Merge tag 'sunxi-fixes-for-4.3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-drm-fsl-dcu.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112 static void _regulator_put(struct regulator *regulator);
113
114 static struct regulator_dev *dev_to_rdev(struct device *dev)
115 {
116         return container_of(dev, struct regulator_dev, dev);
117 }
118
119 static const char *rdev_get_name(struct regulator_dev *rdev)
120 {
121         if (rdev->constraints && rdev->constraints->name)
122                 return rdev->constraints->name;
123         else if (rdev->desc->name)
124                 return rdev->desc->name;
125         else
126                 return "";
127 }
128
129 static bool have_full_constraints(void)
130 {
131         return has_full_constraints || of_have_populated_dt();
132 }
133
134 /**
135  * of_get_regulator - get a regulator device node based on supply name
136  * @dev: Device pointer for the consumer (of regulator) device
137  * @supply: regulator supply name
138  *
139  * Extract the regulator device node corresponding to the supply name.
140  * returns the device node corresponding to the regulator if found, else
141  * returns NULL.
142  */
143 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
144 {
145         struct device_node *regnode = NULL;
146         char prop_name[32]; /* 32 is max size of property name */
147
148         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
149
150         snprintf(prop_name, 32, "%s-supply", supply);
151         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
152
153         if (!regnode) {
154                 dev_dbg(dev, "Looking up %s property in node %s failed",
155                                 prop_name, dev->of_node->full_name);
156                 return NULL;
157         }
158         return regnode;
159 }
160
161 static int _regulator_can_change_status(struct regulator_dev *rdev)
162 {
163         if (!rdev->constraints)
164                 return 0;
165
166         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
167                 return 1;
168         else
169                 return 0;
170 }
171
172 /* Platform voltage constraint check */
173 static int regulator_check_voltage(struct regulator_dev *rdev,
174                                    int *min_uV, int *max_uV)
175 {
176         BUG_ON(*min_uV > *max_uV);
177
178         if (!rdev->constraints) {
179                 rdev_err(rdev, "no constraints\n");
180                 return -ENODEV;
181         }
182         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
183                 rdev_err(rdev, "operation not allowed\n");
184                 return -EPERM;
185         }
186
187         if (*max_uV > rdev->constraints->max_uV)
188                 *max_uV = rdev->constraints->max_uV;
189         if (*min_uV < rdev->constraints->min_uV)
190                 *min_uV = rdev->constraints->min_uV;
191
192         if (*min_uV > *max_uV) {
193                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
194                          *min_uV, *max_uV);
195                 return -EINVAL;
196         }
197
198         return 0;
199 }
200
201 /* Make sure we select a voltage that suits the needs of all
202  * regulator consumers
203  */
204 static int regulator_check_consumers(struct regulator_dev *rdev,
205                                      int *min_uV, int *max_uV)
206 {
207         struct regulator *regulator;
208
209         list_for_each_entry(regulator, &rdev->consumer_list, list) {
210                 /*
211                  * Assume consumers that didn't say anything are OK
212                  * with anything in the constraint range.
213                  */
214                 if (!regulator->min_uV && !regulator->max_uV)
215                         continue;
216
217                 if (*max_uV > regulator->max_uV)
218                         *max_uV = regulator->max_uV;
219                 if (*min_uV < regulator->min_uV)
220                         *min_uV = regulator->min_uV;
221         }
222
223         if (*min_uV > *max_uV) {
224                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
225                         *min_uV, *max_uV);
226                 return -EINVAL;
227         }
228
229         return 0;
230 }
231
232 /* current constraint check */
233 static int regulator_check_current_limit(struct regulator_dev *rdev,
234                                         int *min_uA, int *max_uA)
235 {
236         BUG_ON(*min_uA > *max_uA);
237
238         if (!rdev->constraints) {
239                 rdev_err(rdev, "no constraints\n");
240                 return -ENODEV;
241         }
242         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
243                 rdev_err(rdev, "operation not allowed\n");
244                 return -EPERM;
245         }
246
247         if (*max_uA > rdev->constraints->max_uA)
248                 *max_uA = rdev->constraints->max_uA;
249         if (*min_uA < rdev->constraints->min_uA)
250                 *min_uA = rdev->constraints->min_uA;
251
252         if (*min_uA > *max_uA) {
253                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
254                          *min_uA, *max_uA);
255                 return -EINVAL;
256         }
257
258         return 0;
259 }
260
261 /* operating mode constraint check */
262 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
263 {
264         switch (*mode) {
265         case REGULATOR_MODE_FAST:
266         case REGULATOR_MODE_NORMAL:
267         case REGULATOR_MODE_IDLE:
268         case REGULATOR_MODE_STANDBY:
269                 break;
270         default:
271                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
272                 return -EINVAL;
273         }
274
275         if (!rdev->constraints) {
276                 rdev_err(rdev, "no constraints\n");
277                 return -ENODEV;
278         }
279         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
280                 rdev_err(rdev, "operation not allowed\n");
281                 return -EPERM;
282         }
283
284         /* The modes are bitmasks, the most power hungry modes having
285          * the lowest values. If the requested mode isn't supported
286          * try higher modes. */
287         while (*mode) {
288                 if (rdev->constraints->valid_modes_mask & *mode)
289                         return 0;
290                 *mode /= 2;
291         }
292
293         return -EINVAL;
294 }
295
296 /* dynamic regulator mode switching constraint check */
297 static int regulator_check_drms(struct regulator_dev *rdev)
298 {
299         if (!rdev->constraints) {
300                 rdev_err(rdev, "no constraints\n");
301                 return -ENODEV;
302         }
303         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
304                 rdev_dbg(rdev, "operation not allowed\n");
305                 return -EPERM;
306         }
307         return 0;
308 }
309
310 static ssize_t regulator_uV_show(struct device *dev,
311                                 struct device_attribute *attr, char *buf)
312 {
313         struct regulator_dev *rdev = dev_get_drvdata(dev);
314         ssize_t ret;
315
316         mutex_lock(&rdev->mutex);
317         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
318         mutex_unlock(&rdev->mutex);
319
320         return ret;
321 }
322 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
323
324 static ssize_t regulator_uA_show(struct device *dev,
325                                 struct device_attribute *attr, char *buf)
326 {
327         struct regulator_dev *rdev = dev_get_drvdata(dev);
328
329         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
330 }
331 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
332
333 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
334                          char *buf)
335 {
336         struct regulator_dev *rdev = dev_get_drvdata(dev);
337
338         return sprintf(buf, "%s\n", rdev_get_name(rdev));
339 }
340 static DEVICE_ATTR_RO(name);
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         case REGULATOR_STATUS_BYPASS:
424                 label = "bypass";
425                 break;
426         case REGULATOR_STATUS_UNDEFINED:
427                 label = "undefined";
428                 break;
429         default:
430                 return -ERANGE;
431         }
432
433         return sprintf(buf, "%s\n", label);
434 }
435 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
436
437 static ssize_t regulator_min_uA_show(struct device *dev,
438                                     struct device_attribute *attr, char *buf)
439 {
440         struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442         if (!rdev->constraints)
443                 return sprintf(buf, "constraint not defined\n");
444
445         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
446 }
447 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
448
449 static ssize_t regulator_max_uA_show(struct device *dev,
450                                     struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "constraint not defined\n");
456
457         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
458 }
459 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
460
461 static ssize_t regulator_min_uV_show(struct device *dev,
462                                     struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         if (!rdev->constraints)
467                 return sprintf(buf, "constraint not defined\n");
468
469         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
470 }
471 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
472
473 static ssize_t regulator_max_uV_show(struct device *dev,
474                                     struct device_attribute *attr, char *buf)
475 {
476         struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478         if (!rdev->constraints)
479                 return sprintf(buf, "constraint not defined\n");
480
481         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
482 }
483 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
484
485 static ssize_t regulator_total_uA_show(struct device *dev,
486                                       struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489         struct regulator *regulator;
490         int uA = 0;
491
492         mutex_lock(&rdev->mutex);
493         list_for_each_entry(regulator, &rdev->consumer_list, list)
494                 uA += regulator->uA_load;
495         mutex_unlock(&rdev->mutex);
496         return sprintf(buf, "%d\n", uA);
497 }
498 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
499
500 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
501                               char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504         return sprintf(buf, "%d\n", rdev->use_count);
505 }
506 static DEVICE_ATTR_RO(num_users);
507
508 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
509                          char *buf)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513         switch (rdev->desc->type) {
514         case REGULATOR_VOLTAGE:
515                 return sprintf(buf, "voltage\n");
516         case REGULATOR_CURRENT:
517                 return sprintf(buf, "current\n");
518         }
519         return sprintf(buf, "unknown\n");
520 }
521 static DEVICE_ATTR_RO(type);
522
523 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
529 }
530 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
531                 regulator_suspend_mem_uV_show, NULL);
532
533 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
539 }
540 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
541                 regulator_suspend_disk_uV_show, NULL);
542
543 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
549 }
550 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
551                 regulator_suspend_standby_uV_show, NULL);
552
553 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
554                                 struct device_attribute *attr, char *buf)
555 {
556         struct regulator_dev *rdev = dev_get_drvdata(dev);
557
558         return regulator_print_opmode(buf,
559                 rdev->constraints->state_mem.mode);
560 }
561 static DEVICE_ATTR(suspend_mem_mode, 0444,
562                 regulator_suspend_mem_mode_show, NULL);
563
564 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
565                                 struct device_attribute *attr, char *buf)
566 {
567         struct regulator_dev *rdev = dev_get_drvdata(dev);
568
569         return regulator_print_opmode(buf,
570                 rdev->constraints->state_disk.mode);
571 }
572 static DEVICE_ATTR(suspend_disk_mode, 0444,
573                 regulator_suspend_disk_mode_show, NULL);
574
575 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
576                                 struct device_attribute *attr, char *buf)
577 {
578         struct regulator_dev *rdev = dev_get_drvdata(dev);
579
580         return regulator_print_opmode(buf,
581                 rdev->constraints->state_standby.mode);
582 }
583 static DEVICE_ATTR(suspend_standby_mode, 0444,
584                 regulator_suspend_standby_mode_show, NULL);
585
586 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
587                                    struct device_attribute *attr, char *buf)
588 {
589         struct regulator_dev *rdev = dev_get_drvdata(dev);
590
591         return regulator_print_state(buf,
592                         rdev->constraints->state_mem.enabled);
593 }
594 static DEVICE_ATTR(suspend_mem_state, 0444,
595                 regulator_suspend_mem_state_show, NULL);
596
597 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
598                                    struct device_attribute *attr, char *buf)
599 {
600         struct regulator_dev *rdev = dev_get_drvdata(dev);
601
602         return regulator_print_state(buf,
603                         rdev->constraints->state_disk.enabled);
604 }
605 static DEVICE_ATTR(suspend_disk_state, 0444,
606                 regulator_suspend_disk_state_show, NULL);
607
608 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
609                                    struct device_attribute *attr, char *buf)
610 {
611         struct regulator_dev *rdev = dev_get_drvdata(dev);
612
613         return regulator_print_state(buf,
614                         rdev->constraints->state_standby.enabled);
615 }
616 static DEVICE_ATTR(suspend_standby_state, 0444,
617                 regulator_suspend_standby_state_show, NULL);
618
619 static ssize_t regulator_bypass_show(struct device *dev,
620                                      struct device_attribute *attr, char *buf)
621 {
622         struct regulator_dev *rdev = dev_get_drvdata(dev);
623         const char *report;
624         bool bypass;
625         int ret;
626
627         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
628
629         if (ret != 0)
630                 report = "unknown";
631         else if (bypass)
632                 report = "enabled";
633         else
634                 report = "disabled";
635
636         return sprintf(buf, "%s\n", report);
637 }
638 static DEVICE_ATTR(bypass, 0444,
639                    regulator_bypass_show, NULL);
640
641 /* Calculate the new optimum regulator operating mode based on the new total
642  * consumer load. All locks held by caller */
643 static int drms_uA_update(struct regulator_dev *rdev)
644 {
645         struct regulator *sibling;
646         int current_uA = 0, output_uV, input_uV, err;
647         unsigned int mode;
648
649         lockdep_assert_held_once(&rdev->mutex);
650
651         /*
652          * first check to see if we can set modes at all, otherwise just
653          * tell the consumer everything is OK.
654          */
655         err = regulator_check_drms(rdev);
656         if (err < 0)
657                 return 0;
658
659         if (!rdev->desc->ops->get_optimum_mode &&
660             !rdev->desc->ops->set_load)
661                 return 0;
662
663         if (!rdev->desc->ops->set_mode &&
664             !rdev->desc->ops->set_load)
665                 return -EINVAL;
666
667         /* get output voltage */
668         output_uV = _regulator_get_voltage(rdev);
669         if (output_uV <= 0) {
670                 rdev_err(rdev, "invalid output voltage found\n");
671                 return -EINVAL;
672         }
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0) {
681                 rdev_err(rdev, "invalid input voltage found\n");
682                 return -EINVAL;
683         }
684
685         /* calc total requested load */
686         list_for_each_entry(sibling, &rdev->consumer_list, list)
687                 current_uA += sibling->uA_load;
688
689         current_uA += rdev->constraints->system_load;
690
691         if (rdev->desc->ops->set_load) {
692                 /* set the optimum mode for our new total regulator load */
693                 err = rdev->desc->ops->set_load(rdev, current_uA);
694                 if (err < 0)
695                         rdev_err(rdev, "failed to set load %d\n", current_uA);
696         } else {
697                 /* now get the optimum mode for our new total regulator load */
698                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
699                                                          output_uV, current_uA);
700
701                 /* check the new mode is allowed */
702                 err = regulator_mode_constrain(rdev, &mode);
703                 if (err < 0) {
704                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
705                                  current_uA, input_uV, output_uV);
706                         return err;
707                 }
708
709                 err = rdev->desc->ops->set_mode(rdev, mode);
710                 if (err < 0)
711                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
712         }
713
714         return err;
715 }
716
717 static int suspend_set_state(struct regulator_dev *rdev,
718         struct regulator_state *rstate)
719 {
720         int ret = 0;
721
722         /* If we have no suspend mode configration don't set anything;
723          * only warn if the driver implements set_suspend_voltage or
724          * set_suspend_mode callback.
725          */
726         if (!rstate->enabled && !rstate->disabled) {
727                 if (rdev->desc->ops->set_suspend_voltage ||
728                     rdev->desc->ops->set_suspend_mode)
729                         rdev_warn(rdev, "No configuration\n");
730                 return 0;
731         }
732
733         if (rstate->enabled && rstate->disabled) {
734                 rdev_err(rdev, "invalid configuration\n");
735                 return -EINVAL;
736         }
737
738         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
739                 ret = rdev->desc->ops->set_suspend_enable(rdev);
740         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
741                 ret = rdev->desc->ops->set_suspend_disable(rdev);
742         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
743                 ret = 0;
744
745         if (ret < 0) {
746                 rdev_err(rdev, "failed to enabled/disable\n");
747                 return ret;
748         }
749
750         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
751                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
752                 if (ret < 0) {
753                         rdev_err(rdev, "failed to set voltage\n");
754                         return ret;
755                 }
756         }
757
758         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
759                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
760                 if (ret < 0) {
761                         rdev_err(rdev, "failed to set mode\n");
762                         return ret;
763                 }
764         }
765         return ret;
766 }
767
768 /* locks held by caller */
769 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
770 {
771         lockdep_assert_held_once(&rdev->mutex);
772
773         if (!rdev->constraints)
774                 return -EINVAL;
775
776         switch (state) {
777         case PM_SUSPEND_STANDBY:
778                 return suspend_set_state(rdev,
779                         &rdev->constraints->state_standby);
780         case PM_SUSPEND_MEM:
781                 return suspend_set_state(rdev,
782                         &rdev->constraints->state_mem);
783         case PM_SUSPEND_MAX:
784                 return suspend_set_state(rdev,
785                         &rdev->constraints->state_disk);
786         default:
787                 return -EINVAL;
788         }
789 }
790
791 static void print_constraints(struct regulator_dev *rdev)
792 {
793         struct regulation_constraints *constraints = rdev->constraints;
794         char buf[160] = "";
795         size_t len = sizeof(buf) - 1;
796         int count = 0;
797         int ret;
798
799         if (constraints->min_uV && constraints->max_uV) {
800                 if (constraints->min_uV == constraints->max_uV)
801                         count += scnprintf(buf + count, len - count, "%d mV ",
802                                            constraints->min_uV / 1000);
803                 else
804                         count += scnprintf(buf + count, len - count,
805                                            "%d <--> %d mV ",
806                                            constraints->min_uV / 1000,
807                                            constraints->max_uV / 1000);
808         }
809
810         if (!constraints->min_uV ||
811             constraints->min_uV != constraints->max_uV) {
812                 ret = _regulator_get_voltage(rdev);
813                 if (ret > 0)
814                         count += scnprintf(buf + count, len - count,
815                                            "at %d mV ", ret / 1000);
816         }
817
818         if (constraints->uV_offset)
819                 count += scnprintf(buf + count, len - count, "%dmV offset ",
820                                    constraints->uV_offset / 1000);
821
822         if (constraints->min_uA && constraints->max_uA) {
823                 if (constraints->min_uA == constraints->max_uA)
824                         count += scnprintf(buf + count, len - count, "%d mA ",
825                                            constraints->min_uA / 1000);
826                 else
827                         count += scnprintf(buf + count, len - count,
828                                            "%d <--> %d mA ",
829                                            constraints->min_uA / 1000,
830                                            constraints->max_uA / 1000);
831         }
832
833         if (!constraints->min_uA ||
834             constraints->min_uA != constraints->max_uA) {
835                 ret = _regulator_get_current_limit(rdev);
836                 if (ret > 0)
837                         count += scnprintf(buf + count, len - count,
838                                            "at %d mA ", ret / 1000);
839         }
840
841         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
842                 count += scnprintf(buf + count, len - count, "fast ");
843         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
844                 count += scnprintf(buf + count, len - count, "normal ");
845         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
846                 count += scnprintf(buf + count, len - count, "idle ");
847         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
848                 count += scnprintf(buf + count, len - count, "standby");
849
850         if (!count)
851                 scnprintf(buf, len, "no parameters");
852
853         rdev_dbg(rdev, "%s\n", buf);
854
855         if ((constraints->min_uV != constraints->max_uV) &&
856             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
857                 rdev_warn(rdev,
858                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
859 }
860
861 static int machine_constraints_voltage(struct regulator_dev *rdev,
862         struct regulation_constraints *constraints)
863 {
864         const struct regulator_ops *ops = rdev->desc->ops;
865         int ret;
866
867         /* do we need to apply the constraint voltage */
868         if (rdev->constraints->apply_uV &&
869             rdev->constraints->min_uV == rdev->constraints->max_uV) {
870                 int current_uV = _regulator_get_voltage(rdev);
871                 if (current_uV < 0) {
872                         rdev_err(rdev,
873                                  "failed to get the current voltage(%d)\n",
874                                  current_uV);
875                         return current_uV;
876                 }
877                 if (current_uV < rdev->constraints->min_uV ||
878                     current_uV > rdev->constraints->max_uV) {
879                         ret = _regulator_do_set_voltage(
880                                 rdev, rdev->constraints->min_uV,
881                                 rdev->constraints->max_uV);
882                         if (ret < 0) {
883                                 rdev_err(rdev,
884                                         "failed to apply %duV constraint(%d)\n",
885                                         rdev->constraints->min_uV, ret);
886                                 return ret;
887                         }
888                 }
889         }
890
891         /* constrain machine-level voltage specs to fit
892          * the actual range supported by this regulator.
893          */
894         if (ops->list_voltage && rdev->desc->n_voltages) {
895                 int     count = rdev->desc->n_voltages;
896                 int     i;
897                 int     min_uV = INT_MAX;
898                 int     max_uV = INT_MIN;
899                 int     cmin = constraints->min_uV;
900                 int     cmax = constraints->max_uV;
901
902                 /* it's safe to autoconfigure fixed-voltage supplies
903                    and the constraints are used by list_voltage. */
904                 if (count == 1 && !cmin) {
905                         cmin = 1;
906                         cmax = INT_MAX;
907                         constraints->min_uV = cmin;
908                         constraints->max_uV = cmax;
909                 }
910
911                 /* voltage constraints are optional */
912                 if ((cmin == 0) && (cmax == 0))
913                         return 0;
914
915                 /* else require explicit machine-level constraints */
916                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
917                         rdev_err(rdev, "invalid voltage constraints\n");
918                         return -EINVAL;
919                 }
920
921                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
922                 for (i = 0; i < count; i++) {
923                         int     value;
924
925                         value = ops->list_voltage(rdev, i);
926                         if (value <= 0)
927                                 continue;
928
929                         /* maybe adjust [min_uV..max_uV] */
930                         if (value >= cmin && value < min_uV)
931                                 min_uV = value;
932                         if (value <= cmax && value > max_uV)
933                                 max_uV = value;
934                 }
935
936                 /* final: [min_uV..max_uV] valid iff constraints valid */
937                 if (max_uV < min_uV) {
938                         rdev_err(rdev,
939                                  "unsupportable voltage constraints %u-%uuV\n",
940                                  min_uV, max_uV);
941                         return -EINVAL;
942                 }
943
944                 /* use regulator's subset of machine constraints */
945                 if (constraints->min_uV < min_uV) {
946                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
947                                  constraints->min_uV, min_uV);
948                         constraints->min_uV = min_uV;
949                 }
950                 if (constraints->max_uV > max_uV) {
951                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
952                                  constraints->max_uV, max_uV);
953                         constraints->max_uV = max_uV;
954                 }
955         }
956
957         return 0;
958 }
959
960 static int machine_constraints_current(struct regulator_dev *rdev,
961         struct regulation_constraints *constraints)
962 {
963         const struct regulator_ops *ops = rdev->desc->ops;
964         int ret;
965
966         if (!constraints->min_uA && !constraints->max_uA)
967                 return 0;
968
969         if (constraints->min_uA > constraints->max_uA) {
970                 rdev_err(rdev, "Invalid current constraints\n");
971                 return -EINVAL;
972         }
973
974         if (!ops->set_current_limit || !ops->get_current_limit) {
975                 rdev_warn(rdev, "Operation of current configuration missing\n");
976                 return 0;
977         }
978
979         /* Set regulator current in constraints range */
980         ret = ops->set_current_limit(rdev, constraints->min_uA,
981                         constraints->max_uA);
982         if (ret < 0) {
983                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
984                 return ret;
985         }
986
987         return 0;
988 }
989
990 static int _regulator_do_enable(struct regulator_dev *rdev);
991
992 /**
993  * set_machine_constraints - sets regulator constraints
994  * @rdev: regulator source
995  * @constraints: constraints to apply
996  *
997  * Allows platform initialisation code to define and constrain
998  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
999  * Constraints *must* be set by platform code in order for some
1000  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1001  * set_mode.
1002  */
1003 static int set_machine_constraints(struct regulator_dev *rdev,
1004         const struct regulation_constraints *constraints)
1005 {
1006         int ret = 0;
1007         const struct regulator_ops *ops = rdev->desc->ops;
1008
1009         if (constraints)
1010                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1011                                             GFP_KERNEL);
1012         else
1013                 rdev->constraints = kzalloc(sizeof(*constraints),
1014                                             GFP_KERNEL);
1015         if (!rdev->constraints)
1016                 return -ENOMEM;
1017
1018         ret = machine_constraints_voltage(rdev, rdev->constraints);
1019         if (ret != 0)
1020                 goto out;
1021
1022         ret = machine_constraints_current(rdev, rdev->constraints);
1023         if (ret != 0)
1024                 goto out;
1025
1026         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1027                 ret = ops->set_input_current_limit(rdev,
1028                                                    rdev->constraints->ilim_uA);
1029                 if (ret < 0) {
1030                         rdev_err(rdev, "failed to set input limit\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         /* do we need to setup our suspend state */
1036         if (rdev->constraints->initial_state) {
1037                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1038                 if (ret < 0) {
1039                         rdev_err(rdev, "failed to set suspend state\n");
1040                         goto out;
1041                 }
1042         }
1043
1044         if (rdev->constraints->initial_mode) {
1045                 if (!ops->set_mode) {
1046                         rdev_err(rdev, "no set_mode operation\n");
1047                         ret = -EINVAL;
1048                         goto out;
1049                 }
1050
1051                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1052                 if (ret < 0) {
1053                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1054                         goto out;
1055                 }
1056         }
1057
1058         /* If the constraints say the regulator should be on at this point
1059          * and we have control then make sure it is enabled.
1060          */
1061         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1062                 ret = _regulator_do_enable(rdev);
1063                 if (ret < 0 && ret != -EINVAL) {
1064                         rdev_err(rdev, "failed to enable\n");
1065                         goto out;
1066                 }
1067         }
1068
1069         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1070                 && ops->set_ramp_delay) {
1071                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set ramp_delay\n");
1074                         goto out;
1075                 }
1076         }
1077
1078         if (rdev->constraints->pull_down && ops->set_pull_down) {
1079                 ret = ops->set_pull_down(rdev);
1080                 if (ret < 0) {
1081                         rdev_err(rdev, "failed to set pull down\n");
1082                         goto out;
1083                 }
1084         }
1085
1086         if (rdev->constraints->soft_start && ops->set_soft_start) {
1087                 ret = ops->set_soft_start(rdev);
1088                 if (ret < 0) {
1089                         rdev_err(rdev, "failed to set soft start\n");
1090                         goto out;
1091                 }
1092         }
1093
1094         if (rdev->constraints->over_current_protection
1095                 && ops->set_over_current_protection) {
1096                 ret = ops->set_over_current_protection(rdev);
1097                 if (ret < 0) {
1098                         rdev_err(rdev, "failed to set over current protection\n");
1099                         goto out;
1100                 }
1101         }
1102
1103         print_constraints(rdev);
1104         return 0;
1105 out:
1106         kfree(rdev->constraints);
1107         rdev->constraints = NULL;
1108         return ret;
1109 }
1110
1111 /**
1112  * set_supply - set regulator supply regulator
1113  * @rdev: regulator name
1114  * @supply_rdev: supply regulator name
1115  *
1116  * Called by platform initialisation code to set the supply regulator for this
1117  * regulator. This ensures that a regulators supply will also be enabled by the
1118  * core if it's child is enabled.
1119  */
1120 static int set_supply(struct regulator_dev *rdev,
1121                       struct regulator_dev *supply_rdev)
1122 {
1123         int err;
1124
1125         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1126
1127         if (!try_module_get(supply_rdev->owner))
1128                 return -ENODEV;
1129
1130         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1131         if (rdev->supply == NULL) {
1132                 err = -ENOMEM;
1133                 return err;
1134         }
1135         supply_rdev->open_count++;
1136
1137         return 0;
1138 }
1139
1140 /**
1141  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1142  * @rdev:         regulator source
1143  * @consumer_dev_name: dev_name() string for device supply applies to
1144  * @supply:       symbolic name for supply
1145  *
1146  * Allows platform initialisation code to map physical regulator
1147  * sources to symbolic names for supplies for use by devices.  Devices
1148  * should use these symbolic names to request regulators, avoiding the
1149  * need to provide board-specific regulator names as platform data.
1150  */
1151 static int set_consumer_device_supply(struct regulator_dev *rdev,
1152                                       const char *consumer_dev_name,
1153                                       const char *supply)
1154 {
1155         struct regulator_map *node;
1156         int has_dev;
1157
1158         if (supply == NULL)
1159                 return -EINVAL;
1160
1161         if (consumer_dev_name != NULL)
1162                 has_dev = 1;
1163         else
1164                 has_dev = 0;
1165
1166         list_for_each_entry(node, &regulator_map_list, list) {
1167                 if (node->dev_name && consumer_dev_name) {
1168                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1169                                 continue;
1170                 } else if (node->dev_name || consumer_dev_name) {
1171                         continue;
1172                 }
1173
1174                 if (strcmp(node->supply, supply) != 0)
1175                         continue;
1176
1177                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1178                          consumer_dev_name,
1179                          dev_name(&node->regulator->dev),
1180                          node->regulator->desc->name,
1181                          supply,
1182                          dev_name(&rdev->dev), rdev_get_name(rdev));
1183                 return -EBUSY;
1184         }
1185
1186         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1187         if (node == NULL)
1188                 return -ENOMEM;
1189
1190         node->regulator = rdev;
1191         node->supply = supply;
1192
1193         if (has_dev) {
1194                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1195                 if (node->dev_name == NULL) {
1196                         kfree(node);
1197                         return -ENOMEM;
1198                 }
1199         }
1200
1201         list_add(&node->list, &regulator_map_list);
1202         return 0;
1203 }
1204
1205 static void unset_regulator_supplies(struct regulator_dev *rdev)
1206 {
1207         struct regulator_map *node, *n;
1208
1209         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1210                 if (rdev == node->regulator) {
1211                         list_del(&node->list);
1212                         kfree(node->dev_name);
1213                         kfree(node);
1214                 }
1215         }
1216 }
1217
1218 #define REG_STR_SIZE    64
1219
1220 static struct regulator *create_regulator(struct regulator_dev *rdev,
1221                                           struct device *dev,
1222                                           const char *supply_name)
1223 {
1224         struct regulator *regulator;
1225         char buf[REG_STR_SIZE];
1226         int err, size;
1227
1228         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1229         if (regulator == NULL)
1230                 return NULL;
1231
1232         mutex_lock(&rdev->mutex);
1233         regulator->rdev = rdev;
1234         list_add(&regulator->list, &rdev->consumer_list);
1235
1236         if (dev) {
1237                 regulator->dev = dev;
1238
1239                 /* Add a link to the device sysfs entry */
1240                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1241                                  dev->kobj.name, supply_name);
1242                 if (size >= REG_STR_SIZE)
1243                         goto overflow_err;
1244
1245                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1246                 if (regulator->supply_name == NULL)
1247                         goto overflow_err;
1248
1249                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1250                                         buf);
1251                 if (err) {
1252                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1253                                   dev->kobj.name, err);
1254                         /* non-fatal */
1255                 }
1256         } else {
1257                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1258                 if (regulator->supply_name == NULL)
1259                         goto overflow_err;
1260         }
1261
1262         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1263                                                 rdev->debugfs);
1264         if (!regulator->debugfs) {
1265                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1266         } else {
1267                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1268                                    &regulator->uA_load);
1269                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1270                                    &regulator->min_uV);
1271                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1272                                    &regulator->max_uV);
1273         }
1274
1275         /*
1276          * Check now if the regulator is an always on regulator - if
1277          * it is then we don't need to do nearly so much work for
1278          * enable/disable calls.
1279          */
1280         if (!_regulator_can_change_status(rdev) &&
1281             _regulator_is_enabled(rdev))
1282                 regulator->always_on = true;
1283
1284         mutex_unlock(&rdev->mutex);
1285         return regulator;
1286 overflow_err:
1287         list_del(&regulator->list);
1288         kfree(regulator);
1289         mutex_unlock(&rdev->mutex);
1290         return NULL;
1291 }
1292
1293 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1294 {
1295         if (rdev->constraints && rdev->constraints->enable_time)
1296                 return rdev->constraints->enable_time;
1297         if (!rdev->desc->ops->enable_time)
1298                 return rdev->desc->enable_time;
1299         return rdev->desc->ops->enable_time(rdev);
1300 }
1301
1302 static struct regulator_supply_alias *regulator_find_supply_alias(
1303                 struct device *dev, const char *supply)
1304 {
1305         struct regulator_supply_alias *map;
1306
1307         list_for_each_entry(map, &regulator_supply_alias_list, list)
1308                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1309                         return map;
1310
1311         return NULL;
1312 }
1313
1314 static void regulator_supply_alias(struct device **dev, const char **supply)
1315 {
1316         struct regulator_supply_alias *map;
1317
1318         map = regulator_find_supply_alias(*dev, *supply);
1319         if (map) {
1320                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1321                                 *supply, map->alias_supply,
1322                                 dev_name(map->alias_dev));
1323                 *dev = map->alias_dev;
1324                 *supply = map->alias_supply;
1325         }
1326 }
1327
1328 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1329                                                   const char *supply,
1330                                                   int *ret)
1331 {
1332         struct regulator_dev *r;
1333         struct device_node *node;
1334         struct regulator_map *map;
1335         const char *devname = NULL;
1336
1337         regulator_supply_alias(&dev, &supply);
1338
1339         /* first do a dt based lookup */
1340         if (dev && dev->of_node) {
1341                 node = of_get_regulator(dev, supply);
1342                 if (node) {
1343                         list_for_each_entry(r, &regulator_list, list)
1344                                 if (r->dev.parent &&
1345                                         node == r->dev.of_node)
1346                                         return r;
1347                         *ret = -EPROBE_DEFER;
1348                         return NULL;
1349                 } else {
1350                         /*
1351                          * If we couldn't even get the node then it's
1352                          * not just that the device didn't register
1353                          * yet, there's no node and we'll never
1354                          * succeed.
1355                          */
1356                         *ret = -ENODEV;
1357                 }
1358         }
1359
1360         /* if not found, try doing it non-dt way */
1361         if (dev)
1362                 devname = dev_name(dev);
1363
1364         list_for_each_entry(r, &regulator_list, list)
1365                 if (strcmp(rdev_get_name(r), supply) == 0)
1366                         return r;
1367
1368         list_for_each_entry(map, &regulator_map_list, list) {
1369                 /* If the mapping has a device set up it must match */
1370                 if (map->dev_name &&
1371                     (!devname || strcmp(map->dev_name, devname)))
1372                         continue;
1373
1374                 if (strcmp(map->supply, supply) == 0)
1375                         return map->regulator;
1376         }
1377
1378
1379         return NULL;
1380 }
1381
1382 static int regulator_resolve_supply(struct regulator_dev *rdev)
1383 {
1384         struct regulator_dev *r;
1385         struct device *dev = rdev->dev.parent;
1386         int ret;
1387
1388         /* No supply to resovle? */
1389         if (!rdev->supply_name)
1390                 return 0;
1391
1392         /* Supply already resolved? */
1393         if (rdev->supply)
1394                 return 0;
1395
1396         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1397         if (!r) {
1398                 if (ret == -ENODEV) {
1399                         /*
1400                          * No supply was specified for this regulator and
1401                          * there will never be one.
1402                          */
1403                         return 0;
1404                 }
1405
1406                 if (have_full_constraints()) {
1407                         r = dummy_regulator_rdev;
1408                 } else {
1409                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1410                                 rdev->supply_name, rdev->desc->name);
1411                         return -EPROBE_DEFER;
1412                 }
1413         }
1414
1415         /* Recursively resolve the supply of the supply */
1416         ret = regulator_resolve_supply(r);
1417         if (ret < 0)
1418                 return ret;
1419
1420         ret = set_supply(rdev, r);
1421         if (ret < 0)
1422                 return ret;
1423
1424         /* Cascade always-on state to supply */
1425         if (_regulator_is_enabled(rdev) && rdev->supply) {
1426                 ret = regulator_enable(rdev->supply);
1427                 if (ret < 0) {
1428                         _regulator_put(rdev->supply);
1429                         return ret;
1430                 }
1431         }
1432
1433         return 0;
1434 }
1435
1436 /* Internal regulator request function */
1437 static struct regulator *_regulator_get(struct device *dev, const char *id,
1438                                         bool exclusive, bool allow_dummy)
1439 {
1440         struct regulator_dev *rdev;
1441         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1442         const char *devname = NULL;
1443         int ret;
1444
1445         if (id == NULL) {
1446                 pr_err("get() with no identifier\n");
1447                 return ERR_PTR(-EINVAL);
1448         }
1449
1450         if (dev)
1451                 devname = dev_name(dev);
1452
1453         if (have_full_constraints())
1454                 ret = -ENODEV;
1455         else
1456                 ret = -EPROBE_DEFER;
1457
1458         mutex_lock(&regulator_list_mutex);
1459
1460         rdev = regulator_dev_lookup(dev, id, &ret);
1461         if (rdev)
1462                 goto found;
1463
1464         regulator = ERR_PTR(ret);
1465
1466         /*
1467          * If we have return value from dev_lookup fail, we do not expect to
1468          * succeed, so, quit with appropriate error value
1469          */
1470         if (ret && ret != -ENODEV)
1471                 goto out;
1472
1473         if (!devname)
1474                 devname = "deviceless";
1475
1476         /*
1477          * Assume that a regulator is physically present and enabled
1478          * even if it isn't hooked up and just provide a dummy.
1479          */
1480         if (have_full_constraints() && allow_dummy) {
1481                 pr_warn("%s supply %s not found, using dummy regulator\n",
1482                         devname, id);
1483
1484                 rdev = dummy_regulator_rdev;
1485                 goto found;
1486         /* Don't log an error when called from regulator_get_optional() */
1487         } else if (!have_full_constraints() || exclusive) {
1488                 dev_warn(dev, "dummy supplies not allowed\n");
1489         }
1490
1491         mutex_unlock(&regulator_list_mutex);
1492         return regulator;
1493
1494 found:
1495         if (rdev->exclusive) {
1496                 regulator = ERR_PTR(-EPERM);
1497                 goto out;
1498         }
1499
1500         if (exclusive && rdev->open_count) {
1501                 regulator = ERR_PTR(-EBUSY);
1502                 goto out;
1503         }
1504
1505         ret = regulator_resolve_supply(rdev);
1506         if (ret < 0) {
1507                 regulator = ERR_PTR(ret);
1508                 goto out;
1509         }
1510
1511         if (!try_module_get(rdev->owner))
1512                 goto out;
1513
1514         regulator = create_regulator(rdev, dev, id);
1515         if (regulator == NULL) {
1516                 regulator = ERR_PTR(-ENOMEM);
1517                 module_put(rdev->owner);
1518                 goto out;
1519         }
1520
1521         rdev->open_count++;
1522         if (exclusive) {
1523                 rdev->exclusive = 1;
1524
1525                 ret = _regulator_is_enabled(rdev);
1526                 if (ret > 0)
1527                         rdev->use_count = 1;
1528                 else
1529                         rdev->use_count = 0;
1530         }
1531
1532 out:
1533         mutex_unlock(&regulator_list_mutex);
1534
1535         return regulator;
1536 }
1537
1538 /**
1539  * regulator_get - lookup and obtain a reference to a regulator.
1540  * @dev: device for regulator "consumer"
1541  * @id: Supply name or regulator ID.
1542  *
1543  * Returns a struct regulator corresponding to the regulator producer,
1544  * or IS_ERR() condition containing errno.
1545  *
1546  * Use of supply names configured via regulator_set_device_supply() is
1547  * strongly encouraged.  It is recommended that the supply name used
1548  * should match the name used for the supply and/or the relevant
1549  * device pins in the datasheet.
1550  */
1551 struct regulator *regulator_get(struct device *dev, const char *id)
1552 {
1553         return _regulator_get(dev, id, false, true);
1554 }
1555 EXPORT_SYMBOL_GPL(regulator_get);
1556
1557 /**
1558  * regulator_get_exclusive - obtain exclusive access to a regulator.
1559  * @dev: device for regulator "consumer"
1560  * @id: Supply name or regulator ID.
1561  *
1562  * Returns a struct regulator corresponding to the regulator producer,
1563  * or IS_ERR() condition containing errno.  Other consumers will be
1564  * unable to obtain this regulator while this reference is held and the
1565  * use count for the regulator will be initialised to reflect the current
1566  * state of the regulator.
1567  *
1568  * This is intended for use by consumers which cannot tolerate shared
1569  * use of the regulator such as those which need to force the
1570  * regulator off for correct operation of the hardware they are
1571  * controlling.
1572  *
1573  * Use of supply names configured via regulator_set_device_supply() is
1574  * strongly encouraged.  It is recommended that the supply name used
1575  * should match the name used for the supply and/or the relevant
1576  * device pins in the datasheet.
1577  */
1578 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1579 {
1580         return _regulator_get(dev, id, true, false);
1581 }
1582 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1583
1584 /**
1585  * regulator_get_optional - obtain optional access to a regulator.
1586  * @dev: device for regulator "consumer"
1587  * @id: Supply name or regulator ID.
1588  *
1589  * Returns a struct regulator corresponding to the regulator producer,
1590  * or IS_ERR() condition containing errno.
1591  *
1592  * This is intended for use by consumers for devices which can have
1593  * some supplies unconnected in normal use, such as some MMC devices.
1594  * It can allow the regulator core to provide stub supplies for other
1595  * supplies requested using normal regulator_get() calls without
1596  * disrupting the operation of drivers that can handle absent
1597  * supplies.
1598  *
1599  * Use of supply names configured via regulator_set_device_supply() is
1600  * strongly encouraged.  It is recommended that the supply name used
1601  * should match the name used for the supply and/or the relevant
1602  * device pins in the datasheet.
1603  */
1604 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1605 {
1606         return _regulator_get(dev, id, false, false);
1607 }
1608 EXPORT_SYMBOL_GPL(regulator_get_optional);
1609
1610 /* regulator_list_mutex lock held by regulator_put() */
1611 static void _regulator_put(struct regulator *regulator)
1612 {
1613         struct regulator_dev *rdev;
1614
1615         if (IS_ERR_OR_NULL(regulator))
1616                 return;
1617
1618         lockdep_assert_held_once(&regulator_list_mutex);
1619
1620         rdev = regulator->rdev;
1621
1622         debugfs_remove_recursive(regulator->debugfs);
1623
1624         /* remove any sysfs entries */
1625         if (regulator->dev)
1626                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1627         mutex_lock(&rdev->mutex);
1628         list_del(&regulator->list);
1629
1630         rdev->open_count--;
1631         rdev->exclusive = 0;
1632         mutex_unlock(&rdev->mutex);
1633
1634         kfree(regulator->supply_name);
1635         kfree(regulator);
1636
1637         module_put(rdev->owner);
1638 }
1639
1640 /**
1641  * regulator_put - "free" the regulator source
1642  * @regulator: regulator source
1643  *
1644  * Note: drivers must ensure that all regulator_enable calls made on this
1645  * regulator source are balanced by regulator_disable calls prior to calling
1646  * this function.
1647  */
1648 void regulator_put(struct regulator *regulator)
1649 {
1650         mutex_lock(&regulator_list_mutex);
1651         _regulator_put(regulator);
1652         mutex_unlock(&regulator_list_mutex);
1653 }
1654 EXPORT_SYMBOL_GPL(regulator_put);
1655
1656 /**
1657  * regulator_register_supply_alias - Provide device alias for supply lookup
1658  *
1659  * @dev: device that will be given as the regulator "consumer"
1660  * @id: Supply name or regulator ID
1661  * @alias_dev: device that should be used to lookup the supply
1662  * @alias_id: Supply name or regulator ID that should be used to lookup the
1663  * supply
1664  *
1665  * All lookups for id on dev will instead be conducted for alias_id on
1666  * alias_dev.
1667  */
1668 int regulator_register_supply_alias(struct device *dev, const char *id,
1669                                     struct device *alias_dev,
1670                                     const char *alias_id)
1671 {
1672         struct regulator_supply_alias *map;
1673
1674         map = regulator_find_supply_alias(dev, id);
1675         if (map)
1676                 return -EEXIST;
1677
1678         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1679         if (!map)
1680                 return -ENOMEM;
1681
1682         map->src_dev = dev;
1683         map->src_supply = id;
1684         map->alias_dev = alias_dev;
1685         map->alias_supply = alias_id;
1686
1687         list_add(&map->list, &regulator_supply_alias_list);
1688
1689         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1690                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1691
1692         return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1695
1696 /**
1697  * regulator_unregister_supply_alias - Remove device alias
1698  *
1699  * @dev: device that will be given as the regulator "consumer"
1700  * @id: Supply name or regulator ID
1701  *
1702  * Remove a lookup alias if one exists for id on dev.
1703  */
1704 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1705 {
1706         struct regulator_supply_alias *map;
1707
1708         map = regulator_find_supply_alias(dev, id);
1709         if (map) {
1710                 list_del(&map->list);
1711                 kfree(map);
1712         }
1713 }
1714 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1715
1716 /**
1717  * regulator_bulk_register_supply_alias - register multiple aliases
1718  *
1719  * @dev: device that will be given as the regulator "consumer"
1720  * @id: List of supply names or regulator IDs
1721  * @alias_dev: device that should be used to lookup the supply
1722  * @alias_id: List of supply names or regulator IDs that should be used to
1723  * lookup the supply
1724  * @num_id: Number of aliases to register
1725  *
1726  * @return 0 on success, an errno on failure.
1727  *
1728  * This helper function allows drivers to register several supply
1729  * aliases in one operation.  If any of the aliases cannot be
1730  * registered any aliases that were registered will be removed
1731  * before returning to the caller.
1732  */
1733 int regulator_bulk_register_supply_alias(struct device *dev,
1734                                          const char *const *id,
1735                                          struct device *alias_dev,
1736                                          const char *const *alias_id,
1737                                          int num_id)
1738 {
1739         int i;
1740         int ret;
1741
1742         for (i = 0; i < num_id; ++i) {
1743                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1744                                                       alias_id[i]);
1745                 if (ret < 0)
1746                         goto err;
1747         }
1748
1749         return 0;
1750
1751 err:
1752         dev_err(dev,
1753                 "Failed to create supply alias %s,%s -> %s,%s\n",
1754                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1755
1756         while (--i >= 0)
1757                 regulator_unregister_supply_alias(dev, id[i]);
1758
1759         return ret;
1760 }
1761 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1762
1763 /**
1764  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1765  *
1766  * @dev: device that will be given as the regulator "consumer"
1767  * @id: List of supply names or regulator IDs
1768  * @num_id: Number of aliases to unregister
1769  *
1770  * This helper function allows drivers to unregister several supply
1771  * aliases in one operation.
1772  */
1773 void regulator_bulk_unregister_supply_alias(struct device *dev,
1774                                             const char *const *id,
1775                                             int num_id)
1776 {
1777         int i;
1778
1779         for (i = 0; i < num_id; ++i)
1780                 regulator_unregister_supply_alias(dev, id[i]);
1781 }
1782 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1783
1784
1785 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1786 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1787                                 const struct regulator_config *config)
1788 {
1789         struct regulator_enable_gpio *pin;
1790         struct gpio_desc *gpiod;
1791         int ret;
1792
1793         gpiod = gpio_to_desc(config->ena_gpio);
1794
1795         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1796                 if (pin->gpiod == gpiod) {
1797                         rdev_dbg(rdev, "GPIO %d is already used\n",
1798                                 config->ena_gpio);
1799                         goto update_ena_gpio_to_rdev;
1800                 }
1801         }
1802
1803         ret = gpio_request_one(config->ena_gpio,
1804                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1805                                 rdev_get_name(rdev));
1806         if (ret)
1807                 return ret;
1808
1809         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1810         if (pin == NULL) {
1811                 gpio_free(config->ena_gpio);
1812                 return -ENOMEM;
1813         }
1814
1815         pin->gpiod = gpiod;
1816         pin->ena_gpio_invert = config->ena_gpio_invert;
1817         list_add(&pin->list, &regulator_ena_gpio_list);
1818
1819 update_ena_gpio_to_rdev:
1820         pin->request_count++;
1821         rdev->ena_pin = pin;
1822         return 0;
1823 }
1824
1825 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1826 {
1827         struct regulator_enable_gpio *pin, *n;
1828
1829         if (!rdev->ena_pin)
1830                 return;
1831
1832         /* Free the GPIO only in case of no use */
1833         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1834                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1835                         if (pin->request_count <= 1) {
1836                                 pin->request_count = 0;
1837                                 gpiod_put(pin->gpiod);
1838                                 list_del(&pin->list);
1839                                 kfree(pin);
1840                                 rdev->ena_pin = NULL;
1841                                 return;
1842                         } else {
1843                                 pin->request_count--;
1844                         }
1845                 }
1846         }
1847 }
1848
1849 /**
1850  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1851  * @rdev: regulator_dev structure
1852  * @enable: enable GPIO at initial use?
1853  *
1854  * GPIO is enabled in case of initial use. (enable_count is 0)
1855  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1856  */
1857 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1858 {
1859         struct regulator_enable_gpio *pin = rdev->ena_pin;
1860
1861         if (!pin)
1862                 return -EINVAL;
1863
1864         if (enable) {
1865                 /* Enable GPIO at initial use */
1866                 if (pin->enable_count == 0)
1867                         gpiod_set_value_cansleep(pin->gpiod,
1868                                                  !pin->ena_gpio_invert);
1869
1870                 pin->enable_count++;
1871         } else {
1872                 if (pin->enable_count > 1) {
1873                         pin->enable_count--;
1874                         return 0;
1875                 }
1876
1877                 /* Disable GPIO if not used */
1878                 if (pin->enable_count <= 1) {
1879                         gpiod_set_value_cansleep(pin->gpiod,
1880                                                  pin->ena_gpio_invert);
1881                         pin->enable_count = 0;
1882                 }
1883         }
1884
1885         return 0;
1886 }
1887
1888 /**
1889  * _regulator_enable_delay - a delay helper function
1890  * @delay: time to delay in microseconds
1891  *
1892  * Delay for the requested amount of time as per the guidelines in:
1893  *
1894  *     Documentation/timers/timers-howto.txt
1895  *
1896  * The assumption here is that regulators will never be enabled in
1897  * atomic context and therefore sleeping functions can be used.
1898  */
1899 static void _regulator_enable_delay(unsigned int delay)
1900 {
1901         unsigned int ms = delay / 1000;
1902         unsigned int us = delay % 1000;
1903
1904         if (ms > 0) {
1905                 /*
1906                  * For small enough values, handle super-millisecond
1907                  * delays in the usleep_range() call below.
1908                  */
1909                 if (ms < 20)
1910                         us += ms * 1000;
1911                 else
1912                         msleep(ms);
1913         }
1914
1915         /*
1916          * Give the scheduler some room to coalesce with any other
1917          * wakeup sources. For delays shorter than 10 us, don't even
1918          * bother setting up high-resolution timers and just busy-
1919          * loop.
1920          */
1921         if (us >= 10)
1922                 usleep_range(us, us + 100);
1923         else
1924                 udelay(us);
1925 }
1926
1927 static int _regulator_do_enable(struct regulator_dev *rdev)
1928 {
1929         int ret, delay;
1930
1931         /* Query before enabling in case configuration dependent.  */
1932         ret = _regulator_get_enable_time(rdev);
1933         if (ret >= 0) {
1934                 delay = ret;
1935         } else {
1936                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1937                 delay = 0;
1938         }
1939
1940         trace_regulator_enable(rdev_get_name(rdev));
1941
1942         if (rdev->desc->off_on_delay) {
1943                 /* if needed, keep a distance of off_on_delay from last time
1944                  * this regulator was disabled.
1945                  */
1946                 unsigned long start_jiffy = jiffies;
1947                 unsigned long intended, max_delay, remaining;
1948
1949                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1950                 intended = rdev->last_off_jiffy + max_delay;
1951
1952                 if (time_before(start_jiffy, intended)) {
1953                         /* calc remaining jiffies to deal with one-time
1954                          * timer wrapping.
1955                          * in case of multiple timer wrapping, either it can be
1956                          * detected by out-of-range remaining, or it cannot be
1957                          * detected and we gets a panelty of
1958                          * _regulator_enable_delay().
1959                          */
1960                         remaining = intended - start_jiffy;
1961                         if (remaining <= max_delay)
1962                                 _regulator_enable_delay(
1963                                                 jiffies_to_usecs(remaining));
1964                 }
1965         }
1966
1967         if (rdev->ena_pin) {
1968                 if (!rdev->ena_gpio_state) {
1969                         ret = regulator_ena_gpio_ctrl(rdev, true);
1970                         if (ret < 0)
1971                                 return ret;
1972                         rdev->ena_gpio_state = 1;
1973                 }
1974         } else if (rdev->desc->ops->enable) {
1975                 ret = rdev->desc->ops->enable(rdev);
1976                 if (ret < 0)
1977                         return ret;
1978         } else {
1979                 return -EINVAL;
1980         }
1981
1982         /* Allow the regulator to ramp; it would be useful to extend
1983          * this for bulk operations so that the regulators can ramp
1984          * together.  */
1985         trace_regulator_enable_delay(rdev_get_name(rdev));
1986
1987         _regulator_enable_delay(delay);
1988
1989         trace_regulator_enable_complete(rdev_get_name(rdev));
1990
1991         return 0;
1992 }
1993
1994 /* locks held by regulator_enable() */
1995 static int _regulator_enable(struct regulator_dev *rdev)
1996 {
1997         int ret;
1998
1999         lockdep_assert_held_once(&rdev->mutex);
2000
2001         /* check voltage and requested load before enabling */
2002         if (rdev->constraints &&
2003             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2004                 drms_uA_update(rdev);
2005
2006         if (rdev->use_count == 0) {
2007                 /* The regulator may on if it's not switchable or left on */
2008                 ret = _regulator_is_enabled(rdev);
2009                 if (ret == -EINVAL || ret == 0) {
2010                         if (!_regulator_can_change_status(rdev))
2011                                 return -EPERM;
2012
2013                         ret = _regulator_do_enable(rdev);
2014                         if (ret < 0)
2015                                 return ret;
2016
2017                 } else if (ret < 0) {
2018                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2019                         return ret;
2020                 }
2021                 /* Fallthrough on positive return values - already enabled */
2022         }
2023
2024         rdev->use_count++;
2025
2026         return 0;
2027 }
2028
2029 /**
2030  * regulator_enable - enable regulator output
2031  * @regulator: regulator source
2032  *
2033  * Request that the regulator be enabled with the regulator output at
2034  * the predefined voltage or current value.  Calls to regulator_enable()
2035  * must be balanced with calls to regulator_disable().
2036  *
2037  * NOTE: the output value can be set by other drivers, boot loader or may be
2038  * hardwired in the regulator.
2039  */
2040 int regulator_enable(struct regulator *regulator)
2041 {
2042         struct regulator_dev *rdev = regulator->rdev;
2043         int ret = 0;
2044
2045         if (regulator->always_on)
2046                 return 0;
2047
2048         if (rdev->supply) {
2049                 ret = regulator_enable(rdev->supply);
2050                 if (ret != 0)
2051                         return ret;
2052         }
2053
2054         mutex_lock(&rdev->mutex);
2055         ret = _regulator_enable(rdev);
2056         mutex_unlock(&rdev->mutex);
2057
2058         if (ret != 0 && rdev->supply)
2059                 regulator_disable(rdev->supply);
2060
2061         return ret;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_enable);
2064
2065 static int _regulator_do_disable(struct regulator_dev *rdev)
2066 {
2067         int ret;
2068
2069         trace_regulator_disable(rdev_get_name(rdev));
2070
2071         if (rdev->ena_pin) {
2072                 if (rdev->ena_gpio_state) {
2073                         ret = regulator_ena_gpio_ctrl(rdev, false);
2074                         if (ret < 0)
2075                                 return ret;
2076                         rdev->ena_gpio_state = 0;
2077                 }
2078
2079         } else if (rdev->desc->ops->disable) {
2080                 ret = rdev->desc->ops->disable(rdev);
2081                 if (ret != 0)
2082                         return ret;
2083         }
2084
2085         /* cares about last_off_jiffy only if off_on_delay is required by
2086          * device.
2087          */
2088         if (rdev->desc->off_on_delay)
2089                 rdev->last_off_jiffy = jiffies;
2090
2091         trace_regulator_disable_complete(rdev_get_name(rdev));
2092
2093         return 0;
2094 }
2095
2096 /* locks held by regulator_disable() */
2097 static int _regulator_disable(struct regulator_dev *rdev)
2098 {
2099         int ret = 0;
2100
2101         lockdep_assert_held_once(&rdev->mutex);
2102
2103         if (WARN(rdev->use_count <= 0,
2104                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2105                 return -EIO;
2106
2107         /* are we the last user and permitted to disable ? */
2108         if (rdev->use_count == 1 &&
2109             (rdev->constraints && !rdev->constraints->always_on)) {
2110
2111                 /* we are last user */
2112                 if (_regulator_can_change_status(rdev)) {
2113                         ret = _notifier_call_chain(rdev,
2114                                                    REGULATOR_EVENT_PRE_DISABLE,
2115                                                    NULL);
2116                         if (ret & NOTIFY_STOP_MASK)
2117                                 return -EINVAL;
2118
2119                         ret = _regulator_do_disable(rdev);
2120                         if (ret < 0) {
2121                                 rdev_err(rdev, "failed to disable\n");
2122                                 _notifier_call_chain(rdev,
2123                                                 REGULATOR_EVENT_ABORT_DISABLE,
2124                                                 NULL);
2125                                 return ret;
2126                         }
2127                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2128                                         NULL);
2129                 }
2130
2131                 rdev->use_count = 0;
2132         } else if (rdev->use_count > 1) {
2133
2134                 if (rdev->constraints &&
2135                         (rdev->constraints->valid_ops_mask &
2136                         REGULATOR_CHANGE_DRMS))
2137                         drms_uA_update(rdev);
2138
2139                 rdev->use_count--;
2140         }
2141
2142         return ret;
2143 }
2144
2145 /**
2146  * regulator_disable - disable regulator output
2147  * @regulator: regulator source
2148  *
2149  * Disable the regulator output voltage or current.  Calls to
2150  * regulator_enable() must be balanced with calls to
2151  * regulator_disable().
2152  *
2153  * NOTE: this will only disable the regulator output if no other consumer
2154  * devices have it enabled, the regulator device supports disabling and
2155  * machine constraints permit this operation.
2156  */
2157 int regulator_disable(struct regulator *regulator)
2158 {
2159         struct regulator_dev *rdev = regulator->rdev;
2160         int ret = 0;
2161
2162         if (regulator->always_on)
2163                 return 0;
2164
2165         mutex_lock(&rdev->mutex);
2166         ret = _regulator_disable(rdev);
2167         mutex_unlock(&rdev->mutex);
2168
2169         if (ret == 0 && rdev->supply)
2170                 regulator_disable(rdev->supply);
2171
2172         return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_disable);
2175
2176 /* locks held by regulator_force_disable() */
2177 static int _regulator_force_disable(struct regulator_dev *rdev)
2178 {
2179         int ret = 0;
2180
2181         lockdep_assert_held_once(&rdev->mutex);
2182
2183         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2184                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2185         if (ret & NOTIFY_STOP_MASK)
2186                 return -EINVAL;
2187
2188         ret = _regulator_do_disable(rdev);
2189         if (ret < 0) {
2190                 rdev_err(rdev, "failed to force disable\n");
2191                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2192                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2193                 return ret;
2194         }
2195
2196         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2197                         REGULATOR_EVENT_DISABLE, NULL);
2198
2199         return 0;
2200 }
2201
2202 /**
2203  * regulator_force_disable - force disable regulator output
2204  * @regulator: regulator source
2205  *
2206  * Forcibly disable the regulator output voltage or current.
2207  * NOTE: this *will* disable the regulator output even if other consumer
2208  * devices have it enabled. This should be used for situations when device
2209  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2210  */
2211 int regulator_force_disable(struct regulator *regulator)
2212 {
2213         struct regulator_dev *rdev = regulator->rdev;
2214         int ret;
2215
2216         mutex_lock(&rdev->mutex);
2217         regulator->uA_load = 0;
2218         ret = _regulator_force_disable(regulator->rdev);
2219         mutex_unlock(&rdev->mutex);
2220
2221         if (rdev->supply)
2222                 while (rdev->open_count--)
2223                         regulator_disable(rdev->supply);
2224
2225         return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_force_disable);
2228
2229 static void regulator_disable_work(struct work_struct *work)
2230 {
2231         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2232                                                   disable_work.work);
2233         int count, i, ret;
2234
2235         mutex_lock(&rdev->mutex);
2236
2237         BUG_ON(!rdev->deferred_disables);
2238
2239         count = rdev->deferred_disables;
2240         rdev->deferred_disables = 0;
2241
2242         for (i = 0; i < count; i++) {
2243                 ret = _regulator_disable(rdev);
2244                 if (ret != 0)
2245                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2246         }
2247
2248         mutex_unlock(&rdev->mutex);
2249
2250         if (rdev->supply) {
2251                 for (i = 0; i < count; i++) {
2252                         ret = regulator_disable(rdev->supply);
2253                         if (ret != 0) {
2254                                 rdev_err(rdev,
2255                                          "Supply disable failed: %d\n", ret);
2256                         }
2257                 }
2258         }
2259 }
2260
2261 /**
2262  * regulator_disable_deferred - disable regulator output with delay
2263  * @regulator: regulator source
2264  * @ms: miliseconds until the regulator is disabled
2265  *
2266  * Execute regulator_disable() on the regulator after a delay.  This
2267  * is intended for use with devices that require some time to quiesce.
2268  *
2269  * NOTE: this will only disable the regulator output if no other consumer
2270  * devices have it enabled, the regulator device supports disabling and
2271  * machine constraints permit this operation.
2272  */
2273 int regulator_disable_deferred(struct regulator *regulator, int ms)
2274 {
2275         struct regulator_dev *rdev = regulator->rdev;
2276         int ret;
2277
2278         if (regulator->always_on)
2279                 return 0;
2280
2281         if (!ms)
2282                 return regulator_disable(regulator);
2283
2284         mutex_lock(&rdev->mutex);
2285         rdev->deferred_disables++;
2286         mutex_unlock(&rdev->mutex);
2287
2288         ret = queue_delayed_work(system_power_efficient_wq,
2289                                  &rdev->disable_work,
2290                                  msecs_to_jiffies(ms));
2291         if (ret < 0)
2292                 return ret;
2293         else
2294                 return 0;
2295 }
2296 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2297
2298 static int _regulator_is_enabled(struct regulator_dev *rdev)
2299 {
2300         /* A GPIO control always takes precedence */
2301         if (rdev->ena_pin)
2302                 return rdev->ena_gpio_state;
2303
2304         /* If we don't know then assume that the regulator is always on */
2305         if (!rdev->desc->ops->is_enabled)
2306                 return 1;
2307
2308         return rdev->desc->ops->is_enabled(rdev);
2309 }
2310
2311 /**
2312  * regulator_is_enabled - is the regulator output enabled
2313  * @regulator: regulator source
2314  *
2315  * Returns positive if the regulator driver backing the source/client
2316  * has requested that the device be enabled, zero if it hasn't, else a
2317  * negative errno code.
2318  *
2319  * Note that the device backing this regulator handle can have multiple
2320  * users, so it might be enabled even if regulator_enable() was never
2321  * called for this particular source.
2322  */
2323 int regulator_is_enabled(struct regulator *regulator)
2324 {
2325         int ret;
2326
2327         if (regulator->always_on)
2328                 return 1;
2329
2330         mutex_lock(&regulator->rdev->mutex);
2331         ret = _regulator_is_enabled(regulator->rdev);
2332         mutex_unlock(&regulator->rdev->mutex);
2333
2334         return ret;
2335 }
2336 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2337
2338 /**
2339  * regulator_can_change_voltage - check if regulator can change voltage
2340  * @regulator: regulator source
2341  *
2342  * Returns positive if the regulator driver backing the source/client
2343  * can change its voltage, false otherwise. Useful for detecting fixed
2344  * or dummy regulators and disabling voltage change logic in the client
2345  * driver.
2346  */
2347 int regulator_can_change_voltage(struct regulator *regulator)
2348 {
2349         struct regulator_dev    *rdev = regulator->rdev;
2350
2351         if (rdev->constraints &&
2352             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2353                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2354                         return 1;
2355
2356                 if (rdev->desc->continuous_voltage_range &&
2357                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2358                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2359                         return 1;
2360         }
2361
2362         return 0;
2363 }
2364 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2365
2366 /**
2367  * regulator_count_voltages - count regulator_list_voltage() selectors
2368  * @regulator: regulator source
2369  *
2370  * Returns number of selectors, or negative errno.  Selectors are
2371  * numbered starting at zero, and typically correspond to bitfields
2372  * in hardware registers.
2373  */
2374 int regulator_count_voltages(struct regulator *regulator)
2375 {
2376         struct regulator_dev    *rdev = regulator->rdev;
2377
2378         if (rdev->desc->n_voltages)
2379                 return rdev->desc->n_voltages;
2380
2381         if (!rdev->supply)
2382                 return -EINVAL;
2383
2384         return regulator_count_voltages(rdev->supply);
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2387
2388 /**
2389  * regulator_list_voltage - enumerate supported voltages
2390  * @regulator: regulator source
2391  * @selector: identify voltage to list
2392  * Context: can sleep
2393  *
2394  * Returns a voltage that can be passed to @regulator_set_voltage(),
2395  * zero if this selector code can't be used on this system, or a
2396  * negative errno.
2397  */
2398 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2399 {
2400         struct regulator_dev *rdev = regulator->rdev;
2401         const struct regulator_ops *ops = rdev->desc->ops;
2402         int ret;
2403
2404         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2405                 return rdev->desc->fixed_uV;
2406
2407         if (ops->list_voltage) {
2408                 if (selector >= rdev->desc->n_voltages)
2409                         return -EINVAL;
2410                 mutex_lock(&rdev->mutex);
2411                 ret = ops->list_voltage(rdev, selector);
2412                 mutex_unlock(&rdev->mutex);
2413         } else if (rdev->supply) {
2414                 ret = regulator_list_voltage(rdev->supply, selector);
2415         } else {
2416                 return -EINVAL;
2417         }
2418
2419         if (ret > 0) {
2420                 if (ret < rdev->constraints->min_uV)
2421                         ret = 0;
2422                 else if (ret > rdev->constraints->max_uV)
2423                         ret = 0;
2424         }
2425
2426         return ret;
2427 }
2428 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2429
2430 /**
2431  * regulator_get_regmap - get the regulator's register map
2432  * @regulator: regulator source
2433  *
2434  * Returns the register map for the given regulator, or an ERR_PTR value
2435  * if the regulator doesn't use regmap.
2436  */
2437 struct regmap *regulator_get_regmap(struct regulator *regulator)
2438 {
2439         struct regmap *map = regulator->rdev->regmap;
2440
2441         return map ? map : ERR_PTR(-EOPNOTSUPP);
2442 }
2443
2444 /**
2445  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2446  * @regulator: regulator source
2447  * @vsel_reg: voltage selector register, output parameter
2448  * @vsel_mask: mask for voltage selector bitfield, output parameter
2449  *
2450  * Returns the hardware register offset and bitmask used for setting the
2451  * regulator voltage. This might be useful when configuring voltage-scaling
2452  * hardware or firmware that can make I2C requests behind the kernel's back,
2453  * for example.
2454  *
2455  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2456  * and 0 is returned, otherwise a negative errno is returned.
2457  */
2458 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2459                                          unsigned *vsel_reg,
2460                                          unsigned *vsel_mask)
2461 {
2462         struct regulator_dev *rdev = regulator->rdev;
2463         const struct regulator_ops *ops = rdev->desc->ops;
2464
2465         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2466                 return -EOPNOTSUPP;
2467
2468          *vsel_reg = rdev->desc->vsel_reg;
2469          *vsel_mask = rdev->desc->vsel_mask;
2470
2471          return 0;
2472 }
2473 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2474
2475 /**
2476  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2477  * @regulator: regulator source
2478  * @selector: identify voltage to list
2479  *
2480  * Converts the selector to a hardware-specific voltage selector that can be
2481  * directly written to the regulator registers. The address of the voltage
2482  * register can be determined by calling @regulator_get_hardware_vsel_register.
2483  *
2484  * On error a negative errno is returned.
2485  */
2486 int regulator_list_hardware_vsel(struct regulator *regulator,
2487                                  unsigned selector)
2488 {
2489         struct regulator_dev *rdev = regulator->rdev;
2490         const struct regulator_ops *ops = rdev->desc->ops;
2491
2492         if (selector >= rdev->desc->n_voltages)
2493                 return -EINVAL;
2494         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2495                 return -EOPNOTSUPP;
2496
2497         return selector;
2498 }
2499 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2500
2501 /**
2502  * regulator_get_linear_step - return the voltage step size between VSEL values
2503  * @regulator: regulator source
2504  *
2505  * Returns the voltage step size between VSEL values for linear
2506  * regulators, or return 0 if the regulator isn't a linear regulator.
2507  */
2508 unsigned int regulator_get_linear_step(struct regulator *regulator)
2509 {
2510         struct regulator_dev *rdev = regulator->rdev;
2511
2512         return rdev->desc->uV_step;
2513 }
2514 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2515
2516 /**
2517  * regulator_is_supported_voltage - check if a voltage range can be supported
2518  *
2519  * @regulator: Regulator to check.
2520  * @min_uV: Minimum required voltage in uV.
2521  * @max_uV: Maximum required voltage in uV.
2522  *
2523  * Returns a boolean or a negative error code.
2524  */
2525 int regulator_is_supported_voltage(struct regulator *regulator,
2526                                    int min_uV, int max_uV)
2527 {
2528         struct regulator_dev *rdev = regulator->rdev;
2529         int i, voltages, ret;
2530
2531         /* If we can't change voltage check the current voltage */
2532         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2533                 ret = regulator_get_voltage(regulator);
2534                 if (ret >= 0)
2535                         return min_uV <= ret && ret <= max_uV;
2536                 else
2537                         return ret;
2538         }
2539
2540         /* Any voltage within constrains range is fine? */
2541         if (rdev->desc->continuous_voltage_range)
2542                 return min_uV >= rdev->constraints->min_uV &&
2543                                 max_uV <= rdev->constraints->max_uV;
2544
2545         ret = regulator_count_voltages(regulator);
2546         if (ret < 0)
2547                 return ret;
2548         voltages = ret;
2549
2550         for (i = 0; i < voltages; i++) {
2551                 ret = regulator_list_voltage(regulator, i);
2552
2553                 if (ret >= min_uV && ret <= max_uV)
2554                         return 1;
2555         }
2556
2557         return 0;
2558 }
2559 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2560
2561 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2562                                        int min_uV, int max_uV,
2563                                        unsigned *selector)
2564 {
2565         struct pre_voltage_change_data data;
2566         int ret;
2567
2568         data.old_uV = _regulator_get_voltage(rdev);
2569         data.min_uV = min_uV;
2570         data.max_uV = max_uV;
2571         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2572                                    &data);
2573         if (ret & NOTIFY_STOP_MASK)
2574                 return -EINVAL;
2575
2576         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2577         if (ret >= 0)
2578                 return ret;
2579
2580         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2581                              (void *)data.old_uV);
2582
2583         return ret;
2584 }
2585
2586 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2587                                            int uV, unsigned selector)
2588 {
2589         struct pre_voltage_change_data data;
2590         int ret;
2591
2592         data.old_uV = _regulator_get_voltage(rdev);
2593         data.min_uV = uV;
2594         data.max_uV = uV;
2595         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2596                                    &data);
2597         if (ret & NOTIFY_STOP_MASK)
2598                 return -EINVAL;
2599
2600         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2601         if (ret >= 0)
2602                 return ret;
2603
2604         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2605                              (void *)data.old_uV);
2606
2607         return ret;
2608 }
2609
2610 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2611                                      int min_uV, int max_uV)
2612 {
2613         int ret;
2614         int delay = 0;
2615         int best_val = 0;
2616         unsigned int selector;
2617         int old_selector = -1;
2618
2619         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2620
2621         min_uV += rdev->constraints->uV_offset;
2622         max_uV += rdev->constraints->uV_offset;
2623
2624         /*
2625          * If we can't obtain the old selector there is not enough
2626          * info to call set_voltage_time_sel().
2627          */
2628         if (_regulator_is_enabled(rdev) &&
2629             rdev->desc->ops->set_voltage_time_sel &&
2630             rdev->desc->ops->get_voltage_sel) {
2631                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2632                 if (old_selector < 0)
2633                         return old_selector;
2634         }
2635
2636         if (rdev->desc->ops->set_voltage) {
2637                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2638                                                   &selector);
2639
2640                 if (ret >= 0) {
2641                         if (rdev->desc->ops->list_voltage)
2642                                 best_val = rdev->desc->ops->list_voltage(rdev,
2643                                                                          selector);
2644                         else
2645                                 best_val = _regulator_get_voltage(rdev);
2646                 }
2647
2648         } else if (rdev->desc->ops->set_voltage_sel) {
2649                 if (rdev->desc->ops->map_voltage) {
2650                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2651                                                            max_uV);
2652                 } else {
2653                         if (rdev->desc->ops->list_voltage ==
2654                             regulator_list_voltage_linear)
2655                                 ret = regulator_map_voltage_linear(rdev,
2656                                                                 min_uV, max_uV);
2657                         else if (rdev->desc->ops->list_voltage ==
2658                                  regulator_list_voltage_linear_range)
2659                                 ret = regulator_map_voltage_linear_range(rdev,
2660                                                                 min_uV, max_uV);
2661                         else
2662                                 ret = regulator_map_voltage_iterate(rdev,
2663                                                                 min_uV, max_uV);
2664                 }
2665
2666                 if (ret >= 0) {
2667                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2668                         if (min_uV <= best_val && max_uV >= best_val) {
2669                                 selector = ret;
2670                                 if (old_selector == selector)
2671                                         ret = 0;
2672                                 else
2673                                         ret = _regulator_call_set_voltage_sel(
2674                                                 rdev, best_val, selector);
2675                         } else {
2676                                 ret = -EINVAL;
2677                         }
2678                 }
2679         } else {
2680                 ret = -EINVAL;
2681         }
2682
2683         /* Call set_voltage_time_sel if successfully obtained old_selector */
2684         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2685                 && old_selector != selector) {
2686
2687                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2688                                                 old_selector, selector);
2689                 if (delay < 0) {
2690                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2691                                   delay);
2692                         delay = 0;
2693                 }
2694
2695                 /* Insert any necessary delays */
2696                 if (delay >= 1000) {
2697                         mdelay(delay / 1000);
2698                         udelay(delay % 1000);
2699                 } else if (delay) {
2700                         udelay(delay);
2701                 }
2702         }
2703
2704         if (ret == 0 && best_val >= 0) {
2705                 unsigned long data = best_val;
2706
2707                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2708                                      (void *)data);
2709         }
2710
2711         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2712
2713         return ret;
2714 }
2715
2716 /**
2717  * regulator_set_voltage - set regulator output voltage
2718  * @regulator: regulator source
2719  * @min_uV: Minimum required voltage in uV
2720  * @max_uV: Maximum acceptable voltage in uV
2721  *
2722  * Sets a voltage regulator to the desired output voltage. This can be set
2723  * during any regulator state. IOW, regulator can be disabled or enabled.
2724  *
2725  * If the regulator is enabled then the voltage will change to the new value
2726  * immediately otherwise if the regulator is disabled the regulator will
2727  * output at the new voltage when enabled.
2728  *
2729  * NOTE: If the regulator is shared between several devices then the lowest
2730  * request voltage that meets the system constraints will be used.
2731  * Regulator system constraints must be set for this regulator before
2732  * calling this function otherwise this call will fail.
2733  */
2734 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2735 {
2736         struct regulator_dev *rdev = regulator->rdev;
2737         int ret = 0;
2738         int old_min_uV, old_max_uV;
2739         int current_uV;
2740
2741         mutex_lock(&rdev->mutex);
2742
2743         /* If we're setting the same range as last time the change
2744          * should be a noop (some cpufreq implementations use the same
2745          * voltage for multiple frequencies, for example).
2746          */
2747         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2748                 goto out;
2749
2750         /* If we're trying to set a range that overlaps the current voltage,
2751          * return successfully even though the regulator does not support
2752          * changing the voltage.
2753          */
2754         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2755                 current_uV = _regulator_get_voltage(rdev);
2756                 if (min_uV <= current_uV && current_uV <= max_uV) {
2757                         regulator->min_uV = min_uV;
2758                         regulator->max_uV = max_uV;
2759                         goto out;
2760                 }
2761         }
2762
2763         /* sanity check */
2764         if (!rdev->desc->ops->set_voltage &&
2765             !rdev->desc->ops->set_voltage_sel) {
2766                 ret = -EINVAL;
2767                 goto out;
2768         }
2769
2770         /* constraints check */
2771         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2772         if (ret < 0)
2773                 goto out;
2774
2775         /* restore original values in case of error */
2776         old_min_uV = regulator->min_uV;
2777         old_max_uV = regulator->max_uV;
2778         regulator->min_uV = min_uV;
2779         regulator->max_uV = max_uV;
2780
2781         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2782         if (ret < 0)
2783                 goto out2;
2784
2785         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2786         if (ret < 0)
2787                 goto out2;
2788
2789 out:
2790         mutex_unlock(&rdev->mutex);
2791         return ret;
2792 out2:
2793         regulator->min_uV = old_min_uV;
2794         regulator->max_uV = old_max_uV;
2795         mutex_unlock(&rdev->mutex);
2796         return ret;
2797 }
2798 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2799
2800 /**
2801  * regulator_set_voltage_time - get raise/fall time
2802  * @regulator: regulator source
2803  * @old_uV: starting voltage in microvolts
2804  * @new_uV: target voltage in microvolts
2805  *
2806  * Provided with the starting and ending voltage, this function attempts to
2807  * calculate the time in microseconds required to rise or fall to this new
2808  * voltage.
2809  */
2810 int regulator_set_voltage_time(struct regulator *regulator,
2811                                int old_uV, int new_uV)
2812 {
2813         struct regulator_dev *rdev = regulator->rdev;
2814         const struct regulator_ops *ops = rdev->desc->ops;
2815         int old_sel = -1;
2816         int new_sel = -1;
2817         int voltage;
2818         int i;
2819
2820         /* Currently requires operations to do this */
2821         if (!ops->list_voltage || !ops->set_voltage_time_sel
2822             || !rdev->desc->n_voltages)
2823                 return -EINVAL;
2824
2825         for (i = 0; i < rdev->desc->n_voltages; i++) {
2826                 /* We only look for exact voltage matches here */
2827                 voltage = regulator_list_voltage(regulator, i);
2828                 if (voltage < 0)
2829                         return -EINVAL;
2830                 if (voltage == 0)
2831                         continue;
2832                 if (voltage == old_uV)
2833                         old_sel = i;
2834                 if (voltage == new_uV)
2835                         new_sel = i;
2836         }
2837
2838         if (old_sel < 0 || new_sel < 0)
2839                 return -EINVAL;
2840
2841         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2844
2845 /**
2846  * regulator_set_voltage_time_sel - get raise/fall time
2847  * @rdev: regulator source device
2848  * @old_selector: selector for starting voltage
2849  * @new_selector: selector for target voltage
2850  *
2851  * Provided with the starting and target voltage selectors, this function
2852  * returns time in microseconds required to rise or fall to this new voltage
2853  *
2854  * Drivers providing ramp_delay in regulation_constraints can use this as their
2855  * set_voltage_time_sel() operation.
2856  */
2857 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2858                                    unsigned int old_selector,
2859                                    unsigned int new_selector)
2860 {
2861         unsigned int ramp_delay = 0;
2862         int old_volt, new_volt;
2863
2864         if (rdev->constraints->ramp_delay)
2865                 ramp_delay = rdev->constraints->ramp_delay;
2866         else if (rdev->desc->ramp_delay)
2867                 ramp_delay = rdev->desc->ramp_delay;
2868
2869         if (ramp_delay == 0) {
2870                 rdev_warn(rdev, "ramp_delay not set\n");
2871                 return 0;
2872         }
2873
2874         /* sanity check */
2875         if (!rdev->desc->ops->list_voltage)
2876                 return -EINVAL;
2877
2878         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2879         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2880
2881         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2882 }
2883 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2884
2885 /**
2886  * regulator_sync_voltage - re-apply last regulator output voltage
2887  * @regulator: regulator source
2888  *
2889  * Re-apply the last configured voltage.  This is intended to be used
2890  * where some external control source the consumer is cooperating with
2891  * has caused the configured voltage to change.
2892  */
2893 int regulator_sync_voltage(struct regulator *regulator)
2894 {
2895         struct regulator_dev *rdev = regulator->rdev;
2896         int ret, min_uV, max_uV;
2897
2898         mutex_lock(&rdev->mutex);
2899
2900         if (!rdev->desc->ops->set_voltage &&
2901             !rdev->desc->ops->set_voltage_sel) {
2902                 ret = -EINVAL;
2903                 goto out;
2904         }
2905
2906         /* This is only going to work if we've had a voltage configured. */
2907         if (!regulator->min_uV && !regulator->max_uV) {
2908                 ret = -EINVAL;
2909                 goto out;
2910         }
2911
2912         min_uV = regulator->min_uV;
2913         max_uV = regulator->max_uV;
2914
2915         /* This should be a paranoia check... */
2916         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2917         if (ret < 0)
2918                 goto out;
2919
2920         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921         if (ret < 0)
2922                 goto out;
2923
2924         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2925
2926 out:
2927         mutex_unlock(&rdev->mutex);
2928         return ret;
2929 }
2930 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2931
2932 static int _regulator_get_voltage(struct regulator_dev *rdev)
2933 {
2934         int sel, ret;
2935
2936         if (rdev->desc->ops->get_voltage_sel) {
2937                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2938                 if (sel < 0)
2939                         return sel;
2940                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2941         } else if (rdev->desc->ops->get_voltage) {
2942                 ret = rdev->desc->ops->get_voltage(rdev);
2943         } else if (rdev->desc->ops->list_voltage) {
2944                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2945         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2946                 ret = rdev->desc->fixed_uV;
2947         } else if (rdev->supply) {
2948                 ret = regulator_get_voltage(rdev->supply);
2949         } else {
2950                 return -EINVAL;
2951         }
2952
2953         if (ret < 0)
2954                 return ret;
2955         return ret - rdev->constraints->uV_offset;
2956 }
2957
2958 /**
2959  * regulator_get_voltage - get regulator output voltage
2960  * @regulator: regulator source
2961  *
2962  * This returns the current regulator voltage in uV.
2963  *
2964  * NOTE: If the regulator is disabled it will return the voltage value. This
2965  * function should not be used to determine regulator state.
2966  */
2967 int regulator_get_voltage(struct regulator *regulator)
2968 {
2969         int ret;
2970
2971         mutex_lock(&regulator->rdev->mutex);
2972
2973         ret = _regulator_get_voltage(regulator->rdev);
2974
2975         mutex_unlock(&regulator->rdev->mutex);
2976
2977         return ret;
2978 }
2979 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2980
2981 /**
2982  * regulator_set_current_limit - set regulator output current limit
2983  * @regulator: regulator source
2984  * @min_uA: Minimum supported current in uA
2985  * @max_uA: Maximum supported current in uA
2986  *
2987  * Sets current sink to the desired output current. This can be set during
2988  * any regulator state. IOW, regulator can be disabled or enabled.
2989  *
2990  * If the regulator is enabled then the current will change to the new value
2991  * immediately otherwise if the regulator is disabled the regulator will
2992  * output at the new current when enabled.
2993  *
2994  * NOTE: Regulator system constraints must be set for this regulator before
2995  * calling this function otherwise this call will fail.
2996  */
2997 int regulator_set_current_limit(struct regulator *regulator,
2998                                int min_uA, int max_uA)
2999 {
3000         struct regulator_dev *rdev = regulator->rdev;
3001         int ret;
3002
3003         mutex_lock(&rdev->mutex);
3004
3005         /* sanity check */
3006         if (!rdev->desc->ops->set_current_limit) {
3007                 ret = -EINVAL;
3008                 goto out;
3009         }
3010
3011         /* constraints check */
3012         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3013         if (ret < 0)
3014                 goto out;
3015
3016         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3017 out:
3018         mutex_unlock(&rdev->mutex);
3019         return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3022
3023 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3024 {
3025         int ret;
3026
3027         mutex_lock(&rdev->mutex);
3028
3029         /* sanity check */
3030         if (!rdev->desc->ops->get_current_limit) {
3031                 ret = -EINVAL;
3032                 goto out;
3033         }
3034
3035         ret = rdev->desc->ops->get_current_limit(rdev);
3036 out:
3037         mutex_unlock(&rdev->mutex);
3038         return ret;
3039 }
3040
3041 /**
3042  * regulator_get_current_limit - get regulator output current
3043  * @regulator: regulator source
3044  *
3045  * This returns the current supplied by the specified current sink in uA.
3046  *
3047  * NOTE: If the regulator is disabled it will return the current value. This
3048  * function should not be used to determine regulator state.
3049  */
3050 int regulator_get_current_limit(struct regulator *regulator)
3051 {
3052         return _regulator_get_current_limit(regulator->rdev);
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3055
3056 /**
3057  * regulator_set_mode - set regulator operating mode
3058  * @regulator: regulator source
3059  * @mode: operating mode - one of the REGULATOR_MODE constants
3060  *
3061  * Set regulator operating mode to increase regulator efficiency or improve
3062  * regulation performance.
3063  *
3064  * NOTE: Regulator system constraints must be set for this regulator before
3065  * calling this function otherwise this call will fail.
3066  */
3067 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3068 {
3069         struct regulator_dev *rdev = regulator->rdev;
3070         int ret;
3071         int regulator_curr_mode;
3072
3073         mutex_lock(&rdev->mutex);
3074
3075         /* sanity check */
3076         if (!rdev->desc->ops->set_mode) {
3077                 ret = -EINVAL;
3078                 goto out;
3079         }
3080
3081         /* return if the same mode is requested */
3082         if (rdev->desc->ops->get_mode) {
3083                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3084                 if (regulator_curr_mode == mode) {
3085                         ret = 0;
3086                         goto out;
3087                 }
3088         }
3089
3090         /* constraints check */
3091         ret = regulator_mode_constrain(rdev, &mode);
3092         if (ret < 0)
3093                 goto out;
3094
3095         ret = rdev->desc->ops->set_mode(rdev, mode);
3096 out:
3097         mutex_unlock(&rdev->mutex);
3098         return ret;
3099 }
3100 EXPORT_SYMBOL_GPL(regulator_set_mode);
3101
3102 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3103 {
3104         int ret;
3105
3106         mutex_lock(&rdev->mutex);
3107
3108         /* sanity check */
3109         if (!rdev->desc->ops->get_mode) {
3110                 ret = -EINVAL;
3111                 goto out;
3112         }
3113
3114         ret = rdev->desc->ops->get_mode(rdev);
3115 out:
3116         mutex_unlock(&rdev->mutex);
3117         return ret;
3118 }
3119
3120 /**
3121  * regulator_get_mode - get regulator operating mode
3122  * @regulator: regulator source
3123  *
3124  * Get the current regulator operating mode.
3125  */
3126 unsigned int regulator_get_mode(struct regulator *regulator)
3127 {
3128         return _regulator_get_mode(regulator->rdev);
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_get_mode);
3131
3132 /**
3133  * regulator_set_load - set regulator load
3134  * @regulator: regulator source
3135  * @uA_load: load current
3136  *
3137  * Notifies the regulator core of a new device load. This is then used by
3138  * DRMS (if enabled by constraints) to set the most efficient regulator
3139  * operating mode for the new regulator loading.
3140  *
3141  * Consumer devices notify their supply regulator of the maximum power
3142  * they will require (can be taken from device datasheet in the power
3143  * consumption tables) when they change operational status and hence power
3144  * state. Examples of operational state changes that can affect power
3145  * consumption are :-
3146  *
3147  *    o Device is opened / closed.
3148  *    o Device I/O is about to begin or has just finished.
3149  *    o Device is idling in between work.
3150  *
3151  * This information is also exported via sysfs to userspace.
3152  *
3153  * DRMS will sum the total requested load on the regulator and change
3154  * to the most efficient operating mode if platform constraints allow.
3155  *
3156  * On error a negative errno is returned.
3157  */
3158 int regulator_set_load(struct regulator *regulator, int uA_load)
3159 {
3160         struct regulator_dev *rdev = regulator->rdev;
3161         int ret;
3162
3163         mutex_lock(&rdev->mutex);
3164         regulator->uA_load = uA_load;
3165         ret = drms_uA_update(rdev);
3166         mutex_unlock(&rdev->mutex);
3167
3168         return ret;
3169 }
3170 EXPORT_SYMBOL_GPL(regulator_set_load);
3171
3172 /**
3173  * regulator_allow_bypass - allow the regulator to go into bypass mode
3174  *
3175  * @regulator: Regulator to configure
3176  * @enable: enable or disable bypass mode
3177  *
3178  * Allow the regulator to go into bypass mode if all other consumers
3179  * for the regulator also enable bypass mode and the machine
3180  * constraints allow this.  Bypass mode means that the regulator is
3181  * simply passing the input directly to the output with no regulation.
3182  */
3183 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3184 {
3185         struct regulator_dev *rdev = regulator->rdev;
3186         int ret = 0;
3187
3188         if (!rdev->desc->ops->set_bypass)
3189                 return 0;
3190
3191         if (rdev->constraints &&
3192             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3193                 return 0;
3194
3195         mutex_lock(&rdev->mutex);
3196
3197         if (enable && !regulator->bypass) {
3198                 rdev->bypass_count++;
3199
3200                 if (rdev->bypass_count == rdev->open_count) {
3201                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3202                         if (ret != 0)
3203                                 rdev->bypass_count--;
3204                 }
3205
3206         } else if (!enable && regulator->bypass) {
3207                 rdev->bypass_count--;
3208
3209                 if (rdev->bypass_count != rdev->open_count) {
3210                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3211                         if (ret != 0)
3212                                 rdev->bypass_count++;
3213                 }
3214         }
3215
3216         if (ret == 0)
3217                 regulator->bypass = enable;
3218
3219         mutex_unlock(&rdev->mutex);
3220
3221         return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3224
3225 /**
3226  * regulator_register_notifier - register regulator event notifier
3227  * @regulator: regulator source
3228  * @nb: notifier block
3229  *
3230  * Register notifier block to receive regulator events.
3231  */
3232 int regulator_register_notifier(struct regulator *regulator,
3233                               struct notifier_block *nb)
3234 {
3235         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3236                                                 nb);
3237 }
3238 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3239
3240 /**
3241  * regulator_unregister_notifier - unregister regulator event notifier
3242  * @regulator: regulator source
3243  * @nb: notifier block
3244  *
3245  * Unregister regulator event notifier block.
3246  */
3247 int regulator_unregister_notifier(struct regulator *regulator,
3248                                 struct notifier_block *nb)
3249 {
3250         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3251                                                   nb);
3252 }
3253 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3254
3255 /* notify regulator consumers and downstream regulator consumers.
3256  * Note mutex must be held by caller.
3257  */
3258 static int _notifier_call_chain(struct regulator_dev *rdev,
3259                                   unsigned long event, void *data)
3260 {
3261         /* call rdev chain first */
3262         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3263 }
3264
3265 /**
3266  * regulator_bulk_get - get multiple regulator consumers
3267  *
3268  * @dev:           Device to supply
3269  * @num_consumers: Number of consumers to register
3270  * @consumers:     Configuration of consumers; clients are stored here.
3271  *
3272  * @return 0 on success, an errno on failure.
3273  *
3274  * This helper function allows drivers to get several regulator
3275  * consumers in one operation.  If any of the regulators cannot be
3276  * acquired then any regulators that were allocated will be freed
3277  * before returning to the caller.
3278  */
3279 int regulator_bulk_get(struct device *dev, int num_consumers,
3280                        struct regulator_bulk_data *consumers)
3281 {
3282         int i;
3283         int ret;
3284
3285         for (i = 0; i < num_consumers; i++)
3286                 consumers[i].consumer = NULL;
3287
3288         for (i = 0; i < num_consumers; i++) {
3289                 consumers[i].consumer = regulator_get(dev,
3290                                                       consumers[i].supply);
3291                 if (IS_ERR(consumers[i].consumer)) {
3292                         ret = PTR_ERR(consumers[i].consumer);
3293                         dev_err(dev, "Failed to get supply '%s': %d\n",
3294                                 consumers[i].supply, ret);
3295                         consumers[i].consumer = NULL;
3296                         goto err;
3297                 }
3298         }
3299
3300         return 0;
3301
3302 err:
3303         while (--i >= 0)
3304                 regulator_put(consumers[i].consumer);
3305
3306         return ret;
3307 }
3308 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3309
3310 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3311 {
3312         struct regulator_bulk_data *bulk = data;
3313
3314         bulk->ret = regulator_enable(bulk->consumer);
3315 }
3316
3317 /**
3318  * regulator_bulk_enable - enable multiple regulator consumers
3319  *
3320  * @num_consumers: Number of consumers
3321  * @consumers:     Consumer data; clients are stored here.
3322  * @return         0 on success, an errno on failure
3323  *
3324  * This convenience API allows consumers to enable multiple regulator
3325  * clients in a single API call.  If any consumers cannot be enabled
3326  * then any others that were enabled will be disabled again prior to
3327  * return.
3328  */
3329 int regulator_bulk_enable(int num_consumers,
3330                           struct regulator_bulk_data *consumers)
3331 {
3332         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3333         int i;
3334         int ret = 0;
3335
3336         for (i = 0; i < num_consumers; i++) {
3337                 if (consumers[i].consumer->always_on)
3338                         consumers[i].ret = 0;
3339                 else
3340                         async_schedule_domain(regulator_bulk_enable_async,
3341                                               &consumers[i], &async_domain);
3342         }
3343
3344         async_synchronize_full_domain(&async_domain);
3345
3346         /* If any consumer failed we need to unwind any that succeeded */
3347         for (i = 0; i < num_consumers; i++) {
3348                 if (consumers[i].ret != 0) {
3349                         ret = consumers[i].ret;
3350                         goto err;
3351                 }
3352         }
3353
3354         return 0;
3355
3356 err:
3357         for (i = 0; i < num_consumers; i++) {
3358                 if (consumers[i].ret < 0)
3359                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3360                                consumers[i].ret);
3361                 else
3362                         regulator_disable(consumers[i].consumer);
3363         }
3364
3365         return ret;
3366 }
3367 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3368
3369 /**
3370  * regulator_bulk_disable - disable multiple regulator consumers
3371  *
3372  * @num_consumers: Number of consumers
3373  * @consumers:     Consumer data; clients are stored here.
3374  * @return         0 on success, an errno on failure
3375  *
3376  * This convenience API allows consumers to disable multiple regulator
3377  * clients in a single API call.  If any consumers cannot be disabled
3378  * then any others that were disabled will be enabled again prior to
3379  * return.
3380  */
3381 int regulator_bulk_disable(int num_consumers,
3382                            struct regulator_bulk_data *consumers)
3383 {
3384         int i;
3385         int ret, r;
3386
3387         for (i = num_consumers - 1; i >= 0; --i) {
3388                 ret = regulator_disable(consumers[i].consumer);
3389                 if (ret != 0)
3390                         goto err;
3391         }
3392
3393         return 0;
3394
3395 err:
3396         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3397         for (++i; i < num_consumers; ++i) {
3398                 r = regulator_enable(consumers[i].consumer);
3399                 if (r != 0)
3400                         pr_err("Failed to reename %s: %d\n",
3401                                consumers[i].supply, r);
3402         }
3403
3404         return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3407
3408 /**
3409  * regulator_bulk_force_disable - force disable multiple regulator consumers
3410  *
3411  * @num_consumers: Number of consumers
3412  * @consumers:     Consumer data; clients are stored here.
3413  * @return         0 on success, an errno on failure
3414  *
3415  * This convenience API allows consumers to forcibly disable multiple regulator
3416  * clients in a single API call.
3417  * NOTE: This should be used for situations when device damage will
3418  * likely occur if the regulators are not disabled (e.g. over temp).
3419  * Although regulator_force_disable function call for some consumers can
3420  * return error numbers, the function is called for all consumers.
3421  */
3422 int regulator_bulk_force_disable(int num_consumers,
3423                            struct regulator_bulk_data *consumers)
3424 {
3425         int i;
3426         int ret;
3427
3428         for (i = 0; i < num_consumers; i++)
3429                 consumers[i].ret =
3430                             regulator_force_disable(consumers[i].consumer);
3431
3432         for (i = 0; i < num_consumers; i++) {
3433                 if (consumers[i].ret != 0) {
3434                         ret = consumers[i].ret;
3435                         goto out;
3436                 }
3437         }
3438
3439         return 0;
3440 out:
3441         return ret;
3442 }
3443 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3444
3445 /**
3446  * regulator_bulk_free - free multiple regulator consumers
3447  *
3448  * @num_consumers: Number of consumers
3449  * @consumers:     Consumer data; clients are stored here.
3450  *
3451  * This convenience API allows consumers to free multiple regulator
3452  * clients in a single API call.
3453  */
3454 void regulator_bulk_free(int num_consumers,
3455                          struct regulator_bulk_data *consumers)
3456 {
3457         int i;
3458
3459         for (i = 0; i < num_consumers; i++) {
3460                 regulator_put(consumers[i].consumer);
3461                 consumers[i].consumer = NULL;
3462         }
3463 }
3464 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3465
3466 /**
3467  * regulator_notifier_call_chain - call regulator event notifier
3468  * @rdev: regulator source
3469  * @event: notifier block
3470  * @data: callback-specific data.
3471  *
3472  * Called by regulator drivers to notify clients a regulator event has
3473  * occurred. We also notify regulator clients downstream.
3474  * Note lock must be held by caller.
3475  */
3476 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3477                                   unsigned long event, void *data)
3478 {
3479         lockdep_assert_held_once(&rdev->mutex);
3480
3481         _notifier_call_chain(rdev, event, data);
3482         return NOTIFY_DONE;
3483
3484 }
3485 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3486
3487 /**
3488  * regulator_mode_to_status - convert a regulator mode into a status
3489  *
3490  * @mode: Mode to convert
3491  *
3492  * Convert a regulator mode into a status.
3493  */
3494 int regulator_mode_to_status(unsigned int mode)
3495 {
3496         switch (mode) {
3497         case REGULATOR_MODE_FAST:
3498                 return REGULATOR_STATUS_FAST;
3499         case REGULATOR_MODE_NORMAL:
3500                 return REGULATOR_STATUS_NORMAL;
3501         case REGULATOR_MODE_IDLE:
3502                 return REGULATOR_STATUS_IDLE;
3503         case REGULATOR_MODE_STANDBY:
3504                 return REGULATOR_STATUS_STANDBY;
3505         default:
3506                 return REGULATOR_STATUS_UNDEFINED;
3507         }
3508 }
3509 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3510
3511 static struct attribute *regulator_dev_attrs[] = {
3512         &dev_attr_name.attr,
3513         &dev_attr_num_users.attr,
3514         &dev_attr_type.attr,
3515         &dev_attr_microvolts.attr,
3516         &dev_attr_microamps.attr,
3517         &dev_attr_opmode.attr,
3518         &dev_attr_state.attr,
3519         &dev_attr_status.attr,
3520         &dev_attr_bypass.attr,
3521         &dev_attr_requested_microamps.attr,
3522         &dev_attr_min_microvolts.attr,
3523         &dev_attr_max_microvolts.attr,
3524         &dev_attr_min_microamps.attr,
3525         &dev_attr_max_microamps.attr,
3526         &dev_attr_suspend_standby_state.attr,
3527         &dev_attr_suspend_mem_state.attr,
3528         &dev_attr_suspend_disk_state.attr,
3529         &dev_attr_suspend_standby_microvolts.attr,
3530         &dev_attr_suspend_mem_microvolts.attr,
3531         &dev_attr_suspend_disk_microvolts.attr,
3532         &dev_attr_suspend_standby_mode.attr,
3533         &dev_attr_suspend_mem_mode.attr,
3534         &dev_attr_suspend_disk_mode.attr,
3535         NULL
3536 };
3537
3538 /*
3539  * To avoid cluttering sysfs (and memory) with useless state, only
3540  * create attributes that can be meaningfully displayed.
3541  */
3542 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3543                                          struct attribute *attr, int idx)
3544 {
3545         struct device *dev = kobj_to_dev(kobj);
3546         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3547         const struct regulator_ops *ops = rdev->desc->ops;
3548         umode_t mode = attr->mode;
3549
3550         /* these three are always present */
3551         if (attr == &dev_attr_name.attr ||
3552             attr == &dev_attr_num_users.attr ||
3553             attr == &dev_attr_type.attr)
3554                 return mode;
3555
3556         /* some attributes need specific methods to be displayed */
3557         if (attr == &dev_attr_microvolts.attr) {
3558                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3559                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3560                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3561                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3562                         return mode;
3563                 return 0;
3564         }
3565
3566         if (attr == &dev_attr_microamps.attr)
3567                 return ops->get_current_limit ? mode : 0;
3568
3569         if (attr == &dev_attr_opmode.attr)
3570                 return ops->get_mode ? mode : 0;
3571
3572         if (attr == &dev_attr_state.attr)
3573                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3574
3575         if (attr == &dev_attr_status.attr)
3576                 return ops->get_status ? mode : 0;
3577
3578         if (attr == &dev_attr_bypass.attr)
3579                 return ops->get_bypass ? mode : 0;
3580
3581         /* some attributes are type-specific */
3582         if (attr == &dev_attr_requested_microamps.attr)
3583                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3584
3585         /* constraints need specific supporting methods */
3586         if (attr == &dev_attr_min_microvolts.attr ||
3587             attr == &dev_attr_max_microvolts.attr)
3588                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3589
3590         if (attr == &dev_attr_min_microamps.attr ||
3591             attr == &dev_attr_max_microamps.attr)
3592                 return ops->set_current_limit ? mode : 0;
3593
3594         if (attr == &dev_attr_suspend_standby_state.attr ||
3595             attr == &dev_attr_suspend_mem_state.attr ||
3596             attr == &dev_attr_suspend_disk_state.attr)
3597                 return mode;
3598
3599         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3600             attr == &dev_attr_suspend_mem_microvolts.attr ||
3601             attr == &dev_attr_suspend_disk_microvolts.attr)
3602                 return ops->set_suspend_voltage ? mode : 0;
3603
3604         if (attr == &dev_attr_suspend_standby_mode.attr ||
3605             attr == &dev_attr_suspend_mem_mode.attr ||
3606             attr == &dev_attr_suspend_disk_mode.attr)
3607                 return ops->set_suspend_mode ? mode : 0;
3608
3609         return mode;
3610 }
3611
3612 static const struct attribute_group regulator_dev_group = {
3613         .attrs = regulator_dev_attrs,
3614         .is_visible = regulator_attr_is_visible,
3615 };
3616
3617 static const struct attribute_group *regulator_dev_groups[] = {
3618         &regulator_dev_group,
3619         NULL
3620 };
3621
3622 static void regulator_dev_release(struct device *dev)
3623 {
3624         struct regulator_dev *rdev = dev_get_drvdata(dev);
3625
3626         kfree(rdev->constraints);
3627         of_node_put(rdev->dev.of_node);
3628         kfree(rdev);
3629 }
3630
3631 static struct class regulator_class = {
3632         .name = "regulator",
3633         .dev_release = regulator_dev_release,
3634         .dev_groups = regulator_dev_groups,
3635 };
3636
3637 static void rdev_init_debugfs(struct regulator_dev *rdev)
3638 {
3639         struct device *parent = rdev->dev.parent;
3640         const char *rname = rdev_get_name(rdev);
3641         char name[NAME_MAX];
3642
3643         /* Avoid duplicate debugfs directory names */
3644         if (parent && rname == rdev->desc->name) {
3645                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3646                          rname);
3647                 rname = name;
3648         }
3649
3650         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3651         if (!rdev->debugfs) {
3652                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3653                 return;
3654         }
3655
3656         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3657                            &rdev->use_count);
3658         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3659                            &rdev->open_count);
3660         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3661                            &rdev->bypass_count);
3662 }
3663
3664 /**
3665  * regulator_register - register regulator
3666  * @regulator_desc: regulator to register
3667  * @cfg: runtime configuration for regulator
3668  *
3669  * Called by regulator drivers to register a regulator.
3670  * Returns a valid pointer to struct regulator_dev on success
3671  * or an ERR_PTR() on error.
3672  */
3673 struct regulator_dev *
3674 regulator_register(const struct regulator_desc *regulator_desc,
3675                    const struct regulator_config *cfg)
3676 {
3677         const struct regulation_constraints *constraints = NULL;
3678         const struct regulator_init_data *init_data;
3679         struct regulator_config *config = NULL;
3680         static atomic_t regulator_no = ATOMIC_INIT(-1);
3681         struct regulator_dev *rdev;
3682         struct device *dev;
3683         int ret, i;
3684
3685         if (regulator_desc == NULL || cfg == NULL)
3686                 return ERR_PTR(-EINVAL);
3687
3688         dev = cfg->dev;
3689         WARN_ON(!dev);
3690
3691         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3692                 return ERR_PTR(-EINVAL);
3693
3694         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3695             regulator_desc->type != REGULATOR_CURRENT)
3696                 return ERR_PTR(-EINVAL);
3697
3698         /* Only one of each should be implemented */
3699         WARN_ON(regulator_desc->ops->get_voltage &&
3700                 regulator_desc->ops->get_voltage_sel);
3701         WARN_ON(regulator_desc->ops->set_voltage &&
3702                 regulator_desc->ops->set_voltage_sel);
3703
3704         /* If we're using selectors we must implement list_voltage. */
3705         if (regulator_desc->ops->get_voltage_sel &&
3706             !regulator_desc->ops->list_voltage) {
3707                 return ERR_PTR(-EINVAL);
3708         }
3709         if (regulator_desc->ops->set_voltage_sel &&
3710             !regulator_desc->ops->list_voltage) {
3711                 return ERR_PTR(-EINVAL);
3712         }
3713
3714         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3715         if (rdev == NULL)
3716                 return ERR_PTR(-ENOMEM);
3717
3718         /*
3719          * Duplicate the config so the driver could override it after
3720          * parsing init data.
3721          */
3722         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3723         if (config == NULL) {
3724                 kfree(rdev);
3725                 return ERR_PTR(-ENOMEM);
3726         }
3727
3728         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3729                                                &rdev->dev.of_node);
3730         if (!init_data) {
3731                 init_data = config->init_data;
3732                 rdev->dev.of_node = of_node_get(config->of_node);
3733         }
3734
3735         mutex_lock(&regulator_list_mutex);
3736
3737         mutex_init(&rdev->mutex);
3738         rdev->reg_data = config->driver_data;
3739         rdev->owner = regulator_desc->owner;
3740         rdev->desc = regulator_desc;
3741         if (config->regmap)
3742                 rdev->regmap = config->regmap;
3743         else if (dev_get_regmap(dev, NULL))
3744                 rdev->regmap = dev_get_regmap(dev, NULL);
3745         else if (dev->parent)
3746                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3747         INIT_LIST_HEAD(&rdev->consumer_list);
3748         INIT_LIST_HEAD(&rdev->list);
3749         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3750         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3751
3752         /* preform any regulator specific init */
3753         if (init_data && init_data->regulator_init) {
3754                 ret = init_data->regulator_init(rdev->reg_data);
3755                 if (ret < 0)
3756                         goto clean;
3757         }
3758
3759         /* register with sysfs */
3760         rdev->dev.class = &regulator_class;
3761         rdev->dev.parent = dev;
3762         dev_set_name(&rdev->dev, "regulator.%lu",
3763                     (unsigned long) atomic_inc_return(&regulator_no));
3764         ret = device_register(&rdev->dev);
3765         if (ret != 0) {
3766                 put_device(&rdev->dev);
3767                 goto clean;
3768         }
3769
3770         dev_set_drvdata(&rdev->dev, rdev);
3771
3772         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3773             gpio_is_valid(config->ena_gpio)) {
3774                 ret = regulator_ena_gpio_request(rdev, config);
3775                 if (ret != 0) {
3776                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3777                                  config->ena_gpio, ret);
3778                         goto wash;
3779                 }
3780         }
3781
3782         /* set regulator constraints */
3783         if (init_data)
3784                 constraints = &init_data->constraints;
3785
3786         ret = set_machine_constraints(rdev, constraints);
3787         if (ret < 0)
3788                 goto scrub;
3789
3790         if (init_data && init_data->supply_regulator)
3791                 rdev->supply_name = init_data->supply_regulator;
3792         else if (regulator_desc->supply_name)
3793                 rdev->supply_name = regulator_desc->supply_name;
3794
3795         /* add consumers devices */
3796         if (init_data) {
3797                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3798                         ret = set_consumer_device_supply(rdev,
3799                                 init_data->consumer_supplies[i].dev_name,
3800                                 init_data->consumer_supplies[i].supply);
3801                         if (ret < 0) {
3802                                 dev_err(dev, "Failed to set supply %s\n",
3803                                         init_data->consumer_supplies[i].supply);
3804                                 goto unset_supplies;
3805                         }
3806                 }
3807         }
3808
3809         list_add(&rdev->list, &regulator_list);
3810
3811         rdev_init_debugfs(rdev);
3812 out:
3813         mutex_unlock(&regulator_list_mutex);
3814         kfree(config);
3815         return rdev;
3816
3817 unset_supplies:
3818         unset_regulator_supplies(rdev);
3819
3820 scrub:
3821         regulator_ena_gpio_free(rdev);
3822         kfree(rdev->constraints);
3823 wash:
3824         device_unregister(&rdev->dev);
3825         /* device core frees rdev */
3826         rdev = ERR_PTR(ret);
3827         goto out;
3828
3829 clean:
3830         kfree(rdev);
3831         rdev = ERR_PTR(ret);
3832         goto out;
3833 }
3834 EXPORT_SYMBOL_GPL(regulator_register);
3835
3836 /**
3837  * regulator_unregister - unregister regulator
3838  * @rdev: regulator to unregister
3839  *
3840  * Called by regulator drivers to unregister a regulator.
3841  */
3842 void regulator_unregister(struct regulator_dev *rdev)
3843 {
3844         if (rdev == NULL)
3845                 return;
3846
3847         if (rdev->supply) {
3848                 while (rdev->use_count--)
3849                         regulator_disable(rdev->supply);
3850                 regulator_put(rdev->supply);
3851         }
3852         mutex_lock(&regulator_list_mutex);
3853         debugfs_remove_recursive(rdev->debugfs);
3854         flush_work(&rdev->disable_work.work);
3855         WARN_ON(rdev->open_count);
3856         unset_regulator_supplies(rdev);
3857         list_del(&rdev->list);
3858         mutex_unlock(&regulator_list_mutex);
3859         regulator_ena_gpio_free(rdev);
3860         device_unregister(&rdev->dev);
3861 }
3862 EXPORT_SYMBOL_GPL(regulator_unregister);
3863
3864 /**
3865  * regulator_suspend_prepare - prepare regulators for system wide suspend
3866  * @state: system suspend state
3867  *
3868  * Configure each regulator with it's suspend operating parameters for state.
3869  * This will usually be called by machine suspend code prior to supending.
3870  */
3871 int regulator_suspend_prepare(suspend_state_t state)
3872 {
3873         struct regulator_dev *rdev;
3874         int ret = 0;
3875
3876         /* ON is handled by regulator active state */
3877         if (state == PM_SUSPEND_ON)
3878                 return -EINVAL;
3879
3880         mutex_lock(&regulator_list_mutex);
3881         list_for_each_entry(rdev, &regulator_list, list) {
3882
3883                 mutex_lock(&rdev->mutex);
3884                 ret = suspend_prepare(rdev, state);
3885                 mutex_unlock(&rdev->mutex);
3886
3887                 if (ret < 0) {
3888                         rdev_err(rdev, "failed to prepare\n");
3889                         goto out;
3890                 }
3891         }
3892 out:
3893         mutex_unlock(&regulator_list_mutex);
3894         return ret;
3895 }
3896 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3897
3898 /**
3899  * regulator_suspend_finish - resume regulators from system wide suspend
3900  *
3901  * Turn on regulators that might be turned off by regulator_suspend_prepare
3902  * and that should be turned on according to the regulators properties.
3903  */
3904 int regulator_suspend_finish(void)
3905 {
3906         struct regulator_dev *rdev;
3907         int ret = 0, error;
3908
3909         mutex_lock(&regulator_list_mutex);
3910         list_for_each_entry(rdev, &regulator_list, list) {
3911                 mutex_lock(&rdev->mutex);
3912                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3913                         if (!_regulator_is_enabled(rdev)) {
3914                                 error = _regulator_do_enable(rdev);
3915                                 if (error)
3916                                         ret = error;
3917                         }
3918                 } else {
3919                         if (!have_full_constraints())
3920                                 goto unlock;
3921                         if (!_regulator_is_enabled(rdev))
3922                                 goto unlock;
3923
3924                         error = _regulator_do_disable(rdev);
3925                         if (error)
3926                                 ret = error;
3927                 }
3928 unlock:
3929                 mutex_unlock(&rdev->mutex);
3930         }
3931         mutex_unlock(&regulator_list_mutex);
3932         return ret;
3933 }
3934 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3935
3936 /**
3937  * regulator_has_full_constraints - the system has fully specified constraints
3938  *
3939  * Calling this function will cause the regulator API to disable all
3940  * regulators which have a zero use count and don't have an always_on
3941  * constraint in a late_initcall.
3942  *
3943  * The intention is that this will become the default behaviour in a
3944  * future kernel release so users are encouraged to use this facility
3945  * now.
3946  */
3947 void regulator_has_full_constraints(void)
3948 {
3949         has_full_constraints = 1;
3950 }
3951 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3952
3953 /**
3954  * rdev_get_drvdata - get rdev regulator driver data
3955  * @rdev: regulator
3956  *
3957  * Get rdev regulator driver private data. This call can be used in the
3958  * regulator driver context.
3959  */
3960 void *rdev_get_drvdata(struct regulator_dev *rdev)
3961 {
3962         return rdev->reg_data;
3963 }
3964 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3965
3966 /**
3967  * regulator_get_drvdata - get regulator driver data
3968  * @regulator: regulator
3969  *
3970  * Get regulator driver private data. This call can be used in the consumer
3971  * driver context when non API regulator specific functions need to be called.
3972  */
3973 void *regulator_get_drvdata(struct regulator *regulator)
3974 {
3975         return regulator->rdev->reg_data;
3976 }
3977 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3978
3979 /**
3980  * regulator_set_drvdata - set regulator driver data
3981  * @regulator: regulator
3982  * @data: data
3983  */
3984 void regulator_set_drvdata(struct regulator *regulator, void *data)
3985 {
3986         regulator->rdev->reg_data = data;
3987 }
3988 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3989
3990 /**
3991  * regulator_get_id - get regulator ID
3992  * @rdev: regulator
3993  */
3994 int rdev_get_id(struct regulator_dev *rdev)
3995 {
3996         return rdev->desc->id;
3997 }
3998 EXPORT_SYMBOL_GPL(rdev_get_id);
3999
4000 struct device *rdev_get_dev(struct regulator_dev *rdev)
4001 {
4002         return &rdev->dev;
4003 }
4004 EXPORT_SYMBOL_GPL(rdev_get_dev);
4005
4006 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4007 {
4008         return reg_init_data->driver_data;
4009 }
4010 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4011
4012 #ifdef CONFIG_DEBUG_FS
4013 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4014                                     size_t count, loff_t *ppos)
4015 {
4016         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4017         ssize_t len, ret = 0;
4018         struct regulator_map *map;
4019
4020         if (!buf)
4021                 return -ENOMEM;
4022
4023         list_for_each_entry(map, &regulator_map_list, list) {
4024                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4025                                "%s -> %s.%s\n",
4026                                rdev_get_name(map->regulator), map->dev_name,
4027                                map->supply);
4028                 if (len >= 0)
4029                         ret += len;
4030                 if (ret > PAGE_SIZE) {
4031                         ret = PAGE_SIZE;
4032                         break;
4033                 }
4034         }
4035
4036         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4037
4038         kfree(buf);
4039
4040         return ret;
4041 }
4042 #endif
4043
4044 static const struct file_operations supply_map_fops = {
4045 #ifdef CONFIG_DEBUG_FS
4046         .read = supply_map_read_file,
4047         .llseek = default_llseek,
4048 #endif
4049 };
4050
4051 #ifdef CONFIG_DEBUG_FS
4052 static void regulator_summary_show_subtree(struct seq_file *s,
4053                                            struct regulator_dev *rdev,
4054                                            int level)
4055 {
4056         struct list_head *list = s->private;
4057         struct regulator_dev *child;
4058         struct regulation_constraints *c;
4059         struct regulator *consumer;
4060
4061         if (!rdev)
4062                 return;
4063
4064         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4065                    level * 3 + 1, "",
4066                    30 - level * 3, rdev_get_name(rdev),
4067                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4068
4069         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4070         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4071
4072         c = rdev->constraints;
4073         if (c) {
4074                 switch (rdev->desc->type) {
4075                 case REGULATOR_VOLTAGE:
4076                         seq_printf(s, "%5dmV %5dmV ",
4077                                    c->min_uV / 1000, c->max_uV / 1000);
4078                         break;
4079                 case REGULATOR_CURRENT:
4080                         seq_printf(s, "%5dmA %5dmA ",
4081                                    c->min_uA / 1000, c->max_uA / 1000);
4082                         break;
4083                 }
4084         }
4085
4086         seq_puts(s, "\n");
4087
4088         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4089                 if (consumer->dev->class == &regulator_class)
4090                         continue;
4091
4092                 seq_printf(s, "%*s%-*s ",
4093                            (level + 1) * 3 + 1, "",
4094                            30 - (level + 1) * 3, dev_name(consumer->dev));
4095
4096                 switch (rdev->desc->type) {
4097                 case REGULATOR_VOLTAGE:
4098                         seq_printf(s, "%37dmV %5dmV",
4099                                    consumer->min_uV / 1000,
4100                                    consumer->max_uV / 1000);
4101                         break;
4102                 case REGULATOR_CURRENT:
4103                         break;
4104                 }
4105
4106                 seq_puts(s, "\n");
4107         }
4108
4109         list_for_each_entry(child, list, list) {
4110                 /* handle only non-root regulators supplied by current rdev */
4111                 if (!child->supply || child->supply->rdev != rdev)
4112                         continue;
4113
4114                 regulator_summary_show_subtree(s, child, level + 1);
4115         }
4116 }
4117
4118 static int regulator_summary_show(struct seq_file *s, void *data)
4119 {
4120         struct list_head *list = s->private;
4121         struct regulator_dev *rdev;
4122
4123         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4124         seq_puts(s, "-------------------------------------------------------------------------------\n");
4125
4126         mutex_lock(&regulator_list_mutex);
4127
4128         list_for_each_entry(rdev, list, list) {
4129                 if (rdev->supply)
4130                         continue;
4131
4132                 regulator_summary_show_subtree(s, rdev, 0);
4133         }
4134
4135         mutex_unlock(&regulator_list_mutex);
4136
4137         return 0;
4138 }
4139
4140 static int regulator_summary_open(struct inode *inode, struct file *file)
4141 {
4142         return single_open(file, regulator_summary_show, inode->i_private);
4143 }
4144 #endif
4145
4146 static const struct file_operations regulator_summary_fops = {
4147 #ifdef CONFIG_DEBUG_FS
4148         .open           = regulator_summary_open,
4149         .read           = seq_read,
4150         .llseek         = seq_lseek,
4151         .release        = single_release,
4152 #endif
4153 };
4154
4155 static int __init regulator_init(void)
4156 {
4157         int ret;
4158
4159         ret = class_register(&regulator_class);
4160
4161         debugfs_root = debugfs_create_dir("regulator", NULL);
4162         if (!debugfs_root)
4163                 pr_warn("regulator: Failed to create debugfs directory\n");
4164
4165         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4166                             &supply_map_fops);
4167
4168         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4169                             &regulator_list, &regulator_summary_fops);
4170
4171         regulator_dummy_init();
4172
4173         return ret;
4174 }
4175
4176 /* init early to allow our consumers to complete system booting */
4177 core_initcall(regulator_init);
4178
4179 static int __init regulator_late_cleanup(struct device *dev, void *data)
4180 {
4181         struct regulator_dev *rdev = dev_to_rdev(dev);
4182         const struct regulator_ops *ops = rdev->desc->ops;
4183         struct regulation_constraints *c = rdev->constraints;
4184         int enabled, ret;
4185
4186         if (c && c->always_on)
4187                 return 0;
4188
4189         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4190                 return 0;
4191
4192         mutex_lock(&rdev->mutex);
4193
4194         if (rdev->use_count)
4195                 goto unlock;
4196
4197         /* If we can't read the status assume it's on. */
4198         if (ops->is_enabled)
4199                 enabled = ops->is_enabled(rdev);
4200         else
4201                 enabled = 1;
4202
4203         if (!enabled)
4204                 goto unlock;
4205
4206         if (have_full_constraints()) {
4207                 /* We log since this may kill the system if it goes
4208                  * wrong. */
4209                 rdev_info(rdev, "disabling\n");
4210                 ret = _regulator_do_disable(rdev);
4211                 if (ret != 0)
4212                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4213         } else {
4214                 /* The intention is that in future we will
4215                  * assume that full constraints are provided
4216                  * so warn even if we aren't going to do
4217                  * anything here.
4218                  */
4219                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4220         }
4221
4222 unlock:
4223         mutex_unlock(&rdev->mutex);
4224
4225         return 0;
4226 }
4227
4228 static int __init regulator_init_complete(void)
4229 {
4230         /*
4231          * Since DT doesn't provide an idiomatic mechanism for
4232          * enabling full constraints and since it's much more natural
4233          * with DT to provide them just assume that a DT enabled
4234          * system has full constraints.
4235          */
4236         if (of_have_populated_dt())
4237                 has_full_constraints = true;
4238
4239         /* If we have a full configuration then disable any regulators
4240          * we have permission to change the status for and which are
4241          * not in use or always_on.  This is effectively the default
4242          * for DT and ACPI as they have full constraints.
4243          */
4244         class_for_each_device(&regulator_class, NULL, NULL,
4245                               regulator_late_cleanup);
4246
4247         return 0;
4248 }
4249 late_initcall_sync(regulator_init_complete);