regulator: core: Increase refcount for regulator supply's module
[linux-drm-fsl-dcu.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         /*
644          * first check to see if we can set modes at all, otherwise just
645          * tell the consumer everything is OK.
646          */
647         err = regulator_check_drms(rdev);
648         if (err < 0)
649                 return 0;
650
651         if (!rdev->desc->ops->get_optimum_mode &&
652             !rdev->desc->ops->set_load)
653                 return 0;
654
655         if (!rdev->desc->ops->set_mode &&
656             !rdev->desc->ops->set_load)
657                 return -EINVAL;
658
659         /* get output voltage */
660         output_uV = _regulator_get_voltage(rdev);
661         if (output_uV <= 0) {
662                 rdev_err(rdev, "invalid output voltage found\n");
663                 return -EINVAL;
664         }
665
666         /* get input voltage */
667         input_uV = 0;
668         if (rdev->supply)
669                 input_uV = regulator_get_voltage(rdev->supply);
670         if (input_uV <= 0)
671                 input_uV = rdev->constraints->input_uV;
672         if (input_uV <= 0) {
673                 rdev_err(rdev, "invalid input voltage found\n");
674                 return -EINVAL;
675         }
676
677         /* calc total requested load */
678         list_for_each_entry(sibling, &rdev->consumer_list, list)
679                 current_uA += sibling->uA_load;
680
681         current_uA += rdev->constraints->system_load;
682
683         if (rdev->desc->ops->set_load) {
684                 /* set the optimum mode for our new total regulator load */
685                 err = rdev->desc->ops->set_load(rdev, current_uA);
686                 if (err < 0)
687                         rdev_err(rdev, "failed to set load %d\n", current_uA);
688         } else {
689                 /* now get the optimum mode for our new total regulator load */
690                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
691                                                          output_uV, current_uA);
692
693                 /* check the new mode is allowed */
694                 err = regulator_mode_constrain(rdev, &mode);
695                 if (err < 0) {
696                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
697                                  current_uA, input_uV, output_uV);
698                         return err;
699                 }
700
701                 err = rdev->desc->ops->set_mode(rdev, mode);
702                 if (err < 0)
703                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
704         }
705
706         return err;
707 }
708
709 static int suspend_set_state(struct regulator_dev *rdev,
710         struct regulator_state *rstate)
711 {
712         int ret = 0;
713
714         /* If we have no suspend mode configration don't set anything;
715          * only warn if the driver implements set_suspend_voltage or
716          * set_suspend_mode callback.
717          */
718         if (!rstate->enabled && !rstate->disabled) {
719                 if (rdev->desc->ops->set_suspend_voltage ||
720                     rdev->desc->ops->set_suspend_mode)
721                         rdev_warn(rdev, "No configuration\n");
722                 return 0;
723         }
724
725         if (rstate->enabled && rstate->disabled) {
726                 rdev_err(rdev, "invalid configuration\n");
727                 return -EINVAL;
728         }
729
730         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
731                 ret = rdev->desc->ops->set_suspend_enable(rdev);
732         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
733                 ret = rdev->desc->ops->set_suspend_disable(rdev);
734         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
735                 ret = 0;
736
737         if (ret < 0) {
738                 rdev_err(rdev, "failed to enabled/disable\n");
739                 return ret;
740         }
741
742         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
743                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set voltage\n");
746                         return ret;
747                 }
748         }
749
750         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
751                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
752                 if (ret < 0) {
753                         rdev_err(rdev, "failed to set mode\n");
754                         return ret;
755                 }
756         }
757         return ret;
758 }
759
760 /* locks held by caller */
761 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
762 {
763         if (!rdev->constraints)
764                 return -EINVAL;
765
766         switch (state) {
767         case PM_SUSPEND_STANDBY:
768                 return suspend_set_state(rdev,
769                         &rdev->constraints->state_standby);
770         case PM_SUSPEND_MEM:
771                 return suspend_set_state(rdev,
772                         &rdev->constraints->state_mem);
773         case PM_SUSPEND_MAX:
774                 return suspend_set_state(rdev,
775                         &rdev->constraints->state_disk);
776         default:
777                 return -EINVAL;
778         }
779 }
780
781 static void print_constraints(struct regulator_dev *rdev)
782 {
783         struct regulation_constraints *constraints = rdev->constraints;
784         char buf[160] = "";
785         size_t len = sizeof(buf) - 1;
786         int count = 0;
787         int ret;
788
789         if (constraints->min_uV && constraints->max_uV) {
790                 if (constraints->min_uV == constraints->max_uV)
791                         count += scnprintf(buf + count, len - count, "%d mV ",
792                                            constraints->min_uV / 1000);
793                 else
794                         count += scnprintf(buf + count, len - count,
795                                            "%d <--> %d mV ",
796                                            constraints->min_uV / 1000,
797                                            constraints->max_uV / 1000);
798         }
799
800         if (!constraints->min_uV ||
801             constraints->min_uV != constraints->max_uV) {
802                 ret = _regulator_get_voltage(rdev);
803                 if (ret > 0)
804                         count += scnprintf(buf + count, len - count,
805                                            "at %d mV ", ret / 1000);
806         }
807
808         if (constraints->uV_offset)
809                 count += scnprintf(buf + count, len - count, "%dmV offset ",
810                                    constraints->uV_offset / 1000);
811
812         if (constraints->min_uA && constraints->max_uA) {
813                 if (constraints->min_uA == constraints->max_uA)
814                         count += scnprintf(buf + count, len - count, "%d mA ",
815                                            constraints->min_uA / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mA ",
819                                            constraints->min_uA / 1000,
820                                            constraints->max_uA / 1000);
821         }
822
823         if (!constraints->min_uA ||
824             constraints->min_uA != constraints->max_uA) {
825                 ret = _regulator_get_current_limit(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mA ", ret / 1000);
829         }
830
831         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
832                 count += scnprintf(buf + count, len - count, "fast ");
833         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
834                 count += scnprintf(buf + count, len - count, "normal ");
835         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
836                 count += scnprintf(buf + count, len - count, "idle ");
837         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
838                 count += scnprintf(buf + count, len - count, "standby");
839
840         if (!count)
841                 scnprintf(buf, len, "no parameters");
842
843         rdev_dbg(rdev, "%s\n", buf);
844
845         if ((constraints->min_uV != constraints->max_uV) &&
846             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
847                 rdev_warn(rdev,
848                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
849 }
850
851 static int machine_constraints_voltage(struct regulator_dev *rdev,
852         struct regulation_constraints *constraints)
853 {
854         const struct regulator_ops *ops = rdev->desc->ops;
855         int ret;
856
857         /* do we need to apply the constraint voltage */
858         if (rdev->constraints->apply_uV &&
859             rdev->constraints->min_uV == rdev->constraints->max_uV) {
860                 int current_uV = _regulator_get_voltage(rdev);
861                 if (current_uV < 0) {
862                         rdev_err(rdev,
863                                  "failed to get the current voltage(%d)\n",
864                                  current_uV);
865                         return current_uV;
866                 }
867                 if (current_uV < rdev->constraints->min_uV ||
868                     current_uV > rdev->constraints->max_uV) {
869                         ret = _regulator_do_set_voltage(
870                                 rdev, rdev->constraints->min_uV,
871                                 rdev->constraints->max_uV);
872                         if (ret < 0) {
873                                 rdev_err(rdev,
874                                         "failed to apply %duV constraint(%d)\n",
875                                         rdev->constraints->min_uV, ret);
876                                 return ret;
877                         }
878                 }
879         }
880
881         /* constrain machine-level voltage specs to fit
882          * the actual range supported by this regulator.
883          */
884         if (ops->list_voltage && rdev->desc->n_voltages) {
885                 int     count = rdev->desc->n_voltages;
886                 int     i;
887                 int     min_uV = INT_MAX;
888                 int     max_uV = INT_MIN;
889                 int     cmin = constraints->min_uV;
890                 int     cmax = constraints->max_uV;
891
892                 /* it's safe to autoconfigure fixed-voltage supplies
893                    and the constraints are used by list_voltage. */
894                 if (count == 1 && !cmin) {
895                         cmin = 1;
896                         cmax = INT_MAX;
897                         constraints->min_uV = cmin;
898                         constraints->max_uV = cmax;
899                 }
900
901                 /* voltage constraints are optional */
902                 if ((cmin == 0) && (cmax == 0))
903                         return 0;
904
905                 /* else require explicit machine-level constraints */
906                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
907                         rdev_err(rdev, "invalid voltage constraints\n");
908                         return -EINVAL;
909                 }
910
911                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
912                 for (i = 0; i < count; i++) {
913                         int     value;
914
915                         value = ops->list_voltage(rdev, i);
916                         if (value <= 0)
917                                 continue;
918
919                         /* maybe adjust [min_uV..max_uV] */
920                         if (value >= cmin && value < min_uV)
921                                 min_uV = value;
922                         if (value <= cmax && value > max_uV)
923                                 max_uV = value;
924                 }
925
926                 /* final: [min_uV..max_uV] valid iff constraints valid */
927                 if (max_uV < min_uV) {
928                         rdev_err(rdev,
929                                  "unsupportable voltage constraints %u-%uuV\n",
930                                  min_uV, max_uV);
931                         return -EINVAL;
932                 }
933
934                 /* use regulator's subset of machine constraints */
935                 if (constraints->min_uV < min_uV) {
936                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
937                                  constraints->min_uV, min_uV);
938                         constraints->min_uV = min_uV;
939                 }
940                 if (constraints->max_uV > max_uV) {
941                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
942                                  constraints->max_uV, max_uV);
943                         constraints->max_uV = max_uV;
944                 }
945         }
946
947         return 0;
948 }
949
950 static int machine_constraints_current(struct regulator_dev *rdev,
951         struct regulation_constraints *constraints)
952 {
953         const struct regulator_ops *ops = rdev->desc->ops;
954         int ret;
955
956         if (!constraints->min_uA && !constraints->max_uA)
957                 return 0;
958
959         if (constraints->min_uA > constraints->max_uA) {
960                 rdev_err(rdev, "Invalid current constraints\n");
961                 return -EINVAL;
962         }
963
964         if (!ops->set_current_limit || !ops->get_current_limit) {
965                 rdev_warn(rdev, "Operation of current configuration missing\n");
966                 return 0;
967         }
968
969         /* Set regulator current in constraints range */
970         ret = ops->set_current_limit(rdev, constraints->min_uA,
971                         constraints->max_uA);
972         if (ret < 0) {
973                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
974                 return ret;
975         }
976
977         return 0;
978 }
979
980 static int _regulator_do_enable(struct regulator_dev *rdev);
981
982 /**
983  * set_machine_constraints - sets regulator constraints
984  * @rdev: regulator source
985  * @constraints: constraints to apply
986  *
987  * Allows platform initialisation code to define and constrain
988  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
989  * Constraints *must* be set by platform code in order for some
990  * regulator operations to proceed i.e. set_voltage, set_current_limit,
991  * set_mode.
992  */
993 static int set_machine_constraints(struct regulator_dev *rdev,
994         const struct regulation_constraints *constraints)
995 {
996         int ret = 0;
997         const struct regulator_ops *ops = rdev->desc->ops;
998
999         if (constraints)
1000                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1001                                             GFP_KERNEL);
1002         else
1003                 rdev->constraints = kzalloc(sizeof(*constraints),
1004                                             GFP_KERNEL);
1005         if (!rdev->constraints)
1006                 return -ENOMEM;
1007
1008         ret = machine_constraints_voltage(rdev, rdev->constraints);
1009         if (ret != 0)
1010                 goto out;
1011
1012         ret = machine_constraints_current(rdev, rdev->constraints);
1013         if (ret != 0)
1014                 goto out;
1015
1016         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1017                 ret = ops->set_input_current_limit(rdev,
1018                                                    rdev->constraints->ilim_uA);
1019                 if (ret < 0) {
1020                         rdev_err(rdev, "failed to set input limit\n");
1021                         goto out;
1022                 }
1023         }
1024
1025         /* do we need to setup our suspend state */
1026         if (rdev->constraints->initial_state) {
1027                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1028                 if (ret < 0) {
1029                         rdev_err(rdev, "failed to set suspend state\n");
1030                         goto out;
1031                 }
1032         }
1033
1034         if (rdev->constraints->initial_mode) {
1035                 if (!ops->set_mode) {
1036                         rdev_err(rdev, "no set_mode operation\n");
1037                         ret = -EINVAL;
1038                         goto out;
1039                 }
1040
1041                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1042                 if (ret < 0) {
1043                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1044                         goto out;
1045                 }
1046         }
1047
1048         /* If the constraints say the regulator should be on at this point
1049          * and we have control then make sure it is enabled.
1050          */
1051         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1052                 ret = _regulator_do_enable(rdev);
1053                 if (ret < 0 && ret != -EINVAL) {
1054                         rdev_err(rdev, "failed to enable\n");
1055                         goto out;
1056                 }
1057         }
1058
1059         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1060                 && ops->set_ramp_delay) {
1061                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1062                 if (ret < 0) {
1063                         rdev_err(rdev, "failed to set ramp_delay\n");
1064                         goto out;
1065                 }
1066         }
1067
1068         if (rdev->constraints->pull_down && ops->set_pull_down) {
1069                 ret = ops->set_pull_down(rdev);
1070                 if (ret < 0) {
1071                         rdev_err(rdev, "failed to set pull down\n");
1072                         goto out;
1073                 }
1074         }
1075
1076         if (rdev->constraints->soft_start && ops->set_soft_start) {
1077                 ret = ops->set_soft_start(rdev);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set soft start\n");
1080                         goto out;
1081                 }
1082         }
1083
1084         print_constraints(rdev);
1085         return 0;
1086 out:
1087         kfree(rdev->constraints);
1088         rdev->constraints = NULL;
1089         return ret;
1090 }
1091
1092 /**
1093  * set_supply - set regulator supply regulator
1094  * @rdev: regulator name
1095  * @supply_rdev: supply regulator name
1096  *
1097  * Called by platform initialisation code to set the supply regulator for this
1098  * regulator. This ensures that a regulators supply will also be enabled by the
1099  * core if it's child is enabled.
1100  */
1101 static int set_supply(struct regulator_dev *rdev,
1102                       struct regulator_dev *supply_rdev)
1103 {
1104         int err;
1105
1106         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1107
1108         if (!try_module_get(supply_rdev->owner))
1109                 return -ENODEV;
1110
1111         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1112         if (rdev->supply == NULL) {
1113                 err = -ENOMEM;
1114                 return err;
1115         }
1116         supply_rdev->open_count++;
1117
1118         return 0;
1119 }
1120
1121 /**
1122  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1123  * @rdev:         regulator source
1124  * @consumer_dev_name: dev_name() string for device supply applies to
1125  * @supply:       symbolic name for supply
1126  *
1127  * Allows platform initialisation code to map physical regulator
1128  * sources to symbolic names for supplies for use by devices.  Devices
1129  * should use these symbolic names to request regulators, avoiding the
1130  * need to provide board-specific regulator names as platform data.
1131  */
1132 static int set_consumer_device_supply(struct regulator_dev *rdev,
1133                                       const char *consumer_dev_name,
1134                                       const char *supply)
1135 {
1136         struct regulator_map *node;
1137         int has_dev;
1138
1139         if (supply == NULL)
1140                 return -EINVAL;
1141
1142         if (consumer_dev_name != NULL)
1143                 has_dev = 1;
1144         else
1145                 has_dev = 0;
1146
1147         list_for_each_entry(node, &regulator_map_list, list) {
1148                 if (node->dev_name && consumer_dev_name) {
1149                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1150                                 continue;
1151                 } else if (node->dev_name || consumer_dev_name) {
1152                         continue;
1153                 }
1154
1155                 if (strcmp(node->supply, supply) != 0)
1156                         continue;
1157
1158                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1159                          consumer_dev_name,
1160                          dev_name(&node->regulator->dev),
1161                          node->regulator->desc->name,
1162                          supply,
1163                          dev_name(&rdev->dev), rdev_get_name(rdev));
1164                 return -EBUSY;
1165         }
1166
1167         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1168         if (node == NULL)
1169                 return -ENOMEM;
1170
1171         node->regulator = rdev;
1172         node->supply = supply;
1173
1174         if (has_dev) {
1175                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1176                 if (node->dev_name == NULL) {
1177                         kfree(node);
1178                         return -ENOMEM;
1179                 }
1180         }
1181
1182         list_add(&node->list, &regulator_map_list);
1183         return 0;
1184 }
1185
1186 static void unset_regulator_supplies(struct regulator_dev *rdev)
1187 {
1188         struct regulator_map *node, *n;
1189
1190         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1191                 if (rdev == node->regulator) {
1192                         list_del(&node->list);
1193                         kfree(node->dev_name);
1194                         kfree(node);
1195                 }
1196         }
1197 }
1198
1199 #define REG_STR_SIZE    64
1200
1201 static struct regulator *create_regulator(struct regulator_dev *rdev,
1202                                           struct device *dev,
1203                                           const char *supply_name)
1204 {
1205         struct regulator *regulator;
1206         char buf[REG_STR_SIZE];
1207         int err, size;
1208
1209         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1210         if (regulator == NULL)
1211                 return NULL;
1212
1213         mutex_lock(&rdev->mutex);
1214         regulator->rdev = rdev;
1215         list_add(&regulator->list, &rdev->consumer_list);
1216
1217         if (dev) {
1218                 regulator->dev = dev;
1219
1220                 /* Add a link to the device sysfs entry */
1221                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1222                                  dev->kobj.name, supply_name);
1223                 if (size >= REG_STR_SIZE)
1224                         goto overflow_err;
1225
1226                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1227                 if (regulator->supply_name == NULL)
1228                         goto overflow_err;
1229
1230                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1231                                         buf);
1232                 if (err) {
1233                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1234                                   dev->kobj.name, err);
1235                         /* non-fatal */
1236                 }
1237         } else {
1238                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1239                 if (regulator->supply_name == NULL)
1240                         goto overflow_err;
1241         }
1242
1243         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1244                                                 rdev->debugfs);
1245         if (!regulator->debugfs) {
1246                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1247         } else {
1248                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1249                                    &regulator->uA_load);
1250                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1251                                    &regulator->min_uV);
1252                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1253                                    &regulator->max_uV);
1254         }
1255
1256         /*
1257          * Check now if the regulator is an always on regulator - if
1258          * it is then we don't need to do nearly so much work for
1259          * enable/disable calls.
1260          */
1261         if (!_regulator_can_change_status(rdev) &&
1262             _regulator_is_enabled(rdev))
1263                 regulator->always_on = true;
1264
1265         mutex_unlock(&rdev->mutex);
1266         return regulator;
1267 overflow_err:
1268         list_del(&regulator->list);
1269         kfree(regulator);
1270         mutex_unlock(&rdev->mutex);
1271         return NULL;
1272 }
1273
1274 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1275 {
1276         if (rdev->constraints && rdev->constraints->enable_time)
1277                 return rdev->constraints->enable_time;
1278         if (!rdev->desc->ops->enable_time)
1279                 return rdev->desc->enable_time;
1280         return rdev->desc->ops->enable_time(rdev);
1281 }
1282
1283 static struct regulator_supply_alias *regulator_find_supply_alias(
1284                 struct device *dev, const char *supply)
1285 {
1286         struct regulator_supply_alias *map;
1287
1288         list_for_each_entry(map, &regulator_supply_alias_list, list)
1289                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1290                         return map;
1291
1292         return NULL;
1293 }
1294
1295 static void regulator_supply_alias(struct device **dev, const char **supply)
1296 {
1297         struct regulator_supply_alias *map;
1298
1299         map = regulator_find_supply_alias(*dev, *supply);
1300         if (map) {
1301                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1302                                 *supply, map->alias_supply,
1303                                 dev_name(map->alias_dev));
1304                 *dev = map->alias_dev;
1305                 *supply = map->alias_supply;
1306         }
1307 }
1308
1309 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1310                                                   const char *supply,
1311                                                   int *ret)
1312 {
1313         struct regulator_dev *r;
1314         struct device_node *node;
1315         struct regulator_map *map;
1316         const char *devname = NULL;
1317
1318         regulator_supply_alias(&dev, &supply);
1319
1320         /* first do a dt based lookup */
1321         if (dev && dev->of_node) {
1322                 node = of_get_regulator(dev, supply);
1323                 if (node) {
1324                         list_for_each_entry(r, &regulator_list, list)
1325                                 if (r->dev.parent &&
1326                                         node == r->dev.of_node)
1327                                         return r;
1328                         *ret = -EPROBE_DEFER;
1329                         return NULL;
1330                 } else {
1331                         /*
1332                          * If we couldn't even get the node then it's
1333                          * not just that the device didn't register
1334                          * yet, there's no node and we'll never
1335                          * succeed.
1336                          */
1337                         *ret = -ENODEV;
1338                 }
1339         }
1340
1341         /* if not found, try doing it non-dt way */
1342         if (dev)
1343                 devname = dev_name(dev);
1344
1345         list_for_each_entry(r, &regulator_list, list)
1346                 if (strcmp(rdev_get_name(r), supply) == 0)
1347                         return r;
1348
1349         list_for_each_entry(map, &regulator_map_list, list) {
1350                 /* If the mapping has a device set up it must match */
1351                 if (map->dev_name &&
1352                     (!devname || strcmp(map->dev_name, devname)))
1353                         continue;
1354
1355                 if (strcmp(map->supply, supply) == 0)
1356                         return map->regulator;
1357         }
1358
1359
1360         return NULL;
1361 }
1362
1363 static int regulator_resolve_supply(struct regulator_dev *rdev)
1364 {
1365         struct regulator_dev *r;
1366         struct device *dev = rdev->dev.parent;
1367         int ret;
1368
1369         /* No supply to resovle? */
1370         if (!rdev->supply_name)
1371                 return 0;
1372
1373         /* Supply already resolved? */
1374         if (rdev->supply)
1375                 return 0;
1376
1377         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1378         if (ret == -ENODEV) {
1379                 /*
1380                  * No supply was specified for this regulator and
1381                  * there will never be one.
1382                  */
1383                 return 0;
1384         }
1385
1386         if (!r) {
1387                 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1388                         rdev->supply_name, rdev->desc->name);
1389                 return -EPROBE_DEFER;
1390         }
1391
1392         /* Recursively resolve the supply of the supply */
1393         ret = regulator_resolve_supply(r);
1394         if (ret < 0)
1395                 return ret;
1396
1397         ret = set_supply(rdev, r);
1398         if (ret < 0)
1399                 return ret;
1400
1401         /* Cascade always-on state to supply */
1402         if (_regulator_is_enabled(rdev)) {
1403                 ret = regulator_enable(rdev->supply);
1404                 if (ret < 0)
1405                         return ret;
1406         }
1407
1408         return 0;
1409 }
1410
1411 /* Internal regulator request function */
1412 static struct regulator *_regulator_get(struct device *dev, const char *id,
1413                                         bool exclusive, bool allow_dummy)
1414 {
1415         struct regulator_dev *rdev;
1416         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1417         const char *devname = NULL;
1418         int ret;
1419
1420         if (id == NULL) {
1421                 pr_err("get() with no identifier\n");
1422                 return ERR_PTR(-EINVAL);
1423         }
1424
1425         if (dev)
1426                 devname = dev_name(dev);
1427
1428         if (have_full_constraints())
1429                 ret = -ENODEV;
1430         else
1431                 ret = -EPROBE_DEFER;
1432
1433         mutex_lock(&regulator_list_mutex);
1434
1435         rdev = regulator_dev_lookup(dev, id, &ret);
1436         if (rdev)
1437                 goto found;
1438
1439         regulator = ERR_PTR(ret);
1440
1441         /*
1442          * If we have return value from dev_lookup fail, we do not expect to
1443          * succeed, so, quit with appropriate error value
1444          */
1445         if (ret && ret != -ENODEV)
1446                 goto out;
1447
1448         if (!devname)
1449                 devname = "deviceless";
1450
1451         /*
1452          * Assume that a regulator is physically present and enabled
1453          * even if it isn't hooked up and just provide a dummy.
1454          */
1455         if (have_full_constraints() && allow_dummy) {
1456                 pr_warn("%s supply %s not found, using dummy regulator\n",
1457                         devname, id);
1458
1459                 rdev = dummy_regulator_rdev;
1460                 goto found;
1461         /* Don't log an error when called from regulator_get_optional() */
1462         } else if (!have_full_constraints() || exclusive) {
1463                 dev_warn(dev, "dummy supplies not allowed\n");
1464         }
1465
1466         mutex_unlock(&regulator_list_mutex);
1467         return regulator;
1468
1469 found:
1470         if (rdev->exclusive) {
1471                 regulator = ERR_PTR(-EPERM);
1472                 goto out;
1473         }
1474
1475         if (exclusive && rdev->open_count) {
1476                 regulator = ERR_PTR(-EBUSY);
1477                 goto out;
1478         }
1479
1480         ret = regulator_resolve_supply(rdev);
1481         if (ret < 0) {
1482                 regulator = ERR_PTR(ret);
1483                 goto out;
1484         }
1485
1486         if (!try_module_get(rdev->owner))
1487                 goto out;
1488
1489         regulator = create_regulator(rdev, dev, id);
1490         if (regulator == NULL) {
1491                 regulator = ERR_PTR(-ENOMEM);
1492                 module_put(rdev->owner);
1493                 goto out;
1494         }
1495
1496         rdev->open_count++;
1497         if (exclusive) {
1498                 rdev->exclusive = 1;
1499
1500                 ret = _regulator_is_enabled(rdev);
1501                 if (ret > 0)
1502                         rdev->use_count = 1;
1503                 else
1504                         rdev->use_count = 0;
1505         }
1506
1507 out:
1508         mutex_unlock(&regulator_list_mutex);
1509
1510         return regulator;
1511 }
1512
1513 /**
1514  * regulator_get - lookup and obtain a reference to a regulator.
1515  * @dev: device for regulator "consumer"
1516  * @id: Supply name or regulator ID.
1517  *
1518  * Returns a struct regulator corresponding to the regulator producer,
1519  * or IS_ERR() condition containing errno.
1520  *
1521  * Use of supply names configured via regulator_set_device_supply() is
1522  * strongly encouraged.  It is recommended that the supply name used
1523  * should match the name used for the supply and/or the relevant
1524  * device pins in the datasheet.
1525  */
1526 struct regulator *regulator_get(struct device *dev, const char *id)
1527 {
1528         return _regulator_get(dev, id, false, true);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_get);
1531
1532 /**
1533  * regulator_get_exclusive - obtain exclusive access to a regulator.
1534  * @dev: device for regulator "consumer"
1535  * @id: Supply name or regulator ID.
1536  *
1537  * Returns a struct regulator corresponding to the regulator producer,
1538  * or IS_ERR() condition containing errno.  Other consumers will be
1539  * unable to obtain this regulator while this reference is held and the
1540  * use count for the regulator will be initialised to reflect the current
1541  * state of the regulator.
1542  *
1543  * This is intended for use by consumers which cannot tolerate shared
1544  * use of the regulator such as those which need to force the
1545  * regulator off for correct operation of the hardware they are
1546  * controlling.
1547  *
1548  * Use of supply names configured via regulator_set_device_supply() is
1549  * strongly encouraged.  It is recommended that the supply name used
1550  * should match the name used for the supply and/or the relevant
1551  * device pins in the datasheet.
1552  */
1553 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1554 {
1555         return _regulator_get(dev, id, true, false);
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1558
1559 /**
1560  * regulator_get_optional - obtain optional access to a regulator.
1561  * @dev: device for regulator "consumer"
1562  * @id: Supply name or regulator ID.
1563  *
1564  * Returns a struct regulator corresponding to the regulator producer,
1565  * or IS_ERR() condition containing errno.
1566  *
1567  * This is intended for use by consumers for devices which can have
1568  * some supplies unconnected in normal use, such as some MMC devices.
1569  * It can allow the regulator core to provide stub supplies for other
1570  * supplies requested using normal regulator_get() calls without
1571  * disrupting the operation of drivers that can handle absent
1572  * supplies.
1573  *
1574  * Use of supply names configured via regulator_set_device_supply() is
1575  * strongly encouraged.  It is recommended that the supply name used
1576  * should match the name used for the supply and/or the relevant
1577  * device pins in the datasheet.
1578  */
1579 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1580 {
1581         return _regulator_get(dev, id, false, false);
1582 }
1583 EXPORT_SYMBOL_GPL(regulator_get_optional);
1584
1585 /* regulator_list_mutex lock held by regulator_put() */
1586 static void _regulator_put(struct regulator *regulator)
1587 {
1588         struct regulator_dev *rdev;
1589
1590         if (regulator == NULL || IS_ERR(regulator))
1591                 return;
1592
1593         rdev = regulator->rdev;
1594
1595         debugfs_remove_recursive(regulator->debugfs);
1596
1597         /* remove any sysfs entries */
1598         if (regulator->dev)
1599                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1600         mutex_lock(&rdev->mutex);
1601         kfree(regulator->supply_name);
1602         list_del(&regulator->list);
1603         kfree(regulator);
1604
1605         rdev->open_count--;
1606         rdev->exclusive = 0;
1607         mutex_unlock(&rdev->mutex);
1608
1609         module_put(rdev->owner);
1610 }
1611
1612 /**
1613  * regulator_put - "free" the regulator source
1614  * @regulator: regulator source
1615  *
1616  * Note: drivers must ensure that all regulator_enable calls made on this
1617  * regulator source are balanced by regulator_disable calls prior to calling
1618  * this function.
1619  */
1620 void regulator_put(struct regulator *regulator)
1621 {
1622         mutex_lock(&regulator_list_mutex);
1623         _regulator_put(regulator);
1624         mutex_unlock(&regulator_list_mutex);
1625 }
1626 EXPORT_SYMBOL_GPL(regulator_put);
1627
1628 /**
1629  * regulator_register_supply_alias - Provide device alias for supply lookup
1630  *
1631  * @dev: device that will be given as the regulator "consumer"
1632  * @id: Supply name or regulator ID
1633  * @alias_dev: device that should be used to lookup the supply
1634  * @alias_id: Supply name or regulator ID that should be used to lookup the
1635  * supply
1636  *
1637  * All lookups for id on dev will instead be conducted for alias_id on
1638  * alias_dev.
1639  */
1640 int regulator_register_supply_alias(struct device *dev, const char *id,
1641                                     struct device *alias_dev,
1642                                     const char *alias_id)
1643 {
1644         struct regulator_supply_alias *map;
1645
1646         map = regulator_find_supply_alias(dev, id);
1647         if (map)
1648                 return -EEXIST;
1649
1650         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1651         if (!map)
1652                 return -ENOMEM;
1653
1654         map->src_dev = dev;
1655         map->src_supply = id;
1656         map->alias_dev = alias_dev;
1657         map->alias_supply = alias_id;
1658
1659         list_add(&map->list, &regulator_supply_alias_list);
1660
1661         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1662                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1663
1664         return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1667
1668 /**
1669  * regulator_unregister_supply_alias - Remove device alias
1670  *
1671  * @dev: device that will be given as the regulator "consumer"
1672  * @id: Supply name or regulator ID
1673  *
1674  * Remove a lookup alias if one exists for id on dev.
1675  */
1676 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1677 {
1678         struct regulator_supply_alias *map;
1679
1680         map = regulator_find_supply_alias(dev, id);
1681         if (map) {
1682                 list_del(&map->list);
1683                 kfree(map);
1684         }
1685 }
1686 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1687
1688 /**
1689  * regulator_bulk_register_supply_alias - register multiple aliases
1690  *
1691  * @dev: device that will be given as the regulator "consumer"
1692  * @id: List of supply names or regulator IDs
1693  * @alias_dev: device that should be used to lookup the supply
1694  * @alias_id: List of supply names or regulator IDs that should be used to
1695  * lookup the supply
1696  * @num_id: Number of aliases to register
1697  *
1698  * @return 0 on success, an errno on failure.
1699  *
1700  * This helper function allows drivers to register several supply
1701  * aliases in one operation.  If any of the aliases cannot be
1702  * registered any aliases that were registered will be removed
1703  * before returning to the caller.
1704  */
1705 int regulator_bulk_register_supply_alias(struct device *dev,
1706                                          const char *const *id,
1707                                          struct device *alias_dev,
1708                                          const char *const *alias_id,
1709                                          int num_id)
1710 {
1711         int i;
1712         int ret;
1713
1714         for (i = 0; i < num_id; ++i) {
1715                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1716                                                       alias_id[i]);
1717                 if (ret < 0)
1718                         goto err;
1719         }
1720
1721         return 0;
1722
1723 err:
1724         dev_err(dev,
1725                 "Failed to create supply alias %s,%s -> %s,%s\n",
1726                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1727
1728         while (--i >= 0)
1729                 regulator_unregister_supply_alias(dev, id[i]);
1730
1731         return ret;
1732 }
1733 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1734
1735 /**
1736  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1737  *
1738  * @dev: device that will be given as the regulator "consumer"
1739  * @id: List of supply names or regulator IDs
1740  * @num_id: Number of aliases to unregister
1741  *
1742  * This helper function allows drivers to unregister several supply
1743  * aliases in one operation.
1744  */
1745 void regulator_bulk_unregister_supply_alias(struct device *dev,
1746                                             const char *const *id,
1747                                             int num_id)
1748 {
1749         int i;
1750
1751         for (i = 0; i < num_id; ++i)
1752                 regulator_unregister_supply_alias(dev, id[i]);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1755
1756
1757 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1758 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1759                                 const struct regulator_config *config)
1760 {
1761         struct regulator_enable_gpio *pin;
1762         struct gpio_desc *gpiod;
1763         int ret;
1764
1765         gpiod = gpio_to_desc(config->ena_gpio);
1766
1767         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1768                 if (pin->gpiod == gpiod) {
1769                         rdev_dbg(rdev, "GPIO %d is already used\n",
1770                                 config->ena_gpio);
1771                         goto update_ena_gpio_to_rdev;
1772                 }
1773         }
1774
1775         ret = gpio_request_one(config->ena_gpio,
1776                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1777                                 rdev_get_name(rdev));
1778         if (ret)
1779                 return ret;
1780
1781         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1782         if (pin == NULL) {
1783                 gpio_free(config->ena_gpio);
1784                 return -ENOMEM;
1785         }
1786
1787         pin->gpiod = gpiod;
1788         pin->ena_gpio_invert = config->ena_gpio_invert;
1789         list_add(&pin->list, &regulator_ena_gpio_list);
1790
1791 update_ena_gpio_to_rdev:
1792         pin->request_count++;
1793         rdev->ena_pin = pin;
1794         return 0;
1795 }
1796
1797 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1798 {
1799         struct regulator_enable_gpio *pin, *n;
1800
1801         if (!rdev->ena_pin)
1802                 return;
1803
1804         /* Free the GPIO only in case of no use */
1805         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1806                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1807                         if (pin->request_count <= 1) {
1808                                 pin->request_count = 0;
1809                                 gpiod_put(pin->gpiod);
1810                                 list_del(&pin->list);
1811                                 kfree(pin);
1812                                 rdev->ena_pin = NULL;
1813                                 return;
1814                         } else {
1815                                 pin->request_count--;
1816                         }
1817                 }
1818         }
1819 }
1820
1821 /**
1822  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1823  * @rdev: regulator_dev structure
1824  * @enable: enable GPIO at initial use?
1825  *
1826  * GPIO is enabled in case of initial use. (enable_count is 0)
1827  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1828  */
1829 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1830 {
1831         struct regulator_enable_gpio *pin = rdev->ena_pin;
1832
1833         if (!pin)
1834                 return -EINVAL;
1835
1836         if (enable) {
1837                 /* Enable GPIO at initial use */
1838                 if (pin->enable_count == 0)
1839                         gpiod_set_value_cansleep(pin->gpiod,
1840                                                  !pin->ena_gpio_invert);
1841
1842                 pin->enable_count++;
1843         } else {
1844                 if (pin->enable_count > 1) {
1845                         pin->enable_count--;
1846                         return 0;
1847                 }
1848
1849                 /* Disable GPIO if not used */
1850                 if (pin->enable_count <= 1) {
1851                         gpiod_set_value_cansleep(pin->gpiod,
1852                                                  pin->ena_gpio_invert);
1853                         pin->enable_count = 0;
1854                 }
1855         }
1856
1857         return 0;
1858 }
1859
1860 /**
1861  * _regulator_enable_delay - a delay helper function
1862  * @delay: time to delay in microseconds
1863  *
1864  * Delay for the requested amount of time as per the guidelines in:
1865  *
1866  *     Documentation/timers/timers-howto.txt
1867  *
1868  * The assumption here is that regulators will never be enabled in
1869  * atomic context and therefore sleeping functions can be used.
1870  */
1871 static void _regulator_enable_delay(unsigned int delay)
1872 {
1873         unsigned int ms = delay / 1000;
1874         unsigned int us = delay % 1000;
1875
1876         if (ms > 0) {
1877                 /*
1878                  * For small enough values, handle super-millisecond
1879                  * delays in the usleep_range() call below.
1880                  */
1881                 if (ms < 20)
1882                         us += ms * 1000;
1883                 else
1884                         msleep(ms);
1885         }
1886
1887         /*
1888          * Give the scheduler some room to coalesce with any other
1889          * wakeup sources. For delays shorter than 10 us, don't even
1890          * bother setting up high-resolution timers and just busy-
1891          * loop.
1892          */
1893         if (us >= 10)
1894                 usleep_range(us, us + 100);
1895         else
1896                 udelay(us);
1897 }
1898
1899 static int _regulator_do_enable(struct regulator_dev *rdev)
1900 {
1901         int ret, delay;
1902
1903         /* Query before enabling in case configuration dependent.  */
1904         ret = _regulator_get_enable_time(rdev);
1905         if (ret >= 0) {
1906                 delay = ret;
1907         } else {
1908                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1909                 delay = 0;
1910         }
1911
1912         trace_regulator_enable(rdev_get_name(rdev));
1913
1914         if (rdev->desc->off_on_delay) {
1915                 /* if needed, keep a distance of off_on_delay from last time
1916                  * this regulator was disabled.
1917                  */
1918                 unsigned long start_jiffy = jiffies;
1919                 unsigned long intended, max_delay, remaining;
1920
1921                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1922                 intended = rdev->last_off_jiffy + max_delay;
1923
1924                 if (time_before(start_jiffy, intended)) {
1925                         /* calc remaining jiffies to deal with one-time
1926                          * timer wrapping.
1927                          * in case of multiple timer wrapping, either it can be
1928                          * detected by out-of-range remaining, or it cannot be
1929                          * detected and we gets a panelty of
1930                          * _regulator_enable_delay().
1931                          */
1932                         remaining = intended - start_jiffy;
1933                         if (remaining <= max_delay)
1934                                 _regulator_enable_delay(
1935                                                 jiffies_to_usecs(remaining));
1936                 }
1937         }
1938
1939         if (rdev->ena_pin) {
1940                 if (!rdev->ena_gpio_state) {
1941                         ret = regulator_ena_gpio_ctrl(rdev, true);
1942                         if (ret < 0)
1943                                 return ret;
1944                         rdev->ena_gpio_state = 1;
1945                 }
1946         } else if (rdev->desc->ops->enable) {
1947                 ret = rdev->desc->ops->enable(rdev);
1948                 if (ret < 0)
1949                         return ret;
1950         } else {
1951                 return -EINVAL;
1952         }
1953
1954         /* Allow the regulator to ramp; it would be useful to extend
1955          * this for bulk operations so that the regulators can ramp
1956          * together.  */
1957         trace_regulator_enable_delay(rdev_get_name(rdev));
1958
1959         _regulator_enable_delay(delay);
1960
1961         trace_regulator_enable_complete(rdev_get_name(rdev));
1962
1963         return 0;
1964 }
1965
1966 /* locks held by regulator_enable() */
1967 static int _regulator_enable(struct regulator_dev *rdev)
1968 {
1969         int ret;
1970
1971         /* check voltage and requested load before enabling */
1972         if (rdev->constraints &&
1973             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1974                 drms_uA_update(rdev);
1975
1976         if (rdev->use_count == 0) {
1977                 /* The regulator may on if it's not switchable or left on */
1978                 ret = _regulator_is_enabled(rdev);
1979                 if (ret == -EINVAL || ret == 0) {
1980                         if (!_regulator_can_change_status(rdev))
1981                                 return -EPERM;
1982
1983                         ret = _regulator_do_enable(rdev);
1984                         if (ret < 0)
1985                                 return ret;
1986
1987                 } else if (ret < 0) {
1988                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1989                         return ret;
1990                 }
1991                 /* Fallthrough on positive return values - already enabled */
1992         }
1993
1994         rdev->use_count++;
1995
1996         return 0;
1997 }
1998
1999 /**
2000  * regulator_enable - enable regulator output
2001  * @regulator: regulator source
2002  *
2003  * Request that the regulator be enabled with the regulator output at
2004  * the predefined voltage or current value.  Calls to regulator_enable()
2005  * must be balanced with calls to regulator_disable().
2006  *
2007  * NOTE: the output value can be set by other drivers, boot loader or may be
2008  * hardwired in the regulator.
2009  */
2010 int regulator_enable(struct regulator *regulator)
2011 {
2012         struct regulator_dev *rdev = regulator->rdev;
2013         int ret = 0;
2014
2015         if (regulator->always_on)
2016                 return 0;
2017
2018         if (rdev->supply) {
2019                 ret = regulator_enable(rdev->supply);
2020                 if (ret != 0)
2021                         return ret;
2022         }
2023
2024         mutex_lock(&rdev->mutex);
2025         ret = _regulator_enable(rdev);
2026         mutex_unlock(&rdev->mutex);
2027
2028         if (ret != 0 && rdev->supply)
2029                 regulator_disable(rdev->supply);
2030
2031         return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(regulator_enable);
2034
2035 static int _regulator_do_disable(struct regulator_dev *rdev)
2036 {
2037         int ret;
2038
2039         trace_regulator_disable(rdev_get_name(rdev));
2040
2041         if (rdev->ena_pin) {
2042                 if (rdev->ena_gpio_state) {
2043                         ret = regulator_ena_gpio_ctrl(rdev, false);
2044                         if (ret < 0)
2045                                 return ret;
2046                         rdev->ena_gpio_state = 0;
2047                 }
2048
2049         } else if (rdev->desc->ops->disable) {
2050                 ret = rdev->desc->ops->disable(rdev);
2051                 if (ret != 0)
2052                         return ret;
2053         }
2054
2055         /* cares about last_off_jiffy only if off_on_delay is required by
2056          * device.
2057          */
2058         if (rdev->desc->off_on_delay)
2059                 rdev->last_off_jiffy = jiffies;
2060
2061         trace_regulator_disable_complete(rdev_get_name(rdev));
2062
2063         return 0;
2064 }
2065
2066 /* locks held by regulator_disable() */
2067 static int _regulator_disable(struct regulator_dev *rdev)
2068 {
2069         int ret = 0;
2070
2071         if (WARN(rdev->use_count <= 0,
2072                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2073                 return -EIO;
2074
2075         /* are we the last user and permitted to disable ? */
2076         if (rdev->use_count == 1 &&
2077             (rdev->constraints && !rdev->constraints->always_on)) {
2078
2079                 /* we are last user */
2080                 if (_regulator_can_change_status(rdev)) {
2081                         ret = _notifier_call_chain(rdev,
2082                                                    REGULATOR_EVENT_PRE_DISABLE,
2083                                                    NULL);
2084                         if (ret & NOTIFY_STOP_MASK)
2085                                 return -EINVAL;
2086
2087                         ret = _regulator_do_disable(rdev);
2088                         if (ret < 0) {
2089                                 rdev_err(rdev, "failed to disable\n");
2090                                 _notifier_call_chain(rdev,
2091                                                 REGULATOR_EVENT_ABORT_DISABLE,
2092                                                 NULL);
2093                                 return ret;
2094                         }
2095                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2096                                         NULL);
2097                 }
2098
2099                 rdev->use_count = 0;
2100         } else if (rdev->use_count > 1) {
2101
2102                 if (rdev->constraints &&
2103                         (rdev->constraints->valid_ops_mask &
2104                         REGULATOR_CHANGE_DRMS))
2105                         drms_uA_update(rdev);
2106
2107                 rdev->use_count--;
2108         }
2109
2110         return ret;
2111 }
2112
2113 /**
2114  * regulator_disable - disable regulator output
2115  * @regulator: regulator source
2116  *
2117  * Disable the regulator output voltage or current.  Calls to
2118  * regulator_enable() must be balanced with calls to
2119  * regulator_disable().
2120  *
2121  * NOTE: this will only disable the regulator output if no other consumer
2122  * devices have it enabled, the regulator device supports disabling and
2123  * machine constraints permit this operation.
2124  */
2125 int regulator_disable(struct regulator *regulator)
2126 {
2127         struct regulator_dev *rdev = regulator->rdev;
2128         int ret = 0;
2129
2130         if (regulator->always_on)
2131                 return 0;
2132
2133         mutex_lock(&rdev->mutex);
2134         ret = _regulator_disable(rdev);
2135         mutex_unlock(&rdev->mutex);
2136
2137         if (ret == 0 && rdev->supply)
2138                 regulator_disable(rdev->supply);
2139
2140         return ret;
2141 }
2142 EXPORT_SYMBOL_GPL(regulator_disable);
2143
2144 /* locks held by regulator_force_disable() */
2145 static int _regulator_force_disable(struct regulator_dev *rdev)
2146 {
2147         int ret = 0;
2148
2149         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2150                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2151         if (ret & NOTIFY_STOP_MASK)
2152                 return -EINVAL;
2153
2154         ret = _regulator_do_disable(rdev);
2155         if (ret < 0) {
2156                 rdev_err(rdev, "failed to force disable\n");
2157                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2158                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2159                 return ret;
2160         }
2161
2162         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2163                         REGULATOR_EVENT_DISABLE, NULL);
2164
2165         return 0;
2166 }
2167
2168 /**
2169  * regulator_force_disable - force disable regulator output
2170  * @regulator: regulator source
2171  *
2172  * Forcibly disable the regulator output voltage or current.
2173  * NOTE: this *will* disable the regulator output even if other consumer
2174  * devices have it enabled. This should be used for situations when device
2175  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2176  */
2177 int regulator_force_disable(struct regulator *regulator)
2178 {
2179         struct regulator_dev *rdev = regulator->rdev;
2180         int ret;
2181
2182         mutex_lock(&rdev->mutex);
2183         regulator->uA_load = 0;
2184         ret = _regulator_force_disable(regulator->rdev);
2185         mutex_unlock(&rdev->mutex);
2186
2187         if (rdev->supply)
2188                 while (rdev->open_count--)
2189                         regulator_disable(rdev->supply);
2190
2191         return ret;
2192 }
2193 EXPORT_SYMBOL_GPL(regulator_force_disable);
2194
2195 static void regulator_disable_work(struct work_struct *work)
2196 {
2197         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2198                                                   disable_work.work);
2199         int count, i, ret;
2200
2201         mutex_lock(&rdev->mutex);
2202
2203         BUG_ON(!rdev->deferred_disables);
2204
2205         count = rdev->deferred_disables;
2206         rdev->deferred_disables = 0;
2207
2208         for (i = 0; i < count; i++) {
2209                 ret = _regulator_disable(rdev);
2210                 if (ret != 0)
2211                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2212         }
2213
2214         mutex_unlock(&rdev->mutex);
2215
2216         if (rdev->supply) {
2217                 for (i = 0; i < count; i++) {
2218                         ret = regulator_disable(rdev->supply);
2219                         if (ret != 0) {
2220                                 rdev_err(rdev,
2221                                          "Supply disable failed: %d\n", ret);
2222                         }
2223                 }
2224         }
2225 }
2226
2227 /**
2228  * regulator_disable_deferred - disable regulator output with delay
2229  * @regulator: regulator source
2230  * @ms: miliseconds until the regulator is disabled
2231  *
2232  * Execute regulator_disable() on the regulator after a delay.  This
2233  * is intended for use with devices that require some time to quiesce.
2234  *
2235  * NOTE: this will only disable the regulator output if no other consumer
2236  * devices have it enabled, the regulator device supports disabling and
2237  * machine constraints permit this operation.
2238  */
2239 int regulator_disable_deferred(struct regulator *regulator, int ms)
2240 {
2241         struct regulator_dev *rdev = regulator->rdev;
2242         int ret;
2243
2244         if (regulator->always_on)
2245                 return 0;
2246
2247         if (!ms)
2248                 return regulator_disable(regulator);
2249
2250         mutex_lock(&rdev->mutex);
2251         rdev->deferred_disables++;
2252         mutex_unlock(&rdev->mutex);
2253
2254         ret = queue_delayed_work(system_power_efficient_wq,
2255                                  &rdev->disable_work,
2256                                  msecs_to_jiffies(ms));
2257         if (ret < 0)
2258                 return ret;
2259         else
2260                 return 0;
2261 }
2262 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2263
2264 static int _regulator_is_enabled(struct regulator_dev *rdev)
2265 {
2266         /* A GPIO control always takes precedence */
2267         if (rdev->ena_pin)
2268                 return rdev->ena_gpio_state;
2269
2270         /* If we don't know then assume that the regulator is always on */
2271         if (!rdev->desc->ops->is_enabled)
2272                 return 1;
2273
2274         return rdev->desc->ops->is_enabled(rdev);
2275 }
2276
2277 /**
2278  * regulator_is_enabled - is the regulator output enabled
2279  * @regulator: regulator source
2280  *
2281  * Returns positive if the regulator driver backing the source/client
2282  * has requested that the device be enabled, zero if it hasn't, else a
2283  * negative errno code.
2284  *
2285  * Note that the device backing this regulator handle can have multiple
2286  * users, so it might be enabled even if regulator_enable() was never
2287  * called for this particular source.
2288  */
2289 int regulator_is_enabled(struct regulator *regulator)
2290 {
2291         int ret;
2292
2293         if (regulator->always_on)
2294                 return 1;
2295
2296         mutex_lock(&regulator->rdev->mutex);
2297         ret = _regulator_is_enabled(regulator->rdev);
2298         mutex_unlock(&regulator->rdev->mutex);
2299
2300         return ret;
2301 }
2302 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2303
2304 /**
2305  * regulator_can_change_voltage - check if regulator can change voltage
2306  * @regulator: regulator source
2307  *
2308  * Returns positive if the regulator driver backing the source/client
2309  * can change its voltage, false otherwise. Useful for detecting fixed
2310  * or dummy regulators and disabling voltage change logic in the client
2311  * driver.
2312  */
2313 int regulator_can_change_voltage(struct regulator *regulator)
2314 {
2315         struct regulator_dev    *rdev = regulator->rdev;
2316
2317         if (rdev->constraints &&
2318             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2319                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2320                         return 1;
2321
2322                 if (rdev->desc->continuous_voltage_range &&
2323                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2324                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2325                         return 1;
2326         }
2327
2328         return 0;
2329 }
2330 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2331
2332 /**
2333  * regulator_count_voltages - count regulator_list_voltage() selectors
2334  * @regulator: regulator source
2335  *
2336  * Returns number of selectors, or negative errno.  Selectors are
2337  * numbered starting at zero, and typically correspond to bitfields
2338  * in hardware registers.
2339  */
2340 int regulator_count_voltages(struct regulator *regulator)
2341 {
2342         struct regulator_dev    *rdev = regulator->rdev;
2343
2344         if (rdev->desc->n_voltages)
2345                 return rdev->desc->n_voltages;
2346
2347         if (!rdev->supply)
2348                 return -EINVAL;
2349
2350         return regulator_count_voltages(rdev->supply);
2351 }
2352 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2353
2354 /**
2355  * regulator_list_voltage - enumerate supported voltages
2356  * @regulator: regulator source
2357  * @selector: identify voltage to list
2358  * Context: can sleep
2359  *
2360  * Returns a voltage that can be passed to @regulator_set_voltage(),
2361  * zero if this selector code can't be used on this system, or a
2362  * negative errno.
2363  */
2364 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2365 {
2366         struct regulator_dev *rdev = regulator->rdev;
2367         const struct regulator_ops *ops = rdev->desc->ops;
2368         int ret;
2369
2370         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2371                 return rdev->desc->fixed_uV;
2372
2373         if (ops->list_voltage) {
2374                 if (selector >= rdev->desc->n_voltages)
2375                         return -EINVAL;
2376                 mutex_lock(&rdev->mutex);
2377                 ret = ops->list_voltage(rdev, selector);
2378                 mutex_unlock(&rdev->mutex);
2379         } else if (rdev->supply) {
2380                 ret = regulator_list_voltage(rdev->supply, selector);
2381         } else {
2382                 return -EINVAL;
2383         }
2384
2385         if (ret > 0) {
2386                 if (ret < rdev->constraints->min_uV)
2387                         ret = 0;
2388                 else if (ret > rdev->constraints->max_uV)
2389                         ret = 0;
2390         }
2391
2392         return ret;
2393 }
2394 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2395
2396 /**
2397  * regulator_get_regmap - get the regulator's register map
2398  * @regulator: regulator source
2399  *
2400  * Returns the register map for the given regulator, or an ERR_PTR value
2401  * if the regulator doesn't use regmap.
2402  */
2403 struct regmap *regulator_get_regmap(struct regulator *regulator)
2404 {
2405         struct regmap *map = regulator->rdev->regmap;
2406
2407         return map ? map : ERR_PTR(-EOPNOTSUPP);
2408 }
2409
2410 /**
2411  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2412  * @regulator: regulator source
2413  * @vsel_reg: voltage selector register, output parameter
2414  * @vsel_mask: mask for voltage selector bitfield, output parameter
2415  *
2416  * Returns the hardware register offset and bitmask used for setting the
2417  * regulator voltage. This might be useful when configuring voltage-scaling
2418  * hardware or firmware that can make I2C requests behind the kernel's back,
2419  * for example.
2420  *
2421  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2422  * and 0 is returned, otherwise a negative errno is returned.
2423  */
2424 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2425                                          unsigned *vsel_reg,
2426                                          unsigned *vsel_mask)
2427 {
2428         struct regulator_dev *rdev = regulator->rdev;
2429         const struct regulator_ops *ops = rdev->desc->ops;
2430
2431         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2432                 return -EOPNOTSUPP;
2433
2434          *vsel_reg = rdev->desc->vsel_reg;
2435          *vsel_mask = rdev->desc->vsel_mask;
2436
2437          return 0;
2438 }
2439 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2440
2441 /**
2442  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2443  * @regulator: regulator source
2444  * @selector: identify voltage to list
2445  *
2446  * Converts the selector to a hardware-specific voltage selector that can be
2447  * directly written to the regulator registers. The address of the voltage
2448  * register can be determined by calling @regulator_get_hardware_vsel_register.
2449  *
2450  * On error a negative errno is returned.
2451  */
2452 int regulator_list_hardware_vsel(struct regulator *regulator,
2453                                  unsigned selector)
2454 {
2455         struct regulator_dev *rdev = regulator->rdev;
2456         const struct regulator_ops *ops = rdev->desc->ops;
2457
2458         if (selector >= rdev->desc->n_voltages)
2459                 return -EINVAL;
2460         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2461                 return -EOPNOTSUPP;
2462
2463         return selector;
2464 }
2465 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2466
2467 /**
2468  * regulator_get_linear_step - return the voltage step size between VSEL values
2469  * @regulator: regulator source
2470  *
2471  * Returns the voltage step size between VSEL values for linear
2472  * regulators, or return 0 if the regulator isn't a linear regulator.
2473  */
2474 unsigned int regulator_get_linear_step(struct regulator *regulator)
2475 {
2476         struct regulator_dev *rdev = regulator->rdev;
2477
2478         return rdev->desc->uV_step;
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2481
2482 /**
2483  * regulator_is_supported_voltage - check if a voltage range can be supported
2484  *
2485  * @regulator: Regulator to check.
2486  * @min_uV: Minimum required voltage in uV.
2487  * @max_uV: Maximum required voltage in uV.
2488  *
2489  * Returns a boolean or a negative error code.
2490  */
2491 int regulator_is_supported_voltage(struct regulator *regulator,
2492                                    int min_uV, int max_uV)
2493 {
2494         struct regulator_dev *rdev = regulator->rdev;
2495         int i, voltages, ret;
2496
2497         /* If we can't change voltage check the current voltage */
2498         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2499                 ret = regulator_get_voltage(regulator);
2500                 if (ret >= 0)
2501                         return min_uV <= ret && ret <= max_uV;
2502                 else
2503                         return ret;
2504         }
2505
2506         /* Any voltage within constrains range is fine? */
2507         if (rdev->desc->continuous_voltage_range)
2508                 return min_uV >= rdev->constraints->min_uV &&
2509                                 max_uV <= rdev->constraints->max_uV;
2510
2511         ret = regulator_count_voltages(regulator);
2512         if (ret < 0)
2513                 return ret;
2514         voltages = ret;
2515
2516         for (i = 0; i < voltages; i++) {
2517                 ret = regulator_list_voltage(regulator, i);
2518
2519                 if (ret >= min_uV && ret <= max_uV)
2520                         return 1;
2521         }
2522
2523         return 0;
2524 }
2525 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2526
2527 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2528                                        int min_uV, int max_uV,
2529                                        unsigned *selector)
2530 {
2531         struct pre_voltage_change_data data;
2532         int ret;
2533
2534         data.old_uV = _regulator_get_voltage(rdev);
2535         data.min_uV = min_uV;
2536         data.max_uV = max_uV;
2537         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2538                                    &data);
2539         if (ret & NOTIFY_STOP_MASK)
2540                 return -EINVAL;
2541
2542         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2543         if (ret >= 0)
2544                 return ret;
2545
2546         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2547                              (void *)data.old_uV);
2548
2549         return ret;
2550 }
2551
2552 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2553                                            int uV, unsigned selector)
2554 {
2555         struct pre_voltage_change_data data;
2556         int ret;
2557
2558         data.old_uV = _regulator_get_voltage(rdev);
2559         data.min_uV = uV;
2560         data.max_uV = uV;
2561         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2562                                    &data);
2563         if (ret & NOTIFY_STOP_MASK)
2564                 return -EINVAL;
2565
2566         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2567         if (ret >= 0)
2568                 return ret;
2569
2570         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2571                              (void *)data.old_uV);
2572
2573         return ret;
2574 }
2575
2576 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2577                                      int min_uV, int max_uV)
2578 {
2579         int ret;
2580         int delay = 0;
2581         int best_val = 0;
2582         unsigned int selector;
2583         int old_selector = -1;
2584
2585         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2586
2587         min_uV += rdev->constraints->uV_offset;
2588         max_uV += rdev->constraints->uV_offset;
2589
2590         /*
2591          * If we can't obtain the old selector there is not enough
2592          * info to call set_voltage_time_sel().
2593          */
2594         if (_regulator_is_enabled(rdev) &&
2595             rdev->desc->ops->set_voltage_time_sel &&
2596             rdev->desc->ops->get_voltage_sel) {
2597                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2598                 if (old_selector < 0)
2599                         return old_selector;
2600         }
2601
2602         if (rdev->desc->ops->set_voltage) {
2603                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2604                                                   &selector);
2605
2606                 if (ret >= 0) {
2607                         if (rdev->desc->ops->list_voltage)
2608                                 best_val = rdev->desc->ops->list_voltage(rdev,
2609                                                                          selector);
2610                         else
2611                                 best_val = _regulator_get_voltage(rdev);
2612                 }
2613
2614         } else if (rdev->desc->ops->set_voltage_sel) {
2615                 if (rdev->desc->ops->map_voltage) {
2616                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2617                                                            max_uV);
2618                 } else {
2619                         if (rdev->desc->ops->list_voltage ==
2620                             regulator_list_voltage_linear)
2621                                 ret = regulator_map_voltage_linear(rdev,
2622                                                                 min_uV, max_uV);
2623                         else if (rdev->desc->ops->list_voltage ==
2624                                  regulator_list_voltage_linear_range)
2625                                 ret = regulator_map_voltage_linear_range(rdev,
2626                                                                 min_uV, max_uV);
2627                         else
2628                                 ret = regulator_map_voltage_iterate(rdev,
2629                                                                 min_uV, max_uV);
2630                 }
2631
2632                 if (ret >= 0) {
2633                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2634                         if (min_uV <= best_val && max_uV >= best_val) {
2635                                 selector = ret;
2636                                 if (old_selector == selector)
2637                                         ret = 0;
2638                                 else
2639                                         ret = _regulator_call_set_voltage_sel(
2640                                                 rdev, best_val, selector);
2641                         } else {
2642                                 ret = -EINVAL;
2643                         }
2644                 }
2645         } else {
2646                 ret = -EINVAL;
2647         }
2648
2649         /* Call set_voltage_time_sel if successfully obtained old_selector */
2650         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2651                 && old_selector != selector) {
2652
2653                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2654                                                 old_selector, selector);
2655                 if (delay < 0) {
2656                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2657                                   delay);
2658                         delay = 0;
2659                 }
2660
2661                 /* Insert any necessary delays */
2662                 if (delay >= 1000) {
2663                         mdelay(delay / 1000);
2664                         udelay(delay % 1000);
2665                 } else if (delay) {
2666                         udelay(delay);
2667                 }
2668         }
2669
2670         if (ret == 0 && best_val >= 0) {
2671                 unsigned long data = best_val;
2672
2673                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2674                                      (void *)data);
2675         }
2676
2677         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2678
2679         return ret;
2680 }
2681
2682 /**
2683  * regulator_set_voltage - set regulator output voltage
2684  * @regulator: regulator source
2685  * @min_uV: Minimum required voltage in uV
2686  * @max_uV: Maximum acceptable voltage in uV
2687  *
2688  * Sets a voltage regulator to the desired output voltage. This can be set
2689  * during any regulator state. IOW, regulator can be disabled or enabled.
2690  *
2691  * If the regulator is enabled then the voltage will change to the new value
2692  * immediately otherwise if the regulator is disabled the regulator will
2693  * output at the new voltage when enabled.
2694  *
2695  * NOTE: If the regulator is shared between several devices then the lowest
2696  * request voltage that meets the system constraints will be used.
2697  * Regulator system constraints must be set for this regulator before
2698  * calling this function otherwise this call will fail.
2699  */
2700 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2701 {
2702         struct regulator_dev *rdev = regulator->rdev;
2703         int ret = 0;
2704         int old_min_uV, old_max_uV;
2705         int current_uV;
2706
2707         mutex_lock(&rdev->mutex);
2708
2709         /* If we're setting the same range as last time the change
2710          * should be a noop (some cpufreq implementations use the same
2711          * voltage for multiple frequencies, for example).
2712          */
2713         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2714                 goto out;
2715
2716         /* If we're trying to set a range that overlaps the current voltage,
2717          * return succesfully even though the regulator does not support
2718          * changing the voltage.
2719          */
2720         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2721                 current_uV = _regulator_get_voltage(rdev);
2722                 if (min_uV <= current_uV && current_uV <= max_uV) {
2723                         regulator->min_uV = min_uV;
2724                         regulator->max_uV = max_uV;
2725                         goto out;
2726                 }
2727         }
2728
2729         /* sanity check */
2730         if (!rdev->desc->ops->set_voltage &&
2731             !rdev->desc->ops->set_voltage_sel) {
2732                 ret = -EINVAL;
2733                 goto out;
2734         }
2735
2736         /* constraints check */
2737         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2738         if (ret < 0)
2739                 goto out;
2740
2741         /* restore original values in case of error */
2742         old_min_uV = regulator->min_uV;
2743         old_max_uV = regulator->max_uV;
2744         regulator->min_uV = min_uV;
2745         regulator->max_uV = max_uV;
2746
2747         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2748         if (ret < 0)
2749                 goto out2;
2750
2751         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2752         if (ret < 0)
2753                 goto out2;
2754
2755 out:
2756         mutex_unlock(&rdev->mutex);
2757         return ret;
2758 out2:
2759         regulator->min_uV = old_min_uV;
2760         regulator->max_uV = old_max_uV;
2761         mutex_unlock(&rdev->mutex);
2762         return ret;
2763 }
2764 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2765
2766 /**
2767  * regulator_set_voltage_time - get raise/fall time
2768  * @regulator: regulator source
2769  * @old_uV: starting voltage in microvolts
2770  * @new_uV: target voltage in microvolts
2771  *
2772  * Provided with the starting and ending voltage, this function attempts to
2773  * calculate the time in microseconds required to rise or fall to this new
2774  * voltage.
2775  */
2776 int regulator_set_voltage_time(struct regulator *regulator,
2777                                int old_uV, int new_uV)
2778 {
2779         struct regulator_dev *rdev = regulator->rdev;
2780         const struct regulator_ops *ops = rdev->desc->ops;
2781         int old_sel = -1;
2782         int new_sel = -1;
2783         int voltage;
2784         int i;
2785
2786         /* Currently requires operations to do this */
2787         if (!ops->list_voltage || !ops->set_voltage_time_sel
2788             || !rdev->desc->n_voltages)
2789                 return -EINVAL;
2790
2791         for (i = 0; i < rdev->desc->n_voltages; i++) {
2792                 /* We only look for exact voltage matches here */
2793                 voltage = regulator_list_voltage(regulator, i);
2794                 if (voltage < 0)
2795                         return -EINVAL;
2796                 if (voltage == 0)
2797                         continue;
2798                 if (voltage == old_uV)
2799                         old_sel = i;
2800                 if (voltage == new_uV)
2801                         new_sel = i;
2802         }
2803
2804         if (old_sel < 0 || new_sel < 0)
2805                 return -EINVAL;
2806
2807         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2808 }
2809 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2810
2811 /**
2812  * regulator_set_voltage_time_sel - get raise/fall time
2813  * @rdev: regulator source device
2814  * @old_selector: selector for starting voltage
2815  * @new_selector: selector for target voltage
2816  *
2817  * Provided with the starting and target voltage selectors, this function
2818  * returns time in microseconds required to rise or fall to this new voltage
2819  *
2820  * Drivers providing ramp_delay in regulation_constraints can use this as their
2821  * set_voltage_time_sel() operation.
2822  */
2823 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2824                                    unsigned int old_selector,
2825                                    unsigned int new_selector)
2826 {
2827         unsigned int ramp_delay = 0;
2828         int old_volt, new_volt;
2829
2830         if (rdev->constraints->ramp_delay)
2831                 ramp_delay = rdev->constraints->ramp_delay;
2832         else if (rdev->desc->ramp_delay)
2833                 ramp_delay = rdev->desc->ramp_delay;
2834
2835         if (ramp_delay == 0) {
2836                 rdev_warn(rdev, "ramp_delay not set\n");
2837                 return 0;
2838         }
2839
2840         /* sanity check */
2841         if (!rdev->desc->ops->list_voltage)
2842                 return -EINVAL;
2843
2844         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2845         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2846
2847         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2848 }
2849 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2850
2851 /**
2852  * regulator_sync_voltage - re-apply last regulator output voltage
2853  * @regulator: regulator source
2854  *
2855  * Re-apply the last configured voltage.  This is intended to be used
2856  * where some external control source the consumer is cooperating with
2857  * has caused the configured voltage to change.
2858  */
2859 int regulator_sync_voltage(struct regulator *regulator)
2860 {
2861         struct regulator_dev *rdev = regulator->rdev;
2862         int ret, min_uV, max_uV;
2863
2864         mutex_lock(&rdev->mutex);
2865
2866         if (!rdev->desc->ops->set_voltage &&
2867             !rdev->desc->ops->set_voltage_sel) {
2868                 ret = -EINVAL;
2869                 goto out;
2870         }
2871
2872         /* This is only going to work if we've had a voltage configured. */
2873         if (!regulator->min_uV && !regulator->max_uV) {
2874                 ret = -EINVAL;
2875                 goto out;
2876         }
2877
2878         min_uV = regulator->min_uV;
2879         max_uV = regulator->max_uV;
2880
2881         /* This should be a paranoia check... */
2882         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2883         if (ret < 0)
2884                 goto out;
2885
2886         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2887         if (ret < 0)
2888                 goto out;
2889
2890         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2891
2892 out:
2893         mutex_unlock(&rdev->mutex);
2894         return ret;
2895 }
2896 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2897
2898 static int _regulator_get_voltage(struct regulator_dev *rdev)
2899 {
2900         int sel, ret;
2901
2902         if (rdev->desc->ops->get_voltage_sel) {
2903                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2904                 if (sel < 0)
2905                         return sel;
2906                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2907         } else if (rdev->desc->ops->get_voltage) {
2908                 ret = rdev->desc->ops->get_voltage(rdev);
2909         } else if (rdev->desc->ops->list_voltage) {
2910                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2911         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2912                 ret = rdev->desc->fixed_uV;
2913         } else if (rdev->supply) {
2914                 ret = regulator_get_voltage(rdev->supply);
2915         } else {
2916                 return -EINVAL;
2917         }
2918
2919         if (ret < 0)
2920                 return ret;
2921         return ret - rdev->constraints->uV_offset;
2922 }
2923
2924 /**
2925  * regulator_get_voltage - get regulator output voltage
2926  * @regulator: regulator source
2927  *
2928  * This returns the current regulator voltage in uV.
2929  *
2930  * NOTE: If the regulator is disabled it will return the voltage value. This
2931  * function should not be used to determine regulator state.
2932  */
2933 int regulator_get_voltage(struct regulator *regulator)
2934 {
2935         int ret;
2936
2937         mutex_lock(&regulator->rdev->mutex);
2938
2939         ret = _regulator_get_voltage(regulator->rdev);
2940
2941         mutex_unlock(&regulator->rdev->mutex);
2942
2943         return ret;
2944 }
2945 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2946
2947 /**
2948  * regulator_set_current_limit - set regulator output current limit
2949  * @regulator: regulator source
2950  * @min_uA: Minimum supported current in uA
2951  * @max_uA: Maximum supported current in uA
2952  *
2953  * Sets current sink to the desired output current. This can be set during
2954  * any regulator state. IOW, regulator can be disabled or enabled.
2955  *
2956  * If the regulator is enabled then the current will change to the new value
2957  * immediately otherwise if the regulator is disabled the regulator will
2958  * output at the new current when enabled.
2959  *
2960  * NOTE: Regulator system constraints must be set for this regulator before
2961  * calling this function otherwise this call will fail.
2962  */
2963 int regulator_set_current_limit(struct regulator *regulator,
2964                                int min_uA, int max_uA)
2965 {
2966         struct regulator_dev *rdev = regulator->rdev;
2967         int ret;
2968
2969         mutex_lock(&rdev->mutex);
2970
2971         /* sanity check */
2972         if (!rdev->desc->ops->set_current_limit) {
2973                 ret = -EINVAL;
2974                 goto out;
2975         }
2976
2977         /* constraints check */
2978         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2979         if (ret < 0)
2980                 goto out;
2981
2982         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2983 out:
2984         mutex_unlock(&rdev->mutex);
2985         return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2988
2989 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2990 {
2991         int ret;
2992
2993         mutex_lock(&rdev->mutex);
2994
2995         /* sanity check */
2996         if (!rdev->desc->ops->get_current_limit) {
2997                 ret = -EINVAL;
2998                 goto out;
2999         }
3000
3001         ret = rdev->desc->ops->get_current_limit(rdev);
3002 out:
3003         mutex_unlock(&rdev->mutex);
3004         return ret;
3005 }
3006
3007 /**
3008  * regulator_get_current_limit - get regulator output current
3009  * @regulator: regulator source
3010  *
3011  * This returns the current supplied by the specified current sink in uA.
3012  *
3013  * NOTE: If the regulator is disabled it will return the current value. This
3014  * function should not be used to determine regulator state.
3015  */
3016 int regulator_get_current_limit(struct regulator *regulator)
3017 {
3018         return _regulator_get_current_limit(regulator->rdev);
3019 }
3020 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3021
3022 /**
3023  * regulator_set_mode - set regulator operating mode
3024  * @regulator: regulator source
3025  * @mode: operating mode - one of the REGULATOR_MODE constants
3026  *
3027  * Set regulator operating mode to increase regulator efficiency or improve
3028  * regulation performance.
3029  *
3030  * NOTE: Regulator system constraints must be set for this regulator before
3031  * calling this function otherwise this call will fail.
3032  */
3033 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3034 {
3035         struct regulator_dev *rdev = regulator->rdev;
3036         int ret;
3037         int regulator_curr_mode;
3038
3039         mutex_lock(&rdev->mutex);
3040
3041         /* sanity check */
3042         if (!rdev->desc->ops->set_mode) {
3043                 ret = -EINVAL;
3044                 goto out;
3045         }
3046
3047         /* return if the same mode is requested */
3048         if (rdev->desc->ops->get_mode) {
3049                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3050                 if (regulator_curr_mode == mode) {
3051                         ret = 0;
3052                         goto out;
3053                 }
3054         }
3055
3056         /* constraints check */
3057         ret = regulator_mode_constrain(rdev, &mode);
3058         if (ret < 0)
3059                 goto out;
3060
3061         ret = rdev->desc->ops->set_mode(rdev, mode);
3062 out:
3063         mutex_unlock(&rdev->mutex);
3064         return ret;
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_set_mode);
3067
3068 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3069 {
3070         int ret;
3071
3072         mutex_lock(&rdev->mutex);
3073
3074         /* sanity check */
3075         if (!rdev->desc->ops->get_mode) {
3076                 ret = -EINVAL;
3077                 goto out;
3078         }
3079
3080         ret = rdev->desc->ops->get_mode(rdev);
3081 out:
3082         mutex_unlock(&rdev->mutex);
3083         return ret;
3084 }
3085
3086 /**
3087  * regulator_get_mode - get regulator operating mode
3088  * @regulator: regulator source
3089  *
3090  * Get the current regulator operating mode.
3091  */
3092 unsigned int regulator_get_mode(struct regulator *regulator)
3093 {
3094         return _regulator_get_mode(regulator->rdev);
3095 }
3096 EXPORT_SYMBOL_GPL(regulator_get_mode);
3097
3098 /**
3099  * regulator_set_load - set regulator load
3100  * @regulator: regulator source
3101  * @uA_load: load current
3102  *
3103  * Notifies the regulator core of a new device load. This is then used by
3104  * DRMS (if enabled by constraints) to set the most efficient regulator
3105  * operating mode for the new regulator loading.
3106  *
3107  * Consumer devices notify their supply regulator of the maximum power
3108  * they will require (can be taken from device datasheet in the power
3109  * consumption tables) when they change operational status and hence power
3110  * state. Examples of operational state changes that can affect power
3111  * consumption are :-
3112  *
3113  *    o Device is opened / closed.
3114  *    o Device I/O is about to begin or has just finished.
3115  *    o Device is idling in between work.
3116  *
3117  * This information is also exported via sysfs to userspace.
3118  *
3119  * DRMS will sum the total requested load on the regulator and change
3120  * to the most efficient operating mode if platform constraints allow.
3121  *
3122  * On error a negative errno is returned.
3123  */
3124 int regulator_set_load(struct regulator *regulator, int uA_load)
3125 {
3126         struct regulator_dev *rdev = regulator->rdev;
3127         int ret;
3128
3129         mutex_lock(&rdev->mutex);
3130         regulator->uA_load = uA_load;
3131         ret = drms_uA_update(rdev);
3132         mutex_unlock(&rdev->mutex);
3133
3134         return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_set_load);
3137
3138 /**
3139  * regulator_allow_bypass - allow the regulator to go into bypass mode
3140  *
3141  * @regulator: Regulator to configure
3142  * @enable: enable or disable bypass mode
3143  *
3144  * Allow the regulator to go into bypass mode if all other consumers
3145  * for the regulator also enable bypass mode and the machine
3146  * constraints allow this.  Bypass mode means that the regulator is
3147  * simply passing the input directly to the output with no regulation.
3148  */
3149 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3150 {
3151         struct regulator_dev *rdev = regulator->rdev;
3152         int ret = 0;
3153
3154         if (!rdev->desc->ops->set_bypass)
3155                 return 0;
3156
3157         if (rdev->constraints &&
3158             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3159                 return 0;
3160
3161         mutex_lock(&rdev->mutex);
3162
3163         if (enable && !regulator->bypass) {
3164                 rdev->bypass_count++;
3165
3166                 if (rdev->bypass_count == rdev->open_count) {
3167                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3168                         if (ret != 0)
3169                                 rdev->bypass_count--;
3170                 }
3171
3172         } else if (!enable && regulator->bypass) {
3173                 rdev->bypass_count--;
3174
3175                 if (rdev->bypass_count != rdev->open_count) {
3176                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3177                         if (ret != 0)
3178                                 rdev->bypass_count++;
3179                 }
3180         }
3181
3182         if (ret == 0)
3183                 regulator->bypass = enable;
3184
3185         mutex_unlock(&rdev->mutex);
3186
3187         return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3190
3191 /**
3192  * regulator_register_notifier - register regulator event notifier
3193  * @regulator: regulator source
3194  * @nb: notifier block
3195  *
3196  * Register notifier block to receive regulator events.
3197  */
3198 int regulator_register_notifier(struct regulator *regulator,
3199                               struct notifier_block *nb)
3200 {
3201         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3202                                                 nb);
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3205
3206 /**
3207  * regulator_unregister_notifier - unregister regulator event notifier
3208  * @regulator: regulator source
3209  * @nb: notifier block
3210  *
3211  * Unregister regulator event notifier block.
3212  */
3213 int regulator_unregister_notifier(struct regulator *regulator,
3214                                 struct notifier_block *nb)
3215 {
3216         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3217                                                   nb);
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3220
3221 /* notify regulator consumers and downstream regulator consumers.
3222  * Note mutex must be held by caller.
3223  */
3224 static int _notifier_call_chain(struct regulator_dev *rdev,
3225                                   unsigned long event, void *data)
3226 {
3227         /* call rdev chain first */
3228         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3229 }
3230
3231 /**
3232  * regulator_bulk_get - get multiple regulator consumers
3233  *
3234  * @dev:           Device to supply
3235  * @num_consumers: Number of consumers to register
3236  * @consumers:     Configuration of consumers; clients are stored here.
3237  *
3238  * @return 0 on success, an errno on failure.
3239  *
3240  * This helper function allows drivers to get several regulator
3241  * consumers in one operation.  If any of the regulators cannot be
3242  * acquired then any regulators that were allocated will be freed
3243  * before returning to the caller.
3244  */
3245 int regulator_bulk_get(struct device *dev, int num_consumers,
3246                        struct regulator_bulk_data *consumers)
3247 {
3248         int i;
3249         int ret;
3250
3251         for (i = 0; i < num_consumers; i++)
3252                 consumers[i].consumer = NULL;
3253
3254         for (i = 0; i < num_consumers; i++) {
3255                 consumers[i].consumer = regulator_get(dev,
3256                                                       consumers[i].supply);
3257                 if (IS_ERR(consumers[i].consumer)) {
3258                         ret = PTR_ERR(consumers[i].consumer);
3259                         dev_err(dev, "Failed to get supply '%s': %d\n",
3260                                 consumers[i].supply, ret);
3261                         consumers[i].consumer = NULL;
3262                         goto err;
3263                 }
3264         }
3265
3266         return 0;
3267
3268 err:
3269         while (--i >= 0)
3270                 regulator_put(consumers[i].consumer);
3271
3272         return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3275
3276 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3277 {
3278         struct regulator_bulk_data *bulk = data;
3279
3280         bulk->ret = regulator_enable(bulk->consumer);
3281 }
3282
3283 /**
3284  * regulator_bulk_enable - enable multiple regulator consumers
3285  *
3286  * @num_consumers: Number of consumers
3287  * @consumers:     Consumer data; clients are stored here.
3288  * @return         0 on success, an errno on failure
3289  *
3290  * This convenience API allows consumers to enable multiple regulator
3291  * clients in a single API call.  If any consumers cannot be enabled
3292  * then any others that were enabled will be disabled again prior to
3293  * return.
3294  */
3295 int regulator_bulk_enable(int num_consumers,
3296                           struct regulator_bulk_data *consumers)
3297 {
3298         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3299         int i;
3300         int ret = 0;
3301
3302         for (i = 0; i < num_consumers; i++) {
3303                 if (consumers[i].consumer->always_on)
3304                         consumers[i].ret = 0;
3305                 else
3306                         async_schedule_domain(regulator_bulk_enable_async,
3307                                               &consumers[i], &async_domain);
3308         }
3309
3310         async_synchronize_full_domain(&async_domain);
3311
3312         /* If any consumer failed we need to unwind any that succeeded */
3313         for (i = 0; i < num_consumers; i++) {
3314                 if (consumers[i].ret != 0) {
3315                         ret = consumers[i].ret;
3316                         goto err;
3317                 }
3318         }
3319
3320         return 0;
3321
3322 err:
3323         for (i = 0; i < num_consumers; i++) {
3324                 if (consumers[i].ret < 0)
3325                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3326                                consumers[i].ret);
3327                 else
3328                         regulator_disable(consumers[i].consumer);
3329         }
3330
3331         return ret;
3332 }
3333 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3334
3335 /**
3336  * regulator_bulk_disable - disable multiple regulator consumers
3337  *
3338  * @num_consumers: Number of consumers
3339  * @consumers:     Consumer data; clients are stored here.
3340  * @return         0 on success, an errno on failure
3341  *
3342  * This convenience API allows consumers to disable multiple regulator
3343  * clients in a single API call.  If any consumers cannot be disabled
3344  * then any others that were disabled will be enabled again prior to
3345  * return.
3346  */
3347 int regulator_bulk_disable(int num_consumers,
3348                            struct regulator_bulk_data *consumers)
3349 {
3350         int i;
3351         int ret, r;
3352
3353         for (i = num_consumers - 1; i >= 0; --i) {
3354                 ret = regulator_disable(consumers[i].consumer);
3355                 if (ret != 0)
3356                         goto err;
3357         }
3358
3359         return 0;
3360
3361 err:
3362         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3363         for (++i; i < num_consumers; ++i) {
3364                 r = regulator_enable(consumers[i].consumer);
3365                 if (r != 0)
3366                         pr_err("Failed to reename %s: %d\n",
3367                                consumers[i].supply, r);
3368         }
3369
3370         return ret;
3371 }
3372 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3373
3374 /**
3375  * regulator_bulk_force_disable - force disable multiple regulator consumers
3376  *
3377  * @num_consumers: Number of consumers
3378  * @consumers:     Consumer data; clients are stored here.
3379  * @return         0 on success, an errno on failure
3380  *
3381  * This convenience API allows consumers to forcibly disable multiple regulator
3382  * clients in a single API call.
3383  * NOTE: This should be used for situations when device damage will
3384  * likely occur if the regulators are not disabled (e.g. over temp).
3385  * Although regulator_force_disable function call for some consumers can
3386  * return error numbers, the function is called for all consumers.
3387  */
3388 int regulator_bulk_force_disable(int num_consumers,
3389                            struct regulator_bulk_data *consumers)
3390 {
3391         int i;
3392         int ret;
3393
3394         for (i = 0; i < num_consumers; i++)
3395                 consumers[i].ret =
3396                             regulator_force_disable(consumers[i].consumer);
3397
3398         for (i = 0; i < num_consumers; i++) {
3399                 if (consumers[i].ret != 0) {
3400                         ret = consumers[i].ret;
3401                         goto out;
3402                 }
3403         }
3404
3405         return 0;
3406 out:
3407         return ret;
3408 }
3409 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3410
3411 /**
3412  * regulator_bulk_free - free multiple regulator consumers
3413  *
3414  * @num_consumers: Number of consumers
3415  * @consumers:     Consumer data; clients are stored here.
3416  *
3417  * This convenience API allows consumers to free multiple regulator
3418  * clients in a single API call.
3419  */
3420 void regulator_bulk_free(int num_consumers,
3421                          struct regulator_bulk_data *consumers)
3422 {
3423         int i;
3424
3425         for (i = 0; i < num_consumers; i++) {
3426                 regulator_put(consumers[i].consumer);
3427                 consumers[i].consumer = NULL;
3428         }
3429 }
3430 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3431
3432 /**
3433  * regulator_notifier_call_chain - call regulator event notifier
3434  * @rdev: regulator source
3435  * @event: notifier block
3436  * @data: callback-specific data.
3437  *
3438  * Called by regulator drivers to notify clients a regulator event has
3439  * occurred. We also notify regulator clients downstream.
3440  * Note lock must be held by caller.
3441  */
3442 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3443                                   unsigned long event, void *data)
3444 {
3445         _notifier_call_chain(rdev, event, data);
3446         return NOTIFY_DONE;
3447
3448 }
3449 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3450
3451 /**
3452  * regulator_mode_to_status - convert a regulator mode into a status
3453  *
3454  * @mode: Mode to convert
3455  *
3456  * Convert a regulator mode into a status.
3457  */
3458 int regulator_mode_to_status(unsigned int mode)
3459 {
3460         switch (mode) {
3461         case REGULATOR_MODE_FAST:
3462                 return REGULATOR_STATUS_FAST;
3463         case REGULATOR_MODE_NORMAL:
3464                 return REGULATOR_STATUS_NORMAL;
3465         case REGULATOR_MODE_IDLE:
3466                 return REGULATOR_STATUS_IDLE;
3467         case REGULATOR_MODE_STANDBY:
3468                 return REGULATOR_STATUS_STANDBY;
3469         default:
3470                 return REGULATOR_STATUS_UNDEFINED;
3471         }
3472 }
3473 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3474
3475 static struct attribute *regulator_dev_attrs[] = {
3476         &dev_attr_name.attr,
3477         &dev_attr_num_users.attr,
3478         &dev_attr_type.attr,
3479         &dev_attr_microvolts.attr,
3480         &dev_attr_microamps.attr,
3481         &dev_attr_opmode.attr,
3482         &dev_attr_state.attr,
3483         &dev_attr_status.attr,
3484         &dev_attr_bypass.attr,
3485         &dev_attr_requested_microamps.attr,
3486         &dev_attr_min_microvolts.attr,
3487         &dev_attr_max_microvolts.attr,
3488         &dev_attr_min_microamps.attr,
3489         &dev_attr_max_microamps.attr,
3490         &dev_attr_suspend_standby_state.attr,
3491         &dev_attr_suspend_mem_state.attr,
3492         &dev_attr_suspend_disk_state.attr,
3493         &dev_attr_suspend_standby_microvolts.attr,
3494         &dev_attr_suspend_mem_microvolts.attr,
3495         &dev_attr_suspend_disk_microvolts.attr,
3496         &dev_attr_suspend_standby_mode.attr,
3497         &dev_attr_suspend_mem_mode.attr,
3498         &dev_attr_suspend_disk_mode.attr,
3499         NULL
3500 };
3501
3502 /*
3503  * To avoid cluttering sysfs (and memory) with useless state, only
3504  * create attributes that can be meaningfully displayed.
3505  */
3506 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3507                                          struct attribute *attr, int idx)
3508 {
3509         struct device *dev = kobj_to_dev(kobj);
3510         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3511         const struct regulator_ops *ops = rdev->desc->ops;
3512         umode_t mode = attr->mode;
3513
3514         /* these three are always present */
3515         if (attr == &dev_attr_name.attr ||
3516             attr == &dev_attr_num_users.attr ||
3517             attr == &dev_attr_type.attr)
3518                 return mode;
3519
3520         /* some attributes need specific methods to be displayed */
3521         if (attr == &dev_attr_microvolts.attr) {
3522                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3523                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3524                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3525                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3526                         return mode;
3527                 return 0;
3528         }
3529
3530         if (attr == &dev_attr_microamps.attr)
3531                 return ops->get_current_limit ? mode : 0;
3532
3533         if (attr == &dev_attr_opmode.attr)
3534                 return ops->get_mode ? mode : 0;
3535
3536         if (attr == &dev_attr_state.attr)
3537                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3538
3539         if (attr == &dev_attr_status.attr)
3540                 return ops->get_status ? mode : 0;
3541
3542         if (attr == &dev_attr_bypass.attr)
3543                 return ops->get_bypass ? mode : 0;
3544
3545         /* some attributes are type-specific */
3546         if (attr == &dev_attr_requested_microamps.attr)
3547                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3548
3549         /* constraints need specific supporting methods */
3550         if (attr == &dev_attr_min_microvolts.attr ||
3551             attr == &dev_attr_max_microvolts.attr)
3552                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3553
3554         if (attr == &dev_attr_min_microamps.attr ||
3555             attr == &dev_attr_max_microamps.attr)
3556                 return ops->set_current_limit ? mode : 0;
3557
3558         if (attr == &dev_attr_suspend_standby_state.attr ||
3559             attr == &dev_attr_suspend_mem_state.attr ||
3560             attr == &dev_attr_suspend_disk_state.attr)
3561                 return mode;
3562
3563         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3564             attr == &dev_attr_suspend_mem_microvolts.attr ||
3565             attr == &dev_attr_suspend_disk_microvolts.attr)
3566                 return ops->set_suspend_voltage ? mode : 0;
3567
3568         if (attr == &dev_attr_suspend_standby_mode.attr ||
3569             attr == &dev_attr_suspend_mem_mode.attr ||
3570             attr == &dev_attr_suspend_disk_mode.attr)
3571                 return ops->set_suspend_mode ? mode : 0;
3572
3573         return mode;
3574 }
3575
3576 static const struct attribute_group regulator_dev_group = {
3577         .attrs = regulator_dev_attrs,
3578         .is_visible = regulator_attr_is_visible,
3579 };
3580
3581 static const struct attribute_group *regulator_dev_groups[] = {
3582         &regulator_dev_group,
3583         NULL
3584 };
3585
3586 static void regulator_dev_release(struct device *dev)
3587 {
3588         struct regulator_dev *rdev = dev_get_drvdata(dev);
3589         kfree(rdev);
3590 }
3591
3592 static struct class regulator_class = {
3593         .name = "regulator",
3594         .dev_release = regulator_dev_release,
3595         .dev_groups = regulator_dev_groups,
3596 };
3597
3598 static void rdev_init_debugfs(struct regulator_dev *rdev)
3599 {
3600         struct device *parent = rdev->dev.parent;
3601         const char *rname = rdev_get_name(rdev);
3602         char name[NAME_MAX];
3603
3604         /* Avoid duplicate debugfs directory names */
3605         if (parent && rname == rdev->desc->name) {
3606                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3607                          rname);
3608                 rname = name;
3609         }
3610
3611         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3612         if (!rdev->debugfs) {
3613                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3614                 return;
3615         }
3616
3617         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3618                            &rdev->use_count);
3619         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3620                            &rdev->open_count);
3621         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3622                            &rdev->bypass_count);
3623 }
3624
3625 /**
3626  * regulator_register - register regulator
3627  * @regulator_desc: regulator to register
3628  * @cfg: runtime configuration for regulator
3629  *
3630  * Called by regulator drivers to register a regulator.
3631  * Returns a valid pointer to struct regulator_dev on success
3632  * or an ERR_PTR() on error.
3633  */
3634 struct regulator_dev *
3635 regulator_register(const struct regulator_desc *regulator_desc,
3636                    const struct regulator_config *cfg)
3637 {
3638         const struct regulation_constraints *constraints = NULL;
3639         const struct regulator_init_data *init_data;
3640         struct regulator_config *config = NULL;
3641         static atomic_t regulator_no = ATOMIC_INIT(-1);
3642         struct regulator_dev *rdev;
3643         struct device *dev;
3644         int ret, i;
3645
3646         if (regulator_desc == NULL || cfg == NULL)
3647                 return ERR_PTR(-EINVAL);
3648
3649         dev = cfg->dev;
3650         WARN_ON(!dev);
3651
3652         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3653                 return ERR_PTR(-EINVAL);
3654
3655         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3656             regulator_desc->type != REGULATOR_CURRENT)
3657                 return ERR_PTR(-EINVAL);
3658
3659         /* Only one of each should be implemented */
3660         WARN_ON(regulator_desc->ops->get_voltage &&
3661                 regulator_desc->ops->get_voltage_sel);
3662         WARN_ON(regulator_desc->ops->set_voltage &&
3663                 regulator_desc->ops->set_voltage_sel);
3664
3665         /* If we're using selectors we must implement list_voltage. */
3666         if (regulator_desc->ops->get_voltage_sel &&
3667             !regulator_desc->ops->list_voltage) {
3668                 return ERR_PTR(-EINVAL);
3669         }
3670         if (regulator_desc->ops->set_voltage_sel &&
3671             !regulator_desc->ops->list_voltage) {
3672                 return ERR_PTR(-EINVAL);
3673         }
3674
3675         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3676         if (rdev == NULL)
3677                 return ERR_PTR(-ENOMEM);
3678
3679         /*
3680          * Duplicate the config so the driver could override it after
3681          * parsing init data.
3682          */
3683         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3684         if (config == NULL) {
3685                 kfree(rdev);
3686                 return ERR_PTR(-ENOMEM);
3687         }
3688
3689         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3690                                                &rdev->dev.of_node);
3691         if (!init_data) {
3692                 init_data = config->init_data;
3693                 rdev->dev.of_node = of_node_get(config->of_node);
3694         }
3695
3696         mutex_lock(&regulator_list_mutex);
3697
3698         mutex_init(&rdev->mutex);
3699         rdev->reg_data = config->driver_data;
3700         rdev->owner = regulator_desc->owner;
3701         rdev->desc = regulator_desc;
3702         if (config->regmap)
3703                 rdev->regmap = config->regmap;
3704         else if (dev_get_regmap(dev, NULL))
3705                 rdev->regmap = dev_get_regmap(dev, NULL);
3706         else if (dev->parent)
3707                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3708         INIT_LIST_HEAD(&rdev->consumer_list);
3709         INIT_LIST_HEAD(&rdev->list);
3710         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3711         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3712
3713         /* preform any regulator specific init */
3714         if (init_data && init_data->regulator_init) {
3715                 ret = init_data->regulator_init(rdev->reg_data);
3716                 if (ret < 0)
3717                         goto clean;
3718         }
3719
3720         /* register with sysfs */
3721         rdev->dev.class = &regulator_class;
3722         rdev->dev.parent = dev;
3723         dev_set_name(&rdev->dev, "regulator.%lu",
3724                     (unsigned long) atomic_inc_return(&regulator_no));
3725         ret = device_register(&rdev->dev);
3726         if (ret != 0) {
3727                 put_device(&rdev->dev);
3728                 goto clean;
3729         }
3730
3731         dev_set_drvdata(&rdev->dev, rdev);
3732
3733         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3734             gpio_is_valid(config->ena_gpio)) {
3735                 ret = regulator_ena_gpio_request(rdev, config);
3736                 if (ret != 0) {
3737                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3738                                  config->ena_gpio, ret);
3739                         goto wash;
3740                 }
3741         }
3742
3743         /* set regulator constraints */
3744         if (init_data)
3745                 constraints = &init_data->constraints;
3746
3747         ret = set_machine_constraints(rdev, constraints);
3748         if (ret < 0)
3749                 goto scrub;
3750
3751         if (init_data && init_data->supply_regulator)
3752                 rdev->supply_name = init_data->supply_regulator;
3753         else if (regulator_desc->supply_name)
3754                 rdev->supply_name = regulator_desc->supply_name;
3755
3756         /* add consumers devices */
3757         if (init_data) {
3758                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3759                         ret = set_consumer_device_supply(rdev,
3760                                 init_data->consumer_supplies[i].dev_name,
3761                                 init_data->consumer_supplies[i].supply);
3762                         if (ret < 0) {
3763                                 dev_err(dev, "Failed to set supply %s\n",
3764                                         init_data->consumer_supplies[i].supply);
3765                                 goto unset_supplies;
3766                         }
3767                 }
3768         }
3769
3770         list_add(&rdev->list, &regulator_list);
3771
3772         rdev_init_debugfs(rdev);
3773 out:
3774         mutex_unlock(&regulator_list_mutex);
3775         kfree(config);
3776         return rdev;
3777
3778 unset_supplies:
3779         unset_regulator_supplies(rdev);
3780
3781 scrub:
3782         regulator_ena_gpio_free(rdev);
3783         kfree(rdev->constraints);
3784 wash:
3785         device_unregister(&rdev->dev);
3786         /* device core frees rdev */
3787         rdev = ERR_PTR(ret);
3788         goto out;
3789
3790 clean:
3791         kfree(rdev);
3792         rdev = ERR_PTR(ret);
3793         goto out;
3794 }
3795 EXPORT_SYMBOL_GPL(regulator_register);
3796
3797 /**
3798  * regulator_unregister - unregister regulator
3799  * @rdev: regulator to unregister
3800  *
3801  * Called by regulator drivers to unregister a regulator.
3802  */
3803 void regulator_unregister(struct regulator_dev *rdev)
3804 {
3805         if (rdev == NULL)
3806                 return;
3807
3808         if (rdev->supply) {
3809                 while (rdev->use_count--)
3810                         regulator_disable(rdev->supply);
3811                 regulator_put(rdev->supply);
3812         }
3813         mutex_lock(&regulator_list_mutex);
3814         debugfs_remove_recursive(rdev->debugfs);
3815         flush_work(&rdev->disable_work.work);
3816         WARN_ON(rdev->open_count);
3817         unset_regulator_supplies(rdev);
3818         list_del(&rdev->list);
3819         kfree(rdev->constraints);
3820         regulator_ena_gpio_free(rdev);
3821         of_node_put(rdev->dev.of_node);
3822         device_unregister(&rdev->dev);
3823         mutex_unlock(&regulator_list_mutex);
3824 }
3825 EXPORT_SYMBOL_GPL(regulator_unregister);
3826
3827 /**
3828  * regulator_suspend_prepare - prepare regulators for system wide suspend
3829  * @state: system suspend state
3830  *
3831  * Configure each regulator with it's suspend operating parameters for state.
3832  * This will usually be called by machine suspend code prior to supending.
3833  */
3834 int regulator_suspend_prepare(suspend_state_t state)
3835 {
3836         struct regulator_dev *rdev;
3837         int ret = 0;
3838
3839         /* ON is handled by regulator active state */
3840         if (state == PM_SUSPEND_ON)
3841                 return -EINVAL;
3842
3843         mutex_lock(&regulator_list_mutex);
3844         list_for_each_entry(rdev, &regulator_list, list) {
3845
3846                 mutex_lock(&rdev->mutex);
3847                 ret = suspend_prepare(rdev, state);
3848                 mutex_unlock(&rdev->mutex);
3849
3850                 if (ret < 0) {
3851                         rdev_err(rdev, "failed to prepare\n");
3852                         goto out;
3853                 }
3854         }
3855 out:
3856         mutex_unlock(&regulator_list_mutex);
3857         return ret;
3858 }
3859 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3860
3861 /**
3862  * regulator_suspend_finish - resume regulators from system wide suspend
3863  *
3864  * Turn on regulators that might be turned off by regulator_suspend_prepare
3865  * and that should be turned on according to the regulators properties.
3866  */
3867 int regulator_suspend_finish(void)
3868 {
3869         struct regulator_dev *rdev;
3870         int ret = 0, error;
3871
3872         mutex_lock(&regulator_list_mutex);
3873         list_for_each_entry(rdev, &regulator_list, list) {
3874                 mutex_lock(&rdev->mutex);
3875                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3876                         if (!_regulator_is_enabled(rdev)) {
3877                                 error = _regulator_do_enable(rdev);
3878                                 if (error)
3879                                         ret = error;
3880                         }
3881                 } else {
3882                         if (!have_full_constraints())
3883                                 goto unlock;
3884                         if (!_regulator_is_enabled(rdev))
3885                                 goto unlock;
3886
3887                         error = _regulator_do_disable(rdev);
3888                         if (error)
3889                                 ret = error;
3890                 }
3891 unlock:
3892                 mutex_unlock(&rdev->mutex);
3893         }
3894         mutex_unlock(&regulator_list_mutex);
3895         return ret;
3896 }
3897 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3898
3899 /**
3900  * regulator_has_full_constraints - the system has fully specified constraints
3901  *
3902  * Calling this function will cause the regulator API to disable all
3903  * regulators which have a zero use count and don't have an always_on
3904  * constraint in a late_initcall.
3905  *
3906  * The intention is that this will become the default behaviour in a
3907  * future kernel release so users are encouraged to use this facility
3908  * now.
3909  */
3910 void regulator_has_full_constraints(void)
3911 {
3912         has_full_constraints = 1;
3913 }
3914 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3915
3916 /**
3917  * rdev_get_drvdata - get rdev regulator driver data
3918  * @rdev: regulator
3919  *
3920  * Get rdev regulator driver private data. This call can be used in the
3921  * regulator driver context.
3922  */
3923 void *rdev_get_drvdata(struct regulator_dev *rdev)
3924 {
3925         return rdev->reg_data;
3926 }
3927 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3928
3929 /**
3930  * regulator_get_drvdata - get regulator driver data
3931  * @regulator: regulator
3932  *
3933  * Get regulator driver private data. This call can be used in the consumer
3934  * driver context when non API regulator specific functions need to be called.
3935  */
3936 void *regulator_get_drvdata(struct regulator *regulator)
3937 {
3938         return regulator->rdev->reg_data;
3939 }
3940 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3941
3942 /**
3943  * regulator_set_drvdata - set regulator driver data
3944  * @regulator: regulator
3945  * @data: data
3946  */
3947 void regulator_set_drvdata(struct regulator *regulator, void *data)
3948 {
3949         regulator->rdev->reg_data = data;
3950 }
3951 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3952
3953 /**
3954  * regulator_get_id - get regulator ID
3955  * @rdev: regulator
3956  */
3957 int rdev_get_id(struct regulator_dev *rdev)
3958 {
3959         return rdev->desc->id;
3960 }
3961 EXPORT_SYMBOL_GPL(rdev_get_id);
3962
3963 struct device *rdev_get_dev(struct regulator_dev *rdev)
3964 {
3965         return &rdev->dev;
3966 }
3967 EXPORT_SYMBOL_GPL(rdev_get_dev);
3968
3969 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3970 {
3971         return reg_init_data->driver_data;
3972 }
3973 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3974
3975 #ifdef CONFIG_DEBUG_FS
3976 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3977                                     size_t count, loff_t *ppos)
3978 {
3979         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3980         ssize_t len, ret = 0;
3981         struct regulator_map *map;
3982
3983         if (!buf)
3984                 return -ENOMEM;
3985
3986         list_for_each_entry(map, &regulator_map_list, list) {
3987                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3988                                "%s -> %s.%s\n",
3989                                rdev_get_name(map->regulator), map->dev_name,
3990                                map->supply);
3991                 if (len >= 0)
3992                         ret += len;
3993                 if (ret > PAGE_SIZE) {
3994                         ret = PAGE_SIZE;
3995                         break;
3996                 }
3997         }
3998
3999         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4000
4001         kfree(buf);
4002
4003         return ret;
4004 }
4005 #endif
4006
4007 static const struct file_operations supply_map_fops = {
4008 #ifdef CONFIG_DEBUG_FS
4009         .read = supply_map_read_file,
4010         .llseek = default_llseek,
4011 #endif
4012 };
4013
4014 #ifdef CONFIG_DEBUG_FS
4015 static void regulator_summary_show_subtree(struct seq_file *s,
4016                                            struct regulator_dev *rdev,
4017                                            int level)
4018 {
4019         struct list_head *list = s->private;
4020         struct regulator_dev *child;
4021         struct regulation_constraints *c;
4022         struct regulator *consumer;
4023
4024         if (!rdev)
4025                 return;
4026
4027         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4028                    level * 3 + 1, "",
4029                    30 - level * 3, rdev_get_name(rdev),
4030                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4031
4032         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4033         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4034
4035         c = rdev->constraints;
4036         if (c) {
4037                 switch (rdev->desc->type) {
4038                 case REGULATOR_VOLTAGE:
4039                         seq_printf(s, "%5dmV %5dmV ",
4040                                    c->min_uV / 1000, c->max_uV / 1000);
4041                         break;
4042                 case REGULATOR_CURRENT:
4043                         seq_printf(s, "%5dmA %5dmA ",
4044                                    c->min_uA / 1000, c->max_uA / 1000);
4045                         break;
4046                 }
4047         }
4048
4049         seq_puts(s, "\n");
4050
4051         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4052                 if (consumer->dev->class == &regulator_class)
4053                         continue;
4054
4055                 seq_printf(s, "%*s%-*s ",
4056                            (level + 1) * 3 + 1, "",
4057                            30 - (level + 1) * 3, dev_name(consumer->dev));
4058
4059                 switch (rdev->desc->type) {
4060                 case REGULATOR_VOLTAGE:
4061                         seq_printf(s, "%37dmV %5dmV",
4062                                    consumer->min_uV / 1000,
4063                                    consumer->max_uV / 1000);
4064                         break;
4065                 case REGULATOR_CURRENT:
4066                         break;
4067                 }
4068
4069                 seq_puts(s, "\n");
4070         }
4071
4072         list_for_each_entry(child, list, list) {
4073                 /* handle only non-root regulators supplied by current rdev */
4074                 if (!child->supply || child->supply->rdev != rdev)
4075                         continue;
4076
4077                 regulator_summary_show_subtree(s, child, level + 1);
4078         }
4079 }
4080
4081 static int regulator_summary_show(struct seq_file *s, void *data)
4082 {
4083         struct list_head *list = s->private;
4084         struct regulator_dev *rdev;
4085
4086         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4087         seq_puts(s, "-------------------------------------------------------------------------------\n");
4088
4089         mutex_lock(&regulator_list_mutex);
4090
4091         list_for_each_entry(rdev, list, list) {
4092                 if (rdev->supply)
4093                         continue;
4094
4095                 regulator_summary_show_subtree(s, rdev, 0);
4096         }
4097
4098         mutex_unlock(&regulator_list_mutex);
4099
4100         return 0;
4101 }
4102
4103 static int regulator_summary_open(struct inode *inode, struct file *file)
4104 {
4105         return single_open(file, regulator_summary_show, inode->i_private);
4106 }
4107 #endif
4108
4109 static const struct file_operations regulator_summary_fops = {
4110 #ifdef CONFIG_DEBUG_FS
4111         .open           = regulator_summary_open,
4112         .read           = seq_read,
4113         .llseek         = seq_lseek,
4114         .release        = single_release,
4115 #endif
4116 };
4117
4118 static int __init regulator_init(void)
4119 {
4120         int ret;
4121
4122         ret = class_register(&regulator_class);
4123
4124         debugfs_root = debugfs_create_dir("regulator", NULL);
4125         if (!debugfs_root)
4126                 pr_warn("regulator: Failed to create debugfs directory\n");
4127
4128         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4129                             &supply_map_fops);
4130
4131         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4132                             &regulator_list, &regulator_summary_fops);
4133
4134         regulator_dummy_init();
4135
4136         return ret;
4137 }
4138
4139 /* init early to allow our consumers to complete system booting */
4140 core_initcall(regulator_init);
4141
4142 static int __init regulator_init_complete(void)
4143 {
4144         struct regulator_dev *rdev;
4145         const struct regulator_ops *ops;
4146         struct regulation_constraints *c;
4147         int enabled, ret;
4148
4149         /*
4150          * Since DT doesn't provide an idiomatic mechanism for
4151          * enabling full constraints and since it's much more natural
4152          * with DT to provide them just assume that a DT enabled
4153          * system has full constraints.
4154          */
4155         if (of_have_populated_dt())
4156                 has_full_constraints = true;
4157
4158         mutex_lock(&regulator_list_mutex);
4159
4160         /* If we have a full configuration then disable any regulators
4161          * we have permission to change the status for and which are
4162          * not in use or always_on.  This is effectively the default
4163          * for DT and ACPI as they have full constraints.
4164          */
4165         list_for_each_entry(rdev, &regulator_list, list) {
4166                 ops = rdev->desc->ops;
4167                 c = rdev->constraints;
4168
4169                 if (c && c->always_on)
4170                         continue;
4171
4172                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4173                         continue;
4174
4175                 mutex_lock(&rdev->mutex);
4176
4177                 if (rdev->use_count)
4178                         goto unlock;
4179
4180                 /* If we can't read the status assume it's on. */
4181                 if (ops->is_enabled)
4182                         enabled = ops->is_enabled(rdev);
4183                 else
4184                         enabled = 1;
4185
4186                 if (!enabled)
4187                         goto unlock;
4188
4189                 if (have_full_constraints()) {
4190                         /* We log since this may kill the system if it
4191                          * goes wrong. */
4192                         rdev_info(rdev, "disabling\n");
4193                         ret = _regulator_do_disable(rdev);
4194                         if (ret != 0)
4195                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4196                 } else {
4197                         /* The intention is that in future we will
4198                          * assume that full constraints are provided
4199                          * so warn even if we aren't going to do
4200                          * anything here.
4201                          */
4202                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4203                 }
4204
4205 unlock:
4206                 mutex_unlock(&rdev->mutex);
4207         }
4208
4209         mutex_unlock(&regulator_list_mutex);
4210
4211         return 0;
4212 }
4213 late_initcall_sync(regulator_init_complete);