Merge branch 'drm-rockchip-2015-07-13' of https://github.com/markyzq/kernel-drm-rockc...
[linux-drm-fsl-dcu.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         /*
644          * first check to see if we can set modes at all, otherwise just
645          * tell the consumer everything is OK.
646          */
647         err = regulator_check_drms(rdev);
648         if (err < 0)
649                 return 0;
650
651         if (!rdev->desc->ops->get_optimum_mode &&
652             !rdev->desc->ops->set_load)
653                 return 0;
654
655         if (!rdev->desc->ops->set_mode &&
656             !rdev->desc->ops->set_load)
657                 return -EINVAL;
658
659         /* get output voltage */
660         output_uV = _regulator_get_voltage(rdev);
661         if (output_uV <= 0) {
662                 rdev_err(rdev, "invalid output voltage found\n");
663                 return -EINVAL;
664         }
665
666         /* get input voltage */
667         input_uV = 0;
668         if (rdev->supply)
669                 input_uV = regulator_get_voltage(rdev->supply);
670         if (input_uV <= 0)
671                 input_uV = rdev->constraints->input_uV;
672         if (input_uV <= 0) {
673                 rdev_err(rdev, "invalid input voltage found\n");
674                 return -EINVAL;
675         }
676
677         /* calc total requested load */
678         list_for_each_entry(sibling, &rdev->consumer_list, list)
679                 current_uA += sibling->uA_load;
680
681         current_uA += rdev->constraints->system_load;
682
683         if (rdev->desc->ops->set_load) {
684                 /* set the optimum mode for our new total regulator load */
685                 err = rdev->desc->ops->set_load(rdev, current_uA);
686                 if (err < 0)
687                         rdev_err(rdev, "failed to set load %d\n", current_uA);
688         } else {
689                 /* now get the optimum mode for our new total regulator load */
690                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
691                                                          output_uV, current_uA);
692
693                 /* check the new mode is allowed */
694                 err = regulator_mode_constrain(rdev, &mode);
695                 if (err < 0) {
696                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
697                                  current_uA, input_uV, output_uV);
698                         return err;
699                 }
700
701                 err = rdev->desc->ops->set_mode(rdev, mode);
702                 if (err < 0)
703                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
704         }
705
706         return err;
707 }
708
709 static int suspend_set_state(struct regulator_dev *rdev,
710         struct regulator_state *rstate)
711 {
712         int ret = 0;
713
714         /* If we have no suspend mode configration don't set anything;
715          * only warn if the driver implements set_suspend_voltage or
716          * set_suspend_mode callback.
717          */
718         if (!rstate->enabled && !rstate->disabled) {
719                 if (rdev->desc->ops->set_suspend_voltage ||
720                     rdev->desc->ops->set_suspend_mode)
721                         rdev_warn(rdev, "No configuration\n");
722                 return 0;
723         }
724
725         if (rstate->enabled && rstate->disabled) {
726                 rdev_err(rdev, "invalid configuration\n");
727                 return -EINVAL;
728         }
729
730         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
731                 ret = rdev->desc->ops->set_suspend_enable(rdev);
732         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
733                 ret = rdev->desc->ops->set_suspend_disable(rdev);
734         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
735                 ret = 0;
736
737         if (ret < 0) {
738                 rdev_err(rdev, "failed to enabled/disable\n");
739                 return ret;
740         }
741
742         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
743                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set voltage\n");
746                         return ret;
747                 }
748         }
749
750         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
751                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
752                 if (ret < 0) {
753                         rdev_err(rdev, "failed to set mode\n");
754                         return ret;
755                 }
756         }
757         return ret;
758 }
759
760 /* locks held by caller */
761 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
762 {
763         if (!rdev->constraints)
764                 return -EINVAL;
765
766         switch (state) {
767         case PM_SUSPEND_STANDBY:
768                 return suspend_set_state(rdev,
769                         &rdev->constraints->state_standby);
770         case PM_SUSPEND_MEM:
771                 return suspend_set_state(rdev,
772                         &rdev->constraints->state_mem);
773         case PM_SUSPEND_MAX:
774                 return suspend_set_state(rdev,
775                         &rdev->constraints->state_disk);
776         default:
777                 return -EINVAL;
778         }
779 }
780
781 static void print_constraints(struct regulator_dev *rdev)
782 {
783         struct regulation_constraints *constraints = rdev->constraints;
784         char buf[160] = "";
785         size_t len = sizeof(buf) - 1;
786         int count = 0;
787         int ret;
788
789         if (constraints->min_uV && constraints->max_uV) {
790                 if (constraints->min_uV == constraints->max_uV)
791                         count += scnprintf(buf + count, len - count, "%d mV ",
792                                            constraints->min_uV / 1000);
793                 else
794                         count += scnprintf(buf + count, len - count,
795                                            "%d <--> %d mV ",
796                                            constraints->min_uV / 1000,
797                                            constraints->max_uV / 1000);
798         }
799
800         if (!constraints->min_uV ||
801             constraints->min_uV != constraints->max_uV) {
802                 ret = _regulator_get_voltage(rdev);
803                 if (ret > 0)
804                         count += scnprintf(buf + count, len - count,
805                                            "at %d mV ", ret / 1000);
806         }
807
808         if (constraints->uV_offset)
809                 count += scnprintf(buf + count, len - count, "%dmV offset ",
810                                    constraints->uV_offset / 1000);
811
812         if (constraints->min_uA && constraints->max_uA) {
813                 if (constraints->min_uA == constraints->max_uA)
814                         count += scnprintf(buf + count, len - count, "%d mA ",
815                                            constraints->min_uA / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mA ",
819                                            constraints->min_uA / 1000,
820                                            constraints->max_uA / 1000);
821         }
822
823         if (!constraints->min_uA ||
824             constraints->min_uA != constraints->max_uA) {
825                 ret = _regulator_get_current_limit(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mA ", ret / 1000);
829         }
830
831         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
832                 count += scnprintf(buf + count, len - count, "fast ");
833         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
834                 count += scnprintf(buf + count, len - count, "normal ");
835         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
836                 count += scnprintf(buf + count, len - count, "idle ");
837         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
838                 count += scnprintf(buf + count, len - count, "standby");
839
840         if (!count)
841                 scnprintf(buf, len, "no parameters");
842
843         rdev_dbg(rdev, "%s\n", buf);
844
845         if ((constraints->min_uV != constraints->max_uV) &&
846             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
847                 rdev_warn(rdev,
848                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
849 }
850
851 static int machine_constraints_voltage(struct regulator_dev *rdev,
852         struct regulation_constraints *constraints)
853 {
854         const struct regulator_ops *ops = rdev->desc->ops;
855         int ret;
856
857         /* do we need to apply the constraint voltage */
858         if (rdev->constraints->apply_uV &&
859             rdev->constraints->min_uV == rdev->constraints->max_uV) {
860                 int current_uV = _regulator_get_voltage(rdev);
861                 if (current_uV < 0) {
862                         rdev_err(rdev,
863                                  "failed to get the current voltage(%d)\n",
864                                  current_uV);
865                         return current_uV;
866                 }
867                 if (current_uV < rdev->constraints->min_uV ||
868                     current_uV > rdev->constraints->max_uV) {
869                         ret = _regulator_do_set_voltage(
870                                 rdev, rdev->constraints->min_uV,
871                                 rdev->constraints->max_uV);
872                         if (ret < 0) {
873                                 rdev_err(rdev,
874                                         "failed to apply %duV constraint(%d)\n",
875                                         rdev->constraints->min_uV, ret);
876                                 return ret;
877                         }
878                 }
879         }
880
881         /* constrain machine-level voltage specs to fit
882          * the actual range supported by this regulator.
883          */
884         if (ops->list_voltage && rdev->desc->n_voltages) {
885                 int     count = rdev->desc->n_voltages;
886                 int     i;
887                 int     min_uV = INT_MAX;
888                 int     max_uV = INT_MIN;
889                 int     cmin = constraints->min_uV;
890                 int     cmax = constraints->max_uV;
891
892                 /* it's safe to autoconfigure fixed-voltage supplies
893                    and the constraints are used by list_voltage. */
894                 if (count == 1 && !cmin) {
895                         cmin = 1;
896                         cmax = INT_MAX;
897                         constraints->min_uV = cmin;
898                         constraints->max_uV = cmax;
899                 }
900
901                 /* voltage constraints are optional */
902                 if ((cmin == 0) && (cmax == 0))
903                         return 0;
904
905                 /* else require explicit machine-level constraints */
906                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
907                         rdev_err(rdev, "invalid voltage constraints\n");
908                         return -EINVAL;
909                 }
910
911                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
912                 for (i = 0; i < count; i++) {
913                         int     value;
914
915                         value = ops->list_voltage(rdev, i);
916                         if (value <= 0)
917                                 continue;
918
919                         /* maybe adjust [min_uV..max_uV] */
920                         if (value >= cmin && value < min_uV)
921                                 min_uV = value;
922                         if (value <= cmax && value > max_uV)
923                                 max_uV = value;
924                 }
925
926                 /* final: [min_uV..max_uV] valid iff constraints valid */
927                 if (max_uV < min_uV) {
928                         rdev_err(rdev,
929                                  "unsupportable voltage constraints %u-%uuV\n",
930                                  min_uV, max_uV);
931                         return -EINVAL;
932                 }
933
934                 /* use regulator's subset of machine constraints */
935                 if (constraints->min_uV < min_uV) {
936                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
937                                  constraints->min_uV, min_uV);
938                         constraints->min_uV = min_uV;
939                 }
940                 if (constraints->max_uV > max_uV) {
941                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
942                                  constraints->max_uV, max_uV);
943                         constraints->max_uV = max_uV;
944                 }
945         }
946
947         return 0;
948 }
949
950 static int machine_constraints_current(struct regulator_dev *rdev,
951         struct regulation_constraints *constraints)
952 {
953         const struct regulator_ops *ops = rdev->desc->ops;
954         int ret;
955
956         if (!constraints->min_uA && !constraints->max_uA)
957                 return 0;
958
959         if (constraints->min_uA > constraints->max_uA) {
960                 rdev_err(rdev, "Invalid current constraints\n");
961                 return -EINVAL;
962         }
963
964         if (!ops->set_current_limit || !ops->get_current_limit) {
965                 rdev_warn(rdev, "Operation of current configuration missing\n");
966                 return 0;
967         }
968
969         /* Set regulator current in constraints range */
970         ret = ops->set_current_limit(rdev, constraints->min_uA,
971                         constraints->max_uA);
972         if (ret < 0) {
973                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
974                 return ret;
975         }
976
977         return 0;
978 }
979
980 static int _regulator_do_enable(struct regulator_dev *rdev);
981
982 /**
983  * set_machine_constraints - sets regulator constraints
984  * @rdev: regulator source
985  * @constraints: constraints to apply
986  *
987  * Allows platform initialisation code to define and constrain
988  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
989  * Constraints *must* be set by platform code in order for some
990  * regulator operations to proceed i.e. set_voltage, set_current_limit,
991  * set_mode.
992  */
993 static int set_machine_constraints(struct regulator_dev *rdev,
994         const struct regulation_constraints *constraints)
995 {
996         int ret = 0;
997         const struct regulator_ops *ops = rdev->desc->ops;
998
999         if (constraints)
1000                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1001                                             GFP_KERNEL);
1002         else
1003                 rdev->constraints = kzalloc(sizeof(*constraints),
1004                                             GFP_KERNEL);
1005         if (!rdev->constraints)
1006                 return -ENOMEM;
1007
1008         ret = machine_constraints_voltage(rdev, rdev->constraints);
1009         if (ret != 0)
1010                 goto out;
1011
1012         ret = machine_constraints_current(rdev, rdev->constraints);
1013         if (ret != 0)
1014                 goto out;
1015
1016         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1017                 ret = ops->set_input_current_limit(rdev,
1018                                                    rdev->constraints->ilim_uA);
1019                 if (ret < 0) {
1020                         rdev_err(rdev, "failed to set input limit\n");
1021                         goto out;
1022                 }
1023         }
1024
1025         /* do we need to setup our suspend state */
1026         if (rdev->constraints->initial_state) {
1027                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1028                 if (ret < 0) {
1029                         rdev_err(rdev, "failed to set suspend state\n");
1030                         goto out;
1031                 }
1032         }
1033
1034         if (rdev->constraints->initial_mode) {
1035                 if (!ops->set_mode) {
1036                         rdev_err(rdev, "no set_mode operation\n");
1037                         ret = -EINVAL;
1038                         goto out;
1039                 }
1040
1041                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1042                 if (ret < 0) {
1043                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1044                         goto out;
1045                 }
1046         }
1047
1048         /* If the constraints say the regulator should be on at this point
1049          * and we have control then make sure it is enabled.
1050          */
1051         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1052                 ret = _regulator_do_enable(rdev);
1053                 if (ret < 0 && ret != -EINVAL) {
1054                         rdev_err(rdev, "failed to enable\n");
1055                         goto out;
1056                 }
1057         }
1058
1059         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1060                 && ops->set_ramp_delay) {
1061                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1062                 if (ret < 0) {
1063                         rdev_err(rdev, "failed to set ramp_delay\n");
1064                         goto out;
1065                 }
1066         }
1067
1068         if (rdev->constraints->pull_down && ops->set_pull_down) {
1069                 ret = ops->set_pull_down(rdev);
1070                 if (ret < 0) {
1071                         rdev_err(rdev, "failed to set pull down\n");
1072                         goto out;
1073                 }
1074         }
1075
1076         if (rdev->constraints->soft_start && ops->set_soft_start) {
1077                 ret = ops->set_soft_start(rdev);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set soft start\n");
1080                         goto out;
1081                 }
1082         }
1083
1084         print_constraints(rdev);
1085         return 0;
1086 out:
1087         kfree(rdev->constraints);
1088         rdev->constraints = NULL;
1089         return ret;
1090 }
1091
1092 /**
1093  * set_supply - set regulator supply regulator
1094  * @rdev: regulator name
1095  * @supply_rdev: supply regulator name
1096  *
1097  * Called by platform initialisation code to set the supply regulator for this
1098  * regulator. This ensures that a regulators supply will also be enabled by the
1099  * core if it's child is enabled.
1100  */
1101 static int set_supply(struct regulator_dev *rdev,
1102                       struct regulator_dev *supply_rdev)
1103 {
1104         int err;
1105
1106         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1107
1108         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1109         if (rdev->supply == NULL) {
1110                 err = -ENOMEM;
1111                 return err;
1112         }
1113         supply_rdev->open_count++;
1114
1115         return 0;
1116 }
1117
1118 /**
1119  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1120  * @rdev:         regulator source
1121  * @consumer_dev_name: dev_name() string for device supply applies to
1122  * @supply:       symbolic name for supply
1123  *
1124  * Allows platform initialisation code to map physical regulator
1125  * sources to symbolic names for supplies for use by devices.  Devices
1126  * should use these symbolic names to request regulators, avoiding the
1127  * need to provide board-specific regulator names as platform data.
1128  */
1129 static int set_consumer_device_supply(struct regulator_dev *rdev,
1130                                       const char *consumer_dev_name,
1131                                       const char *supply)
1132 {
1133         struct regulator_map *node;
1134         int has_dev;
1135
1136         if (supply == NULL)
1137                 return -EINVAL;
1138
1139         if (consumer_dev_name != NULL)
1140                 has_dev = 1;
1141         else
1142                 has_dev = 0;
1143
1144         list_for_each_entry(node, &regulator_map_list, list) {
1145                 if (node->dev_name && consumer_dev_name) {
1146                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1147                                 continue;
1148                 } else if (node->dev_name || consumer_dev_name) {
1149                         continue;
1150                 }
1151
1152                 if (strcmp(node->supply, supply) != 0)
1153                         continue;
1154
1155                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1156                          consumer_dev_name,
1157                          dev_name(&node->regulator->dev),
1158                          node->regulator->desc->name,
1159                          supply,
1160                          dev_name(&rdev->dev), rdev_get_name(rdev));
1161                 return -EBUSY;
1162         }
1163
1164         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1165         if (node == NULL)
1166                 return -ENOMEM;
1167
1168         node->regulator = rdev;
1169         node->supply = supply;
1170
1171         if (has_dev) {
1172                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1173                 if (node->dev_name == NULL) {
1174                         kfree(node);
1175                         return -ENOMEM;
1176                 }
1177         }
1178
1179         list_add(&node->list, &regulator_map_list);
1180         return 0;
1181 }
1182
1183 static void unset_regulator_supplies(struct regulator_dev *rdev)
1184 {
1185         struct regulator_map *node, *n;
1186
1187         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1188                 if (rdev == node->regulator) {
1189                         list_del(&node->list);
1190                         kfree(node->dev_name);
1191                         kfree(node);
1192                 }
1193         }
1194 }
1195
1196 #define REG_STR_SIZE    64
1197
1198 static struct regulator *create_regulator(struct regulator_dev *rdev,
1199                                           struct device *dev,
1200                                           const char *supply_name)
1201 {
1202         struct regulator *regulator;
1203         char buf[REG_STR_SIZE];
1204         int err, size;
1205
1206         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1207         if (regulator == NULL)
1208                 return NULL;
1209
1210         mutex_lock(&rdev->mutex);
1211         regulator->rdev = rdev;
1212         list_add(&regulator->list, &rdev->consumer_list);
1213
1214         if (dev) {
1215                 regulator->dev = dev;
1216
1217                 /* Add a link to the device sysfs entry */
1218                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1219                                  dev->kobj.name, supply_name);
1220                 if (size >= REG_STR_SIZE)
1221                         goto overflow_err;
1222
1223                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1224                 if (regulator->supply_name == NULL)
1225                         goto overflow_err;
1226
1227                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1228                                         buf);
1229                 if (err) {
1230                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1231                                   dev->kobj.name, err);
1232                         /* non-fatal */
1233                 }
1234         } else {
1235                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1236                 if (regulator->supply_name == NULL)
1237                         goto overflow_err;
1238         }
1239
1240         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1241                                                 rdev->debugfs);
1242         if (!regulator->debugfs) {
1243                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1244         } else {
1245                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1246                                    &regulator->uA_load);
1247                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1248                                    &regulator->min_uV);
1249                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1250                                    &regulator->max_uV);
1251         }
1252
1253         /*
1254          * Check now if the regulator is an always on regulator - if
1255          * it is then we don't need to do nearly so much work for
1256          * enable/disable calls.
1257          */
1258         if (!_regulator_can_change_status(rdev) &&
1259             _regulator_is_enabled(rdev))
1260                 regulator->always_on = true;
1261
1262         mutex_unlock(&rdev->mutex);
1263         return regulator;
1264 overflow_err:
1265         list_del(&regulator->list);
1266         kfree(regulator);
1267         mutex_unlock(&rdev->mutex);
1268         return NULL;
1269 }
1270
1271 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1272 {
1273         if (rdev->constraints && rdev->constraints->enable_time)
1274                 return rdev->constraints->enable_time;
1275         if (!rdev->desc->ops->enable_time)
1276                 return rdev->desc->enable_time;
1277         return rdev->desc->ops->enable_time(rdev);
1278 }
1279
1280 static struct regulator_supply_alias *regulator_find_supply_alias(
1281                 struct device *dev, const char *supply)
1282 {
1283         struct regulator_supply_alias *map;
1284
1285         list_for_each_entry(map, &regulator_supply_alias_list, list)
1286                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1287                         return map;
1288
1289         return NULL;
1290 }
1291
1292 static void regulator_supply_alias(struct device **dev, const char **supply)
1293 {
1294         struct regulator_supply_alias *map;
1295
1296         map = regulator_find_supply_alias(*dev, *supply);
1297         if (map) {
1298                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1299                                 *supply, map->alias_supply,
1300                                 dev_name(map->alias_dev));
1301                 *dev = map->alias_dev;
1302                 *supply = map->alias_supply;
1303         }
1304 }
1305
1306 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1307                                                   const char *supply,
1308                                                   int *ret)
1309 {
1310         struct regulator_dev *r;
1311         struct device_node *node;
1312         struct regulator_map *map;
1313         const char *devname = NULL;
1314
1315         regulator_supply_alias(&dev, &supply);
1316
1317         /* first do a dt based lookup */
1318         if (dev && dev->of_node) {
1319                 node = of_get_regulator(dev, supply);
1320                 if (node) {
1321                         list_for_each_entry(r, &regulator_list, list)
1322                                 if (r->dev.parent &&
1323                                         node == r->dev.of_node)
1324                                         return r;
1325                         *ret = -EPROBE_DEFER;
1326                         return NULL;
1327                 } else {
1328                         /*
1329                          * If we couldn't even get the node then it's
1330                          * not just that the device didn't register
1331                          * yet, there's no node and we'll never
1332                          * succeed.
1333                          */
1334                         *ret = -ENODEV;
1335                 }
1336         }
1337
1338         /* if not found, try doing it non-dt way */
1339         if (dev)
1340                 devname = dev_name(dev);
1341
1342         list_for_each_entry(r, &regulator_list, list)
1343                 if (strcmp(rdev_get_name(r), supply) == 0)
1344                         return r;
1345
1346         list_for_each_entry(map, &regulator_map_list, list) {
1347                 /* If the mapping has a device set up it must match */
1348                 if (map->dev_name &&
1349                     (!devname || strcmp(map->dev_name, devname)))
1350                         continue;
1351
1352                 if (strcmp(map->supply, supply) == 0)
1353                         return map->regulator;
1354         }
1355
1356
1357         return NULL;
1358 }
1359
1360 static int regulator_resolve_supply(struct regulator_dev *rdev)
1361 {
1362         struct regulator_dev *r;
1363         struct device *dev = rdev->dev.parent;
1364         int ret;
1365
1366         /* No supply to resovle? */
1367         if (!rdev->supply_name)
1368                 return 0;
1369
1370         /* Supply already resolved? */
1371         if (rdev->supply)
1372                 return 0;
1373
1374         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1375         if (ret == -ENODEV) {
1376                 /*
1377                  * No supply was specified for this regulator and
1378                  * there will never be one.
1379                  */
1380                 return 0;
1381         }
1382
1383         if (!r) {
1384                 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1385                         rdev->supply_name, rdev->desc->name);
1386                 return -EPROBE_DEFER;
1387         }
1388
1389         /* Recursively resolve the supply of the supply */
1390         ret = regulator_resolve_supply(r);
1391         if (ret < 0)
1392                 return ret;
1393
1394         ret = set_supply(rdev, r);
1395         if (ret < 0)
1396                 return ret;
1397
1398         /* Cascade always-on state to supply */
1399         if (_regulator_is_enabled(rdev)) {
1400                 ret = regulator_enable(rdev->supply);
1401                 if (ret < 0)
1402                         return ret;
1403         }
1404
1405         return 0;
1406 }
1407
1408 /* Internal regulator request function */
1409 static struct regulator *_regulator_get(struct device *dev, const char *id,
1410                                         bool exclusive, bool allow_dummy)
1411 {
1412         struct regulator_dev *rdev;
1413         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1414         const char *devname = NULL;
1415         int ret;
1416
1417         if (id == NULL) {
1418                 pr_err("get() with no identifier\n");
1419                 return ERR_PTR(-EINVAL);
1420         }
1421
1422         if (dev)
1423                 devname = dev_name(dev);
1424
1425         if (have_full_constraints())
1426                 ret = -ENODEV;
1427         else
1428                 ret = -EPROBE_DEFER;
1429
1430         mutex_lock(&regulator_list_mutex);
1431
1432         rdev = regulator_dev_lookup(dev, id, &ret);
1433         if (rdev)
1434                 goto found;
1435
1436         regulator = ERR_PTR(ret);
1437
1438         /*
1439          * If we have return value from dev_lookup fail, we do not expect to
1440          * succeed, so, quit with appropriate error value
1441          */
1442         if (ret && ret != -ENODEV)
1443                 goto out;
1444
1445         if (!devname)
1446                 devname = "deviceless";
1447
1448         /*
1449          * Assume that a regulator is physically present and enabled
1450          * even if it isn't hooked up and just provide a dummy.
1451          */
1452         if (have_full_constraints() && allow_dummy) {
1453                 pr_warn("%s supply %s not found, using dummy regulator\n",
1454                         devname, id);
1455
1456                 rdev = dummy_regulator_rdev;
1457                 goto found;
1458         /* Don't log an error when called from regulator_get_optional() */
1459         } else if (!have_full_constraints() || exclusive) {
1460                 dev_warn(dev, "dummy supplies not allowed\n");
1461         }
1462
1463         mutex_unlock(&regulator_list_mutex);
1464         return regulator;
1465
1466 found:
1467         if (rdev->exclusive) {
1468                 regulator = ERR_PTR(-EPERM);
1469                 goto out;
1470         }
1471
1472         if (exclusive && rdev->open_count) {
1473                 regulator = ERR_PTR(-EBUSY);
1474                 goto out;
1475         }
1476
1477         ret = regulator_resolve_supply(rdev);
1478         if (ret < 0) {
1479                 regulator = ERR_PTR(ret);
1480                 goto out;
1481         }
1482
1483         if (!try_module_get(rdev->owner))
1484                 goto out;
1485
1486         regulator = create_regulator(rdev, dev, id);
1487         if (regulator == NULL) {
1488                 regulator = ERR_PTR(-ENOMEM);
1489                 module_put(rdev->owner);
1490                 goto out;
1491         }
1492
1493         rdev->open_count++;
1494         if (exclusive) {
1495                 rdev->exclusive = 1;
1496
1497                 ret = _regulator_is_enabled(rdev);
1498                 if (ret > 0)
1499                         rdev->use_count = 1;
1500                 else
1501                         rdev->use_count = 0;
1502         }
1503
1504 out:
1505         mutex_unlock(&regulator_list_mutex);
1506
1507         return regulator;
1508 }
1509
1510 /**
1511  * regulator_get - lookup and obtain a reference to a regulator.
1512  * @dev: device for regulator "consumer"
1513  * @id: Supply name or regulator ID.
1514  *
1515  * Returns a struct regulator corresponding to the regulator producer,
1516  * or IS_ERR() condition containing errno.
1517  *
1518  * Use of supply names configured via regulator_set_device_supply() is
1519  * strongly encouraged.  It is recommended that the supply name used
1520  * should match the name used for the supply and/or the relevant
1521  * device pins in the datasheet.
1522  */
1523 struct regulator *regulator_get(struct device *dev, const char *id)
1524 {
1525         return _regulator_get(dev, id, false, true);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_get);
1528
1529 /**
1530  * regulator_get_exclusive - obtain exclusive access to a regulator.
1531  * @dev: device for regulator "consumer"
1532  * @id: Supply name or regulator ID.
1533  *
1534  * Returns a struct regulator corresponding to the regulator producer,
1535  * or IS_ERR() condition containing errno.  Other consumers will be
1536  * unable to obtain this regulator while this reference is held and the
1537  * use count for the regulator will be initialised to reflect the current
1538  * state of the regulator.
1539  *
1540  * This is intended for use by consumers which cannot tolerate shared
1541  * use of the regulator such as those which need to force the
1542  * regulator off for correct operation of the hardware they are
1543  * controlling.
1544  *
1545  * Use of supply names configured via regulator_set_device_supply() is
1546  * strongly encouraged.  It is recommended that the supply name used
1547  * should match the name used for the supply and/or the relevant
1548  * device pins in the datasheet.
1549  */
1550 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1551 {
1552         return _regulator_get(dev, id, true, false);
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1555
1556 /**
1557  * regulator_get_optional - obtain optional access to a regulator.
1558  * @dev: device for regulator "consumer"
1559  * @id: Supply name or regulator ID.
1560  *
1561  * Returns a struct regulator corresponding to the regulator producer,
1562  * or IS_ERR() condition containing errno.
1563  *
1564  * This is intended for use by consumers for devices which can have
1565  * some supplies unconnected in normal use, such as some MMC devices.
1566  * It can allow the regulator core to provide stub supplies for other
1567  * supplies requested using normal regulator_get() calls without
1568  * disrupting the operation of drivers that can handle absent
1569  * supplies.
1570  *
1571  * Use of supply names configured via regulator_set_device_supply() is
1572  * strongly encouraged.  It is recommended that the supply name used
1573  * should match the name used for the supply and/or the relevant
1574  * device pins in the datasheet.
1575  */
1576 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1577 {
1578         return _regulator_get(dev, id, false, false);
1579 }
1580 EXPORT_SYMBOL_GPL(regulator_get_optional);
1581
1582 /* regulator_list_mutex lock held by regulator_put() */
1583 static void _regulator_put(struct regulator *regulator)
1584 {
1585         struct regulator_dev *rdev;
1586
1587         if (regulator == NULL || IS_ERR(regulator))
1588                 return;
1589
1590         rdev = regulator->rdev;
1591
1592         debugfs_remove_recursive(regulator->debugfs);
1593
1594         /* remove any sysfs entries */
1595         if (regulator->dev)
1596                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1597         mutex_lock(&rdev->mutex);
1598         kfree(regulator->supply_name);
1599         list_del(&regulator->list);
1600         kfree(regulator);
1601
1602         rdev->open_count--;
1603         rdev->exclusive = 0;
1604         mutex_unlock(&rdev->mutex);
1605
1606         module_put(rdev->owner);
1607 }
1608
1609 /**
1610  * regulator_put - "free" the regulator source
1611  * @regulator: regulator source
1612  *
1613  * Note: drivers must ensure that all regulator_enable calls made on this
1614  * regulator source are balanced by regulator_disable calls prior to calling
1615  * this function.
1616  */
1617 void regulator_put(struct regulator *regulator)
1618 {
1619         mutex_lock(&regulator_list_mutex);
1620         _regulator_put(regulator);
1621         mutex_unlock(&regulator_list_mutex);
1622 }
1623 EXPORT_SYMBOL_GPL(regulator_put);
1624
1625 /**
1626  * regulator_register_supply_alias - Provide device alias for supply lookup
1627  *
1628  * @dev: device that will be given as the regulator "consumer"
1629  * @id: Supply name or regulator ID
1630  * @alias_dev: device that should be used to lookup the supply
1631  * @alias_id: Supply name or regulator ID that should be used to lookup the
1632  * supply
1633  *
1634  * All lookups for id on dev will instead be conducted for alias_id on
1635  * alias_dev.
1636  */
1637 int regulator_register_supply_alias(struct device *dev, const char *id,
1638                                     struct device *alias_dev,
1639                                     const char *alias_id)
1640 {
1641         struct regulator_supply_alias *map;
1642
1643         map = regulator_find_supply_alias(dev, id);
1644         if (map)
1645                 return -EEXIST;
1646
1647         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1648         if (!map)
1649                 return -ENOMEM;
1650
1651         map->src_dev = dev;
1652         map->src_supply = id;
1653         map->alias_dev = alias_dev;
1654         map->alias_supply = alias_id;
1655
1656         list_add(&map->list, &regulator_supply_alias_list);
1657
1658         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1659                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1660
1661         return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1664
1665 /**
1666  * regulator_unregister_supply_alias - Remove device alias
1667  *
1668  * @dev: device that will be given as the regulator "consumer"
1669  * @id: Supply name or regulator ID
1670  *
1671  * Remove a lookup alias if one exists for id on dev.
1672  */
1673 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1674 {
1675         struct regulator_supply_alias *map;
1676
1677         map = regulator_find_supply_alias(dev, id);
1678         if (map) {
1679                 list_del(&map->list);
1680                 kfree(map);
1681         }
1682 }
1683 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1684
1685 /**
1686  * regulator_bulk_register_supply_alias - register multiple aliases
1687  *
1688  * @dev: device that will be given as the regulator "consumer"
1689  * @id: List of supply names or regulator IDs
1690  * @alias_dev: device that should be used to lookup the supply
1691  * @alias_id: List of supply names or regulator IDs that should be used to
1692  * lookup the supply
1693  * @num_id: Number of aliases to register
1694  *
1695  * @return 0 on success, an errno on failure.
1696  *
1697  * This helper function allows drivers to register several supply
1698  * aliases in one operation.  If any of the aliases cannot be
1699  * registered any aliases that were registered will be removed
1700  * before returning to the caller.
1701  */
1702 int regulator_bulk_register_supply_alias(struct device *dev,
1703                                          const char *const *id,
1704                                          struct device *alias_dev,
1705                                          const char *const *alias_id,
1706                                          int num_id)
1707 {
1708         int i;
1709         int ret;
1710
1711         for (i = 0; i < num_id; ++i) {
1712                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1713                                                       alias_id[i]);
1714                 if (ret < 0)
1715                         goto err;
1716         }
1717
1718         return 0;
1719
1720 err:
1721         dev_err(dev,
1722                 "Failed to create supply alias %s,%s -> %s,%s\n",
1723                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1724
1725         while (--i >= 0)
1726                 regulator_unregister_supply_alias(dev, id[i]);
1727
1728         return ret;
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1731
1732 /**
1733  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1734  *
1735  * @dev: device that will be given as the regulator "consumer"
1736  * @id: List of supply names or regulator IDs
1737  * @num_id: Number of aliases to unregister
1738  *
1739  * This helper function allows drivers to unregister several supply
1740  * aliases in one operation.
1741  */
1742 void regulator_bulk_unregister_supply_alias(struct device *dev,
1743                                             const char *const *id,
1744                                             int num_id)
1745 {
1746         int i;
1747
1748         for (i = 0; i < num_id; ++i)
1749                 regulator_unregister_supply_alias(dev, id[i]);
1750 }
1751 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1752
1753
1754 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1755 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1756                                 const struct regulator_config *config)
1757 {
1758         struct regulator_enable_gpio *pin;
1759         struct gpio_desc *gpiod;
1760         int ret;
1761
1762         gpiod = gpio_to_desc(config->ena_gpio);
1763
1764         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1765                 if (pin->gpiod == gpiod) {
1766                         rdev_dbg(rdev, "GPIO %d is already used\n",
1767                                 config->ena_gpio);
1768                         goto update_ena_gpio_to_rdev;
1769                 }
1770         }
1771
1772         ret = gpio_request_one(config->ena_gpio,
1773                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1774                                 rdev_get_name(rdev));
1775         if (ret)
1776                 return ret;
1777
1778         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1779         if (pin == NULL) {
1780                 gpio_free(config->ena_gpio);
1781                 return -ENOMEM;
1782         }
1783
1784         pin->gpiod = gpiod;
1785         pin->ena_gpio_invert = config->ena_gpio_invert;
1786         list_add(&pin->list, &regulator_ena_gpio_list);
1787
1788 update_ena_gpio_to_rdev:
1789         pin->request_count++;
1790         rdev->ena_pin = pin;
1791         return 0;
1792 }
1793
1794 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1795 {
1796         struct regulator_enable_gpio *pin, *n;
1797
1798         if (!rdev->ena_pin)
1799                 return;
1800
1801         /* Free the GPIO only in case of no use */
1802         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1803                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1804                         if (pin->request_count <= 1) {
1805                                 pin->request_count = 0;
1806                                 gpiod_put(pin->gpiod);
1807                                 list_del(&pin->list);
1808                                 kfree(pin);
1809                                 rdev->ena_pin = NULL;
1810                                 return;
1811                         } else {
1812                                 pin->request_count--;
1813                         }
1814                 }
1815         }
1816 }
1817
1818 /**
1819  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1820  * @rdev: regulator_dev structure
1821  * @enable: enable GPIO at initial use?
1822  *
1823  * GPIO is enabled in case of initial use. (enable_count is 0)
1824  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1825  */
1826 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1827 {
1828         struct regulator_enable_gpio *pin = rdev->ena_pin;
1829
1830         if (!pin)
1831                 return -EINVAL;
1832
1833         if (enable) {
1834                 /* Enable GPIO at initial use */
1835                 if (pin->enable_count == 0)
1836                         gpiod_set_value_cansleep(pin->gpiod,
1837                                                  !pin->ena_gpio_invert);
1838
1839                 pin->enable_count++;
1840         } else {
1841                 if (pin->enable_count > 1) {
1842                         pin->enable_count--;
1843                         return 0;
1844                 }
1845
1846                 /* Disable GPIO if not used */
1847                 if (pin->enable_count <= 1) {
1848                         gpiod_set_value_cansleep(pin->gpiod,
1849                                                  pin->ena_gpio_invert);
1850                         pin->enable_count = 0;
1851                 }
1852         }
1853
1854         return 0;
1855 }
1856
1857 /**
1858  * _regulator_enable_delay - a delay helper function
1859  * @delay: time to delay in microseconds
1860  *
1861  * Delay for the requested amount of time as per the guidelines in:
1862  *
1863  *     Documentation/timers/timers-howto.txt
1864  *
1865  * The assumption here is that regulators will never be enabled in
1866  * atomic context and therefore sleeping functions can be used.
1867  */
1868 static void _regulator_enable_delay(unsigned int delay)
1869 {
1870         unsigned int ms = delay / 1000;
1871         unsigned int us = delay % 1000;
1872
1873         if (ms > 0) {
1874                 /*
1875                  * For small enough values, handle super-millisecond
1876                  * delays in the usleep_range() call below.
1877                  */
1878                 if (ms < 20)
1879                         us += ms * 1000;
1880                 else
1881                         msleep(ms);
1882         }
1883
1884         /*
1885          * Give the scheduler some room to coalesce with any other
1886          * wakeup sources. For delays shorter than 10 us, don't even
1887          * bother setting up high-resolution timers and just busy-
1888          * loop.
1889          */
1890         if (us >= 10)
1891                 usleep_range(us, us + 100);
1892         else
1893                 udelay(us);
1894 }
1895
1896 static int _regulator_do_enable(struct regulator_dev *rdev)
1897 {
1898         int ret, delay;
1899
1900         /* Query before enabling in case configuration dependent.  */
1901         ret = _regulator_get_enable_time(rdev);
1902         if (ret >= 0) {
1903                 delay = ret;
1904         } else {
1905                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1906                 delay = 0;
1907         }
1908
1909         trace_regulator_enable(rdev_get_name(rdev));
1910
1911         if (rdev->desc->off_on_delay) {
1912                 /* if needed, keep a distance of off_on_delay from last time
1913                  * this regulator was disabled.
1914                  */
1915                 unsigned long start_jiffy = jiffies;
1916                 unsigned long intended, max_delay, remaining;
1917
1918                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1919                 intended = rdev->last_off_jiffy + max_delay;
1920
1921                 if (time_before(start_jiffy, intended)) {
1922                         /* calc remaining jiffies to deal with one-time
1923                          * timer wrapping.
1924                          * in case of multiple timer wrapping, either it can be
1925                          * detected by out-of-range remaining, or it cannot be
1926                          * detected and we gets a panelty of
1927                          * _regulator_enable_delay().
1928                          */
1929                         remaining = intended - start_jiffy;
1930                         if (remaining <= max_delay)
1931                                 _regulator_enable_delay(
1932                                                 jiffies_to_usecs(remaining));
1933                 }
1934         }
1935
1936         if (rdev->ena_pin) {
1937                 if (!rdev->ena_gpio_state) {
1938                         ret = regulator_ena_gpio_ctrl(rdev, true);
1939                         if (ret < 0)
1940                                 return ret;
1941                         rdev->ena_gpio_state = 1;
1942                 }
1943         } else if (rdev->desc->ops->enable) {
1944                 ret = rdev->desc->ops->enable(rdev);
1945                 if (ret < 0)
1946                         return ret;
1947         } else {
1948                 return -EINVAL;
1949         }
1950
1951         /* Allow the regulator to ramp; it would be useful to extend
1952          * this for bulk operations so that the regulators can ramp
1953          * together.  */
1954         trace_regulator_enable_delay(rdev_get_name(rdev));
1955
1956         _regulator_enable_delay(delay);
1957
1958         trace_regulator_enable_complete(rdev_get_name(rdev));
1959
1960         return 0;
1961 }
1962
1963 /* locks held by regulator_enable() */
1964 static int _regulator_enable(struct regulator_dev *rdev)
1965 {
1966         int ret;
1967
1968         /* check voltage and requested load before enabling */
1969         if (rdev->constraints &&
1970             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1971                 drms_uA_update(rdev);
1972
1973         if (rdev->use_count == 0) {
1974                 /* The regulator may on if it's not switchable or left on */
1975                 ret = _regulator_is_enabled(rdev);
1976                 if (ret == -EINVAL || ret == 0) {
1977                         if (!_regulator_can_change_status(rdev))
1978                                 return -EPERM;
1979
1980                         ret = _regulator_do_enable(rdev);
1981                         if (ret < 0)
1982                                 return ret;
1983
1984                 } else if (ret < 0) {
1985                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1986                         return ret;
1987                 }
1988                 /* Fallthrough on positive return values - already enabled */
1989         }
1990
1991         rdev->use_count++;
1992
1993         return 0;
1994 }
1995
1996 /**
1997  * regulator_enable - enable regulator output
1998  * @regulator: regulator source
1999  *
2000  * Request that the regulator be enabled with the regulator output at
2001  * the predefined voltage or current value.  Calls to regulator_enable()
2002  * must be balanced with calls to regulator_disable().
2003  *
2004  * NOTE: the output value can be set by other drivers, boot loader or may be
2005  * hardwired in the regulator.
2006  */
2007 int regulator_enable(struct regulator *regulator)
2008 {
2009         struct regulator_dev *rdev = regulator->rdev;
2010         int ret = 0;
2011
2012         if (regulator->always_on)
2013                 return 0;
2014
2015         if (rdev->supply) {
2016                 ret = regulator_enable(rdev->supply);
2017                 if (ret != 0)
2018                         return ret;
2019         }
2020
2021         mutex_lock(&rdev->mutex);
2022         ret = _regulator_enable(rdev);
2023         mutex_unlock(&rdev->mutex);
2024
2025         if (ret != 0 && rdev->supply)
2026                 regulator_disable(rdev->supply);
2027
2028         return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(regulator_enable);
2031
2032 static int _regulator_do_disable(struct regulator_dev *rdev)
2033 {
2034         int ret;
2035
2036         trace_regulator_disable(rdev_get_name(rdev));
2037
2038         if (rdev->ena_pin) {
2039                 if (rdev->ena_gpio_state) {
2040                         ret = regulator_ena_gpio_ctrl(rdev, false);
2041                         if (ret < 0)
2042                                 return ret;
2043                         rdev->ena_gpio_state = 0;
2044                 }
2045
2046         } else if (rdev->desc->ops->disable) {
2047                 ret = rdev->desc->ops->disable(rdev);
2048                 if (ret != 0)
2049                         return ret;
2050         }
2051
2052         /* cares about last_off_jiffy only if off_on_delay is required by
2053          * device.
2054          */
2055         if (rdev->desc->off_on_delay)
2056                 rdev->last_off_jiffy = jiffies;
2057
2058         trace_regulator_disable_complete(rdev_get_name(rdev));
2059
2060         return 0;
2061 }
2062
2063 /* locks held by regulator_disable() */
2064 static int _regulator_disable(struct regulator_dev *rdev)
2065 {
2066         int ret = 0;
2067
2068         if (WARN(rdev->use_count <= 0,
2069                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2070                 return -EIO;
2071
2072         /* are we the last user and permitted to disable ? */
2073         if (rdev->use_count == 1 &&
2074             (rdev->constraints && !rdev->constraints->always_on)) {
2075
2076                 /* we are last user */
2077                 if (_regulator_can_change_status(rdev)) {
2078                         ret = _notifier_call_chain(rdev,
2079                                                    REGULATOR_EVENT_PRE_DISABLE,
2080                                                    NULL);
2081                         if (ret & NOTIFY_STOP_MASK)
2082                                 return -EINVAL;
2083
2084                         ret = _regulator_do_disable(rdev);
2085                         if (ret < 0) {
2086                                 rdev_err(rdev, "failed to disable\n");
2087                                 _notifier_call_chain(rdev,
2088                                                 REGULATOR_EVENT_ABORT_DISABLE,
2089                                                 NULL);
2090                                 return ret;
2091                         }
2092                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2093                                         NULL);
2094                 }
2095
2096                 rdev->use_count = 0;
2097         } else if (rdev->use_count > 1) {
2098
2099                 if (rdev->constraints &&
2100                         (rdev->constraints->valid_ops_mask &
2101                         REGULATOR_CHANGE_DRMS))
2102                         drms_uA_update(rdev);
2103
2104                 rdev->use_count--;
2105         }
2106
2107         return ret;
2108 }
2109
2110 /**
2111  * regulator_disable - disable regulator output
2112  * @regulator: regulator source
2113  *
2114  * Disable the regulator output voltage or current.  Calls to
2115  * regulator_enable() must be balanced with calls to
2116  * regulator_disable().
2117  *
2118  * NOTE: this will only disable the regulator output if no other consumer
2119  * devices have it enabled, the regulator device supports disabling and
2120  * machine constraints permit this operation.
2121  */
2122 int regulator_disable(struct regulator *regulator)
2123 {
2124         struct regulator_dev *rdev = regulator->rdev;
2125         int ret = 0;
2126
2127         if (regulator->always_on)
2128                 return 0;
2129
2130         mutex_lock(&rdev->mutex);
2131         ret = _regulator_disable(rdev);
2132         mutex_unlock(&rdev->mutex);
2133
2134         if (ret == 0 && rdev->supply)
2135                 regulator_disable(rdev->supply);
2136
2137         return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(regulator_disable);
2140
2141 /* locks held by regulator_force_disable() */
2142 static int _regulator_force_disable(struct regulator_dev *rdev)
2143 {
2144         int ret = 0;
2145
2146         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2147                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2148         if (ret & NOTIFY_STOP_MASK)
2149                 return -EINVAL;
2150
2151         ret = _regulator_do_disable(rdev);
2152         if (ret < 0) {
2153                 rdev_err(rdev, "failed to force disable\n");
2154                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2155                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2156                 return ret;
2157         }
2158
2159         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2160                         REGULATOR_EVENT_DISABLE, NULL);
2161
2162         return 0;
2163 }
2164
2165 /**
2166  * regulator_force_disable - force disable regulator output
2167  * @regulator: regulator source
2168  *
2169  * Forcibly disable the regulator output voltage or current.
2170  * NOTE: this *will* disable the regulator output even if other consumer
2171  * devices have it enabled. This should be used for situations when device
2172  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2173  */
2174 int regulator_force_disable(struct regulator *regulator)
2175 {
2176         struct regulator_dev *rdev = regulator->rdev;
2177         int ret;
2178
2179         mutex_lock(&rdev->mutex);
2180         regulator->uA_load = 0;
2181         ret = _regulator_force_disable(regulator->rdev);
2182         mutex_unlock(&rdev->mutex);
2183
2184         if (rdev->supply)
2185                 while (rdev->open_count--)
2186                         regulator_disable(rdev->supply);
2187
2188         return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_force_disable);
2191
2192 static void regulator_disable_work(struct work_struct *work)
2193 {
2194         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2195                                                   disable_work.work);
2196         int count, i, ret;
2197
2198         mutex_lock(&rdev->mutex);
2199
2200         BUG_ON(!rdev->deferred_disables);
2201
2202         count = rdev->deferred_disables;
2203         rdev->deferred_disables = 0;
2204
2205         for (i = 0; i < count; i++) {
2206                 ret = _regulator_disable(rdev);
2207                 if (ret != 0)
2208                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2209         }
2210
2211         mutex_unlock(&rdev->mutex);
2212
2213         if (rdev->supply) {
2214                 for (i = 0; i < count; i++) {
2215                         ret = regulator_disable(rdev->supply);
2216                         if (ret != 0) {
2217                                 rdev_err(rdev,
2218                                          "Supply disable failed: %d\n", ret);
2219                         }
2220                 }
2221         }
2222 }
2223
2224 /**
2225  * regulator_disable_deferred - disable regulator output with delay
2226  * @regulator: regulator source
2227  * @ms: miliseconds until the regulator is disabled
2228  *
2229  * Execute regulator_disable() on the regulator after a delay.  This
2230  * is intended for use with devices that require some time to quiesce.
2231  *
2232  * NOTE: this will only disable the regulator output if no other consumer
2233  * devices have it enabled, the regulator device supports disabling and
2234  * machine constraints permit this operation.
2235  */
2236 int regulator_disable_deferred(struct regulator *regulator, int ms)
2237 {
2238         struct regulator_dev *rdev = regulator->rdev;
2239         int ret;
2240
2241         if (regulator->always_on)
2242                 return 0;
2243
2244         if (!ms)
2245                 return regulator_disable(regulator);
2246
2247         mutex_lock(&rdev->mutex);
2248         rdev->deferred_disables++;
2249         mutex_unlock(&rdev->mutex);
2250
2251         ret = queue_delayed_work(system_power_efficient_wq,
2252                                  &rdev->disable_work,
2253                                  msecs_to_jiffies(ms));
2254         if (ret < 0)
2255                 return ret;
2256         else
2257                 return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2260
2261 static int _regulator_is_enabled(struct regulator_dev *rdev)
2262 {
2263         /* A GPIO control always takes precedence */
2264         if (rdev->ena_pin)
2265                 return rdev->ena_gpio_state;
2266
2267         /* If we don't know then assume that the regulator is always on */
2268         if (!rdev->desc->ops->is_enabled)
2269                 return 1;
2270
2271         return rdev->desc->ops->is_enabled(rdev);
2272 }
2273
2274 /**
2275  * regulator_is_enabled - is the regulator output enabled
2276  * @regulator: regulator source
2277  *
2278  * Returns positive if the regulator driver backing the source/client
2279  * has requested that the device be enabled, zero if it hasn't, else a
2280  * negative errno code.
2281  *
2282  * Note that the device backing this regulator handle can have multiple
2283  * users, so it might be enabled even if regulator_enable() was never
2284  * called for this particular source.
2285  */
2286 int regulator_is_enabled(struct regulator *regulator)
2287 {
2288         int ret;
2289
2290         if (regulator->always_on)
2291                 return 1;
2292
2293         mutex_lock(&regulator->rdev->mutex);
2294         ret = _regulator_is_enabled(regulator->rdev);
2295         mutex_unlock(&regulator->rdev->mutex);
2296
2297         return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2300
2301 /**
2302  * regulator_can_change_voltage - check if regulator can change voltage
2303  * @regulator: regulator source
2304  *
2305  * Returns positive if the regulator driver backing the source/client
2306  * can change its voltage, false otherwise. Useful for detecting fixed
2307  * or dummy regulators and disabling voltage change logic in the client
2308  * driver.
2309  */
2310 int regulator_can_change_voltage(struct regulator *regulator)
2311 {
2312         struct regulator_dev    *rdev = regulator->rdev;
2313
2314         if (rdev->constraints &&
2315             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2316                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2317                         return 1;
2318
2319                 if (rdev->desc->continuous_voltage_range &&
2320                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2321                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2322                         return 1;
2323         }
2324
2325         return 0;
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2328
2329 /**
2330  * regulator_count_voltages - count regulator_list_voltage() selectors
2331  * @regulator: regulator source
2332  *
2333  * Returns number of selectors, or negative errno.  Selectors are
2334  * numbered starting at zero, and typically correspond to bitfields
2335  * in hardware registers.
2336  */
2337 int regulator_count_voltages(struct regulator *regulator)
2338 {
2339         struct regulator_dev    *rdev = regulator->rdev;
2340
2341         if (rdev->desc->n_voltages)
2342                 return rdev->desc->n_voltages;
2343
2344         if (!rdev->supply)
2345                 return -EINVAL;
2346
2347         return regulator_count_voltages(rdev->supply);
2348 }
2349 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2350
2351 /**
2352  * regulator_list_voltage - enumerate supported voltages
2353  * @regulator: regulator source
2354  * @selector: identify voltage to list
2355  * Context: can sleep
2356  *
2357  * Returns a voltage that can be passed to @regulator_set_voltage(),
2358  * zero if this selector code can't be used on this system, or a
2359  * negative errno.
2360  */
2361 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2362 {
2363         struct regulator_dev *rdev = regulator->rdev;
2364         const struct regulator_ops *ops = rdev->desc->ops;
2365         int ret;
2366
2367         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2368                 return rdev->desc->fixed_uV;
2369
2370         if (ops->list_voltage) {
2371                 if (selector >= rdev->desc->n_voltages)
2372                         return -EINVAL;
2373                 mutex_lock(&rdev->mutex);
2374                 ret = ops->list_voltage(rdev, selector);
2375                 mutex_unlock(&rdev->mutex);
2376         } else if (rdev->supply) {
2377                 ret = regulator_list_voltage(rdev->supply, selector);
2378         } else {
2379                 return -EINVAL;
2380         }
2381
2382         if (ret > 0) {
2383                 if (ret < rdev->constraints->min_uV)
2384                         ret = 0;
2385                 else if (ret > rdev->constraints->max_uV)
2386                         ret = 0;
2387         }
2388
2389         return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2392
2393 /**
2394  * regulator_get_regmap - get the regulator's register map
2395  * @regulator: regulator source
2396  *
2397  * Returns the register map for the given regulator, or an ERR_PTR value
2398  * if the regulator doesn't use regmap.
2399  */
2400 struct regmap *regulator_get_regmap(struct regulator *regulator)
2401 {
2402         struct regmap *map = regulator->rdev->regmap;
2403
2404         return map ? map : ERR_PTR(-EOPNOTSUPP);
2405 }
2406
2407 /**
2408  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2409  * @regulator: regulator source
2410  * @vsel_reg: voltage selector register, output parameter
2411  * @vsel_mask: mask for voltage selector bitfield, output parameter
2412  *
2413  * Returns the hardware register offset and bitmask used for setting the
2414  * regulator voltage. This might be useful when configuring voltage-scaling
2415  * hardware or firmware that can make I2C requests behind the kernel's back,
2416  * for example.
2417  *
2418  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2419  * and 0 is returned, otherwise a negative errno is returned.
2420  */
2421 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2422                                          unsigned *vsel_reg,
2423                                          unsigned *vsel_mask)
2424 {
2425         struct regulator_dev *rdev = regulator->rdev;
2426         const struct regulator_ops *ops = rdev->desc->ops;
2427
2428         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2429                 return -EOPNOTSUPP;
2430
2431          *vsel_reg = rdev->desc->vsel_reg;
2432          *vsel_mask = rdev->desc->vsel_mask;
2433
2434          return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2437
2438 /**
2439  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2440  * @regulator: regulator source
2441  * @selector: identify voltage to list
2442  *
2443  * Converts the selector to a hardware-specific voltage selector that can be
2444  * directly written to the regulator registers. The address of the voltage
2445  * register can be determined by calling @regulator_get_hardware_vsel_register.
2446  *
2447  * On error a negative errno is returned.
2448  */
2449 int regulator_list_hardware_vsel(struct regulator *regulator,
2450                                  unsigned selector)
2451 {
2452         struct regulator_dev *rdev = regulator->rdev;
2453         const struct regulator_ops *ops = rdev->desc->ops;
2454
2455         if (selector >= rdev->desc->n_voltages)
2456                 return -EINVAL;
2457         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2458                 return -EOPNOTSUPP;
2459
2460         return selector;
2461 }
2462 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2463
2464 /**
2465  * regulator_get_linear_step - return the voltage step size between VSEL values
2466  * @regulator: regulator source
2467  *
2468  * Returns the voltage step size between VSEL values for linear
2469  * regulators, or return 0 if the regulator isn't a linear regulator.
2470  */
2471 unsigned int regulator_get_linear_step(struct regulator *regulator)
2472 {
2473         struct regulator_dev *rdev = regulator->rdev;
2474
2475         return rdev->desc->uV_step;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2478
2479 /**
2480  * regulator_is_supported_voltage - check if a voltage range can be supported
2481  *
2482  * @regulator: Regulator to check.
2483  * @min_uV: Minimum required voltage in uV.
2484  * @max_uV: Maximum required voltage in uV.
2485  *
2486  * Returns a boolean or a negative error code.
2487  */
2488 int regulator_is_supported_voltage(struct regulator *regulator,
2489                                    int min_uV, int max_uV)
2490 {
2491         struct regulator_dev *rdev = regulator->rdev;
2492         int i, voltages, ret;
2493
2494         /* If we can't change voltage check the current voltage */
2495         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2496                 ret = regulator_get_voltage(regulator);
2497                 if (ret >= 0)
2498                         return min_uV <= ret && ret <= max_uV;
2499                 else
2500                         return ret;
2501         }
2502
2503         /* Any voltage within constrains range is fine? */
2504         if (rdev->desc->continuous_voltage_range)
2505                 return min_uV >= rdev->constraints->min_uV &&
2506                                 max_uV <= rdev->constraints->max_uV;
2507
2508         ret = regulator_count_voltages(regulator);
2509         if (ret < 0)
2510                 return ret;
2511         voltages = ret;
2512
2513         for (i = 0; i < voltages; i++) {
2514                 ret = regulator_list_voltage(regulator, i);
2515
2516                 if (ret >= min_uV && ret <= max_uV)
2517                         return 1;
2518         }
2519
2520         return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2523
2524 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2525                                        int min_uV, int max_uV,
2526                                        unsigned *selector)
2527 {
2528         struct pre_voltage_change_data data;
2529         int ret;
2530
2531         data.old_uV = _regulator_get_voltage(rdev);
2532         data.min_uV = min_uV;
2533         data.max_uV = max_uV;
2534         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2535                                    &data);
2536         if (ret & NOTIFY_STOP_MASK)
2537                 return -EINVAL;
2538
2539         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2540         if (ret >= 0)
2541                 return ret;
2542
2543         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2544                              (void *)data.old_uV);
2545
2546         return ret;
2547 }
2548
2549 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2550                                            int uV, unsigned selector)
2551 {
2552         struct pre_voltage_change_data data;
2553         int ret;
2554
2555         data.old_uV = _regulator_get_voltage(rdev);
2556         data.min_uV = uV;
2557         data.max_uV = uV;
2558         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2559                                    &data);
2560         if (ret & NOTIFY_STOP_MASK)
2561                 return -EINVAL;
2562
2563         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2564         if (ret >= 0)
2565                 return ret;
2566
2567         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2568                              (void *)data.old_uV);
2569
2570         return ret;
2571 }
2572
2573 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2574                                      int min_uV, int max_uV)
2575 {
2576         int ret;
2577         int delay = 0;
2578         int best_val = 0;
2579         unsigned int selector;
2580         int old_selector = -1;
2581
2582         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2583
2584         min_uV += rdev->constraints->uV_offset;
2585         max_uV += rdev->constraints->uV_offset;
2586
2587         /*
2588          * If we can't obtain the old selector there is not enough
2589          * info to call set_voltage_time_sel().
2590          */
2591         if (_regulator_is_enabled(rdev) &&
2592             rdev->desc->ops->set_voltage_time_sel &&
2593             rdev->desc->ops->get_voltage_sel) {
2594                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2595                 if (old_selector < 0)
2596                         return old_selector;
2597         }
2598
2599         if (rdev->desc->ops->set_voltage) {
2600                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2601                                                   &selector);
2602
2603                 if (ret >= 0) {
2604                         if (rdev->desc->ops->list_voltage)
2605                                 best_val = rdev->desc->ops->list_voltage(rdev,
2606                                                                          selector);
2607                         else
2608                                 best_val = _regulator_get_voltage(rdev);
2609                 }
2610
2611         } else if (rdev->desc->ops->set_voltage_sel) {
2612                 if (rdev->desc->ops->map_voltage) {
2613                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2614                                                            max_uV);
2615                 } else {
2616                         if (rdev->desc->ops->list_voltage ==
2617                             regulator_list_voltage_linear)
2618                                 ret = regulator_map_voltage_linear(rdev,
2619                                                                 min_uV, max_uV);
2620                         else if (rdev->desc->ops->list_voltage ==
2621                                  regulator_list_voltage_linear_range)
2622                                 ret = regulator_map_voltage_linear_range(rdev,
2623                                                                 min_uV, max_uV);
2624                         else
2625                                 ret = regulator_map_voltage_iterate(rdev,
2626                                                                 min_uV, max_uV);
2627                 }
2628
2629                 if (ret >= 0) {
2630                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2631                         if (min_uV <= best_val && max_uV >= best_val) {
2632                                 selector = ret;
2633                                 if (old_selector == selector)
2634                                         ret = 0;
2635                                 else
2636                                         ret = _regulator_call_set_voltage_sel(
2637                                                 rdev, best_val, selector);
2638                         } else {
2639                                 ret = -EINVAL;
2640                         }
2641                 }
2642         } else {
2643                 ret = -EINVAL;
2644         }
2645
2646         /* Call set_voltage_time_sel if successfully obtained old_selector */
2647         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2648                 && old_selector != selector) {
2649
2650                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2651                                                 old_selector, selector);
2652                 if (delay < 0) {
2653                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2654                                   delay);
2655                         delay = 0;
2656                 }
2657
2658                 /* Insert any necessary delays */
2659                 if (delay >= 1000) {
2660                         mdelay(delay / 1000);
2661                         udelay(delay % 1000);
2662                 } else if (delay) {
2663                         udelay(delay);
2664                 }
2665         }
2666
2667         if (ret == 0 && best_val >= 0) {
2668                 unsigned long data = best_val;
2669
2670                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2671                                      (void *)data);
2672         }
2673
2674         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2675
2676         return ret;
2677 }
2678
2679 /**
2680  * regulator_set_voltage - set regulator output voltage
2681  * @regulator: regulator source
2682  * @min_uV: Minimum required voltage in uV
2683  * @max_uV: Maximum acceptable voltage in uV
2684  *
2685  * Sets a voltage regulator to the desired output voltage. This can be set
2686  * during any regulator state. IOW, regulator can be disabled or enabled.
2687  *
2688  * If the regulator is enabled then the voltage will change to the new value
2689  * immediately otherwise if the regulator is disabled the regulator will
2690  * output at the new voltage when enabled.
2691  *
2692  * NOTE: If the regulator is shared between several devices then the lowest
2693  * request voltage that meets the system constraints will be used.
2694  * Regulator system constraints must be set for this regulator before
2695  * calling this function otherwise this call will fail.
2696  */
2697 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2698 {
2699         struct regulator_dev *rdev = regulator->rdev;
2700         int ret = 0;
2701         int old_min_uV, old_max_uV;
2702         int current_uV;
2703
2704         mutex_lock(&rdev->mutex);
2705
2706         /* If we're setting the same range as last time the change
2707          * should be a noop (some cpufreq implementations use the same
2708          * voltage for multiple frequencies, for example).
2709          */
2710         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2711                 goto out;
2712
2713         /* If we're trying to set a range that overlaps the current voltage,
2714          * return succesfully even though the regulator does not support
2715          * changing the voltage.
2716          */
2717         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2718                 current_uV = _regulator_get_voltage(rdev);
2719                 if (min_uV <= current_uV && current_uV <= max_uV) {
2720                         regulator->min_uV = min_uV;
2721                         regulator->max_uV = max_uV;
2722                         goto out;
2723                 }
2724         }
2725
2726         /* sanity check */
2727         if (!rdev->desc->ops->set_voltage &&
2728             !rdev->desc->ops->set_voltage_sel) {
2729                 ret = -EINVAL;
2730                 goto out;
2731         }
2732
2733         /* constraints check */
2734         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2735         if (ret < 0)
2736                 goto out;
2737
2738         /* restore original values in case of error */
2739         old_min_uV = regulator->min_uV;
2740         old_max_uV = regulator->max_uV;
2741         regulator->min_uV = min_uV;
2742         regulator->max_uV = max_uV;
2743
2744         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2745         if (ret < 0)
2746                 goto out2;
2747
2748         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2749         if (ret < 0)
2750                 goto out2;
2751
2752 out:
2753         mutex_unlock(&rdev->mutex);
2754         return ret;
2755 out2:
2756         regulator->min_uV = old_min_uV;
2757         regulator->max_uV = old_max_uV;
2758         mutex_unlock(&rdev->mutex);
2759         return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2762
2763 /**
2764  * regulator_set_voltage_time - get raise/fall time
2765  * @regulator: regulator source
2766  * @old_uV: starting voltage in microvolts
2767  * @new_uV: target voltage in microvolts
2768  *
2769  * Provided with the starting and ending voltage, this function attempts to
2770  * calculate the time in microseconds required to rise or fall to this new
2771  * voltage.
2772  */
2773 int regulator_set_voltage_time(struct regulator *regulator,
2774                                int old_uV, int new_uV)
2775 {
2776         struct regulator_dev *rdev = regulator->rdev;
2777         const struct regulator_ops *ops = rdev->desc->ops;
2778         int old_sel = -1;
2779         int new_sel = -1;
2780         int voltage;
2781         int i;
2782
2783         /* Currently requires operations to do this */
2784         if (!ops->list_voltage || !ops->set_voltage_time_sel
2785             || !rdev->desc->n_voltages)
2786                 return -EINVAL;
2787
2788         for (i = 0; i < rdev->desc->n_voltages; i++) {
2789                 /* We only look for exact voltage matches here */
2790                 voltage = regulator_list_voltage(regulator, i);
2791                 if (voltage < 0)
2792                         return -EINVAL;
2793                 if (voltage == 0)
2794                         continue;
2795                 if (voltage == old_uV)
2796                         old_sel = i;
2797                 if (voltage == new_uV)
2798                         new_sel = i;
2799         }
2800
2801         if (old_sel < 0 || new_sel < 0)
2802                 return -EINVAL;
2803
2804         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2807
2808 /**
2809  * regulator_set_voltage_time_sel - get raise/fall time
2810  * @rdev: regulator source device
2811  * @old_selector: selector for starting voltage
2812  * @new_selector: selector for target voltage
2813  *
2814  * Provided with the starting and target voltage selectors, this function
2815  * returns time in microseconds required to rise or fall to this new voltage
2816  *
2817  * Drivers providing ramp_delay in regulation_constraints can use this as their
2818  * set_voltage_time_sel() operation.
2819  */
2820 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2821                                    unsigned int old_selector,
2822                                    unsigned int new_selector)
2823 {
2824         unsigned int ramp_delay = 0;
2825         int old_volt, new_volt;
2826
2827         if (rdev->constraints->ramp_delay)
2828                 ramp_delay = rdev->constraints->ramp_delay;
2829         else if (rdev->desc->ramp_delay)
2830                 ramp_delay = rdev->desc->ramp_delay;
2831
2832         if (ramp_delay == 0) {
2833                 rdev_warn(rdev, "ramp_delay not set\n");
2834                 return 0;
2835         }
2836
2837         /* sanity check */
2838         if (!rdev->desc->ops->list_voltage)
2839                 return -EINVAL;
2840
2841         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2842         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2843
2844         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2845 }
2846 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2847
2848 /**
2849  * regulator_sync_voltage - re-apply last regulator output voltage
2850  * @regulator: regulator source
2851  *
2852  * Re-apply the last configured voltage.  This is intended to be used
2853  * where some external control source the consumer is cooperating with
2854  * has caused the configured voltage to change.
2855  */
2856 int regulator_sync_voltage(struct regulator *regulator)
2857 {
2858         struct regulator_dev *rdev = regulator->rdev;
2859         int ret, min_uV, max_uV;
2860
2861         mutex_lock(&rdev->mutex);
2862
2863         if (!rdev->desc->ops->set_voltage &&
2864             !rdev->desc->ops->set_voltage_sel) {
2865                 ret = -EINVAL;
2866                 goto out;
2867         }
2868
2869         /* This is only going to work if we've had a voltage configured. */
2870         if (!regulator->min_uV && !regulator->max_uV) {
2871                 ret = -EINVAL;
2872                 goto out;
2873         }
2874
2875         min_uV = regulator->min_uV;
2876         max_uV = regulator->max_uV;
2877
2878         /* This should be a paranoia check... */
2879         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2880         if (ret < 0)
2881                 goto out;
2882
2883         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2884         if (ret < 0)
2885                 goto out;
2886
2887         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2888
2889 out:
2890         mutex_unlock(&rdev->mutex);
2891         return ret;
2892 }
2893 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2894
2895 static int _regulator_get_voltage(struct regulator_dev *rdev)
2896 {
2897         int sel, ret;
2898
2899         if (rdev->desc->ops->get_voltage_sel) {
2900                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2901                 if (sel < 0)
2902                         return sel;
2903                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2904         } else if (rdev->desc->ops->get_voltage) {
2905                 ret = rdev->desc->ops->get_voltage(rdev);
2906         } else if (rdev->desc->ops->list_voltage) {
2907                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2908         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2909                 ret = rdev->desc->fixed_uV;
2910         } else if (rdev->supply) {
2911                 ret = regulator_get_voltage(rdev->supply);
2912         } else {
2913                 return -EINVAL;
2914         }
2915
2916         if (ret < 0)
2917                 return ret;
2918         return ret - rdev->constraints->uV_offset;
2919 }
2920
2921 /**
2922  * regulator_get_voltage - get regulator output voltage
2923  * @regulator: regulator source
2924  *
2925  * This returns the current regulator voltage in uV.
2926  *
2927  * NOTE: If the regulator is disabled it will return the voltage value. This
2928  * function should not be used to determine regulator state.
2929  */
2930 int regulator_get_voltage(struct regulator *regulator)
2931 {
2932         int ret;
2933
2934         mutex_lock(&regulator->rdev->mutex);
2935
2936         ret = _regulator_get_voltage(regulator->rdev);
2937
2938         mutex_unlock(&regulator->rdev->mutex);
2939
2940         return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2943
2944 /**
2945  * regulator_set_current_limit - set regulator output current limit
2946  * @regulator: regulator source
2947  * @min_uA: Minimum supported current in uA
2948  * @max_uA: Maximum supported current in uA
2949  *
2950  * Sets current sink to the desired output current. This can be set during
2951  * any regulator state. IOW, regulator can be disabled or enabled.
2952  *
2953  * If the regulator is enabled then the current will change to the new value
2954  * immediately otherwise if the regulator is disabled the regulator will
2955  * output at the new current when enabled.
2956  *
2957  * NOTE: Regulator system constraints must be set for this regulator before
2958  * calling this function otherwise this call will fail.
2959  */
2960 int regulator_set_current_limit(struct regulator *regulator,
2961                                int min_uA, int max_uA)
2962 {
2963         struct regulator_dev *rdev = regulator->rdev;
2964         int ret;
2965
2966         mutex_lock(&rdev->mutex);
2967
2968         /* sanity check */
2969         if (!rdev->desc->ops->set_current_limit) {
2970                 ret = -EINVAL;
2971                 goto out;
2972         }
2973
2974         /* constraints check */
2975         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2976         if (ret < 0)
2977                 goto out;
2978
2979         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2980 out:
2981         mutex_unlock(&rdev->mutex);
2982         return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2985
2986 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2987 {
2988         int ret;
2989
2990         mutex_lock(&rdev->mutex);
2991
2992         /* sanity check */
2993         if (!rdev->desc->ops->get_current_limit) {
2994                 ret = -EINVAL;
2995                 goto out;
2996         }
2997
2998         ret = rdev->desc->ops->get_current_limit(rdev);
2999 out:
3000         mutex_unlock(&rdev->mutex);
3001         return ret;
3002 }
3003
3004 /**
3005  * regulator_get_current_limit - get regulator output current
3006  * @regulator: regulator source
3007  *
3008  * This returns the current supplied by the specified current sink in uA.
3009  *
3010  * NOTE: If the regulator is disabled it will return the current value. This
3011  * function should not be used to determine regulator state.
3012  */
3013 int regulator_get_current_limit(struct regulator *regulator)
3014 {
3015         return _regulator_get_current_limit(regulator->rdev);
3016 }
3017 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3018
3019 /**
3020  * regulator_set_mode - set regulator operating mode
3021  * @regulator: regulator source
3022  * @mode: operating mode - one of the REGULATOR_MODE constants
3023  *
3024  * Set regulator operating mode to increase regulator efficiency or improve
3025  * regulation performance.
3026  *
3027  * NOTE: Regulator system constraints must be set for this regulator before
3028  * calling this function otherwise this call will fail.
3029  */
3030 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3031 {
3032         struct regulator_dev *rdev = regulator->rdev;
3033         int ret;
3034         int regulator_curr_mode;
3035
3036         mutex_lock(&rdev->mutex);
3037
3038         /* sanity check */
3039         if (!rdev->desc->ops->set_mode) {
3040                 ret = -EINVAL;
3041                 goto out;
3042         }
3043
3044         /* return if the same mode is requested */
3045         if (rdev->desc->ops->get_mode) {
3046                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3047                 if (regulator_curr_mode == mode) {
3048                         ret = 0;
3049                         goto out;
3050                 }
3051         }
3052
3053         /* constraints check */
3054         ret = regulator_mode_constrain(rdev, &mode);
3055         if (ret < 0)
3056                 goto out;
3057
3058         ret = rdev->desc->ops->set_mode(rdev, mode);
3059 out:
3060         mutex_unlock(&rdev->mutex);
3061         return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_mode);
3064
3065 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3066 {
3067         int ret;
3068
3069         mutex_lock(&rdev->mutex);
3070
3071         /* sanity check */
3072         if (!rdev->desc->ops->get_mode) {
3073                 ret = -EINVAL;
3074                 goto out;
3075         }
3076
3077         ret = rdev->desc->ops->get_mode(rdev);
3078 out:
3079         mutex_unlock(&rdev->mutex);
3080         return ret;
3081 }
3082
3083 /**
3084  * regulator_get_mode - get regulator operating mode
3085  * @regulator: regulator source
3086  *
3087  * Get the current regulator operating mode.
3088  */
3089 unsigned int regulator_get_mode(struct regulator *regulator)
3090 {
3091         return _regulator_get_mode(regulator->rdev);
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_mode);
3094
3095 /**
3096  * regulator_set_load - set regulator load
3097  * @regulator: regulator source
3098  * @uA_load: load current
3099  *
3100  * Notifies the regulator core of a new device load. This is then used by
3101  * DRMS (if enabled by constraints) to set the most efficient regulator
3102  * operating mode for the new regulator loading.
3103  *
3104  * Consumer devices notify their supply regulator of the maximum power
3105  * they will require (can be taken from device datasheet in the power
3106  * consumption tables) when they change operational status and hence power
3107  * state. Examples of operational state changes that can affect power
3108  * consumption are :-
3109  *
3110  *    o Device is opened / closed.
3111  *    o Device I/O is about to begin or has just finished.
3112  *    o Device is idling in between work.
3113  *
3114  * This information is also exported via sysfs to userspace.
3115  *
3116  * DRMS will sum the total requested load on the regulator and change
3117  * to the most efficient operating mode if platform constraints allow.
3118  *
3119  * On error a negative errno is returned.
3120  */
3121 int regulator_set_load(struct regulator *regulator, int uA_load)
3122 {
3123         struct regulator_dev *rdev = regulator->rdev;
3124         int ret;
3125
3126         mutex_lock(&rdev->mutex);
3127         regulator->uA_load = uA_load;
3128         ret = drms_uA_update(rdev);
3129         mutex_unlock(&rdev->mutex);
3130
3131         return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_set_load);
3134
3135 /**
3136  * regulator_allow_bypass - allow the regulator to go into bypass mode
3137  *
3138  * @regulator: Regulator to configure
3139  * @enable: enable or disable bypass mode
3140  *
3141  * Allow the regulator to go into bypass mode if all other consumers
3142  * for the regulator also enable bypass mode and the machine
3143  * constraints allow this.  Bypass mode means that the regulator is
3144  * simply passing the input directly to the output with no regulation.
3145  */
3146 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3147 {
3148         struct regulator_dev *rdev = regulator->rdev;
3149         int ret = 0;
3150
3151         if (!rdev->desc->ops->set_bypass)
3152                 return 0;
3153
3154         if (rdev->constraints &&
3155             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3156                 return 0;
3157
3158         mutex_lock(&rdev->mutex);
3159
3160         if (enable && !regulator->bypass) {
3161                 rdev->bypass_count++;
3162
3163                 if (rdev->bypass_count == rdev->open_count) {
3164                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3165                         if (ret != 0)
3166                                 rdev->bypass_count--;
3167                 }
3168
3169         } else if (!enable && regulator->bypass) {
3170                 rdev->bypass_count--;
3171
3172                 if (rdev->bypass_count != rdev->open_count) {
3173                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3174                         if (ret != 0)
3175                                 rdev->bypass_count++;
3176                 }
3177         }
3178
3179         if (ret == 0)
3180                 regulator->bypass = enable;
3181
3182         mutex_unlock(&rdev->mutex);
3183
3184         return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3187
3188 /**
3189  * regulator_register_notifier - register regulator event notifier
3190  * @regulator: regulator source
3191  * @nb: notifier block
3192  *
3193  * Register notifier block to receive regulator events.
3194  */
3195 int regulator_register_notifier(struct regulator *regulator,
3196                               struct notifier_block *nb)
3197 {
3198         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3199                                                 nb);
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3202
3203 /**
3204  * regulator_unregister_notifier - unregister regulator event notifier
3205  * @regulator: regulator source
3206  * @nb: notifier block
3207  *
3208  * Unregister regulator event notifier block.
3209  */
3210 int regulator_unregister_notifier(struct regulator *regulator,
3211                                 struct notifier_block *nb)
3212 {
3213         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3214                                                   nb);
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3217
3218 /* notify regulator consumers and downstream regulator consumers.
3219  * Note mutex must be held by caller.
3220  */
3221 static int _notifier_call_chain(struct regulator_dev *rdev,
3222                                   unsigned long event, void *data)
3223 {
3224         /* call rdev chain first */
3225         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3226 }
3227
3228 /**
3229  * regulator_bulk_get - get multiple regulator consumers
3230  *
3231  * @dev:           Device to supply
3232  * @num_consumers: Number of consumers to register
3233  * @consumers:     Configuration of consumers; clients are stored here.
3234  *
3235  * @return 0 on success, an errno on failure.
3236  *
3237  * This helper function allows drivers to get several regulator
3238  * consumers in one operation.  If any of the regulators cannot be
3239  * acquired then any regulators that were allocated will be freed
3240  * before returning to the caller.
3241  */
3242 int regulator_bulk_get(struct device *dev, int num_consumers,
3243                        struct regulator_bulk_data *consumers)
3244 {
3245         int i;
3246         int ret;
3247
3248         for (i = 0; i < num_consumers; i++)
3249                 consumers[i].consumer = NULL;
3250
3251         for (i = 0; i < num_consumers; i++) {
3252                 consumers[i].consumer = regulator_get(dev,
3253                                                       consumers[i].supply);
3254                 if (IS_ERR(consumers[i].consumer)) {
3255                         ret = PTR_ERR(consumers[i].consumer);
3256                         dev_err(dev, "Failed to get supply '%s': %d\n",
3257                                 consumers[i].supply, ret);
3258                         consumers[i].consumer = NULL;
3259                         goto err;
3260                 }
3261         }
3262
3263         return 0;
3264
3265 err:
3266         while (--i >= 0)
3267                 regulator_put(consumers[i].consumer);
3268
3269         return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3272
3273 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3274 {
3275         struct regulator_bulk_data *bulk = data;
3276
3277         bulk->ret = regulator_enable(bulk->consumer);
3278 }
3279
3280 /**
3281  * regulator_bulk_enable - enable multiple regulator consumers
3282  *
3283  * @num_consumers: Number of consumers
3284  * @consumers:     Consumer data; clients are stored here.
3285  * @return         0 on success, an errno on failure
3286  *
3287  * This convenience API allows consumers to enable multiple regulator
3288  * clients in a single API call.  If any consumers cannot be enabled
3289  * then any others that were enabled will be disabled again prior to
3290  * return.
3291  */
3292 int regulator_bulk_enable(int num_consumers,
3293                           struct regulator_bulk_data *consumers)
3294 {
3295         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3296         int i;
3297         int ret = 0;
3298
3299         for (i = 0; i < num_consumers; i++) {
3300                 if (consumers[i].consumer->always_on)
3301                         consumers[i].ret = 0;
3302                 else
3303                         async_schedule_domain(regulator_bulk_enable_async,
3304                                               &consumers[i], &async_domain);
3305         }
3306
3307         async_synchronize_full_domain(&async_domain);
3308
3309         /* If any consumer failed we need to unwind any that succeeded */
3310         for (i = 0; i < num_consumers; i++) {
3311                 if (consumers[i].ret != 0) {
3312                         ret = consumers[i].ret;
3313                         goto err;
3314                 }
3315         }
3316
3317         return 0;
3318
3319 err:
3320         for (i = 0; i < num_consumers; i++) {
3321                 if (consumers[i].ret < 0)
3322                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3323                                consumers[i].ret);
3324                 else
3325                         regulator_disable(consumers[i].consumer);
3326         }
3327
3328         return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3331
3332 /**
3333  * regulator_bulk_disable - disable multiple regulator consumers
3334  *
3335  * @num_consumers: Number of consumers
3336  * @consumers:     Consumer data; clients are stored here.
3337  * @return         0 on success, an errno on failure
3338  *
3339  * This convenience API allows consumers to disable multiple regulator
3340  * clients in a single API call.  If any consumers cannot be disabled
3341  * then any others that were disabled will be enabled again prior to
3342  * return.
3343  */
3344 int regulator_bulk_disable(int num_consumers,
3345                            struct regulator_bulk_data *consumers)
3346 {
3347         int i;
3348         int ret, r;
3349
3350         for (i = num_consumers - 1; i >= 0; --i) {
3351                 ret = regulator_disable(consumers[i].consumer);
3352                 if (ret != 0)
3353                         goto err;
3354         }
3355
3356         return 0;
3357
3358 err:
3359         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3360         for (++i; i < num_consumers; ++i) {
3361                 r = regulator_enable(consumers[i].consumer);
3362                 if (r != 0)
3363                         pr_err("Failed to reename %s: %d\n",
3364                                consumers[i].supply, r);
3365         }
3366
3367         return ret;
3368 }
3369 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3370
3371 /**
3372  * regulator_bulk_force_disable - force disable multiple regulator consumers
3373  *
3374  * @num_consumers: Number of consumers
3375  * @consumers:     Consumer data; clients are stored here.
3376  * @return         0 on success, an errno on failure
3377  *
3378  * This convenience API allows consumers to forcibly disable multiple regulator
3379  * clients in a single API call.
3380  * NOTE: This should be used for situations when device damage will
3381  * likely occur if the regulators are not disabled (e.g. over temp).
3382  * Although regulator_force_disable function call for some consumers can
3383  * return error numbers, the function is called for all consumers.
3384  */
3385 int regulator_bulk_force_disable(int num_consumers,
3386                            struct regulator_bulk_data *consumers)
3387 {
3388         int i;
3389         int ret;
3390
3391         for (i = 0; i < num_consumers; i++)
3392                 consumers[i].ret =
3393                             regulator_force_disable(consumers[i].consumer);
3394
3395         for (i = 0; i < num_consumers; i++) {
3396                 if (consumers[i].ret != 0) {
3397                         ret = consumers[i].ret;
3398                         goto out;
3399                 }
3400         }
3401
3402         return 0;
3403 out:
3404         return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3407
3408 /**
3409  * regulator_bulk_free - free multiple regulator consumers
3410  *
3411  * @num_consumers: Number of consumers
3412  * @consumers:     Consumer data; clients are stored here.
3413  *
3414  * This convenience API allows consumers to free multiple regulator
3415  * clients in a single API call.
3416  */
3417 void regulator_bulk_free(int num_consumers,
3418                          struct regulator_bulk_data *consumers)
3419 {
3420         int i;
3421
3422         for (i = 0; i < num_consumers; i++) {
3423                 regulator_put(consumers[i].consumer);
3424                 consumers[i].consumer = NULL;
3425         }
3426 }
3427 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3428
3429 /**
3430  * regulator_notifier_call_chain - call regulator event notifier
3431  * @rdev: regulator source
3432  * @event: notifier block
3433  * @data: callback-specific data.
3434  *
3435  * Called by regulator drivers to notify clients a regulator event has
3436  * occurred. We also notify regulator clients downstream.
3437  * Note lock must be held by caller.
3438  */
3439 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3440                                   unsigned long event, void *data)
3441 {
3442         _notifier_call_chain(rdev, event, data);
3443         return NOTIFY_DONE;
3444
3445 }
3446 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3447
3448 /**
3449  * regulator_mode_to_status - convert a regulator mode into a status
3450  *
3451  * @mode: Mode to convert
3452  *
3453  * Convert a regulator mode into a status.
3454  */
3455 int regulator_mode_to_status(unsigned int mode)
3456 {
3457         switch (mode) {
3458         case REGULATOR_MODE_FAST:
3459                 return REGULATOR_STATUS_FAST;
3460         case REGULATOR_MODE_NORMAL:
3461                 return REGULATOR_STATUS_NORMAL;
3462         case REGULATOR_MODE_IDLE:
3463                 return REGULATOR_STATUS_IDLE;
3464         case REGULATOR_MODE_STANDBY:
3465                 return REGULATOR_STATUS_STANDBY;
3466         default:
3467                 return REGULATOR_STATUS_UNDEFINED;
3468         }
3469 }
3470 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3471
3472 static struct attribute *regulator_dev_attrs[] = {
3473         &dev_attr_name.attr,
3474         &dev_attr_num_users.attr,
3475         &dev_attr_type.attr,
3476         &dev_attr_microvolts.attr,
3477         &dev_attr_microamps.attr,
3478         &dev_attr_opmode.attr,
3479         &dev_attr_state.attr,
3480         &dev_attr_status.attr,
3481         &dev_attr_bypass.attr,
3482         &dev_attr_requested_microamps.attr,
3483         &dev_attr_min_microvolts.attr,
3484         &dev_attr_max_microvolts.attr,
3485         &dev_attr_min_microamps.attr,
3486         &dev_attr_max_microamps.attr,
3487         &dev_attr_suspend_standby_state.attr,
3488         &dev_attr_suspend_mem_state.attr,
3489         &dev_attr_suspend_disk_state.attr,
3490         &dev_attr_suspend_standby_microvolts.attr,
3491         &dev_attr_suspend_mem_microvolts.attr,
3492         &dev_attr_suspend_disk_microvolts.attr,
3493         &dev_attr_suspend_standby_mode.attr,
3494         &dev_attr_suspend_mem_mode.attr,
3495         &dev_attr_suspend_disk_mode.attr,
3496         NULL
3497 };
3498
3499 /*
3500  * To avoid cluttering sysfs (and memory) with useless state, only
3501  * create attributes that can be meaningfully displayed.
3502  */
3503 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3504                                          struct attribute *attr, int idx)
3505 {
3506         struct device *dev = kobj_to_dev(kobj);
3507         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3508         const struct regulator_ops *ops = rdev->desc->ops;
3509         umode_t mode = attr->mode;
3510
3511         /* these three are always present */
3512         if (attr == &dev_attr_name.attr ||
3513             attr == &dev_attr_num_users.attr ||
3514             attr == &dev_attr_type.attr)
3515                 return mode;
3516
3517         /* some attributes need specific methods to be displayed */
3518         if (attr == &dev_attr_microvolts.attr) {
3519                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3520                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3521                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3522                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3523                         return mode;
3524                 return 0;
3525         }
3526
3527         if (attr == &dev_attr_microamps.attr)
3528                 return ops->get_current_limit ? mode : 0;
3529
3530         if (attr == &dev_attr_opmode.attr)
3531                 return ops->get_mode ? mode : 0;
3532
3533         if (attr == &dev_attr_state.attr)
3534                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3535
3536         if (attr == &dev_attr_status.attr)
3537                 return ops->get_status ? mode : 0;
3538
3539         if (attr == &dev_attr_bypass.attr)
3540                 return ops->get_bypass ? mode : 0;
3541
3542         /* some attributes are type-specific */
3543         if (attr == &dev_attr_requested_microamps.attr)
3544                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3545
3546         /* constraints need specific supporting methods */
3547         if (attr == &dev_attr_min_microvolts.attr ||
3548             attr == &dev_attr_max_microvolts.attr)
3549                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3550
3551         if (attr == &dev_attr_min_microamps.attr ||
3552             attr == &dev_attr_max_microamps.attr)
3553                 return ops->set_current_limit ? mode : 0;
3554
3555         if (attr == &dev_attr_suspend_standby_state.attr ||
3556             attr == &dev_attr_suspend_mem_state.attr ||
3557             attr == &dev_attr_suspend_disk_state.attr)
3558                 return mode;
3559
3560         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3561             attr == &dev_attr_suspend_mem_microvolts.attr ||
3562             attr == &dev_attr_suspend_disk_microvolts.attr)
3563                 return ops->set_suspend_voltage ? mode : 0;
3564
3565         if (attr == &dev_attr_suspend_standby_mode.attr ||
3566             attr == &dev_attr_suspend_mem_mode.attr ||
3567             attr == &dev_attr_suspend_disk_mode.attr)
3568                 return ops->set_suspend_mode ? mode : 0;
3569
3570         return mode;
3571 }
3572
3573 static const struct attribute_group regulator_dev_group = {
3574         .attrs = regulator_dev_attrs,
3575         .is_visible = regulator_attr_is_visible,
3576 };
3577
3578 static const struct attribute_group *regulator_dev_groups[] = {
3579         &regulator_dev_group,
3580         NULL
3581 };
3582
3583 static void regulator_dev_release(struct device *dev)
3584 {
3585         struct regulator_dev *rdev = dev_get_drvdata(dev);
3586         kfree(rdev);
3587 }
3588
3589 static struct class regulator_class = {
3590         .name = "regulator",
3591         .dev_release = regulator_dev_release,
3592         .dev_groups = regulator_dev_groups,
3593 };
3594
3595 static void rdev_init_debugfs(struct regulator_dev *rdev)
3596 {
3597         struct device *parent = rdev->dev.parent;
3598         const char *rname = rdev_get_name(rdev);
3599         char name[NAME_MAX];
3600
3601         /* Avoid duplicate debugfs directory names */
3602         if (parent && rname == rdev->desc->name) {
3603                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3604                          rname);
3605                 rname = name;
3606         }
3607
3608         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3609         if (!rdev->debugfs) {
3610                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3611                 return;
3612         }
3613
3614         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3615                            &rdev->use_count);
3616         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3617                            &rdev->open_count);
3618         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3619                            &rdev->bypass_count);
3620 }
3621
3622 /**
3623  * regulator_register - register regulator
3624  * @regulator_desc: regulator to register
3625  * @cfg: runtime configuration for regulator
3626  *
3627  * Called by regulator drivers to register a regulator.
3628  * Returns a valid pointer to struct regulator_dev on success
3629  * or an ERR_PTR() on error.
3630  */
3631 struct regulator_dev *
3632 regulator_register(const struct regulator_desc *regulator_desc,
3633                    const struct regulator_config *cfg)
3634 {
3635         const struct regulation_constraints *constraints = NULL;
3636         const struct regulator_init_data *init_data;
3637         struct regulator_config *config = NULL;
3638         static atomic_t regulator_no = ATOMIC_INIT(-1);
3639         struct regulator_dev *rdev;
3640         struct device *dev;
3641         int ret, i;
3642
3643         if (regulator_desc == NULL || cfg == NULL)
3644                 return ERR_PTR(-EINVAL);
3645
3646         dev = cfg->dev;
3647         WARN_ON(!dev);
3648
3649         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3650                 return ERR_PTR(-EINVAL);
3651
3652         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3653             regulator_desc->type != REGULATOR_CURRENT)
3654                 return ERR_PTR(-EINVAL);
3655
3656         /* Only one of each should be implemented */
3657         WARN_ON(regulator_desc->ops->get_voltage &&
3658                 regulator_desc->ops->get_voltage_sel);
3659         WARN_ON(regulator_desc->ops->set_voltage &&
3660                 regulator_desc->ops->set_voltage_sel);
3661
3662         /* If we're using selectors we must implement list_voltage. */
3663         if (regulator_desc->ops->get_voltage_sel &&
3664             !regulator_desc->ops->list_voltage) {
3665                 return ERR_PTR(-EINVAL);
3666         }
3667         if (regulator_desc->ops->set_voltage_sel &&
3668             !regulator_desc->ops->list_voltage) {
3669                 return ERR_PTR(-EINVAL);
3670         }
3671
3672         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3673         if (rdev == NULL)
3674                 return ERR_PTR(-ENOMEM);
3675
3676         /*
3677          * Duplicate the config so the driver could override it after
3678          * parsing init data.
3679          */
3680         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3681         if (config == NULL) {
3682                 kfree(rdev);
3683                 return ERR_PTR(-ENOMEM);
3684         }
3685
3686         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3687                                                &rdev->dev.of_node);
3688         if (!init_data) {
3689                 init_data = config->init_data;
3690                 rdev->dev.of_node = of_node_get(config->of_node);
3691         }
3692
3693         mutex_lock(&regulator_list_mutex);
3694
3695         mutex_init(&rdev->mutex);
3696         rdev->reg_data = config->driver_data;
3697         rdev->owner = regulator_desc->owner;
3698         rdev->desc = regulator_desc;
3699         if (config->regmap)
3700                 rdev->regmap = config->regmap;
3701         else if (dev_get_regmap(dev, NULL))
3702                 rdev->regmap = dev_get_regmap(dev, NULL);
3703         else if (dev->parent)
3704                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3705         INIT_LIST_HEAD(&rdev->consumer_list);
3706         INIT_LIST_HEAD(&rdev->list);
3707         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3708         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3709
3710         /* preform any regulator specific init */
3711         if (init_data && init_data->regulator_init) {
3712                 ret = init_data->regulator_init(rdev->reg_data);
3713                 if (ret < 0)
3714                         goto clean;
3715         }
3716
3717         /* register with sysfs */
3718         rdev->dev.class = &regulator_class;
3719         rdev->dev.parent = dev;
3720         dev_set_name(&rdev->dev, "regulator.%lu",
3721                     (unsigned long) atomic_inc_return(&regulator_no));
3722         ret = device_register(&rdev->dev);
3723         if (ret != 0) {
3724                 put_device(&rdev->dev);
3725                 goto clean;
3726         }
3727
3728         dev_set_drvdata(&rdev->dev, rdev);
3729
3730         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3731             gpio_is_valid(config->ena_gpio)) {
3732                 ret = regulator_ena_gpio_request(rdev, config);
3733                 if (ret != 0) {
3734                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3735                                  config->ena_gpio, ret);
3736                         goto wash;
3737                 }
3738         }
3739
3740         /* set regulator constraints */
3741         if (init_data)
3742                 constraints = &init_data->constraints;
3743
3744         ret = set_machine_constraints(rdev, constraints);
3745         if (ret < 0)
3746                 goto scrub;
3747
3748         if (init_data && init_data->supply_regulator)
3749                 rdev->supply_name = init_data->supply_regulator;
3750         else if (regulator_desc->supply_name)
3751                 rdev->supply_name = regulator_desc->supply_name;
3752
3753         /* add consumers devices */
3754         if (init_data) {
3755                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3756                         ret = set_consumer_device_supply(rdev,
3757                                 init_data->consumer_supplies[i].dev_name,
3758                                 init_data->consumer_supplies[i].supply);
3759                         if (ret < 0) {
3760                                 dev_err(dev, "Failed to set supply %s\n",
3761                                         init_data->consumer_supplies[i].supply);
3762                                 goto unset_supplies;
3763                         }
3764                 }
3765         }
3766
3767         list_add(&rdev->list, &regulator_list);
3768
3769         rdev_init_debugfs(rdev);
3770 out:
3771         mutex_unlock(&regulator_list_mutex);
3772         kfree(config);
3773         return rdev;
3774
3775 unset_supplies:
3776         unset_regulator_supplies(rdev);
3777
3778 scrub:
3779         regulator_ena_gpio_free(rdev);
3780         kfree(rdev->constraints);
3781 wash:
3782         device_unregister(&rdev->dev);
3783         /* device core frees rdev */
3784         rdev = ERR_PTR(ret);
3785         goto out;
3786
3787 clean:
3788         kfree(rdev);
3789         rdev = ERR_PTR(ret);
3790         goto out;
3791 }
3792 EXPORT_SYMBOL_GPL(regulator_register);
3793
3794 /**
3795  * regulator_unregister - unregister regulator
3796  * @rdev: regulator to unregister
3797  *
3798  * Called by regulator drivers to unregister a regulator.
3799  */
3800 void regulator_unregister(struct regulator_dev *rdev)
3801 {
3802         if (rdev == NULL)
3803                 return;
3804
3805         if (rdev->supply) {
3806                 while (rdev->use_count--)
3807                         regulator_disable(rdev->supply);
3808                 regulator_put(rdev->supply);
3809         }
3810         mutex_lock(&regulator_list_mutex);
3811         debugfs_remove_recursive(rdev->debugfs);
3812         flush_work(&rdev->disable_work.work);
3813         WARN_ON(rdev->open_count);
3814         unset_regulator_supplies(rdev);
3815         list_del(&rdev->list);
3816         kfree(rdev->constraints);
3817         regulator_ena_gpio_free(rdev);
3818         of_node_put(rdev->dev.of_node);
3819         device_unregister(&rdev->dev);
3820         mutex_unlock(&regulator_list_mutex);
3821 }
3822 EXPORT_SYMBOL_GPL(regulator_unregister);
3823
3824 /**
3825  * regulator_suspend_prepare - prepare regulators for system wide suspend
3826  * @state: system suspend state
3827  *
3828  * Configure each regulator with it's suspend operating parameters for state.
3829  * This will usually be called by machine suspend code prior to supending.
3830  */
3831 int regulator_suspend_prepare(suspend_state_t state)
3832 {
3833         struct regulator_dev *rdev;
3834         int ret = 0;
3835
3836         /* ON is handled by regulator active state */
3837         if (state == PM_SUSPEND_ON)
3838                 return -EINVAL;
3839
3840         mutex_lock(&regulator_list_mutex);
3841         list_for_each_entry(rdev, &regulator_list, list) {
3842
3843                 mutex_lock(&rdev->mutex);
3844                 ret = suspend_prepare(rdev, state);
3845                 mutex_unlock(&rdev->mutex);
3846
3847                 if (ret < 0) {
3848                         rdev_err(rdev, "failed to prepare\n");
3849                         goto out;
3850                 }
3851         }
3852 out:
3853         mutex_unlock(&regulator_list_mutex);
3854         return ret;
3855 }
3856 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3857
3858 /**
3859  * regulator_suspend_finish - resume regulators from system wide suspend
3860  *
3861  * Turn on regulators that might be turned off by regulator_suspend_prepare
3862  * and that should be turned on according to the regulators properties.
3863  */
3864 int regulator_suspend_finish(void)
3865 {
3866         struct regulator_dev *rdev;
3867         int ret = 0, error;
3868
3869         mutex_lock(&regulator_list_mutex);
3870         list_for_each_entry(rdev, &regulator_list, list) {
3871                 mutex_lock(&rdev->mutex);
3872                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3873                         if (!_regulator_is_enabled(rdev)) {
3874                                 error = _regulator_do_enable(rdev);
3875                                 if (error)
3876                                         ret = error;
3877                         }
3878                 } else {
3879                         if (!have_full_constraints())
3880                                 goto unlock;
3881                         if (!_regulator_is_enabled(rdev))
3882                                 goto unlock;
3883
3884                         error = _regulator_do_disable(rdev);
3885                         if (error)
3886                                 ret = error;
3887                 }
3888 unlock:
3889                 mutex_unlock(&rdev->mutex);
3890         }
3891         mutex_unlock(&regulator_list_mutex);
3892         return ret;
3893 }
3894 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3895
3896 /**
3897  * regulator_has_full_constraints - the system has fully specified constraints
3898  *
3899  * Calling this function will cause the regulator API to disable all
3900  * regulators which have a zero use count and don't have an always_on
3901  * constraint in a late_initcall.
3902  *
3903  * The intention is that this will become the default behaviour in a
3904  * future kernel release so users are encouraged to use this facility
3905  * now.
3906  */
3907 void regulator_has_full_constraints(void)
3908 {
3909         has_full_constraints = 1;
3910 }
3911 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3912
3913 /**
3914  * rdev_get_drvdata - get rdev regulator driver data
3915  * @rdev: regulator
3916  *
3917  * Get rdev regulator driver private data. This call can be used in the
3918  * regulator driver context.
3919  */
3920 void *rdev_get_drvdata(struct regulator_dev *rdev)
3921 {
3922         return rdev->reg_data;
3923 }
3924 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3925
3926 /**
3927  * regulator_get_drvdata - get regulator driver data
3928  * @regulator: regulator
3929  *
3930  * Get regulator driver private data. This call can be used in the consumer
3931  * driver context when non API regulator specific functions need to be called.
3932  */
3933 void *regulator_get_drvdata(struct regulator *regulator)
3934 {
3935         return regulator->rdev->reg_data;
3936 }
3937 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3938
3939 /**
3940  * regulator_set_drvdata - set regulator driver data
3941  * @regulator: regulator
3942  * @data: data
3943  */
3944 void regulator_set_drvdata(struct regulator *regulator, void *data)
3945 {
3946         regulator->rdev->reg_data = data;
3947 }
3948 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3949
3950 /**
3951  * regulator_get_id - get regulator ID
3952  * @rdev: regulator
3953  */
3954 int rdev_get_id(struct regulator_dev *rdev)
3955 {
3956         return rdev->desc->id;
3957 }
3958 EXPORT_SYMBOL_GPL(rdev_get_id);
3959
3960 struct device *rdev_get_dev(struct regulator_dev *rdev)
3961 {
3962         return &rdev->dev;
3963 }
3964 EXPORT_SYMBOL_GPL(rdev_get_dev);
3965
3966 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3967 {
3968         return reg_init_data->driver_data;
3969 }
3970 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3971
3972 #ifdef CONFIG_DEBUG_FS
3973 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3974                                     size_t count, loff_t *ppos)
3975 {
3976         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3977         ssize_t len, ret = 0;
3978         struct regulator_map *map;
3979
3980         if (!buf)
3981                 return -ENOMEM;
3982
3983         list_for_each_entry(map, &regulator_map_list, list) {
3984                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3985                                "%s -> %s.%s\n",
3986                                rdev_get_name(map->regulator), map->dev_name,
3987                                map->supply);
3988                 if (len >= 0)
3989                         ret += len;
3990                 if (ret > PAGE_SIZE) {
3991                         ret = PAGE_SIZE;
3992                         break;
3993                 }
3994         }
3995
3996         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3997
3998         kfree(buf);
3999
4000         return ret;
4001 }
4002 #endif
4003
4004 static const struct file_operations supply_map_fops = {
4005 #ifdef CONFIG_DEBUG_FS
4006         .read = supply_map_read_file,
4007         .llseek = default_llseek,
4008 #endif
4009 };
4010
4011 #ifdef CONFIG_DEBUG_FS
4012 static void regulator_summary_show_subtree(struct seq_file *s,
4013                                            struct regulator_dev *rdev,
4014                                            int level)
4015 {
4016         struct list_head *list = s->private;
4017         struct regulator_dev *child;
4018         struct regulation_constraints *c;
4019         struct regulator *consumer;
4020
4021         if (!rdev)
4022                 return;
4023
4024         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4025                    level * 3 + 1, "",
4026                    30 - level * 3, rdev_get_name(rdev),
4027                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4028
4029         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4030         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4031
4032         c = rdev->constraints;
4033         if (c) {
4034                 switch (rdev->desc->type) {
4035                 case REGULATOR_VOLTAGE:
4036                         seq_printf(s, "%5dmV %5dmV ",
4037                                    c->min_uV / 1000, c->max_uV / 1000);
4038                         break;
4039                 case REGULATOR_CURRENT:
4040                         seq_printf(s, "%5dmA %5dmA ",
4041                                    c->min_uA / 1000, c->max_uA / 1000);
4042                         break;
4043                 }
4044         }
4045
4046         seq_puts(s, "\n");
4047
4048         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4049                 if (consumer->dev->class == &regulator_class)
4050                         continue;
4051
4052                 seq_printf(s, "%*s%-*s ",
4053                            (level + 1) * 3 + 1, "",
4054                            30 - (level + 1) * 3, dev_name(consumer->dev));
4055
4056                 switch (rdev->desc->type) {
4057                 case REGULATOR_VOLTAGE:
4058                         seq_printf(s, "%37dmV %5dmV",
4059                                    consumer->min_uV / 1000,
4060                                    consumer->max_uV / 1000);
4061                         break;
4062                 case REGULATOR_CURRENT:
4063                         break;
4064                 }
4065
4066                 seq_puts(s, "\n");
4067         }
4068
4069         list_for_each_entry(child, list, list) {
4070                 /* handle only non-root regulators supplied by current rdev */
4071                 if (!child->supply || child->supply->rdev != rdev)
4072                         continue;
4073
4074                 regulator_summary_show_subtree(s, child, level + 1);
4075         }
4076 }
4077
4078 static int regulator_summary_show(struct seq_file *s, void *data)
4079 {
4080         struct list_head *list = s->private;
4081         struct regulator_dev *rdev;
4082
4083         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4084         seq_puts(s, "-------------------------------------------------------------------------------\n");
4085
4086         mutex_lock(&regulator_list_mutex);
4087
4088         list_for_each_entry(rdev, list, list) {
4089                 if (rdev->supply)
4090                         continue;
4091
4092                 regulator_summary_show_subtree(s, rdev, 0);
4093         }
4094
4095         mutex_unlock(&regulator_list_mutex);
4096
4097         return 0;
4098 }
4099
4100 static int regulator_summary_open(struct inode *inode, struct file *file)
4101 {
4102         return single_open(file, regulator_summary_show, inode->i_private);
4103 }
4104 #endif
4105
4106 static const struct file_operations regulator_summary_fops = {
4107 #ifdef CONFIG_DEBUG_FS
4108         .open           = regulator_summary_open,
4109         .read           = seq_read,
4110         .llseek         = seq_lseek,
4111         .release        = single_release,
4112 #endif
4113 };
4114
4115 static int __init regulator_init(void)
4116 {
4117         int ret;
4118
4119         ret = class_register(&regulator_class);
4120
4121         debugfs_root = debugfs_create_dir("regulator", NULL);
4122         if (!debugfs_root)
4123                 pr_warn("regulator: Failed to create debugfs directory\n");
4124
4125         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4126                             &supply_map_fops);
4127
4128         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4129                             &regulator_list, &regulator_summary_fops);
4130
4131         regulator_dummy_init();
4132
4133         return ret;
4134 }
4135
4136 /* init early to allow our consumers to complete system booting */
4137 core_initcall(regulator_init);
4138
4139 static int __init regulator_init_complete(void)
4140 {
4141         struct regulator_dev *rdev;
4142         const struct regulator_ops *ops;
4143         struct regulation_constraints *c;
4144         int enabled, ret;
4145
4146         /*
4147          * Since DT doesn't provide an idiomatic mechanism for
4148          * enabling full constraints and since it's much more natural
4149          * with DT to provide them just assume that a DT enabled
4150          * system has full constraints.
4151          */
4152         if (of_have_populated_dt())
4153                 has_full_constraints = true;
4154
4155         mutex_lock(&regulator_list_mutex);
4156
4157         /* If we have a full configuration then disable any regulators
4158          * we have permission to change the status for and which are
4159          * not in use or always_on.  This is effectively the default
4160          * for DT and ACPI as they have full constraints.
4161          */
4162         list_for_each_entry(rdev, &regulator_list, list) {
4163                 ops = rdev->desc->ops;
4164                 c = rdev->constraints;
4165
4166                 if (c && c->always_on)
4167                         continue;
4168
4169                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4170                         continue;
4171
4172                 mutex_lock(&rdev->mutex);
4173
4174                 if (rdev->use_count)
4175                         goto unlock;
4176
4177                 /* If we can't read the status assume it's on. */
4178                 if (ops->is_enabled)
4179                         enabled = ops->is_enabled(rdev);
4180                 else
4181                         enabled = 1;
4182
4183                 if (!enabled)
4184                         goto unlock;
4185
4186                 if (have_full_constraints()) {
4187                         /* We log since this may kill the system if it
4188                          * goes wrong. */
4189                         rdev_info(rdev, "disabling\n");
4190                         ret = _regulator_do_disable(rdev);
4191                         if (ret != 0)
4192                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4193                 } else {
4194                         /* The intention is that in future we will
4195                          * assume that full constraints are provided
4196                          * so warn even if we aren't going to do
4197                          * anything here.
4198                          */
4199                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4200                 }
4201
4202 unlock:
4203                 mutex_unlock(&rdev->mutex);
4204         }
4205
4206         mutex_unlock(&regulator_list_mutex);
4207
4208         return 0;
4209 }
4210 late_initcall_sync(regulator_init_complete);