Merge branch 'acpi-ec'
[linux-drm-fsl-dcu.git] / drivers / spi / spi-dw-mid.c
1 /*
2  * Special handling for DW core on Intel MID platform
3  *
4  * Copyright (c) 2009, 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_SPI_DW_MID_DMA
26 #include <linux/intel_mid_dma.h>
27 #include <linux/pci.h>
28
29 #define RX_BUSY         0
30 #define TX_BUSY         1
31
32 struct mid_dma {
33         struct intel_mid_dma_slave      dmas_tx;
34         struct intel_mid_dma_slave      dmas_rx;
35 };
36
37 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
38 {
39         struct dw_spi *dws = param;
40
41         return dws->dma_dev == chan->device->dev;
42 }
43
44 static int mid_spi_dma_init(struct dw_spi *dws)
45 {
46         struct mid_dma *dw_dma = dws->dma_priv;
47         struct pci_dev *dma_dev;
48         struct intel_mid_dma_slave *rxs, *txs;
49         dma_cap_mask_t mask;
50
51         /*
52          * Get pci device for DMA controller, currently it could only
53          * be the DMA controller of Medfield
54          */
55         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
56         if (!dma_dev)
57                 return -ENODEV;
58
59         dws->dma_dev = &dma_dev->dev;
60
61         dma_cap_zero(mask);
62         dma_cap_set(DMA_SLAVE, mask);
63
64         /* 1. Init rx channel */
65         dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
66         if (!dws->rxchan)
67                 goto err_exit;
68         rxs = &dw_dma->dmas_rx;
69         rxs->hs_mode = LNW_DMA_HW_HS;
70         rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
71         dws->rxchan->private = rxs;
72
73         /* 2. Init tx channel */
74         dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
75         if (!dws->txchan)
76                 goto free_rxchan;
77         txs = &dw_dma->dmas_tx;
78         txs->hs_mode = LNW_DMA_HW_HS;
79         txs->cfg_mode = LNW_DMA_MEM_TO_PER;
80         dws->txchan->private = txs;
81
82         dws->dma_inited = 1;
83         return 0;
84
85 free_rxchan:
86         dma_release_channel(dws->rxchan);
87 err_exit:
88         return -EBUSY;
89 }
90
91 static void mid_spi_dma_exit(struct dw_spi *dws)
92 {
93         if (!dws->dma_inited)
94                 return;
95
96         dmaengine_terminate_all(dws->txchan);
97         dma_release_channel(dws->txchan);
98
99         dmaengine_terminate_all(dws->rxchan);
100         dma_release_channel(dws->rxchan);
101 }
102
103 /*
104  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
105  * channel will clear a corresponding bit.
106  */
107 static void dw_spi_dma_tx_done(void *arg)
108 {
109         struct dw_spi *dws = arg;
110
111         if (test_and_clear_bit(TX_BUSY, &dws->dma_chan_busy) & BIT(RX_BUSY))
112                 return;
113         dw_spi_xfer_done(dws);
114 }
115
116 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws)
117 {
118         struct dma_slave_config txconf;
119         struct dma_async_tx_descriptor *txdesc;
120
121         if (!dws->tx_dma)
122                 return NULL;
123
124         txconf.direction = DMA_MEM_TO_DEV;
125         txconf.dst_addr = dws->dma_addr;
126         txconf.dst_maxburst = LNW_DMA_MSIZE_16;
127         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
128         txconf.dst_addr_width = dws->dma_width;
129         txconf.device_fc = false;
130
131         dmaengine_slave_config(dws->txchan, &txconf);
132
133         memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
134         dws->tx_sgl.dma_address = dws->tx_dma;
135         dws->tx_sgl.length = dws->len;
136
137         txdesc = dmaengine_prep_slave_sg(dws->txchan,
138                                 &dws->tx_sgl,
139                                 1,
140                                 DMA_MEM_TO_DEV,
141                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
142         txdesc->callback = dw_spi_dma_tx_done;
143         txdesc->callback_param = dws;
144
145         return txdesc;
146 }
147
148 /*
149  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
150  * channel will clear a corresponding bit.
151  */
152 static void dw_spi_dma_rx_done(void *arg)
153 {
154         struct dw_spi *dws = arg;
155
156         if (test_and_clear_bit(RX_BUSY, &dws->dma_chan_busy) & BIT(TX_BUSY))
157                 return;
158         dw_spi_xfer_done(dws);
159 }
160
161 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
162 {
163         struct dma_slave_config rxconf;
164         struct dma_async_tx_descriptor *rxdesc;
165
166         if (!dws->rx_dma)
167                 return NULL;
168
169         rxconf.direction = DMA_DEV_TO_MEM;
170         rxconf.src_addr = dws->dma_addr;
171         rxconf.src_maxburst = LNW_DMA_MSIZE_16;
172         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
173         rxconf.src_addr_width = dws->dma_width;
174         rxconf.device_fc = false;
175
176         dmaengine_slave_config(dws->rxchan, &rxconf);
177
178         memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
179         dws->rx_sgl.dma_address = dws->rx_dma;
180         dws->rx_sgl.length = dws->len;
181
182         rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
183                                 &dws->rx_sgl,
184                                 1,
185                                 DMA_DEV_TO_MEM,
186                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
187         rxdesc->callback = dw_spi_dma_rx_done;
188         rxdesc->callback_param = dws;
189
190         return rxdesc;
191 }
192
193 static void dw_spi_dma_setup(struct dw_spi *dws)
194 {
195         u16 dma_ctrl = 0;
196
197         spi_enable_chip(dws, 0);
198
199         dw_writew(dws, DW_SPI_DMARDLR, 0xf);
200         dw_writew(dws, DW_SPI_DMATDLR, 0x10);
201
202         if (dws->tx_dma)
203                 dma_ctrl |= SPI_DMA_TDMAE;
204         if (dws->rx_dma)
205                 dma_ctrl |= SPI_DMA_RDMAE;
206         dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
207
208         spi_enable_chip(dws, 1);
209 }
210
211 static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
212 {
213         struct dma_async_tx_descriptor *txdesc, *rxdesc;
214
215         /* 1. setup DMA related registers */
216         if (cs_change)
217                 dw_spi_dma_setup(dws);
218
219         /* 2. Prepare the TX dma transfer */
220         txdesc = dw_spi_dma_prepare_tx(dws);
221
222         /* 3. Prepare the RX dma transfer */
223         rxdesc = dw_spi_dma_prepare_rx(dws);
224
225         /* rx must be started before tx due to spi instinct */
226         if (rxdesc) {
227                 set_bit(RX_BUSY, &dws->dma_chan_busy);
228                 dmaengine_submit(rxdesc);
229                 dma_async_issue_pending(dws->rxchan);
230         }
231
232         if (txdesc) {
233                 set_bit(TX_BUSY, &dws->dma_chan_busy);
234                 dmaengine_submit(txdesc);
235                 dma_async_issue_pending(dws->txchan);
236         }
237
238         return 0;
239 }
240
241 static struct dw_spi_dma_ops mid_dma_ops = {
242         .dma_init       = mid_spi_dma_init,
243         .dma_exit       = mid_spi_dma_exit,
244         .dma_transfer   = mid_spi_dma_transfer,
245 };
246 #endif
247
248 /* Some specific info for SPI0 controller on Intel MID */
249
250 /* HW info for MRST Clk Control Unit, 32b reg per controller */
251 #define MRST_SPI_CLK_BASE       100000000       /* 100m */
252 #define MRST_CLK_SPI_REG        0xff11d86c
253 #define CLK_SPI_BDIV_OFFSET     0
254 #define CLK_SPI_BDIV_MASK       0x00000007
255 #define CLK_SPI_CDIV_OFFSET     9
256 #define CLK_SPI_CDIV_MASK       0x00000e00
257 #define CLK_SPI_DISABLE_OFFSET  8
258
259 int dw_spi_mid_init(struct dw_spi *dws)
260 {
261         void __iomem *clk_reg;
262         u32 clk_cdiv;
263
264         clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
265         if (!clk_reg)
266                 return -ENOMEM;
267
268         /* Get SPI controller operating freq info */
269         clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
270         clk_cdiv &= CLK_SPI_CDIV_MASK;
271         clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
272         dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
273
274         iounmap(clk_reg);
275
276 #ifdef CONFIG_SPI_DW_MID_DMA
277         dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
278         if (!dws->dma_priv)
279                 return -ENOMEM;
280         dws->dma_ops = &mid_dma_ops;
281 #endif
282         return 0;
283 }