Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / spi / spi-rspi.c
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012  Renesas Solutions Corp.
5  *
6  * Based on spi-sh.c:
7  * Copyright (C) 2011 Renesas Solutions Corp.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/errno.h>
28 #include <linux/list.h>
29 #include <linux/workqueue.h>
30 #include <linux/interrupt.h>
31 #include <linux/platform_device.h>
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/sh_dma.h>
37 #include <linux/spi/spi.h>
38 #include <linux/spi/rspi.h>
39
40 #define RSPI_SPCR               0x00
41 #define RSPI_SSLP               0x01
42 #define RSPI_SPPCR              0x02
43 #define RSPI_SPSR               0x03
44 #define RSPI_SPDR               0x04
45 #define RSPI_SPSCR              0x08
46 #define RSPI_SPSSR              0x09
47 #define RSPI_SPBR               0x0a
48 #define RSPI_SPDCR              0x0b
49 #define RSPI_SPCKD              0x0c
50 #define RSPI_SSLND              0x0d
51 #define RSPI_SPND               0x0e
52 #define RSPI_SPCR2              0x0f
53 #define RSPI_SPCMD0             0x10
54 #define RSPI_SPCMD1             0x12
55 #define RSPI_SPCMD2             0x14
56 #define RSPI_SPCMD3             0x16
57 #define RSPI_SPCMD4             0x18
58 #define RSPI_SPCMD5             0x1a
59 #define RSPI_SPCMD6             0x1c
60 #define RSPI_SPCMD7             0x1e
61
62 /*qspi only */
63 #define QSPI_SPBFCR             0x18
64 #define QSPI_SPBDCR             0x1a
65 #define QSPI_SPBMUL0            0x1c
66 #define QSPI_SPBMUL1            0x20
67 #define QSPI_SPBMUL2            0x24
68 #define QSPI_SPBMUL3            0x28
69
70 /* SPCR */
71 #define SPCR_SPRIE              0x80
72 #define SPCR_SPE                0x40
73 #define SPCR_SPTIE              0x20
74 #define SPCR_SPEIE              0x10
75 #define SPCR_MSTR               0x08
76 #define SPCR_MODFEN             0x04
77 #define SPCR_TXMD               0x02
78 #define SPCR_SPMS               0x01
79
80 /* SSLP */
81 #define SSLP_SSL1P              0x02
82 #define SSLP_SSL0P              0x01
83
84 /* SPPCR */
85 #define SPPCR_MOIFE             0x20
86 #define SPPCR_MOIFV             0x10
87 #define SPPCR_SPOM              0x04
88 #define SPPCR_SPLP2             0x02
89 #define SPPCR_SPLP              0x01
90
91 /* SPSR */
92 #define SPSR_SPRF               0x80
93 #define SPSR_SPTEF              0x20
94 #define SPSR_PERF               0x08
95 #define SPSR_MODF               0x04
96 #define SPSR_IDLNF              0x02
97 #define SPSR_OVRF               0x01
98
99 /* SPSCR */
100 #define SPSCR_SPSLN_MASK        0x07
101
102 /* SPSSR */
103 #define SPSSR_SPECM_MASK        0x70
104 #define SPSSR_SPCP_MASK         0x07
105
106 /* SPDCR */
107 #define SPDCR_SPLW              0x20
108 #define SPDCR_SPRDTD            0x10
109 #define SPDCR_SLSEL1            0x08
110 #define SPDCR_SLSEL0            0x04
111 #define SPDCR_SLSEL_MASK        0x0c
112 #define SPDCR_SPFC1             0x02
113 #define SPDCR_SPFC0             0x01
114
115 /* SPCKD */
116 #define SPCKD_SCKDL_MASK        0x07
117
118 /* SSLND */
119 #define SSLND_SLNDL_MASK        0x07
120
121 /* SPND */
122 #define SPND_SPNDL_MASK         0x07
123
124 /* SPCR2 */
125 #define SPCR2_PTE               0x08
126 #define SPCR2_SPIE              0x04
127 #define SPCR2_SPOE              0x02
128 #define SPCR2_SPPE              0x01
129
130 /* SPCMDn */
131 #define SPCMD_SCKDEN            0x8000
132 #define SPCMD_SLNDEN            0x4000
133 #define SPCMD_SPNDEN            0x2000
134 #define SPCMD_LSBF              0x1000
135 #define SPCMD_SPB_MASK          0x0f00
136 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
137 #define SPCMD_SPB_8BIT          0x0000  /* qspi only */
138 #define SPCMD_SPB_16BIT         0x0100
139 #define SPCMD_SPB_20BIT         0x0000
140 #define SPCMD_SPB_24BIT         0x0100
141 #define SPCMD_SPB_32BIT         0x0200
142 #define SPCMD_SSLKP             0x0080
143 #define SPCMD_SSLA_MASK         0x0030
144 #define SPCMD_BRDV_MASK         0x000c
145 #define SPCMD_CPOL              0x0002
146 #define SPCMD_CPHA              0x0001
147
148 /* SPBFCR */
149 #define SPBFCR_TXRST            0x80    /* qspi only */
150 #define SPBFCR_RXRST            0x40    /* qspi only */
151
152 struct rspi_data {
153         void __iomem *addr;
154         u32 max_speed_hz;
155         struct spi_master *master;
156         struct list_head queue;
157         struct work_struct ws;
158         wait_queue_head_t wait;
159         spinlock_t lock;
160         struct clk *clk;
161         unsigned char spsr;
162         const struct spi_ops *ops;
163
164         /* for dmaengine */
165         struct dma_chan *chan_tx;
166         struct dma_chan *chan_rx;
167         int irq;
168
169         unsigned dma_width_16bit:1;
170         unsigned dma_callbacked:1;
171 };
172
173 static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
174 {
175         iowrite8(data, rspi->addr + offset);
176 }
177
178 static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
179 {
180         iowrite16(data, rspi->addr + offset);
181 }
182
183 static void rspi_write32(struct rspi_data *rspi, u32 data, u16 offset)
184 {
185         iowrite32(data, rspi->addr + offset);
186 }
187
188 static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
189 {
190         return ioread8(rspi->addr + offset);
191 }
192
193 static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
194 {
195         return ioread16(rspi->addr + offset);
196 }
197
198 /* optional functions */
199 struct spi_ops {
200         int (*set_config_register)(struct rspi_data *rspi, int access_size);
201         int (*send_pio)(struct rspi_data *rspi, struct spi_message *mesg,
202                         struct spi_transfer *t);
203         int (*receive_pio)(struct rspi_data *rspi, struct spi_message *mesg,
204                            struct spi_transfer *t);
205
206 };
207
208 /*
209  * functions for RSPI
210  */
211 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
212 {
213         int spbr;
214
215         /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
216         rspi_write8(rspi, 0x00, RSPI_SPPCR);
217
218         /* Sets transfer bit rate */
219         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
220         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
221
222         /* Sets number of frames to be used: 1 frame */
223         rspi_write8(rspi, 0x00, RSPI_SPDCR);
224
225         /* Sets RSPCK, SSL, next-access delay value */
226         rspi_write8(rspi, 0x00, RSPI_SPCKD);
227         rspi_write8(rspi, 0x00, RSPI_SSLND);
228         rspi_write8(rspi, 0x00, RSPI_SPND);
229
230         /* Sets parity, interrupt mask */
231         rspi_write8(rspi, 0x00, RSPI_SPCR2);
232
233         /* Sets SPCMD */
234         rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
235                      RSPI_SPCMD0);
236
237         /* Sets RSPI mode */
238         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
239
240         return 0;
241 }
242
243 /*
244  * functions for QSPI
245  */
246 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
247 {
248         u16 spcmd;
249         int spbr;
250
251         /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
252         rspi_write8(rspi, 0x00, RSPI_SPPCR);
253
254         /* Sets transfer bit rate */
255         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
256         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
257
258         /* Sets number of frames to be used: 1 frame */
259         rspi_write8(rspi, 0x00, RSPI_SPDCR);
260
261         /* Sets RSPCK, SSL, next-access delay value */
262         rspi_write8(rspi, 0x00, RSPI_SPCKD);
263         rspi_write8(rspi, 0x00, RSPI_SSLND);
264         rspi_write8(rspi, 0x00, RSPI_SPND);
265
266         /* Data Length Setting */
267         if (access_size == 8)
268                 spcmd = SPCMD_SPB_8BIT;
269         else if (access_size == 16)
270                 spcmd = SPCMD_SPB_16BIT;
271         else if (access_size == 32)
272                 spcmd = SPCMD_SPB_32BIT;
273
274         spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SSLKP | SPCMD_SPNDEN;
275
276         /* Resets transfer data length */
277         rspi_write32(rspi, 0, QSPI_SPBMUL0);
278
279         /* Resets transmit and receive buffer */
280         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
281         /* Sets buffer to allow normal operation */
282         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
283
284         /* Sets SPCMD */
285         rspi_write16(rspi, spcmd, RSPI_SPCMD0);
286
287         /* Enables SPI function in a master mode */
288         rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
289
290         return 0;
291 }
292
293 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
294
295 static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
296 {
297         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
298 }
299
300 static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
301 {
302         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
303 }
304
305 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
306                                    u8 enable_bit)
307 {
308         int ret;
309
310         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
311         rspi_enable_irq(rspi, enable_bit);
312         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
313         if (ret == 0 && !(rspi->spsr & wait_mask))
314                 return -ETIMEDOUT;
315
316         return 0;
317 }
318
319 static void rspi_assert_ssl(struct rspi_data *rspi)
320 {
321         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
322 }
323
324 static void rspi_negate_ssl(struct rspi_data *rspi)
325 {
326         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
327 }
328
329 static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
330                          struct spi_transfer *t)
331 {
332         int remain = t->len;
333         u8 *data;
334
335         data = (u8 *)t->tx_buf;
336         while (remain > 0) {
337                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
338                             RSPI_SPCR);
339
340                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
341                         dev_err(&rspi->master->dev,
342                                 "%s: tx empty timeout\n", __func__);
343                         return -ETIMEDOUT;
344                 }
345
346                 rspi_write16(rspi, *data, RSPI_SPDR);
347                 data++;
348                 remain--;
349         }
350
351         /* Waiting for the last transmition */
352         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
353
354         return 0;
355 }
356
357 static int qspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
358                          struct spi_transfer *t)
359 {
360         int remain = t->len;
361         u8 *data;
362
363         rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR);
364         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
365
366         data = (u8 *)t->tx_buf;
367         while (remain > 0) {
368
369                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
370                         dev_err(&rspi->master->dev,
371                                 "%s: tx empty timeout\n", __func__);
372                         return -ETIMEDOUT;
373                 }
374                 rspi_write8(rspi, *data++, RSPI_SPDR);
375
376                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
377                         dev_err(&rspi->master->dev,
378                                 "%s: receive timeout\n", __func__);
379                         return -ETIMEDOUT;
380                 }
381                 rspi_read8(rspi, RSPI_SPDR);
382
383                 remain--;
384         }
385
386         /* Waiting for the last transmition */
387         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
388
389         return 0;
390 }
391
392 #define send_pio(spi, mesg, t) spi->ops->send_pio(spi, mesg, t)
393
394 static void rspi_dma_complete(void *arg)
395 {
396         struct rspi_data *rspi = arg;
397
398         rspi->dma_callbacked = 1;
399         wake_up_interruptible(&rspi->wait);
400 }
401
402 static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
403                            struct dma_chan *chan,
404                            enum dma_transfer_direction dir)
405 {
406         sg_init_table(sg, 1);
407         sg_set_buf(sg, buf, len);
408         sg_dma_len(sg) = len;
409         return dma_map_sg(chan->device->dev, sg, 1, dir);
410 }
411
412 static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
413                               enum dma_transfer_direction dir)
414 {
415         dma_unmap_sg(chan->device->dev, sg, 1, dir);
416 }
417
418 static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
419 {
420         u16 *dst = buf;
421         const u8 *src = data;
422
423         while (len) {
424                 *dst++ = (u16)(*src++);
425                 len--;
426         }
427 }
428
429 static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
430 {
431         u8 *dst = buf;
432         const u16 *src = data;
433
434         while (len) {
435                 *dst++ = (u8)*src++;
436                 len--;
437         }
438 }
439
440 static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
441 {
442         struct scatterlist sg;
443         void *buf = NULL;
444         struct dma_async_tx_descriptor *desc;
445         unsigned len;
446         int ret = 0;
447
448         if (rspi->dma_width_16bit) {
449                 /*
450                  * If DMAC bus width is 16-bit, the driver allocates a dummy
451                  * buffer. And, the driver converts original data into the
452                  * DMAC data as the following format:
453                  *  original data: 1st byte, 2nd byte ...
454                  *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
455                  */
456                 len = t->len * 2;
457                 buf = kmalloc(len, GFP_KERNEL);
458                 if (!buf)
459                         return -ENOMEM;
460                 rspi_memory_to_8bit(buf, t->tx_buf, t->len);
461         } else {
462                 len = t->len;
463                 buf = (void *)t->tx_buf;
464         }
465
466         if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
467                 ret = -EFAULT;
468                 goto end_nomap;
469         }
470         desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
471                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
472         if (!desc) {
473                 ret = -EIO;
474                 goto end;
475         }
476
477         /*
478          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
479          * called. So, this driver disables the IRQ while DMA transfer.
480          */
481         disable_irq(rspi->irq);
482
483         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
484         rspi_enable_irq(rspi, SPCR_SPTIE);
485         rspi->dma_callbacked = 0;
486
487         desc->callback = rspi_dma_complete;
488         desc->callback_param = rspi;
489         dmaengine_submit(desc);
490         dma_async_issue_pending(rspi->chan_tx);
491
492         ret = wait_event_interruptible_timeout(rspi->wait,
493                                                rspi->dma_callbacked, HZ);
494         if (ret > 0 && rspi->dma_callbacked)
495                 ret = 0;
496         else if (!ret)
497                 ret = -ETIMEDOUT;
498         rspi_disable_irq(rspi, SPCR_SPTIE);
499
500         enable_irq(rspi->irq);
501
502 end:
503         rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
504 end_nomap:
505         if (rspi->dma_width_16bit)
506                 kfree(buf);
507
508         return ret;
509 }
510
511 static void rspi_receive_init(struct rspi_data *rspi)
512 {
513         unsigned char spsr;
514
515         spsr = rspi_read8(rspi, RSPI_SPSR);
516         if (spsr & SPSR_SPRF)
517                 rspi_read16(rspi, RSPI_SPDR);   /* dummy read */
518         if (spsr & SPSR_OVRF)
519                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
520                             RSPI_SPCR);
521 }
522
523 static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
524                             struct spi_transfer *t)
525 {
526         int remain = t->len;
527         u8 *data;
528
529         rspi_receive_init(rspi);
530
531         data = (u8 *)t->rx_buf;
532         while (remain > 0) {
533                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
534                             RSPI_SPCR);
535
536                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
537                         dev_err(&rspi->master->dev,
538                                 "%s: tx empty timeout\n", __func__);
539                         return -ETIMEDOUT;
540                 }
541                 /* dummy write for generate clock */
542                 rspi_write16(rspi, 0x00, RSPI_SPDR);
543
544                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
545                         dev_err(&rspi->master->dev,
546                                 "%s: receive timeout\n", __func__);
547                         return -ETIMEDOUT;
548                 }
549                 /* SPDR allows 16 or 32-bit access only */
550                 *data = (u8)rspi_read16(rspi, RSPI_SPDR);
551
552                 data++;
553                 remain--;
554         }
555
556         return 0;
557 }
558
559 static void qspi_receive_init(struct rspi_data *rspi)
560 {
561         unsigned char spsr;
562
563         spsr = rspi_read8(rspi, RSPI_SPSR);
564         if (spsr & SPSR_SPRF)
565                 rspi_read8(rspi, RSPI_SPDR);   /* dummy read */
566         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
567         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
568 }
569
570 static int qspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
571                             struct spi_transfer *t)
572 {
573         int remain = t->len;
574         u8 *data;
575
576         qspi_receive_init(rspi);
577
578         data = (u8 *)t->rx_buf;
579         while (remain > 0) {
580
581                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
582                         dev_err(&rspi->master->dev,
583                                 "%s: tx empty timeout\n", __func__);
584                         return -ETIMEDOUT;
585                 }
586                 /* dummy write for generate clock */
587                 rspi_write8(rspi, 0x00, RSPI_SPDR);
588
589                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
590                         dev_err(&rspi->master->dev,
591                                 "%s: receive timeout\n", __func__);
592                         return -ETIMEDOUT;
593                 }
594                 /* SPDR allows 8, 16 or 32-bit access */
595                 *data++ = rspi_read8(rspi, RSPI_SPDR);
596                 remain--;
597         }
598
599         return 0;
600 }
601
602 #define receive_pio(spi, mesg, t) spi->ops->receive_pio(spi, mesg, t)
603
604 static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
605 {
606         struct scatterlist sg, sg_dummy;
607         void *dummy = NULL, *rx_buf = NULL;
608         struct dma_async_tx_descriptor *desc, *desc_dummy;
609         unsigned len;
610         int ret = 0;
611
612         if (rspi->dma_width_16bit) {
613                 /*
614                  * If DMAC bus width is 16-bit, the driver allocates a dummy
615                  * buffer. And, finally the driver converts the DMAC data into
616                  * actual data as the following format:
617                  *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
618                  *  actual data: 1st byte, 2nd byte ...
619                  */
620                 len = t->len * 2;
621                 rx_buf = kmalloc(len, GFP_KERNEL);
622                 if (!rx_buf)
623                         return -ENOMEM;
624          } else {
625                 len = t->len;
626                 rx_buf = t->rx_buf;
627         }
628
629         /* prepare dummy transfer to generate SPI clocks */
630         dummy = kzalloc(len, GFP_KERNEL);
631         if (!dummy) {
632                 ret = -ENOMEM;
633                 goto end_nomap;
634         }
635         if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
636                              DMA_TO_DEVICE)) {
637                 ret = -EFAULT;
638                 goto end_nomap;
639         }
640         desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
641                         DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
642         if (!desc_dummy) {
643                 ret = -EIO;
644                 goto end_dummy_mapped;
645         }
646
647         /* prepare receive transfer */
648         if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
649                              DMA_FROM_DEVICE)) {
650                 ret = -EFAULT;
651                 goto end_dummy_mapped;
652
653         }
654         desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
655                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
656         if (!desc) {
657                 ret = -EIO;
658                 goto end;
659         }
660
661         rspi_receive_init(rspi);
662
663         /*
664          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
665          * called. So, this driver disables the IRQ while DMA transfer.
666          */
667         disable_irq(rspi->irq);
668
669         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
670         rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
671         rspi->dma_callbacked = 0;
672
673         desc->callback = rspi_dma_complete;
674         desc->callback_param = rspi;
675         dmaengine_submit(desc);
676         dma_async_issue_pending(rspi->chan_rx);
677
678         desc_dummy->callback = NULL;    /* No callback */
679         dmaengine_submit(desc_dummy);
680         dma_async_issue_pending(rspi->chan_tx);
681
682         ret = wait_event_interruptible_timeout(rspi->wait,
683                                                rspi->dma_callbacked, HZ);
684         if (ret > 0 && rspi->dma_callbacked)
685                 ret = 0;
686         else if (!ret)
687                 ret = -ETIMEDOUT;
688         rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
689
690         enable_irq(rspi->irq);
691
692 end:
693         rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
694 end_dummy_mapped:
695         rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
696 end_nomap:
697         if (rspi->dma_width_16bit) {
698                 if (!ret)
699                         rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
700                 kfree(rx_buf);
701         }
702         kfree(dummy);
703
704         return ret;
705 }
706
707 static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
708 {
709         if (t->tx_buf && rspi->chan_tx)
710                 return 1;
711         /* If the module receives data by DMAC, it also needs TX DMAC */
712         if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
713                 return 1;
714
715         return 0;
716 }
717
718 static void rspi_work(struct work_struct *work)
719 {
720         struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
721         struct spi_message *mesg;
722         struct spi_transfer *t;
723         unsigned long flags;
724         int ret;
725
726         while (1) {
727                 spin_lock_irqsave(&rspi->lock, flags);
728                 if (list_empty(&rspi->queue)) {
729                         spin_unlock_irqrestore(&rspi->lock, flags);
730                         break;
731                 }
732                 mesg = list_entry(rspi->queue.next, struct spi_message, queue);
733                 list_del_init(&mesg->queue);
734                 spin_unlock_irqrestore(&rspi->lock, flags);
735
736                 rspi_assert_ssl(rspi);
737
738                 list_for_each_entry(t, &mesg->transfers, transfer_list) {
739                         if (t->tx_buf) {
740                                 if (rspi_is_dma(rspi, t))
741                                         ret = rspi_send_dma(rspi, t);
742                                 else
743                                         ret = send_pio(rspi, mesg, t);
744                                 if (ret < 0)
745                                         goto error;
746                         }
747                         if (t->rx_buf) {
748                                 if (rspi_is_dma(rspi, t))
749                                         ret = rspi_receive_dma(rspi, t);
750                                 else
751                                         ret = receive_pio(rspi, mesg, t);
752                                 if (ret < 0)
753                                         goto error;
754                         }
755                         mesg->actual_length += t->len;
756                 }
757                 rspi_negate_ssl(rspi);
758
759                 mesg->status = 0;
760                 mesg->complete(mesg->context);
761         }
762
763         return;
764
765 error:
766         mesg->status = ret;
767         mesg->complete(mesg->context);
768 }
769
770 static int rspi_setup(struct spi_device *spi)
771 {
772         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
773
774         if (!spi->bits_per_word)
775                 spi->bits_per_word = 8;
776         rspi->max_speed_hz = spi->max_speed_hz;
777
778         set_config_register(rspi, 8);
779
780         return 0;
781 }
782
783 static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
784 {
785         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
786         unsigned long flags;
787
788         mesg->actual_length = 0;
789         mesg->status = -EINPROGRESS;
790
791         spin_lock_irqsave(&rspi->lock, flags);
792         list_add_tail(&mesg->queue, &rspi->queue);
793         schedule_work(&rspi->ws);
794         spin_unlock_irqrestore(&rspi->lock, flags);
795
796         return 0;
797 }
798
799 static void rspi_cleanup(struct spi_device *spi)
800 {
801 }
802
803 static irqreturn_t rspi_irq(int irq, void *_sr)
804 {
805         struct rspi_data *rspi = (struct rspi_data *)_sr;
806         unsigned long spsr;
807         irqreturn_t ret = IRQ_NONE;
808         unsigned char disable_irq = 0;
809
810         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
811         if (spsr & SPSR_SPRF)
812                 disable_irq |= SPCR_SPRIE;
813         if (spsr & SPSR_SPTEF)
814                 disable_irq |= SPCR_SPTIE;
815
816         if (disable_irq) {
817                 ret = IRQ_HANDLED;
818                 rspi_disable_irq(rspi, disable_irq);
819                 wake_up(&rspi->wait);
820         }
821
822         return ret;
823 }
824
825 static int rspi_request_dma(struct rspi_data *rspi,
826                                       struct platform_device *pdev)
827 {
828         struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
829         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
830         dma_cap_mask_t mask;
831         struct dma_slave_config cfg;
832         int ret;
833
834         if (!res || !rspi_pd)
835                 return 0;       /* The driver assumes no error. */
836
837         rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
838
839         /* If the module receives data by DMAC, it also needs TX DMAC */
840         if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
841                 dma_cap_zero(mask);
842                 dma_cap_set(DMA_SLAVE, mask);
843                 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
844                                                     (void *)rspi_pd->dma_rx_id);
845                 if (rspi->chan_rx) {
846                         cfg.slave_id = rspi_pd->dma_rx_id;
847                         cfg.direction = DMA_DEV_TO_MEM;
848                         cfg.dst_addr = 0;
849                         cfg.src_addr = res->start + RSPI_SPDR;
850                         ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
851                         if (!ret)
852                                 dev_info(&pdev->dev, "Use DMA when rx.\n");
853                         else
854                                 return ret;
855                 }
856         }
857         if (rspi_pd->dma_tx_id) {
858                 dma_cap_zero(mask);
859                 dma_cap_set(DMA_SLAVE, mask);
860                 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
861                                                     (void *)rspi_pd->dma_tx_id);
862                 if (rspi->chan_tx) {
863                         cfg.slave_id = rspi_pd->dma_tx_id;
864                         cfg.direction = DMA_MEM_TO_DEV;
865                         cfg.dst_addr = res->start + RSPI_SPDR;
866                         cfg.src_addr = 0;
867                         ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
868                         if (!ret)
869                                 dev_info(&pdev->dev, "Use DMA when tx\n");
870                         else
871                                 return ret;
872                 }
873         }
874
875         return 0;
876 }
877
878 static void rspi_release_dma(struct rspi_data *rspi)
879 {
880         if (rspi->chan_tx)
881                 dma_release_channel(rspi->chan_tx);
882         if (rspi->chan_rx)
883                 dma_release_channel(rspi->chan_rx);
884 }
885
886 static int rspi_remove(struct platform_device *pdev)
887 {
888         struct rspi_data *rspi = platform_get_drvdata(pdev);
889
890         spi_unregister_master(rspi->master);
891         rspi_release_dma(rspi);
892         free_irq(platform_get_irq(pdev, 0), rspi);
893         clk_put(rspi->clk);
894         iounmap(rspi->addr);
895
896         return 0;
897 }
898
899 static int rspi_probe(struct platform_device *pdev)
900 {
901         struct resource *res;
902         struct spi_master *master;
903         struct rspi_data *rspi;
904         int ret, irq;
905         char clk_name[16];
906         struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
907         const struct spi_ops *ops;
908         const struct platform_device_id *id_entry = pdev->id_entry;
909
910         ops = (struct spi_ops *)id_entry->driver_data;
911         /* ops parameter check */
912         if (!ops->set_config_register) {
913                 dev_err(&pdev->dev, "there is no set_config_register\n");
914                 return -ENODEV;
915         }
916         /* get base addr */
917         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
918         if (unlikely(res == NULL)) {
919                 dev_err(&pdev->dev, "invalid resource\n");
920                 return -EINVAL;
921         }
922
923         irq = platform_get_irq(pdev, 0);
924         if (irq < 0) {
925                 dev_err(&pdev->dev, "platform_get_irq error\n");
926                 return -ENODEV;
927         }
928
929         master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
930         if (master == NULL) {
931                 dev_err(&pdev->dev, "spi_alloc_master error.\n");
932                 return -ENOMEM;
933         }
934
935         rspi = spi_master_get_devdata(master);
936         platform_set_drvdata(pdev, rspi);
937         rspi->ops = ops;
938         rspi->master = master;
939         rspi->addr = ioremap(res->start, resource_size(res));
940         if (rspi->addr == NULL) {
941                 dev_err(&pdev->dev, "ioremap error.\n");
942                 ret = -ENOMEM;
943                 goto error1;
944         }
945
946         snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
947         rspi->clk = clk_get(&pdev->dev, clk_name);
948         if (IS_ERR(rspi->clk)) {
949                 dev_err(&pdev->dev, "cannot get clock\n");
950                 ret = PTR_ERR(rspi->clk);
951                 goto error2;
952         }
953         clk_enable(rspi->clk);
954
955         INIT_LIST_HEAD(&rspi->queue);
956         spin_lock_init(&rspi->lock);
957         INIT_WORK(&rspi->ws, rspi_work);
958         init_waitqueue_head(&rspi->wait);
959
960         master->num_chipselect = rspi_pd->num_chipselect;
961         if (!master->num_chipselect)
962                 master->num_chipselect = 2; /* default */
963
964         master->bus_num = pdev->id;
965         master->setup = rspi_setup;
966         master->transfer = rspi_transfer;
967         master->cleanup = rspi_cleanup;
968
969         ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
970         if (ret < 0) {
971                 dev_err(&pdev->dev, "request_irq error\n");
972                 goto error3;
973         }
974
975         rspi->irq = irq;
976         ret = rspi_request_dma(rspi, pdev);
977         if (ret < 0) {
978                 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
979                 goto error4;
980         }
981
982         ret = spi_register_master(master);
983         if (ret < 0) {
984                 dev_err(&pdev->dev, "spi_register_master error.\n");
985                 goto error4;
986         }
987
988         dev_info(&pdev->dev, "probed\n");
989
990         return 0;
991
992 error4:
993         rspi_release_dma(rspi);
994         free_irq(irq, rspi);
995 error3:
996         clk_put(rspi->clk);
997 error2:
998         iounmap(rspi->addr);
999 error1:
1000         spi_master_put(master);
1001
1002         return ret;
1003 }
1004
1005 static struct spi_ops rspi_ops = {
1006         .set_config_register =          rspi_set_config_register,
1007         .send_pio =                     rspi_send_pio,
1008         .receive_pio =                  rspi_receive_pio,
1009 };
1010
1011 static struct spi_ops qspi_ops = {
1012         .set_config_register =          qspi_set_config_register,
1013         .send_pio =                     qspi_send_pio,
1014         .receive_pio =                  qspi_receive_pio,
1015 };
1016
1017 static struct platform_device_id spi_driver_ids[] = {
1018         { "rspi",       (kernel_ulong_t)&rspi_ops },
1019         { "qspi",       (kernel_ulong_t)&qspi_ops },
1020         {},
1021 };
1022
1023 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1024
1025 static struct platform_driver rspi_driver = {
1026         .probe =        rspi_probe,
1027         .remove =       rspi_remove,
1028         .id_table =     spi_driver_ids,
1029         .driver         = {
1030                 .name = "renesas_spi",
1031                 .owner  = THIS_MODULE,
1032         },
1033 };
1034 module_platform_driver(rspi_driver);
1035
1036 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1037 MODULE_LICENSE("GPL v2");
1038 MODULE_AUTHOR("Yoshihiro Shimoda");
1039 MODULE_ALIAS("platform:rspi");