_bio->end_io = NULL;
2726
2727 #ifdef CONFIG_BLK_CGROUP
2728                 /* FIXME, put this into bio_clone_bioset */
2729                 if (bio->bi_css)
2730                         bio_associate_blkcg(new, bio->bi_css);
2731 #endif
2732         }
2733         return new;
2734 }
2735
2736 /* this also allocates from the btrfs_bioset */
2737 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2738 {
2739         struct btrfs_io_bio *btrfs_bio;
2740         struct bio *bio;
2741
2742         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2743         if (bio) {
2744                 btrfs_bio = btrfs_io_bio(bio);
2745                 btrfs_bio->csum = NULL;
2746                 btrfs_bio->csum_allocated = NULL;
2747                 btrfs_bio->end_io = NULL;
2748         }
2749         return bio;
2750 }
2751
2752
2753 static int __must_check submit_one_bio(int rw, struct bio *bio,
2754                                        int mirror_num, unsigned long bio_flags)
2755 {
2756         int ret = 0;
2757         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2758         struct page *page = bvec->bv_page;
2759         struct extent_io_tree *tree = bio->bi_private;
2760         u64 start;
2761
2762         start = page_offset(page) + bvec->bv_offset;
2763
2764         bio->bi_private = NULL;
2765
2766         bio_get(bio);
2767
2768         if (tree->ops && tree->ops->submit_bio_hook)
2769                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2770                                            mirror_num, bio_flags, start);
2771         else
2772                 btrfsic_submit_bio(rw, bio);
2773
2774         bio_put(bio);
2775         return ret;
2776 }
2777
2778 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2779                      unsigned long offset, size_t size, struct bio *bio,
2780                      unsigned long bio_flags)
2781 {
2782         int ret = 0;
2783         if (tree->ops && tree->ops->merge_bio_hook)
2784                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2785                                                 bio_flags);
2786         BUG_ON(ret < 0);
2787         return ret;
2788
2789 }
2790
2791 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2792                               struct writeback_control *wbc,
2793                               struct page *page, sector_t sector,
2794                               size_t size, unsigned long offset,
2795                               struct block_device *bdev,
2796                               struct bio **bio_ret,
2797                               unsigned long max_pages,
2798                               bio_end_io_t end_io_func,
2799                               int mirror_num,
2800                               unsigned long prev_bio_flags,
2801                               unsigned long bio_flags,
2802                               bool force_bio_submit)
2803 {
2804         int ret = 0;
2805         struct bio *bio;
2806         int contig = 0;
2807         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2808         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2809
2810         if (bio_ret && *bio_ret) {
2811                 bio = *bio_ret;
2812                 if (old_compressed)
2813                         contig = bio->bi_iter.bi_sector == sector;
2814                 else
2815                         contig = bio_end_sector(bio) == sector;
2816
2817                 if (prev_bio_flags != bio_flags || !contig ||
2818                     force_bio_submit ||
2819                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2820                     bio_add_page(bio, page, page_size, offset) < page_size) {
2821                         ret = submit_one_bio(rw, bio, mirror_num,
2822                                              prev_bio_flags);
2823                         if (ret < 0) {
2824                                 *bio_ret = NULL;
2825                                 return ret;
2826                         }
2827                         bio = NULL;
2828                 } else {
2829                         if (wbc)
2830                                 wbc_account_io(wbc, page, page_size);
2831                         return 0;
2832                 }
2833         }
2834
2835         bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2836                         GFP_NOFS | __GFP_HIGH);
2837         if (!bio)
2838                 return -ENOMEM;
2839
2840         bio_add_page(bio, page, page_size, offset);
2841         bio->bi_end_io = end_io_func;
2842         bio->bi_private = tree;
2843         if (wbc) {
2844                 wbc_init_bio(wbc, bio);
2845                 wbc_account_io(wbc, page, page_size);
2846         }
2847
2848         if (bio_ret)
2849                 *bio_ret = bio;
2850         else
2851                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2852
2853         return ret;
2854 }
2855
2856 static void attach_extent_buffer_page(struct extent_buffer *eb,
2857                                       struct page *page)
2858 {
2859         if (!PagePrivate(page)) {
2860                 SetPagePrivate(page);
2861                 page_cache_get(page);
2862                 set_page_private(page, (unsigned long)eb);
2863         } else {
2864                 WARN_ON(page->private != (unsigned long)eb);
2865         }
2866 }
2867
2868 void set_page_extent_mapped(struct page *page)
2869 {
2870         if (!PagePrivate(page)) {
2871                 SetPagePrivate(page);
2872                 page_cache_get(page);
2873                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2874         }
2875 }
2876
2877 static struct extent_map *
2878 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2879                  u64 start, u64 len, get_extent_t *get_extent,
2880                  struct extent_map **em_cached)
2881 {
2882         struct extent_map *em;
2883
2884         if (em_cached && *em_cached) {
2885                 em = *em_cached;
2886                 if (extent_map_in_tree(em) && start >= em->start &&
2887                     start < extent_map_end(em)) {
2888                         atomic_inc(&em->refs);
2889                         return em;
2890                 }
2891
2892                 free_extent_map(em);
2893                 *em_cached = NULL;
2894         }
2895
2896         em = get_extent(inode, page, pg_offset, start, len, 0);
2897         if (em_cached && !IS_ERR_OR_NULL(em)) {
2898                 BUG_ON(*em_cached);
2899                 atomic_inc(&em->refs);
2900                 *em_cached = em;
2901         }
2902         return em;
2903 }
2904 /*
2905  * basic readpage implementation.  Locked extent state structs are inserted
2906  * into the tree that are removed when the IO is done (by the end_io
2907  * handlers)
2908  * XXX JDM: This needs looking at to ensure proper page locking
2909  */
2910 static int __do_readpage(struct extent_io_tree *tree,
2911                          struct page *page,
2912                          get_extent_t *get_extent,
2913                          struct extent_map **em_cached,
2914                          struct bio **bio, int mirror_num,
2915                          unsigned long *bio_flags, int rw,
2916                          u64 *prev_em_start)
2917 {
2918         struct inode *inode = page->mapping->host;
2919         u64 start = page_offset(page);
2920         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2921         u64 end;
2922         u64 cur = start;
2923         u64 extent_offset;
2924         u64 last_byte = i_size_read(inode);
2925         u64 block_start;
2926         u64 cur_end;
2927         sector_t sector;
2928         struct extent_map *em;
2929         struct block_device *bdev;
2930         int ret;
2931         int nr = 0;
2932         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2933         size_t pg_offset = 0;
2934         size_t iosize;
2935         size_t disk_io_size;
2936         size_t blocksize = inode->i_sb->s_blocksize;
2937         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2938
2939         set_page_extent_mapped(page);
2940
2941         end = page_end;
2942         if (!PageUptodate(page)) {
2943                 if (cleancache_get_page(page) == 0) {
2944                         BUG_ON(blocksize != PAGE_SIZE);
2945                         unlock_extent(tree, start, end);
2946                         goto out;
2947                 }
2948         }
2949
2950         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2951                 char *userpage;
2952                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2953
2954                 if (zero_offset) {
2955                         iosize = PAGE_CACHE_SIZE - zero_offset;
2956                         userpage = kmap_atomic(page);
2957                         memset(userpage + zero_offset, 0, iosize);
2958                         flush_dcache_page(page);
2959                         kunmap_atomic(userpage);
2960                 }
2961         }
2962         while (cur <= end) {
2963                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2964                 bool force_bio_submit = false;
2965
2966                 if (cur >= last_byte) {
2967                         char *userpage;
2968                         struct extent_state *cached = NULL;
2969
2970                         iosize = PAGE_CACHE_SIZE - pg_offset;
2971                         userpage = kmap_atomic(page);
2972                         memset(userpage + pg_offset, 0, iosize);
2973                         flush_dcache_page(page);
2974                         kunmap_atomic(userpage);
2975                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2976                                             &cached, GFP_NOFS);
2977                         if (!parent_locked)
2978                                 unlock_extent_cached(tree, cur,
2979                                                      cur + iosize - 1,
2980                                                      &cached, GFP_NOFS);
2981                         break;
2982                 }
2983                 em = __get_extent_map(inode, page, pg_offset, cur,
2984                                       end - cur + 1, get_extent, em_cached);
2985                 if (IS_ERR_OR_NULL(em)) {
2986                         SetPageError(page);
2987                         if (!parent_locked)
2988                                 unlock_extent(tree, cur, end);
2989                         break;
2990                 }
2991                 extent_offset = cur - em->start;
2992                 BUG_ON(extent_map_end(em) <= cur);
2993                 BUG_ON(end < cur);
2994
2995                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2996                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2997                         extent_set_compress_type(&this_bio_flag,
2998                                                  em->compress_type);
2999                 }
3000
3001                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3002                 cur_end = min(extent_map_end(em) - 1, end);
3003                 iosize = ALIGN(iosize, blocksize);
3004                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3005                         disk_io_size = em->block_len;
3006                         sector = em->block_start >> 9;
3007                 } else {
3008                         sector = (em->block_start + extent_offset) >> 9;
3009                         disk_io_size = iosize;
3010                 }
3011                 bdev = em->bdev;
3012                 block_start = em->block_start;
3013                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3014                         block_start = EXTENT_MAP_HOLE;
3015
3016                 /*
3017                  * If we have a file range that points to a compressed extent
3018                  * and it's followed by a consecutive file range that points to
3019                  * to the same compressed extent (possibly with a different
3020                  * offset and/or length, so it either points to the whole extent
3021                  * or only part of it), we must make sure we do not submit a
3022                  * single bio to populate the pages for the 2 ranges because
3023                  * this makes the compressed extent read zero out the pages
3024                  * belonging to the 2nd range. Imagine the following scenario:
3025                  *
3026                  *  File layout
3027                  *  [0 - 8K]                     [8K - 24K]
3028                  *    |                               |
3029                  *    |                               |
3030                  * points to extent X,         points to extent X,
3031                  * offset 4K, length of 8K     offset 0, length 16K
3032                  *
3033                  * [extent X, compressed length = 4K uncompressed length = 16K]
3034                  *
3035                  * If the bio to read the compressed extent covers both ranges,
3036                  * it will decompress extent X into the pages belonging to the
3037                  * first range and then it will stop, zeroing out the remaining
3038                  * pages that belong to the other range that points to extent X.
3039                  * So here we make sure we submit 2 bios, one for the first
3040                  * range and another one for the third range. Both will target
3041                  * the same physical extent from disk, but we can't currently
3042                  * make the compressed bio endio callback populate the pages
3043                  * for both ranges because each compressed bio is tightly
3044                  * coupled with a single extent map, and each range can have
3045                  * an extent map with a different offset value relative to the
3046                  * uncompressed data of our extent and different lengths. This
3047                  * is a corner case so we prioritize correctness over
3048                  * non-optimal behavior (submitting 2 bios for the same extent).
3049                  */
3050                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3051                     prev_em_start && *prev_em_start != (u64)-1 &&
3052                     *prev_em_start != em->orig_start)
3053                         force_bio_submit = true;
3054
3055                 if (prev_em_start)
3056                         *prev_em_start = em->orig_start;
3057
3058                 free_extent_map(em);
3059                 em = NULL;
3060
3061                 /* we've found a hole, just zero and go on */
3062                 if (block_start == EXTENT_MAP_HOLE) {
3063                         char *userpage;
3064                         struct extent_state *cached = NULL;
3065
3066                         userpage = kmap_atomic(page);
3067                         memset(userpage + pg_offset, 0, iosize);
3068                         flush_dcache_page(page);
3069                         kunmap_atomic(userpage);
3070
3071                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3072                                             &cached, GFP_NOFS);
3073                         unlock_extent_cached(tree, cur, cur + iosize - 1,
3074                                              &cached, GFP_NOFS);
3075                         cur = cur + iosize;
3076                         pg_offset += iosize;
3077                         continue;
3078                 }
3079                 /* the get_extent function already copied into the page */
3080                 if (test_range_bit(tree, cur, cur_end,
3081                                    EXTENT_UPTODATE, 1, NULL)) {
3082                         check_page_uptodate(tree, page);
3083                         if (!parent_locked)
3084                                 unlock_extent(tree, cur, cur + iosize - 1);
3085                         cur = cur + iosize;
3086                         pg_offset += iosize;
3087                         continue;
3088                 }
3089                 /* we have an inline extent but it didn't get marked up
3090                  * to date.  Error out
3091                  */
3092                 if (block_start == EXTENT_MAP_INLINE) {
3093                         SetPageError(page);
3094                         if (!parent_locked)
3095                                 unlock_extent(tree, cur, cur + iosize - 1);
3096                         cur = cur + iosize;
3097                         pg_offset += iosize;
3098                         continue;
3099                 }
3100
3101                 pnr -= page->index;
3102                 ret = submit_extent_page(rw, tree, NULL, page,
3103                                          sector, disk_io_size, pg_offset,
3104                                          bdev, bio, pnr,
3105                                          end_bio_extent_readpage, mirror_num,
3106                                          *bio_flags,
3107                                          this_bio_flag,
3108                                          force_bio_submit);
3109                 if (!ret) {
3110                         nr++;
3111                         *bio_flags = this_bio_flag;
3112                 } else {
3113                         SetPageError(page);
3114                         if (!parent_locked)
3115                                 unlock_extent(tree, cur, cur + iosize - 1);
3116                 }
3117                 cur = cur + iosize;
3118                 pg_offset += iosize;
3119         }
3120 out:
3121         if (!nr) {
3122                 if (!PageError(page))
3123                         SetPageUptodate(page);
3124                 unlock_page(page);
3125         }
3126         return 0;
3127 }
3128
3129 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3130                                              struct page *pages[], int nr_pages,
3131                                              u64 start, u64 end,
3132                                              get_extent_t *get_extent,
3133                                              struct extent_map **em_cached,
3134                                              struct bio **bio, int mirror_num,
3135                                              unsigned long *bio_flags, int rw)
3136 {
3137         struct inode *inode;
3138         struct btrfs_ordered_extent *ordered;
3139         int index;
3140         u64 prev_em_start = (u64)-1;
3141
3142         inode = pages[0]->mapping->host;
3143         while (1) {
3144                 lock_extent(tree, start, end);
3145                 ordered = btrfs_lookup_ordered_range(inode, start,
3146                                                      end - start + 1);
3147                 if (!ordered)
3148                         break;
3149                 unlock_extent(tree, start, end);
3150                 btrfs_start_ordered_extent(inode, ordered, 1);
3151                 btrfs_put_ordered_extent(ordered);
3152         }
3153
3154         for (index = 0; index < nr_pages; index++) {
3155                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3156                               mirror_num, bio_flags, rw, &prev_em_start);
3157                 page_cache_release(pages[index]);
3158         }
3159 }
3160
3161 static void __extent_readpages(struct extent_io_tree *tree,
3162                                struct page *pages[],
3163                                int nr_pages, get_extent_t *get_extent,
3164                                struct extent_map **em_cached,
3165                                struct bio **bio, int mirror_num,
3166                                unsigned long *bio_flags, int rw)
3167 {
3168         u64 start = 0;
3169         u64 end = 0;
3170         u64 page_start;
3171         int index;
3172         int first_index = 0;
3173
3174         for (index = 0; index < nr_pages; index++) {
3175                 page_start = page_offset(pages[index]);
3176                 if (!end) {
3177                         start = page_start;
3178                         end = start + PAGE_CACHE_SIZE - 1;
3179                         first_index = index;
3180                 } else if (end + 1 == page_start) {
3181                         end += PAGE_CACHE_SIZE;
3182                 } else {
3183                         __do_contiguous_readpages(tree, &pages[first_index],
3184                                                   index - first_index, start,
3185                                                   end, get_extent, em_cached,
3186                                                   bio, mirror_num, bio_flags,
3187                                                   rw);
3188                         start = page_start;
3189                         end = start + PAGE_CACHE_SIZE - 1;
3190                         first_index = index;
3191                 }
3192         }
3193
3194         if (end)
3195                 __do_contiguous_readpages(tree, &pages[first_index],
3196                                           index - first_index, start,
3197                                           end, get_extent, em_cached, bio,
3198                                           mirror_num, bio_flags, rw);
3199 }
3200
3201 static int __extent_read_full_page(struct extent_io_tree *tree,
3202                                    struct page *page,
3203                                    get_extent_t *get_extent,
3204                                    struct bio **bio, int mirror_num,
3205                                    unsigned long *bio_flags, int rw)
3206 {
3207         struct inode *inode = page->mapping->host;
3208         struct btrfs_ordered_extent *ordered;
3209         u64 start = page_offset(page);
3210         u64 end = start + PAGE_CACHE_SIZE - 1;
3211         int ret;
3212
3213         while (1) {
3214                 lock_extent(tree, start, end);
3215                 ordered = btrfs_lookup_ordered_extent(inode, start);
3216                 if (!ordered)
3217                         break;
3218                 unlock_extent(tree, start, end);
3219                 btrfs_start_ordered_extent(inode, ordered, 1);
3220                 btrfs_put_ordered_extent(ordered);
3221         }
3222
3223         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3224                             bio_flags, rw, NULL);
3225         return ret;
3226 }
3227
3228 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3229                             get_extent_t *get_extent, int mirror_num)
3230 {
3231         struct bio *bio = NULL;
3232         unsigned long bio_flags = 0;
3233         int ret;
3234
3235         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3236                                       &bio_flags, READ);
3237         if (bio)
3238                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3239         return ret;
3240 }
3241
3242 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3243                                  get_extent_t *get_extent, int mirror_num)
3244 {
3245         struct bio *bio = NULL;
3246         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3247         int ret;
3248
3249         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3250                             &bio_flags, READ, NULL);
3251         if (bio)
3252                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3253         return ret;
3254 }
3255
3256 static noinline void update_nr_written(struct page *page,
3257                                       struct writeback_control *wbc,
3258                                       unsigned long nr_written)
3259 {
3260         wbc->nr_to_write -= nr_written;
3261         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3262             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3263                 page->mapping->writeback_index = page->index + nr_written;
3264 }
3265
3266 /*
3267  * helper for __extent_writepage, doing all of the delayed allocation setup.
3268  *
3269  * This returns 1 if our fill_delalloc function did all the work required
3270  * to write the page (copy into inline extent).  In this case the IO has
3271  * been started and the page is already unlocked.
3272  *
3273  * This returns 0 if all went well (page still locked)
3274  * This returns < 0 if there were errors (page still locked)
3275  */
3276 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3277                               struct page *page, struct writeback_control *wbc,
3278                               struct extent_page_data *epd,
3279                               u64 delalloc_start,
3280                               unsigned long *nr_written)
3281 {
3282         struct extent_io_tree *tree = epd->tree;
3283         u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3284         u64 nr_delalloc;
3285         u64 delalloc_to_write = 0;
3286         u64 delalloc_end = 0;
3287         int ret;
3288         int page_started = 0;
3289
3290         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3291                 return 0;
3292
3293         while (delalloc_end < page_end) {
3294                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3295                                                page,
3296                                                &delalloc_start,
3297                                                &delalloc_end,
3298                                                BTRFS_MAX_EXTENT_SIZE);
3299                 if (nr_delalloc == 0) {
3300                         delalloc_start = delalloc_end + 1;
3301                         continue;
3302                 }
3303                 ret = tree->ops->fill_delalloc(inode, page,
3304                                                delalloc_start,
3305                                                delalloc_end,
3306                                                &page_started,
3307                                                nr_written);
3308                 /* File system has been set read-only */
3309                 if (ret) {
3310                         SetPageError(page);
3311                         /* fill_delalloc should be return < 0 for error
3312                          * but just in case, we use > 0 here meaning the
3313                          * IO is started, so we don't want to return > 0
3314                          * unless things are going well.
3315                          */
3316                         ret = ret < 0 ? ret : -EIO;
3317                         goto done;
3318                 }
3319                 /*
3320                  * delalloc_end is already one less than the total
3321                  * length, so we don't subtract one from
3322                  * PAGE_CACHE_SIZE
3323                  */
3324                 delalloc_to_write += (delalloc_end - delalloc_start +
3325                                       PAGE_CACHE_SIZE) >>
3326                                       PAGE_CACHE_SHIFT;
3327                 delalloc_start = delalloc_end + 1;
3328         }
3329         if (wbc->nr_to_write < delalloc_to_write) {
3330                 int thresh = 8192;
3331
3332                 if (delalloc_to_write < thresh * 2)
3333                         thresh = delalloc_to_write;
3334                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3335                                          thresh);
3336         }
3337
3338         /* did the fill delalloc function already unlock and start
3339          * the IO?
3340          */
3341         if (page_started) {
3342                 /*
3343                  * we've unlocked the page, so we can't update
3344                  * the mapping's writeback index, just update
3345                  * nr_to_write.
3346                  */
3347                 wbc->nr_to_write -= *nr_written;
3348                 return 1;
3349         }
3350
3351         ret = 0;
3352
3353 done:
3354         return ret;
3355 }
3356
3357 /*
3358  * helper for __extent_writepage.  This calls the writepage start hooks,
3359  * and does the loop to map the page into extents and bios.
3360  *
3361  * We return 1 if the IO is started and the page is unlocked,
3362  * 0 if all went well (page still locked)
3363  * < 0 if there were errors (page still locked)
3364  */
3365 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3366                                  struct page *page,
3367                                  struct writeback_control *wbc,
3368                                  struct extent_page_data *epd,
3369                                  loff_t i_size,
3370                                  unsigned long nr_written,
3371                                  int write_flags, int *nr_ret)
3372 {
3373         struct extent_io_tree *tree = epd->tree;
3374         u64 start = page_offset(page);
3375         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3376         u64 end;
3377         u64 cur = start;
3378         u64 extent_offset;
3379         u64 block_start;
3380         u64 iosize;
3381         sector_t sector;
3382         struct extent_state *cached_state = NULL;
3383         struct extent_map *em;
3384         struct block_device *bdev;
3385         size_t pg_offset = 0;
3386         size_t blocksize;
3387         int ret = 0;
3388         int nr = 0;
3389         bool compressed;
3390
3391         if (tree->ops && tree->ops->writepage_start_hook) {
3392                 ret = tree->ops->writepage_start_hook(page, start,
3393                                                       page_end);
3394                 if (ret) {
3395                         /* Fixup worker will requeue */
3396                         if (ret == -EBUSY)
3397                                 wbc->pages_skipped++;
3398                         else
3399                                 redirty_page_for_writepage(wbc, page);
3400
3401                         update_nr_written(page, wbc, nr_written);
3402                         unlock_page(page);
3403                         ret = 1;
3404                         goto done_unlocked;
3405                 }
3406         }
3407
3408         /*
3409          * we don't want to touch the inode after unlocking the page,
3410          * so we update the mapping writeback index now
3411          */
3412         update_nr_written(page, wbc, nr_written + 1);
3413
3414         end = page_end;
3415         if (i_size <= start) {
3416                 if (tree->ops && tree->ops->writepage_end_io_hook)
3417                         tree->ops->writepage_end_io_hook(page, start,
3418                                                          page_end, NULL, 1);
3419                 goto done;
3420         }
3421
3422         blocksize = inode->i_sb->s_blocksize;
3423
3424         while (cur <= end) {
3425                 u64 em_end;
3426                 if (cur >= i_size) {
3427                         if (tree->ops && tree->ops->writepage_end_io_hook)
3428                                 tree->ops->writepage_end_io_hook(page, cur,
3429                                                          page_end, NULL, 1);
3430                         break;
3431                 }
3432                 em = epd->get_extent(inode, page, pg_offset, cur,
3433                                      end - cur + 1, 1);
3434                 if (IS_ERR_OR_NULL(em)) {
3435                         SetPageError(page);
3436                         ret = PTR_ERR_OR_ZERO(em);
3437                         break;
3438                 }
3439
3440                 extent_offset = cur - em->start;
3441                 em_end = extent_map_end(em);
3442                 BUG_ON(em_end <= cur);
3443                 BUG_ON(end < cur);
3444                 iosize = min(em_end - cur, end - cur + 1);
3445                 iosize = ALIGN(iosize, blocksize);
3446                 sector = (em->block_start + extent_offset) >> 9;
3447                 bdev = em->bdev;
3448                 block_start = em->block_start;
3449                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3450                 free_extent_map(em);
3451                 em = NULL;
3452
3453                 /*
3454                  * compressed and inline extents are written through other
3455                  * paths in the FS
3456                  */
3457                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3458                     block_start == EXTENT_MAP_INLINE) {
3459                         /*
3460                          * end_io notification does not happen here for
3461                          * compressed extents
3462                          */
3463                         if (!compressed && tree->ops &&
3464                             tree->ops->writepage_end_io_hook)
3465                                 tree->ops->writepage_end_io_hook(page, cur,
3466                                                          cur + iosize - 1,
3467                                                          NULL, 1);
3468                         else if (compressed) {
3469                                 /* we don't want to end_page_writeback on
3470                                  * a compressed extent.  this happens
3471                                  * elsewhere
3472                                  */
3473                                 nr++;
3474                         }
3475
3476                         cur += iosize;
3477                         pg_offset += iosize;
3478                         continue;
3479                 }
3480
3481                 if (tree->ops && tree->ops->writepage_io_hook) {
3482                         ret = tree->ops->writepage_io_hook(page, cur,
3483                                                 cur + iosize - 1);
3484                 } else {
3485                         ret = 0;
3486                 }
3487                 if (ret) {
3488                         SetPageError(page);
3489                 } else {
3490                         unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3491
3492                         set_range_writeback(tree, cur, cur + iosize - 1);
3493                         if (!PageWriteback(page)) {
3494                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3495                                            "page %lu not writeback, cur %llu end %llu",
3496                                        page->index, cur, end);
3497                         }
3498
3499                         ret = submit_extent_page(write_flags, tree, wbc, page,
3500                                                  sector, iosize, pg_offset,
3501                                                  bdev, &epd->bio, max_nr,
3502                                                  end_bio_extent_writepage,
3503                                                  0, 0, 0, false);
3504                         if (ret)
3505                                 SetPageError(page);
3506                 }
3507                 cur = cur + iosize;
3508                 pg_offset += iosize;
3509                 nr++;
3510         }
3511 done:
3512         *nr_ret = nr;
3513
3514 done_unlocked:
3515
3516         /* drop our reference on any cached states */
3517         free_extent_state(cached_state);
3518         return ret;
3519 }
3520
3521 /*
3522  * the writepage semantics are similar to regular writepage.  extent
3523  * records are inserted to lock ranges in the tree, and as dirty areas
3524  * are found, they are marked writeback.  Then the lock bits are removed
3525  * and the end_io handler clears the writeback ranges
3526  */
3527 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3528                               void *data)
3529 {
3530         struct inode *inode = page->mapping->host;
3531         struct extent_page_data *epd = data;
3532         u64 start = page_offset(page);
3533         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3534         int ret;
3535         int nr = 0;
3536         size_t pg_offset = 0;
3537         loff_t i_size = i_size_read(inode);
3538         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3539         int write_flags;
3540         unsigned long nr_written = 0;
3541
3542         if (wbc->sync_mode == WB_SYNC_ALL)
3543                 write_flags = WRITE_SYNC;
3544         else
3545                 write_flags = WRITE;
3546
3547         trace___extent_writepage(page, inode, wbc);
3548
3549         WARN_ON(!PageLocked(page));
3550
3551         ClearPageError(page);
3552
3553         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3554         if (page->index > end_index ||
3555            (page->index == end_index && !pg_offset)) {
3556                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3557                 unlock_page(page);
3558                 return 0;
3559         }
3560
3561         if (page->index == end_index) {
3562                 char *userpage;
3563
3564                 userpage = kmap_atomic(page);
3565                 memset(userpage + pg_offset, 0,
3566                        PAGE_CACHE_SIZE - pg_offset);
3567                 kunmap_atomic(userpage);
3568                 flush_dcache_page(page);
3569         }
3570
3571         pg_offset = 0;
3572
3573         set_page_extent_mapped(page);
3574
3575         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3576         if (ret == 1)
3577                 goto done_unlocked;
3578         if (ret)
3579                 goto done;
3580
3581         ret = __extent_writepage_io(inode, page, wbc, epd,
3582                                     i_size, nr_written, write_flags, &nr);
3583         if (ret == 1)
3584                 goto done_unlocked;
3585
3586 done:
3587         if (nr == 0) {
3588                 /* make sure the mapping tag for page dirty gets cleared */
3589                 set_page_writeback(page);
3590                 end_page_writeback(page);
3591         }
3592         if (PageError(page)) {
3593                 ret = ret < 0 ? ret : -EIO;
3594                 end_extent_writepage(page, ret, start, page_end);
3595         }
3596         unlock_page(page);
3597         return ret;
3598
3599 done_unlocked:
3600         return 0;
3601 }
3602
3603 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3604 {
3605         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3606                        TASK_UNINTERRUPTIBLE);
3607 }
3608
3609 static noinline_for_stack int
3610 lock_extent_buffer_for_io(struct extent_buffer *eb,
3611                           struct btrfs_fs_info *fs_info,
3612                           struct extent_page_data *epd)
3613 {
3614         unsigned long i, num_pages;
3615         int flush = 0;
3616         int ret = 0;
3617
3618         if (!btrfs_try_tree_write_lock(eb)) {
3619                 flush = 1;
3620                 flush_write_bio(epd);
3621                 btrfs_tree_lock(eb);
3622         }
3623
3624         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3625                 btrfs_tree_unlock(eb);
3626                 if (!epd->sync_io)
3627                         return 0;
3628                 if (!flush) {
3629                         flush_write_bio(epd);
3630                         flush = 1;
3631                 }
3632                 while (1) {
3633                         wait_on_extent_buffer_writeback(eb);
3634                         btrfs_tree_lock(eb);
3635                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3636                                 break;
3637                         btrfs_tree_unlock(eb);
3638                 }
3639         }
3640
3641         /*
3642          * We need to do this to prevent races in people who check if the eb is
3643          * under IO since we can end up having no IO bits set for a short period
3644          * of time.
3645          */
3646         spin_lock(&eb->refs_lock);
3647         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3648                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3649                 spin_unlock(&eb->refs_lock);
3650                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3651                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3652                                      -eb->len,
3653                                      fs_info->dirty_metadata_batch);
3654                 ret = 1;
3655         } else {
3656                 spin_unlock(&eb->refs_lock);
3657         }
3658
3659         btrfs_tree_unlock(eb);
3660
3661         if (!ret)
3662                 return ret;
3663
3664         num_pages = num_extent_pages(eb->start, eb->len);
3665         for (i = 0; i < num_pages; i++) {
3666                 struct page *p = eb->pages[i];
3667
3668                 if (!trylock_page(p)) {
3669                         if (!flush) {
3670                                 flush_write_bio(epd);
3671                                 flush = 1;
3672                         }
3673                         lock_page(p);
3674                 }
3675         }
3676
3677         return ret;
3678 }
3679
3680 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3681 {
3682         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3683         smp_mb__after_atomic();
3684         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3685 }
3686
3687 static void set_btree_ioerr(struct page *page)
3688 {
3689         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3690         struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3691
3692         SetPageError(page);
3693         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3694                 return;
3695
3696         /*
3697          * If writeback for a btree extent that doesn't belong to a log tree
3698          * failed, increment the counter transaction->eb_write_errors.
3699          * We do this because while the transaction is running and before it's
3700          * committing (when we call filemap_fdata[write|wait]_range against
3701          * the btree inode), we might have
3702          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3703          * returns an error or an error happens during writeback, when we're
3704          * committing the transaction we wouldn't know about it, since the pages
3705          * can be no longer dirty nor marked anymore for writeback (if a
3706          * subsequent modification to the extent buffer didn't happen before the
3707          * transaction commit), which makes filemap_fdata[write|wait]_range not
3708          * able to find the pages tagged with SetPageError at transaction
3709          * commit time. So if this happens we must abort the transaction,
3710          * otherwise we commit a super block with btree roots that point to
3711          * btree nodes/leafs whose content on disk is invalid - either garbage
3712          * or the content of some node/leaf from a past generation that got
3713          * cowed or deleted and is no longer valid.
3714          *
3715          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3716          * not be enough - we need to distinguish between log tree extents vs
3717          * non-log tree extents, and the next filemap_fdatawait_range() call
3718          * will catch and clear such errors in the mapping - and that call might
3719          * be from a log sync and not from a transaction commit. Also, checking
3720          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3721          * not done and would not be reliable - the eb might have been released
3722          * from memory and reading it back again means that flag would not be
3723          * set (since it's a runtime flag, not persisted on disk).
3724          *
3725          * Using the flags below in the btree inode also makes us achieve the
3726          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3727          * writeback for all dirty pages and before filemap_fdatawait_range()
3728          * is called, the writeback for all dirty pages had already finished
3729          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3730          * filemap_fdatawait_range() would return success, as it could not know
3731          * that writeback errors happened (the pages were no longer tagged for
3732          * writeback).
3733          */
3734         switch (eb->log_index) {
3735         case -1:
3736                 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3737                 break;
3738         case 0:
3739                 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3740                 break;
3741         case 1:
3742                 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3743                 break;
3744         default:
3745                 BUG(); /* unexpected, logic error */
3746         }
3747 }
3748
3749 static void end_bio_extent_buffer_writepage(struct bio *bio)
3750 {
3751         struct bio_vec *bvec;
3752         struct extent_buffer *eb;
3753         int i, done;
3754
3755         bio_for_each_segment_all(bvec, bio, i) {
3756                 struct page *page = bvec->bv_page;
3757
3758                 eb = (struct extent_buffer *)page->private;
3759                 BUG_ON(!eb);
3760                 done = atomic_dec_and_test(&eb->io_pages);
3761
3762                 if (bio->bi_error ||
3763                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3764                         ClearPageUptodate(page);
3765                         set_btree_ioerr(page);
3766                 }
3767
3768                 end_page_writeback(page);
3769
3770                 if (!done)
3771                         continue;
3772
3773                 end_extent_buffer_writeback(eb);
3774         }
3775
3776         bio_put(bio);
3777 }
3778
3779 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3780                         struct btrfs_fs_info *fs_info,
3781                         struct writeback_control *wbc,
3782                         struct extent_page_data *epd)
3783 {
3784         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3785         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3786         u64 offset = eb->start;
3787         unsigned long i, num_pages;
3788         unsigned long bio_flags = 0;
3789         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3790         int ret = 0;
3791
3792         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3793         num_pages = num_extent_pages(eb->start, eb->len);
3794         atomic_set(&eb->io_pages, num_pages);
3795         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3796                 bio_flags = EXTENT_BIO_TREE_LOG;
3797
3798         for (i = 0; i < num_pages; i++) {
3799                 struct page *p = eb->pages[i];
3800
3801                 clear_page_dirty_for_io(p);
3802                 set_page_writeback(p);
3803                 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3804                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3805                                          -1, end_bio_extent_buffer_writepage,
3806                                          0, epd->bio_flags, bio_flags, false);
3807                 epd->bio_flags = bio_flags;
3808                 if (ret) {
3809                         set_btree_ioerr(p);
3810                         end_page_writeback(p);
3811                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3812                                 end_extent_buffer_writeback(eb);
3813                         ret = -EIO;
3814                         break;
3815                 }
3816                 offset += PAGE_CACHE_SIZE;
3817                 update_nr_written(p, wbc, 1);
3818                 unlock_page(p);
3819         }
3820
3821         if (unlikely(ret)) {
3822                 for (; i < num_pages; i++) {
3823                         struct page *p = eb->pages[i];
3824                         clear_page_dirty_for_io(p);
3825                         unlock_page(p);
3826                 }
3827         }
3828
3829         return ret;
3830 }
3831
3832 int btree_write_cache_pages(struct address_space *mapping,
3833                                    struct writeback_control *wbc)
3834 {
3835         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3836         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3837         struct extent_buffer *eb, *prev_eb = NULL;
3838         struct extent_page_data epd = {
3839                 .bio = NULL,
3840                 .tree = tree,
3841                 .extent_locked = 0,
3842                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3843                 .bio_flags = 0,
3844         };
3845         int ret = 0;
3846         int done = 0;
3847         int nr_to_write_done = 0;
3848         struct pagevec pvec;
3849         int nr_pages;
3850         pgoff_t index;
3851         pgoff_t end;            /* Inclusive */
3852         int scanned = 0;
3853         int tag;
3854
3855         pagevec_init(&pvec, 0);
3856         if (wbc->range_cyclic) {
3857                 index = mapping->writeback_index; /* Start from prev offset */
3858                 end = -1;
3859         } else {
3860                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3861                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3862                 scanned = 1;
3863         }
3864         if (wbc->sync_mode == WB_SYNC_ALL)
3865                 tag = PAGECACHE_TAG_TOWRITE;
3866         else
3867                 tag = PAGECACHE_TAG_DIRTY;
3868 retry:
3869         if (wbc->sync_mode == WB_SYNC_ALL)
3870                 tag_pages_for_writeback(mapping, index, end);
3871         while (!done && !nr_to_write_done && (index <= end) &&
3872                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3873                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3874                 unsigned i;
3875
3876                 scanned = 1;
3877                 for (i = 0; i < nr_pages; i++) {
3878                         struct page *page = pvec.pages[i];
3879
3880                         if (!PagePrivate(page))
3881                                 continue;
3882
3883                         if (!wbc->range_cyclic && page->index > end) {
3884                                 done = 1;
3885                                 break;
3886                         }
3887
3888                         spin_lock(&mapping->private_lock);
3889                         if (!PagePrivate(page)) {
3890                                 spin_unlock(&mapping->private_lock);
3891                                 continue;
3892                         }
3893
3894                         eb = (struct extent_buffer *)page->private;
3895
3896                         /*
3897                          * Shouldn't happen and normally this would be a BUG_ON
3898                          * but no sense in crashing the users box for something
3899                          * we can survive anyway.
3900                          */
3901                         if (WARN_ON(!eb)) {
3902                                 spin_unlock(&mapping->private_lock);
3903                                 continue;
3904                         }
3905
3906                         if (eb == prev_eb) {
3907                                 spin_unlock(&mapping->private_lock);
3908                                 continue;
3909                         }
3910
3911                         ret = atomic_inc_not_zero(&eb->refs);
3912                         spin_unlock(&mapping->private_lock);
3913                         if (!ret)
3914                                 continue;
3915
3916                         prev_eb = eb;
3917                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3918                         if (!ret) {
3919                                 free_extent_buffer(eb);
3920                                 continue;
3921                         }
3922
3923                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3924                         if (ret) {
3925                                 done = 1;
3926                                 free_extent_buffer(eb);
3927                                 break;
3928                         }
3929                         free_extent_buffer(eb);
3930
3931                         /*
3932                          * the filesystem may choose to bump up nr_to_write.
3933                          * We have to make sure to honor the new nr_to_write
3934                          * at any time
3935                          */
3936                         nr_to_write_done = wbc->nr_to_write <= 0;
3937                 }
3938                 pagevec_release(&pvec);
3939                 cond_resched();
3940         }
3941         if (!scanned && !done) {
3942                 /*
3943                  * We hit the last page and there is more work to be done: wrap
3944                  * back to the start of the file
3945                  */
3946                 scanned = 1;
3947                 index = 0;
3948                 goto retry;
3949         }
3950         flush_write_bio(&epd);
3951         return ret;
3952 }
3953
3954 /**
3955  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3956  * @mapping: address space structure to write
3957  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3958  * @writepage: function called for each page
3959  * @data: data passed to writepage function
3960  *
3961  * If a page is already under I/O, write_cache_pages() skips it, even
3962  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3963  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3964  * and msync() need to guarantee that all the data which was dirty at the time
3965  * the call was made get new I/O started against them.  If wbc->sync_mode is
3966  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3967  * existing IO to complete.
3968  */
3969 static int extent_write_cache_pages(struct extent_io_tree *tree,
3970                              struct address_space *mapping,
3971                              struct writeback_control *wbc,
3972                              writepage_t writepage, void *data,
3973                              void (*flush_fn)(void *))
3974 {
3975         struct inode *inode = mapping->host;
3976         int ret = 0;
3977         int done = 0;
3978         int err = 0;
3979         int nr_to_write_done = 0;
3980         struct pagevec pvec;
3981         int nr_pages;
3982         pgoff_t index;
3983         pgoff_t end;            /* Inclusive */
3984         int scanned = 0;
3985         int tag;
3986
3987         /*
3988          * We have to hold onto the inode so that ordered extents can do their
3989          * work when the IO finishes.  The alternative to this is failing to add
3990          * an ordered extent if the igrab() fails there and that is a huge pain
3991          * to deal with, so instead just hold onto the inode throughout the
3992          * writepages operation.  If it fails here we are freeing up the inode
3993          * anyway and we'd rather not waste our time writing out stuff that is
3994          * going to be truncated anyway.
3995          */
3996         if (!igrab(inode))
3997                 return 0;
3998
3999         pagevec_init(&pvec, 0);
4000         if (wbc->range_cyclic) {
4001                 index = mapping->writeback_index; /* Start from prev offset */
4002                 end = -1;
4003         } else {
4004                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4005                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4006                 scanned = 1;
4007         }
4008         if (wbc->sync_mode == WB_SYNC_ALL)
4009                 tag = PAGECACHE_TAG_TOWRITE;
4010         else
4011                 tag = PAGECACHE_TAG_DIRTY;
4012 retry:
4013         if (wbc->sync_mode == WB_SYNC_ALL)
4014                 tag_pages_for_writeback(mapping, index, end);
4015         while (!done && !nr_to_write_done && (index <= end) &&
4016                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4017                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4018                 unsigned i;
4019
4020                 scanned = 1;
4021                 for (i = 0; i < nr_pages; i++) {
4022                         struct page *page = pvec.pages[i];
4023
4024                         /*
4025                          * At this point we hold neither mapping->tree_lock nor
4026                          * lock on the page itself: the page may be truncated or
4027                          * invalidated (changing page->mapping to NULL), or even
4028                          * swizzled back from swapper_space to tmpfs file
4029                          * mapping
4030                          */
4031                         if (!trylock_page(page)) {
4032                                 flush_fn(data);
4033                                 lock_page(page);
4034                         }
4035
4036                         if (unlikely(page->mapping != mapping)) {
4037                                 unlock_page(page);
4038                                 continue;
4039                         }
4040
4041                         if (!wbc->range_cyclic && page->index > end) {
4042                                 done = 1;
4043                                 unlock_page(page);
4044                                 continue;
4045                         }
4046
4047                         if (wbc->sync_mode != WB_SYNC_NONE) {
4048                                 if (PageWriteback(page))
4049                                         flush_fn(data);
4050                                 wait_on_page_writeback(page);
4051                         }
4052
4053                         if (PageWriteback(page) ||
4054                             !clear_page_dirty_for_io(page)) {
4055                                 unlock_page(page);
4056                                 continue;
4057                         }
4058
4059                         ret = (*writepage)(page, wbc, data);
4060
4061                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4062                                 unlock_page(page);
4063                                 ret = 0;
4064                         }
4065                         if (!err && ret < 0)
4066                                 err = ret;
4067
4068                         /*
4069                          * the filesystem may choose to bump up nr_to_write.
4070                          * We have to make sure to honor the new nr_to_write
4071                          * at any time
4072                          */
4073                         nr_to_write_done = wbc->nr_to_write <= 0;
4074                 }
4075                 pagevec_release(&pvec);
4076                 cond_resched();
4077         }
4078         if (!scanned && !done && !err) {
4079                 /*
4080                  * We hit the last page and there is more work to be done: wrap
4081                  * back to the start of the file
4082                  */
4083                 scanned = 1;
4084                 index = 0;
4085                 goto retry;
4086         }
4087         btrfs_add_delayed_iput(inode);
4088         return err;
4089 }
4090
4091 static void flush_epd_write_bio(struct extent_page_data *epd)
4092 {
4093         if (epd->bio) {
4094                 int rw = WRITE;
4095                 int ret;
4096
4097                 if (epd->sync_io)
4098                         rw = WRITE_SYNC;
4099
4100                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4101                 BUG_ON(ret < 0); /* -ENOMEM */
4102                 epd->bio = NULL;
4103         }
4104 }
4105
4106 static noinline void flush_write_bio(void *data)
4107 {
4108         struct extent_page_data *epd = data;
4109         flush_epd_write_bio(epd);
4110 }
4111
4112 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4113                           get_extent_t *get_extent,
4114                           struct writeback_control *wbc)
4115 {
4116         int ret;
4117         struct extent_page_data epd = {
4118                 .bio = NULL,
4119                 .tree = tree,
4120                 .get_extent = get_extent,
4121                 .extent_locked = 0,
4122                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4123                 .bio_flags = 0,
4124         };
4125
4126         ret = __extent_writepage(page, wbc, &epd);
4127
4128         flush_epd_write_bio(&epd);
4129         return ret;
4130 }
4131
4132 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4133                               u64 start, u64 end, get_extent_t *get_extent,
4134                               int mode)
4135 {
4136         int ret = 0;
4137         struct address_space *mapping = inode->i_mapping;
4138         struct page *page;
4139         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4140                 PAGE_CACHE_SHIFT;
4141
4142         struct extent_page_data epd = {
4143                 .bio = NULL,
4144                 .tree = tree,
4145                 .get_extent = get_extent,
4146                 .extent_locked = 1,
4147                 .sync_io = mode == WB_SYNC_ALL,
4148                 .bio_flags = 0,
4149         };
4150         struct writeback_control wbc_writepages = {
4151                 .sync_mode      = mode,
4152                 .nr_to_write    = nr_pages * 2,
4153                 .range_start    = start,
4154                 .range_end      = end + 1,
4155         };
4156
4157         while (start <= end) {
4158                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4159                 if (clear_page_dirty_for_io(page))
4160                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4161                 else {
4162                         if (tree->ops && tree->ops->writepage_end_io_hook)
4163                                 tree->ops->writepage_end_io_hook(page, start,
4164                                                  start + PAGE_CACHE_SIZE - 1,
4165                                                  NULL, 1);
4166                         unlock_page(page);
4167                 }
4168                 page_cache_release(page);
4169                 start += PAGE_CACHE_SIZE;
4170         }
4171
4172         flush_epd_write_bio(&epd);
4173         return ret;
4174 }
4175
4176 int extent_writepages(struct extent_io_tree *tree,
4177                       struct address_space *mapping,
4178                       get_extent_t *get_extent,
4179                       struct writeback_control *wbc)
4180 {
4181         int ret = 0;
4182         struct extent_page_data epd = {
4183                 .bio = NULL,
4184                 .tree = tree,
4185                 .get_extent = get_extent,
4186                 .extent_locked = 0,
4187                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4188                 .bio_flags = 0,
4189         };
4190
4191         ret = extent_write_cache_pages(tree, mapping, wbc,
4192                                        __extent_writepage, &epd,
4193                                        flush_write_bio);
4194         flush_epd_write_bio(&epd);
4195         return ret;
4196 }
4197
4198 int extent_readpages(struct extent_io_tree *tree,
4199                      struct address_space *mapping,
4200                      struct list_head *pages, unsigned nr_pages,
4201                      get_extent_t get_extent)
4202 {
4203         struct bio *bio = NULL;
4204         unsigned page_idx;
4205         unsigned long bio_flags = 0;
4206         struct page *pagepool[16];
4207         struct page *page;
4208         struct extent_map *em_cached = NULL;
4209         int nr = 0;
4210
4211         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4212                 page = list_entry(pages->prev, struct page, lru);
4213
4214                 prefetchw(&page->flags);
4215                 list_del(&page->lru);
4216                 if (add_to_page_cache_lru(page, mapping,
4217                                         page->index, GFP_NOFS)) {
4218                         page_cache_release(page);
4219                         continue;
4220                 }
4221
4222                 pagepool[nr++] = page;
4223                 if (nr < ARRAY_SIZE(pagepool))
4224                         continue;
4225                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4226                                    &bio, 0, &bio_flags, READ);
4227                 nr = 0;
4228         }
4229         if (nr)
4230                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4231                                    &bio, 0, &bio_flags, READ);
4232
4233         if (em_cached)
4234                 free_extent_map(em_cached);
4235
4236         BUG_ON(!list_empty(pages));
4237         if (bio)
4238                 return submit_one_bio(READ, bio, 0, bio_flags);
4239         return 0;
4240 }
4241
4242 /*
4243  * basic invalidatepage code, this waits on any locked or writeback
4244  * ranges corresponding to the page, and then deletes any extent state
4245  * records from the tree
4246  */
4247 int extent_invalidatepage(struct extent_io_tree *tree,
4248                           struct page *page, unsigned long offset)
4249 {
4250         struct extent_state *cached_state = NULL;
4251         u64 start = page_offset(page);
4252         u64 end = start + PAGE_CACHE_SIZE - 1;
4253         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4254
4255         start += ALIGN(offset, blocksize);
4256         if (start > end)
4257                 return 0;
4258
4259         lock_extent_bits(tree, start, end, 0, &cached_state);
4260         wait_on_page_writeback(page);
4261         clear_extent_bit(tree, start, end,
4262                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4263                          EXTENT_DO_ACCOUNTING,
4264                          1, 1, &cached_state, GFP_NOFS);
4265         return 0;
4266 }
4267
4268 /*
4269  * a helper for releasepage, this tests for areas of the page that
4270  * are locked or under IO and drops the related state bits if it is safe
4271  * to drop the page.
4272  */
4273 static int try_release_extent_state(struct extent_map_tree *map,
4274                                     struct extent_io_tree *tree,
4275                                     struct page *page, gfp_t mask)
4276 {
4277         u64 start = page_offset(page);
4278         u64 end = start + PAGE_CACHE_SIZE - 1;
4279         int ret = 1;
4280
4281         if (test_range_bit(tree, start, end,
4282                            EXTENT_IOBITS, 0, NULL))
4283                 ret = 0;
4284         else {
4285                 if ((mask & GFP_NOFS) == GFP_NOFS)
4286                         mask = GFP_NOFS;
4287                 /*
4288                  * at this point we can safely clear everything except the
4289                  * locked bit and the nodatasum bit
4290                  */
4291                 ret = clear_extent_bit(tree, start, end,
4292                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4293                                  0, 0, NULL, mask);
4294
4295                 /* if clear_extent_bit failed for enomem reasons,
4296                  * we can't allow the release to continue.
4297                  */
4298                 if (ret < 0)
4299                         ret = 0;
4300                 else
4301                         ret = 1;
4302         }
4303         return ret;
4304 }
4305
4306 /*
4307  * a helper for releasepage.  As long as there are no locked extents
4308  * in the range corresponding to the page, both state records and extent
4309  * map records are removed
4310  */
4311 int try_release_extent_mapping(struct extent_map_tree *map,
4312                                struct extent_io_tree *tree, struct page *page,
4313                                gfp_t mask)
4314 {
4315         struct extent_map *em;
4316         u64 start = page_offset(page);
4317         u64 end = start + PAGE_CACHE_SIZE - 1;
4318
4319         if ((mask & __GFP_WAIT) &&
4320             page->mapping->host->i_size > 16 * 1024 * 1024) {
4321                 u64 len;
4322                 while (start <= end) {
4323                         len = end - start + 1;
4324                         write_lock(&map->lock);
4325                         em = lookup_extent_mapping(map, start, len);
4326                         if (!em) {
4327                                 write_unlock(&map->lock);
4328                                 break;
4329                         }
4330                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4331                             em->start != start) {
4332                                 write_unlock(&map->lock);
4333                                 free_extent_map(em);
4334                                 break;
4335                         }
4336                         if (!test_range_bit(tree, em->start,
4337                                             extent_map_end(em) - 1,
4338                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4339                                             0, NULL)) {
4340                                 remove_extent_mapping(map, em);
4341                                 /* once for the rb tree */
4342                                 free_extent_map(em);
4343                         }
4344                         start = extent_map_end(em);
4345                         write_unlock(&map->lock);
4346
4347                         /* once for us */
4348                         free_extent_map(em);
4349                 }
4350         }
4351         return try_release_extent_state(map, tree, page, mask);
4352 }
4353
4354 /*
4355  * helper function for fiemap, which doesn't want to see any holes.
4356  * This maps until we find something past 'last'
4357  */
4358 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4359                                                 u64 offset,
4360                                                 u64 last,
4361                                                 get_extent_t *get_extent)
4362 {
4363         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4364         struct extent_map *em;
4365         u64 len;
4366
4367         if (offset >= last)
4368                 return NULL;
4369
4370         while (1) {
4371                 len = last - offset;
4372                 if (len == 0)
4373                         break;
4374                 len = ALIGN(len, sectorsize);
4375                 em = get_extent(inode, NULL, 0, offset, len, 0);
4376                 if (IS_ERR_OR_NULL(em))
4377                         return em;
4378
4379                 /* if this isn't a hole return it */
4380                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4381                     em->block_start != EXTENT_MAP_HOLE) {
4382                         return em;
4383                 }
4384
4385                 /* this is a hole, advance to the next extent */
4386                 offset = extent_map_end(em);
4387                 free_extent_map(em);
4388                 if (offset >= last)
4389                         break;
4390         }
4391         return NULL;
4392 }
4393
4394 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4395                 __u64 start, __u64 len, get_extent_t *get_extent)
4396 {
4397         int ret = 0;
4398         u64 off = start;
4399         u64 max = start + len;
4400         u32 flags = 0;
4401         u32 found_type;
4402         u64 last;
4403         u64 last_for_get_extent = 0;
4404         u64 disko = 0;
4405         u64 isize = i_size_read(inode);
4406         struct btrfs_key found_key;
4407         struct extent_map *em = NULL;
4408         struct extent_state *cached_state = NULL;
4409         struct btrfs_path *path;
4410         struct btrfs_root *root = BTRFS_I(inode)->root;
4411         int end = 0;
4412         u64 em_start = 0;
4413         u64 em_len = 0;
4414         u64 em_end = 0;
4415
4416         if (len == 0)
4417                 return -EINVAL;
4418
4419         path = btrfs_alloc_path();
4420         if (!path)
4421                 return -ENOMEM;
4422         path->leave_spinning = 1;
4423
4424         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4425         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4426
4427         /*
4428          * lookup the last file extent.  We're not using i_size here
4429          * because there might be preallocation past i_size
4430          */
4431         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4432                                        0);
4433         if (ret < 0) {
4434                 btrfs_free_path(path);
4435                 return ret;
4436         }
4437         WARN_ON(!ret);
4438         path->slots[0]--;
4439         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4440         found_type = found_key.type;
4441
4442         /* No extents, but there might be delalloc bits */
4443         if (found_key.objectid != btrfs_ino(inode) ||
4444             found_type != BTRFS_EXTENT_DATA_KEY) {
4445                 /* have to trust i_size as the end */
4446                 last = (u64)-1;
4447                 last_for_get_extent = isize;
4448         } else {
4449                 /*
4450                  * remember the start of the last extent.  There are a
4451                  * bunch of different factors that go into the length of the
4452                  * extent, so its much less complex to remember where it started
4453                  */
4454                 last = found_key.offset;
4455                 last_for_get_extent = last + 1;
4456         }
4457         btrfs_release_path(path);
4458
4459         /*
4460          * we might have some extents allocated but more delalloc past those
4461          * extents.  so, we trust isize unless the start of the last extent is
4462          * beyond isize
4463          */
4464         if (last < isize) {
4465                 last = (u64)-1;
4466                 last_for_get_extent = isize;
4467         }
4468
4469         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4470                          &cached_state);
4471
4472         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4473                                    get_extent);
4474         if (!em)
4475                 goto out;
4476         if (IS_ERR(em)) {
4477                 ret = PTR_ERR(em);
4478                 goto out;
4479         }
4480
4481         while (!end) {
4482                 u64 offset_in_extent = 0;
4483
4484                 /* break if the extent we found is outside the range */
4485                 if (em->start >= max || extent_map_end(em) < off)
4486                         break;
4487
4488                 /*
4489                  * get_extent may return an extent that starts before our
4490                  * requested range.  We have to make sure the ranges
4491                  * we return to fiemap always move forward and don't
4492                  * overlap, so adjust the offsets here
4493                  */
4494                 em_start = max(em->start, off);
4495
4496                 /*
4497                  * record the offset from the start of the extent
4498                  * for adjusting the disk offset below.  Only do this if the
4499                  * extent isn't compressed since our in ram offset may be past
4500                  * what we have actually allocated on disk.
4501                  */
4502                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4503                         offset_in_extent = em_start - em->start;
4504                 em_end = extent_map_end(em);
4505                 em_len = em_end - em_start;
4506                 disko = 0;
4507                 flags = 0;
4508
4509                 /*
4510                  * bump off for our next call to get_extent
4511                  */
4512                 off = extent_map_end(em);
4513                 if (off >= max)
4514                         end = 1;
4515
4516                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4517                         end = 1;
4518                         flags |= FIEMAP_EXTENT_LAST;
4519                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4520                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4521                                   FIEMAP_EXTENT_NOT_ALIGNED);
4522                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4523                         flags |= (FIEMAP_EXTENT_DELALLOC |
4524                                   FIEMAP_EXTENT_UNKNOWN);
4525                 } else if (fieinfo->fi_extents_max) {
4526                         u64 bytenr = em->block_start -
4527                                 (em->start - em->orig_start);
4528
4529                         disko = em->block_start + offset_in_extent;
4530
4531                         /*
4532                          * As btrfs supports shared space, this information
4533                          * can be exported to userspace tools via
4534                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4535                          * then we're just getting a count and we can skip the
4536                          * lookup stuff.
4537                          */
4538                         ret = btrfs_check_shared(NULL, root->fs_info,
4539                                                  root->objectid,
4540                                                  btrfs_ino(inode), bytenr);
4541                         if (ret < 0)
4542                                 goto out_free;
4543                         if (ret)
4544                                 flags |= FIEMAP_EXTENT_SHARED;
4545                         ret = 0;
4546                 }
4547                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4548                         flags |= FIEMAP_EXTENT_ENCODED;
4549                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4550                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4551
4552                 free_extent_map(em);
4553                 em = NULL;
4554                 if ((em_start >= last) || em_len == (u64)-1 ||
4555                    (last == (u64)-1 && isize <= em_end)) {
4556                         flags |= FIEMAP_EXTENT_LAST;
4557                         end = 1;
4558                 }
4559
4560                 /* now scan forward to see if this is really the last extent. */
4561                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4562                                            get_extent);
4563                 if (IS_ERR(em)) {
4564                         ret = PTR_ERR(em);
4565                         goto out;
4566                 }
4567                 if (!em) {
4568                         flags |= FIEMAP_EXTENT_LAST;
4569                         end = 1;
4570                 }
4571                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4572                                               em_len, flags);
4573                 if (ret) {
4574                         if (ret == 1)
4575                                 ret = 0;
4576                         goto out_free;
4577                 }
4578         }
4579 out_free:
4580         free_extent_map(em);
4581 out:
4582         btrfs_free_path(path);
4583         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4584                              &cached_state, GFP_NOFS);
4585         return ret;
4586 }
4587
4588 static void __free_extent_buffer(struct extent_buffer *eb)
4589 {
4590         btrfs_leak_debug_del(&eb->leak_list);
4591         kmem_cache_free(extent_buffer_cache, eb);
4592 }
4593
4594 int extent_buffer_under_io(struct extent_buffer *eb)
4595 {
4596         return (atomic_read(&eb->io_pages) ||
4597                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4598                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4599 }
4600
4601 /*
4602  * Helper for releasing extent buffer page.
4603  */
4604 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4605 {
4606         unsigned long index;
4607         struct page *page;
4608         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4609
4610         BUG_ON(extent_buffer_under_io(eb));
4611
4612         index = num_extent_pages(eb->start, eb->len);
4613         if (index == 0)
4614                 return;
4615
4616         do {
4617                 index--;
4618                 page = eb->pages[index];
4619                 if (!page)
4620                         continue;
4621                 if (mapped)
4622                         spin_lock(&page->mapping->private_lock);
4623                 /*
4624                  * We do this since we'll remove the pages after we've
4625                  * removed the eb from the radix tree, so we could race
4626                  * and have this page now attached to the new eb.  So
4627                  * only clear page_private if it's still connected to
4628                  * this eb.
4629                  */
4630                 if (PagePrivate(page) &&
4631                     page->private == (unsigned long)eb) {
4632                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4633                         BUG_ON(PageDirty(page));
4634                         BUG_ON(PageWriteback(page));
4635                         /*
4636                          * We need to make sure we haven't be attached
4637                          * to a new eb.
4638                          */
4639                         ClearPagePrivate(page);
4640                         set_page_private(page, 0);
4641                         /* One for the page private */
4642                         page_cache_release(page);
4643                 }
4644
4645                 if (mapped)
4646                         spin_unlock(&page->mapping->private_lock);
4647
4648                 /* One for when we alloced the page */
4649                 page_cache_release(page);
4650         } while (index != 0);
4651 }
4652
4653 /*
4654  * Helper for releasing the extent buffer.
4655  */
4656 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4657 {
4658         btrfs_release_extent_buffer_page(eb);
4659         __free_extent_buffer(eb);
4660 }
4661
4662 static struct extent_buffer *
4663 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4664                       unsigned long len)
4665 {
4666         struct extent_buffer *eb = NULL;
4667
4668         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4669         eb->start = start;
4670         eb->len = len;
4671         eb->fs_info = fs_info;
4672         eb->bflags = 0;
4673         rwlock_init(&eb->lock);
4674         atomic_set(&eb->write_locks, 0);
4675         atomic_set(&eb->read_locks, 0);
4676         atomic_set(&eb->blocking_readers, 0);
4677         atomic_set(&eb->blocking_writers, 0);
4678         atomic_set(&eb->spinning_readers, 0);
4679         atomic_set(&eb->spinning_writers, 0);
4680         eb->lock_nested = 0;
4681         init_waitqueue_head(&eb->write_lock_wq);
4682         init_waitqueue_head(&eb->read_lock_wq);
4683
4684         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4685
4686         spin_lock_init(&eb->refs_lock);
4687         atomic_set(&eb->refs, 1);
4688         atomic_set(&eb->io_pages, 0);
4689
4690         /*
4691          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4692          */
4693         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4694                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4695         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696
4697         return eb;
4698 }
4699
4700 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4701 {
4702         unsigned long i;
4703         struct page *p;
4704         struct extent_buffer *new;
4705         unsigned long num_pages = num_extent_pages(src->start, src->len);
4706
4707         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4708         if (new == NULL)
4709                 return NULL;
4710
4711         for (i = 0; i < num_pages; i++) {
4712                 p = alloc_page(GFP_NOFS);
4713                 if (!p) {
4714                         btrfs_release_extent_buffer(new);
4715                         return NULL;
4716                 }
4717                 attach_extent_buffer_page(new, p);
4718                 WARN_ON(PageDirty(p));
4719                 SetPageUptodate(p);
4720                 new->pages[i] = p;
4721         }
4722
4723         copy_extent_buffer(new, src, 0, 0, src->len);
4724         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4725         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4726
4727         return new;
4728 }
4729
4730 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4731                                                 u64 start)
4732 {
4733         struct extent_buffer *eb;
4734         unsigned long len;
4735         unsigned long num_pages;
4736         unsigned long i;
4737
4738         if (!fs_info) {
4739                 /*
4740                  * Called only from tests that don't always have a fs_info
4741                  * available, but we know that nodesize is 4096
4742                  */
4743                 len = 4096;
4744         } else {
4745                 len = fs_info->tree_root->nodesize;
4746         }
4747         num_pages = num_extent_pages(0, len);
4748
4749         eb = __alloc_extent_buffer(fs_info, start, len);
4750         if (!eb)
4751                 return NULL;
4752
4753         for (i = 0; i < num_pages; i++) {
4754                 eb->pages[i] = alloc_page(GFP_NOFS);
4755                 if (!eb->pages[i])
4756                         goto err;
4757         }
4758         set_extent_buffer_uptodate(eb);
4759         btrfs_set_header_nritems(eb, 0);
4760         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4761
4762         return eb;
4763 err:
4764         for (; i > 0; i--)
4765                 __free_page(eb->pages[i - 1]);
4766         __free_extent_buffer(eb);
4767         return NULL;
4768 }
4769
4770 static void check_buffer_tree_ref(struct extent_buffer *eb)
4771 {
4772         int refs;
4773         /* the ref bit is tricky.  We have to make sure it is set
4774          * if we have the buffer dirty.   Otherwise the
4775          * code to free a buffer can end up dropping a dirty
4776          * page
4777          *
4778          * Once the ref bit is set, it won't go away while the
4779          * buffer is dirty or in writeback, and it also won't
4780          * go away while we have the reference count on the
4781          * eb bumped.
4782          *
4783          * We can't just set the ref bit without bumping the
4784          * ref on the eb because free_extent_buffer might
4785          * see the ref bit and try to clear it.  If this happens
4786          * free_extent_buffer might end up dropping our original
4787          * ref by mistake and freeing the page before we are able
4788          * to add one more ref.
4789          *
4790          * So bump the ref count first, then set the bit.  If someone
4791          * beat us to it, drop the ref we added.
4792          */
4793         refs = atomic_read(&eb->refs);
4794         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4795                 return;
4796
4797         spin_lock(&eb->refs_lock);
4798         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4799                 atomic_inc(&eb->refs);
4800         spin_unlock(&eb->refs_lock);
4801 }
4802
4803 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4804                 struct page *accessed)
4805 {
4806         unsigned long num_pages, i;
4807
4808         check_buffer_tree_ref(eb);
4809
4810         num_pages = num_extent_pages(eb->start, eb->len);
4811         for (i = 0; i < num_pages; i++) {
4812                 struct page *p = eb->pages[i];
4813
4814                 if (p != accessed)
4815                         mark_page_accessed(p);
4816         }
4817 }
4818
4819 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4820                                          u64 start)
4821 {
4822         struct extent_buffer *eb;
4823
4824         rcu_read_lock();
4825         eb = radix_tree_lookup(&fs_info->buffer_radix,
4826                                start >> PAGE_CACHE_SHIFT);
4827         if (eb && atomic_inc_not_zero(&eb->refs)) {
4828                 rcu_read_unlock();
4829                 /*
4830                  * Lock our eb's refs_lock to avoid races with
4831                  * free_extent_buffer. When we get our eb it might be flagged
4832                  * with EXTENT_BUFFER_STALE and another task running
4833                  * free_extent_buffer might have seen that flag set,
4834                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4835                  * writeback flags not set) and it's still in the tree (flag
4836                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4837                  * of decrementing the extent buffer's reference count twice.
4838                  * So here we could race and increment the eb's reference count,
4839                  * clear its stale flag, mark it as dirty and drop our reference
4840                  * before the other task finishes executing free_extent_buffer,
4841                  * which would later result in an attempt to free an extent
4842                  * buffer that is dirty.
4843                  */
4844                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4845                         spin_lock(&eb->refs_lock);
4846                         spin_unlock(&eb->refs_lock);
4847                 }
4848                 mark_extent_buffer_accessed(eb, NULL);
4849                 return eb;
4850         }
4851         rcu_read_unlock();
4852
4853         return NULL;
4854 }
4855
4856 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4857 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4858                                                u64 start)
4859 {
4860         struct extent_buffer *eb, *exists = NULL;
4861         int ret;
4862
4863         eb = find_extent_buffer(fs_info, start);
4864         if (eb)
4865                 return eb;
4866         eb = alloc_dummy_extent_buffer(fs_info, start);
4867         if (!eb)
4868                 return NULL;
4869         eb->fs_info = fs_info;
4870 again:
4871         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4872         if (ret)
4873                 goto free_eb;
4874         spin_lock(&fs_info->buffer_lock);
4875         ret = radix_tree_insert(&fs_info->buffer_radix,
4876                                 start >> PAGE_CACHE_SHIFT, eb);
4877         spin_unlock(&fs_info->buffer_lock);
4878         radix_tree_preload_end();
4879         if (ret == -EEXIST) {
4880                 exists = find_extent_buffer(fs_info, start);
4881                 if (exists)
4882                         goto free_eb;
4883                 else
4884                         goto again;
4885         }
4886         check_buffer_tree_ref(eb);
4887         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4888
4889         /*
4890          * We will free dummy extent buffer's if they come into
4891          * free_extent_buffer with a ref count of 2, but if we are using this we
4892          * want the buffers to stay in memory until we're done with them, so
4893          * bump the ref count again.
4894          */
4895         atomic_inc(&eb->refs);
4896         return eb;
4897 free_eb:
4898         btrfs_release_extent_buffer(eb);
4899         return exists;
4900 }
4901 #endif
4902
4903 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4904                                           u64 start)
4905 {
4906         unsigned long len = fs_info->tree_root->nodesize;
4907         unsigned long num_pages = num_extent_pages(start, len);
4908         unsigned long i;
4909         unsigned long index = start >> PAGE_CACHE_SHIFT;
4910         struct extent_buffer *eb;
4911         struct extent_buffer *exists = NULL;
4912         struct page *p;
4913         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4914         int uptodate = 1;
4915         int ret;
4916
4917         eb = find_extent_buffer(fs_info, start);
4918         if (eb)
4919                 return eb;
4920
4921         eb = __alloc_extent_buffer(fs_info, start, len);
4922         if (!eb)
4923                 return NULL;
4924
4925         for (i = 0; i < num_pages; i++, index++) {
4926                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4927                 if (!p)
4928                         goto free_eb;
4929
4930                 spin_lock(&mapping->private_lock);
4931                 if (PagePrivate(p)) {
4932                         /*
4933                          * We could have already allocated an eb for this page
4934                          * and attached one so lets see if we can get a ref on
4935                          * the existing eb, and if we can we know it's good and
4936                          * we can just return that one, else we know we can just
4937                          * overwrite page->private.
4938                          */
4939                         exists = (struct extent_buffer *)p->private;
4940                         if (atomic_inc_not_zero(&exists->refs)) {
4941                                 spin_unlock(&mapping->private_lock);
4942                                 unlock_page(p);
4943                                 page_cache_release(p);
4944                                 mark_extent_buffer_accessed(exists, p);
4945                                 goto free_eb;
4946                         }
4947                         exists = NULL;
4948
4949                         /*
4950                          * Do this so attach doesn't complain and we need to
4951                          * drop the ref the old guy had.
4952                          */
4953                         ClearPagePrivate(p);
4954                         WARN_ON(PageDirty(p));
4955                         page_cache_release(p);
4956                 }
4957                 attach_extent_buffer_page(eb, p);
4958                 spin_unlock(&mapping->private_lock);
4959                 WARN_ON(PageDirty(p));
4960                 eb->pages[i] = p;
4961                 if (!PageUptodate(p))
4962                         uptodate = 0;
4963
4964                 /*
4965                  * see below about how we avoid a nasty race with release page
4966                  * and why we unlock later
4967                  */
4968         }
4969         if (uptodate)
4970                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4971 again:
4972         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4973         if (ret)
4974                 goto free_eb;
4975
4976         spin_lock(&fs_info->buffer_lock);
4977         ret = radix_tree_insert(&fs_info->buffer_radix,
4978                                 start >> PAGE_CACHE_SHIFT, eb);
4979         spin_unlock(&fs_info->buffer_lock);
4980         radix_tree_preload_end();
4981         if (ret == -EEXIST) {
4982                 exists = find_extent_buffer(fs_info, start);
4983                 if (exists)
4984                         goto free_eb;
4985                 else
4986                         goto again;
4987         }
4988         /* add one reference for the tree */
4989         check_buffer_tree_ref(eb);
4990         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4991
4992         /*
4993          * there is a race where release page may have
4994          * tried to find this extent buffer in the radix
4995          * but failed.  It will tell the VM it is safe to
4996          * reclaim the, and it will clear the page private bit.
4997          * We must make sure to set the page private bit properly
4998          * after the extent buffer is in the radix tree so
4999          * it doesn't get lost
5000          */
5001         SetPageChecked(eb->pages[0]);
5002         for (i = 1; i < num_pages; i++) {
5003                 p = eb->pages[i];
5004                 ClearPageChecked(p);
5005                 unlock_page(p);
5006         }
5007         unlock_page(eb->pages[0]);
5008         return eb;
5009
5010 free_eb:
5011         WARN_ON(!atomic_dec_and_test(&eb->refs));
5012         for (i = 0; i < num_pages; i++) {
5013                 if (eb->pages[i])
5014                         unlock_page(eb->pages[i]);
5015         }
5016
5017         btrfs_release_extent_buffer(eb);
5018         return exists;
5019 }
5020
5021 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5022 {
5023         struct extent_buffer *eb =
5024                         container_of(head, struct extent_buffer, rcu_head);
5025
5026         __free_extent_buffer(eb);
5027 }
5028
5029 /* Expects to have eb->eb_lock already held */
5030 static int release_extent_buffer(struct extent_buffer *eb)
5031 {
5032         WARN_ON(atomic_read(&eb->refs) == 0);
5033         if (atomic_dec_and_test(&eb->refs)) {
5034                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5035                         struct btrfs_fs_info *fs_info = eb->fs_info;
5036
5037                         spin_unlock(&eb->refs_lock);
5038
5039                         spin_lock(&fs_info->buffer_lock);
5040                         radix_tree_delete(&fs_info->buffer_radix,
5041                                           eb->start >> PAGE_CACHE_SHIFT);
5042                         spin_unlock(&fs_info->buffer_lock);
5043                 } else {
5044                         spin_unlock(&eb->refs_lock);
5045                 }
5046
5047                 /* Should be safe to release our pages at this point */
5048                 btrfs_release_extent_buffer_page(eb);
5049 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5050                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5051                         __free_extent_buffer(eb);
5052                         return 1;
5053                 }
5054 #endif
5055                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5056                 return 1;
5057         }
5058         spin_unlock(&eb->refs_lock);
5059
5060         return 0;
5061 }
5062
5063 void free_extent_buffer(struct extent_buffer *eb)
5064 {
5065         int refs;
5066         int old;
5067         if (!eb)
5068                 return;
5069
5070         while (1) {
5071                 refs = atomic_read(&eb->refs);
5072                 if (refs <= 3)
5073                         break;
5074                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5075                 if (old == refs)
5076                         return;
5077         }
5078
5079         spin_lock(&eb->refs_lock);
5080         if (atomic_read(&eb->refs) == 2 &&
5081             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5082                 atomic_dec(&eb->refs);
5083
5084         if (atomic_read(&eb->refs) == 2 &&
5085             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5086             !extent_buffer_under_io(eb) &&
5087             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5088                 atomic_dec(&eb->refs);
5089
5090         /*
5091          * I know this is terrible, but it's temporary until we stop tracking
5092          * the uptodate bits and such for the extent buffers.
5093          */
5094         release_extent_buffer(eb);
5095 }
5096
5097 void free_extent_buffer_stale(struct extent_buffer *eb)
5098 {
5099         if (!eb)
5100                 return;
5101
5102         spin_lock(&eb->refs_lock);
5103         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5104
5105         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5106             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5107                 atomic_dec(&eb->refs);
5108         release_extent_buffer(eb);
5109 }
5110
5111 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5112 {
5113         unsigned long i;
5114         unsigned long num_pages;
5115         struct page *page;
5116
5117         num_pages = num_extent_pages(eb->start, eb->len);
5118
5119         for (i = 0; i < num_pages; i++) {
5120                 page = eb->pages[i];
5121                 if (!PageDirty(page))
5122                         continue;
5123
5124                 lock_page(page);
5125                 WARN_ON(!PagePrivate(page));
5126
5127                 clear_page_dirty_for_io(page);
5128                 spin_lock_irq(&page->mapping->tree_lock);
5129                 if (!PageDirty(page)) {
5130                         radix_tree_tag_clear(&page->mapping->page_tree,
5131                                                 page_index(page),
5132                                                 PAGECACHE_TAG_DIRTY);
5133                 }
5134                 spin_unlock_irq(&page->mapping->tree_lock);
5135                 ClearPageError(page);
5136                 unlock_page(page);
5137         }
5138         WARN_ON(atomic_read(&eb->refs) == 0);
5139 }
5140
5141 int set_extent_buffer_dirty(struct extent_buffer *eb)
5142 {
5143         unsigned long i;
5144         unsigned long num_pages;
5145         int was_dirty = 0;
5146
5147         check_buffer_tree_ref(eb);
5148
5149         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5150
5151         num_pages = num_extent_pages(eb->start, eb->len);
5152         WARN_ON(atomic_read(&eb->refs) == 0);
5153         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5154
5155         for (i = 0; i < num_pages; i++)
5156                 set_page_dirty(eb->pages[i]);
5157         return was_dirty;
5158 }
5159
5160 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5161 {
5162         unsigned long i;
5163         struct page *page;
5164         unsigned long num_pages;
5165
5166         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5167         num_pages = num_extent_pages(eb->start, eb->len);
5168         for (i = 0; i < num_pages; i++) {
5169                 page = eb->pages[i];
5170                 if (page)
5171                         ClearPageUptodate(page);
5172         }
5173         return 0;
5174 }
5175
5176 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5177 {
5178         unsigned long i;
5179         struct page *page;
5180         unsigned long num_pages;
5181
5182         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5183         num_pages = num_extent_pages(eb->start, eb->len);
5184         for (i = 0; i < num_pages; i++) {
5185                 page = eb->pages[i];
5186                 SetPageUptodate(page);
5187         }
5188         return 0;
5189 }
5190
5191 int extent_buffer_uptodate(struct extent_buffer *eb)
5192 {
5193         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5194 }
5195
5196 int read_extent_buffer_pages(struct extent_io_tree *tree,
5197                              struct extent_buffer *eb, u64 start, int wait,
5198                              get_extent_t *get_extent, int mirror_num)
5199 {
5200         unsigned long i;
5201         unsigned long start_i;
5202         struct page *page;
5203         int err;
5204         int ret = 0;
5205         int locked_pages = 0;
5206         int all_uptodate = 1;
5207         unsigned long num_pages;
5208         unsigned long num_reads = 0;
5209         struct bio *bio = NULL;
5210         unsigned long bio_flags = 0;
5211
5212         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5213                 return 0;
5214
5215         if (start) {
5216                 WARN_ON(start < eb->start);
5217                 start_i = (start >> PAGE_CACHE_SHIFT) -
5218                         (eb->start >> PAGE_CACHE_SHIFT);
5219         } else {
5220                 start_i = 0;
5221         }
5222
5223         num_pages = num_extent_pages(eb->start, eb->len);
5224         for (i = start_i; i < num_pages; i++) {
5225                 page = eb->pages[i];
5226                 if (wait == WAIT_NONE) {
5227                         if (!trylock_page(page))
5228                                 goto unlock_exit;
5229                 } else {
5230                         lock_page(page);
5231                 }
5232                 locked_pages++;
5233                 if (!PageUptodate(page)) {
5234                         num_reads++;
5235                         all_uptodate = 0;
5236                 }
5237         }
5238         if (all_uptodate) {
5239                 if (start_i == 0)
5240                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5241                 goto unlock_exit;
5242         }
5243
5244         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5245         eb->read_mirror = 0;
5246         atomic_set(&eb->io_pages, num_reads);
5247         for (i = start_i; i < num_pages; i++) {
5248                 page = eb->pages[i];
5249                 if (!PageUptodate(page)) {
5250                         ClearPageError(page);
5251                         err = __extent_read_full_page(tree, page,
5252                                                       get_extent, &bio,
5253                                                       mirror_num, &bio_flags,
5254                                                       READ | REQ_META);
5255                         if (err)
5256                                 ret = err;
5257                 } else {
5258                         unlock_page(page);
5259                 }
5260         }
5261
5262         if (bio) {
5263                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5264                                      bio_flags);
5265                 if (err)
5266                         return err;
5267         }
5268
5269         if (ret || wait != WAIT_COMPLETE)
5270                 return ret;
5271
5272         for (i = start_i; i < num_pages; i++) {
5273                 page = eb->pages[i];
5274                 wait_on_page_locked(page);
5275                 if (!PageUptodate(page))
5276                         ret = -EIO;
5277         }
5278
5279         return ret;
5280
5281 unlock_exit:
5282         i = start_i;
5283         while (locked_pages > 0) {
5284                 page = eb->pages[i];
5285                 i++;
5286                 unlock_page(page);
5287                 locked_pages--;
5288         }
5289         return ret;
5290 }
5291
5292 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5293                         unsigned long start,
5294                         unsigned long len)
5295 {
5296         size_t cur;
5297         size_t offset;
5298         struct page *page;
5299         char *kaddr;
5300         char *dst = (char *)dstv;
5301         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5302         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5303
5304         WARN_ON(start > eb->len);
5305         WARN_ON(start + len > eb->start + eb->len);
5306
5307         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5308
5309         while (len > 0) {
5310                 page = eb->pages[i];
5311
5312                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5313                 kaddr = page_address(page);
5314                 memcpy(dst, kaddr + offset, cur);
5315
5316                 dst += cur;
5317                 len -= cur;
5318                 offset = 0;
5319                 i++;
5320         }
5321 }
5322
5323 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5324                         unsigned long start,
5325                         unsigned long len)
5326 {
5327         size_t cur;
5328         size_t offset;
5329         struct page *page;
5330         char *kaddr;
5331         char __user *dst = (char __user *)dstv;
5332         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5333         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5334         int ret = 0;
5335
5336         WARN_ON(start > eb->len);
5337         WARN_ON(start + len > eb->start + eb->len);
5338
5339         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5340
5341         while (len > 0) {
5342                 page = eb->pages[i];
5343
5344                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5345                 kaddr = page_address(page);
5346                 if (copy_to_user(dst, kaddr + offset, cur)) {
5347                         ret = -EFAULT;
5348                         break;
5349                 }
5350
5351                 dst += cur;
5352                 len -= cur;
5353                 offset = 0;
5354                 i++;
5355         }
5356
5357         return ret;
5358 }
5359
5360 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5361                                unsigned long min_len, char **map,
5362                                unsigned long *map_start,
5363                                unsigned long *map_len)
5364 {
5365         size_t offset = start & (PAGE_CACHE_SIZE - 1);
5366         char *kaddr;
5367         struct page *p;
5368         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5369         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5370         unsigned long end_i = (start_offset + start + min_len - 1) >>
5371                 PAGE_CACHE_SHIFT;
5372
5373         if (i != end_i)
5374                 return -EINVAL;
5375
5376         if (i == 0) {
5377                 offset = start_offset;
5378                 *map_start = 0;
5379         } else {
5380                 offset = 0;
5381                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5382         }
5383
5384         if (start + min_len > eb->len) {
5385                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5386                        "wanted %lu %lu\n",
5387                        eb->start, eb->len, start, min_len);
5388                 return -EINVAL;
5389         }
5390
5391         p = eb->pages[i];
5392         kaddr = page_address(p);
5393         *map = kaddr + offset;
5394         *map_len = PAGE_CACHE_SIZE - offset;
5395         return 0;
5396 }
5397
5398 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5399                           unsigned long start,
5400                           unsigned long len)
5401 {
5402         size_t cur;
5403         size_t offset;
5404         struct page *page;
5405         char *kaddr;
5406         char *ptr = (char *)ptrv;
5407         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5408         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5409         int ret = 0;
5410
5411         WARN_ON(start > eb->len);
5412         WARN_ON(start + len > eb->start + eb->len);
5413
5414         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5415
5416         while (len > 0) {
5417                 page = eb->pages[i];
5418
5419                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5420
5421                 kaddr = page_address(page);
5422                 ret = memcmp(ptr, kaddr + offset, cur);
5423                 if (ret)
5424                         break;
5425
5426                 ptr += cur;
5427                 len -= cur;
5428                 offset = 0;
5429                 i++;
5430         }
5431         return ret;
5432 }
5433
5434 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5435                          unsigned long start, unsigned long len)
5436 {
5437         size_t cur;
5438         size_t offset;
5439         struct page *page;
5440         char *kaddr;
5441         char *src = (char *)srcv;
5442         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5443         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5444
5445         WARN_ON(start > eb->len);
5446         WARN_ON(start + len > eb->start + eb->len);
5447
5448         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5449
5450         while (len > 0) {
5451                 page = eb->pages[i];
5452                 WARN_ON(!PageUptodate(page));
5453
5454                 cur = min(len, PAGE_CACHE_SIZE - offset);
5455                 kaddr = page_address(page);
5456                 memcpy(kaddr + offset, src, cur);
5457
5458                 src += cur;
5459                 len -= cur;
5460                 offset = 0;
5461                 i++;
5462         }
5463 }
5464
5465 void memset_extent_buffer(struct extent_buffer *eb, char c,
5466                           unsigned long start, unsigned long len)
5467 {
5468         size_t cur;
5469         size_t offset;
5470         struct page *page;
5471         char *kaddr;
5472         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5473         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5474
5475         WARN_ON(start > eb->len);
5476         WARN_ON(start + len > eb->start + eb->len);
5477
5478         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5479
5480         while (len > 0) {
5481                 page = eb->pages[i];
5482                 WARN_ON(!PageUptodate(page));
5483
5484                 cur = min(len, PAGE_CACHE_SIZE - offset);
5485                 kaddr = page_address(page);
5486                 memset(kaddr + offset, c, cur);
5487
5488                 len -= cur;
5489                 offset = 0;
5490                 i++;
5491         }
5492 }
5493
5494 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5495                         unsigned long dst_offset, unsigned long src_offset,
5496                         unsigned long len)
5497 {
5498         u64 dst_len = dst->len;
5499         size_t cur;
5500         size_t offset;
5501         struct page *page;
5502         char *kaddr;
5503         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5504         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5505
5506         WARN_ON(src->len != dst_len);
5507
5508         offset = (start_offset + dst_offset) &
5509                 (PAGE_CACHE_SIZE - 1);
5510
5511         while (len > 0) {
5512                 page = dst->pages[i];
5513                 WARN_ON(!PageUptodate(page));
5514
5515                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5516
5517                 kaddr = page_address(page);
5518                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5519
5520                 src_offset += cur;
5521                 len -= cur;
5522                 offset = 0;
5523                 i++;
5524         }
5525 }
5526
5527 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5528 {
5529         unsigned long distance = (src > dst) ? src - dst : dst - src;
5530         return distance < len;
5531 }
5532
5533 static void copy_pages(struct page *dst_page, struct page *src_page,
5534                        unsigned long dst_off, unsigned long src_off,
5535                        unsigned long len)
5536 {
5537         char *dst_kaddr = page_address(dst_page);
5538         char *src_kaddr;
5539         int must_memmove = 0;
5540
5541         if (dst_page != src_page) {
5542                 src_kaddr = page_address(src_page);
5543         } else {
5544                 src_kaddr = dst_kaddr;
5545                 if (areas_overlap(src_off, dst_off, len))
5546                         must_memmove = 1;
5547         }
5548
5549         if (must_memmove)
5550                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5551         else
5552                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5553 }
5554
5555 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5556                            unsigned long src_offset, unsigned long len)
5557 {
5558         size_t cur;
5559         size_t dst_off_in_page;
5560         size_t src_off_in_page;
5561         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5562         unsigned long dst_i;
5563         unsigned long src_i;
5564
5565         if (src_offset + len > dst->len) {
5566                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5567                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5568                 BUG_ON(1);
5569         }
5570         if (dst_offset + len > dst->len) {
5571                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5572                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5573                 BUG_ON(1);
5574         }
5575
5576         while (len > 0) {
5577                 dst_off_in_page = (start_offset + dst_offset) &
5578                         (PAGE_CACHE_SIZE - 1);
5579                 src_off_in_page = (start_offset + src_offset) &
5580                         (PAGE_CACHE_SIZE - 1);
5581
5582                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5583                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5584
5585                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5586                                                src_off_in_page));
5587                 cur = min_t(unsigned long, cur,
5588                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5589
5590                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5591                            dst_off_in_page, src_off_in_page, cur);
5592
5593                 src_offset += cur;
5594                 dst_offset += cur;
5595                 len -= cur;
5596         }
5597 }
5598
5599 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5600                            unsigned long src_offset, unsigned long len)
5601 {
5602         size_t cur;
5603         size_t dst_off_in_page;
5604         size_t src_off_in_page;
5605         unsigned long dst_end = dst_offset + len - 1;
5606         unsigned long src_end = src_offset + len - 1;
5607         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5608         unsigned long dst_i;
5609         unsigned long src_i;
5610
5611         if (src_offset + len > dst->len) {
5612                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5613                        "len %lu len %lu\n", src_offset, len, dst->len);
5614                 BUG_ON(1);
5615         }
5616         if (dst_offset + len > dst->len) {
5617                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5618                        "len %lu len %lu\n", dst_offset, len, dst->len);
5619                 BUG_ON(1);
5620         }
5621         if (dst_offset < src_offset) {
5622                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5623                 return;
5624         }
5625         while (len > 0) {
5626                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5627                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5628
5629                 dst_off_in_page = (start_offset + dst_end) &
5630                         (PAGE_CACHE_SIZE - 1);
5631                 src_off_in_page = (start_offset + src_end) &
5632                         (PAGE_CACHE_SIZE - 1);
5633
5634                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5635                 cur = min(cur, dst_off_in_page + 1);
5636                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5637                            dst_off_in_page - cur + 1,
5638                            src_off_in_page - cur + 1, cur);
5639
5640                 dst_end -= cur;
5641                 src_end -= cur;
5642                 len -= cur;
5643         }
5644 }
5645
5646 int try_release_extent_buffer(struct page *page)
5647 {
5648         struct extent_buffer *eb;
5649
5650         /*
5651          * We need to make sure noboody is attaching this page to an eb right
5652          * now.
5653          */
5654         spin_lock(&page->mapping->private_lock);
5655         if (!PagePrivate(page)) {
5656                 spin_unlock(&page->mapping->private_lock);
5657                 return 1;
5658         }
5659
5660         eb = (struct extent_buffer *)page->private;
5661         BUG_ON(!eb);
5662
5663         /*
5664          * This is a little awful but should be ok, we need to make sure that
5665          * the eb doesn't disappear out from under us while we're looking at
5666          * this page.
5667          */
5668         spin_lock(&eb->refs_lock);
5669         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5670                 spin_unlock(&eb->refs_lock);
5671                 spin_unlock(&page->mapping->private_lock);
5672                 return 0;
5673         }
5674         spin_unlock(&page->mapping->private_lock);
5675
5676         /*
5677          * If tree ref isn't set then we know the ref on this eb is a real ref,
5678          * so just return, this page will likely be freed soon anyway.
5679          */
5680         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5681                 spin_unlock(&eb->refs_lock);
5682                 return 0;
5683         }
5684
5685         return release_extent_buffer(eb);
5686 }