Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40
41
42 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE         2
44
45 struct scsi_host_sg_pool {
46         size_t          size;
47         char            *name;
48         struct kmem_cache       *slab;
49         mempool_t       *pool;
50 };
51
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57         SP(8),
58         SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60         SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62         SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64         SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71         SP(SCSI_MAX_SG_SEGMENTS)
72 };
73 #undef SP
74
75 struct kmem_cache *scsi_sdb_cache;
76
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY        3
83
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87         struct Scsi_Host *host = cmd->device->host;
88         struct scsi_device *device = cmd->device;
89         struct scsi_target *starget = scsi_target(device);
90
91         /*
92          * Set the appropriate busy bit for the device/host.
93          *
94          * If the host/device isn't busy, assume that something actually
95          * completed, and that we should be able to queue a command now.
96          *
97          * Note that the prior mid-layer assumption that any host could
98          * always queue at least one command is now broken.  The mid-layer
99          * will implement a user specifiable stall (see
100          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101          * if a command is requeued with no other commands outstanding
102          * either for the device or for the host.
103          */
104         switch (reason) {
105         case SCSI_MLQUEUE_HOST_BUSY:
106                 atomic_set(&host->host_blocked, host->max_host_blocked);
107                 break;
108         case SCSI_MLQUEUE_DEVICE_BUSY:
109         case SCSI_MLQUEUE_EH_RETRY:
110                 atomic_set(&device->device_blocked,
111                            device->max_device_blocked);
112                 break;
113         case SCSI_MLQUEUE_TARGET_BUSY:
114                 atomic_set(&starget->target_blocked,
115                            starget->max_target_blocked);
116                 break;
117         }
118 }
119
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122         struct scsi_device *sdev = cmd->device;
123         struct request_queue *q = cmd->request->q;
124
125         blk_mq_requeue_request(cmd->request);
126         blk_mq_kick_requeue_list(q);
127         put_device(&sdev->sdev_gendev);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145         struct request_queue *q = device->request_queue;
146         unsigned long flags;
147
148         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149                 "Inserting command %p into mlqueue\n", cmd));
150
151         scsi_set_blocked(cmd, reason);
152
153         /*
154          * Decrement the counters, since these commands are no longer
155          * active on the host/device.
156          */
157         if (unbusy)
158                 scsi_device_unbusy(device);
159
160         /*
161          * Requeue this command.  It will go before all other commands
162          * that are already in the queue. Schedule requeue work under
163          * lock such that the kblockd_schedule_work() call happens
164          * before blk_cleanup_queue() finishes.
165          */
166         cmd->result = 0;
167         if (q->mq_ops) {
168                 scsi_mq_requeue_cmd(cmd);
169                 return;
170         }
171         spin_lock_irqsave(q->queue_lock, flags);
172         blk_requeue_request(q, cmd->request);
173         kblockd_schedule_work(&device->requeue_work);
174         spin_unlock_irqrestore(q->queue_lock, flags);
175 }
176
177 /*
178  * Function:    scsi_queue_insert()
179  *
180  * Purpose:     Insert a command in the midlevel queue.
181  *
182  * Arguments:   cmd    - command that we are adding to queue.
183  *              reason - why we are inserting command to queue.
184  *
185  * Lock status: Assumed that lock is not held upon entry.
186  *
187  * Returns:     Nothing.
188  *
189  * Notes:       We do this for one of two cases.  Either the host is busy
190  *              and it cannot accept any more commands for the time being,
191  *              or the device returned QUEUE_FULL and can accept no more
192  *              commands.
193  * Notes:       This could be called either from an interrupt context or a
194  *              normal process context.
195  */
196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 {
198         __scsi_queue_insert(cmd, reason, 1);
199 }
200 /**
201  * scsi_execute - insert request and wait for the result
202  * @sdev:       scsi device
203  * @cmd:        scsi command
204  * @data_direction: data direction
205  * @buffer:     data buffer
206  * @bufflen:    len of buffer
207  * @sense:      optional sense buffer
208  * @timeout:    request timeout in seconds
209  * @retries:    number of times to retry request
210  * @flags:      or into request flags;
211  * @resid:      optional residual length
212  *
213  * returns the req->errors value which is the scsi_cmnd result
214  * field.
215  */
216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217                  int data_direction, void *buffer, unsigned bufflen,
218                  unsigned char *sense, int timeout, int retries, u64 flags,
219                  int *resid)
220 {
221         struct request *req;
222         int write = (data_direction == DMA_TO_DEVICE);
223         int ret = DRIVER_ERROR << 24;
224
225         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
226         if (IS_ERR(req))
227                 return ret;
228         blk_rq_set_block_pc(req);
229
230         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
231                                         buffer, bufflen, __GFP_WAIT))
232                 goto out;
233
234         req->cmd_len = COMMAND_SIZE(cmd[0]);
235         memcpy(req->cmd, cmd, req->cmd_len);
236         req->sense = sense;
237         req->sense_len = 0;
238         req->retries = retries;
239         req->timeout = timeout;
240         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
241
242         /*
243          * head injection *required* here otherwise quiesce won't work
244          */
245         blk_execute_rq(req->q, NULL, req, 1);
246
247         /*
248          * Some devices (USB mass-storage in particular) may transfer
249          * garbage data together with a residue indicating that the data
250          * is invalid.  Prevent the garbage from being misinterpreted
251          * and prevent security leaks by zeroing out the excess data.
252          */
253         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255
256         if (resid)
257                 *resid = req->resid_len;
258         ret = req->errors;
259  out:
260         blk_put_request(req);
261
262         return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute);
265
266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267                      int data_direction, void *buffer, unsigned bufflen,
268                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
269                      int *resid, u64 flags)
270 {
271         char *sense = NULL;
272         int result;
273         
274         if (sshdr) {
275                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276                 if (!sense)
277                         return DRIVER_ERROR << 24;
278         }
279         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280                               sense, timeout, retries, flags, resid);
281         if (sshdr)
282                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283
284         kfree(sense);
285         return result;
286 }
287 EXPORT_SYMBOL(scsi_execute_req_flags);
288
289 /*
290  * Function:    scsi_init_cmd_errh()
291  *
292  * Purpose:     Initialize cmd fields related to error handling.
293  *
294  * Arguments:   cmd     - command that is ready to be queued.
295  *
296  * Notes:       This function has the job of initializing a number of
297  *              fields related to error handling.   Typically this will
298  *              be called once for each command, as required.
299  */
300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302         cmd->serial_number = 0;
303         scsi_set_resid(cmd, 0);
304         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305         if (cmd->cmd_len == 0)
306                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
307 }
308
309 void scsi_device_unbusy(struct scsi_device *sdev)
310 {
311         struct Scsi_Host *shost = sdev->host;
312         struct scsi_target *starget = scsi_target(sdev);
313         unsigned long flags;
314
315         atomic_dec(&shost->host_busy);
316         if (starget->can_queue > 0)
317                 atomic_dec(&starget->target_busy);
318
319         if (unlikely(scsi_host_in_recovery(shost) &&
320                      (shost->host_failed || shost->host_eh_scheduled))) {
321                 spin_lock_irqsave(shost->host_lock, flags);
322                 scsi_eh_wakeup(shost);
323                 spin_unlock_irqrestore(shost->host_lock, flags);
324         }
325
326         atomic_dec(&sdev->device_busy);
327 }
328
329 static void scsi_kick_queue(struct request_queue *q)
330 {
331         if (q->mq_ops)
332                 blk_mq_start_hw_queues(q);
333         else
334                 blk_run_queue(q);
335 }
336
337 /*
338  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339  * and call blk_run_queue for all the scsi_devices on the target -
340  * including current_sdev first.
341  *
342  * Called with *no* scsi locks held.
343  */
344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 {
346         struct Scsi_Host *shost = current_sdev->host;
347         struct scsi_device *sdev, *tmp;
348         struct scsi_target *starget = scsi_target(current_sdev);
349         unsigned long flags;
350
351         spin_lock_irqsave(shost->host_lock, flags);
352         starget->starget_sdev_user = NULL;
353         spin_unlock_irqrestore(shost->host_lock, flags);
354
355         /*
356          * Call blk_run_queue for all LUNs on the target, starting with
357          * current_sdev. We race with others (to set starget_sdev_user),
358          * but in most cases, we will be first. Ideally, each LU on the
359          * target would get some limited time or requests on the target.
360          */
361         scsi_kick_queue(current_sdev->request_queue);
362
363         spin_lock_irqsave(shost->host_lock, flags);
364         if (starget->starget_sdev_user)
365                 goto out;
366         list_for_each_entry_safe(sdev, tmp, &starget->devices,
367                         same_target_siblings) {
368                 if (sdev == current_sdev)
369                         continue;
370                 if (scsi_device_get(sdev))
371                         continue;
372
373                 spin_unlock_irqrestore(shost->host_lock, flags);
374                 scsi_kick_queue(sdev->request_queue);
375                 spin_lock_irqsave(shost->host_lock, flags);
376         
377                 scsi_device_put(sdev);
378         }
379  out:
380         spin_unlock_irqrestore(shost->host_lock, flags);
381 }
382
383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 {
385         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386                 return true;
387         if (atomic_read(&sdev->device_blocked) > 0)
388                 return true;
389         return false;
390 }
391
392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 {
394         if (starget->can_queue > 0) {
395                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
396                         return true;
397                 if (atomic_read(&starget->target_blocked) > 0)
398                         return true;
399         }
400         return false;
401 }
402
403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 {
405         if (shost->can_queue > 0 &&
406             atomic_read(&shost->host_busy) >= shost->can_queue)
407                 return true;
408         if (atomic_read(&shost->host_blocked) > 0)
409                 return true;
410         if (shost->host_self_blocked)
411                 return true;
412         return false;
413 }
414
415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417         LIST_HEAD(starved_list);
418         struct scsi_device *sdev;
419         unsigned long flags;
420
421         spin_lock_irqsave(shost->host_lock, flags);
422         list_splice_init(&shost->starved_list, &starved_list);
423
424         while (!list_empty(&starved_list)) {
425                 struct request_queue *slq;
426
427                 /*
428                  * As long as shost is accepting commands and we have
429                  * starved queues, call blk_run_queue. scsi_request_fn
430                  * drops the queue_lock and can add us back to the
431                  * starved_list.
432                  *
433                  * host_lock protects the starved_list and starved_entry.
434                  * scsi_request_fn must get the host_lock before checking
435                  * or modifying starved_list or starved_entry.
436                  */
437                 if (scsi_host_is_busy(shost))
438                         break;
439
440                 sdev = list_entry(starved_list.next,
441                                   struct scsi_device, starved_entry);
442                 list_del_init(&sdev->starved_entry);
443                 if (scsi_target_is_busy(scsi_target(sdev))) {
444                         list_move_tail(&sdev->starved_entry,
445                                        &shost->starved_list);
446                         continue;
447                 }
448
449                 /*
450                  * Once we drop the host lock, a racing scsi_remove_device()
451                  * call may remove the sdev from the starved list and destroy
452                  * it and the queue.  Mitigate by taking a reference to the
453                  * queue and never touching the sdev again after we drop the
454                  * host lock.  Note: if __scsi_remove_device() invokes
455                  * blk_cleanup_queue() before the queue is run from this
456                  * function then blk_run_queue() will return immediately since
457                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458                  */
459                 slq = sdev->request_queue;
460                 if (!blk_get_queue(slq))
461                         continue;
462                 spin_unlock_irqrestore(shost->host_lock, flags);
463
464                 scsi_kick_queue(slq);
465                 blk_put_queue(slq);
466
467                 spin_lock_irqsave(shost->host_lock, flags);
468         }
469         /* put any unprocessed entries back */
470         list_splice(&starved_list, &shost->starved_list);
471         spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473
474 /*
475  * Function:   scsi_run_queue()
476  *
477  * Purpose:    Select a proper request queue to serve next
478  *
479  * Arguments:  q       - last request's queue
480  *
481  * Returns:     Nothing
482  *
483  * Notes:      The previous command was completely finished, start
484  *             a new one if possible.
485  */
486 static void scsi_run_queue(struct request_queue *q)
487 {
488         struct scsi_device *sdev = q->queuedata;
489
490         if (scsi_target(sdev)->single_lun)
491                 scsi_single_lun_run(sdev);
492         if (!list_empty(&sdev->host->starved_list))
493                 scsi_starved_list_run(sdev->host);
494
495         if (q->mq_ops)
496                 blk_mq_start_stopped_hw_queues(q, false);
497         else
498                 blk_run_queue(q);
499 }
500
501 void scsi_requeue_run_queue(struct work_struct *work)
502 {
503         struct scsi_device *sdev;
504         struct request_queue *q;
505
506         sdev = container_of(work, struct scsi_device, requeue_work);
507         q = sdev->request_queue;
508         scsi_run_queue(q);
509 }
510
511 /*
512  * Function:    scsi_requeue_command()
513  *
514  * Purpose:     Handle post-processing of completed commands.
515  *
516  * Arguments:   q       - queue to operate on
517  *              cmd     - command that may need to be requeued.
518  *
519  * Returns:     Nothing
520  *
521  * Notes:       After command completion, there may be blocks left
522  *              over which weren't finished by the previous command
523  *              this can be for a number of reasons - the main one is
524  *              I/O errors in the middle of the request, in which case
525  *              we need to request the blocks that come after the bad
526  *              sector.
527  * Notes:       Upon return, cmd is a stale pointer.
528  */
529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 {
531         struct scsi_device *sdev = cmd->device;
532         struct request *req = cmd->request;
533         unsigned long flags;
534
535         spin_lock_irqsave(q->queue_lock, flags);
536         blk_unprep_request(req);
537         req->special = NULL;
538         scsi_put_command(cmd);
539         blk_requeue_request(q, req);
540         spin_unlock_irqrestore(q->queue_lock, flags);
541
542         scsi_run_queue(q);
543
544         put_device(&sdev->sdev_gendev);
545 }
546
547 void scsi_run_host_queues(struct Scsi_Host *shost)
548 {
549         struct scsi_device *sdev;
550
551         shost_for_each_device(sdev, shost)
552                 scsi_run_queue(sdev->request_queue);
553 }
554
555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 {
557         unsigned int index;
558
559         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560
561         if (nents <= 8)
562                 index = 0;
563         else
564                 index = get_count_order(nents) - 3;
565
566         return index;
567 }
568
569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 {
571         struct scsi_host_sg_pool *sgp;
572
573         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574         mempool_free(sgl, sgp->pool);
575 }
576
577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 {
579         struct scsi_host_sg_pool *sgp;
580
581         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582         return mempool_alloc(sgp->pool, gfp_mask);
583 }
584
585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 {
587         if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588                 return;
589         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
590 }
591
592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 {
594         struct scatterlist *first_chunk = NULL;
595         int ret;
596
597         BUG_ON(!nents);
598
599         if (mq) {
600                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601                         sdb->table.nents = sdb->table.orig_nents = nents;
602                         sg_init_table(sdb->table.sgl, nents);
603                         return 0;
604                 }
605                 first_chunk = sdb->table.sgl;
606         }
607
608         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609                                first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610         if (unlikely(ret))
611                 scsi_free_sgtable(sdb, mq);
612         return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617         if (cmd->request->cmd_type == REQ_TYPE_FS) {
618                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620                 if (drv->uninit_command)
621                         drv->uninit_command(cmd);
622         }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627         if (cmd->sdb.table.nents)
628                 scsi_free_sgtable(&cmd->sdb, true);
629         if (cmd->request->next_rq && cmd->request->next_rq->special)
630                 scsi_free_sgtable(cmd->request->next_rq->special, true);
631         if (scsi_prot_sg_count(cmd))
632                 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637         struct scsi_device *sdev = cmd->device;
638         struct Scsi_Host *shost = sdev->host;
639         unsigned long flags;
640
641         scsi_mq_free_sgtables(cmd);
642         scsi_uninit_cmd(cmd);
643
644         if (shost->use_cmd_list) {
645                 BUG_ON(list_empty(&cmd->list));
646                 spin_lock_irqsave(&sdev->list_lock, flags);
647                 list_del_init(&cmd->list);
648                 spin_unlock_irqrestore(&sdev->list_lock, flags);
649         }
650 }
651
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Free resources allocate for a scsi_command.
656  *
657  * Arguments:   cmd     - command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *              command, we must release resources allocated during
665  *              the __init_io() function.  Primarily this would involve
666  *              the scatter-gather table.
667  */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670         if (cmd->sdb.table.nents)
671                 scsi_free_sgtable(&cmd->sdb, false);
672
673         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675         if (scsi_prot_sg_count(cmd))
676                 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683         scsi_free_sgtable(bidi_sdb, false);
684         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685         cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689                 unsigned int bytes, unsigned int bidi_bytes)
690 {
691         struct scsi_cmnd *cmd = req->special;
692         struct scsi_device *sdev = cmd->device;
693         struct request_queue *q = sdev->request_queue;
694
695         if (blk_update_request(req, error, bytes))
696                 return true;
697
698         /* Bidi request must be completed as a whole */
699         if (unlikely(bidi_bytes) &&
700             blk_update_request(req->next_rq, error, bidi_bytes))
701                 return true;
702
703         if (blk_queue_add_random(q))
704                 add_disk_randomness(req->rq_disk);
705
706         if (req->mq_ctx) {
707                 /*
708                  * In the MQ case the command gets freed by __blk_mq_end_request,
709                  * so we have to do all cleanup that depends on it earlier.
710                  *
711                  * We also can't kick the queues from irq context, so we
712                  * will have to defer it to a workqueue.
713                  */
714                 scsi_mq_uninit_cmd(cmd);
715
716                 __blk_mq_end_request(req, error);
717
718                 if (scsi_target(sdev)->single_lun ||
719                     !list_empty(&sdev->host->starved_list))
720                         kblockd_schedule_work(&sdev->requeue_work);
721                 else
722                         blk_mq_start_stopped_hw_queues(q, true);
723         } else {
724                 unsigned long flags;
725
726                 if (bidi_bytes)
727                         scsi_release_bidi_buffers(cmd);
728
729                 spin_lock_irqsave(q->queue_lock, flags);
730                 blk_finish_request(req, error);
731                 spin_unlock_irqrestore(q->queue_lock, flags);
732
733                 scsi_release_buffers(cmd);
734
735                 scsi_put_command(cmd);
736                 scsi_run_queue(q);
737         }
738
739         put_device(&sdev->sdev_gendev);
740         return false;
741 }
742
743 /**
744  * __scsi_error_from_host_byte - translate SCSI error code into errno
745  * @cmd:        SCSI command (unused)
746  * @result:     scsi error code
747  *
748  * Translate SCSI error code into standard UNIX errno.
749  * Return values:
750  * -ENOLINK     temporary transport failure
751  * -EREMOTEIO   permanent target failure, do not retry
752  * -EBADE       permanent nexus failure, retry on other path
753  * -ENOSPC      No write space available
754  * -ENODATA     Medium error
755  * -EIO         unspecified I/O error
756  */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759         int error = 0;
760
761         switch(host_byte(result)) {
762         case DID_TRANSPORT_FAILFAST:
763                 error = -ENOLINK;
764                 break;
765         case DID_TARGET_FAILURE:
766                 set_host_byte(cmd, DID_OK);
767                 error = -EREMOTEIO;
768                 break;
769         case DID_NEXUS_FAILURE:
770                 set_host_byte(cmd, DID_OK);
771                 error = -EBADE;
772                 break;
773         case DID_ALLOC_FAILURE:
774                 set_host_byte(cmd, DID_OK);
775                 error = -ENOSPC;
776                 break;
777         case DID_MEDIUM_ERROR:
778                 set_host_byte(cmd, DID_OK);
779                 error = -ENODATA;
780                 break;
781         default:
782                 error = -EIO;
783                 break;
784         }
785
786         return error;
787 }
788
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       We will finish off the specified number of sectors.  If we
801  *              are done, the command block will be released and the queue
802  *              function will be goosed.  If we are not done then we have to
803  *              figure out what to do next:
804  *
805  *              a) We can call scsi_requeue_command().  The request
806  *                 will be unprepared and put back on the queue.  Then
807  *                 a new command will be created for it.  This should
808  *                 be used if we made forward progress, or if we want
809  *                 to switch from READ(10) to READ(6) for example.
810  *
811  *              b) We can call __scsi_queue_insert().  The request will
812  *                 be put back on the queue and retried using the same
813  *                 command as before, possibly after a delay.
814  *
815  *              c) We can call scsi_end_request() with -EIO to fail
816  *                 the remainder of the request.
817  */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820         int result = cmd->result;
821         struct request_queue *q = cmd->device->request_queue;
822         struct request *req = cmd->request;
823         int error = 0;
824         struct scsi_sense_hdr sshdr;
825         bool sense_valid = false;
826         int sense_deferred = 0, level = 0;
827         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828               ACTION_DELAYED_RETRY} action;
829         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831         if (result) {
832                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833                 if (sense_valid)
834                         sense_deferred = scsi_sense_is_deferred(&sshdr);
835         }
836
837         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838                 if (result) {
839                         if (sense_valid && req->sense) {
840                                 /*
841                                  * SG_IO wants current and deferred errors
842                                  */
843                                 int len = 8 + cmd->sense_buffer[7];
844
845                                 if (len > SCSI_SENSE_BUFFERSIZE)
846                                         len = SCSI_SENSE_BUFFERSIZE;
847                                 memcpy(req->sense, cmd->sense_buffer,  len);
848                                 req->sense_len = len;
849                         }
850                         if (!sense_deferred)
851                                 error = __scsi_error_from_host_byte(cmd, result);
852                 }
853                 /*
854                  * __scsi_error_from_host_byte may have reset the host_byte
855                  */
856                 req->errors = cmd->result;
857
858                 req->resid_len = scsi_get_resid(cmd);
859
860                 if (scsi_bidi_cmnd(cmd)) {
861                         /*
862                          * Bidi commands Must be complete as a whole,
863                          * both sides at once.
864                          */
865                         req->next_rq->resid_len = scsi_in(cmd)->resid;
866                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
867                                         blk_rq_bytes(req->next_rq)))
868                                 BUG();
869                         return;
870                 }
871         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872                 /*
873                  * Certain non BLOCK_PC requests are commands that don't
874                  * actually transfer anything (FLUSH), so cannot use
875                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
876                  * This sets the error explicitly for the problem case.
877                  */
878                 error = __scsi_error_from_host_byte(cmd, result);
879         }
880
881         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882         BUG_ON(blk_bidi_rq(req));
883
884         /*
885          * Next deal with any sectors which we were able to correctly
886          * handle.
887          */
888         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889                 "%u sectors total, %d bytes done.\n",
890                 blk_rq_sectors(req), good_bytes));
891
892         /*
893          * Recovered errors need reporting, but they're always treated
894          * as success, so fiddle the result code here.  For BLOCK_PC
895          * we already took a copy of the original into rq->errors which
896          * is what gets returned to the user
897          */
898         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900                  * print since caller wants ATA registers. Only occurs on
901                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
902                  */
903                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904                         ;
905                 else if (!(req->cmd_flags & REQ_QUIET))
906                         scsi_print_sense(cmd);
907                 result = 0;
908                 /* BLOCK_PC may have set error */
909                 error = 0;
910         }
911
912         /*
913          * If we finished all bytes in the request we are done now.
914          */
915         if (!scsi_end_request(req, error, good_bytes, 0))
916                 return;
917
918         /*
919          * Kill remainder if no retrys.
920          */
921         if (error && scsi_noretry_cmd(cmd)) {
922                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923                         BUG();
924                 return;
925         }
926
927         /*
928          * If there had been no error, but we have leftover bytes in the
929          * requeues just queue the command up again.
930          */
931         if (result == 0)
932                 goto requeue;
933
934         error = __scsi_error_from_host_byte(cmd, result);
935
936         if (host_byte(result) == DID_RESET) {
937                 /* Third party bus reset or reset for error recovery
938                  * reasons.  Just retry the command and see what
939                  * happens.
940                  */
941                 action = ACTION_RETRY;
942         } else if (sense_valid && !sense_deferred) {
943                 switch (sshdr.sense_key) {
944                 case UNIT_ATTENTION:
945                         if (cmd->device->removable) {
946                                 /* Detected disc change.  Set a bit
947                                  * and quietly refuse further access.
948                                  */
949                                 cmd->device->changed = 1;
950                                 action = ACTION_FAIL;
951                         } else {
952                                 /* Must have been a power glitch, or a
953                                  * bus reset.  Could not have been a
954                                  * media change, so we just retry the
955                                  * command and see what happens.
956                                  */
957                                 action = ACTION_RETRY;
958                         }
959                         break;
960                 case ILLEGAL_REQUEST:
961                         /* If we had an ILLEGAL REQUEST returned, then
962                          * we may have performed an unsupported
963                          * command.  The only thing this should be
964                          * would be a ten byte read where only a six
965                          * byte read was supported.  Also, on a system
966                          * where READ CAPACITY failed, we may have
967                          * read past the end of the disk.
968                          */
969                         if ((cmd->device->use_10_for_rw &&
970                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971                             (cmd->cmnd[0] == READ_10 ||
972                              cmd->cmnd[0] == WRITE_10)) {
973                                 /* This will issue a new 6-byte command. */
974                                 cmd->device->use_10_for_rw = 0;
975                                 action = ACTION_REPREP;
976                         } else if (sshdr.asc == 0x10) /* DIX */ {
977                                 action = ACTION_FAIL;
978                                 error = -EILSEQ;
979                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981                                 action = ACTION_FAIL;
982                                 error = -EREMOTEIO;
983                         } else
984                                 action = ACTION_FAIL;
985                         break;
986                 case ABORTED_COMMAND:
987                         action = ACTION_FAIL;
988                         if (sshdr.asc == 0x10) /* DIF */
989                                 error = -EILSEQ;
990                         break;
991                 case NOT_READY:
992                         /* If the device is in the process of becoming
993                          * ready, or has a temporary blockage, retry.
994                          */
995                         if (sshdr.asc == 0x04) {
996                                 switch (sshdr.ascq) {
997                                 case 0x01: /* becoming ready */
998                                 case 0x04: /* format in progress */
999                                 case 0x05: /* rebuild in progress */
1000                                 case 0x06: /* recalculation in progress */
1001                                 case 0x07: /* operation in progress */
1002                                 case 0x08: /* Long write in progress */
1003                                 case 0x09: /* self test in progress */
1004                                 case 0x14: /* space allocation in progress */
1005                                         action = ACTION_DELAYED_RETRY;
1006                                         break;
1007                                 default:
1008                                         action = ACTION_FAIL;
1009                                         break;
1010                                 }
1011                         } else
1012                                 action = ACTION_FAIL;
1013                         break;
1014                 case VOLUME_OVERFLOW:
1015                         /* See SSC3rXX or current. */
1016                         action = ACTION_FAIL;
1017                         break;
1018                 default:
1019                         action = ACTION_FAIL;
1020                         break;
1021                 }
1022         } else
1023                 action = ACTION_FAIL;
1024
1025         if (action != ACTION_FAIL &&
1026             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027                 action = ACTION_FAIL;
1028
1029         switch (action) {
1030         case ACTION_FAIL:
1031                 /* Give up and fail the remainder of the request */
1032                 if (!(req->cmd_flags & REQ_QUIET)) {
1033                         static DEFINE_RATELIMIT_STATE(_rs,
1034                                         DEFAULT_RATELIMIT_INTERVAL,
1035                                         DEFAULT_RATELIMIT_BURST);
1036
1037                         if (unlikely(scsi_logging_level))
1038                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039                                                        SCSI_LOG_MLCOMPLETE_BITS);
1040
1041                         /*
1042                          * if logging is enabled the failure will be printed
1043                          * in scsi_log_completion(), so avoid duplicate messages
1044                          */
1045                         if (!level && __ratelimit(&_rs)) {
1046                                 scsi_print_result(cmd, NULL, FAILED);
1047                                 if (driver_byte(result) & DRIVER_SENSE)
1048                                         scsi_print_sense(cmd);
1049                                 scsi_print_command(cmd);
1050                         }
1051                 }
1052                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053                         return;
1054                 /*FALLTHRU*/
1055         case ACTION_REPREP:
1056         requeue:
1057                 /* Unprep the request and put it back at the head of the queue.
1058                  * A new command will be prepared and issued.
1059                  */
1060                 if (q->mq_ops) {
1061                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062                         scsi_mq_uninit_cmd(cmd);
1063                         scsi_mq_requeue_cmd(cmd);
1064                 } else {
1065                         scsi_release_buffers(cmd);
1066                         scsi_requeue_command(q, cmd);
1067                 }
1068                 break;
1069         case ACTION_RETRY:
1070                 /* Retry the same command immediately */
1071                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072                 break;
1073         case ACTION_DELAYED_RETRY:
1074                 /* Retry the same command after a delay */
1075                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076                 break;
1077         }
1078 }
1079
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1081 {
1082         int count;
1083
1084         /*
1085          * If sg table allocation fails, requeue request later.
1086          */
1087         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1088                                         req->mq_ctx != NULL)))
1089                 return BLKPREP_DEFER;
1090
1091         /* 
1092          * Next, walk the list, and fill in the addresses and sizes of
1093          * each segment.
1094          */
1095         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1096         BUG_ON(count > sdb->table.nents);
1097         sdb->table.nents = count;
1098         sdb->length = blk_rq_bytes(req);
1099         return BLKPREP_OK;
1100 }
1101
1102 /*
1103  * Function:    scsi_init_io()
1104  *
1105  * Purpose:     SCSI I/O initialize function.
1106  *
1107  * Arguments:   cmd   - Command descriptor we wish to initialize
1108  *
1109  * Returns:     0 on success
1110  *              BLKPREP_DEFER if the failure is retryable
1111  *              BLKPREP_KILL if the failure is fatal
1112  */
1113 int scsi_init_io(struct scsi_cmnd *cmd)
1114 {
1115         struct scsi_device *sdev = cmd->device;
1116         struct request *rq = cmd->request;
1117         bool is_mq = (rq->mq_ctx != NULL);
1118         int error;
1119
1120         BUG_ON(!rq->nr_phys_segments);
1121
1122         error = scsi_init_sgtable(rq, &cmd->sdb);
1123         if (error)
1124                 goto err_exit;
1125
1126         if (blk_bidi_rq(rq)) {
1127                 if (!rq->q->mq_ops) {
1128                         struct scsi_data_buffer *bidi_sdb =
1129                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1130                         if (!bidi_sdb) {
1131                                 error = BLKPREP_DEFER;
1132                                 goto err_exit;
1133                         }
1134
1135                         rq->next_rq->special = bidi_sdb;
1136                 }
1137
1138                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1139                 if (error)
1140                         goto err_exit;
1141         }
1142
1143         if (blk_integrity_rq(rq)) {
1144                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145                 int ivecs, count;
1146
1147                 if (prot_sdb == NULL) {
1148                         /*
1149                          * This can happen if someone (e.g. multipath)
1150                          * queues a command to a device on an adapter
1151                          * that does not support DIX.
1152                          */
1153                         WARN_ON_ONCE(1);
1154                         error = BLKPREP_KILL;
1155                         goto err_exit;
1156                 }
1157
1158                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1159
1160                 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1161                         error = BLKPREP_DEFER;
1162                         goto err_exit;
1163                 }
1164
1165                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1166                                                 prot_sdb->table.sgl);
1167                 BUG_ON(unlikely(count > ivecs));
1168                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1169
1170                 cmd->prot_sdb = prot_sdb;
1171                 cmd->prot_sdb->table.nents = count;
1172         }
1173
1174         return BLKPREP_OK;
1175 err_exit:
1176         if (is_mq) {
1177                 scsi_mq_free_sgtables(cmd);
1178         } else {
1179                 scsi_release_buffers(cmd);
1180                 cmd->request->special = NULL;
1181                 scsi_put_command(cmd);
1182                 put_device(&sdev->sdev_gendev);
1183         }
1184         return error;
1185 }
1186 EXPORT_SYMBOL(scsi_init_io);
1187
1188 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1189                 struct request *req)
1190 {
1191         struct scsi_cmnd *cmd;
1192
1193         if (!req->special) {
1194                 /* Bail if we can't get a reference to the device */
1195                 if (!get_device(&sdev->sdev_gendev))
1196                         return NULL;
1197
1198                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1199                 if (unlikely(!cmd)) {
1200                         put_device(&sdev->sdev_gendev);
1201                         return NULL;
1202                 }
1203                 req->special = cmd;
1204         } else {
1205                 cmd = req->special;
1206         }
1207
1208         /* pull a tag out of the request if we have one */
1209         cmd->tag = req->tag;
1210         cmd->request = req;
1211
1212         cmd->cmnd = req->cmd;
1213         cmd->prot_op = SCSI_PROT_NORMAL;
1214
1215         return cmd;
1216 }
1217
1218 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220         struct scsi_cmnd *cmd = req->special;
1221
1222         /*
1223          * BLOCK_PC requests may transfer data, in which case they must
1224          * a bio attached to them.  Or they might contain a SCSI command
1225          * that does not transfer data, in which case they may optionally
1226          * submit a request without an attached bio.
1227          */
1228         if (req->bio) {
1229                 int ret = scsi_init_io(cmd);
1230                 if (unlikely(ret))
1231                         return ret;
1232         } else {
1233                 BUG_ON(blk_rq_bytes(req));
1234
1235                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1236         }
1237
1238         cmd->cmd_len = req->cmd_len;
1239         cmd->transfersize = blk_rq_bytes(req);
1240         cmd->allowed = req->retries;
1241         return BLKPREP_OK;
1242 }
1243
1244 /*
1245  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1246  * that still need to be translated to SCSI CDBs from the ULD.
1247  */
1248 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250         struct scsi_cmnd *cmd = req->special;
1251
1252         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1253                 int ret = sdev->handler->prep_fn(sdev, req);
1254                 if (ret != BLKPREP_OK)
1255                         return ret;
1256         }
1257
1258         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1259         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1260 }
1261
1262 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1263 {
1264         struct scsi_cmnd *cmd = req->special;
1265
1266         if (!blk_rq_bytes(req))
1267                 cmd->sc_data_direction = DMA_NONE;
1268         else if (rq_data_dir(req) == WRITE)
1269                 cmd->sc_data_direction = DMA_TO_DEVICE;
1270         else
1271                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1272
1273         switch (req->cmd_type) {
1274         case REQ_TYPE_FS:
1275                 return scsi_setup_fs_cmnd(sdev, req);
1276         case REQ_TYPE_BLOCK_PC:
1277                 return scsi_setup_blk_pc_cmnd(sdev, req);
1278         default:
1279                 return BLKPREP_KILL;
1280         }
1281 }
1282
1283 static int
1284 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1285 {
1286         int ret = BLKPREP_OK;
1287
1288         /*
1289          * If the device is not in running state we will reject some
1290          * or all commands.
1291          */
1292         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1293                 switch (sdev->sdev_state) {
1294                 case SDEV_OFFLINE:
1295                 case SDEV_TRANSPORT_OFFLINE:
1296                         /*
1297                          * If the device is offline we refuse to process any
1298                          * commands.  The device must be brought online
1299                          * before trying any recovery commands.
1300                          */
1301                         sdev_printk(KERN_ERR, sdev,
1302                                     "rejecting I/O to offline device\n");
1303                         ret = BLKPREP_KILL;
1304                         break;
1305                 case SDEV_DEL:
1306                         /*
1307                          * If the device is fully deleted, we refuse to
1308                          * process any commands as well.
1309                          */
1310                         sdev_printk(KERN_ERR, sdev,
1311                                     "rejecting I/O to dead device\n");
1312                         ret = BLKPREP_KILL;
1313                         break;
1314                 case SDEV_BLOCK:
1315                 case SDEV_CREATED_BLOCK:
1316                         ret = BLKPREP_DEFER;
1317                         break;
1318                 case SDEV_QUIESCE:
1319                         /*
1320                          * If the devices is blocked we defer normal commands.
1321                          */
1322                         if (!(req->cmd_flags & REQ_PREEMPT))
1323                                 ret = BLKPREP_DEFER;
1324                         break;
1325                 default:
1326                         /*
1327                          * For any other not fully online state we only allow
1328                          * special commands.  In particular any user initiated
1329                          * command is not allowed.
1330                          */
1331                         if (!(req->cmd_flags & REQ_PREEMPT))
1332                                 ret = BLKPREP_KILL;
1333                         break;
1334                 }
1335         }
1336         return ret;
1337 }
1338
1339 static int
1340 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1341 {
1342         struct scsi_device *sdev = q->queuedata;
1343
1344         switch (ret) {
1345         case BLKPREP_KILL:
1346                 req->errors = DID_NO_CONNECT << 16;
1347                 /* release the command and kill it */
1348                 if (req->special) {
1349                         struct scsi_cmnd *cmd = req->special;
1350                         scsi_release_buffers(cmd);
1351                         scsi_put_command(cmd);
1352                         put_device(&sdev->sdev_gendev);
1353                         req->special = NULL;
1354                 }
1355                 break;
1356         case BLKPREP_DEFER:
1357                 /*
1358                  * If we defer, the blk_peek_request() returns NULL, but the
1359                  * queue must be restarted, so we schedule a callback to happen
1360                  * shortly.
1361                  */
1362                 if (atomic_read(&sdev->device_busy) == 0)
1363                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364                 break;
1365         default:
1366                 req->cmd_flags |= REQ_DONTPREP;
1367         }
1368
1369         return ret;
1370 }
1371
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373 {
1374         struct scsi_device *sdev = q->queuedata;
1375         struct scsi_cmnd *cmd;
1376         int ret;
1377
1378         ret = scsi_prep_state_check(sdev, req);
1379         if (ret != BLKPREP_OK)
1380                 goto out;
1381
1382         cmd = scsi_get_cmd_from_req(sdev, req);
1383         if (unlikely(!cmd)) {
1384                 ret = BLKPREP_DEFER;
1385                 goto out;
1386         }
1387
1388         ret = scsi_setup_cmnd(sdev, req);
1389 out:
1390         return scsi_prep_return(q, req, ret);
1391 }
1392
1393 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1394 {
1395         scsi_uninit_cmd(req->special);
1396 }
1397
1398 /*
1399  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1400  * return 0.
1401  *
1402  * Called with the queue_lock held.
1403  */
1404 static inline int scsi_dev_queue_ready(struct request_queue *q,
1405                                   struct scsi_device *sdev)
1406 {
1407         unsigned int busy;
1408
1409         busy = atomic_inc_return(&sdev->device_busy) - 1;
1410         if (atomic_read(&sdev->device_blocked)) {
1411                 if (busy)
1412                         goto out_dec;
1413
1414                 /*
1415                  * unblock after device_blocked iterates to zero
1416                  */
1417                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1418                         /*
1419                          * For the MQ case we take care of this in the caller.
1420                          */
1421                         if (!q->mq_ops)
1422                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1423                         goto out_dec;
1424                 }
1425                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1426                                    "unblocking device at zero depth\n"));
1427         }
1428
1429         if (busy >= sdev->queue_depth)
1430                 goto out_dec;
1431
1432         return 1;
1433 out_dec:
1434         atomic_dec(&sdev->device_busy);
1435         return 0;
1436 }
1437
1438 /*
1439  * scsi_target_queue_ready: checks if there we can send commands to target
1440  * @sdev: scsi device on starget to check.
1441  */
1442 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1443                                            struct scsi_device *sdev)
1444 {
1445         struct scsi_target *starget = scsi_target(sdev);
1446         unsigned int busy;
1447
1448         if (starget->single_lun) {
1449                 spin_lock_irq(shost->host_lock);
1450                 if (starget->starget_sdev_user &&
1451                     starget->starget_sdev_user != sdev) {
1452                         spin_unlock_irq(shost->host_lock);
1453                         return 0;
1454                 }
1455                 starget->starget_sdev_user = sdev;
1456                 spin_unlock_irq(shost->host_lock);
1457         }
1458
1459         if (starget->can_queue <= 0)
1460                 return 1;
1461
1462         busy = atomic_inc_return(&starget->target_busy) - 1;
1463         if (atomic_read(&starget->target_blocked) > 0) {
1464                 if (busy)
1465                         goto starved;
1466
1467                 /*
1468                  * unblock after target_blocked iterates to zero
1469                  */
1470                 if (atomic_dec_return(&starget->target_blocked) > 0)
1471                         goto out_dec;
1472
1473                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1474                                  "unblocking target at zero depth\n"));
1475         }
1476
1477         if (busy >= starget->can_queue)
1478                 goto starved;
1479
1480         return 1;
1481
1482 starved:
1483         spin_lock_irq(shost->host_lock);
1484         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1485         spin_unlock_irq(shost->host_lock);
1486 out_dec:
1487         if (starget->can_queue > 0)
1488                 atomic_dec(&starget->target_busy);
1489         return 0;
1490 }
1491
1492 /*
1493  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1494  * return 0. We must end up running the queue again whenever 0 is
1495  * returned, else IO can hang.
1496  */
1497 static inline int scsi_host_queue_ready(struct request_queue *q,
1498                                    struct Scsi_Host *shost,
1499                                    struct scsi_device *sdev)
1500 {
1501         unsigned int busy;
1502
1503         if (scsi_host_in_recovery(shost))
1504                 return 0;
1505
1506         busy = atomic_inc_return(&shost->host_busy) - 1;
1507         if (atomic_read(&shost->host_blocked) > 0) {
1508                 if (busy)
1509                         goto starved;
1510
1511                 /*
1512                  * unblock after host_blocked iterates to zero
1513                  */
1514                 if (atomic_dec_return(&shost->host_blocked) > 0)
1515                         goto out_dec;
1516
1517                 SCSI_LOG_MLQUEUE(3,
1518                         shost_printk(KERN_INFO, shost,
1519                                      "unblocking host at zero depth\n"));
1520         }
1521
1522         if (shost->can_queue > 0 && busy >= shost->can_queue)
1523                 goto starved;
1524         if (shost->host_self_blocked)
1525                 goto starved;
1526
1527         /* We're OK to process the command, so we can't be starved */
1528         if (!list_empty(&sdev->starved_entry)) {
1529                 spin_lock_irq(shost->host_lock);
1530                 if (!list_empty(&sdev->starved_entry))
1531                         list_del_init(&sdev->starved_entry);
1532                 spin_unlock_irq(shost->host_lock);
1533         }
1534
1535         return 1;
1536
1537 starved:
1538         spin_lock_irq(shost->host_lock);
1539         if (list_empty(&sdev->starved_entry))
1540                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1541         spin_unlock_irq(shost->host_lock);
1542 out_dec:
1543         atomic_dec(&shost->host_busy);
1544         return 0;
1545 }
1546
1547 /*
1548  * Busy state exporting function for request stacking drivers.
1549  *
1550  * For efficiency, no lock is taken to check the busy state of
1551  * shost/starget/sdev, since the returned value is not guaranteed and
1552  * may be changed after request stacking drivers call the function,
1553  * regardless of taking lock or not.
1554  *
1555  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1556  * needs to return 'not busy'. Otherwise, request stacking drivers
1557  * may hold requests forever.
1558  */
1559 static int scsi_lld_busy(struct request_queue *q)
1560 {
1561         struct scsi_device *sdev = q->queuedata;
1562         struct Scsi_Host *shost;
1563
1564         if (blk_queue_dying(q))
1565                 return 0;
1566
1567         shost = sdev->host;
1568
1569         /*
1570          * Ignore host/starget busy state.
1571          * Since block layer does not have a concept of fairness across
1572          * multiple queues, congestion of host/starget needs to be handled
1573          * in SCSI layer.
1574          */
1575         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1576                 return 1;
1577
1578         return 0;
1579 }
1580
1581 /*
1582  * Kill a request for a dead device
1583  */
1584 static void scsi_kill_request(struct request *req, struct request_queue *q)
1585 {
1586         struct scsi_cmnd *cmd = req->special;
1587         struct scsi_device *sdev;
1588         struct scsi_target *starget;
1589         struct Scsi_Host *shost;
1590
1591         blk_start_request(req);
1592
1593         scmd_printk(KERN_INFO, cmd, "killing request\n");
1594
1595         sdev = cmd->device;
1596         starget = scsi_target(sdev);
1597         shost = sdev->host;
1598         scsi_init_cmd_errh(cmd);
1599         cmd->result = DID_NO_CONNECT << 16;
1600         atomic_inc(&cmd->device->iorequest_cnt);
1601
1602         /*
1603          * SCSI request completion path will do scsi_device_unbusy(),
1604          * bump busy counts.  To bump the counters, we need to dance
1605          * with the locks as normal issue path does.
1606          */
1607         atomic_inc(&sdev->device_busy);
1608         atomic_inc(&shost->host_busy);
1609         if (starget->can_queue > 0)
1610                 atomic_inc(&starget->target_busy);
1611
1612         blk_complete_request(req);
1613 }
1614
1615 static void scsi_softirq_done(struct request *rq)
1616 {
1617         struct scsi_cmnd *cmd = rq->special;
1618         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1619         int disposition;
1620
1621         INIT_LIST_HEAD(&cmd->eh_entry);
1622
1623         atomic_inc(&cmd->device->iodone_cnt);
1624         if (cmd->result)
1625                 atomic_inc(&cmd->device->ioerr_cnt);
1626
1627         disposition = scsi_decide_disposition(cmd);
1628         if (disposition != SUCCESS &&
1629             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1630                 sdev_printk(KERN_ERR, cmd->device,
1631                             "timing out command, waited %lus\n",
1632                             wait_for/HZ);
1633                 disposition = SUCCESS;
1634         }
1635
1636         scsi_log_completion(cmd, disposition);
1637
1638         switch (disposition) {
1639                 case SUCCESS:
1640                         scsi_finish_command(cmd);
1641                         break;
1642                 case NEEDS_RETRY:
1643                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1644                         break;
1645                 case ADD_TO_MLQUEUE:
1646                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1647                         break;
1648                 default:
1649                         if (!scsi_eh_scmd_add(cmd, 0))
1650                                 scsi_finish_command(cmd);
1651         }
1652 }
1653
1654 /**
1655  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1656  * @cmd: command block we are dispatching.
1657  *
1658  * Return: nonzero return request was rejected and device's queue needs to be
1659  * plugged.
1660  */
1661 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1662 {
1663         struct Scsi_Host *host = cmd->device->host;
1664         int rtn = 0;
1665
1666         atomic_inc(&cmd->device->iorequest_cnt);
1667
1668         /* check if the device is still usable */
1669         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1670                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1671                  * returns an immediate error upwards, and signals
1672                  * that the device is no longer present */
1673                 cmd->result = DID_NO_CONNECT << 16;
1674                 goto done;
1675         }
1676
1677         /* Check to see if the scsi lld made this device blocked. */
1678         if (unlikely(scsi_device_blocked(cmd->device))) {
1679                 /*
1680                  * in blocked state, the command is just put back on
1681                  * the device queue.  The suspend state has already
1682                  * blocked the queue so future requests should not
1683                  * occur until the device transitions out of the
1684                  * suspend state.
1685                  */
1686                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1687                         "queuecommand : device blocked\n"));
1688                 return SCSI_MLQUEUE_DEVICE_BUSY;
1689         }
1690
1691         /* Store the LUN value in cmnd, if needed. */
1692         if (cmd->device->lun_in_cdb)
1693                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1694                                (cmd->device->lun << 5 & 0xe0);
1695
1696         scsi_log_send(cmd);
1697
1698         /*
1699          * Before we queue this command, check if the command
1700          * length exceeds what the host adapter can handle.
1701          */
1702         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1703                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1704                                "queuecommand : command too long. "
1705                                "cdb_size=%d host->max_cmd_len=%d\n",
1706                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1707                 cmd->result = (DID_ABORT << 16);
1708                 goto done;
1709         }
1710
1711         if (unlikely(host->shost_state == SHOST_DEL)) {
1712                 cmd->result = (DID_NO_CONNECT << 16);
1713                 goto done;
1714
1715         }
1716
1717         trace_scsi_dispatch_cmd_start(cmd);
1718         rtn = host->hostt->queuecommand(host, cmd);
1719         if (rtn) {
1720                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1721                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1722                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1723                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1724
1725                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1726                         "queuecommand : request rejected\n"));
1727         }
1728
1729         return rtn;
1730  done:
1731         cmd->scsi_done(cmd);
1732         return 0;
1733 }
1734
1735 /**
1736  * scsi_done - Invoke completion on finished SCSI command.
1737  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1738  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1739  *
1740  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1741  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1742  * calls blk_complete_request() for further processing.
1743  *
1744  * This function is interrupt context safe.
1745  */
1746 static void scsi_done(struct scsi_cmnd *cmd)
1747 {
1748         trace_scsi_dispatch_cmd_done(cmd);
1749         blk_complete_request(cmd->request);
1750 }
1751
1752 /*
1753  * Function:    scsi_request_fn()
1754  *
1755  * Purpose:     Main strategy routine for SCSI.
1756  *
1757  * Arguments:   q       - Pointer to actual queue.
1758  *
1759  * Returns:     Nothing
1760  *
1761  * Lock status: IO request lock assumed to be held when called.
1762  */
1763 static void scsi_request_fn(struct request_queue *q)
1764         __releases(q->queue_lock)
1765         __acquires(q->queue_lock)
1766 {
1767         struct scsi_device *sdev = q->queuedata;
1768         struct Scsi_Host *shost;
1769         struct scsi_cmnd *cmd;
1770         struct request *req;
1771
1772         /*
1773          * To start with, we keep looping until the queue is empty, or until
1774          * the host is no longer able to accept any more requests.
1775          */
1776         shost = sdev->host;
1777         for (;;) {
1778                 int rtn;
1779                 /*
1780                  * get next queueable request.  We do this early to make sure
1781                  * that the request is fully prepared even if we cannot
1782                  * accept it.
1783                  */
1784                 req = blk_peek_request(q);
1785                 if (!req)
1786                         break;
1787
1788                 if (unlikely(!scsi_device_online(sdev))) {
1789                         sdev_printk(KERN_ERR, sdev,
1790                                     "rejecting I/O to offline device\n");
1791                         scsi_kill_request(req, q);
1792                         continue;
1793                 }
1794
1795                 if (!scsi_dev_queue_ready(q, sdev))
1796                         break;
1797
1798                 /*
1799                  * Remove the request from the request list.
1800                  */
1801                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1802                         blk_start_request(req);
1803
1804                 spin_unlock_irq(q->queue_lock);
1805                 cmd = req->special;
1806                 if (unlikely(cmd == NULL)) {
1807                         printk(KERN_CRIT "impossible request in %s.\n"
1808                                          "please mail a stack trace to "
1809                                          "linux-scsi@vger.kernel.org\n",
1810                                          __func__);
1811                         blk_dump_rq_flags(req, "foo");
1812                         BUG();
1813                 }
1814
1815                 /*
1816                  * We hit this when the driver is using a host wide
1817                  * tag map. For device level tag maps the queue_depth check
1818                  * in the device ready fn would prevent us from trying
1819                  * to allocate a tag. Since the map is a shared host resource
1820                  * we add the dev to the starved list so it eventually gets
1821                  * a run when a tag is freed.
1822                  */
1823                 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1824                         spin_lock_irq(shost->host_lock);
1825                         if (list_empty(&sdev->starved_entry))
1826                                 list_add_tail(&sdev->starved_entry,
1827                                               &shost->starved_list);
1828                         spin_unlock_irq(shost->host_lock);
1829                         goto not_ready;
1830                 }
1831
1832                 if (!scsi_target_queue_ready(shost, sdev))
1833                         goto not_ready;
1834
1835                 if (!scsi_host_queue_ready(q, shost, sdev))
1836                         goto host_not_ready;
1837         
1838                 if (sdev->simple_tags)
1839                         cmd->flags |= SCMD_TAGGED;
1840                 else
1841                         cmd->flags &= ~SCMD_TAGGED;
1842
1843                 /*
1844                  * Finally, initialize any error handling parameters, and set up
1845                  * the timers for timeouts.
1846                  */
1847                 scsi_init_cmd_errh(cmd);
1848
1849                 /*
1850                  * Dispatch the command to the low-level driver.
1851                  */
1852                 cmd->scsi_done = scsi_done;
1853                 rtn = scsi_dispatch_cmd(cmd);
1854                 if (rtn) {
1855                         scsi_queue_insert(cmd, rtn);
1856                         spin_lock_irq(q->queue_lock);
1857                         goto out_delay;
1858                 }
1859                 spin_lock_irq(q->queue_lock);
1860         }
1861
1862         return;
1863
1864  host_not_ready:
1865         if (scsi_target(sdev)->can_queue > 0)
1866                 atomic_dec(&scsi_target(sdev)->target_busy);
1867  not_ready:
1868         /*
1869          * lock q, handle tag, requeue req, and decrement device_busy. We
1870          * must return with queue_lock held.
1871          *
1872          * Decrementing device_busy without checking it is OK, as all such
1873          * cases (host limits or settings) should run the queue at some
1874          * later time.
1875          */
1876         spin_lock_irq(q->queue_lock);
1877         blk_requeue_request(q, req);
1878         atomic_dec(&sdev->device_busy);
1879 out_delay:
1880         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1881                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1882 }
1883
1884 static inline int prep_to_mq(int ret)
1885 {
1886         switch (ret) {
1887         case BLKPREP_OK:
1888                 return 0;
1889         case BLKPREP_DEFER:
1890                 return BLK_MQ_RQ_QUEUE_BUSY;
1891         default:
1892                 return BLK_MQ_RQ_QUEUE_ERROR;
1893         }
1894 }
1895
1896 static int scsi_mq_prep_fn(struct request *req)
1897 {
1898         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1899         struct scsi_device *sdev = req->q->queuedata;
1900         struct Scsi_Host *shost = sdev->host;
1901         unsigned char *sense_buf = cmd->sense_buffer;
1902         struct scatterlist *sg;
1903
1904         memset(cmd, 0, sizeof(struct scsi_cmnd));
1905
1906         req->special = cmd;
1907
1908         cmd->request = req;
1909         cmd->device = sdev;
1910         cmd->sense_buffer = sense_buf;
1911
1912         cmd->tag = req->tag;
1913
1914         cmd->cmnd = req->cmd;
1915         cmd->prot_op = SCSI_PROT_NORMAL;
1916
1917         INIT_LIST_HEAD(&cmd->list);
1918         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1919         cmd->jiffies_at_alloc = jiffies;
1920
1921         if (shost->use_cmd_list) {
1922                 spin_lock_irq(&sdev->list_lock);
1923                 list_add_tail(&cmd->list, &sdev->cmd_list);
1924                 spin_unlock_irq(&sdev->list_lock);
1925         }
1926
1927         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1928         cmd->sdb.table.sgl = sg;
1929
1930         if (scsi_host_get_prot(shost)) {
1931                 cmd->prot_sdb = (void *)sg +
1932                         min_t(unsigned int,
1933                               shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1934                         sizeof(struct scatterlist);
1935                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1936
1937                 cmd->prot_sdb->table.sgl =
1938                         (struct scatterlist *)(cmd->prot_sdb + 1);
1939         }
1940
1941         if (blk_bidi_rq(req)) {
1942                 struct request *next_rq = req->next_rq;
1943                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1944
1945                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946                 bidi_sdb->table.sgl =
1947                         (struct scatterlist *)(bidi_sdb + 1);
1948
1949                 next_rq->special = bidi_sdb;
1950         }
1951
1952         blk_mq_start_request(req);
1953
1954         return scsi_setup_cmnd(sdev, req);
1955 }
1956
1957 static void scsi_mq_done(struct scsi_cmnd *cmd)
1958 {
1959         trace_scsi_dispatch_cmd_done(cmd);
1960         blk_mq_complete_request(cmd->request, cmd->request->errors);
1961 }
1962
1963 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1964                          const struct blk_mq_queue_data *bd)
1965 {
1966         struct request *req = bd->rq;
1967         struct request_queue *q = req->q;
1968         struct scsi_device *sdev = q->queuedata;
1969         struct Scsi_Host *shost = sdev->host;
1970         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1971         int ret;
1972         int reason;
1973
1974         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1975         if (ret)
1976                 goto out;
1977
1978         ret = BLK_MQ_RQ_QUEUE_BUSY;
1979         if (!get_device(&sdev->sdev_gendev))
1980                 goto out;
1981
1982         if (!scsi_dev_queue_ready(q, sdev))
1983                 goto out_put_device;
1984         if (!scsi_target_queue_ready(shost, sdev))
1985                 goto out_dec_device_busy;
1986         if (!scsi_host_queue_ready(q, shost, sdev))
1987                 goto out_dec_target_busy;
1988
1989
1990         if (!(req->cmd_flags & REQ_DONTPREP)) {
1991                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1992                 if (ret)
1993                         goto out_dec_host_busy;
1994                 req->cmd_flags |= REQ_DONTPREP;
1995         } else {
1996                 blk_mq_start_request(req);
1997         }
1998
1999         if (sdev->simple_tags)
2000                 cmd->flags |= SCMD_TAGGED;
2001         else
2002                 cmd->flags &= ~SCMD_TAGGED;
2003
2004         scsi_init_cmd_errh(cmd);
2005         cmd->scsi_done = scsi_mq_done;
2006
2007         reason = scsi_dispatch_cmd(cmd);
2008         if (reason) {
2009                 scsi_set_blocked(cmd, reason);
2010                 ret = BLK_MQ_RQ_QUEUE_BUSY;
2011                 goto out_dec_host_busy;
2012         }
2013
2014         return BLK_MQ_RQ_QUEUE_OK;
2015
2016 out_dec_host_busy:
2017         atomic_dec(&shost->host_busy);
2018 out_dec_target_busy:
2019         if (scsi_target(sdev)->can_queue > 0)
2020                 atomic_dec(&scsi_target(sdev)->target_busy);
2021 out_dec_device_busy:
2022         atomic_dec(&sdev->device_busy);
2023 out_put_device:
2024         put_device(&sdev->sdev_gendev);
2025 out:
2026         switch (ret) {
2027         case BLK_MQ_RQ_QUEUE_BUSY:
2028                 blk_mq_stop_hw_queue(hctx);
2029                 if (atomic_read(&sdev->device_busy) == 0 &&
2030                     !scsi_device_blocked(sdev))
2031                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2032                 break;
2033         case BLK_MQ_RQ_QUEUE_ERROR:
2034                 /*
2035                  * Make sure to release all allocated ressources when
2036                  * we hit an error, as we will never see this command
2037                  * again.
2038                  */
2039                 if (req->cmd_flags & REQ_DONTPREP)
2040                         scsi_mq_uninit_cmd(cmd);
2041                 break;
2042         default:
2043                 break;
2044         }
2045         return ret;
2046 }
2047
2048 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2049                 bool reserved)
2050 {
2051         if (reserved)
2052                 return BLK_EH_RESET_TIMER;
2053         return scsi_times_out(req);
2054 }
2055
2056 static int scsi_init_request(void *data, struct request *rq,
2057                 unsigned int hctx_idx, unsigned int request_idx,
2058                 unsigned int numa_node)
2059 {
2060         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2061
2062         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2063                         numa_node);
2064         if (!cmd->sense_buffer)
2065                 return -ENOMEM;
2066         return 0;
2067 }
2068
2069 static void scsi_exit_request(void *data, struct request *rq,
2070                 unsigned int hctx_idx, unsigned int request_idx)
2071 {
2072         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2073
2074         kfree(cmd->sense_buffer);
2075 }
2076
2077 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2078 {
2079         struct device *host_dev;
2080         u64 bounce_limit = 0xffffffff;
2081
2082         if (shost->unchecked_isa_dma)
2083                 return BLK_BOUNCE_ISA;
2084         /*
2085          * Platforms with virtual-DMA translation
2086          * hardware have no practical limit.
2087          */
2088         if (!PCI_DMA_BUS_IS_PHYS)
2089                 return BLK_BOUNCE_ANY;
2090
2091         host_dev = scsi_get_device(shost);
2092         if (host_dev && host_dev->dma_mask)
2093                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2094
2095         return bounce_limit;
2096 }
2097
2098 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2099 {
2100         struct device *dev = shost->dma_dev;
2101
2102         /*
2103          * this limit is imposed by hardware restrictions
2104          */
2105         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2106                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
2107
2108         if (scsi_host_prot_dma(shost)) {
2109                 shost->sg_prot_tablesize =
2110                         min_not_zero(shost->sg_prot_tablesize,
2111                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2112                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2113                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2114         }
2115
2116         blk_queue_max_hw_sectors(q, shost->max_sectors);
2117         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2118         blk_queue_segment_boundary(q, shost->dma_boundary);
2119         dma_set_seg_boundary(dev, shost->dma_boundary);
2120
2121         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2122
2123         if (!shost->use_clustering)
2124                 q->limits.cluster = 0;
2125
2126         /*
2127          * set a reasonable default alignment on word boundaries: the
2128          * host and device may alter it using
2129          * blk_queue_update_dma_alignment() later.
2130          */
2131         blk_queue_dma_alignment(q, 0x03);
2132 }
2133
2134 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2135                                          request_fn_proc *request_fn)
2136 {
2137         struct request_queue *q;
2138
2139         q = blk_init_queue(request_fn, NULL);
2140         if (!q)
2141                 return NULL;
2142         __scsi_init_queue(shost, q);
2143         return q;
2144 }
2145 EXPORT_SYMBOL(__scsi_alloc_queue);
2146
2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148 {
2149         struct request_queue *q;
2150
2151         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2152         if (!q)
2153                 return NULL;
2154
2155         blk_queue_prep_rq(q, scsi_prep_fn);
2156         blk_queue_unprep_rq(q, scsi_unprep_fn);
2157         blk_queue_softirq_done(q, scsi_softirq_done);
2158         blk_queue_rq_timed_out(q, scsi_times_out);
2159         blk_queue_lld_busy(q, scsi_lld_busy);
2160         return q;
2161 }
2162
2163 static struct blk_mq_ops scsi_mq_ops = {
2164         .map_queue      = blk_mq_map_queue,
2165         .queue_rq       = scsi_queue_rq,
2166         .complete       = scsi_softirq_done,
2167         .timeout        = scsi_timeout,
2168         .init_request   = scsi_init_request,
2169         .exit_request   = scsi_exit_request,
2170 };
2171
2172 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2173 {
2174         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2175         if (IS_ERR(sdev->request_queue))
2176                 return NULL;
2177
2178         sdev->request_queue->queuedata = sdev;
2179         __scsi_init_queue(sdev->host, sdev->request_queue);
2180         return sdev->request_queue;
2181 }
2182
2183 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2184 {
2185         unsigned int cmd_size, sgl_size, tbl_size;
2186
2187         tbl_size = shost->sg_tablesize;
2188         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2189                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2190         sgl_size = tbl_size * sizeof(struct scatterlist);
2191         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2192         if (scsi_host_get_prot(shost))
2193                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2194
2195         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2196         shost->tag_set.ops = &scsi_mq_ops;
2197         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2198         shost->tag_set.queue_depth = shost->can_queue;
2199         shost->tag_set.cmd_size = cmd_size;
2200         shost->tag_set.numa_node = NUMA_NO_NODE;
2201         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2202         shost->tag_set.flags |=
2203                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2204         shost->tag_set.driver_data = shost;
2205
2206         return blk_mq_alloc_tag_set(&shost->tag_set);
2207 }
2208
2209 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2210 {
2211         blk_mq_free_tag_set(&shost->tag_set);
2212 }
2213
2214 /*
2215  * Function:    scsi_block_requests()
2216  *
2217  * Purpose:     Utility function used by low-level drivers to prevent further
2218  *              commands from being queued to the device.
2219  *
2220  * Arguments:   shost       - Host in question
2221  *
2222  * Returns:     Nothing
2223  *
2224  * Lock status: No locks are assumed held.
2225  *
2226  * Notes:       There is no timer nor any other means by which the requests
2227  *              get unblocked other than the low-level driver calling
2228  *              scsi_unblock_requests().
2229  */
2230 void scsi_block_requests(struct Scsi_Host *shost)
2231 {
2232         shost->host_self_blocked = 1;
2233 }
2234 EXPORT_SYMBOL(scsi_block_requests);
2235
2236 /*
2237  * Function:    scsi_unblock_requests()
2238  *
2239  * Purpose:     Utility function used by low-level drivers to allow further
2240  *              commands from being queued to the device.
2241  *
2242  * Arguments:   shost       - Host in question
2243  *
2244  * Returns:     Nothing
2245  *
2246  * Lock status: No locks are assumed held.
2247  *
2248  * Notes:       There is no timer nor any other means by which the requests
2249  *              get unblocked other than the low-level driver calling
2250  *              scsi_unblock_requests().
2251  *
2252  *              This is done as an API function so that changes to the
2253  *              internals of the scsi mid-layer won't require wholesale
2254  *              changes to drivers that use this feature.
2255  */
2256 void scsi_unblock_requests(struct Scsi_Host *shost)
2257 {
2258         shost->host_self_blocked = 0;
2259         scsi_run_host_queues(shost);
2260 }
2261 EXPORT_SYMBOL(scsi_unblock_requests);
2262
2263 int __init scsi_init_queue(void)
2264 {
2265         int i;
2266
2267         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2268                                            sizeof(struct scsi_data_buffer),
2269                                            0, 0, NULL);
2270         if (!scsi_sdb_cache) {
2271                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2272                 return -ENOMEM;
2273         }
2274
2275         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2276                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2277                 int size = sgp->size * sizeof(struct scatterlist);
2278
2279                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2280                                 SLAB_HWCACHE_ALIGN, NULL);
2281                 if (!sgp->slab) {
2282                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2283                                         sgp->name);
2284                         goto cleanup_sdb;
2285                 }
2286
2287                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2288                                                      sgp->slab);
2289                 if (!sgp->pool) {
2290                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2291                                         sgp->name);
2292                         goto cleanup_sdb;
2293                 }
2294         }
2295
2296         return 0;
2297
2298 cleanup_sdb:
2299         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2300                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2301                 if (sgp->pool)
2302                         mempool_destroy(sgp->pool);
2303                 if (sgp->slab)
2304                         kmem_cache_destroy(sgp->slab);
2305         }
2306         kmem_cache_destroy(scsi_sdb_cache);
2307
2308         return -ENOMEM;
2309 }
2310
2311 void scsi_exit_queue(void)
2312 {
2313         int i;
2314
2315         kmem_cache_destroy(scsi_sdb_cache);
2316
2317         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2318                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2319                 mempool_destroy(sgp->pool);
2320                 kmem_cache_destroy(sgp->slab);
2321         }
2322 }
2323
2324 /**
2325  *      scsi_mode_select - issue a mode select
2326  *      @sdev:  SCSI device to be queried
2327  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2328  *      @sp:    Save page bit (0 == don't save, 1 == save)
2329  *      @modepage: mode page being requested
2330  *      @buffer: request buffer (may not be smaller than eight bytes)
2331  *      @len:   length of request buffer.
2332  *      @timeout: command timeout
2333  *      @retries: number of retries before failing
2334  *      @data: returns a structure abstracting the mode header data
2335  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2336  *              must be SCSI_SENSE_BUFFERSIZE big.
2337  *
2338  *      Returns zero if successful; negative error number or scsi
2339  *      status on error
2340  *
2341  */
2342 int
2343 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2344                  unsigned char *buffer, int len, int timeout, int retries,
2345                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2346 {
2347         unsigned char cmd[10];
2348         unsigned char *real_buffer;
2349         int ret;
2350
2351         memset(cmd, 0, sizeof(cmd));
2352         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2353
2354         if (sdev->use_10_for_ms) {
2355                 if (len > 65535)
2356                         return -EINVAL;
2357                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2358                 if (!real_buffer)
2359                         return -ENOMEM;
2360                 memcpy(real_buffer + 8, buffer, len);
2361                 len += 8;
2362                 real_buffer[0] = 0;
2363                 real_buffer[1] = 0;
2364                 real_buffer[2] = data->medium_type;
2365                 real_buffer[3] = data->device_specific;
2366                 real_buffer[4] = data->longlba ? 0x01 : 0;
2367                 real_buffer[5] = 0;
2368                 real_buffer[6] = data->block_descriptor_length >> 8;
2369                 real_buffer[7] = data->block_descriptor_length;
2370
2371                 cmd[0] = MODE_SELECT_10;
2372                 cmd[7] = len >> 8;
2373                 cmd[8] = len;
2374         } else {
2375                 if (len > 255 || data->block_descriptor_length > 255 ||
2376                     data->longlba)
2377                         return -EINVAL;
2378
2379                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2380                 if (!real_buffer)
2381                         return -ENOMEM;
2382                 memcpy(real_buffer + 4, buffer, len);
2383                 len += 4;
2384                 real_buffer[0] = 0;
2385                 real_buffer[1] = data->medium_type;
2386                 real_buffer[2] = data->device_specific;
2387                 real_buffer[3] = data->block_descriptor_length;
2388                 
2389
2390                 cmd[0] = MODE_SELECT;
2391                 cmd[4] = len;
2392         }
2393
2394         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2395                                sshdr, timeout, retries, NULL);
2396         kfree(real_buffer);
2397         return ret;
2398 }
2399 EXPORT_SYMBOL_GPL(scsi_mode_select);
2400
2401 /**
2402  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2403  *      @sdev:  SCSI device to be queried
2404  *      @dbd:   set if mode sense will allow block descriptors to be returned
2405  *      @modepage: mode page being requested
2406  *      @buffer: request buffer (may not be smaller than eight bytes)
2407  *      @len:   length of request buffer.
2408  *      @timeout: command timeout
2409  *      @retries: number of retries before failing
2410  *      @data: returns a structure abstracting the mode header data
2411  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2412  *              must be SCSI_SENSE_BUFFERSIZE big.
2413  *
2414  *      Returns zero if unsuccessful, or the header offset (either 4
2415  *      or 8 depending on whether a six or ten byte command was
2416  *      issued) if successful.
2417  */
2418 int
2419 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2420                   unsigned char *buffer, int len, int timeout, int retries,
2421                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2422 {
2423         unsigned char cmd[12];
2424         int use_10_for_ms;
2425         int header_length;
2426         int result, retry_count = retries;
2427         struct scsi_sense_hdr my_sshdr;
2428
2429         memset(data, 0, sizeof(*data));
2430         memset(&cmd[0], 0, 12);
2431         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2432         cmd[2] = modepage;
2433
2434         /* caller might not be interested in sense, but we need it */
2435         if (!sshdr)
2436                 sshdr = &my_sshdr;
2437
2438  retry:
2439         use_10_for_ms = sdev->use_10_for_ms;
2440
2441         if (use_10_for_ms) {
2442                 if (len < 8)
2443                         len = 8;
2444
2445                 cmd[0] = MODE_SENSE_10;
2446                 cmd[8] = len;
2447                 header_length = 8;
2448         } else {
2449                 if (len < 4)
2450                         len = 4;
2451
2452                 cmd[0] = MODE_SENSE;
2453                 cmd[4] = len;
2454                 header_length = 4;
2455         }
2456
2457         memset(buffer, 0, len);
2458
2459         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2460                                   sshdr, timeout, retries, NULL);
2461
2462         /* This code looks awful: what it's doing is making sure an
2463          * ILLEGAL REQUEST sense return identifies the actual command
2464          * byte as the problem.  MODE_SENSE commands can return
2465          * ILLEGAL REQUEST if the code page isn't supported */
2466
2467         if (use_10_for_ms && !scsi_status_is_good(result) &&
2468             (driver_byte(result) & DRIVER_SENSE)) {
2469                 if (scsi_sense_valid(sshdr)) {
2470                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2471                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2472                                 /* 
2473                                  * Invalid command operation code
2474                                  */
2475                                 sdev->use_10_for_ms = 0;
2476                                 goto retry;
2477                         }
2478                 }
2479         }
2480
2481         if(scsi_status_is_good(result)) {
2482                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2483                              (modepage == 6 || modepage == 8))) {
2484                         /* Initio breakage? */
2485                         header_length = 0;
2486                         data->length = 13;
2487                         data->medium_type = 0;
2488                         data->device_specific = 0;
2489                         data->longlba = 0;
2490                         data->block_descriptor_length = 0;
2491                 } else if(use_10_for_ms) {
2492                         data->length = buffer[0]*256 + buffer[1] + 2;
2493                         data->medium_type = buffer[2];
2494                         data->device_specific = buffer[3];
2495                         data->longlba = buffer[4] & 0x01;
2496                         data->block_descriptor_length = buffer[6]*256
2497                                 + buffer[7];
2498                 } else {
2499                         data->length = buffer[0] + 1;
2500                         data->medium_type = buffer[1];
2501                         data->device_specific = buffer[2];
2502                         data->block_descriptor_length = buffer[3];
2503                 }
2504                 data->header_length = header_length;
2505         } else if ((status_byte(result) == CHECK_CONDITION) &&
2506                    scsi_sense_valid(sshdr) &&
2507                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2508                 retry_count--;
2509                 goto retry;
2510         }
2511
2512         return result;
2513 }
2514 EXPORT_SYMBOL(scsi_mode_sense);
2515
2516 /**
2517  *      scsi_test_unit_ready - test if unit is ready
2518  *      @sdev:  scsi device to change the state of.
2519  *      @timeout: command timeout
2520  *      @retries: number of retries before failing
2521  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2522  *              returning sense. Make sure that this is cleared before passing
2523  *              in.
2524  *
2525  *      Returns zero if unsuccessful or an error if TUR failed.  For
2526  *      removable media, UNIT_ATTENTION sets ->changed flag.
2527  **/
2528 int
2529 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2530                      struct scsi_sense_hdr *sshdr_external)
2531 {
2532         char cmd[] = {
2533                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2534         };
2535         struct scsi_sense_hdr *sshdr;
2536         int result;
2537
2538         if (!sshdr_external)
2539                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2540         else
2541                 sshdr = sshdr_external;
2542
2543         /* try to eat the UNIT_ATTENTION if there are enough retries */
2544         do {
2545                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2546                                           timeout, retries, NULL);
2547                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2548                     sshdr->sense_key == UNIT_ATTENTION)
2549                         sdev->changed = 1;
2550         } while (scsi_sense_valid(sshdr) &&
2551                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2552
2553         if (!sshdr_external)
2554                 kfree(sshdr);
2555         return result;
2556 }
2557 EXPORT_SYMBOL(scsi_test_unit_ready);
2558
2559 /**
2560  *      scsi_device_set_state - Take the given device through the device state model.
2561  *      @sdev:  scsi device to change the state of.
2562  *      @state: state to change to.
2563  *
2564  *      Returns zero if unsuccessful or an error if the requested 
2565  *      transition is illegal.
2566  */
2567 int
2568 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2569 {
2570         enum scsi_device_state oldstate = sdev->sdev_state;
2571
2572         if (state == oldstate)
2573                 return 0;
2574
2575         switch (state) {
2576         case SDEV_CREATED:
2577                 switch (oldstate) {
2578                 case SDEV_CREATED_BLOCK:
2579                         break;
2580                 default:
2581                         goto illegal;
2582                 }
2583                 break;
2584                         
2585         case SDEV_RUNNING:
2586                 switch (oldstate) {
2587                 case SDEV_CREATED:
2588                 case SDEV_OFFLINE:
2589                 case SDEV_TRANSPORT_OFFLINE:
2590                 case SDEV_QUIESCE:
2591                 case SDEV_BLOCK:
2592                         break;
2593                 default:
2594                         goto illegal;
2595                 }
2596                 break;
2597
2598         case SDEV_QUIESCE:
2599                 switch (oldstate) {
2600                 case SDEV_RUNNING:
2601                 case SDEV_OFFLINE:
2602                 case SDEV_TRANSPORT_OFFLINE:
2603                         break;
2604                 default:
2605                         goto illegal;
2606                 }
2607                 break;
2608
2609         case SDEV_OFFLINE:
2610         case SDEV_TRANSPORT_OFFLINE:
2611                 switch (oldstate) {
2612                 case SDEV_CREATED:
2613                 case SDEV_RUNNING:
2614                 case SDEV_QUIESCE:
2615                 case SDEV_BLOCK:
2616                         break;
2617                 default:
2618                         goto illegal;
2619                 }
2620                 break;
2621
2622         case SDEV_BLOCK:
2623                 switch (oldstate) {
2624                 case SDEV_RUNNING:
2625                 case SDEV_CREATED_BLOCK:
2626                         break;
2627                 default:
2628                         goto illegal;
2629                 }
2630                 break;
2631
2632         case SDEV_CREATED_BLOCK:
2633                 switch (oldstate) {
2634                 case SDEV_CREATED:
2635                         break;
2636                 default:
2637                         goto illegal;
2638                 }
2639                 break;
2640
2641         case SDEV_CANCEL:
2642                 switch (oldstate) {
2643                 case SDEV_CREATED:
2644                 case SDEV_RUNNING:
2645                 case SDEV_QUIESCE:
2646                 case SDEV_OFFLINE:
2647                 case SDEV_TRANSPORT_OFFLINE:
2648                 case SDEV_BLOCK:
2649                         break;
2650                 default:
2651                         goto illegal;
2652                 }
2653                 break;
2654
2655         case SDEV_DEL:
2656                 switch (oldstate) {
2657                 case SDEV_CREATED:
2658                 case SDEV_RUNNING:
2659                 case SDEV_OFFLINE:
2660                 case SDEV_TRANSPORT_OFFLINE:
2661                 case SDEV_CANCEL:
2662                 case SDEV_CREATED_BLOCK:
2663                         break;
2664                 default:
2665                         goto illegal;
2666                 }
2667                 break;
2668
2669         }
2670         sdev->sdev_state = state;
2671         return 0;
2672
2673  illegal:
2674         SCSI_LOG_ERROR_RECOVERY(1,
2675                                 sdev_printk(KERN_ERR, sdev,
2676                                             "Illegal state transition %s->%s",
2677                                             scsi_device_state_name(oldstate),
2678                                             scsi_device_state_name(state))
2679                                 );
2680         return -EINVAL;
2681 }
2682 EXPORT_SYMBOL(scsi_device_set_state);
2683
2684 /**
2685  *      sdev_evt_emit - emit a single SCSI device uevent
2686  *      @sdev: associated SCSI device
2687  *      @evt: event to emit
2688  *
2689  *      Send a single uevent (scsi_event) to the associated scsi_device.
2690  */
2691 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2692 {
2693         int idx = 0;
2694         char *envp[3];
2695
2696         switch (evt->evt_type) {
2697         case SDEV_EVT_MEDIA_CHANGE:
2698                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2699                 break;
2700         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2701                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2702                 break;
2703         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2704                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2705                 break;
2706         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2707                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2708                 break;
2709         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2710                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2711                 break;
2712         case SDEV_EVT_LUN_CHANGE_REPORTED:
2713                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2714                 break;
2715         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2716                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2717                 break;
2718         default:
2719                 /* do nothing */
2720                 break;
2721         }
2722
2723         envp[idx++] = NULL;
2724
2725         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2726 }
2727
2728 /**
2729  *      sdev_evt_thread - send a uevent for each scsi event
2730  *      @work: work struct for scsi_device
2731  *
2732  *      Dispatch queued events to their associated scsi_device kobjects
2733  *      as uevents.
2734  */
2735 void scsi_evt_thread(struct work_struct *work)
2736 {
2737         struct scsi_device *sdev;
2738         enum scsi_device_event evt_type;
2739         LIST_HEAD(event_list);
2740
2741         sdev = container_of(work, struct scsi_device, event_work);
2742
2743         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2744                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2745                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2746
2747         while (1) {
2748                 struct scsi_event *evt;
2749                 struct list_head *this, *tmp;
2750                 unsigned long flags;
2751
2752                 spin_lock_irqsave(&sdev->list_lock, flags);
2753                 list_splice_init(&sdev->event_list, &event_list);
2754                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2755
2756                 if (list_empty(&event_list))
2757                         break;
2758
2759                 list_for_each_safe(this, tmp, &event_list) {
2760                         evt = list_entry(this, struct scsi_event, node);
2761                         list_del(&evt->node);
2762                         scsi_evt_emit(sdev, evt);
2763                         kfree(evt);
2764                 }
2765         }
2766 }
2767
2768 /**
2769  *      sdev_evt_send - send asserted event to uevent thread
2770  *      @sdev: scsi_device event occurred on
2771  *      @evt: event to send
2772  *
2773  *      Assert scsi device event asynchronously.
2774  */
2775 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2776 {
2777         unsigned long flags;
2778
2779 #if 0
2780         /* FIXME: currently this check eliminates all media change events
2781          * for polled devices.  Need to update to discriminate between AN
2782          * and polled events */
2783         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2784                 kfree(evt);
2785                 return;
2786         }
2787 #endif
2788
2789         spin_lock_irqsave(&sdev->list_lock, flags);
2790         list_add_tail(&evt->node, &sdev->event_list);
2791         schedule_work(&sdev->event_work);
2792         spin_unlock_irqrestore(&sdev->list_lock, flags);
2793 }
2794 EXPORT_SYMBOL_GPL(sdev_evt_send);
2795
2796 /**
2797  *      sdev_evt_alloc - allocate a new scsi event
2798  *      @evt_type: type of event to allocate
2799  *      @gfpflags: GFP flags for allocation
2800  *
2801  *      Allocates and returns a new scsi_event.
2802  */
2803 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2804                                   gfp_t gfpflags)
2805 {
2806         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2807         if (!evt)
2808                 return NULL;
2809
2810         evt->evt_type = evt_type;
2811         INIT_LIST_HEAD(&evt->node);
2812
2813         /* evt_type-specific initialization, if any */
2814         switch (evt_type) {
2815         case SDEV_EVT_MEDIA_CHANGE:
2816         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2817         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2818         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2819         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2820         case SDEV_EVT_LUN_CHANGE_REPORTED:
2821         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2822         default:
2823                 /* do nothing */
2824                 break;
2825         }
2826
2827         return evt;
2828 }
2829 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2830
2831 /**
2832  *      sdev_evt_send_simple - send asserted event to uevent thread
2833  *      @sdev: scsi_device event occurred on
2834  *      @evt_type: type of event to send
2835  *      @gfpflags: GFP flags for allocation
2836  *
2837  *      Assert scsi device event asynchronously, given an event type.
2838  */
2839 void sdev_evt_send_simple(struct scsi_device *sdev,
2840                           enum scsi_device_event evt_type, gfp_t gfpflags)
2841 {
2842         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2843         if (!evt) {
2844                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2845                             evt_type);
2846                 return;
2847         }
2848
2849         sdev_evt_send(sdev, evt);
2850 }
2851 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2852
2853 /**
2854  *      scsi_device_quiesce - Block user issued commands.
2855  *      @sdev:  scsi device to quiesce.
2856  *
2857  *      This works by trying to transition to the SDEV_QUIESCE state
2858  *      (which must be a legal transition).  When the device is in this
2859  *      state, only special requests will be accepted, all others will
2860  *      be deferred.  Since special requests may also be requeued requests,
2861  *      a successful return doesn't guarantee the device will be 
2862  *      totally quiescent.
2863  *
2864  *      Must be called with user context, may sleep.
2865  *
2866  *      Returns zero if unsuccessful or an error if not.
2867  */
2868 int
2869 scsi_device_quiesce(struct scsi_device *sdev)
2870 {
2871         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2872         if (err)
2873                 return err;
2874
2875         scsi_run_queue(sdev->request_queue);
2876         while (atomic_read(&sdev->device_busy)) {
2877                 msleep_interruptible(200);
2878                 scsi_run_queue(sdev->request_queue);
2879         }
2880         return 0;
2881 }
2882 EXPORT_SYMBOL(scsi_device_quiesce);
2883
2884 /**
2885  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2886  *      @sdev:  scsi device to resume.
2887  *
2888  *      Moves the device from quiesced back to running and restarts the
2889  *      queues.
2890  *
2891  *      Must be called with user context, may sleep.
2892  */
2893 void scsi_device_resume(struct scsi_device *sdev)
2894 {
2895         /* check if the device state was mutated prior to resume, and if
2896          * so assume the state is being managed elsewhere (for example
2897          * device deleted during suspend)
2898          */
2899         if (sdev->sdev_state != SDEV_QUIESCE ||
2900             scsi_device_set_state(sdev, SDEV_RUNNING))
2901                 return;
2902         scsi_run_queue(sdev->request_queue);
2903 }
2904 EXPORT_SYMBOL(scsi_device_resume);
2905
2906 static void
2907 device_quiesce_fn(struct scsi_device *sdev, void *data)
2908 {
2909         scsi_device_quiesce(sdev);
2910 }
2911
2912 void
2913 scsi_target_quiesce(struct scsi_target *starget)
2914 {
2915         starget_for_each_device(starget, NULL, device_quiesce_fn);
2916 }
2917 EXPORT_SYMBOL(scsi_target_quiesce);
2918
2919 static void
2920 device_resume_fn(struct scsi_device *sdev, void *data)
2921 {
2922         scsi_device_resume(sdev);
2923 }
2924
2925 void
2926 scsi_target_resume(struct scsi_target *starget)
2927 {
2928         starget_for_each_device(starget, NULL, device_resume_fn);
2929 }
2930 EXPORT_SYMBOL(scsi_target_resume);
2931
2932 /**
2933  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2934  * @sdev:       device to block
2935  *
2936  * Block request made by scsi lld's to temporarily stop all
2937  * scsi commands on the specified device.  Called from interrupt
2938  * or normal process context.
2939  *
2940  * Returns zero if successful or error if not
2941  *
2942  * Notes:       
2943  *      This routine transitions the device to the SDEV_BLOCK state
2944  *      (which must be a legal transition).  When the device is in this
2945  *      state, all commands are deferred until the scsi lld reenables
2946  *      the device with scsi_device_unblock or device_block_tmo fires.
2947  */
2948 int
2949 scsi_internal_device_block(struct scsi_device *sdev)
2950 {
2951         struct request_queue *q = sdev->request_queue;
2952         unsigned long flags;
2953         int err = 0;
2954
2955         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2956         if (err) {
2957                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2958
2959                 if (err)
2960                         return err;
2961         }
2962
2963         /* 
2964          * The device has transitioned to SDEV_BLOCK.  Stop the
2965          * block layer from calling the midlayer with this device's
2966          * request queue. 
2967          */
2968         if (q->mq_ops) {
2969                 blk_mq_stop_hw_queues(q);
2970         } else {
2971                 spin_lock_irqsave(q->queue_lock, flags);
2972                 blk_stop_queue(q);
2973                 spin_unlock_irqrestore(q->queue_lock, flags);
2974         }
2975
2976         return 0;
2977 }
2978 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2979  
2980 /**
2981  * scsi_internal_device_unblock - resume a device after a block request
2982  * @sdev:       device to resume
2983  * @new_state:  state to set devices to after unblocking
2984  *
2985  * Called by scsi lld's or the midlayer to restart the device queue
2986  * for the previously suspended scsi device.  Called from interrupt or
2987  * normal process context.
2988  *
2989  * Returns zero if successful or error if not.
2990  *
2991  * Notes:       
2992  *      This routine transitions the device to the SDEV_RUNNING state
2993  *      or to one of the offline states (which must be a legal transition)
2994  *      allowing the midlayer to goose the queue for this device.
2995  */
2996 int
2997 scsi_internal_device_unblock(struct scsi_device *sdev,
2998                              enum scsi_device_state new_state)
2999 {
3000         struct request_queue *q = sdev->request_queue; 
3001         unsigned long flags;
3002
3003         /*
3004          * Try to transition the scsi device to SDEV_RUNNING or one of the
3005          * offlined states and goose the device queue if successful.
3006          */
3007         if ((sdev->sdev_state == SDEV_BLOCK) ||
3008             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3009                 sdev->sdev_state = new_state;
3010         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3011                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3012                     new_state == SDEV_OFFLINE)
3013                         sdev->sdev_state = new_state;
3014                 else
3015                         sdev->sdev_state = SDEV_CREATED;
3016         } else if (sdev->sdev_state != SDEV_CANCEL &&
3017                  sdev->sdev_state != SDEV_OFFLINE)
3018                 return -EINVAL;
3019
3020         if (q->mq_ops) {
3021                 blk_mq_start_stopped_hw_queues(q, false);
3022         } else {
3023                 spin_lock_irqsave(q->queue_lock, flags);
3024                 blk_start_queue(q);
3025                 spin_unlock_irqrestore(q->queue_lock, flags);
3026         }
3027
3028         return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3031
3032 static void
3033 device_block(struct scsi_device *sdev, void *data)
3034 {
3035         scsi_internal_device_block(sdev);
3036 }
3037
3038 static int
3039 target_block(struct device *dev, void *data)
3040 {
3041         if (scsi_is_target_device(dev))
3042                 starget_for_each_device(to_scsi_target(dev), NULL,
3043                                         device_block);
3044         return 0;
3045 }
3046
3047 void
3048 scsi_target_block(struct device *dev)
3049 {
3050         if (scsi_is_target_device(dev))
3051                 starget_for_each_device(to_scsi_target(dev), NULL,
3052                                         device_block);
3053         else
3054                 device_for_each_child(dev, NULL, target_block);
3055 }
3056 EXPORT_SYMBOL_GPL(scsi_target_block);
3057
3058 static void
3059 device_unblock(struct scsi_device *sdev, void *data)
3060 {
3061         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3062 }
3063
3064 static int
3065 target_unblock(struct device *dev, void *data)
3066 {
3067         if (scsi_is_target_device(dev))
3068                 starget_for_each_device(to_scsi_target(dev), data,
3069                                         device_unblock);
3070         return 0;
3071 }
3072
3073 void
3074 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3075 {
3076         if (scsi_is_target_device(dev))
3077                 starget_for_each_device(to_scsi_target(dev), &new_state,
3078                                         device_unblock);
3079         else
3080                 device_for_each_child(dev, &new_state, target_unblock);
3081 }
3082 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3083
3084 /**
3085  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3086  * @sgl:        scatter-gather list
3087  * @sg_count:   number of segments in sg
3088  * @offset:     offset in bytes into sg, on return offset into the mapped area
3089  * @len:        bytes to map, on return number of bytes mapped
3090  *
3091  * Returns virtual address of the start of the mapped page
3092  */
3093 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3094                           size_t *offset, size_t *len)
3095 {
3096         int i;
3097         size_t sg_len = 0, len_complete = 0;
3098         struct scatterlist *sg;
3099         struct page *page;
3100
3101         WARN_ON(!irqs_disabled());
3102
3103         for_each_sg(sgl, sg, sg_count, i) {
3104                 len_complete = sg_len; /* Complete sg-entries */
3105                 sg_len += sg->length;
3106                 if (sg_len > *offset)
3107                         break;
3108         }
3109
3110         if (unlikely(i == sg_count)) {
3111                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3112                         "elements %d\n",
3113                        __func__, sg_len, *offset, sg_count);
3114                 WARN_ON(1);
3115                 return NULL;
3116         }
3117
3118         /* Offset starting from the beginning of first page in this sg-entry */
3119         *offset = *offset - len_complete + sg->offset;
3120
3121         /* Assumption: contiguous pages can be accessed as "page + i" */
3122         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3123         *offset &= ~PAGE_MASK;
3124
3125         /* Bytes in this sg-entry from *offset to the end of the page */
3126         sg_len = PAGE_SIZE - *offset;
3127         if (*len > sg_len)
3128                 *len = sg_len;
3129
3130         return kmap_atomic(page);
3131 }
3132 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3133
3134 /**
3135  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3136  * @virt:       virtual address to be unmapped
3137  */
3138 void scsi_kunmap_atomic_sg(void *virt)
3139 {
3140         kunmap_atomic(virt);
3141 }
3142 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3143
3144 void sdev_disable_disk_events(struct scsi_device *sdev)
3145 {
3146         atomic_inc(&sdev->disk_events_disable_depth);
3147 }
3148 EXPORT_SYMBOL(sdev_disable_disk_events);
3149
3150 void sdev_enable_disk_events(struct scsi_device *sdev)
3151 {
3152         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3153                 return;
3154         atomic_dec(&sdev->disk_events_disable_depth);
3155 }
3156 EXPORT_SYMBOL(sdev_enable_disk_events);