Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / drivers / staging / rdma / hfi1 / verbs.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <rdma/ib_mad.h>
52 #include <rdma/ib_user_verbs.h>
53 #include <linux/io.h>
54 #include <linux/module.h>
55 #include <linux/utsname.h>
56 #include <linux/rculist.h>
57 #include <linux/mm.h>
58 #include <linux/random.h>
59 #include <linux/vmalloc.h>
60
61 #include "hfi.h"
62 #include "common.h"
63 #include "device.h"
64 #include "trace.h"
65 #include "qp.h"
66 #include "sdma.h"
67
68 unsigned int hfi1_lkey_table_size = 16;
69 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
70                    S_IRUGO);
71 MODULE_PARM_DESC(lkey_table_size,
72                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
73
74 static unsigned int hfi1_max_pds = 0xFFFF;
75 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
76 MODULE_PARM_DESC(max_pds,
77                  "Maximum number of protection domains to support");
78
79 static unsigned int hfi1_max_ahs = 0xFFFF;
80 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82
83 unsigned int hfi1_max_cqes = 0x2FFFF;
84 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
85 MODULE_PARM_DESC(max_cqes,
86                  "Maximum number of completion queue entries to support");
87
88 unsigned int hfi1_max_cqs = 0x1FFFF;
89 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91
92 unsigned int hfi1_max_qp_wrs = 0x3FFF;
93 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95
96 unsigned int hfi1_max_qps = 16384;
97 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99
100 unsigned int hfi1_max_sges = 0x60;
101 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103
104 unsigned int hfi1_max_mcast_grps = 16384;
105 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
106 MODULE_PARM_DESC(max_mcast_grps,
107                  "Maximum number of multicast groups to support");
108
109 unsigned int hfi1_max_mcast_qp_attached = 16;
110 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
111                    uint, S_IRUGO);
112 MODULE_PARM_DESC(max_mcast_qp_attached,
113                  "Maximum number of attached QPs to support");
114
115 unsigned int hfi1_max_srqs = 1024;
116 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118
119 unsigned int hfi1_max_srq_sges = 128;
120 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122
123 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
124 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
125 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126
127 static void verbs_sdma_complete(
128         struct sdma_txreq *cookie,
129         int status,
130         int drained);
131
132 /*
133  * Note that it is OK to post send work requests in the SQE and ERR
134  * states; hfi1_do_send() will process them and generate error
135  * completions as per IB 1.2 C10-96.
136  */
137 const int ib_hfi1_state_ops[IB_QPS_ERR + 1] = {
138         [IB_QPS_RESET] = 0,
139         [IB_QPS_INIT] = HFI1_POST_RECV_OK,
140         [IB_QPS_RTR] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK,
141         [IB_QPS_RTS] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
142             HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK |
143             HFI1_PROCESS_NEXT_SEND_OK,
144         [IB_QPS_SQD] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
145             HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK,
146         [IB_QPS_SQE] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
147             HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
148         [IB_QPS_ERR] = HFI1_POST_RECV_OK | HFI1_FLUSH_RECV |
149             HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
150 };
151
152 struct hfi1_ucontext {
153         struct ib_ucontext ibucontext;
154 };
155
156 static inline struct hfi1_ucontext *to_iucontext(struct ib_ucontext
157                                                   *ibucontext)
158 {
159         return container_of(ibucontext, struct hfi1_ucontext, ibucontext);
160 }
161
162 /*
163  * Translate ib_wr_opcode into ib_wc_opcode.
164  */
165 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
166         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
167         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
168         [IB_WR_SEND] = IB_WC_SEND,
169         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
170         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
171         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
172         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
173 };
174
175 /*
176  * Length of header by opcode, 0 --> not supported
177  */
178 const u8 hdr_len_by_opcode[256] = {
179         /* RC */
180         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
181         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
182         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
183         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
184         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
185         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
186         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
187         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
188         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
189         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
191         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
193         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
194         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
197         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
198         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
199         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
200         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
201         /* UC */
202         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
203         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
204         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
205         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
206         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
207         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
208         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
209         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
210         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
211         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
212         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
213         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
214         /* UD */
215         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
216         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
217 };
218
219 static const opcode_handler opcode_handler_tbl[256] = {
220         /* RC */
221         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
222         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
223         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
224         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
225         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
226         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
227         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
228         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
229         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
230         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
231         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
232         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
233         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
234         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
242         /* UC */
243         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
244         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
245         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
246         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
247         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
248         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
249         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
250         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
251         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
252         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
253         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
254         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
255         /* UD */
256         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
257         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
258         /* CNP */
259         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
260 };
261
262 /*
263  * System image GUID.
264  */
265 __be64 ib_hfi1_sys_image_guid;
266
267 /**
268  * hfi1_copy_sge - copy data to SGE memory
269  * @ss: the SGE state
270  * @data: the data to copy
271  * @length: the length of the data
272  */
273 void hfi1_copy_sge(
274         struct hfi1_sge_state *ss,
275         void *data, u32 length,
276         int release)
277 {
278         struct hfi1_sge *sge = &ss->sge;
279
280         while (length) {
281                 u32 len = sge->length;
282
283                 if (len > length)
284                         len = length;
285                 if (len > sge->sge_length)
286                         len = sge->sge_length;
287                 WARN_ON_ONCE(len == 0);
288                 memcpy(sge->vaddr, data, len);
289                 sge->vaddr += len;
290                 sge->length -= len;
291                 sge->sge_length -= len;
292                 if (sge->sge_length == 0) {
293                         if (release)
294                                 hfi1_put_mr(sge->mr);
295                         if (--ss->num_sge)
296                                 *sge = *ss->sg_list++;
297                 } else if (sge->length == 0 && sge->mr->lkey) {
298                         if (++sge->n >= HFI1_SEGSZ) {
299                                 if (++sge->m >= sge->mr->mapsz)
300                                         break;
301                                 sge->n = 0;
302                         }
303                         sge->vaddr =
304                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
305                         sge->length =
306                                 sge->mr->map[sge->m]->segs[sge->n].length;
307                 }
308                 data += len;
309                 length -= len;
310         }
311 }
312
313 /**
314  * hfi1_skip_sge - skip over SGE memory
315  * @ss: the SGE state
316  * @length: the number of bytes to skip
317  */
318 void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release)
319 {
320         struct hfi1_sge *sge = &ss->sge;
321
322         while (length) {
323                 u32 len = sge->length;
324
325                 if (len > length)
326                         len = length;
327                 if (len > sge->sge_length)
328                         len = sge->sge_length;
329                 WARN_ON_ONCE(len == 0);
330                 sge->vaddr += len;
331                 sge->length -= len;
332                 sge->sge_length -= len;
333                 if (sge->sge_length == 0) {
334                         if (release)
335                                 hfi1_put_mr(sge->mr);
336                         if (--ss->num_sge)
337                                 *sge = *ss->sg_list++;
338                 } else if (sge->length == 0 && sge->mr->lkey) {
339                         if (++sge->n >= HFI1_SEGSZ) {
340                                 if (++sge->m >= sge->mr->mapsz)
341                                         break;
342                                 sge->n = 0;
343                         }
344                         sge->vaddr =
345                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
346                         sge->length =
347                                 sge->mr->map[sge->m]->segs[sge->n].length;
348                 }
349                 length -= len;
350         }
351 }
352
353 /**
354  * post_one_send - post one RC, UC, or UD send work request
355  * @qp: the QP to post on
356  * @wr: the work request to send
357  */
358 static int post_one_send(struct hfi1_qp *qp, struct ib_send_wr *wr)
359 {
360         struct hfi1_swqe *wqe;
361         u32 next;
362         int i;
363         int j;
364         int acc;
365         struct hfi1_lkey_table *rkt;
366         struct hfi1_pd *pd;
367         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
368         struct hfi1_pportdata *ppd;
369         struct hfi1_ibport *ibp;
370
371         /* IB spec says that num_sge == 0 is OK. */
372         if (unlikely(wr->num_sge > qp->s_max_sge))
373                 return -EINVAL;
374
375         ppd = &dd->pport[qp->port_num - 1];
376         ibp = &ppd->ibport_data;
377
378         /*
379          * Don't allow RDMA reads or atomic operations on UC or
380          * undefined operations.
381          * Make sure buffer is large enough to hold the result for atomics.
382          */
383         if (wr->opcode == IB_WR_FAST_REG_MR) {
384                 return -EINVAL;
385         } else if (qp->ibqp.qp_type == IB_QPT_UC) {
386                 if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
387                         return -EINVAL;
388         } else if (qp->ibqp.qp_type != IB_QPT_RC) {
389                 /* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */
390                 if (wr->opcode != IB_WR_SEND &&
391                     wr->opcode != IB_WR_SEND_WITH_IMM)
392                         return -EINVAL;
393                 /* Check UD destination address PD */
394                 if (qp->ibqp.pd != wr->wr.ud.ah->pd)
395                         return -EINVAL;
396         } else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
397                 return -EINVAL;
398         else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
399                    (wr->num_sge == 0 ||
400                     wr->sg_list[0].length < sizeof(u64) ||
401                     wr->sg_list[0].addr & (sizeof(u64) - 1)))
402                 return -EINVAL;
403         else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
404                 return -EINVAL;
405
406         next = qp->s_head + 1;
407         if (next >= qp->s_size)
408                 next = 0;
409         if (next == qp->s_last)
410                 return -ENOMEM;
411
412         rkt = &to_idev(qp->ibqp.device)->lk_table;
413         pd = to_ipd(qp->ibqp.pd);
414         wqe = get_swqe_ptr(qp, qp->s_head);
415         wqe->wr = *wr;
416         wqe->length = 0;
417         j = 0;
418         if (wr->num_sge) {
419                 acc = wr->opcode >= IB_WR_RDMA_READ ?
420                         IB_ACCESS_LOCAL_WRITE : 0;
421                 for (i = 0; i < wr->num_sge; i++) {
422                         u32 length = wr->sg_list[i].length;
423                         int ok;
424
425                         if (length == 0)
426                                 continue;
427                         ok = hfi1_lkey_ok(rkt, pd, &wqe->sg_list[j],
428                                           &wr->sg_list[i], acc);
429                         if (!ok)
430                                 goto bail_inval_free;
431                         wqe->length += length;
432                         j++;
433                 }
434                 wqe->wr.num_sge = j;
435         }
436         if (qp->ibqp.qp_type == IB_QPT_UC ||
437             qp->ibqp.qp_type == IB_QPT_RC) {
438                 if (wqe->length > 0x80000000U)
439                         goto bail_inval_free;
440         } else {
441                 struct hfi1_ah *ah = to_iah(wr->wr.ud.ah);
442
443                 atomic_inc(&ah->refcount);
444         }
445         wqe->ssn = qp->s_ssn++;
446         qp->s_head = next;
447
448         return 0;
449
450 bail_inval_free:
451         /* release mr holds */
452         while (j) {
453                 struct hfi1_sge *sge = &wqe->sg_list[--j];
454
455                 hfi1_put_mr(sge->mr);
456         }
457         return -EINVAL;
458 }
459
460 /**
461  * post_send - post a send on a QP
462  * @ibqp: the QP to post the send on
463  * @wr: the list of work requests to post
464  * @bad_wr: the first bad WR is put here
465  *
466  * This may be called from interrupt context.
467  */
468 static int post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
469                      struct ib_send_wr **bad_wr)
470 {
471         struct hfi1_qp *qp = to_iqp(ibqp);
472         int err = 0;
473         int call_send;
474         unsigned long flags;
475         unsigned nreq = 0;
476
477         spin_lock_irqsave(&qp->s_lock, flags);
478
479         /* Check that state is OK to post send. */
480         if (unlikely(!(ib_hfi1_state_ops[qp->state] & HFI1_POST_SEND_OK))) {
481                 spin_unlock_irqrestore(&qp->s_lock, flags);
482                 return -EINVAL;
483         }
484
485         /* sq empty and not list -> call send */
486         call_send = qp->s_head == qp->s_last && !wr->next;
487
488         for (; wr; wr = wr->next) {
489                 err = post_one_send(qp, wr);
490                 if (unlikely(err)) {
491                         *bad_wr = wr;
492                         goto bail;
493                 }
494                 nreq++;
495         }
496 bail:
497         if (nreq && !call_send)
498                 hfi1_schedule_send(qp);
499         spin_unlock_irqrestore(&qp->s_lock, flags);
500         if (nreq && call_send)
501                 hfi1_do_send(&qp->s_iowait.iowork);
502         return err;
503 }
504
505 /**
506  * post_receive - post a receive on a QP
507  * @ibqp: the QP to post the receive on
508  * @wr: the WR to post
509  * @bad_wr: the first bad WR is put here
510  *
511  * This may be called from interrupt context.
512  */
513 static int post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
514                         struct ib_recv_wr **bad_wr)
515 {
516         struct hfi1_qp *qp = to_iqp(ibqp);
517         struct hfi1_rwq *wq = qp->r_rq.wq;
518         unsigned long flags;
519         int ret;
520
521         /* Check that state is OK to post receive. */
522         if (!(ib_hfi1_state_ops[qp->state] & HFI1_POST_RECV_OK) || !wq) {
523                 *bad_wr = wr;
524                 ret = -EINVAL;
525                 goto bail;
526         }
527
528         for (; wr; wr = wr->next) {
529                 struct hfi1_rwqe *wqe;
530                 u32 next;
531                 int i;
532
533                 if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
534                         *bad_wr = wr;
535                         ret = -EINVAL;
536                         goto bail;
537                 }
538
539                 spin_lock_irqsave(&qp->r_rq.lock, flags);
540                 next = wq->head + 1;
541                 if (next >= qp->r_rq.size)
542                         next = 0;
543                 if (next == wq->tail) {
544                         spin_unlock_irqrestore(&qp->r_rq.lock, flags);
545                         *bad_wr = wr;
546                         ret = -ENOMEM;
547                         goto bail;
548                 }
549
550                 wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
551                 wqe->wr_id = wr->wr_id;
552                 wqe->num_sge = wr->num_sge;
553                 for (i = 0; i < wr->num_sge; i++)
554                         wqe->sg_list[i] = wr->sg_list[i];
555                 /* Make sure queue entry is written before the head index. */
556                 smp_wmb();
557                 wq->head = next;
558                 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
559         }
560         ret = 0;
561
562 bail:
563         return ret;
564 }
565
566 /*
567  * Make sure the QP is ready and able to accept the given opcode.
568  */
569 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
570 {
571         struct hfi1_ibport *ibp;
572
573         if (!(ib_hfi1_state_ops[packet->qp->state] & HFI1_PROCESS_RECV_OK))
574                 goto dropit;
575         if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
576             (opcode == IB_OPCODE_CNP))
577                 return 1;
578 dropit:
579         ibp = &packet->rcd->ppd->ibport_data;
580         ibp->n_pkt_drops++;
581         return 0;
582 }
583
584
585 /**
586  * hfi1_ib_rcv - process an incoming packet
587  * @packet: data packet information
588  *
589  * This is called to process an incoming packet at interrupt level.
590  *
591  * Tlen is the length of the header + data + CRC in bytes.
592  */
593 void hfi1_ib_rcv(struct hfi1_packet *packet)
594 {
595         struct hfi1_ctxtdata *rcd = packet->rcd;
596         struct hfi1_ib_header *hdr = packet->hdr;
597         u32 tlen = packet->tlen;
598         struct hfi1_pportdata *ppd = rcd->ppd;
599         struct hfi1_ibport *ibp = &ppd->ibport_data;
600         u32 qp_num;
601         int lnh;
602         u8 opcode;
603         u16 lid;
604
605         /* Check for GRH */
606         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
607         if (lnh == HFI1_LRH_BTH)
608                 packet->ohdr = &hdr->u.oth;
609         else if (lnh == HFI1_LRH_GRH) {
610                 u32 vtf;
611
612                 packet->ohdr = &hdr->u.l.oth;
613                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
614                         goto drop;
615                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
616                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
617                         goto drop;
618                 packet->rcv_flags |= HFI1_HAS_GRH;
619         } else
620                 goto drop;
621
622         trace_input_ibhdr(rcd->dd, hdr);
623
624         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
625         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
626
627         /* Get the destination QP number. */
628         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & HFI1_QPN_MASK;
629         lid = be16_to_cpu(hdr->lrh[1]);
630         if (unlikely((lid >= HFI1_MULTICAST_LID_BASE) &&
631             (lid != HFI1_PERMISSIVE_LID))) {
632                 struct hfi1_mcast *mcast;
633                 struct hfi1_mcast_qp *p;
634
635                 if (lnh != HFI1_LRH_GRH)
636                         goto drop;
637                 mcast = hfi1_mcast_find(ibp, &hdr->u.l.grh.dgid);
638                 if (mcast == NULL)
639                         goto drop;
640                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
641                         packet->qp = p->qp;
642                         spin_lock(&packet->qp->r_lock);
643                         if (likely((qp_ok(opcode, packet))))
644                                 opcode_handler_tbl[opcode](packet);
645                         spin_unlock(&packet->qp->r_lock);
646                 }
647                 /*
648                  * Notify hfi1_multicast_detach() if it is waiting for us
649                  * to finish.
650                  */
651                 if (atomic_dec_return(&mcast->refcount) <= 1)
652                         wake_up(&mcast->wait);
653         } else {
654                 rcu_read_lock();
655                 packet->qp = hfi1_lookup_qpn(ibp, qp_num);
656                 if (!packet->qp) {
657                         rcu_read_unlock();
658                         goto drop;
659                 }
660                 spin_lock(&packet->qp->r_lock);
661                 if (likely((qp_ok(opcode, packet))))
662                         opcode_handler_tbl[opcode](packet);
663                 spin_unlock(&packet->qp->r_lock);
664                 rcu_read_unlock();
665         }
666         return;
667
668 drop:
669         ibp->n_pkt_drops++;
670 }
671
672 /*
673  * This is called from a timer to check for QPs
674  * which need kernel memory in order to send a packet.
675  */
676 static void mem_timer(unsigned long data)
677 {
678         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
679         struct list_head *list = &dev->memwait;
680         struct hfi1_qp *qp = NULL;
681         struct iowait *wait;
682         unsigned long flags;
683
684         write_seqlock_irqsave(&dev->iowait_lock, flags);
685         if (!list_empty(list)) {
686                 wait = list_first_entry(list, struct iowait, list);
687                 qp = container_of(wait, struct hfi1_qp, s_iowait);
688                 list_del_init(&qp->s_iowait.list);
689                 /* refcount held until actual wake up */
690                 if (!list_empty(list))
691                         mod_timer(&dev->mem_timer, jiffies + 1);
692         }
693         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
694
695         if (qp)
696                 hfi1_qp_wakeup(qp, HFI1_S_WAIT_KMEM);
697 }
698
699 void update_sge(struct hfi1_sge_state *ss, u32 length)
700 {
701         struct hfi1_sge *sge = &ss->sge;
702
703         sge->vaddr += length;
704         sge->length -= length;
705         sge->sge_length -= length;
706         if (sge->sge_length == 0) {
707                 if (--ss->num_sge)
708                         *sge = *ss->sg_list++;
709         } else if (sge->length == 0 && sge->mr->lkey) {
710                 if (++sge->n >= HFI1_SEGSZ) {
711                         if (++sge->m >= sge->mr->mapsz)
712                                 return;
713                         sge->n = 0;
714                 }
715                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
716                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
717         }
718 }
719
720 static noinline struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev,
721                                                 struct hfi1_qp *qp)
722 {
723         struct verbs_txreq *tx;
724         unsigned long flags;
725
726         tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
727         if (!tx) {
728                 spin_lock_irqsave(&qp->s_lock, flags);
729                 write_seqlock(&dev->iowait_lock);
730                 if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK &&
731                     list_empty(&qp->s_iowait.list)) {
732                         dev->n_txwait++;
733                         qp->s_flags |= HFI1_S_WAIT_TX;
734                         list_add_tail(&qp->s_iowait.list, &dev->txwait);
735                         trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TX);
736                         atomic_inc(&qp->refcount);
737                 }
738                 qp->s_flags &= ~HFI1_S_BUSY;
739                 write_sequnlock(&dev->iowait_lock);
740                 spin_unlock_irqrestore(&qp->s_lock, flags);
741                 tx = ERR_PTR(-EBUSY);
742         }
743         return tx;
744 }
745
746 static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev,
747                                             struct hfi1_qp *qp)
748 {
749         struct verbs_txreq *tx;
750
751         tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
752         if (!tx) {
753                 /* call slow path to get the lock */
754                 tx =  __get_txreq(dev, qp);
755                 if (IS_ERR(tx))
756                         return tx;
757         }
758         tx->qp = qp;
759         return tx;
760 }
761
762 void hfi1_put_txreq(struct verbs_txreq *tx)
763 {
764         struct hfi1_ibdev *dev;
765         struct hfi1_qp *qp;
766         unsigned long flags;
767         unsigned int seq;
768
769         qp = tx->qp;
770         dev = to_idev(qp->ibqp.device);
771
772         if (tx->mr) {
773                 hfi1_put_mr(tx->mr);
774                 tx->mr = NULL;
775         }
776         sdma_txclean(dd_from_dev(dev), &tx->txreq);
777
778         /* Free verbs_txreq and return to slab cache */
779         kmem_cache_free(dev->verbs_txreq_cache, tx);
780
781         do {
782                 seq = read_seqbegin(&dev->iowait_lock);
783                 if (!list_empty(&dev->txwait)) {
784                         struct iowait *wait;
785
786                         write_seqlock_irqsave(&dev->iowait_lock, flags);
787                         /* Wake up first QP wanting a free struct */
788                         wait = list_first_entry(&dev->txwait, struct iowait,
789                                                 list);
790                         qp = container_of(wait, struct hfi1_qp, s_iowait);
791                         list_del_init(&qp->s_iowait.list);
792                         /* refcount held until actual wake up */
793                         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
794                         hfi1_qp_wakeup(qp, HFI1_S_WAIT_TX);
795                         break;
796                 }
797         } while (read_seqretry(&dev->iowait_lock, seq));
798 }
799
800 /*
801  * This is called with progress side lock held.
802  */
803 /* New API */
804 static void verbs_sdma_complete(
805         struct sdma_txreq *cookie,
806         int status,
807         int drained)
808 {
809         struct verbs_txreq *tx =
810                 container_of(cookie, struct verbs_txreq, txreq);
811         struct hfi1_qp *qp = tx->qp;
812
813         spin_lock(&qp->s_lock);
814         if (tx->wqe)
815                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
816         else if (qp->ibqp.qp_type == IB_QPT_RC) {
817                 struct hfi1_ib_header *hdr;
818
819                 hdr = &tx->phdr.hdr;
820                 hfi1_rc_send_complete(qp, hdr);
821         }
822         if (drained) {
823                 /*
824                  * This happens when the send engine notes
825                  * a QP in the error state and cannot
826                  * do the flush work until that QP's
827                  * sdma work has finished.
828                  */
829                 if (qp->s_flags & HFI1_S_WAIT_DMA) {
830                         qp->s_flags &= ~HFI1_S_WAIT_DMA;
831                         hfi1_schedule_send(qp);
832                 }
833         }
834         spin_unlock(&qp->s_lock);
835
836         hfi1_put_txreq(tx);
837 }
838
839 static int wait_kmem(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
840 {
841         unsigned long flags;
842         int ret = 0;
843
844         spin_lock_irqsave(&qp->s_lock, flags);
845         if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
846                 write_seqlock(&dev->iowait_lock);
847                 if (list_empty(&qp->s_iowait.list)) {
848                         if (list_empty(&dev->memwait))
849                                 mod_timer(&dev->mem_timer, jiffies + 1);
850                         qp->s_flags |= HFI1_S_WAIT_KMEM;
851                         list_add_tail(&qp->s_iowait.list, &dev->memwait);
852                         trace_hfi1_qpsleep(qp, HFI1_S_WAIT_KMEM);
853                         atomic_inc(&qp->refcount);
854                 }
855                 write_sequnlock(&dev->iowait_lock);
856                 qp->s_flags &= ~HFI1_S_BUSY;
857                 ret = -EBUSY;
858         }
859         spin_unlock_irqrestore(&qp->s_lock, flags);
860
861         return ret;
862 }
863
864 /*
865  * This routine calls txadds for each sg entry.
866  *
867  * Add failures will revert the sge cursor
868  */
869 static int build_verbs_ulp_payload(
870         struct sdma_engine *sde,
871         struct hfi1_sge_state *ss,
872         u32 length,
873         struct verbs_txreq *tx)
874 {
875         struct hfi1_sge *sg_list = ss->sg_list;
876         struct hfi1_sge sge = ss->sge;
877         u8 num_sge = ss->num_sge;
878         u32 len;
879         int ret = 0;
880
881         while (length) {
882                 len = ss->sge.length;
883                 if (len > length)
884                         len = length;
885                 if (len > ss->sge.sge_length)
886                         len = ss->sge.sge_length;
887                 WARN_ON_ONCE(len == 0);
888                 ret = sdma_txadd_kvaddr(
889                         sde->dd,
890                         &tx->txreq,
891                         ss->sge.vaddr,
892                         len);
893                 if (ret)
894                         goto bail_txadd;
895                 update_sge(ss, len);
896                 length -= len;
897         }
898         return ret;
899 bail_txadd:
900         /* unwind cursor */
901         ss->sge = sge;
902         ss->num_sge = num_sge;
903         ss->sg_list = sg_list;
904         return ret;
905 }
906
907 /*
908  * Build the number of DMA descriptors needed to send length bytes of data.
909  *
910  * NOTE: DMA mapping is held in the tx until completed in the ring or
911  *       the tx desc is freed without having been submitted to the ring
912  *
913  * This routine insures the following all the helper routine
914  * calls succeed.
915  */
916 /* New API */
917 static int build_verbs_tx_desc(
918         struct sdma_engine *sde,
919         struct hfi1_sge_state *ss,
920         u32 length,
921         struct verbs_txreq *tx,
922         struct ahg_ib_header *ahdr,
923         u64 pbc)
924 {
925         int ret = 0;
926         struct hfi1_pio_header *phdr;
927         u16 hdrbytes = tx->hdr_dwords << 2;
928
929         phdr = &tx->phdr;
930         if (!ahdr->ahgcount) {
931                 ret = sdma_txinit_ahg(
932                         &tx->txreq,
933                         ahdr->tx_flags,
934                         hdrbytes + length,
935                         ahdr->ahgidx,
936                         0,
937                         NULL,
938                         0,
939                         verbs_sdma_complete);
940                 if (ret)
941                         goto bail_txadd;
942                 phdr->pbc = cpu_to_le64(pbc);
943                 memcpy(&phdr->hdr, &ahdr->ibh, hdrbytes - sizeof(phdr->pbc));
944                 /* add the header */
945                 ret = sdma_txadd_kvaddr(
946                         sde->dd,
947                         &tx->txreq,
948                         &tx->phdr,
949                         tx->hdr_dwords << 2);
950                 if (ret)
951                         goto bail_txadd;
952         } else {
953                 struct hfi1_other_headers *sohdr = &ahdr->ibh.u.oth;
954                 struct hfi1_other_headers *dohdr = &phdr->hdr.u.oth;
955
956                 /* needed in rc_send_complete() */
957                 phdr->hdr.lrh[0] = ahdr->ibh.lrh[0];
958                 if ((be16_to_cpu(phdr->hdr.lrh[0]) & 3) == HFI1_LRH_GRH) {
959                         sohdr = &ahdr->ibh.u.l.oth;
960                         dohdr = &phdr->hdr.u.l.oth;
961                 }
962                 /* opcode */
963                 dohdr->bth[0] = sohdr->bth[0];
964                 /* PSN/ACK  */
965                 dohdr->bth[2] = sohdr->bth[2];
966                 ret = sdma_txinit_ahg(
967                         &tx->txreq,
968                         ahdr->tx_flags,
969                         length,
970                         ahdr->ahgidx,
971                         ahdr->ahgcount,
972                         ahdr->ahgdesc,
973                         hdrbytes,
974                         verbs_sdma_complete);
975                 if (ret)
976                         goto bail_txadd;
977         }
978
979         /* add the ulp payload - if any.  ss can be NULL for acks */
980         if (ss)
981                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
982 bail_txadd:
983         return ret;
984 }
985
986 int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
987                         u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
988                         u32 plen, u32 dwords, u64 pbc)
989 {
990         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
991         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
992         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
993         struct verbs_txreq *tx;
994         struct sdma_txreq *stx;
995         u64 pbc_flags = 0;
996         struct sdma_engine *sde;
997         u8 sc5 = qp->s_sc;
998         int ret;
999
1000         if (!list_empty(&qp->s_iowait.tx_head)) {
1001                 stx = list_first_entry(
1002                         &qp->s_iowait.tx_head,
1003                         struct sdma_txreq,
1004                         list);
1005                 list_del_init(&stx->list);
1006                 tx = container_of(stx, struct verbs_txreq, txreq);
1007                 ret = sdma_send_txreq(tx->sde, &qp->s_iowait, stx);
1008                 if (unlikely(ret == -ECOMM))
1009                         goto bail_ecomm;
1010                 return ret;
1011         }
1012
1013         tx = get_txreq(dev, qp);
1014         if (IS_ERR(tx))
1015                 goto bail_tx;
1016
1017         if (!qp->s_hdr->sde) {
1018                 tx->sde = sde = qp_to_sdma_engine(qp, sc5);
1019                 if (!sde)
1020                         goto bail_no_sde;
1021         } else
1022                 tx->sde = sde = qp->s_hdr->sde;
1023
1024         if (likely(pbc == 0)) {
1025                 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1026                 /* No vl15 here */
1027                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1028                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1029
1030                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1031         }
1032         tx->wqe = qp->s_wqe;
1033         tx->mr = qp->s_rdma_mr;
1034         if (qp->s_rdma_mr)
1035                 qp->s_rdma_mr = NULL;
1036         tx->hdr_dwords = hdrwords + 2;
1037         ret = build_verbs_tx_desc(sde, ss, len, tx, ahdr, pbc);
1038         if (unlikely(ret))
1039                 goto bail_build;
1040         trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1041         ret =  sdma_send_txreq(sde, &qp->s_iowait, &tx->txreq);
1042         if (unlikely(ret == -ECOMM))
1043                 goto bail_ecomm;
1044         return ret;
1045
1046 bail_no_sde:
1047         hfi1_put_txreq(tx);
1048 bail_ecomm:
1049         /* The current one got "sent" */
1050         return 0;
1051 bail_build:
1052         /* kmalloc or mapping fail */
1053         hfi1_put_txreq(tx);
1054         return wait_kmem(dev, qp);
1055 bail_tx:
1056         return PTR_ERR(tx);
1057 }
1058
1059 /*
1060  * If we are now in the error state, return zero to flush the
1061  * send work request.
1062  */
1063 static int no_bufs_available(struct hfi1_qp *qp, struct send_context *sc)
1064 {
1065         struct hfi1_devdata *dd = sc->dd;
1066         struct hfi1_ibdev *dev = &dd->verbs_dev;
1067         unsigned long flags;
1068         int ret = 0;
1069
1070         /*
1071          * Note that as soon as want_buffer() is called and
1072          * possibly before it returns, sc_piobufavail()
1073          * could be called. Therefore, put QP on the I/O wait list before
1074          * enabling the PIO avail interrupt.
1075          */
1076         spin_lock_irqsave(&qp->s_lock, flags);
1077         if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
1078                 write_seqlock(&dev->iowait_lock);
1079                 if (list_empty(&qp->s_iowait.list)) {
1080                         struct hfi1_ibdev *dev = &dd->verbs_dev;
1081                         int was_empty;
1082
1083                         dev->n_piowait++;
1084                         qp->s_flags |= HFI1_S_WAIT_PIO;
1085                         was_empty = list_empty(&sc->piowait);
1086                         list_add_tail(&qp->s_iowait.list, &sc->piowait);
1087                         trace_hfi1_qpsleep(qp, HFI1_S_WAIT_PIO);
1088                         atomic_inc(&qp->refcount);
1089                         /* counting: only call wantpiobuf_intr if first user */
1090                         if (was_empty)
1091                                 hfi1_sc_wantpiobuf_intr(sc, 1);
1092                 }
1093                 write_sequnlock(&dev->iowait_lock);
1094                 qp->s_flags &= ~HFI1_S_BUSY;
1095                 ret = -EBUSY;
1096         }
1097         spin_unlock_irqrestore(&qp->s_lock, flags);
1098         return ret;
1099 }
1100
1101 struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5)
1102 {
1103         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1104         struct hfi1_pportdata *ppd = dd->pport + (qp->port_num - 1);
1105         u8 vl;
1106
1107         vl = sc_to_vlt(dd, sc5);
1108         if (vl >= ppd->vls_supported && vl != 15)
1109                 return NULL;
1110         return dd->vld[vl].sc;
1111 }
1112
1113 int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1114                         u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1115                         u32 plen, u32 dwords, u64 pbc)
1116 {
1117         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1118         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1119         u32 *hdr = (u32 *)&ahdr->ibh;
1120         u64 pbc_flags = 0;
1121         u32 sc5;
1122         unsigned long flags = 0;
1123         struct send_context *sc;
1124         struct pio_buf *pbuf;
1125         int wc_status = IB_WC_SUCCESS;
1126
1127         /* vl15 special case taken care of in ud.c */
1128         sc5 = qp->s_sc;
1129         sc = qp_to_send_context(qp, sc5);
1130
1131         if (!sc)
1132                 return -EINVAL;
1133         if (likely(pbc == 0)) {
1134                 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1135                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1136                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1137                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1138         }
1139         pbuf = sc_buffer_alloc(sc, plen, NULL, NULL);
1140         if (unlikely(pbuf == NULL)) {
1141                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1142                         /*
1143                          * If we have filled the PIO buffers to capacity and are
1144                          * not in an active state this request is not going to
1145                          * go out to so just complete it with an error or else a
1146                          * ULP or the core may be stuck waiting.
1147                          */
1148                         hfi1_cdbg(
1149                                 PIO,
1150                                 "alloc failed. state not active, completing");
1151                         wc_status = IB_WC_GENERAL_ERR;
1152                         goto pio_bail;
1153                 } else {
1154                         /*
1155                          * This is a normal occurrence. The PIO buffs are full
1156                          * up but we are still happily sending, well we could be
1157                          * so lets continue to queue the request.
1158                          */
1159                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1160                         return no_bufs_available(qp, sc);
1161                 }
1162         }
1163
1164         if (len == 0) {
1165                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1166         } else {
1167                 if (ss) {
1168                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords*4);
1169                         while (len) {
1170                                 void *addr = ss->sge.vaddr;
1171                                 u32 slen = ss->sge.length;
1172
1173                                 if (slen > len)
1174                                         slen = len;
1175                                 update_sge(ss, slen);
1176                                 seg_pio_copy_mid(pbuf, addr, slen);
1177                                 len -= slen;
1178                         }
1179                         seg_pio_copy_end(pbuf);
1180                 }
1181         }
1182
1183         trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1184
1185         if (qp->s_rdma_mr) {
1186                 hfi1_put_mr(qp->s_rdma_mr);
1187                 qp->s_rdma_mr = NULL;
1188         }
1189
1190 pio_bail:
1191         if (qp->s_wqe) {
1192                 spin_lock_irqsave(&qp->s_lock, flags);
1193                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1194                 spin_unlock_irqrestore(&qp->s_lock, flags);
1195         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1196                 spin_lock_irqsave(&qp->s_lock, flags);
1197                 hfi1_rc_send_complete(qp, &ahdr->ibh);
1198                 spin_unlock_irqrestore(&qp->s_lock, flags);
1199         }
1200         return 0;
1201 }
1202 /*
1203  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1204  * being an entry from the ingress partition key table), return 0
1205  * otherwise. Use the matching criteria for egress partition keys
1206  * specified in the OPAv1 spec., section 9.1l.7.
1207  */
1208 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1209 {
1210         u16 mkey = pkey & PKEY_LOW_15_MASK;
1211         u16 ment = ent & PKEY_LOW_15_MASK;
1212
1213         if (mkey == ment) {
1214                 /*
1215                  * If pkey[15] is set (full partition member),
1216                  * is bit 15 in the corresponding table element
1217                  * clear (limited member)?
1218                  */
1219                 if (pkey & PKEY_MEMBER_MASK)
1220                         return !!(ent & PKEY_MEMBER_MASK);
1221                 return 1;
1222         }
1223         return 0;
1224 }
1225
1226 /*
1227  * egress_pkey_check - return 0 if hdr's pkey matches according to the
1228  * criteria in the OPAv1 spec., section 9.11.7.
1229  */
1230 static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
1231                                     struct hfi1_ib_header *hdr,
1232                                     struct hfi1_qp *qp)
1233 {
1234         struct hfi1_other_headers *ohdr;
1235         struct hfi1_devdata *dd;
1236         int i = 0;
1237         u16 pkey;
1238         u8 lnh, sc5 = qp->s_sc;
1239
1240         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1241                 return 0;
1242
1243         /* locate the pkey within the headers */
1244         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1245         if (lnh == HFI1_LRH_GRH)
1246                 ohdr = &hdr->u.l.oth;
1247         else
1248                 ohdr = &hdr->u.oth;
1249
1250         pkey = (u16)be32_to_cpu(ohdr->bth[0]);
1251
1252         /* If SC15, pkey[0:14] must be 0x7fff */
1253         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1254                 goto bad;
1255
1256
1257         /* Is the pkey = 0x0, or 0x8000? */
1258         if ((pkey & PKEY_LOW_15_MASK) == 0)
1259                 goto bad;
1260
1261         /* The most likely matching pkey has index qp->s_pkey_index */
1262         if (unlikely(!egress_pkey_matches_entry(pkey,
1263                                         ppd->pkeys[qp->s_pkey_index]))) {
1264                 /* no match - try the entire table */
1265                 for (; i < MAX_PKEY_VALUES; i++) {
1266                         if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1267                                 break;
1268                 }
1269         }
1270
1271         if (i < MAX_PKEY_VALUES)
1272                 return 0;
1273 bad:
1274         incr_cntr64(&ppd->port_xmit_constraint_errors);
1275         dd = ppd->dd;
1276         if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
1277                 u16 slid = be16_to_cpu(hdr->lrh[3]);
1278
1279                 dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
1280                 dd->err_info_xmit_constraint.slid = slid;
1281                 dd->err_info_xmit_constraint.pkey = pkey;
1282         }
1283         return 1;
1284 }
1285
1286 /**
1287  * hfi1_verbs_send - send a packet
1288  * @qp: the QP to send on
1289  * @ahdr: the packet header
1290  * @hdrwords: the number of 32-bit words in the header
1291  * @ss: the SGE to send
1292  * @len: the length of the packet in bytes
1293  *
1294  * Return zero if packet is sent or queued OK.
1295  * Return non-zero and clear qp->s_flags HFI1_S_BUSY otherwise.
1296  */
1297 int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1298                     u32 hdrwords, struct hfi1_sge_state *ss, u32 len)
1299 {
1300         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1301         u32 plen;
1302         int ret;
1303         int pio = 0;
1304         unsigned long flags = 0;
1305         u32 dwords = (len + 3) >> 2;
1306
1307         /*
1308          * VL15 packets (IB_QPT_SMI) will always use PIO, so we
1309          * can defer SDMA restart until link goes ACTIVE without
1310          * worrying about just how we got there.
1311          */
1312         if ((qp->ibqp.qp_type == IB_QPT_SMI) ||
1313             !(dd->flags & HFI1_HAS_SEND_DMA))
1314                 pio = 1;
1315
1316         ret = egress_pkey_check(dd->pport, &ahdr->ibh, qp);
1317         if (unlikely(ret)) {
1318                 /*
1319                  * The value we are returning here does not get propagated to
1320                  * the verbs caller. Thus we need to complete the request with
1321                  * error otherwise the caller could be sitting waiting on the
1322                  * completion event. Only do this for PIO. SDMA has its own
1323                  * mechanism for handling the errors. So for SDMA we can just
1324                  * return.
1325                  */
1326                 if (pio) {
1327                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1328                                   __func__);
1329                         spin_lock_irqsave(&qp->s_lock, flags);
1330                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1331                         spin_unlock_irqrestore(&qp->s_lock, flags);
1332                 }
1333                 return -EINVAL;
1334         }
1335
1336         /*
1337          * Calculate the send buffer trigger address.
1338          * The +2 counts for the pbc control qword
1339          */
1340         plen = hdrwords + dwords + 2;
1341
1342         if (pio) {
1343                 ret = dd->process_pio_send(
1344                         qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1345         } else {
1346 #ifdef CONFIG_SDMA_VERBOSITY
1347                 dd_dev_err(dd, "CONFIG SDMA %s:%d %s()\n",
1348                            slashstrip(__FILE__), __LINE__, __func__);
1349                 dd_dev_err(dd, "SDMA hdrwords = %u, len = %u\n", hdrwords, len);
1350 #endif
1351                 ret = dd->process_dma_send(
1352                         qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1353         }
1354
1355         return ret;
1356 }
1357
1358 static int query_device(struct ib_device *ibdev,
1359                         struct ib_device_attr *props,
1360                         struct ib_udata *uhw)
1361 {
1362         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1363         struct hfi1_ibdev *dev = to_idev(ibdev);
1364
1365         if (uhw->inlen || uhw->outlen)
1366                 return -EINVAL;
1367         memset(props, 0, sizeof(*props));
1368
1369         props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1370                 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1371                 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1372                 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1373
1374         props->page_size_cap = PAGE_SIZE;
1375         props->vendor_id =
1376                 dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1377         props->vendor_part_id = dd->pcidev->device;
1378         props->hw_ver = dd->minrev;
1379         props->sys_image_guid = ib_hfi1_sys_image_guid;
1380         props->max_mr_size = ~0ULL;
1381         props->max_qp = hfi1_max_qps;
1382         props->max_qp_wr = hfi1_max_qp_wrs;
1383         props->max_sge = hfi1_max_sges;
1384         props->max_sge_rd = hfi1_max_sges;
1385         props->max_cq = hfi1_max_cqs;
1386         props->max_ah = hfi1_max_ahs;
1387         props->max_cqe = hfi1_max_cqes;
1388         props->max_mr = dev->lk_table.max;
1389         props->max_fmr = dev->lk_table.max;
1390         props->max_map_per_fmr = 32767;
1391         props->max_pd = hfi1_max_pds;
1392         props->max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1393         props->max_qp_init_rd_atom = 255;
1394         /* props->max_res_rd_atom */
1395         props->max_srq = hfi1_max_srqs;
1396         props->max_srq_wr = hfi1_max_srq_wrs;
1397         props->max_srq_sge = hfi1_max_srq_sges;
1398         /* props->local_ca_ack_delay */
1399         props->atomic_cap = IB_ATOMIC_GLOB;
1400         props->max_pkeys = hfi1_get_npkeys(dd);
1401         props->max_mcast_grp = hfi1_max_mcast_grps;
1402         props->max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1403         props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
1404                 props->max_mcast_grp;
1405
1406         return 0;
1407 }
1408
1409 static inline u16 opa_speed_to_ib(u16 in)
1410 {
1411         u16 out = 0;
1412
1413         if (in & OPA_LINK_SPEED_25G)
1414                 out |= IB_SPEED_EDR;
1415         if (in & OPA_LINK_SPEED_12_5G)
1416                 out |= IB_SPEED_FDR;
1417
1418         return out;
1419 }
1420
1421 /*
1422  * Convert a single OPA link width (no multiple flags) to an IB value.
1423  * A zero OPA link width means link down, which means the IB width value
1424  * is a don't care.
1425  */
1426 static inline u16 opa_width_to_ib(u16 in)
1427 {
1428         switch (in) {
1429         case OPA_LINK_WIDTH_1X:
1430         /* map 2x and 3x to 1x as they don't exist in IB */
1431         case OPA_LINK_WIDTH_2X:
1432         case OPA_LINK_WIDTH_3X:
1433                 return IB_WIDTH_1X;
1434         default: /* link down or unknown, return our largest width */
1435         case OPA_LINK_WIDTH_4X:
1436                 return IB_WIDTH_4X;
1437         }
1438 }
1439
1440 static int query_port(struct ib_device *ibdev, u8 port,
1441                       struct ib_port_attr *props)
1442 {
1443         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1444         struct hfi1_ibport *ibp = to_iport(ibdev, port);
1445         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1446         u16 lid = ppd->lid;
1447
1448         memset(props, 0, sizeof(*props));
1449         props->lid = lid ? lid : 0;
1450         props->lmc = ppd->lmc;
1451         props->sm_lid = ibp->sm_lid;
1452         props->sm_sl = ibp->sm_sl;
1453         /* OPA logical states match IB logical states */
1454         props->state = driver_lstate(ppd);
1455         props->phys_state = hfi1_ibphys_portstate(ppd);
1456         props->port_cap_flags = ibp->port_cap_flags;
1457         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1458         props->max_msg_sz = 0x80000000;
1459         props->pkey_tbl_len = hfi1_get_npkeys(dd);
1460         props->bad_pkey_cntr = ibp->pkey_violations;
1461         props->qkey_viol_cntr = ibp->qkey_violations;
1462         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1463         /* see rate_show() in ib core/sysfs.c */
1464         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1465         props->max_vl_num = ppd->vls_supported;
1466         props->init_type_reply = 0;
1467
1468         /* Once we are a "first class" citizen and have added the OPA MTUs to
1469          * the core we can advertise the larger MTU enum to the ULPs, for now
1470          * advertise only 4K.
1471          *
1472          * Those applications which are either OPA aware or pass the MTU enum
1473          * from the Path Records to us will get the new 8k MTU.  Those that
1474          * attempt to process the MTU enum may fail in various ways.
1475          */
1476         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1477                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1478         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1479                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1480         props->subnet_timeout = ibp->subnet_timeout;
1481
1482         return 0;
1483 }
1484
1485 static int port_immutable(struct ib_device *ibdev, u8 port_num,
1486                           struct ib_port_immutable *immutable)
1487 {
1488         struct ib_port_attr attr;
1489         int err;
1490
1491         err = query_port(ibdev, port_num, &attr);
1492         if (err)
1493                 return err;
1494
1495         memset(immutable, 0, sizeof(*immutable));
1496
1497         immutable->pkey_tbl_len = attr.pkey_tbl_len;
1498         immutable->gid_tbl_len = attr.gid_tbl_len;
1499         immutable->core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1500         immutable->max_mad_size = OPA_MGMT_MAD_SIZE;
1501
1502         return 0;
1503 }
1504
1505 static int modify_device(struct ib_device *device,
1506                          int device_modify_mask,
1507                          struct ib_device_modify *device_modify)
1508 {
1509         struct hfi1_devdata *dd = dd_from_ibdev(device);
1510         unsigned i;
1511         int ret;
1512
1513         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1514                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1515                 ret = -EOPNOTSUPP;
1516                 goto bail;
1517         }
1518
1519         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1520                 memcpy(device->node_desc, device_modify->node_desc, 64);
1521                 for (i = 0; i < dd->num_pports; i++) {
1522                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1523
1524                         hfi1_node_desc_chg(ibp);
1525                 }
1526         }
1527
1528         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1529                 ib_hfi1_sys_image_guid =
1530                         cpu_to_be64(device_modify->sys_image_guid);
1531                 for (i = 0; i < dd->num_pports; i++) {
1532                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1533
1534                         hfi1_sys_guid_chg(ibp);
1535                 }
1536         }
1537
1538         ret = 0;
1539
1540 bail:
1541         return ret;
1542 }
1543
1544 static int modify_port(struct ib_device *ibdev, u8 port,
1545                        int port_modify_mask, struct ib_port_modify *props)
1546 {
1547         struct hfi1_ibport *ibp = to_iport(ibdev, port);
1548         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1549         int ret = 0;
1550
1551         ibp->port_cap_flags |= props->set_port_cap_mask;
1552         ibp->port_cap_flags &= ~props->clr_port_cap_mask;
1553         if (props->set_port_cap_mask || props->clr_port_cap_mask)
1554                 hfi1_cap_mask_chg(ibp);
1555         if (port_modify_mask & IB_PORT_SHUTDOWN) {
1556                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1557                   OPA_LINKDOWN_REASON_UNKNOWN);
1558                 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1559         }
1560         if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
1561                 ibp->qkey_violations = 0;
1562         return ret;
1563 }
1564
1565 static int query_gid(struct ib_device *ibdev, u8 port,
1566                      int index, union ib_gid *gid)
1567 {
1568         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1569         int ret = 0;
1570
1571         if (!port || port > dd->num_pports)
1572                 ret = -EINVAL;
1573         else {
1574                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1575                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1576
1577                 gid->global.subnet_prefix = ibp->gid_prefix;
1578                 if (index == 0)
1579                         gid->global.interface_id = cpu_to_be64(ppd->guid);
1580                 else if (index < HFI1_GUIDS_PER_PORT)
1581                         gid->global.interface_id = ibp->guids[index - 1];
1582                 else
1583                         ret = -EINVAL;
1584         }
1585
1586         return ret;
1587 }
1588
1589 static struct ib_pd *alloc_pd(struct ib_device *ibdev,
1590                               struct ib_ucontext *context,
1591                               struct ib_udata *udata)
1592 {
1593         struct hfi1_ibdev *dev = to_idev(ibdev);
1594         struct hfi1_pd *pd;
1595         struct ib_pd *ret;
1596
1597         /*
1598          * This is actually totally arbitrary.  Some correctness tests
1599          * assume there's a maximum number of PDs that can be allocated.
1600          * We don't actually have this limit, but we fail the test if
1601          * we allow allocations of more than we report for this value.
1602          */
1603
1604         pd = kmalloc(sizeof(*pd), GFP_KERNEL);
1605         if (!pd) {
1606                 ret = ERR_PTR(-ENOMEM);
1607                 goto bail;
1608         }
1609
1610         spin_lock(&dev->n_pds_lock);
1611         if (dev->n_pds_allocated == hfi1_max_pds) {
1612                 spin_unlock(&dev->n_pds_lock);
1613                 kfree(pd);
1614                 ret = ERR_PTR(-ENOMEM);
1615                 goto bail;
1616         }
1617
1618         dev->n_pds_allocated++;
1619         spin_unlock(&dev->n_pds_lock);
1620
1621         /* ib_alloc_pd() will initialize pd->ibpd. */
1622         pd->user = udata != NULL;
1623
1624         ret = &pd->ibpd;
1625
1626 bail:
1627         return ret;
1628 }
1629
1630 static int dealloc_pd(struct ib_pd *ibpd)
1631 {
1632         struct hfi1_pd *pd = to_ipd(ibpd);
1633         struct hfi1_ibdev *dev = to_idev(ibpd->device);
1634
1635         spin_lock(&dev->n_pds_lock);
1636         dev->n_pds_allocated--;
1637         spin_unlock(&dev->n_pds_lock);
1638
1639         kfree(pd);
1640
1641         return 0;
1642 }
1643
1644 /*
1645  * convert ah port,sl to sc
1646  */
1647 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1648 {
1649         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1650
1651         return ibp->sl_to_sc[ah->sl];
1652 }
1653
1654 int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1655 {
1656         struct hfi1_ibport *ibp;
1657         struct hfi1_pportdata *ppd;
1658         struct hfi1_devdata *dd;
1659         u8 sc5;
1660
1661         /* A multicast address requires a GRH (see ch. 8.4.1). */
1662         if (ah_attr->dlid >= HFI1_MULTICAST_LID_BASE &&
1663             ah_attr->dlid != HFI1_PERMISSIVE_LID &&
1664             !(ah_attr->ah_flags & IB_AH_GRH))
1665                 goto bail;
1666         if ((ah_attr->ah_flags & IB_AH_GRH) &&
1667             ah_attr->grh.sgid_index >= HFI1_GUIDS_PER_PORT)
1668                 goto bail;
1669         if (ah_attr->dlid == 0)
1670                 goto bail;
1671         if (ah_attr->port_num < 1 ||
1672             ah_attr->port_num > ibdev->phys_port_cnt)
1673                 goto bail;
1674         if (ah_attr->static_rate != IB_RATE_PORT_CURRENT &&
1675             ib_rate_to_mbps(ah_attr->static_rate) < 0)
1676                 goto bail;
1677         if (ah_attr->sl >= OPA_MAX_SLS)
1678                 goto bail;
1679         /* test the mapping for validity */
1680         ibp = to_iport(ibdev, ah_attr->port_num);
1681         ppd = ppd_from_ibp(ibp);
1682         sc5 = ibp->sl_to_sc[ah_attr->sl];
1683         dd = dd_from_ppd(ppd);
1684         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1685                 goto bail;
1686         return 0;
1687 bail:
1688         return -EINVAL;
1689 }
1690
1691 /**
1692  * create_ah - create an address handle
1693  * @pd: the protection domain
1694  * @ah_attr: the attributes of the AH
1695  *
1696  * This may be called from interrupt context.
1697  */
1698 static struct ib_ah *create_ah(struct ib_pd *pd,
1699                                struct ib_ah_attr *ah_attr)
1700 {
1701         struct hfi1_ah *ah;
1702         struct ib_ah *ret;
1703         struct hfi1_ibdev *dev = to_idev(pd->device);
1704         unsigned long flags;
1705
1706         if (hfi1_check_ah(pd->device, ah_attr)) {
1707                 ret = ERR_PTR(-EINVAL);
1708                 goto bail;
1709         }
1710
1711         ah = kmalloc(sizeof(*ah), GFP_ATOMIC);
1712         if (!ah) {
1713                 ret = ERR_PTR(-ENOMEM);
1714                 goto bail;
1715         }
1716
1717         spin_lock_irqsave(&dev->n_ahs_lock, flags);
1718         if (dev->n_ahs_allocated == hfi1_max_ahs) {
1719                 spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1720                 kfree(ah);
1721                 ret = ERR_PTR(-ENOMEM);
1722                 goto bail;
1723         }
1724
1725         dev->n_ahs_allocated++;
1726         spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1727
1728         /* ib_create_ah() will initialize ah->ibah. */
1729         ah->attr = *ah_attr;
1730         atomic_set(&ah->refcount, 0);
1731
1732         ret = &ah->ibah;
1733
1734 bail:
1735         return ret;
1736 }
1737
1738 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1739 {
1740         struct ib_ah_attr attr;
1741         struct ib_ah *ah = ERR_PTR(-EINVAL);
1742         struct hfi1_qp *qp0;
1743
1744         memset(&attr, 0, sizeof(attr));
1745         attr.dlid = dlid;
1746         attr.port_num = ppd_from_ibp(ibp)->port;
1747         rcu_read_lock();
1748         qp0 = rcu_dereference(ibp->qp[0]);
1749         if (qp0)
1750                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1751         rcu_read_unlock();
1752         return ah;
1753 }
1754
1755 /**
1756  * destroy_ah - destroy an address handle
1757  * @ibah: the AH to destroy
1758  *
1759  * This may be called from interrupt context.
1760  */
1761 static int destroy_ah(struct ib_ah *ibah)
1762 {
1763         struct hfi1_ibdev *dev = to_idev(ibah->device);
1764         struct hfi1_ah *ah = to_iah(ibah);
1765         unsigned long flags;
1766
1767         if (atomic_read(&ah->refcount) != 0)
1768                 return -EBUSY;
1769
1770         spin_lock_irqsave(&dev->n_ahs_lock, flags);
1771         dev->n_ahs_allocated--;
1772         spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1773
1774         kfree(ah);
1775
1776         return 0;
1777 }
1778
1779 static int modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1780 {
1781         struct hfi1_ah *ah = to_iah(ibah);
1782
1783         if (hfi1_check_ah(ibah->device, ah_attr))
1784                 return -EINVAL;
1785
1786         ah->attr = *ah_attr;
1787
1788         return 0;
1789 }
1790
1791 static int query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1792 {
1793         struct hfi1_ah *ah = to_iah(ibah);
1794
1795         *ah_attr = ah->attr;
1796
1797         return 0;
1798 }
1799
1800 /**
1801  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1802  * @dd: the hfi1_ib device
1803  */
1804 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1805 {
1806         return ARRAY_SIZE(dd->pport[0].pkeys);
1807 }
1808
1809 static int query_pkey(struct ib_device *ibdev, u8 port, u16 index,
1810                       u16 *pkey)
1811 {
1812         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1813         int ret;
1814
1815         if (index >= hfi1_get_npkeys(dd)) {
1816                 ret = -EINVAL;
1817                 goto bail;
1818         }
1819
1820         *pkey = hfi1_get_pkey(to_iport(ibdev, port), index);
1821         ret = 0;
1822
1823 bail:
1824         return ret;
1825 }
1826
1827 /**
1828  * alloc_ucontext - allocate a ucontest
1829  * @ibdev: the infiniband device
1830  * @udata: not used by the driver
1831  */
1832
1833 static struct ib_ucontext *alloc_ucontext(struct ib_device *ibdev,
1834                                           struct ib_udata *udata)
1835 {
1836         struct hfi1_ucontext *context;
1837         struct ib_ucontext *ret;
1838
1839         context = kmalloc(sizeof(*context), GFP_KERNEL);
1840         if (!context) {
1841                 ret = ERR_PTR(-ENOMEM);
1842                 goto bail;
1843         }
1844
1845         ret = &context->ibucontext;
1846
1847 bail:
1848         return ret;
1849 }
1850
1851 static int dealloc_ucontext(struct ib_ucontext *context)
1852 {
1853         kfree(to_iucontext(context));
1854         return 0;
1855 }
1856
1857 static void init_ibport(struct hfi1_pportdata *ppd)
1858 {
1859         struct hfi1_ibport *ibp = &ppd->ibport_data;
1860         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1861         int i;
1862
1863         for (i = 0; i < sz; i++) {
1864                 ibp->sl_to_sc[i] = i;
1865                 ibp->sc_to_sl[i] = i;
1866         }
1867
1868         spin_lock_init(&ibp->lock);
1869         /* Set the prefix to the default value (see ch. 4.1.1) */
1870         ibp->gid_prefix = IB_DEFAULT_GID_PREFIX;
1871         ibp->sm_lid = 0;
1872         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1873         ibp->port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1874                 IB_PORT_CAP_MASK_NOTICE_SUP;
1875         ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1876         ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1877         ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1878         ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1879         ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1880
1881         RCU_INIT_POINTER(ibp->qp[0], NULL);
1882         RCU_INIT_POINTER(ibp->qp[1], NULL);
1883 }
1884
1885 static void verbs_txreq_kmem_cache_ctor(void *obj)
1886 {
1887         struct verbs_txreq *tx = (struct verbs_txreq *)obj;
1888
1889         memset(tx, 0, sizeof(*tx));
1890 }
1891
1892 /**
1893  * hfi1_register_ib_device - register our device with the infiniband core
1894  * @dd: the device data structure
1895  * Return 0 if successful, errno if unsuccessful.
1896  */
1897 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1898 {
1899         struct hfi1_ibdev *dev = &dd->verbs_dev;
1900         struct ib_device *ibdev = &dev->ibdev;
1901         struct hfi1_pportdata *ppd = dd->pport;
1902         unsigned i, lk_tab_size;
1903         int ret;
1904         size_t lcpysz = IB_DEVICE_NAME_MAX;
1905         u16 descq_cnt;
1906
1907         ret = hfi1_qp_init(dev);
1908         if (ret)
1909                 goto err_qp_init;
1910
1911
1912         for (i = 0; i < dd->num_pports; i++)
1913                 init_ibport(ppd + i);
1914
1915         /* Only need to initialize non-zero fields. */
1916         spin_lock_init(&dev->n_pds_lock);
1917         spin_lock_init(&dev->n_ahs_lock);
1918         spin_lock_init(&dev->n_cqs_lock);
1919         spin_lock_init(&dev->n_qps_lock);
1920         spin_lock_init(&dev->n_srqs_lock);
1921         spin_lock_init(&dev->n_mcast_grps_lock);
1922         init_timer(&dev->mem_timer);
1923         dev->mem_timer.function = mem_timer;
1924         dev->mem_timer.data = (unsigned long) dev;
1925
1926         /*
1927          * The top hfi1_lkey_table_size bits are used to index the
1928          * table.  The lower 8 bits can be owned by the user (copied from
1929          * the LKEY).  The remaining bits act as a generation number or tag.
1930          */
1931         spin_lock_init(&dev->lk_table.lock);
1932         dev->lk_table.max = 1 << hfi1_lkey_table_size;
1933         /* ensure generation is at least 4 bits (keys.c) */
1934         if (hfi1_lkey_table_size > MAX_LKEY_TABLE_BITS) {
1935                 dd_dev_warn(dd, "lkey bits %u too large, reduced to %u\n",
1936                               hfi1_lkey_table_size, MAX_LKEY_TABLE_BITS);
1937                 hfi1_lkey_table_size = MAX_LKEY_TABLE_BITS;
1938         }
1939         lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
1940         dev->lk_table.table = (struct hfi1_mregion __rcu **)
1941                 vmalloc(lk_tab_size);
1942         if (dev->lk_table.table == NULL) {
1943                 ret = -ENOMEM;
1944                 goto err_lk;
1945         }
1946         RCU_INIT_POINTER(dev->dma_mr, NULL);
1947         for (i = 0; i < dev->lk_table.max; i++)
1948                 RCU_INIT_POINTER(dev->lk_table.table[i], NULL);
1949         INIT_LIST_HEAD(&dev->pending_mmaps);
1950         spin_lock_init(&dev->pending_lock);
1951         seqlock_init(&dev->iowait_lock);
1952         dev->mmap_offset = PAGE_SIZE;
1953         spin_lock_init(&dev->mmap_offset_lock);
1954         INIT_LIST_HEAD(&dev->txwait);
1955         INIT_LIST_HEAD(&dev->memwait);
1956
1957         descq_cnt = sdma_get_descq_cnt();
1958
1959         /* SLAB_HWCACHE_ALIGN for AHG */
1960         dev->verbs_txreq_cache = kmem_cache_create("hfi1_vtxreq_cache",
1961                                                    sizeof(struct verbs_txreq),
1962                                                    0, SLAB_HWCACHE_ALIGN,
1963                                                    verbs_txreq_kmem_cache_ctor);
1964         if (!dev->verbs_txreq_cache) {
1965                 ret = -ENOMEM;
1966                 goto err_verbs_txreq;
1967         }
1968
1969         /*
1970          * The system image GUID is supposed to be the same for all
1971          * HFIs in a single system but since there can be other
1972          * device types in the system, we can't be sure this is unique.
1973          */
1974         if (!ib_hfi1_sys_image_guid)
1975                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1976         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1977         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1978         ibdev->owner = THIS_MODULE;
1979         ibdev->node_guid = cpu_to_be64(ppd->guid);
1980         ibdev->uverbs_abi_ver = HFI1_UVERBS_ABI_VERSION;
1981         ibdev->uverbs_cmd_mask =
1982                 (1ull << IB_USER_VERBS_CMD_GET_CONTEXT)         |
1983                 (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE)        |
1984                 (1ull << IB_USER_VERBS_CMD_QUERY_PORT)          |
1985                 (1ull << IB_USER_VERBS_CMD_ALLOC_PD)            |
1986                 (1ull << IB_USER_VERBS_CMD_DEALLOC_PD)          |
1987                 (1ull << IB_USER_VERBS_CMD_CREATE_AH)           |
1988                 (1ull << IB_USER_VERBS_CMD_MODIFY_AH)           |
1989                 (1ull << IB_USER_VERBS_CMD_QUERY_AH)            |
1990                 (1ull << IB_USER_VERBS_CMD_DESTROY_AH)          |
1991                 (1ull << IB_USER_VERBS_CMD_REG_MR)              |
1992                 (1ull << IB_USER_VERBS_CMD_DEREG_MR)            |
1993                 (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
1994                 (1ull << IB_USER_VERBS_CMD_CREATE_CQ)           |
1995                 (1ull << IB_USER_VERBS_CMD_RESIZE_CQ)           |
1996                 (1ull << IB_USER_VERBS_CMD_DESTROY_CQ)          |
1997                 (1ull << IB_USER_VERBS_CMD_POLL_CQ)             |
1998                 (1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ)       |
1999                 (1ull << IB_USER_VERBS_CMD_CREATE_QP)           |
2000                 (1ull << IB_USER_VERBS_CMD_QUERY_QP)            |
2001                 (1ull << IB_USER_VERBS_CMD_MODIFY_QP)           |
2002                 (1ull << IB_USER_VERBS_CMD_DESTROY_QP)          |
2003                 (1ull << IB_USER_VERBS_CMD_POST_SEND)           |
2004                 (1ull << IB_USER_VERBS_CMD_POST_RECV)           |
2005                 (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST)        |
2006                 (1ull << IB_USER_VERBS_CMD_DETACH_MCAST)        |
2007                 (1ull << IB_USER_VERBS_CMD_CREATE_SRQ)          |
2008                 (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ)          |
2009                 (1ull << IB_USER_VERBS_CMD_QUERY_SRQ)           |
2010                 (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ)         |
2011                 (1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
2012         ibdev->node_type = RDMA_NODE_IB_CA;
2013         ibdev->phys_port_cnt = dd->num_pports;
2014         ibdev->num_comp_vectors = 1;
2015         ibdev->dma_device = &dd->pcidev->dev;
2016         ibdev->query_device = query_device;
2017         ibdev->modify_device = modify_device;
2018         ibdev->query_port = query_port;
2019         ibdev->modify_port = modify_port;
2020         ibdev->query_pkey = query_pkey;
2021         ibdev->query_gid = query_gid;
2022         ibdev->alloc_ucontext = alloc_ucontext;
2023         ibdev->dealloc_ucontext = dealloc_ucontext;
2024         ibdev->alloc_pd = alloc_pd;
2025         ibdev->dealloc_pd = dealloc_pd;
2026         ibdev->create_ah = create_ah;
2027         ibdev->destroy_ah = destroy_ah;
2028         ibdev->modify_ah = modify_ah;
2029         ibdev->query_ah = query_ah;
2030         ibdev->create_srq = hfi1_create_srq;
2031         ibdev->modify_srq = hfi1_modify_srq;
2032         ibdev->query_srq = hfi1_query_srq;
2033         ibdev->destroy_srq = hfi1_destroy_srq;
2034         ibdev->create_qp = hfi1_create_qp;
2035         ibdev->modify_qp = hfi1_modify_qp;
2036         ibdev->query_qp = hfi1_query_qp;
2037         ibdev->destroy_qp = hfi1_destroy_qp;
2038         ibdev->post_send = post_send;
2039         ibdev->post_recv = post_receive;
2040         ibdev->post_srq_recv = hfi1_post_srq_receive;
2041         ibdev->create_cq = hfi1_create_cq;
2042         ibdev->destroy_cq = hfi1_destroy_cq;
2043         ibdev->resize_cq = hfi1_resize_cq;
2044         ibdev->poll_cq = hfi1_poll_cq;
2045         ibdev->req_notify_cq = hfi1_req_notify_cq;
2046         ibdev->get_dma_mr = hfi1_get_dma_mr;
2047         ibdev->reg_phys_mr = hfi1_reg_phys_mr;
2048         ibdev->reg_user_mr = hfi1_reg_user_mr;
2049         ibdev->dereg_mr = hfi1_dereg_mr;
2050         ibdev->alloc_mr = hfi1_alloc_mr;
2051         ibdev->alloc_fast_reg_page_list = hfi1_alloc_fast_reg_page_list;
2052         ibdev->free_fast_reg_page_list = hfi1_free_fast_reg_page_list;
2053         ibdev->alloc_fmr = hfi1_alloc_fmr;
2054         ibdev->map_phys_fmr = hfi1_map_phys_fmr;
2055         ibdev->unmap_fmr = hfi1_unmap_fmr;
2056         ibdev->dealloc_fmr = hfi1_dealloc_fmr;
2057         ibdev->attach_mcast = hfi1_multicast_attach;
2058         ibdev->detach_mcast = hfi1_multicast_detach;
2059         ibdev->process_mad = hfi1_process_mad;
2060         ibdev->mmap = hfi1_mmap;
2061         ibdev->dma_ops = &hfi1_dma_mapping_ops;
2062         ibdev->get_port_immutable = port_immutable;
2063
2064         strncpy(ibdev->node_desc, init_utsname()->nodename,
2065                 sizeof(ibdev->node_desc));
2066
2067         ret = ib_register_device(ibdev, hfi1_create_port_files);
2068         if (ret)
2069                 goto err_reg;
2070
2071         ret = hfi1_create_agents(dev);
2072         if (ret)
2073                 goto err_agents;
2074
2075         ret = hfi1_verbs_register_sysfs(dd);
2076         if (ret)
2077                 goto err_class;
2078
2079         goto bail;
2080
2081 err_class:
2082         hfi1_free_agents(dev);
2083 err_agents:
2084         ib_unregister_device(ibdev);
2085 err_reg:
2086 err_verbs_txreq:
2087         kmem_cache_destroy(dev->verbs_txreq_cache);
2088         vfree(dev->lk_table.table);
2089 err_lk:
2090         hfi1_qp_exit(dev);
2091 err_qp_init:
2092         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
2093 bail:
2094         return ret;
2095 }
2096
2097 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
2098 {
2099         struct hfi1_ibdev *dev = &dd->verbs_dev;
2100         struct ib_device *ibdev = &dev->ibdev;
2101
2102         hfi1_verbs_unregister_sysfs(dd);
2103
2104         hfi1_free_agents(dev);
2105
2106         ib_unregister_device(ibdev);
2107
2108         if (!list_empty(&dev->txwait))
2109                 dd_dev_err(dd, "txwait list not empty!\n");
2110         if (!list_empty(&dev->memwait))
2111                 dd_dev_err(dd, "memwait list not empty!\n");
2112         if (dev->dma_mr)
2113                 dd_dev_err(dd, "DMA MR not NULL!\n");
2114
2115         hfi1_qp_exit(dev);
2116         del_timer_sync(&dev->mem_timer);
2117         kmem_cache_destroy(dev->verbs_txreq_cache);
2118         vfree(dev->lk_table.table);
2119 }
2120
2121 /*
2122  * This must be called with s_lock held.
2123  */
2124 void hfi1_schedule_send(struct hfi1_qp *qp)
2125 {
2126         if (hfi1_send_ok(qp)) {
2127                 struct hfi1_ibport *ibp =
2128                         to_iport(qp->ibqp.device, qp->port_num);
2129                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2130
2131                 iowait_schedule(&qp->s_iowait, ppd->hfi1_wq);
2132         }
2133 }
2134
2135 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2136 {
2137         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2138
2139         if (packet->qp->ibqp.qp_type == IB_QPT_UC)
2140                 hfi1_uc_rcv(packet);
2141         else if (packet->qp->ibqp.qp_type == IB_QPT_UD)
2142                 hfi1_ud_rcv(packet);
2143         else
2144                 ibp->n_pkt_drops++;
2145 }