regulator: core: Handle full constraints systems when resolving supplies
[linux-drm-fsl-dcu.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         /*
644          * first check to see if we can set modes at all, otherwise just
645          * tell the consumer everything is OK.
646          */
647         err = regulator_check_drms(rdev);
648         if (err < 0)
649                 return 0;
650
651         if (!rdev->desc->ops->get_optimum_mode &&
652             !rdev->desc->ops->set_load)
653                 return 0;
654
655         if (!rdev->desc->ops->set_mode &&
656             !rdev->desc->ops->set_load)
657                 return -EINVAL;
658
659         /* get output voltage */
660         output_uV = _regulator_get_voltage(rdev);
661         if (output_uV <= 0) {
662                 rdev_err(rdev, "invalid output voltage found\n");
663                 return -EINVAL;
664         }
665
666         /* get input voltage */
667         input_uV = 0;
668         if (rdev->supply)
669                 input_uV = regulator_get_voltage(rdev->supply);
670         if (input_uV <= 0)
671                 input_uV = rdev->constraints->input_uV;
672         if (input_uV <= 0) {
673                 rdev_err(rdev, "invalid input voltage found\n");
674                 return -EINVAL;
675         }
676
677         /* calc total requested load */
678         list_for_each_entry(sibling, &rdev->consumer_list, list)
679                 current_uA += sibling->uA_load;
680
681         current_uA += rdev->constraints->system_load;
682
683         if (rdev->desc->ops->set_load) {
684                 /* set the optimum mode for our new total regulator load */
685                 err = rdev->desc->ops->set_load(rdev, current_uA);
686                 if (err < 0)
687                         rdev_err(rdev, "failed to set load %d\n", current_uA);
688         } else {
689                 /* now get the optimum mode for our new total regulator load */
690                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
691                                                          output_uV, current_uA);
692
693                 /* check the new mode is allowed */
694                 err = regulator_mode_constrain(rdev, &mode);
695                 if (err < 0) {
696                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
697                                  current_uA, input_uV, output_uV);
698                         return err;
699                 }
700
701                 err = rdev->desc->ops->set_mode(rdev, mode);
702                 if (err < 0)
703                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
704         }
705
706         return err;
707 }
708
709 static int suspend_set_state(struct regulator_dev *rdev,
710         struct regulator_state *rstate)
711 {
712         int ret = 0;
713
714         /* If we have no suspend mode configration don't set anything;
715          * only warn if the driver implements set_suspend_voltage or
716          * set_suspend_mode callback.
717          */
718         if (!rstate->enabled && !rstate->disabled) {
719                 if (rdev->desc->ops->set_suspend_voltage ||
720                     rdev->desc->ops->set_suspend_mode)
721                         rdev_warn(rdev, "No configuration\n");
722                 return 0;
723         }
724
725         if (rstate->enabled && rstate->disabled) {
726                 rdev_err(rdev, "invalid configuration\n");
727                 return -EINVAL;
728         }
729
730         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
731                 ret = rdev->desc->ops->set_suspend_enable(rdev);
732         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
733                 ret = rdev->desc->ops->set_suspend_disable(rdev);
734         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
735                 ret = 0;
736
737         if (ret < 0) {
738                 rdev_err(rdev, "failed to enabled/disable\n");
739                 return ret;
740         }
741
742         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
743                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set voltage\n");
746                         return ret;
747                 }
748         }
749
750         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
751                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
752                 if (ret < 0) {
753                         rdev_err(rdev, "failed to set mode\n");
754                         return ret;
755                 }
756         }
757         return ret;
758 }
759
760 /* locks held by caller */
761 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
762 {
763         if (!rdev->constraints)
764                 return -EINVAL;
765
766         switch (state) {
767         case PM_SUSPEND_STANDBY:
768                 return suspend_set_state(rdev,
769                         &rdev->constraints->state_standby);
770         case PM_SUSPEND_MEM:
771                 return suspend_set_state(rdev,
772                         &rdev->constraints->state_mem);
773         case PM_SUSPEND_MAX:
774                 return suspend_set_state(rdev,
775                         &rdev->constraints->state_disk);
776         default:
777                 return -EINVAL;
778         }
779 }
780
781 static void print_constraints(struct regulator_dev *rdev)
782 {
783         struct regulation_constraints *constraints = rdev->constraints;
784         char buf[160] = "";
785         size_t len = sizeof(buf) - 1;
786         int count = 0;
787         int ret;
788
789         if (constraints->min_uV && constraints->max_uV) {
790                 if (constraints->min_uV == constraints->max_uV)
791                         count += scnprintf(buf + count, len - count, "%d mV ",
792                                            constraints->min_uV / 1000);
793                 else
794                         count += scnprintf(buf + count, len - count,
795                                            "%d <--> %d mV ",
796                                            constraints->min_uV / 1000,
797                                            constraints->max_uV / 1000);
798         }
799
800         if (!constraints->min_uV ||
801             constraints->min_uV != constraints->max_uV) {
802                 ret = _regulator_get_voltage(rdev);
803                 if (ret > 0)
804                         count += scnprintf(buf + count, len - count,
805                                            "at %d mV ", ret / 1000);
806         }
807
808         if (constraints->uV_offset)
809                 count += scnprintf(buf + count, len - count, "%dmV offset ",
810                                    constraints->uV_offset / 1000);
811
812         if (constraints->min_uA && constraints->max_uA) {
813                 if (constraints->min_uA == constraints->max_uA)
814                         count += scnprintf(buf + count, len - count, "%d mA ",
815                                            constraints->min_uA / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mA ",
819                                            constraints->min_uA / 1000,
820                                            constraints->max_uA / 1000);
821         }
822
823         if (!constraints->min_uA ||
824             constraints->min_uA != constraints->max_uA) {
825                 ret = _regulator_get_current_limit(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mA ", ret / 1000);
829         }
830
831         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
832                 count += scnprintf(buf + count, len - count, "fast ");
833         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
834                 count += scnprintf(buf + count, len - count, "normal ");
835         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
836                 count += scnprintf(buf + count, len - count, "idle ");
837         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
838                 count += scnprintf(buf + count, len - count, "standby");
839
840         if (!count)
841                 scnprintf(buf, len, "no parameters");
842
843         rdev_dbg(rdev, "%s\n", buf);
844
845         if ((constraints->min_uV != constraints->max_uV) &&
846             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
847                 rdev_warn(rdev,
848                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
849 }
850
851 static int machine_constraints_voltage(struct regulator_dev *rdev,
852         struct regulation_constraints *constraints)
853 {
854         const struct regulator_ops *ops = rdev->desc->ops;
855         int ret;
856
857         /* do we need to apply the constraint voltage */
858         if (rdev->constraints->apply_uV &&
859             rdev->constraints->min_uV == rdev->constraints->max_uV) {
860                 int current_uV = _regulator_get_voltage(rdev);
861                 if (current_uV < 0) {
862                         rdev_err(rdev,
863                                  "failed to get the current voltage(%d)\n",
864                                  current_uV);
865                         return current_uV;
866                 }
867                 if (current_uV < rdev->constraints->min_uV ||
868                     current_uV > rdev->constraints->max_uV) {
869                         ret = _regulator_do_set_voltage(
870                                 rdev, rdev->constraints->min_uV,
871                                 rdev->constraints->max_uV);
872                         if (ret < 0) {
873                                 rdev_err(rdev,
874                                         "failed to apply %duV constraint(%d)\n",
875                                         rdev->constraints->min_uV, ret);
876                                 return ret;
877                         }
878                 }
879         }
880
881         /* constrain machine-level voltage specs to fit
882          * the actual range supported by this regulator.
883          */
884         if (ops->list_voltage && rdev->desc->n_voltages) {
885                 int     count = rdev->desc->n_voltages;
886                 int     i;
887                 int     min_uV = INT_MAX;
888                 int     max_uV = INT_MIN;
889                 int     cmin = constraints->min_uV;
890                 int     cmax = constraints->max_uV;
891
892                 /* it's safe to autoconfigure fixed-voltage supplies
893                    and the constraints are used by list_voltage. */
894                 if (count == 1 && !cmin) {
895                         cmin = 1;
896                         cmax = INT_MAX;
897                         constraints->min_uV = cmin;
898                         constraints->max_uV = cmax;
899                 }
900
901                 /* voltage constraints are optional */
902                 if ((cmin == 0) && (cmax == 0))
903                         return 0;
904
905                 /* else require explicit machine-level constraints */
906                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
907                         rdev_err(rdev, "invalid voltage constraints\n");
908                         return -EINVAL;
909                 }
910
911                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
912                 for (i = 0; i < count; i++) {
913                         int     value;
914
915                         value = ops->list_voltage(rdev, i);
916                         if (value <= 0)
917                                 continue;
918
919                         /* maybe adjust [min_uV..max_uV] */
920                         if (value >= cmin && value < min_uV)
921                                 min_uV = value;
922                         if (value <= cmax && value > max_uV)
923                                 max_uV = value;
924                 }
925
926                 /* final: [min_uV..max_uV] valid iff constraints valid */
927                 if (max_uV < min_uV) {
928                         rdev_err(rdev,
929                                  "unsupportable voltage constraints %u-%uuV\n",
930                                  min_uV, max_uV);
931                         return -EINVAL;
932                 }
933
934                 /* use regulator's subset of machine constraints */
935                 if (constraints->min_uV < min_uV) {
936                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
937                                  constraints->min_uV, min_uV);
938                         constraints->min_uV = min_uV;
939                 }
940                 if (constraints->max_uV > max_uV) {
941                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
942                                  constraints->max_uV, max_uV);
943                         constraints->max_uV = max_uV;
944                 }
945         }
946
947         return 0;
948 }
949
950 static int machine_constraints_current(struct regulator_dev *rdev,
951         struct regulation_constraints *constraints)
952 {
953         const struct regulator_ops *ops = rdev->desc->ops;
954         int ret;
955
956         if (!constraints->min_uA && !constraints->max_uA)
957                 return 0;
958
959         if (constraints->min_uA > constraints->max_uA) {
960                 rdev_err(rdev, "Invalid current constraints\n");
961                 return -EINVAL;
962         }
963
964         if (!ops->set_current_limit || !ops->get_current_limit) {
965                 rdev_warn(rdev, "Operation of current configuration missing\n");
966                 return 0;
967         }
968
969         /* Set regulator current in constraints range */
970         ret = ops->set_current_limit(rdev, constraints->min_uA,
971                         constraints->max_uA);
972         if (ret < 0) {
973                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
974                 return ret;
975         }
976
977         return 0;
978 }
979
980 static int _regulator_do_enable(struct regulator_dev *rdev);
981
982 /**
983  * set_machine_constraints - sets regulator constraints
984  * @rdev: regulator source
985  * @constraints: constraints to apply
986  *
987  * Allows platform initialisation code to define and constrain
988  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
989  * Constraints *must* be set by platform code in order for some
990  * regulator operations to proceed i.e. set_voltage, set_current_limit,
991  * set_mode.
992  */
993 static int set_machine_constraints(struct regulator_dev *rdev,
994         const struct regulation_constraints *constraints)
995 {
996         int ret = 0;
997         const struct regulator_ops *ops = rdev->desc->ops;
998
999         if (constraints)
1000                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1001                                             GFP_KERNEL);
1002         else
1003                 rdev->constraints = kzalloc(sizeof(*constraints),
1004                                             GFP_KERNEL);
1005         if (!rdev->constraints)
1006                 return -ENOMEM;
1007
1008         ret = machine_constraints_voltage(rdev, rdev->constraints);
1009         if (ret != 0)
1010                 goto out;
1011
1012         ret = machine_constraints_current(rdev, rdev->constraints);
1013         if (ret != 0)
1014                 goto out;
1015
1016         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1017                 ret = ops->set_input_current_limit(rdev,
1018                                                    rdev->constraints->ilim_uA);
1019                 if (ret < 0) {
1020                         rdev_err(rdev, "failed to set input limit\n");
1021                         goto out;
1022                 }
1023         }
1024
1025         /* do we need to setup our suspend state */
1026         if (rdev->constraints->initial_state) {
1027                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1028                 if (ret < 0) {
1029                         rdev_err(rdev, "failed to set suspend state\n");
1030                         goto out;
1031                 }
1032         }
1033
1034         if (rdev->constraints->initial_mode) {
1035                 if (!ops->set_mode) {
1036                         rdev_err(rdev, "no set_mode operation\n");
1037                         ret = -EINVAL;
1038                         goto out;
1039                 }
1040
1041                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1042                 if (ret < 0) {
1043                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1044                         goto out;
1045                 }
1046         }
1047
1048         /* If the constraints say the regulator should be on at this point
1049          * and we have control then make sure it is enabled.
1050          */
1051         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1052                 ret = _regulator_do_enable(rdev);
1053                 if (ret < 0 && ret != -EINVAL) {
1054                         rdev_err(rdev, "failed to enable\n");
1055                         goto out;
1056                 }
1057         }
1058
1059         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1060                 && ops->set_ramp_delay) {
1061                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1062                 if (ret < 0) {
1063                         rdev_err(rdev, "failed to set ramp_delay\n");
1064                         goto out;
1065                 }
1066         }
1067
1068         if (rdev->constraints->pull_down && ops->set_pull_down) {
1069                 ret = ops->set_pull_down(rdev);
1070                 if (ret < 0) {
1071                         rdev_err(rdev, "failed to set pull down\n");
1072                         goto out;
1073                 }
1074         }
1075
1076         if (rdev->constraints->soft_start && ops->set_soft_start) {
1077                 ret = ops->set_soft_start(rdev);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set soft start\n");
1080                         goto out;
1081                 }
1082         }
1083
1084         print_constraints(rdev);
1085         return 0;
1086 out:
1087         kfree(rdev->constraints);
1088         rdev->constraints = NULL;
1089         return ret;
1090 }
1091
1092 /**
1093  * set_supply - set regulator supply regulator
1094  * @rdev: regulator name
1095  * @supply_rdev: supply regulator name
1096  *
1097  * Called by platform initialisation code to set the supply regulator for this
1098  * regulator. This ensures that a regulators supply will also be enabled by the
1099  * core if it's child is enabled.
1100  */
1101 static int set_supply(struct regulator_dev *rdev,
1102                       struct regulator_dev *supply_rdev)
1103 {
1104         int err;
1105
1106         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1107
1108         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1109         if (rdev->supply == NULL) {
1110                 err = -ENOMEM;
1111                 return err;
1112         }
1113         supply_rdev->open_count++;
1114
1115         return 0;
1116 }
1117
1118 /**
1119  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1120  * @rdev:         regulator source
1121  * @consumer_dev_name: dev_name() string for device supply applies to
1122  * @supply:       symbolic name for supply
1123  *
1124  * Allows platform initialisation code to map physical regulator
1125  * sources to symbolic names for supplies for use by devices.  Devices
1126  * should use these symbolic names to request regulators, avoiding the
1127  * need to provide board-specific regulator names as platform data.
1128  */
1129 static int set_consumer_device_supply(struct regulator_dev *rdev,
1130                                       const char *consumer_dev_name,
1131                                       const char *supply)
1132 {
1133         struct regulator_map *node;
1134         int has_dev;
1135
1136         if (supply == NULL)
1137                 return -EINVAL;
1138
1139         if (consumer_dev_name != NULL)
1140                 has_dev = 1;
1141         else
1142                 has_dev = 0;
1143
1144         list_for_each_entry(node, &regulator_map_list, list) {
1145                 if (node->dev_name && consumer_dev_name) {
1146                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1147                                 continue;
1148                 } else if (node->dev_name || consumer_dev_name) {
1149                         continue;
1150                 }
1151
1152                 if (strcmp(node->supply, supply) != 0)
1153                         continue;
1154
1155                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1156                          consumer_dev_name,
1157                          dev_name(&node->regulator->dev),
1158                          node->regulator->desc->name,
1159                          supply,
1160                          dev_name(&rdev->dev), rdev_get_name(rdev));
1161                 return -EBUSY;
1162         }
1163
1164         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1165         if (node == NULL)
1166                 return -ENOMEM;
1167
1168         node->regulator = rdev;
1169         node->supply = supply;
1170
1171         if (has_dev) {
1172                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1173                 if (node->dev_name == NULL) {
1174                         kfree(node);
1175                         return -ENOMEM;
1176                 }
1177         }
1178
1179         list_add(&node->list, &regulator_map_list);
1180         return 0;
1181 }
1182
1183 static void unset_regulator_supplies(struct regulator_dev *rdev)
1184 {
1185         struct regulator_map *node, *n;
1186
1187         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1188                 if (rdev == node->regulator) {
1189                         list_del(&node->list);
1190                         kfree(node->dev_name);
1191                         kfree(node);
1192                 }
1193         }
1194 }
1195
1196 #define REG_STR_SIZE    64
1197
1198 static struct regulator *create_regulator(struct regulator_dev *rdev,
1199                                           struct device *dev,
1200                                           const char *supply_name)
1201 {
1202         struct regulator *regulator;
1203         char buf[REG_STR_SIZE];
1204         int err, size;
1205
1206         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1207         if (regulator == NULL)
1208                 return NULL;
1209
1210         mutex_lock(&rdev->mutex);
1211         regulator->rdev = rdev;
1212         list_add(&regulator->list, &rdev->consumer_list);
1213
1214         if (dev) {
1215                 regulator->dev = dev;
1216
1217                 /* Add a link to the device sysfs entry */
1218                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1219                                  dev->kobj.name, supply_name);
1220                 if (size >= REG_STR_SIZE)
1221                         goto overflow_err;
1222
1223                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1224                 if (regulator->supply_name == NULL)
1225                         goto overflow_err;
1226
1227                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1228                                         buf);
1229                 if (err) {
1230                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1231                                   dev->kobj.name, err);
1232                         /* non-fatal */
1233                 }
1234         } else {
1235                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1236                 if (regulator->supply_name == NULL)
1237                         goto overflow_err;
1238         }
1239
1240         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1241                                                 rdev->debugfs);
1242         if (!regulator->debugfs) {
1243                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1244         } else {
1245                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1246                                    &regulator->uA_load);
1247                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1248                                    &regulator->min_uV);
1249                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1250                                    &regulator->max_uV);
1251         }
1252
1253         /*
1254          * Check now if the regulator is an always on regulator - if
1255          * it is then we don't need to do nearly so much work for
1256          * enable/disable calls.
1257          */
1258         if (!_regulator_can_change_status(rdev) &&
1259             _regulator_is_enabled(rdev))
1260                 regulator->always_on = true;
1261
1262         mutex_unlock(&rdev->mutex);
1263         return regulator;
1264 overflow_err:
1265         list_del(&regulator->list);
1266         kfree(regulator);
1267         mutex_unlock(&rdev->mutex);
1268         return NULL;
1269 }
1270
1271 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1272 {
1273         if (rdev->constraints && rdev->constraints->enable_time)
1274                 return rdev->constraints->enable_time;
1275         if (!rdev->desc->ops->enable_time)
1276                 return rdev->desc->enable_time;
1277         return rdev->desc->ops->enable_time(rdev);
1278 }
1279
1280 static struct regulator_supply_alias *regulator_find_supply_alias(
1281                 struct device *dev, const char *supply)
1282 {
1283         struct regulator_supply_alias *map;
1284
1285         list_for_each_entry(map, &regulator_supply_alias_list, list)
1286                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1287                         return map;
1288
1289         return NULL;
1290 }
1291
1292 static void regulator_supply_alias(struct device **dev, const char **supply)
1293 {
1294         struct regulator_supply_alias *map;
1295
1296         map = regulator_find_supply_alias(*dev, *supply);
1297         if (map) {
1298                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1299                                 *supply, map->alias_supply,
1300                                 dev_name(map->alias_dev));
1301                 *dev = map->alias_dev;
1302                 *supply = map->alias_supply;
1303         }
1304 }
1305
1306 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1307                                                   const char *supply,
1308                                                   int *ret)
1309 {
1310         struct regulator_dev *r;
1311         struct device_node *node;
1312         struct regulator_map *map;
1313         const char *devname = NULL;
1314
1315         regulator_supply_alias(&dev, &supply);
1316
1317         /* first do a dt based lookup */
1318         if (dev && dev->of_node) {
1319                 node = of_get_regulator(dev, supply);
1320                 if (node) {
1321                         list_for_each_entry(r, &regulator_list, list)
1322                                 if (r->dev.parent &&
1323                                         node == r->dev.of_node)
1324                                         return r;
1325                         *ret = -EPROBE_DEFER;
1326                         return NULL;
1327                 } else {
1328                         /*
1329                          * If we couldn't even get the node then it's
1330                          * not just that the device didn't register
1331                          * yet, there's no node and we'll never
1332                          * succeed.
1333                          */
1334                         *ret = -ENODEV;
1335                 }
1336         }
1337
1338         /* if not found, try doing it non-dt way */
1339         if (dev)
1340                 devname = dev_name(dev);
1341
1342         list_for_each_entry(r, &regulator_list, list)
1343                 if (strcmp(rdev_get_name(r), supply) == 0)
1344                         return r;
1345
1346         list_for_each_entry(map, &regulator_map_list, list) {
1347                 /* If the mapping has a device set up it must match */
1348                 if (map->dev_name &&
1349                     (!devname || strcmp(map->dev_name, devname)))
1350                         continue;
1351
1352                 if (strcmp(map->supply, supply) == 0)
1353                         return map->regulator;
1354         }
1355
1356
1357         return NULL;
1358 }
1359
1360 static int regulator_resolve_supply(struct regulator_dev *rdev)
1361 {
1362         struct regulator_dev *r;
1363         struct device *dev = rdev->dev.parent;
1364         int ret;
1365
1366         /* No supply to resovle? */
1367         if (!rdev->supply_name)
1368                 return 0;
1369
1370         /* Supply already resolved? */
1371         if (rdev->supply)
1372                 return 0;
1373
1374         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1375         if (ret == -ENODEV) {
1376                 /*
1377                  * No supply was specified for this regulator and
1378                  * there will never be one.
1379                  */
1380                 return 0;
1381         }
1382
1383         if (!r) {
1384                 if (have_full_constraints()) {
1385                         r = dummy_regulator_rdev;
1386                 } else {
1387                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1388                                 rdev->supply_name, rdev->desc->name);
1389                         return -EPROBE_DEFER;
1390                 }
1391         }
1392
1393         /* Recursively resolve the supply of the supply */
1394         ret = regulator_resolve_supply(r);
1395         if (ret < 0)
1396                 return ret;
1397
1398         ret = set_supply(rdev, r);
1399         if (ret < 0)
1400                 return ret;
1401
1402         /* Cascade always-on state to supply */
1403         if (_regulator_is_enabled(rdev)) {
1404                 ret = regulator_enable(rdev->supply);
1405                 if (ret < 0)
1406                         return ret;
1407         }
1408
1409         return 0;
1410 }
1411
1412 /* Internal regulator request function */
1413 static struct regulator *_regulator_get(struct device *dev, const char *id,
1414                                         bool exclusive, bool allow_dummy)
1415 {
1416         struct regulator_dev *rdev;
1417         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1418         const char *devname = NULL;
1419         int ret;
1420
1421         if (id == NULL) {
1422                 pr_err("get() with no identifier\n");
1423                 return ERR_PTR(-EINVAL);
1424         }
1425
1426         if (dev)
1427                 devname = dev_name(dev);
1428
1429         if (have_full_constraints())
1430                 ret = -ENODEV;
1431         else
1432                 ret = -EPROBE_DEFER;
1433
1434         mutex_lock(&regulator_list_mutex);
1435
1436         rdev = regulator_dev_lookup(dev, id, &ret);
1437         if (rdev)
1438                 goto found;
1439
1440         regulator = ERR_PTR(ret);
1441
1442         /*
1443          * If we have return value from dev_lookup fail, we do not expect to
1444          * succeed, so, quit with appropriate error value
1445          */
1446         if (ret && ret != -ENODEV)
1447                 goto out;
1448
1449         if (!devname)
1450                 devname = "deviceless";
1451
1452         /*
1453          * Assume that a regulator is physically present and enabled
1454          * even if it isn't hooked up and just provide a dummy.
1455          */
1456         if (have_full_constraints() && allow_dummy) {
1457                 pr_warn("%s supply %s not found, using dummy regulator\n",
1458                         devname, id);
1459
1460                 rdev = dummy_regulator_rdev;
1461                 goto found;
1462         /* Don't log an error when called from regulator_get_optional() */
1463         } else if (!have_full_constraints() || exclusive) {
1464                 dev_warn(dev, "dummy supplies not allowed\n");
1465         }
1466
1467         mutex_unlock(&regulator_list_mutex);
1468         return regulator;
1469
1470 found:
1471         if (rdev->exclusive) {
1472                 regulator = ERR_PTR(-EPERM);
1473                 goto out;
1474         }
1475
1476         if (exclusive && rdev->open_count) {
1477                 regulator = ERR_PTR(-EBUSY);
1478                 goto out;
1479         }
1480
1481         ret = regulator_resolve_supply(rdev);
1482         if (ret < 0) {
1483                 regulator = ERR_PTR(ret);
1484                 goto out;
1485         }
1486
1487         if (!try_module_get(rdev->owner))
1488                 goto out;
1489
1490         regulator = create_regulator(rdev, dev, id);
1491         if (regulator == NULL) {
1492                 regulator = ERR_PTR(-ENOMEM);
1493                 module_put(rdev->owner);
1494                 goto out;
1495         }
1496
1497         rdev->open_count++;
1498         if (exclusive) {
1499                 rdev->exclusive = 1;
1500
1501                 ret = _regulator_is_enabled(rdev);
1502                 if (ret > 0)
1503                         rdev->use_count = 1;
1504                 else
1505                         rdev->use_count = 0;
1506         }
1507
1508 out:
1509         mutex_unlock(&regulator_list_mutex);
1510
1511         return regulator;
1512 }
1513
1514 /**
1515  * regulator_get - lookup and obtain a reference to a regulator.
1516  * @dev: device for regulator "consumer"
1517  * @id: Supply name or regulator ID.
1518  *
1519  * Returns a struct regulator corresponding to the regulator producer,
1520  * or IS_ERR() condition containing errno.
1521  *
1522  * Use of supply names configured via regulator_set_device_supply() is
1523  * strongly encouraged.  It is recommended that the supply name used
1524  * should match the name used for the supply and/or the relevant
1525  * device pins in the datasheet.
1526  */
1527 struct regulator *regulator_get(struct device *dev, const char *id)
1528 {
1529         return _regulator_get(dev, id, false, true);
1530 }
1531 EXPORT_SYMBOL_GPL(regulator_get);
1532
1533 /**
1534  * regulator_get_exclusive - obtain exclusive access to a regulator.
1535  * @dev: device for regulator "consumer"
1536  * @id: Supply name or regulator ID.
1537  *
1538  * Returns a struct regulator corresponding to the regulator producer,
1539  * or IS_ERR() condition containing errno.  Other consumers will be
1540  * unable to obtain this regulator while this reference is held and the
1541  * use count for the regulator will be initialised to reflect the current
1542  * state of the regulator.
1543  *
1544  * This is intended for use by consumers which cannot tolerate shared
1545  * use of the regulator such as those which need to force the
1546  * regulator off for correct operation of the hardware they are
1547  * controlling.
1548  *
1549  * Use of supply names configured via regulator_set_device_supply() is
1550  * strongly encouraged.  It is recommended that the supply name used
1551  * should match the name used for the supply and/or the relevant
1552  * device pins in the datasheet.
1553  */
1554 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1555 {
1556         return _regulator_get(dev, id, true, false);
1557 }
1558 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1559
1560 /**
1561  * regulator_get_optional - obtain optional access to a regulator.
1562  * @dev: device for regulator "consumer"
1563  * @id: Supply name or regulator ID.
1564  *
1565  * Returns a struct regulator corresponding to the regulator producer,
1566  * or IS_ERR() condition containing errno.
1567  *
1568  * This is intended for use by consumers for devices which can have
1569  * some supplies unconnected in normal use, such as some MMC devices.
1570  * It can allow the regulator core to provide stub supplies for other
1571  * supplies requested using normal regulator_get() calls without
1572  * disrupting the operation of drivers that can handle absent
1573  * supplies.
1574  *
1575  * Use of supply names configured via regulator_set_device_supply() is
1576  * strongly encouraged.  It is recommended that the supply name used
1577  * should match the name used for the supply and/or the relevant
1578  * device pins in the datasheet.
1579  */
1580 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1581 {
1582         return _regulator_get(dev, id, false, false);
1583 }
1584 EXPORT_SYMBOL_GPL(regulator_get_optional);
1585
1586 /* regulator_list_mutex lock held by regulator_put() */
1587 static void _regulator_put(struct regulator *regulator)
1588 {
1589         struct regulator_dev *rdev;
1590
1591         if (regulator == NULL || IS_ERR(regulator))
1592                 return;
1593
1594         rdev = regulator->rdev;
1595
1596         debugfs_remove_recursive(regulator->debugfs);
1597
1598         /* remove any sysfs entries */
1599         if (regulator->dev)
1600                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1601         mutex_lock(&rdev->mutex);
1602         kfree(regulator->supply_name);
1603         list_del(&regulator->list);
1604         kfree(regulator);
1605
1606         rdev->open_count--;
1607         rdev->exclusive = 0;
1608         mutex_unlock(&rdev->mutex);
1609
1610         module_put(rdev->owner);
1611 }
1612
1613 /**
1614  * regulator_put - "free" the regulator source
1615  * @regulator: regulator source
1616  *
1617  * Note: drivers must ensure that all regulator_enable calls made on this
1618  * regulator source are balanced by regulator_disable calls prior to calling
1619  * this function.
1620  */
1621 void regulator_put(struct regulator *regulator)
1622 {
1623         mutex_lock(&regulator_list_mutex);
1624         _regulator_put(regulator);
1625         mutex_unlock(&regulator_list_mutex);
1626 }
1627 EXPORT_SYMBOL_GPL(regulator_put);
1628
1629 /**
1630  * regulator_register_supply_alias - Provide device alias for supply lookup
1631  *
1632  * @dev: device that will be given as the regulator "consumer"
1633  * @id: Supply name or regulator ID
1634  * @alias_dev: device that should be used to lookup the supply
1635  * @alias_id: Supply name or regulator ID that should be used to lookup the
1636  * supply
1637  *
1638  * All lookups for id on dev will instead be conducted for alias_id on
1639  * alias_dev.
1640  */
1641 int regulator_register_supply_alias(struct device *dev, const char *id,
1642                                     struct device *alias_dev,
1643                                     const char *alias_id)
1644 {
1645         struct regulator_supply_alias *map;
1646
1647         map = regulator_find_supply_alias(dev, id);
1648         if (map)
1649                 return -EEXIST;
1650
1651         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1652         if (!map)
1653                 return -ENOMEM;
1654
1655         map->src_dev = dev;
1656         map->src_supply = id;
1657         map->alias_dev = alias_dev;
1658         map->alias_supply = alias_id;
1659
1660         list_add(&map->list, &regulator_supply_alias_list);
1661
1662         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1663                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1664
1665         return 0;
1666 }
1667 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1668
1669 /**
1670  * regulator_unregister_supply_alias - Remove device alias
1671  *
1672  * @dev: device that will be given as the regulator "consumer"
1673  * @id: Supply name or regulator ID
1674  *
1675  * Remove a lookup alias if one exists for id on dev.
1676  */
1677 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1678 {
1679         struct regulator_supply_alias *map;
1680
1681         map = regulator_find_supply_alias(dev, id);
1682         if (map) {
1683                 list_del(&map->list);
1684                 kfree(map);
1685         }
1686 }
1687 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1688
1689 /**
1690  * regulator_bulk_register_supply_alias - register multiple aliases
1691  *
1692  * @dev: device that will be given as the regulator "consumer"
1693  * @id: List of supply names or regulator IDs
1694  * @alias_dev: device that should be used to lookup the supply
1695  * @alias_id: List of supply names or regulator IDs that should be used to
1696  * lookup the supply
1697  * @num_id: Number of aliases to register
1698  *
1699  * @return 0 on success, an errno on failure.
1700  *
1701  * This helper function allows drivers to register several supply
1702  * aliases in one operation.  If any of the aliases cannot be
1703  * registered any aliases that were registered will be removed
1704  * before returning to the caller.
1705  */
1706 int regulator_bulk_register_supply_alias(struct device *dev,
1707                                          const char *const *id,
1708                                          struct device *alias_dev,
1709                                          const char *const *alias_id,
1710                                          int num_id)
1711 {
1712         int i;
1713         int ret;
1714
1715         for (i = 0; i < num_id; ++i) {
1716                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1717                                                       alias_id[i]);
1718                 if (ret < 0)
1719                         goto err;
1720         }
1721
1722         return 0;
1723
1724 err:
1725         dev_err(dev,
1726                 "Failed to create supply alias %s,%s -> %s,%s\n",
1727                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1728
1729         while (--i >= 0)
1730                 regulator_unregister_supply_alias(dev, id[i]);
1731
1732         return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1735
1736 /**
1737  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1738  *
1739  * @dev: device that will be given as the regulator "consumer"
1740  * @id: List of supply names or regulator IDs
1741  * @num_id: Number of aliases to unregister
1742  *
1743  * This helper function allows drivers to unregister several supply
1744  * aliases in one operation.
1745  */
1746 void regulator_bulk_unregister_supply_alias(struct device *dev,
1747                                             const char *const *id,
1748                                             int num_id)
1749 {
1750         int i;
1751
1752         for (i = 0; i < num_id; ++i)
1753                 regulator_unregister_supply_alias(dev, id[i]);
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1756
1757
1758 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1759 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1760                                 const struct regulator_config *config)
1761 {
1762         struct regulator_enable_gpio *pin;
1763         struct gpio_desc *gpiod;
1764         int ret;
1765
1766         gpiod = gpio_to_desc(config->ena_gpio);
1767
1768         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1769                 if (pin->gpiod == gpiod) {
1770                         rdev_dbg(rdev, "GPIO %d is already used\n",
1771                                 config->ena_gpio);
1772                         goto update_ena_gpio_to_rdev;
1773                 }
1774         }
1775
1776         ret = gpio_request_one(config->ena_gpio,
1777                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1778                                 rdev_get_name(rdev));
1779         if (ret)
1780                 return ret;
1781
1782         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1783         if (pin == NULL) {
1784                 gpio_free(config->ena_gpio);
1785                 return -ENOMEM;
1786         }
1787
1788         pin->gpiod = gpiod;
1789         pin->ena_gpio_invert = config->ena_gpio_invert;
1790         list_add(&pin->list, &regulator_ena_gpio_list);
1791
1792 update_ena_gpio_to_rdev:
1793         pin->request_count++;
1794         rdev->ena_pin = pin;
1795         return 0;
1796 }
1797
1798 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1799 {
1800         struct regulator_enable_gpio *pin, *n;
1801
1802         if (!rdev->ena_pin)
1803                 return;
1804
1805         /* Free the GPIO only in case of no use */
1806         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1807                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1808                         if (pin->request_count <= 1) {
1809                                 pin->request_count = 0;
1810                                 gpiod_put(pin->gpiod);
1811                                 list_del(&pin->list);
1812                                 kfree(pin);
1813                                 rdev->ena_pin = NULL;
1814                                 return;
1815                         } else {
1816                                 pin->request_count--;
1817                         }
1818                 }
1819         }
1820 }
1821
1822 /**
1823  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1824  * @rdev: regulator_dev structure
1825  * @enable: enable GPIO at initial use?
1826  *
1827  * GPIO is enabled in case of initial use. (enable_count is 0)
1828  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1829  */
1830 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1831 {
1832         struct regulator_enable_gpio *pin = rdev->ena_pin;
1833
1834         if (!pin)
1835                 return -EINVAL;
1836
1837         if (enable) {
1838                 /* Enable GPIO at initial use */
1839                 if (pin->enable_count == 0)
1840                         gpiod_set_value_cansleep(pin->gpiod,
1841                                                  !pin->ena_gpio_invert);
1842
1843                 pin->enable_count++;
1844         } else {
1845                 if (pin->enable_count > 1) {
1846                         pin->enable_count--;
1847                         return 0;
1848                 }
1849
1850                 /* Disable GPIO if not used */
1851                 if (pin->enable_count <= 1) {
1852                         gpiod_set_value_cansleep(pin->gpiod,
1853                                                  pin->ena_gpio_invert);
1854                         pin->enable_count = 0;
1855                 }
1856         }
1857
1858         return 0;
1859 }
1860
1861 /**
1862  * _regulator_enable_delay - a delay helper function
1863  * @delay: time to delay in microseconds
1864  *
1865  * Delay for the requested amount of time as per the guidelines in:
1866  *
1867  *     Documentation/timers/timers-howto.txt
1868  *
1869  * The assumption here is that regulators will never be enabled in
1870  * atomic context and therefore sleeping functions can be used.
1871  */
1872 static void _regulator_enable_delay(unsigned int delay)
1873 {
1874         unsigned int ms = delay / 1000;
1875         unsigned int us = delay % 1000;
1876
1877         if (ms > 0) {
1878                 /*
1879                  * For small enough values, handle super-millisecond
1880                  * delays in the usleep_range() call below.
1881                  */
1882                 if (ms < 20)
1883                         us += ms * 1000;
1884                 else
1885                         msleep(ms);
1886         }
1887
1888         /*
1889          * Give the scheduler some room to coalesce with any other
1890          * wakeup sources. For delays shorter than 10 us, don't even
1891          * bother setting up high-resolution timers and just busy-
1892          * loop.
1893          */
1894         if (us >= 10)
1895                 usleep_range(us, us + 100);
1896         else
1897                 udelay(us);
1898 }
1899
1900 static int _regulator_do_enable(struct regulator_dev *rdev)
1901 {
1902         int ret, delay;
1903
1904         /* Query before enabling in case configuration dependent.  */
1905         ret = _regulator_get_enable_time(rdev);
1906         if (ret >= 0) {
1907                 delay = ret;
1908         } else {
1909                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1910                 delay = 0;
1911         }
1912
1913         trace_regulator_enable(rdev_get_name(rdev));
1914
1915         if (rdev->desc->off_on_delay) {
1916                 /* if needed, keep a distance of off_on_delay from last time
1917                  * this regulator was disabled.
1918                  */
1919                 unsigned long start_jiffy = jiffies;
1920                 unsigned long intended, max_delay, remaining;
1921
1922                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1923                 intended = rdev->last_off_jiffy + max_delay;
1924
1925                 if (time_before(start_jiffy, intended)) {
1926                         /* calc remaining jiffies to deal with one-time
1927                          * timer wrapping.
1928                          * in case of multiple timer wrapping, either it can be
1929                          * detected by out-of-range remaining, or it cannot be
1930                          * detected and we gets a panelty of
1931                          * _regulator_enable_delay().
1932                          */
1933                         remaining = intended - start_jiffy;
1934                         if (remaining <= max_delay)
1935                                 _regulator_enable_delay(
1936                                                 jiffies_to_usecs(remaining));
1937                 }
1938         }
1939
1940         if (rdev->ena_pin) {
1941                 if (!rdev->ena_gpio_state) {
1942                         ret = regulator_ena_gpio_ctrl(rdev, true);
1943                         if (ret < 0)
1944                                 return ret;
1945                         rdev->ena_gpio_state = 1;
1946                 }
1947         } else if (rdev->desc->ops->enable) {
1948                 ret = rdev->desc->ops->enable(rdev);
1949                 if (ret < 0)
1950                         return ret;
1951         } else {
1952                 return -EINVAL;
1953         }
1954
1955         /* Allow the regulator to ramp; it would be useful to extend
1956          * this for bulk operations so that the regulators can ramp
1957          * together.  */
1958         trace_regulator_enable_delay(rdev_get_name(rdev));
1959
1960         _regulator_enable_delay(delay);
1961
1962         trace_regulator_enable_complete(rdev_get_name(rdev));
1963
1964         return 0;
1965 }
1966
1967 /* locks held by regulator_enable() */
1968 static int _regulator_enable(struct regulator_dev *rdev)
1969 {
1970         int ret;
1971
1972         /* check voltage and requested load before enabling */
1973         if (rdev->constraints &&
1974             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1975                 drms_uA_update(rdev);
1976
1977         if (rdev->use_count == 0) {
1978                 /* The regulator may on if it's not switchable or left on */
1979                 ret = _regulator_is_enabled(rdev);
1980                 if (ret == -EINVAL || ret == 0) {
1981                         if (!_regulator_can_change_status(rdev))
1982                                 return -EPERM;
1983
1984                         ret = _regulator_do_enable(rdev);
1985                         if (ret < 0)
1986                                 return ret;
1987
1988                 } else if (ret < 0) {
1989                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1990                         return ret;
1991                 }
1992                 /* Fallthrough on positive return values - already enabled */
1993         }
1994
1995         rdev->use_count++;
1996
1997         return 0;
1998 }
1999
2000 /**
2001  * regulator_enable - enable regulator output
2002  * @regulator: regulator source
2003  *
2004  * Request that the regulator be enabled with the regulator output at
2005  * the predefined voltage or current value.  Calls to regulator_enable()
2006  * must be balanced with calls to regulator_disable().
2007  *
2008  * NOTE: the output value can be set by other drivers, boot loader or may be
2009  * hardwired in the regulator.
2010  */
2011 int regulator_enable(struct regulator *regulator)
2012 {
2013         struct regulator_dev *rdev = regulator->rdev;
2014         int ret = 0;
2015
2016         if (regulator->always_on)
2017                 return 0;
2018
2019         if (rdev->supply) {
2020                 ret = regulator_enable(rdev->supply);
2021                 if (ret != 0)
2022                         return ret;
2023         }
2024
2025         mutex_lock(&rdev->mutex);
2026         ret = _regulator_enable(rdev);
2027         mutex_unlock(&rdev->mutex);
2028
2029         if (ret != 0 && rdev->supply)
2030                 regulator_disable(rdev->supply);
2031
2032         return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_enable);
2035
2036 static int _regulator_do_disable(struct regulator_dev *rdev)
2037 {
2038         int ret;
2039
2040         trace_regulator_disable(rdev_get_name(rdev));
2041
2042         if (rdev->ena_pin) {
2043                 if (rdev->ena_gpio_state) {
2044                         ret = regulator_ena_gpio_ctrl(rdev, false);
2045                         if (ret < 0)
2046                                 return ret;
2047                         rdev->ena_gpio_state = 0;
2048                 }
2049
2050         } else if (rdev->desc->ops->disable) {
2051                 ret = rdev->desc->ops->disable(rdev);
2052                 if (ret != 0)
2053                         return ret;
2054         }
2055
2056         /* cares about last_off_jiffy only if off_on_delay is required by
2057          * device.
2058          */
2059         if (rdev->desc->off_on_delay)
2060                 rdev->last_off_jiffy = jiffies;
2061
2062         trace_regulator_disable_complete(rdev_get_name(rdev));
2063
2064         return 0;
2065 }
2066
2067 /* locks held by regulator_disable() */
2068 static int _regulator_disable(struct regulator_dev *rdev)
2069 {
2070         int ret = 0;
2071
2072         if (WARN(rdev->use_count <= 0,
2073                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2074                 return -EIO;
2075
2076         /* are we the last user and permitted to disable ? */
2077         if (rdev->use_count == 1 &&
2078             (rdev->constraints && !rdev->constraints->always_on)) {
2079
2080                 /* we are last user */
2081                 if (_regulator_can_change_status(rdev)) {
2082                         ret = _notifier_call_chain(rdev,
2083                                                    REGULATOR_EVENT_PRE_DISABLE,
2084                                                    NULL);
2085                         if (ret & NOTIFY_STOP_MASK)
2086                                 return -EINVAL;
2087
2088                         ret = _regulator_do_disable(rdev);
2089                         if (ret < 0) {
2090                                 rdev_err(rdev, "failed to disable\n");
2091                                 _notifier_call_chain(rdev,
2092                                                 REGULATOR_EVENT_ABORT_DISABLE,
2093                                                 NULL);
2094                                 return ret;
2095                         }
2096                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2097                                         NULL);
2098                 }
2099
2100                 rdev->use_count = 0;
2101         } else if (rdev->use_count > 1) {
2102
2103                 if (rdev->constraints &&
2104                         (rdev->constraints->valid_ops_mask &
2105                         REGULATOR_CHANGE_DRMS))
2106                         drms_uA_update(rdev);
2107
2108                 rdev->use_count--;
2109         }
2110
2111         return ret;
2112 }
2113
2114 /**
2115  * regulator_disable - disable regulator output
2116  * @regulator: regulator source
2117  *
2118  * Disable the regulator output voltage or current.  Calls to
2119  * regulator_enable() must be balanced with calls to
2120  * regulator_disable().
2121  *
2122  * NOTE: this will only disable the regulator output if no other consumer
2123  * devices have it enabled, the regulator device supports disabling and
2124  * machine constraints permit this operation.
2125  */
2126 int regulator_disable(struct regulator *regulator)
2127 {
2128         struct regulator_dev *rdev = regulator->rdev;
2129         int ret = 0;
2130
2131         if (regulator->always_on)
2132                 return 0;
2133
2134         mutex_lock(&rdev->mutex);
2135         ret = _regulator_disable(rdev);
2136         mutex_unlock(&rdev->mutex);
2137
2138         if (ret == 0 && rdev->supply)
2139                 regulator_disable(rdev->supply);
2140
2141         return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_disable);
2144
2145 /* locks held by regulator_force_disable() */
2146 static int _regulator_force_disable(struct regulator_dev *rdev)
2147 {
2148         int ret = 0;
2149
2150         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2151                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2152         if (ret & NOTIFY_STOP_MASK)
2153                 return -EINVAL;
2154
2155         ret = _regulator_do_disable(rdev);
2156         if (ret < 0) {
2157                 rdev_err(rdev, "failed to force disable\n");
2158                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2159                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2160                 return ret;
2161         }
2162
2163         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2164                         REGULATOR_EVENT_DISABLE, NULL);
2165
2166         return 0;
2167 }
2168
2169 /**
2170  * regulator_force_disable - force disable regulator output
2171  * @regulator: regulator source
2172  *
2173  * Forcibly disable the regulator output voltage or current.
2174  * NOTE: this *will* disable the regulator output even if other consumer
2175  * devices have it enabled. This should be used for situations when device
2176  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2177  */
2178 int regulator_force_disable(struct regulator *regulator)
2179 {
2180         struct regulator_dev *rdev = regulator->rdev;
2181         int ret;
2182
2183         mutex_lock(&rdev->mutex);
2184         regulator->uA_load = 0;
2185         ret = _regulator_force_disable(regulator->rdev);
2186         mutex_unlock(&rdev->mutex);
2187
2188         if (rdev->supply)
2189                 while (rdev->open_count--)
2190                         regulator_disable(rdev->supply);
2191
2192         return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(regulator_force_disable);
2195
2196 static void regulator_disable_work(struct work_struct *work)
2197 {
2198         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2199                                                   disable_work.work);
2200         int count, i, ret;
2201
2202         mutex_lock(&rdev->mutex);
2203
2204         BUG_ON(!rdev->deferred_disables);
2205
2206         count = rdev->deferred_disables;
2207         rdev->deferred_disables = 0;
2208
2209         for (i = 0; i < count; i++) {
2210                 ret = _regulator_disable(rdev);
2211                 if (ret != 0)
2212                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2213         }
2214
2215         mutex_unlock(&rdev->mutex);
2216
2217         if (rdev->supply) {
2218                 for (i = 0; i < count; i++) {
2219                         ret = regulator_disable(rdev->supply);
2220                         if (ret != 0) {
2221                                 rdev_err(rdev,
2222                                          "Supply disable failed: %d\n", ret);
2223                         }
2224                 }
2225         }
2226 }
2227
2228 /**
2229  * regulator_disable_deferred - disable regulator output with delay
2230  * @regulator: regulator source
2231  * @ms: miliseconds until the regulator is disabled
2232  *
2233  * Execute regulator_disable() on the regulator after a delay.  This
2234  * is intended for use with devices that require some time to quiesce.
2235  *
2236  * NOTE: this will only disable the regulator output if no other consumer
2237  * devices have it enabled, the regulator device supports disabling and
2238  * machine constraints permit this operation.
2239  */
2240 int regulator_disable_deferred(struct regulator *regulator, int ms)
2241 {
2242         struct regulator_dev *rdev = regulator->rdev;
2243         int ret;
2244
2245         if (regulator->always_on)
2246                 return 0;
2247
2248         if (!ms)
2249                 return regulator_disable(regulator);
2250
2251         mutex_lock(&rdev->mutex);
2252         rdev->deferred_disables++;
2253         mutex_unlock(&rdev->mutex);
2254
2255         ret = queue_delayed_work(system_power_efficient_wq,
2256                                  &rdev->disable_work,
2257                                  msecs_to_jiffies(ms));
2258         if (ret < 0)
2259                 return ret;
2260         else
2261                 return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2264
2265 static int _regulator_is_enabled(struct regulator_dev *rdev)
2266 {
2267         /* A GPIO control always takes precedence */
2268         if (rdev->ena_pin)
2269                 return rdev->ena_gpio_state;
2270
2271         /* If we don't know then assume that the regulator is always on */
2272         if (!rdev->desc->ops->is_enabled)
2273                 return 1;
2274
2275         return rdev->desc->ops->is_enabled(rdev);
2276 }
2277
2278 /**
2279  * regulator_is_enabled - is the regulator output enabled
2280  * @regulator: regulator source
2281  *
2282  * Returns positive if the regulator driver backing the source/client
2283  * has requested that the device be enabled, zero if it hasn't, else a
2284  * negative errno code.
2285  *
2286  * Note that the device backing this regulator handle can have multiple
2287  * users, so it might be enabled even if regulator_enable() was never
2288  * called for this particular source.
2289  */
2290 int regulator_is_enabled(struct regulator *regulator)
2291 {
2292         int ret;
2293
2294         if (regulator->always_on)
2295                 return 1;
2296
2297         mutex_lock(&regulator->rdev->mutex);
2298         ret = _regulator_is_enabled(regulator->rdev);
2299         mutex_unlock(&regulator->rdev->mutex);
2300
2301         return ret;
2302 }
2303 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2304
2305 /**
2306  * regulator_can_change_voltage - check if regulator can change voltage
2307  * @regulator: regulator source
2308  *
2309  * Returns positive if the regulator driver backing the source/client
2310  * can change its voltage, false otherwise. Useful for detecting fixed
2311  * or dummy regulators and disabling voltage change logic in the client
2312  * driver.
2313  */
2314 int regulator_can_change_voltage(struct regulator *regulator)
2315 {
2316         struct regulator_dev    *rdev = regulator->rdev;
2317
2318         if (rdev->constraints &&
2319             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2320                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2321                         return 1;
2322
2323                 if (rdev->desc->continuous_voltage_range &&
2324                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2325                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2326                         return 1;
2327         }
2328
2329         return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2332
2333 /**
2334  * regulator_count_voltages - count regulator_list_voltage() selectors
2335  * @regulator: regulator source
2336  *
2337  * Returns number of selectors, or negative errno.  Selectors are
2338  * numbered starting at zero, and typically correspond to bitfields
2339  * in hardware registers.
2340  */
2341 int regulator_count_voltages(struct regulator *regulator)
2342 {
2343         struct regulator_dev    *rdev = regulator->rdev;
2344
2345         if (rdev->desc->n_voltages)
2346                 return rdev->desc->n_voltages;
2347
2348         if (!rdev->supply)
2349                 return -EINVAL;
2350
2351         return regulator_count_voltages(rdev->supply);
2352 }
2353 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2354
2355 /**
2356  * regulator_list_voltage - enumerate supported voltages
2357  * @regulator: regulator source
2358  * @selector: identify voltage to list
2359  * Context: can sleep
2360  *
2361  * Returns a voltage that can be passed to @regulator_set_voltage(),
2362  * zero if this selector code can't be used on this system, or a
2363  * negative errno.
2364  */
2365 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2366 {
2367         struct regulator_dev *rdev = regulator->rdev;
2368         const struct regulator_ops *ops = rdev->desc->ops;
2369         int ret;
2370
2371         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2372                 return rdev->desc->fixed_uV;
2373
2374         if (ops->list_voltage) {
2375                 if (selector >= rdev->desc->n_voltages)
2376                         return -EINVAL;
2377                 mutex_lock(&rdev->mutex);
2378                 ret = ops->list_voltage(rdev, selector);
2379                 mutex_unlock(&rdev->mutex);
2380         } else if (rdev->supply) {
2381                 ret = regulator_list_voltage(rdev->supply, selector);
2382         } else {
2383                 return -EINVAL;
2384         }
2385
2386         if (ret > 0) {
2387                 if (ret < rdev->constraints->min_uV)
2388                         ret = 0;
2389                 else if (ret > rdev->constraints->max_uV)
2390                         ret = 0;
2391         }
2392
2393         return ret;
2394 }
2395 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2396
2397 /**
2398  * regulator_get_regmap - get the regulator's register map
2399  * @regulator: regulator source
2400  *
2401  * Returns the register map for the given regulator, or an ERR_PTR value
2402  * if the regulator doesn't use regmap.
2403  */
2404 struct regmap *regulator_get_regmap(struct regulator *regulator)
2405 {
2406         struct regmap *map = regulator->rdev->regmap;
2407
2408         return map ? map : ERR_PTR(-EOPNOTSUPP);
2409 }
2410
2411 /**
2412  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2413  * @regulator: regulator source
2414  * @vsel_reg: voltage selector register, output parameter
2415  * @vsel_mask: mask for voltage selector bitfield, output parameter
2416  *
2417  * Returns the hardware register offset and bitmask used for setting the
2418  * regulator voltage. This might be useful when configuring voltage-scaling
2419  * hardware or firmware that can make I2C requests behind the kernel's back,
2420  * for example.
2421  *
2422  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2423  * and 0 is returned, otherwise a negative errno is returned.
2424  */
2425 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2426                                          unsigned *vsel_reg,
2427                                          unsigned *vsel_mask)
2428 {
2429         struct regulator_dev *rdev = regulator->rdev;
2430         const struct regulator_ops *ops = rdev->desc->ops;
2431
2432         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2433                 return -EOPNOTSUPP;
2434
2435          *vsel_reg = rdev->desc->vsel_reg;
2436          *vsel_mask = rdev->desc->vsel_mask;
2437
2438          return 0;
2439 }
2440 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2441
2442 /**
2443  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2444  * @regulator: regulator source
2445  * @selector: identify voltage to list
2446  *
2447  * Converts the selector to a hardware-specific voltage selector that can be
2448  * directly written to the regulator registers. The address of the voltage
2449  * register can be determined by calling @regulator_get_hardware_vsel_register.
2450  *
2451  * On error a negative errno is returned.
2452  */
2453 int regulator_list_hardware_vsel(struct regulator *regulator,
2454                                  unsigned selector)
2455 {
2456         struct regulator_dev *rdev = regulator->rdev;
2457         const struct regulator_ops *ops = rdev->desc->ops;
2458
2459         if (selector >= rdev->desc->n_voltages)
2460                 return -EINVAL;
2461         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2462                 return -EOPNOTSUPP;
2463
2464         return selector;
2465 }
2466 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2467
2468 /**
2469  * regulator_get_linear_step - return the voltage step size between VSEL values
2470  * @regulator: regulator source
2471  *
2472  * Returns the voltage step size between VSEL values for linear
2473  * regulators, or return 0 if the regulator isn't a linear regulator.
2474  */
2475 unsigned int regulator_get_linear_step(struct regulator *regulator)
2476 {
2477         struct regulator_dev *rdev = regulator->rdev;
2478
2479         return rdev->desc->uV_step;
2480 }
2481 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2482
2483 /**
2484  * regulator_is_supported_voltage - check if a voltage range can be supported
2485  *
2486  * @regulator: Regulator to check.
2487  * @min_uV: Minimum required voltage in uV.
2488  * @max_uV: Maximum required voltage in uV.
2489  *
2490  * Returns a boolean or a negative error code.
2491  */
2492 int regulator_is_supported_voltage(struct regulator *regulator,
2493                                    int min_uV, int max_uV)
2494 {
2495         struct regulator_dev *rdev = regulator->rdev;
2496         int i, voltages, ret;
2497
2498         /* If we can't change voltage check the current voltage */
2499         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2500                 ret = regulator_get_voltage(regulator);
2501                 if (ret >= 0)
2502                         return min_uV <= ret && ret <= max_uV;
2503                 else
2504                         return ret;
2505         }
2506
2507         /* Any voltage within constrains range is fine? */
2508         if (rdev->desc->continuous_voltage_range)
2509                 return min_uV >= rdev->constraints->min_uV &&
2510                                 max_uV <= rdev->constraints->max_uV;
2511
2512         ret = regulator_count_voltages(regulator);
2513         if (ret < 0)
2514                 return ret;
2515         voltages = ret;
2516
2517         for (i = 0; i < voltages; i++) {
2518                 ret = regulator_list_voltage(regulator, i);
2519
2520                 if (ret >= min_uV && ret <= max_uV)
2521                         return 1;
2522         }
2523
2524         return 0;
2525 }
2526 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2527
2528 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2529                                        int min_uV, int max_uV,
2530                                        unsigned *selector)
2531 {
2532         struct pre_voltage_change_data data;
2533         int ret;
2534
2535         data.old_uV = _regulator_get_voltage(rdev);
2536         data.min_uV = min_uV;
2537         data.max_uV = max_uV;
2538         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2539                                    &data);
2540         if (ret & NOTIFY_STOP_MASK)
2541                 return -EINVAL;
2542
2543         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2544         if (ret >= 0)
2545                 return ret;
2546
2547         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2548                              (void *)data.old_uV);
2549
2550         return ret;
2551 }
2552
2553 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2554                                            int uV, unsigned selector)
2555 {
2556         struct pre_voltage_change_data data;
2557         int ret;
2558
2559         data.old_uV = _regulator_get_voltage(rdev);
2560         data.min_uV = uV;
2561         data.max_uV = uV;
2562         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2563                                    &data);
2564         if (ret & NOTIFY_STOP_MASK)
2565                 return -EINVAL;
2566
2567         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2568         if (ret >= 0)
2569                 return ret;
2570
2571         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2572                              (void *)data.old_uV);
2573
2574         return ret;
2575 }
2576
2577 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2578                                      int min_uV, int max_uV)
2579 {
2580         int ret;
2581         int delay = 0;
2582         int best_val = 0;
2583         unsigned int selector;
2584         int old_selector = -1;
2585
2586         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2587
2588         min_uV += rdev->constraints->uV_offset;
2589         max_uV += rdev->constraints->uV_offset;
2590
2591         /*
2592          * If we can't obtain the old selector there is not enough
2593          * info to call set_voltage_time_sel().
2594          */
2595         if (_regulator_is_enabled(rdev) &&
2596             rdev->desc->ops->set_voltage_time_sel &&
2597             rdev->desc->ops->get_voltage_sel) {
2598                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2599                 if (old_selector < 0)
2600                         return old_selector;
2601         }
2602
2603         if (rdev->desc->ops->set_voltage) {
2604                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2605                                                   &selector);
2606
2607                 if (ret >= 0) {
2608                         if (rdev->desc->ops->list_voltage)
2609                                 best_val = rdev->desc->ops->list_voltage(rdev,
2610                                                                          selector);
2611                         else
2612                                 best_val = _regulator_get_voltage(rdev);
2613                 }
2614
2615         } else if (rdev->desc->ops->set_voltage_sel) {
2616                 if (rdev->desc->ops->map_voltage) {
2617                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2618                                                            max_uV);
2619                 } else {
2620                         if (rdev->desc->ops->list_voltage ==
2621                             regulator_list_voltage_linear)
2622                                 ret = regulator_map_voltage_linear(rdev,
2623                                                                 min_uV, max_uV);
2624                         else if (rdev->desc->ops->list_voltage ==
2625                                  regulator_list_voltage_linear_range)
2626                                 ret = regulator_map_voltage_linear_range(rdev,
2627                                                                 min_uV, max_uV);
2628                         else
2629                                 ret = regulator_map_voltage_iterate(rdev,
2630                                                                 min_uV, max_uV);
2631                 }
2632
2633                 if (ret >= 0) {
2634                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2635                         if (min_uV <= best_val && max_uV >= best_val) {
2636                                 selector = ret;
2637                                 if (old_selector == selector)
2638                                         ret = 0;
2639                                 else
2640                                         ret = _regulator_call_set_voltage_sel(
2641                                                 rdev, best_val, selector);
2642                         } else {
2643                                 ret = -EINVAL;
2644                         }
2645                 }
2646         } else {
2647                 ret = -EINVAL;
2648         }
2649
2650         /* Call set_voltage_time_sel if successfully obtained old_selector */
2651         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2652                 && old_selector != selector) {
2653
2654                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2655                                                 old_selector, selector);
2656                 if (delay < 0) {
2657                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2658                                   delay);
2659                         delay = 0;
2660                 }
2661
2662                 /* Insert any necessary delays */
2663                 if (delay >= 1000) {
2664                         mdelay(delay / 1000);
2665                         udelay(delay % 1000);
2666                 } else if (delay) {
2667                         udelay(delay);
2668                 }
2669         }
2670
2671         if (ret == 0 && best_val >= 0) {
2672                 unsigned long data = best_val;
2673
2674                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2675                                      (void *)data);
2676         }
2677
2678         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2679
2680         return ret;
2681 }
2682
2683 /**
2684  * regulator_set_voltage - set regulator output voltage
2685  * @regulator: regulator source
2686  * @min_uV: Minimum required voltage in uV
2687  * @max_uV: Maximum acceptable voltage in uV
2688  *
2689  * Sets a voltage regulator to the desired output voltage. This can be set
2690  * during any regulator state. IOW, regulator can be disabled or enabled.
2691  *
2692  * If the regulator is enabled then the voltage will change to the new value
2693  * immediately otherwise if the regulator is disabled the regulator will
2694  * output at the new voltage when enabled.
2695  *
2696  * NOTE: If the regulator is shared between several devices then the lowest
2697  * request voltage that meets the system constraints will be used.
2698  * Regulator system constraints must be set for this regulator before
2699  * calling this function otherwise this call will fail.
2700  */
2701 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2702 {
2703         struct regulator_dev *rdev = regulator->rdev;
2704         int ret = 0;
2705         int old_min_uV, old_max_uV;
2706         int current_uV;
2707
2708         mutex_lock(&rdev->mutex);
2709
2710         /* If we're setting the same range as last time the change
2711          * should be a noop (some cpufreq implementations use the same
2712          * voltage for multiple frequencies, for example).
2713          */
2714         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2715                 goto out;
2716
2717         /* If we're trying to set a range that overlaps the current voltage,
2718          * return succesfully even though the regulator does not support
2719          * changing the voltage.
2720          */
2721         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2722                 current_uV = _regulator_get_voltage(rdev);
2723                 if (min_uV <= current_uV && current_uV <= max_uV) {
2724                         regulator->min_uV = min_uV;
2725                         regulator->max_uV = max_uV;
2726                         goto out;
2727                 }
2728         }
2729
2730         /* sanity check */
2731         if (!rdev->desc->ops->set_voltage &&
2732             !rdev->desc->ops->set_voltage_sel) {
2733                 ret = -EINVAL;
2734                 goto out;
2735         }
2736
2737         /* constraints check */
2738         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2739         if (ret < 0)
2740                 goto out;
2741
2742         /* restore original values in case of error */
2743         old_min_uV = regulator->min_uV;
2744         old_max_uV = regulator->max_uV;
2745         regulator->min_uV = min_uV;
2746         regulator->max_uV = max_uV;
2747
2748         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2749         if (ret < 0)
2750                 goto out2;
2751
2752         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2753         if (ret < 0)
2754                 goto out2;
2755
2756 out:
2757         mutex_unlock(&rdev->mutex);
2758         return ret;
2759 out2:
2760         regulator->min_uV = old_min_uV;
2761         regulator->max_uV = old_max_uV;
2762         mutex_unlock(&rdev->mutex);
2763         return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2766
2767 /**
2768  * regulator_set_voltage_time - get raise/fall time
2769  * @regulator: regulator source
2770  * @old_uV: starting voltage in microvolts
2771  * @new_uV: target voltage in microvolts
2772  *
2773  * Provided with the starting and ending voltage, this function attempts to
2774  * calculate the time in microseconds required to rise or fall to this new
2775  * voltage.
2776  */
2777 int regulator_set_voltage_time(struct regulator *regulator,
2778                                int old_uV, int new_uV)
2779 {
2780         struct regulator_dev *rdev = regulator->rdev;
2781         const struct regulator_ops *ops = rdev->desc->ops;
2782         int old_sel = -1;
2783         int new_sel = -1;
2784         int voltage;
2785         int i;
2786
2787         /* Currently requires operations to do this */
2788         if (!ops->list_voltage || !ops->set_voltage_time_sel
2789             || !rdev->desc->n_voltages)
2790                 return -EINVAL;
2791
2792         for (i = 0; i < rdev->desc->n_voltages; i++) {
2793                 /* We only look for exact voltage matches here */
2794                 voltage = regulator_list_voltage(regulator, i);
2795                 if (voltage < 0)
2796                         return -EINVAL;
2797                 if (voltage == 0)
2798                         continue;
2799                 if (voltage == old_uV)
2800                         old_sel = i;
2801                 if (voltage == new_uV)
2802                         new_sel = i;
2803         }
2804
2805         if (old_sel < 0 || new_sel < 0)
2806                 return -EINVAL;
2807
2808         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2809 }
2810 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2811
2812 /**
2813  * regulator_set_voltage_time_sel - get raise/fall time
2814  * @rdev: regulator source device
2815  * @old_selector: selector for starting voltage
2816  * @new_selector: selector for target voltage
2817  *
2818  * Provided with the starting and target voltage selectors, this function
2819  * returns time in microseconds required to rise or fall to this new voltage
2820  *
2821  * Drivers providing ramp_delay in regulation_constraints can use this as their
2822  * set_voltage_time_sel() operation.
2823  */
2824 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2825                                    unsigned int old_selector,
2826                                    unsigned int new_selector)
2827 {
2828         unsigned int ramp_delay = 0;
2829         int old_volt, new_volt;
2830
2831         if (rdev->constraints->ramp_delay)
2832                 ramp_delay = rdev->constraints->ramp_delay;
2833         else if (rdev->desc->ramp_delay)
2834                 ramp_delay = rdev->desc->ramp_delay;
2835
2836         if (ramp_delay == 0) {
2837                 rdev_warn(rdev, "ramp_delay not set\n");
2838                 return 0;
2839         }
2840
2841         /* sanity check */
2842         if (!rdev->desc->ops->list_voltage)
2843                 return -EINVAL;
2844
2845         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2846         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2847
2848         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2849 }
2850 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2851
2852 /**
2853  * regulator_sync_voltage - re-apply last regulator output voltage
2854  * @regulator: regulator source
2855  *
2856  * Re-apply the last configured voltage.  This is intended to be used
2857  * where some external control source the consumer is cooperating with
2858  * has caused the configured voltage to change.
2859  */
2860 int regulator_sync_voltage(struct regulator *regulator)
2861 {
2862         struct regulator_dev *rdev = regulator->rdev;
2863         int ret, min_uV, max_uV;
2864
2865         mutex_lock(&rdev->mutex);
2866
2867         if (!rdev->desc->ops->set_voltage &&
2868             !rdev->desc->ops->set_voltage_sel) {
2869                 ret = -EINVAL;
2870                 goto out;
2871         }
2872
2873         /* This is only going to work if we've had a voltage configured. */
2874         if (!regulator->min_uV && !regulator->max_uV) {
2875                 ret = -EINVAL;
2876                 goto out;
2877         }
2878
2879         min_uV = regulator->min_uV;
2880         max_uV = regulator->max_uV;
2881
2882         /* This should be a paranoia check... */
2883         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2884         if (ret < 0)
2885                 goto out;
2886
2887         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2888         if (ret < 0)
2889                 goto out;
2890
2891         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2892
2893 out:
2894         mutex_unlock(&rdev->mutex);
2895         return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2898
2899 static int _regulator_get_voltage(struct regulator_dev *rdev)
2900 {
2901         int sel, ret;
2902
2903         if (rdev->desc->ops->get_voltage_sel) {
2904                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2905                 if (sel < 0)
2906                         return sel;
2907                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2908         } else if (rdev->desc->ops->get_voltage) {
2909                 ret = rdev->desc->ops->get_voltage(rdev);
2910         } else if (rdev->desc->ops->list_voltage) {
2911                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2912         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2913                 ret = rdev->desc->fixed_uV;
2914         } else if (rdev->supply) {
2915                 ret = regulator_get_voltage(rdev->supply);
2916         } else {
2917                 return -EINVAL;
2918         }
2919
2920         if (ret < 0)
2921                 return ret;
2922         return ret - rdev->constraints->uV_offset;
2923 }
2924
2925 /**
2926  * regulator_get_voltage - get regulator output voltage
2927  * @regulator: regulator source
2928  *
2929  * This returns the current regulator voltage in uV.
2930  *
2931  * NOTE: If the regulator is disabled it will return the voltage value. This
2932  * function should not be used to determine regulator state.
2933  */
2934 int regulator_get_voltage(struct regulator *regulator)
2935 {
2936         int ret;
2937
2938         mutex_lock(&regulator->rdev->mutex);
2939
2940         ret = _regulator_get_voltage(regulator->rdev);
2941
2942         mutex_unlock(&regulator->rdev->mutex);
2943
2944         return ret;
2945 }
2946 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2947
2948 /**
2949  * regulator_set_current_limit - set regulator output current limit
2950  * @regulator: regulator source
2951  * @min_uA: Minimum supported current in uA
2952  * @max_uA: Maximum supported current in uA
2953  *
2954  * Sets current sink to the desired output current. This can be set during
2955  * any regulator state. IOW, regulator can be disabled or enabled.
2956  *
2957  * If the regulator is enabled then the current will change to the new value
2958  * immediately otherwise if the regulator is disabled the regulator will
2959  * output at the new current when enabled.
2960  *
2961  * NOTE: Regulator system constraints must be set for this regulator before
2962  * calling this function otherwise this call will fail.
2963  */
2964 int regulator_set_current_limit(struct regulator *regulator,
2965                                int min_uA, int max_uA)
2966 {
2967         struct regulator_dev *rdev = regulator->rdev;
2968         int ret;
2969
2970         mutex_lock(&rdev->mutex);
2971
2972         /* sanity check */
2973         if (!rdev->desc->ops->set_current_limit) {
2974                 ret = -EINVAL;
2975                 goto out;
2976         }
2977
2978         /* constraints check */
2979         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2980         if (ret < 0)
2981                 goto out;
2982
2983         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2984 out:
2985         mutex_unlock(&rdev->mutex);
2986         return ret;
2987 }
2988 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2989
2990 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2991 {
2992         int ret;
2993
2994         mutex_lock(&rdev->mutex);
2995
2996         /* sanity check */
2997         if (!rdev->desc->ops->get_current_limit) {
2998                 ret = -EINVAL;
2999                 goto out;
3000         }
3001
3002         ret = rdev->desc->ops->get_current_limit(rdev);
3003 out:
3004         mutex_unlock(&rdev->mutex);
3005         return ret;
3006 }
3007
3008 /**
3009  * regulator_get_current_limit - get regulator output current
3010  * @regulator: regulator source
3011  *
3012  * This returns the current supplied by the specified current sink in uA.
3013  *
3014  * NOTE: If the regulator is disabled it will return the current value. This
3015  * function should not be used to determine regulator state.
3016  */
3017 int regulator_get_current_limit(struct regulator *regulator)
3018 {
3019         return _regulator_get_current_limit(regulator->rdev);
3020 }
3021 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3022
3023 /**
3024  * regulator_set_mode - set regulator operating mode
3025  * @regulator: regulator source
3026  * @mode: operating mode - one of the REGULATOR_MODE constants
3027  *
3028  * Set regulator operating mode to increase regulator efficiency or improve
3029  * regulation performance.
3030  *
3031  * NOTE: Regulator system constraints must be set for this regulator before
3032  * calling this function otherwise this call will fail.
3033  */
3034 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3035 {
3036         struct regulator_dev *rdev = regulator->rdev;
3037         int ret;
3038         int regulator_curr_mode;
3039
3040         mutex_lock(&rdev->mutex);
3041
3042         /* sanity check */
3043         if (!rdev->desc->ops->set_mode) {
3044                 ret = -EINVAL;
3045                 goto out;
3046         }
3047
3048         /* return if the same mode is requested */
3049         if (rdev->desc->ops->get_mode) {
3050                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3051                 if (regulator_curr_mode == mode) {
3052                         ret = 0;
3053                         goto out;
3054                 }
3055         }
3056
3057         /* constraints check */
3058         ret = regulator_mode_constrain(rdev, &mode);
3059         if (ret < 0)
3060                 goto out;
3061
3062         ret = rdev->desc->ops->set_mode(rdev, mode);
3063 out:
3064         mutex_unlock(&rdev->mutex);
3065         return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_set_mode);
3068
3069 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3070 {
3071         int ret;
3072
3073         mutex_lock(&rdev->mutex);
3074
3075         /* sanity check */
3076         if (!rdev->desc->ops->get_mode) {
3077                 ret = -EINVAL;
3078                 goto out;
3079         }
3080
3081         ret = rdev->desc->ops->get_mode(rdev);
3082 out:
3083         mutex_unlock(&rdev->mutex);
3084         return ret;
3085 }
3086
3087 /**
3088  * regulator_get_mode - get regulator operating mode
3089  * @regulator: regulator source
3090  *
3091  * Get the current regulator operating mode.
3092  */
3093 unsigned int regulator_get_mode(struct regulator *regulator)
3094 {
3095         return _regulator_get_mode(regulator->rdev);
3096 }
3097 EXPORT_SYMBOL_GPL(regulator_get_mode);
3098
3099 /**
3100  * regulator_set_load - set regulator load
3101  * @regulator: regulator source
3102  * @uA_load: load current
3103  *
3104  * Notifies the regulator core of a new device load. This is then used by
3105  * DRMS (if enabled by constraints) to set the most efficient regulator
3106  * operating mode for the new regulator loading.
3107  *
3108  * Consumer devices notify their supply regulator of the maximum power
3109  * they will require (can be taken from device datasheet in the power
3110  * consumption tables) when they change operational status and hence power
3111  * state. Examples of operational state changes that can affect power
3112  * consumption are :-
3113  *
3114  *    o Device is opened / closed.
3115  *    o Device I/O is about to begin or has just finished.
3116  *    o Device is idling in between work.
3117  *
3118  * This information is also exported via sysfs to userspace.
3119  *
3120  * DRMS will sum the total requested load on the regulator and change
3121  * to the most efficient operating mode if platform constraints allow.
3122  *
3123  * On error a negative errno is returned.
3124  */
3125 int regulator_set_load(struct regulator *regulator, int uA_load)
3126 {
3127         struct regulator_dev *rdev = regulator->rdev;
3128         int ret;
3129
3130         mutex_lock(&rdev->mutex);
3131         regulator->uA_load = uA_load;
3132         ret = drms_uA_update(rdev);
3133         mutex_unlock(&rdev->mutex);
3134
3135         return ret;
3136 }
3137 EXPORT_SYMBOL_GPL(regulator_set_load);
3138
3139 /**
3140  * regulator_allow_bypass - allow the regulator to go into bypass mode
3141  *
3142  * @regulator: Regulator to configure
3143  * @enable: enable or disable bypass mode
3144  *
3145  * Allow the regulator to go into bypass mode if all other consumers
3146  * for the regulator also enable bypass mode and the machine
3147  * constraints allow this.  Bypass mode means that the regulator is
3148  * simply passing the input directly to the output with no regulation.
3149  */
3150 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3151 {
3152         struct regulator_dev *rdev = regulator->rdev;
3153         int ret = 0;
3154
3155         if (!rdev->desc->ops->set_bypass)
3156                 return 0;
3157
3158         if (rdev->constraints &&
3159             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3160                 return 0;
3161
3162         mutex_lock(&rdev->mutex);
3163
3164         if (enable && !regulator->bypass) {
3165                 rdev->bypass_count++;
3166
3167                 if (rdev->bypass_count == rdev->open_count) {
3168                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3169                         if (ret != 0)
3170                                 rdev->bypass_count--;
3171                 }
3172
3173         } else if (!enable && regulator->bypass) {
3174                 rdev->bypass_count--;
3175
3176                 if (rdev->bypass_count != rdev->open_count) {
3177                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3178                         if (ret != 0)
3179                                 rdev->bypass_count++;
3180                 }
3181         }
3182
3183         if (ret == 0)
3184                 regulator->bypass = enable;
3185
3186         mutex_unlock(&rdev->mutex);
3187
3188         return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3191
3192 /**
3193  * regulator_register_notifier - register regulator event notifier
3194  * @regulator: regulator source
3195  * @nb: notifier block
3196  *
3197  * Register notifier block to receive regulator events.
3198  */
3199 int regulator_register_notifier(struct regulator *regulator,
3200                               struct notifier_block *nb)
3201 {
3202         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3203                                                 nb);
3204 }
3205 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3206
3207 /**
3208  * regulator_unregister_notifier - unregister regulator event notifier
3209  * @regulator: regulator source
3210  * @nb: notifier block
3211  *
3212  * Unregister regulator event notifier block.
3213  */
3214 int regulator_unregister_notifier(struct regulator *regulator,
3215                                 struct notifier_block *nb)
3216 {
3217         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3218                                                   nb);
3219 }
3220 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3221
3222 /* notify regulator consumers and downstream regulator consumers.
3223  * Note mutex must be held by caller.
3224  */
3225 static int _notifier_call_chain(struct regulator_dev *rdev,
3226                                   unsigned long event, void *data)
3227 {
3228         /* call rdev chain first */
3229         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3230 }
3231
3232 /**
3233  * regulator_bulk_get - get multiple regulator consumers
3234  *
3235  * @dev:           Device to supply
3236  * @num_consumers: Number of consumers to register
3237  * @consumers:     Configuration of consumers; clients are stored here.
3238  *
3239  * @return 0 on success, an errno on failure.
3240  *
3241  * This helper function allows drivers to get several regulator
3242  * consumers in one operation.  If any of the regulators cannot be
3243  * acquired then any regulators that were allocated will be freed
3244  * before returning to the caller.
3245  */
3246 int regulator_bulk_get(struct device *dev, int num_consumers,
3247                        struct regulator_bulk_data *consumers)
3248 {
3249         int i;
3250         int ret;
3251
3252         for (i = 0; i < num_consumers; i++)
3253                 consumers[i].consumer = NULL;
3254
3255         for (i = 0; i < num_consumers; i++) {
3256                 consumers[i].consumer = regulator_get(dev,
3257                                                       consumers[i].supply);
3258                 if (IS_ERR(consumers[i].consumer)) {
3259                         ret = PTR_ERR(consumers[i].consumer);
3260                         dev_err(dev, "Failed to get supply '%s': %d\n",
3261                                 consumers[i].supply, ret);
3262                         consumers[i].consumer = NULL;
3263                         goto err;
3264                 }
3265         }
3266
3267         return 0;
3268
3269 err:
3270         while (--i >= 0)
3271                 regulator_put(consumers[i].consumer);
3272
3273         return ret;
3274 }
3275 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3276
3277 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3278 {
3279         struct regulator_bulk_data *bulk = data;
3280
3281         bulk->ret = regulator_enable(bulk->consumer);
3282 }
3283
3284 /**
3285  * regulator_bulk_enable - enable multiple regulator consumers
3286  *
3287  * @num_consumers: Number of consumers
3288  * @consumers:     Consumer data; clients are stored here.
3289  * @return         0 on success, an errno on failure
3290  *
3291  * This convenience API allows consumers to enable multiple regulator
3292  * clients in a single API call.  If any consumers cannot be enabled
3293  * then any others that were enabled will be disabled again prior to
3294  * return.
3295  */
3296 int regulator_bulk_enable(int num_consumers,
3297                           struct regulator_bulk_data *consumers)
3298 {
3299         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3300         int i;
3301         int ret = 0;
3302
3303         for (i = 0; i < num_consumers; i++) {
3304                 if (consumers[i].consumer->always_on)
3305                         consumers[i].ret = 0;
3306                 else
3307                         async_schedule_domain(regulator_bulk_enable_async,
3308                                               &consumers[i], &async_domain);
3309         }
3310
3311         async_synchronize_full_domain(&async_domain);
3312
3313         /* If any consumer failed we need to unwind any that succeeded */
3314         for (i = 0; i < num_consumers; i++) {
3315                 if (consumers[i].ret != 0) {
3316                         ret = consumers[i].ret;
3317                         goto err;
3318                 }
3319         }
3320
3321         return 0;
3322
3323 err:
3324         for (i = 0; i < num_consumers; i++) {
3325                 if (consumers[i].ret < 0)
3326                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3327                                consumers[i].ret);
3328                 else
3329                         regulator_disable(consumers[i].consumer);
3330         }
3331
3332         return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3335
3336 /**
3337  * regulator_bulk_disable - disable multiple regulator consumers
3338  *
3339  * @num_consumers: Number of consumers
3340  * @consumers:     Consumer data; clients are stored here.
3341  * @return         0 on success, an errno on failure
3342  *
3343  * This convenience API allows consumers to disable multiple regulator
3344  * clients in a single API call.  If any consumers cannot be disabled
3345  * then any others that were disabled will be enabled again prior to
3346  * return.
3347  */
3348 int regulator_bulk_disable(int num_consumers,
3349                            struct regulator_bulk_data *consumers)
3350 {
3351         int i;
3352         int ret, r;
3353
3354         for (i = num_consumers - 1; i >= 0; --i) {
3355                 ret = regulator_disable(consumers[i].consumer);
3356                 if (ret != 0)
3357                         goto err;
3358         }
3359
3360         return 0;
3361
3362 err:
3363         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3364         for (++i; i < num_consumers; ++i) {
3365                 r = regulator_enable(consumers[i].consumer);
3366                 if (r != 0)
3367                         pr_err("Failed to reename %s: %d\n",
3368                                consumers[i].supply, r);
3369         }
3370
3371         return ret;
3372 }
3373 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3374
3375 /**
3376  * regulator_bulk_force_disable - force disable multiple regulator consumers
3377  *
3378  * @num_consumers: Number of consumers
3379  * @consumers:     Consumer data; clients are stored here.
3380  * @return         0 on success, an errno on failure
3381  *
3382  * This convenience API allows consumers to forcibly disable multiple regulator
3383  * clients in a single API call.
3384  * NOTE: This should be used for situations when device damage will
3385  * likely occur if the regulators are not disabled (e.g. over temp).
3386  * Although regulator_force_disable function call for some consumers can
3387  * return error numbers, the function is called for all consumers.
3388  */
3389 int regulator_bulk_force_disable(int num_consumers,
3390                            struct regulator_bulk_data *consumers)
3391 {
3392         int i;
3393         int ret;
3394
3395         for (i = 0; i < num_consumers; i++)
3396                 consumers[i].ret =
3397                             regulator_force_disable(consumers[i].consumer);
3398
3399         for (i = 0; i < num_consumers; i++) {
3400                 if (consumers[i].ret != 0) {
3401                         ret = consumers[i].ret;
3402                         goto out;
3403                 }
3404         }
3405
3406         return 0;
3407 out:
3408         return ret;
3409 }
3410 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3411
3412 /**
3413  * regulator_bulk_free - free multiple regulator consumers
3414  *
3415  * @num_consumers: Number of consumers
3416  * @consumers:     Consumer data; clients are stored here.
3417  *
3418  * This convenience API allows consumers to free multiple regulator
3419  * clients in a single API call.
3420  */
3421 void regulator_bulk_free(int num_consumers,
3422                          struct regulator_bulk_data *consumers)
3423 {
3424         int i;
3425
3426         for (i = 0; i < num_consumers; i++) {
3427                 regulator_put(consumers[i].consumer);
3428                 consumers[i].consumer = NULL;
3429         }
3430 }
3431 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3432
3433 /**
3434  * regulator_notifier_call_chain - call regulator event notifier
3435  * @rdev: regulator source
3436  * @event: notifier block
3437  * @data: callback-specific data.
3438  *
3439  * Called by regulator drivers to notify clients a regulator event has
3440  * occurred. We also notify regulator clients downstream.
3441  * Note lock must be held by caller.
3442  */
3443 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3444                                   unsigned long event, void *data)
3445 {
3446         _notifier_call_chain(rdev, event, data);
3447         return NOTIFY_DONE;
3448
3449 }
3450 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3451
3452 /**
3453  * regulator_mode_to_status - convert a regulator mode into a status
3454  *
3455  * @mode: Mode to convert
3456  *
3457  * Convert a regulator mode into a status.
3458  */
3459 int regulator_mode_to_status(unsigned int mode)
3460 {
3461         switch (mode) {
3462         case REGULATOR_MODE_FAST:
3463                 return REGULATOR_STATUS_FAST;
3464         case REGULATOR_MODE_NORMAL:
3465                 return REGULATOR_STATUS_NORMAL;
3466         case REGULATOR_MODE_IDLE:
3467                 return REGULATOR_STATUS_IDLE;
3468         case REGULATOR_MODE_STANDBY:
3469                 return REGULATOR_STATUS_STANDBY;
3470         default:
3471                 return REGULATOR_STATUS_UNDEFINED;
3472         }
3473 }
3474 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3475
3476 static struct attribute *regulator_dev_attrs[] = {
3477         &dev_attr_name.attr,
3478         &dev_attr_num_users.attr,
3479         &dev_attr_type.attr,
3480         &dev_attr_microvolts.attr,
3481         &dev_attr_microamps.attr,
3482         &dev_attr_opmode.attr,
3483         &dev_attr_state.attr,
3484         &dev_attr_status.attr,
3485         &dev_attr_bypass.attr,
3486         &dev_attr_requested_microamps.attr,
3487         &dev_attr_min_microvolts.attr,
3488         &dev_attr_max_microvolts.attr,
3489         &dev_attr_min_microamps.attr,
3490         &dev_attr_max_microamps.attr,
3491         &dev_attr_suspend_standby_state.attr,
3492         &dev_attr_suspend_mem_state.attr,
3493         &dev_attr_suspend_disk_state.attr,
3494         &dev_attr_suspend_standby_microvolts.attr,
3495         &dev_attr_suspend_mem_microvolts.attr,
3496         &dev_attr_suspend_disk_microvolts.attr,
3497         &dev_attr_suspend_standby_mode.attr,
3498         &dev_attr_suspend_mem_mode.attr,
3499         &dev_attr_suspend_disk_mode.attr,
3500         NULL
3501 };
3502
3503 /*
3504  * To avoid cluttering sysfs (and memory) with useless state, only
3505  * create attributes that can be meaningfully displayed.
3506  */
3507 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3508                                          struct attribute *attr, int idx)
3509 {
3510         struct device *dev = kobj_to_dev(kobj);
3511         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3512         const struct regulator_ops *ops = rdev->desc->ops;
3513         umode_t mode = attr->mode;
3514
3515         /* these three are always present */
3516         if (attr == &dev_attr_name.attr ||
3517             attr == &dev_attr_num_users.attr ||
3518             attr == &dev_attr_type.attr)
3519                 return mode;
3520
3521         /* some attributes need specific methods to be displayed */
3522         if (attr == &dev_attr_microvolts.attr) {
3523                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3524                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3525                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3526                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3527                         return mode;
3528                 return 0;
3529         }
3530
3531         if (attr == &dev_attr_microamps.attr)
3532                 return ops->get_current_limit ? mode : 0;
3533
3534         if (attr == &dev_attr_opmode.attr)
3535                 return ops->get_mode ? mode : 0;
3536
3537         if (attr == &dev_attr_state.attr)
3538                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3539
3540         if (attr == &dev_attr_status.attr)
3541                 return ops->get_status ? mode : 0;
3542
3543         if (attr == &dev_attr_bypass.attr)
3544                 return ops->get_bypass ? mode : 0;
3545
3546         /* some attributes are type-specific */
3547         if (attr == &dev_attr_requested_microamps.attr)
3548                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3549
3550         /* constraints need specific supporting methods */
3551         if (attr == &dev_attr_min_microvolts.attr ||
3552             attr == &dev_attr_max_microvolts.attr)
3553                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3554
3555         if (attr == &dev_attr_min_microamps.attr ||
3556             attr == &dev_attr_max_microamps.attr)
3557                 return ops->set_current_limit ? mode : 0;
3558
3559         if (attr == &dev_attr_suspend_standby_state.attr ||
3560             attr == &dev_attr_suspend_mem_state.attr ||
3561             attr == &dev_attr_suspend_disk_state.attr)
3562                 return mode;
3563
3564         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3565             attr == &dev_attr_suspend_mem_microvolts.attr ||
3566             attr == &dev_attr_suspend_disk_microvolts.attr)
3567                 return ops->set_suspend_voltage ? mode : 0;
3568
3569         if (attr == &dev_attr_suspend_standby_mode.attr ||
3570             attr == &dev_attr_suspend_mem_mode.attr ||
3571             attr == &dev_attr_suspend_disk_mode.attr)
3572                 return ops->set_suspend_mode ? mode : 0;
3573
3574         return mode;
3575 }
3576
3577 static const struct attribute_group regulator_dev_group = {
3578         .attrs = regulator_dev_attrs,
3579         .is_visible = regulator_attr_is_visible,
3580 };
3581
3582 static const struct attribute_group *regulator_dev_groups[] = {
3583         &regulator_dev_group,
3584         NULL
3585 };
3586
3587 static void regulator_dev_release(struct device *dev)
3588 {
3589         struct regulator_dev *rdev = dev_get_drvdata(dev);
3590         kfree(rdev);
3591 }
3592
3593 static struct class regulator_class = {
3594         .name = "regulator",
3595         .dev_release = regulator_dev_release,
3596         .dev_groups = regulator_dev_groups,
3597 };
3598
3599 static void rdev_init_debugfs(struct regulator_dev *rdev)
3600 {
3601         struct device *parent = rdev->dev.parent;
3602         const char *rname = rdev_get_name(rdev);
3603         char name[NAME_MAX];
3604
3605         /* Avoid duplicate debugfs directory names */
3606         if (parent && rname == rdev->desc->name) {
3607                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3608                          rname);
3609                 rname = name;
3610         }
3611
3612         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3613         if (!rdev->debugfs) {
3614                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3615                 return;
3616         }
3617
3618         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3619                            &rdev->use_count);
3620         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3621                            &rdev->open_count);
3622         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3623                            &rdev->bypass_count);
3624 }
3625
3626 /**
3627  * regulator_register - register regulator
3628  * @regulator_desc: regulator to register
3629  * @cfg: runtime configuration for regulator
3630  *
3631  * Called by regulator drivers to register a regulator.
3632  * Returns a valid pointer to struct regulator_dev on success
3633  * or an ERR_PTR() on error.
3634  */
3635 struct regulator_dev *
3636 regulator_register(const struct regulator_desc *regulator_desc,
3637                    const struct regulator_config *cfg)
3638 {
3639         const struct regulation_constraints *constraints = NULL;
3640         const struct regulator_init_data *init_data;
3641         struct regulator_config *config = NULL;
3642         static atomic_t regulator_no = ATOMIC_INIT(-1);
3643         struct regulator_dev *rdev;
3644         struct device *dev;
3645         int ret, i;
3646
3647         if (regulator_desc == NULL || cfg == NULL)
3648                 return ERR_PTR(-EINVAL);
3649
3650         dev = cfg->dev;
3651         WARN_ON(!dev);
3652
3653         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3654                 return ERR_PTR(-EINVAL);
3655
3656         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3657             regulator_desc->type != REGULATOR_CURRENT)
3658                 return ERR_PTR(-EINVAL);
3659
3660         /* Only one of each should be implemented */
3661         WARN_ON(regulator_desc->ops->get_voltage &&
3662                 regulator_desc->ops->get_voltage_sel);
3663         WARN_ON(regulator_desc->ops->set_voltage &&
3664                 regulator_desc->ops->set_voltage_sel);
3665
3666         /* If we're using selectors we must implement list_voltage. */
3667         if (regulator_desc->ops->get_voltage_sel &&
3668             !regulator_desc->ops->list_voltage) {
3669                 return ERR_PTR(-EINVAL);
3670         }
3671         if (regulator_desc->ops->set_voltage_sel &&
3672             !regulator_desc->ops->list_voltage) {
3673                 return ERR_PTR(-EINVAL);
3674         }
3675
3676         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3677         if (rdev == NULL)
3678                 return ERR_PTR(-ENOMEM);
3679
3680         /*
3681          * Duplicate the config so the driver could override it after
3682          * parsing init data.
3683          */
3684         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3685         if (config == NULL) {
3686                 kfree(rdev);
3687                 return ERR_PTR(-ENOMEM);
3688         }
3689
3690         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3691                                                &rdev->dev.of_node);
3692         if (!init_data) {
3693                 init_data = config->init_data;
3694                 rdev->dev.of_node = of_node_get(config->of_node);
3695         }
3696
3697         mutex_lock(&regulator_list_mutex);
3698
3699         mutex_init(&rdev->mutex);
3700         rdev->reg_data = config->driver_data;
3701         rdev->owner = regulator_desc->owner;
3702         rdev->desc = regulator_desc;
3703         if (config->regmap)
3704                 rdev->regmap = config->regmap;
3705         else if (dev_get_regmap(dev, NULL))
3706                 rdev->regmap = dev_get_regmap(dev, NULL);
3707         else if (dev->parent)
3708                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3709         INIT_LIST_HEAD(&rdev->consumer_list);
3710         INIT_LIST_HEAD(&rdev->list);
3711         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3712         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3713
3714         /* preform any regulator specific init */
3715         if (init_data && init_data->regulator_init) {
3716                 ret = init_data->regulator_init(rdev->reg_data);
3717                 if (ret < 0)
3718                         goto clean;
3719         }
3720
3721         /* register with sysfs */
3722         rdev->dev.class = &regulator_class;
3723         rdev->dev.parent = dev;
3724         dev_set_name(&rdev->dev, "regulator.%lu",
3725                     (unsigned long) atomic_inc_return(&regulator_no));
3726         ret = device_register(&rdev->dev);
3727         if (ret != 0) {
3728                 put_device(&rdev->dev);
3729                 goto clean;
3730         }
3731
3732         dev_set_drvdata(&rdev->dev, rdev);
3733
3734         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3735             gpio_is_valid(config->ena_gpio)) {
3736                 ret = regulator_ena_gpio_request(rdev, config);
3737                 if (ret != 0) {
3738                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3739                                  config->ena_gpio, ret);
3740                         goto wash;
3741                 }
3742         }
3743
3744         /* set regulator constraints */
3745         if (init_data)
3746                 constraints = &init_data->constraints;
3747
3748         ret = set_machine_constraints(rdev, constraints);
3749         if (ret < 0)
3750                 goto scrub;
3751
3752         if (init_data && init_data->supply_regulator)
3753                 rdev->supply_name = init_data->supply_regulator;
3754         else if (regulator_desc->supply_name)
3755                 rdev->supply_name = regulator_desc->supply_name;
3756
3757         /* add consumers devices */
3758         if (init_data) {
3759                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3760                         ret = set_consumer_device_supply(rdev,
3761                                 init_data->consumer_supplies[i].dev_name,
3762                                 init_data->consumer_supplies[i].supply);
3763                         if (ret < 0) {
3764                                 dev_err(dev, "Failed to set supply %s\n",
3765                                         init_data->consumer_supplies[i].supply);
3766                                 goto unset_supplies;
3767                         }
3768                 }
3769         }
3770
3771         list_add(&rdev->list, &regulator_list);
3772
3773         rdev_init_debugfs(rdev);
3774 out:
3775         mutex_unlock(&regulator_list_mutex);
3776         kfree(config);
3777         return rdev;
3778
3779 unset_supplies:
3780         unset_regulator_supplies(rdev);
3781
3782 scrub:
3783         regulator_ena_gpio_free(rdev);
3784         kfree(rdev->constraints);
3785 wash:
3786         device_unregister(&rdev->dev);
3787         /* device core frees rdev */
3788         rdev = ERR_PTR(ret);
3789         goto out;
3790
3791 clean:
3792         kfree(rdev);
3793         rdev = ERR_PTR(ret);
3794         goto out;
3795 }
3796 EXPORT_SYMBOL_GPL(regulator_register);
3797
3798 /**
3799  * regulator_unregister - unregister regulator
3800  * @rdev: regulator to unregister
3801  *
3802  * Called by regulator drivers to unregister a regulator.
3803  */
3804 void regulator_unregister(struct regulator_dev *rdev)
3805 {
3806         if (rdev == NULL)
3807                 return;
3808
3809         if (rdev->supply) {
3810                 while (rdev->use_count--)
3811                         regulator_disable(rdev->supply);
3812                 regulator_put(rdev->supply);
3813         }
3814         mutex_lock(&regulator_list_mutex);
3815         debugfs_remove_recursive(rdev->debugfs);
3816         flush_work(&rdev->disable_work.work);
3817         WARN_ON(rdev->open_count);
3818         unset_regulator_supplies(rdev);
3819         list_del(&rdev->list);
3820         kfree(rdev->constraints);
3821         regulator_ena_gpio_free(rdev);
3822         of_node_put(rdev->dev.of_node);
3823         device_unregister(&rdev->dev);
3824         mutex_unlock(&regulator_list_mutex);
3825 }
3826 EXPORT_SYMBOL_GPL(regulator_unregister);
3827
3828 /**
3829  * regulator_suspend_prepare - prepare regulators for system wide suspend
3830  * @state: system suspend state
3831  *
3832  * Configure each regulator with it's suspend operating parameters for state.
3833  * This will usually be called by machine suspend code prior to supending.
3834  */
3835 int regulator_suspend_prepare(suspend_state_t state)
3836 {
3837         struct regulator_dev *rdev;
3838         int ret = 0;
3839
3840         /* ON is handled by regulator active state */
3841         if (state == PM_SUSPEND_ON)
3842                 return -EINVAL;
3843
3844         mutex_lock(&regulator_list_mutex);
3845         list_for_each_entry(rdev, &regulator_list, list) {
3846
3847                 mutex_lock(&rdev->mutex);
3848                 ret = suspend_prepare(rdev, state);
3849                 mutex_unlock(&rdev->mutex);
3850
3851                 if (ret < 0) {
3852                         rdev_err(rdev, "failed to prepare\n");
3853                         goto out;
3854                 }
3855         }
3856 out:
3857         mutex_unlock(&regulator_list_mutex);
3858         return ret;
3859 }
3860 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3861
3862 /**
3863  * regulator_suspend_finish - resume regulators from system wide suspend
3864  *
3865  * Turn on regulators that might be turned off by regulator_suspend_prepare
3866  * and that should be turned on according to the regulators properties.
3867  */
3868 int regulator_suspend_finish(void)
3869 {
3870         struct regulator_dev *rdev;
3871         int ret = 0, error;
3872
3873         mutex_lock(&regulator_list_mutex);
3874         list_for_each_entry(rdev, &regulator_list, list) {
3875                 mutex_lock(&rdev->mutex);
3876                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3877                         if (!_regulator_is_enabled(rdev)) {
3878                                 error = _regulator_do_enable(rdev);
3879                                 if (error)
3880                                         ret = error;
3881                         }
3882                 } else {
3883                         if (!have_full_constraints())
3884                                 goto unlock;
3885                         if (!_regulator_is_enabled(rdev))
3886                                 goto unlock;
3887
3888                         error = _regulator_do_disable(rdev);
3889                         if (error)
3890                                 ret = error;
3891                 }
3892 unlock:
3893                 mutex_unlock(&rdev->mutex);
3894         }
3895         mutex_unlock(&regulator_list_mutex);
3896         return ret;
3897 }
3898 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3899
3900 /**
3901  * regulator_has_full_constraints - the system has fully specified constraints
3902  *
3903  * Calling this function will cause the regulator API to disable all
3904  * regulators which have a zero use count and don't have an always_on
3905  * constraint in a late_initcall.
3906  *
3907  * The intention is that this will become the default behaviour in a
3908  * future kernel release so users are encouraged to use this facility
3909  * now.
3910  */
3911 void regulator_has_full_constraints(void)
3912 {
3913         has_full_constraints = 1;
3914 }
3915 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3916
3917 /**
3918  * rdev_get_drvdata - get rdev regulator driver data
3919  * @rdev: regulator
3920  *
3921  * Get rdev regulator driver private data. This call can be used in the
3922  * regulator driver context.
3923  */
3924 void *rdev_get_drvdata(struct regulator_dev *rdev)
3925 {
3926         return rdev->reg_data;
3927 }
3928 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3929
3930 /**
3931  * regulator_get_drvdata - get regulator driver data
3932  * @regulator: regulator
3933  *
3934  * Get regulator driver private data. This call can be used in the consumer
3935  * driver context when non API regulator specific functions need to be called.
3936  */
3937 void *regulator_get_drvdata(struct regulator *regulator)
3938 {
3939         return regulator->rdev->reg_data;
3940 }
3941 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3942
3943 /**
3944  * regulator_set_drvdata - set regulator driver data
3945  * @regulator: regulator
3946  * @data: data
3947  */
3948 void regulator_set_drvdata(struct regulator *regulator, void *data)
3949 {
3950         regulator->rdev->reg_data = data;
3951 }
3952 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3953
3954 /**
3955  * regulator_get_id - get regulator ID
3956  * @rdev: regulator
3957  */
3958 int rdev_get_id(struct regulator_dev *rdev)
3959 {
3960         return rdev->desc->id;
3961 }
3962 EXPORT_SYMBOL_GPL(rdev_get_id);
3963
3964 struct device *rdev_get_dev(struct regulator_dev *rdev)
3965 {
3966         return &rdev->dev;
3967 }
3968 EXPORT_SYMBOL_GPL(rdev_get_dev);
3969
3970 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3971 {
3972         return reg_init_data->driver_data;
3973 }
3974 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3975
3976 #ifdef CONFIG_DEBUG_FS
3977 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3978                                     size_t count, loff_t *ppos)
3979 {
3980         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3981         ssize_t len, ret = 0;
3982         struct regulator_map *map;
3983
3984         if (!buf)
3985                 return -ENOMEM;
3986
3987         list_for_each_entry(map, &regulator_map_list, list) {
3988                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3989                                "%s -> %s.%s\n",
3990                                rdev_get_name(map->regulator), map->dev_name,
3991                                map->supply);
3992                 if (len >= 0)
3993                         ret += len;
3994                 if (ret > PAGE_SIZE) {
3995                         ret = PAGE_SIZE;
3996                         break;
3997                 }
3998         }
3999
4000         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4001
4002         kfree(buf);
4003
4004         return ret;
4005 }
4006 #endif
4007
4008 static const struct file_operations supply_map_fops = {
4009 #ifdef CONFIG_DEBUG_FS
4010         .read = supply_map_read_file,
4011         .llseek = default_llseek,
4012 #endif
4013 };
4014
4015 #ifdef CONFIG_DEBUG_FS
4016 static void regulator_summary_show_subtree(struct seq_file *s,
4017                                            struct regulator_dev *rdev,
4018                                            int level)
4019 {
4020         struct list_head *list = s->private;
4021         struct regulator_dev *child;
4022         struct regulation_constraints *c;
4023         struct regulator *consumer;
4024
4025         if (!rdev)
4026                 return;
4027
4028         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4029                    level * 3 + 1, "",
4030                    30 - level * 3, rdev_get_name(rdev),
4031                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4032
4033         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4034         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4035
4036         c = rdev->constraints;
4037         if (c) {
4038                 switch (rdev->desc->type) {
4039                 case REGULATOR_VOLTAGE:
4040                         seq_printf(s, "%5dmV %5dmV ",
4041                                    c->min_uV / 1000, c->max_uV / 1000);
4042                         break;
4043                 case REGULATOR_CURRENT:
4044                         seq_printf(s, "%5dmA %5dmA ",
4045                                    c->min_uA / 1000, c->max_uA / 1000);
4046                         break;
4047                 }
4048         }
4049
4050         seq_puts(s, "\n");
4051
4052         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4053                 if (consumer->dev->class == &regulator_class)
4054                         continue;
4055
4056                 seq_printf(s, "%*s%-*s ",
4057                            (level + 1) * 3 + 1, "",
4058                            30 - (level + 1) * 3, dev_name(consumer->dev));
4059
4060                 switch (rdev->desc->type) {
4061                 case REGULATOR_VOLTAGE:
4062                         seq_printf(s, "%37dmV %5dmV",
4063                                    consumer->min_uV / 1000,
4064                                    consumer->max_uV / 1000);
4065                         break;
4066                 case REGULATOR_CURRENT:
4067                         break;
4068                 }
4069
4070                 seq_puts(s, "\n");
4071         }
4072
4073         list_for_each_entry(child, list, list) {
4074                 /* handle only non-root regulators supplied by current rdev */
4075                 if (!child->supply || child->supply->rdev != rdev)
4076                         continue;
4077
4078                 regulator_summary_show_subtree(s, child, level + 1);
4079         }
4080 }
4081
4082 static int regulator_summary_show(struct seq_file *s, void *data)
4083 {
4084         struct list_head *list = s->private;
4085         struct regulator_dev *rdev;
4086
4087         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4088         seq_puts(s, "-------------------------------------------------------------------------------\n");
4089
4090         mutex_lock(&regulator_list_mutex);
4091
4092         list_for_each_entry(rdev, list, list) {
4093                 if (rdev->supply)
4094                         continue;
4095
4096                 regulator_summary_show_subtree(s, rdev, 0);
4097         }
4098
4099         mutex_unlock(&regulator_list_mutex);
4100
4101         return 0;
4102 }
4103
4104 static int regulator_summary_open(struct inode *inode, struct file *file)
4105 {
4106         return single_open(file, regulator_summary_show, inode->i_private);
4107 }
4108 #endif
4109
4110 static const struct file_operations regulator_summary_fops = {
4111 #ifdef CONFIG_DEBUG_FS
4112         .open           = regulator_summary_open,
4113         .read           = seq_read,
4114         .llseek         = seq_lseek,
4115         .release        = single_release,
4116 #endif
4117 };
4118
4119 static int __init regulator_init(void)
4120 {
4121         int ret;
4122
4123         ret = class_register(&regulator_class);
4124
4125         debugfs_root = debugfs_create_dir("regulator", NULL);
4126         if (!debugfs_root)
4127                 pr_warn("regulator: Failed to create debugfs directory\n");
4128
4129         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4130                             &supply_map_fops);
4131
4132         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4133                             &regulator_list, &regulator_summary_fops);
4134
4135         regulator_dummy_init();
4136
4137         return ret;
4138 }
4139
4140 /* init early to allow our consumers to complete system booting */
4141 core_initcall(regulator_init);
4142
4143 static int __init regulator_init_complete(void)
4144 {
4145         struct regulator_dev *rdev;
4146         const struct regulator_ops *ops;
4147         struct regulation_constraints *c;
4148         int enabled, ret;
4149
4150         /*
4151          * Since DT doesn't provide an idiomatic mechanism for
4152          * enabling full constraints and since it's much more natural
4153          * with DT to provide them just assume that a DT enabled
4154          * system has full constraints.
4155          */
4156         if (of_have_populated_dt())
4157                 has_full_constraints = true;
4158
4159         mutex_lock(&regulator_list_mutex);
4160
4161         /* If we have a full configuration then disable any regulators
4162          * we have permission to change the status for and which are
4163          * not in use or always_on.  This is effectively the default
4164          * for DT and ACPI as they have full constraints.
4165          */
4166         list_for_each_entry(rdev, &regulator_list, list) {
4167                 ops = rdev->desc->ops;
4168                 c = rdev->constraints;
4169
4170                 if (c && c->always_on)
4171                         continue;
4172
4173                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4174                         continue;
4175
4176                 mutex_lock(&rdev->mutex);
4177
4178                 if (rdev->use_count)
4179                         goto unlock;
4180
4181                 /* If we can't read the status assume it's on. */
4182                 if (ops->is_enabled)
4183                         enabled = ops->is_enabled(rdev);
4184                 else
4185                         enabled = 1;
4186
4187                 if (!enabled)
4188                         goto unlock;
4189
4190                 if (have_full_constraints()) {
4191                         /* We log since this may kill the system if it
4192                          * goes wrong. */
4193                         rdev_info(rdev, "disabling\n");
4194                         ret = _regulator_do_disable(rdev);
4195                         if (ret != 0)
4196                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4197                 } else {
4198                         /* The intention is that in future we will
4199                          * assume that full constraints are provided
4200                          * so warn even if we aren't going to do
4201                          * anything here.
4202                          */
4203                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4204                 }
4205
4206 unlock:
4207                 mutex_unlock(&rdev->mutex);
4208         }
4209
4210         mutex_unlock(&regulator_list_mutex);
4211
4212         return 0;
4213 }
4214 late_initcall_sync(regulator_init_complete);