Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
29
30 /* SPI register offsets */
31 #define SPI_CR                                  0x0000
32 #define SPI_MR                                  0x0004
33 #define SPI_RDR                                 0x0008
34 #define SPI_TDR                                 0x000c
35 #define SPI_SR                                  0x0010
36 #define SPI_IER                                 0x0014
37 #define SPI_IDR                                 0x0018
38 #define SPI_IMR                                 0x001c
39 #define SPI_CSR0                                0x0030
40 #define SPI_CSR1                                0x0034
41 #define SPI_CSR2                                0x0038
42 #define SPI_CSR3                                0x003c
43 #define SPI_FMR                                 0x0040
44 #define SPI_FLR                                 0x0044
45 #define SPI_VERSION                             0x00fc
46 #define SPI_RPR                                 0x0100
47 #define SPI_RCR                                 0x0104
48 #define SPI_TPR                                 0x0108
49 #define SPI_TCR                                 0x010c
50 #define SPI_RNPR                                0x0110
51 #define SPI_RNCR                                0x0114
52 #define SPI_TNPR                                0x0118
53 #define SPI_TNCR                                0x011c
54 #define SPI_PTCR                                0x0120
55 #define SPI_PTSR                                0x0124
56
57 /* Bitfields in CR */
58 #define SPI_SPIEN_OFFSET                        0
59 #define SPI_SPIEN_SIZE                          1
60 #define SPI_SPIDIS_OFFSET                       1
61 #define SPI_SPIDIS_SIZE                         1
62 #define SPI_SWRST_OFFSET                        7
63 #define SPI_SWRST_SIZE                          1
64 #define SPI_LASTXFER_OFFSET                     24
65 #define SPI_LASTXFER_SIZE                       1
66 #define SPI_TXFCLR_OFFSET                       16
67 #define SPI_TXFCLR_SIZE                         1
68 #define SPI_RXFCLR_OFFSET                       17
69 #define SPI_RXFCLR_SIZE                         1
70 #define SPI_FIFOEN_OFFSET                       30
71 #define SPI_FIFOEN_SIZE                         1
72 #define SPI_FIFODIS_OFFSET                      31
73 #define SPI_FIFODIS_SIZE                        1
74
75 /* Bitfields in MR */
76 #define SPI_MSTR_OFFSET                         0
77 #define SPI_MSTR_SIZE                           1
78 #define SPI_PS_OFFSET                           1
79 #define SPI_PS_SIZE                             1
80 #define SPI_PCSDEC_OFFSET                       2
81 #define SPI_PCSDEC_SIZE                         1
82 #define SPI_FDIV_OFFSET                         3
83 #define SPI_FDIV_SIZE                           1
84 #define SPI_MODFDIS_OFFSET                      4
85 #define SPI_MODFDIS_SIZE                        1
86 #define SPI_WDRBT_OFFSET                        5
87 #define SPI_WDRBT_SIZE                          1
88 #define SPI_LLB_OFFSET                          7
89 #define SPI_LLB_SIZE                            1
90 #define SPI_PCS_OFFSET                          16
91 #define SPI_PCS_SIZE                            4
92 #define SPI_DLYBCS_OFFSET                       24
93 #define SPI_DLYBCS_SIZE                         8
94
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET                           0
97 #define SPI_RD_SIZE                             16
98
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET                           0
101 #define SPI_TD_SIZE                             16
102
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET                         0
105 #define SPI_RDRF_SIZE                           1
106 #define SPI_TDRE_OFFSET                         1
107 #define SPI_TDRE_SIZE                           1
108 #define SPI_MODF_OFFSET                         2
109 #define SPI_MODF_SIZE                           1
110 #define SPI_OVRES_OFFSET                        3
111 #define SPI_OVRES_SIZE                          1
112 #define SPI_ENDRX_OFFSET                        4
113 #define SPI_ENDRX_SIZE                          1
114 #define SPI_ENDTX_OFFSET                        5
115 #define SPI_ENDTX_SIZE                          1
116 #define SPI_RXBUFF_OFFSET                       6
117 #define SPI_RXBUFF_SIZE                         1
118 #define SPI_TXBUFE_OFFSET                       7
119 #define SPI_TXBUFE_SIZE                         1
120 #define SPI_NSSR_OFFSET                         8
121 #define SPI_NSSR_SIZE                           1
122 #define SPI_TXEMPTY_OFFSET                      9
123 #define SPI_TXEMPTY_SIZE                        1
124 #define SPI_SPIENS_OFFSET                       16
125 #define SPI_SPIENS_SIZE                         1
126 #define SPI_TXFEF_OFFSET                        24
127 #define SPI_TXFEF_SIZE                          1
128 #define SPI_TXFFF_OFFSET                        25
129 #define SPI_TXFFF_SIZE                          1
130 #define SPI_TXFTHF_OFFSET                       26
131 #define SPI_TXFTHF_SIZE                         1
132 #define SPI_RXFEF_OFFSET                        27
133 #define SPI_RXFEF_SIZE                          1
134 #define SPI_RXFFF_OFFSET                        28
135 #define SPI_RXFFF_SIZE                          1
136 #define SPI_RXFTHF_OFFSET                       29
137 #define SPI_RXFTHF_SIZE                         1
138 #define SPI_TXFPTEF_OFFSET                      30
139 #define SPI_TXFPTEF_SIZE                        1
140 #define SPI_RXFPTEF_OFFSET                      31
141 #define SPI_RXFPTEF_SIZE                        1
142
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET                         0
145 #define SPI_CPOL_SIZE                           1
146 #define SPI_NCPHA_OFFSET                        1
147 #define SPI_NCPHA_SIZE                          1
148 #define SPI_CSAAT_OFFSET                        3
149 #define SPI_CSAAT_SIZE                          1
150 #define SPI_BITS_OFFSET                         4
151 #define SPI_BITS_SIZE                           4
152 #define SPI_SCBR_OFFSET                         8
153 #define SPI_SCBR_SIZE                           8
154 #define SPI_DLYBS_OFFSET                        16
155 #define SPI_DLYBS_SIZE                          8
156 #define SPI_DLYBCT_OFFSET                       24
157 #define SPI_DLYBCT_SIZE                         8
158
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET                        0
161 #define SPI_RXCTR_SIZE                          16
162
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET                        0
165 #define SPI_TXCTR_SIZE                          16
166
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET                        0
169 #define SPI_RXNCR_SIZE                          16
170
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET                        0
173 #define SPI_TXNCR_SIZE                          16
174
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET                        0
177 #define SPI_RXTEN_SIZE                          1
178 #define SPI_RXTDIS_OFFSET                       1
179 #define SPI_RXTDIS_SIZE                         1
180 #define SPI_TXTEN_OFFSET                        8
181 #define SPI_TXTEN_SIZE                          1
182 #define SPI_TXTDIS_OFFSET                       9
183 #define SPI_TXTDIS_SIZE                         1
184
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET                       0
187 #define SPI_TXRDYM_SIZE                         2
188 #define SPI_RXRDYM_OFFSET                       4
189 #define SPI_RXRDYM_SIZE                         2
190 #define SPI_TXFTHRES_OFFSET                     16
191 #define SPI_TXFTHRES_SIZE                       6
192 #define SPI_RXFTHRES_OFFSET                     24
193 #define SPI_RXFTHRES_SIZE                       6
194
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET                         0
197 #define SPI_TXFL_SIZE                           6
198 #define SPI_RXFL_OFFSET                         16
199 #define SPI_RXFL_SIZE                           6
200
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT                          0
203 #define SPI_BITS_9_BPT                          1
204 #define SPI_BITS_10_BPT                         2
205 #define SPI_BITS_11_BPT                         3
206 #define SPI_BITS_12_BPT                         4
207 #define SPI_BITS_13_BPT                         5
208 #define SPI_BITS_14_BPT                         6
209 #define SPI_BITS_15_BPT                         7
210 #define SPI_BITS_16_BPT                         8
211 #define SPI_ONE_DATA                            0
212 #define SPI_TWO_DATA                            1
213 #define SPI_FOUR_DATA                           2
214
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217         (1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224           | SPI_BF(name, value))
225
226 /* Register access macros */
227 #ifdef CONFIG_AVR32
228 #define spi_readl(port, reg) \
229         __raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231         __raw_writel((value), (port)->regs + SPI_##reg)
232
233 #define spi_readw(port, reg) \
234         __raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236         __raw_writew((value), (port)->regs + SPI_##reg)
237
238 #define spi_readb(port, reg) \
239         __raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241         __raw_writeb((value), (port)->regs + SPI_##reg)
242 #else
243 #define spi_readl(port, reg) \
244         readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246         writel_relaxed((value), (port)->regs + SPI_##reg)
247
248 #define spi_readw(port, reg) \
249         readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251         writew_relaxed((value), (port)->regs + SPI_##reg)
252
253 #define spi_readb(port, reg) \
254         readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256         writeb_relaxed((value), (port)->regs + SPI_##reg)
257 #endif
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259  * cache operations; better heuristics consider wordsize and bitrate.
260  */
261 #define DMA_MIN_BYTES   16
262
263 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
264
265 #define AUTOSUSPEND_TIMEOUT     2000
266
267 struct atmel_spi_dma {
268         struct dma_chan                 *chan_rx;
269         struct dma_chan                 *chan_tx;
270         struct scatterlist              sgrx;
271         struct scatterlist              sgtx;
272         struct dma_async_tx_descriptor  *data_desc_rx;
273         struct dma_async_tx_descriptor  *data_desc_tx;
274
275         struct at_dma_slave     dma_slave;
276 };
277
278 struct atmel_spi_caps {
279         bool    is_spi2;
280         bool    has_wdrbt;
281         bool    has_dma_support;
282 };
283
284 /*
285  * The core SPI transfer engine just talks to a register bank to set up
286  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
287  * framework provides the base clock, subdivided for each spi_device.
288  */
289 struct atmel_spi {
290         spinlock_t              lock;
291         unsigned long           flags;
292
293         phys_addr_t             phybase;
294         void __iomem            *regs;
295         int                     irq;
296         struct clk              *clk;
297         struct platform_device  *pdev;
298
299         struct spi_transfer     *current_transfer;
300         int                     current_remaining_bytes;
301         int                     done_status;
302
303         struct completion       xfer_completion;
304
305         /* scratch buffer */
306         void                    *buffer;
307         dma_addr_t              buffer_dma;
308
309         struct atmel_spi_caps   caps;
310
311         bool                    use_dma;
312         bool                    use_pdc;
313         bool                    use_cs_gpios;
314         /* dmaengine data */
315         struct atmel_spi_dma    dma;
316
317         bool                    keep_cs;
318         bool                    cs_active;
319
320         u32                     fifo_size;
321 };
322
323 /* Controller-specific per-slave state */
324 struct atmel_spi_device {
325         unsigned int            npcs_pin;
326         u32                     csr;
327 };
328
329 #define BUFFER_SIZE             PAGE_SIZE
330 #define INVALID_DMA_ADDRESS     0xffffffff
331
332 /*
333  * Version 2 of the SPI controller has
334  *  - CR.LASTXFER
335  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
336  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
337  *  - SPI_CSRx.CSAAT
338  *  - SPI_CSRx.SBCR allows faster clocking
339  */
340 static bool atmel_spi_is_v2(struct atmel_spi *as)
341 {
342         return as->caps.is_spi2;
343 }
344
345 /*
346  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
347  * they assume that spi slave device state will not change on deselect, so
348  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
349  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
350  * controllers have CSAAT and friends.
351  *
352  * Since the CSAAT functionality is a bit weird on newer controllers as
353  * well, we use GPIO to control nCSx pins on all controllers, updating
354  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
355  * support active-high chipselects despite the controller's belief that
356  * only active-low devices/systems exists.
357  *
358  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
359  * right when driven with GPIO.  ("Mode Fault does not allow more than one
360  * Master on Chip Select 0.")  No workaround exists for that ... so for
361  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
362  * and (c) will trigger that first erratum in some cases.
363  */
364
365 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
366 {
367         struct atmel_spi_device *asd = spi->controller_state;
368         unsigned active = spi->mode & SPI_CS_HIGH;
369         u32 mr;
370
371         if (atmel_spi_is_v2(as)) {
372                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
373                 /* For the low SPI version, there is a issue that PDC transfer
374                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
375                  */
376                 spi_writel(as, CSR0, asd->csr);
377                 if (as->caps.has_wdrbt) {
378                         spi_writel(as, MR,
379                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
380                                         | SPI_BIT(WDRBT)
381                                         | SPI_BIT(MODFDIS)
382                                         | SPI_BIT(MSTR));
383                 } else {
384                         spi_writel(as, MR,
385                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
386                                         | SPI_BIT(MODFDIS)
387                                         | SPI_BIT(MSTR));
388                 }
389
390                 mr = spi_readl(as, MR);
391                 if (as->use_cs_gpios)
392                         gpio_set_value(asd->npcs_pin, active);
393         } else {
394                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
395                 int i;
396                 u32 csr;
397
398                 /* Make sure clock polarity is correct */
399                 for (i = 0; i < spi->master->num_chipselect; i++) {
400                         csr = spi_readl(as, CSR0 + 4 * i);
401                         if ((csr ^ cpol) & SPI_BIT(CPOL))
402                                 spi_writel(as, CSR0 + 4 * i,
403                                                 csr ^ SPI_BIT(CPOL));
404                 }
405
406                 mr = spi_readl(as, MR);
407                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
408                 if (as->use_cs_gpios && spi->chip_select != 0)
409                         gpio_set_value(asd->npcs_pin, active);
410                 spi_writel(as, MR, mr);
411         }
412
413         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
414                         asd->npcs_pin, active ? " (high)" : "",
415                         mr);
416 }
417
418 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
419 {
420         struct atmel_spi_device *asd = spi->controller_state;
421         unsigned active = spi->mode & SPI_CS_HIGH;
422         u32 mr;
423
424         /* only deactivate *this* device; sometimes transfers to
425          * another device may be active when this routine is called.
426          */
427         mr = spi_readl(as, MR);
428         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
429                 mr = SPI_BFINS(PCS, 0xf, mr);
430                 spi_writel(as, MR, mr);
431         }
432
433         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
434                         asd->npcs_pin, active ? " (low)" : "",
435                         mr);
436
437         if (!as->use_cs_gpios)
438                 spi_writel(as, CR, SPI_BIT(LASTXFER));
439         else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
440                 gpio_set_value(asd->npcs_pin, !active);
441 }
442
443 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
444 {
445         spin_lock_irqsave(&as->lock, as->flags);
446 }
447
448 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
449 {
450         spin_unlock_irqrestore(&as->lock, as->flags);
451 }
452
453 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
454                                 struct spi_transfer *xfer)
455 {
456         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
457 }
458
459 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460                                 struct dma_slave_config *slave_config,
461                                 u8 bits_per_word)
462 {
463         int err = 0;
464
465         if (bits_per_word > 8) {
466                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468         } else {
469                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471         }
472
473         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
474         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
475         slave_config->src_maxburst = 1;
476         slave_config->dst_maxburst = 1;
477         slave_config->device_fc = false;
478
479         /*
480          * This driver uses fixed peripheral select mode (PS bit set to '0' in
481          * the Mode Register).
482          * So according to the datasheet, when FIFOs are available (and
483          * enabled), the Transmit FIFO operates in Multiple Data Mode.
484          * In this mode, up to 2 data, not 4, can be written into the Transmit
485          * Data Register in a single access.
486          * However, the first data has to be written into the lowest 16 bits and
487          * the second data into the highest 16 bits of the Transmit
488          * Data Register. For 8bit data (the most frequent case), it would
489          * require to rework tx_buf so each data would actualy fit 16 bits.
490          * So we'd rather write only one data at the time. Hence the transmit
491          * path works the same whether FIFOs are available (and enabled) or not.
492          */
493         slave_config->direction = DMA_MEM_TO_DEV;
494         if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
495                 dev_err(&as->pdev->dev,
496                         "failed to configure tx dma channel\n");
497                 err = -EINVAL;
498         }
499
500         /*
501          * This driver configures the spi controller for master mode (MSTR bit
502          * set to '1' in the Mode Register).
503          * So according to the datasheet, when FIFOs are available (and
504          * enabled), the Receive FIFO operates in Single Data Mode.
505          * So the receive path works the same whether FIFOs are available (and
506          * enabled) or not.
507          */
508         slave_config->direction = DMA_DEV_TO_MEM;
509         if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
510                 dev_err(&as->pdev->dev,
511                         "failed to configure rx dma channel\n");
512                 err = -EINVAL;
513         }
514
515         return err;
516 }
517
518 static int atmel_spi_configure_dma(struct atmel_spi *as)
519 {
520         struct dma_slave_config slave_config;
521         struct device *dev = &as->pdev->dev;
522         int err;
523
524         dma_cap_mask_t mask;
525         dma_cap_zero(mask);
526         dma_cap_set(DMA_SLAVE, mask);
527
528         as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
529         if (IS_ERR(as->dma.chan_tx)) {
530                 err = PTR_ERR(as->dma.chan_tx);
531                 if (err == -EPROBE_DEFER) {
532                         dev_warn(dev, "no DMA channel available at the moment\n");
533                         return err;
534                 }
535                 dev_err(dev,
536                         "DMA TX channel not available, SPI unable to use DMA\n");
537                 err = -EBUSY;
538                 goto error;
539         }
540
541         /*
542          * No reason to check EPROBE_DEFER here since we have already requested
543          * tx channel. If it fails here, it's for another reason.
544          */
545         as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
546
547         if (!as->dma.chan_rx) {
548                 dev_err(dev,
549                         "DMA RX channel not available, SPI unable to use DMA\n");
550                 err = -EBUSY;
551                 goto error;
552         }
553
554         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
555         if (err)
556                 goto error;
557
558         dev_info(&as->pdev->dev,
559                         "Using %s (tx) and %s (rx) for DMA transfers\n",
560                         dma_chan_name(as->dma.chan_tx),
561                         dma_chan_name(as->dma.chan_rx));
562         return 0;
563 error:
564         if (as->dma.chan_rx)
565                 dma_release_channel(as->dma.chan_rx);
566         if (!IS_ERR(as->dma.chan_tx))
567                 dma_release_channel(as->dma.chan_tx);
568         return err;
569 }
570
571 static void atmel_spi_stop_dma(struct atmel_spi *as)
572 {
573         if (as->dma.chan_rx)
574                 dmaengine_terminate_all(as->dma.chan_rx);
575         if (as->dma.chan_tx)
576                 dmaengine_terminate_all(as->dma.chan_tx);
577 }
578
579 static void atmel_spi_release_dma(struct atmel_spi *as)
580 {
581         if (as->dma.chan_rx)
582                 dma_release_channel(as->dma.chan_rx);
583         if (as->dma.chan_tx)
584                 dma_release_channel(as->dma.chan_tx);
585 }
586
587 /* This function is called by the DMA driver from tasklet context */
588 static void dma_callback(void *data)
589 {
590         struct spi_master       *master = data;
591         struct atmel_spi        *as = spi_master_get_devdata(master);
592
593         complete(&as->xfer_completion);
594 }
595
596 /*
597  * Next transfer using PIO without FIFO.
598  */
599 static void atmel_spi_next_xfer_single(struct spi_master *master,
600                                        struct spi_transfer *xfer)
601 {
602         struct atmel_spi        *as = spi_master_get_devdata(master);
603         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
604
605         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
606
607         /* Make sure data is not remaining in RDR */
608         spi_readl(as, RDR);
609         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
610                 spi_readl(as, RDR);
611                 cpu_relax();
612         }
613
614         if (xfer->tx_buf) {
615                 if (xfer->bits_per_word > 8)
616                         spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
617                 else
618                         spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
619         } else {
620                 spi_writel(as, TDR, 0);
621         }
622
623         dev_dbg(master->dev.parent,
624                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
625                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
626                 xfer->bits_per_word);
627
628         /* Enable relevant interrupts */
629         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
630 }
631
632 /*
633  * Next transfer using PIO with FIFO.
634  */
635 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
636                                      struct spi_transfer *xfer)
637 {
638         struct atmel_spi *as = spi_master_get_devdata(master);
639         u32 current_remaining_data, num_data;
640         u32 offset = xfer->len - as->current_remaining_bytes;
641         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
642         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
643         u16 td0, td1;
644         u32 fifomr;
645
646         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
647
648         /* Compute the number of data to transfer in the current iteration */
649         current_remaining_data = ((xfer->bits_per_word > 8) ?
650                                   ((u32)as->current_remaining_bytes >> 1) :
651                                   (u32)as->current_remaining_bytes);
652         num_data = min(current_remaining_data, as->fifo_size);
653
654         /* Flush RX and TX FIFOs */
655         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
656         while (spi_readl(as, FLR))
657                 cpu_relax();
658
659         /* Set RX FIFO Threshold to the number of data to transfer */
660         fifomr = spi_readl(as, FMR);
661         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
662
663         /* Clear FIFO flags in the Status Register, especially RXFTHF */
664         (void)spi_readl(as, SR);
665
666         /* Fill TX FIFO */
667         while (num_data >= 2) {
668                 if (xfer->tx_buf) {
669                         if (xfer->bits_per_word > 8) {
670                                 td0 = *words++;
671                                 td1 = *words++;
672                         } else {
673                                 td0 = *bytes++;
674                                 td1 = *bytes++;
675                         }
676                 } else {
677                         td0 = 0;
678                         td1 = 0;
679                 }
680
681                 spi_writel(as, TDR, (td1 << 16) | td0);
682                 num_data -= 2;
683         }
684
685         if (num_data) {
686                 if (xfer->tx_buf) {
687                         if (xfer->bits_per_word > 8)
688                                 td0 = *words++;
689                         else
690                                 td0 = *bytes++;
691                 } else {
692                         td0 = 0;
693                 }
694
695                 spi_writew(as, TDR, td0);
696                 num_data--;
697         }
698
699         dev_dbg(master->dev.parent,
700                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
702                 xfer->bits_per_word);
703
704         /*
705          * Enable RX FIFO Threshold Flag interrupt to be notified about
706          * transfer completion.
707          */
708         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
709 }
710
711 /*
712  * Next transfer using PIO.
713  */
714 static void atmel_spi_next_xfer_pio(struct spi_master *master,
715                                     struct spi_transfer *xfer)
716 {
717         struct atmel_spi *as = spi_master_get_devdata(master);
718
719         if (as->fifo_size)
720                 atmel_spi_next_xfer_fifo(master, xfer);
721         else
722                 atmel_spi_next_xfer_single(master, xfer);
723 }
724
725 /*
726  * Submit next transfer for DMA.
727  */
728 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
729                                 struct spi_transfer *xfer,
730                                 u32 *plen)
731 {
732         struct atmel_spi        *as = spi_master_get_devdata(master);
733         struct dma_chan         *rxchan = as->dma.chan_rx;
734         struct dma_chan         *txchan = as->dma.chan_tx;
735         struct dma_async_tx_descriptor *rxdesc;
736         struct dma_async_tx_descriptor *txdesc;
737         struct dma_slave_config slave_config;
738         dma_cookie_t            cookie;
739         u32     len = *plen;
740
741         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743         /* Check that the channels are available */
744         if (!rxchan || !txchan)
745                 return -ENODEV;
746
747         /* release lock for DMA operations */
748         atmel_spi_unlock(as);
749
750         /* prepare the RX dma transfer */
751         sg_init_table(&as->dma.sgrx, 1);
752         if (xfer->rx_buf) {
753                 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
754         } else {
755                 as->dma.sgrx.dma_address = as->buffer_dma;
756                 if (len > BUFFER_SIZE)
757                         len = BUFFER_SIZE;
758         }
759
760         /* prepare the TX dma transfer */
761         sg_init_table(&as->dma.sgtx, 1);
762         if (xfer->tx_buf) {
763                 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
764         } else {
765                 as->dma.sgtx.dma_address = as->buffer_dma;
766                 if (len > BUFFER_SIZE)
767                         len = BUFFER_SIZE;
768                 memset(as->buffer, 0, len);
769         }
770
771         sg_dma_len(&as->dma.sgtx) = len;
772         sg_dma_len(&as->dma.sgrx) = len;
773
774         *plen = len;
775
776         if (atmel_spi_dma_slave_config(as, &slave_config, 8))
777                 goto err_exit;
778
779         /* Send both scatterlists */
780         rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
781                                          DMA_FROM_DEVICE,
782                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
783         if (!rxdesc)
784                 goto err_dma;
785
786         txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
787                                          DMA_TO_DEVICE,
788                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
789         if (!txdesc)
790                 goto err_dma;
791
792         dev_dbg(master->dev.parent,
793                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
794                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
795                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
796
797         /* Enable relevant interrupts */
798         spi_writel(as, IER, SPI_BIT(OVRES));
799
800         /* Put the callback on the RX transfer only, that should finish last */
801         rxdesc->callback = dma_callback;
802         rxdesc->callback_param = master;
803
804         /* Submit and fire RX and TX with TX last so we're ready to read! */
805         cookie = rxdesc->tx_submit(rxdesc);
806         if (dma_submit_error(cookie))
807                 goto err_dma;
808         cookie = txdesc->tx_submit(txdesc);
809         if (dma_submit_error(cookie))
810                 goto err_dma;
811         rxchan->device->device_issue_pending(rxchan);
812         txchan->device->device_issue_pending(txchan);
813
814         /* take back lock */
815         atmel_spi_lock(as);
816         return 0;
817
818 err_dma:
819         spi_writel(as, IDR, SPI_BIT(OVRES));
820         atmel_spi_stop_dma(as);
821 err_exit:
822         atmel_spi_lock(as);
823         return -ENOMEM;
824 }
825
826 static void atmel_spi_next_xfer_data(struct spi_master *master,
827                                 struct spi_transfer *xfer,
828                                 dma_addr_t *tx_dma,
829                                 dma_addr_t *rx_dma,
830                                 u32 *plen)
831 {
832         struct atmel_spi        *as = spi_master_get_devdata(master);
833         u32                     len = *plen;
834
835         /* use scratch buffer only when rx or tx data is unspecified */
836         if (xfer->rx_buf)
837                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
838         else {
839                 *rx_dma = as->buffer_dma;
840                 if (len > BUFFER_SIZE)
841                         len = BUFFER_SIZE;
842         }
843
844         if (xfer->tx_buf)
845                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
846         else {
847                 *tx_dma = as->buffer_dma;
848                 if (len > BUFFER_SIZE)
849                         len = BUFFER_SIZE;
850                 memset(as->buffer, 0, len);
851                 dma_sync_single_for_device(&as->pdev->dev,
852                                 as->buffer_dma, len, DMA_TO_DEVICE);
853         }
854
855         *plen = len;
856 }
857
858 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
859                                     struct spi_device *spi,
860                                     struct spi_transfer *xfer)
861 {
862         u32                     scbr, csr;
863         unsigned long           bus_hz;
864
865         /* v1 chips start out at half the peripheral bus speed. */
866         bus_hz = clk_get_rate(as->clk);
867         if (!atmel_spi_is_v2(as))
868                 bus_hz /= 2;
869
870         /*
871          * Calculate the lowest divider that satisfies the
872          * constraint, assuming div32/fdiv/mbz == 0.
873          */
874         if (xfer->speed_hz)
875                 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
876         else
877                 /*
878                  * This can happend if max_speed is null.
879                  * In this case, we set the lowest possible speed
880                  */
881                 scbr = 0xff;
882
883         /*
884          * If the resulting divider doesn't fit into the
885          * register bitfield, we can't satisfy the constraint.
886          */
887         if (scbr >= (1 << SPI_SCBR_SIZE)) {
888                 dev_err(&spi->dev,
889                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
890                         xfer->speed_hz, scbr, bus_hz/255);
891                 return -EINVAL;
892         }
893         if (scbr == 0) {
894                 dev_err(&spi->dev,
895                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
896                         xfer->speed_hz, scbr, bus_hz);
897                 return -EINVAL;
898         }
899         csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
900         csr = SPI_BFINS(SCBR, scbr, csr);
901         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
902
903         return 0;
904 }
905
906 /*
907  * Submit next transfer for PDC.
908  * lock is held, spi irq is blocked
909  */
910 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
911                                         struct spi_message *msg,
912                                         struct spi_transfer *xfer)
913 {
914         struct atmel_spi        *as = spi_master_get_devdata(master);
915         u32                     len;
916         dma_addr_t              tx_dma, rx_dma;
917
918         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
919
920         len = as->current_remaining_bytes;
921         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
922         as->current_remaining_bytes -= len;
923
924         spi_writel(as, RPR, rx_dma);
925         spi_writel(as, TPR, tx_dma);
926
927         if (msg->spi->bits_per_word > 8)
928                 len >>= 1;
929         spi_writel(as, RCR, len);
930         spi_writel(as, TCR, len);
931
932         dev_dbg(&msg->spi->dev,
933                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
934                 xfer, xfer->len, xfer->tx_buf,
935                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
936                 (unsigned long long)xfer->rx_dma);
937
938         if (as->current_remaining_bytes) {
939                 len = as->current_remaining_bytes;
940                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
941                 as->current_remaining_bytes -= len;
942
943                 spi_writel(as, RNPR, rx_dma);
944                 spi_writel(as, TNPR, tx_dma);
945
946                 if (msg->spi->bits_per_word > 8)
947                         len >>= 1;
948                 spi_writel(as, RNCR, len);
949                 spi_writel(as, TNCR, len);
950
951                 dev_dbg(&msg->spi->dev,
952                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
953                         xfer, xfer->len, xfer->tx_buf,
954                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
955                         (unsigned long long)xfer->rx_dma);
956         }
957
958         /* REVISIT: We're waiting for RXBUFF before we start the next
959          * transfer because we need to handle some difficult timing
960          * issues otherwise. If we wait for TXBUFE in one transfer and
961          * then starts waiting for RXBUFF in the next, it's difficult
962          * to tell the difference between the RXBUFF interrupt we're
963          * actually waiting for and the RXBUFF interrupt of the
964          * previous transfer.
965          *
966          * It should be doable, though. Just not now...
967          */
968         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
969         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
970 }
971
972 /*
973  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
974  *  - The buffer is either valid for CPU access, else NULL
975  *  - If the buffer is valid, so is its DMA address
976  *
977  * This driver manages the dma address unless message->is_dma_mapped.
978  */
979 static int
980 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
981 {
982         struct device   *dev = &as->pdev->dev;
983
984         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
985         if (xfer->tx_buf) {
986                 /* tx_buf is a const void* where we need a void * for the dma
987                  * mapping */
988                 void *nonconst_tx = (void *)xfer->tx_buf;
989
990                 xfer->tx_dma = dma_map_single(dev,
991                                 nonconst_tx, xfer->len,
992                                 DMA_TO_DEVICE);
993                 if (dma_mapping_error(dev, xfer->tx_dma))
994                         return -ENOMEM;
995         }
996         if (xfer->rx_buf) {
997                 xfer->rx_dma = dma_map_single(dev,
998                                 xfer->rx_buf, xfer->len,
999                                 DMA_FROM_DEVICE);
1000                 if (dma_mapping_error(dev, xfer->rx_dma)) {
1001                         if (xfer->tx_buf)
1002                                 dma_unmap_single(dev,
1003                                                 xfer->tx_dma, xfer->len,
1004                                                 DMA_TO_DEVICE);
1005                         return -ENOMEM;
1006                 }
1007         }
1008         return 0;
1009 }
1010
1011 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1012                                      struct spi_transfer *xfer)
1013 {
1014         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1015                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
1016                                  xfer->len, DMA_TO_DEVICE);
1017         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1018                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
1019                                  xfer->len, DMA_FROM_DEVICE);
1020 }
1021
1022 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1023 {
1024         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1025 }
1026
1027 static void
1028 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 {
1030         u8              *rxp;
1031         u16             *rxp16;
1032         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1033
1034         if (xfer->rx_buf) {
1035                 if (xfer->bits_per_word > 8) {
1036                         rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1037                         *rxp16 = spi_readl(as, RDR);
1038                 } else {
1039                         rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1040                         *rxp = spi_readl(as, RDR);
1041                 }
1042         } else {
1043                 spi_readl(as, RDR);
1044         }
1045         if (xfer->bits_per_word > 8) {
1046                 if (as->current_remaining_bytes > 2)
1047                         as->current_remaining_bytes -= 2;
1048                 else
1049                         as->current_remaining_bytes = 0;
1050         } else {
1051                 as->current_remaining_bytes--;
1052         }
1053 }
1054
1055 static void
1056 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1057 {
1058         u32 fifolr = spi_readl(as, FLR);
1059         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1060         u32 offset = xfer->len - as->current_remaining_bytes;
1061         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1062         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1063         u16 rd; /* RD field is the lowest 16 bits of RDR */
1064
1065         /* Update the number of remaining bytes to transfer */
1066         num_bytes = ((xfer->bits_per_word > 8) ?
1067                      (num_data << 1) :
1068                      num_data);
1069
1070         if (as->current_remaining_bytes > num_bytes)
1071                 as->current_remaining_bytes -= num_bytes;
1072         else
1073                 as->current_remaining_bytes = 0;
1074
1075         /* Handle odd number of bytes when data are more than 8bit width */
1076         if (xfer->bits_per_word > 8)
1077                 as->current_remaining_bytes &= ~0x1;
1078
1079         /* Read data */
1080         while (num_data) {
1081                 rd = spi_readl(as, RDR);
1082                 if (xfer->rx_buf) {
1083                         if (xfer->bits_per_word > 8)
1084                                 *words++ = rd;
1085                         else
1086                                 *bytes++ = rd;
1087                 }
1088                 num_data--;
1089         }
1090 }
1091
1092 /* Called from IRQ
1093  *
1094  * Must update "current_remaining_bytes" to keep track of data
1095  * to transfer.
1096  */
1097 static void
1098 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1099 {
1100         if (as->fifo_size)
1101                 atmel_spi_pump_fifo_data(as, xfer);
1102         else
1103                 atmel_spi_pump_single_data(as, xfer);
1104 }
1105
1106 /* Interrupt
1107  *
1108  * No need for locking in this Interrupt handler: done_status is the
1109  * only information modified.
1110  */
1111 static irqreturn_t
1112 atmel_spi_pio_interrupt(int irq, void *dev_id)
1113 {
1114         struct spi_master       *master = dev_id;
1115         struct atmel_spi        *as = spi_master_get_devdata(master);
1116         u32                     status, pending, imr;
1117         struct spi_transfer     *xfer;
1118         int                     ret = IRQ_NONE;
1119
1120         imr = spi_readl(as, IMR);
1121         status = spi_readl(as, SR);
1122         pending = status & imr;
1123
1124         if (pending & SPI_BIT(OVRES)) {
1125                 ret = IRQ_HANDLED;
1126                 spi_writel(as, IDR, SPI_BIT(OVRES));
1127                 dev_warn(master->dev.parent, "overrun\n");
1128
1129                 /*
1130                  * When we get an overrun, we disregard the current
1131                  * transfer. Data will not be copied back from any
1132                  * bounce buffer and msg->actual_len will not be
1133                  * updated with the last xfer.
1134                  *
1135                  * We will also not process any remaning transfers in
1136                  * the message.
1137                  */
1138                 as->done_status = -EIO;
1139                 smp_wmb();
1140
1141                 /* Clear any overrun happening while cleaning up */
1142                 spi_readl(as, SR);
1143
1144                 complete(&as->xfer_completion);
1145
1146         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1147                 atmel_spi_lock(as);
1148
1149                 if (as->current_remaining_bytes) {
1150                         ret = IRQ_HANDLED;
1151                         xfer = as->current_transfer;
1152                         atmel_spi_pump_pio_data(as, xfer);
1153                         if (!as->current_remaining_bytes)
1154                                 spi_writel(as, IDR, pending);
1155
1156                         complete(&as->xfer_completion);
1157                 }
1158
1159                 atmel_spi_unlock(as);
1160         } else {
1161                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1162                 ret = IRQ_HANDLED;
1163                 spi_writel(as, IDR, pending);
1164         }
1165
1166         return ret;
1167 }
1168
1169 static irqreturn_t
1170 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1171 {
1172         struct spi_master       *master = dev_id;
1173         struct atmel_spi        *as = spi_master_get_devdata(master);
1174         u32                     status, pending, imr;
1175         int                     ret = IRQ_NONE;
1176
1177         imr = spi_readl(as, IMR);
1178         status = spi_readl(as, SR);
1179         pending = status & imr;
1180
1181         if (pending & SPI_BIT(OVRES)) {
1182
1183                 ret = IRQ_HANDLED;
1184
1185                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1186                                      | SPI_BIT(OVRES)));
1187
1188                 /* Clear any overrun happening while cleaning up */
1189                 spi_readl(as, SR);
1190
1191                 as->done_status = -EIO;
1192
1193                 complete(&as->xfer_completion);
1194
1195         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1196                 ret = IRQ_HANDLED;
1197
1198                 spi_writel(as, IDR, pending);
1199
1200                 complete(&as->xfer_completion);
1201         }
1202
1203         return ret;
1204 }
1205
1206 static int atmel_spi_setup(struct spi_device *spi)
1207 {
1208         struct atmel_spi        *as;
1209         struct atmel_spi_device *asd;
1210         u32                     csr;
1211         unsigned int            bits = spi->bits_per_word;
1212         unsigned int            npcs_pin;
1213         int                     ret;
1214
1215         as = spi_master_get_devdata(spi->master);
1216
1217         /* see notes above re chipselect */
1218         if (!atmel_spi_is_v2(as)
1219                         && spi->chip_select == 0
1220                         && (spi->mode & SPI_CS_HIGH)) {
1221                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1222                 return -EINVAL;
1223         }
1224
1225         csr = SPI_BF(BITS, bits - 8);
1226         if (spi->mode & SPI_CPOL)
1227                 csr |= SPI_BIT(CPOL);
1228         if (!(spi->mode & SPI_CPHA))
1229                 csr |= SPI_BIT(NCPHA);
1230         if (!as->use_cs_gpios)
1231                 csr |= SPI_BIT(CSAAT);
1232
1233         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1234          *
1235          * DLYBCT would add delays between words, slowing down transfers.
1236          * It could potentially be useful to cope with DMA bottlenecks, but
1237          * in those cases it's probably best to just use a lower bitrate.
1238          */
1239         csr |= SPI_BF(DLYBS, 0);
1240         csr |= SPI_BF(DLYBCT, 0);
1241
1242         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1243         npcs_pin = (unsigned long)spi->controller_data;
1244
1245         if (!as->use_cs_gpios)
1246                 npcs_pin = spi->chip_select;
1247         else if (gpio_is_valid(spi->cs_gpio))
1248                 npcs_pin = spi->cs_gpio;
1249
1250         asd = spi->controller_state;
1251         if (!asd) {
1252                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1253                 if (!asd)
1254                         return -ENOMEM;
1255
1256                 if (as->use_cs_gpios) {
1257                         ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1258                         if (ret) {
1259                                 kfree(asd);
1260                                 return ret;
1261                         }
1262
1263                         gpio_direction_output(npcs_pin,
1264                                               !(spi->mode & SPI_CS_HIGH));
1265                 }
1266
1267                 asd->npcs_pin = npcs_pin;
1268                 spi->controller_state = asd;
1269         }
1270
1271         asd->csr = csr;
1272
1273         dev_dbg(&spi->dev,
1274                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1275                 bits, spi->mode, spi->chip_select, csr);
1276
1277         if (!atmel_spi_is_v2(as))
1278                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1279
1280         return 0;
1281 }
1282
1283 static int atmel_spi_one_transfer(struct spi_master *master,
1284                                         struct spi_message *msg,
1285                                         struct spi_transfer *xfer)
1286 {
1287         struct atmel_spi        *as;
1288         struct spi_device       *spi = msg->spi;
1289         u8                      bits;
1290         u32                     len;
1291         struct atmel_spi_device *asd;
1292         int                     timeout;
1293         int                     ret;
1294         unsigned long           dma_timeout;
1295
1296         as = spi_master_get_devdata(master);
1297
1298         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1299                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1300                 return -EINVAL;
1301         }
1302
1303         if (xfer->bits_per_word) {
1304                 asd = spi->controller_state;
1305                 bits = (asd->csr >> 4) & 0xf;
1306                 if (bits != xfer->bits_per_word - 8) {
1307                         dev_dbg(&spi->dev,
1308                         "you can't yet change bits_per_word in transfers\n");
1309                         return -ENOPROTOOPT;
1310                 }
1311         }
1312
1313         /*
1314          * DMA map early, for performance (empties dcache ASAP) and
1315          * better fault reporting.
1316          */
1317         if ((!msg->is_dma_mapped)
1318                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1319                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1320                         return -ENOMEM;
1321         }
1322
1323         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1324
1325         as->done_status = 0;
1326         as->current_transfer = xfer;
1327         as->current_remaining_bytes = xfer->len;
1328         while (as->current_remaining_bytes) {
1329                 reinit_completion(&as->xfer_completion);
1330
1331                 if (as->use_pdc) {
1332                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1333                 } else if (atmel_spi_use_dma(as, xfer)) {
1334                         len = as->current_remaining_bytes;
1335                         ret = atmel_spi_next_xfer_dma_submit(master,
1336                                                                 xfer, &len);
1337                         if (ret) {
1338                                 dev_err(&spi->dev,
1339                                         "unable to use DMA, fallback to PIO\n");
1340                                 atmel_spi_next_xfer_pio(master, xfer);
1341                         } else {
1342                                 as->current_remaining_bytes -= len;
1343                                 if (as->current_remaining_bytes < 0)
1344                                         as->current_remaining_bytes = 0;
1345                         }
1346                 } else {
1347                         atmel_spi_next_xfer_pio(master, xfer);
1348                 }
1349
1350                 /* interrupts are disabled, so free the lock for schedule */
1351                 atmel_spi_unlock(as);
1352                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1353                                                           SPI_DMA_TIMEOUT);
1354                 atmel_spi_lock(as);
1355                 if (WARN_ON(dma_timeout == 0)) {
1356                         dev_err(&spi->dev, "spi transfer timeout\n");
1357                         as->done_status = -EIO;
1358                 }
1359
1360                 if (as->done_status)
1361                         break;
1362         }
1363
1364         if (as->done_status) {
1365                 if (as->use_pdc) {
1366                         dev_warn(master->dev.parent,
1367                                 "overrun (%u/%u remaining)\n",
1368                                 spi_readl(as, TCR), spi_readl(as, RCR));
1369
1370                         /*
1371                          * Clean up DMA registers and make sure the data
1372                          * registers are empty.
1373                          */
1374                         spi_writel(as, RNCR, 0);
1375                         spi_writel(as, TNCR, 0);
1376                         spi_writel(as, RCR, 0);
1377                         spi_writel(as, TCR, 0);
1378                         for (timeout = 1000; timeout; timeout--)
1379                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1380                                         break;
1381                         if (!timeout)
1382                                 dev_warn(master->dev.parent,
1383                                          "timeout waiting for TXEMPTY");
1384                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1385                                 spi_readl(as, RDR);
1386
1387                         /* Clear any overrun happening while cleaning up */
1388                         spi_readl(as, SR);
1389
1390                 } else if (atmel_spi_use_dma(as, xfer)) {
1391                         atmel_spi_stop_dma(as);
1392                 }
1393
1394                 if (!msg->is_dma_mapped
1395                         && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1396                         atmel_spi_dma_unmap_xfer(master, xfer);
1397
1398                 return 0;
1399
1400         } else {
1401                 /* only update length if no error */
1402                 msg->actual_length += xfer->len;
1403         }
1404
1405         if (!msg->is_dma_mapped
1406                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1407                 atmel_spi_dma_unmap_xfer(master, xfer);
1408
1409         if (xfer->delay_usecs)
1410                 udelay(xfer->delay_usecs);
1411
1412         if (xfer->cs_change) {
1413                 if (list_is_last(&xfer->transfer_list,
1414                                  &msg->transfers)) {
1415                         as->keep_cs = true;
1416                 } else {
1417                         as->cs_active = !as->cs_active;
1418                         if (as->cs_active)
1419                                 cs_activate(as, msg->spi);
1420                         else
1421                                 cs_deactivate(as, msg->spi);
1422                 }
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int atmel_spi_transfer_one_message(struct spi_master *master,
1429                                                 struct spi_message *msg)
1430 {
1431         struct atmel_spi *as;
1432         struct spi_transfer *xfer;
1433         struct spi_device *spi = msg->spi;
1434         int ret = 0;
1435
1436         as = spi_master_get_devdata(master);
1437
1438         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1439                                         msg, dev_name(&spi->dev));
1440
1441         atmel_spi_lock(as);
1442         cs_activate(as, spi);
1443
1444         as->cs_active = true;
1445         as->keep_cs = false;
1446
1447         msg->status = 0;
1448         msg->actual_length = 0;
1449
1450         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1451                 ret = atmel_spi_one_transfer(master, msg, xfer);
1452                 if (ret)
1453                         goto msg_done;
1454         }
1455
1456         if (as->use_pdc)
1457                 atmel_spi_disable_pdc_transfer(as);
1458
1459         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1460                 dev_dbg(&spi->dev,
1461                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1462                         xfer, xfer->len,
1463                         xfer->tx_buf, &xfer->tx_dma,
1464                         xfer->rx_buf, &xfer->rx_dma);
1465         }
1466
1467 msg_done:
1468         if (!as->keep_cs)
1469                 cs_deactivate(as, msg->spi);
1470
1471         atmel_spi_unlock(as);
1472
1473         msg->status = as->done_status;
1474         spi_finalize_current_message(spi->master);
1475
1476         return ret;
1477 }
1478
1479 static void atmel_spi_cleanup(struct spi_device *spi)
1480 {
1481         struct atmel_spi_device *asd = spi->controller_state;
1482         unsigned                gpio = (unsigned long) spi->controller_data;
1483
1484         if (!asd)
1485                 return;
1486
1487         spi->controller_state = NULL;
1488         gpio_free(gpio);
1489         kfree(asd);
1490 }
1491
1492 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1493 {
1494         return spi_readl(as, VERSION) & 0x00000fff;
1495 }
1496
1497 static void atmel_get_caps(struct atmel_spi *as)
1498 {
1499         unsigned int version;
1500
1501         version = atmel_get_version(as);
1502         dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1503
1504         as->caps.is_spi2 = version > 0x121;
1505         as->caps.has_wdrbt = version >= 0x210;
1506         as->caps.has_dma_support = version >= 0x212;
1507 }
1508
1509 /*-------------------------------------------------------------------------*/
1510
1511 static int atmel_spi_probe(struct platform_device *pdev)
1512 {
1513         struct resource         *regs;
1514         int                     irq;
1515         struct clk              *clk;
1516         int                     ret;
1517         struct spi_master       *master;
1518         struct atmel_spi        *as;
1519
1520         /* Select default pin state */
1521         pinctrl_pm_select_default_state(&pdev->dev);
1522
1523         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524         if (!regs)
1525                 return -ENXIO;
1526
1527         irq = platform_get_irq(pdev, 0);
1528         if (irq < 0)
1529                 return irq;
1530
1531         clk = devm_clk_get(&pdev->dev, "spi_clk");
1532         if (IS_ERR(clk))
1533                 return PTR_ERR(clk);
1534
1535         /* setup spi core then atmel-specific driver state */
1536         ret = -ENOMEM;
1537         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1538         if (!master)
1539                 goto out_free;
1540
1541         /* the spi->mode bits understood by this driver: */
1542         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1543         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1544         master->dev.of_node = pdev->dev.of_node;
1545         master->bus_num = pdev->id;
1546         master->num_chipselect = master->dev.of_node ? 0 : 4;
1547         master->setup = atmel_spi_setup;
1548         master->transfer_one_message = atmel_spi_transfer_one_message;
1549         master->cleanup = atmel_spi_cleanup;
1550         master->auto_runtime_pm = true;
1551         platform_set_drvdata(pdev, master);
1552
1553         as = spi_master_get_devdata(master);
1554
1555         /*
1556          * Scratch buffer is used for throwaway rx and tx data.
1557          * It's coherent to minimize dcache pollution.
1558          */
1559         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1560                                         &as->buffer_dma, GFP_KERNEL);
1561         if (!as->buffer)
1562                 goto out_free;
1563
1564         spin_lock_init(&as->lock);
1565
1566         as->pdev = pdev;
1567         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1568         if (IS_ERR(as->regs)) {
1569                 ret = PTR_ERR(as->regs);
1570                 goto out_free_buffer;
1571         }
1572         as->phybase = regs->start;
1573         as->irq = irq;
1574         as->clk = clk;
1575
1576         init_completion(&as->xfer_completion);
1577
1578         atmel_get_caps(as);
1579
1580         as->use_cs_gpios = true;
1581         if (atmel_spi_is_v2(as) &&
1582             !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1583                 as->use_cs_gpios = false;
1584                 master->num_chipselect = 4;
1585         }
1586
1587         as->use_dma = false;
1588         as->use_pdc = false;
1589         if (as->caps.has_dma_support) {
1590                 ret = atmel_spi_configure_dma(as);
1591                 if (ret == 0)
1592                         as->use_dma = true;
1593                 else if (ret == -EPROBE_DEFER)
1594                         return ret;
1595         } else {
1596                 as->use_pdc = true;
1597         }
1598
1599         if (as->caps.has_dma_support && !as->use_dma)
1600                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1601
1602         if (as->use_pdc) {
1603                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1604                                         0, dev_name(&pdev->dev), master);
1605         } else {
1606                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1607                                         0, dev_name(&pdev->dev), master);
1608         }
1609         if (ret)
1610                 goto out_unmap_regs;
1611
1612         /* Initialize the hardware */
1613         ret = clk_prepare_enable(clk);
1614         if (ret)
1615                 goto out_free_irq;
1616         spi_writel(as, CR, SPI_BIT(SWRST));
1617         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1618         if (as->caps.has_wdrbt) {
1619                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1620                                 | SPI_BIT(MSTR));
1621         } else {
1622                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1623         }
1624
1625         if (as->use_pdc)
1626                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1627         spi_writel(as, CR, SPI_BIT(SPIEN));
1628
1629         as->fifo_size = 0;
1630         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1631                                   &as->fifo_size)) {
1632                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1633                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1634         }
1635
1636         /* go! */
1637         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1638                         (unsigned long)regs->start, irq);
1639
1640         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1641         pm_runtime_use_autosuspend(&pdev->dev);
1642         pm_runtime_set_active(&pdev->dev);
1643         pm_runtime_enable(&pdev->dev);
1644
1645         ret = devm_spi_register_master(&pdev->dev, master);
1646         if (ret)
1647                 goto out_free_dma;
1648
1649         return 0;
1650
1651 out_free_dma:
1652         pm_runtime_disable(&pdev->dev);
1653         pm_runtime_set_suspended(&pdev->dev);
1654
1655         if (as->use_dma)
1656                 atmel_spi_release_dma(as);
1657
1658         spi_writel(as, CR, SPI_BIT(SWRST));
1659         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1660         clk_disable_unprepare(clk);
1661 out_free_irq:
1662 out_unmap_regs:
1663 out_free_buffer:
1664         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1665                         as->buffer_dma);
1666 out_free:
1667         spi_master_put(master);
1668         return ret;
1669 }
1670
1671 static int atmel_spi_remove(struct platform_device *pdev)
1672 {
1673         struct spi_master       *master = platform_get_drvdata(pdev);
1674         struct atmel_spi        *as = spi_master_get_devdata(master);
1675
1676         pm_runtime_get_sync(&pdev->dev);
1677
1678         /* reset the hardware and block queue progress */
1679         spin_lock_irq(&as->lock);
1680         if (as->use_dma) {
1681                 atmel_spi_stop_dma(as);
1682                 atmel_spi_release_dma(as);
1683         }
1684
1685         spi_writel(as, CR, SPI_BIT(SWRST));
1686         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1687         spi_readl(as, SR);
1688         spin_unlock_irq(&as->lock);
1689
1690         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1691                         as->buffer_dma);
1692
1693         clk_disable_unprepare(as->clk);
1694
1695         pm_runtime_put_noidle(&pdev->dev);
1696         pm_runtime_disable(&pdev->dev);
1697
1698         return 0;
1699 }
1700
1701 #ifdef CONFIG_PM
1702 static int atmel_spi_runtime_suspend(struct device *dev)
1703 {
1704         struct spi_master *master = dev_get_drvdata(dev);
1705         struct atmel_spi *as = spi_master_get_devdata(master);
1706
1707         clk_disable_unprepare(as->clk);
1708         pinctrl_pm_select_sleep_state(dev);
1709
1710         return 0;
1711 }
1712
1713 static int atmel_spi_runtime_resume(struct device *dev)
1714 {
1715         struct spi_master *master = dev_get_drvdata(dev);
1716         struct atmel_spi *as = spi_master_get_devdata(master);
1717
1718         pinctrl_pm_select_default_state(dev);
1719
1720         return clk_prepare_enable(as->clk);
1721 }
1722
1723 #ifdef CONFIG_PM_SLEEP
1724 static int atmel_spi_suspend(struct device *dev)
1725 {
1726         struct spi_master *master = dev_get_drvdata(dev);
1727         int ret;
1728
1729         /* Stop the queue running */
1730         ret = spi_master_suspend(master);
1731         if (ret) {
1732                 dev_warn(dev, "cannot suspend master\n");
1733                 return ret;
1734         }
1735
1736         if (!pm_runtime_suspended(dev))
1737                 atmel_spi_runtime_suspend(dev);
1738
1739         return 0;
1740 }
1741
1742 static int atmel_spi_resume(struct device *dev)
1743 {
1744         struct spi_master *master = dev_get_drvdata(dev);
1745         int ret;
1746
1747         if (!pm_runtime_suspended(dev)) {
1748                 ret = atmel_spi_runtime_resume(dev);
1749                 if (ret)
1750                         return ret;
1751         }
1752
1753         /* Start the queue running */
1754         ret = spi_master_resume(master);
1755         if (ret)
1756                 dev_err(dev, "problem starting queue (%d)\n", ret);
1757
1758         return ret;
1759 }
1760 #endif
1761
1762 static const struct dev_pm_ops atmel_spi_pm_ops = {
1763         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1764         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1765                            atmel_spi_runtime_resume, NULL)
1766 };
1767 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1768 #else
1769 #define ATMEL_SPI_PM_OPS        NULL
1770 #endif
1771
1772 #if defined(CONFIG_OF)
1773 static const struct of_device_id atmel_spi_dt_ids[] = {
1774         { .compatible = "atmel,at91rm9200-spi" },
1775         { /* sentinel */ }
1776 };
1777
1778 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1779 #endif
1780
1781 static struct platform_driver atmel_spi_driver = {
1782         .driver         = {
1783                 .name   = "atmel_spi",
1784                 .pm     = ATMEL_SPI_PM_OPS,
1785                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1786         },
1787         .probe          = atmel_spi_probe,
1788         .remove         = atmel_spi_remove,
1789 };
1790 module_platform_driver(atmel_spi_driver);
1791
1792 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1793 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1794 MODULE_LICENSE("GPL");
1795 MODULE_ALIAS("platform:atmel_spi");