NTB: Enable Snoop on Primary Side
[linux-drm-fsl-dcu.git] / drivers / ntb / ntb_hw.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *
9  *   This program is free software; you can redistribute it and/or modify
10  *   it under the terms of version 2 of the GNU General Public License as
11  *   published by the Free Software Foundation.
12  *
13  *   BSD LICENSE
14  *
15  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
16  *
17  *   Redistribution and use in source and binary forms, with or without
18  *   modification, are permitted provided that the following conditions
19  *   are met:
20  *
21  *     * Redistributions of source code must retain the above copyright
22  *       notice, this list of conditions and the following disclaimer.
23  *     * Redistributions in binary form must reproduce the above copy
24  *       notice, this list of conditions and the following disclaimer in
25  *       the documentation and/or other materials provided with the
26  *       distribution.
27  *     * Neither the name of Intel Corporation nor the names of its
28  *       contributors may be used to endorse or promote products derived
29  *       from this software without specific prior written permission.
30  *
31  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  *
43  * Intel PCIe NTB Linux driver
44  *
45  * Contact Information:
46  * Jon Mason <jon.mason@intel.com>
47  */
48 #include <linux/debugfs.h>
49 #include <linux/delay.h>
50 #include <linux/init.h>
51 #include <linux/interrupt.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/random.h>
55 #include <linux/slab.h>
56 #include "ntb_hw.h"
57 #include "ntb_regs.h"
58
59 #define NTB_NAME        "Intel(R) PCI-E Non-Transparent Bridge Driver"
60 #define NTB_VER         "1.0"
61
62 MODULE_DESCRIPTION(NTB_NAME);
63 MODULE_VERSION(NTB_VER);
64 MODULE_LICENSE("Dual BSD/GPL");
65 MODULE_AUTHOR("Intel Corporation");
66
67 static bool xeon_errata_workaround = true;
68 module_param(xeon_errata_workaround, bool, 0644);
69 MODULE_PARM_DESC(xeon_errata_workaround, "Workaround for the Xeon Errata");
70
71 enum {
72         NTB_CONN_TRANSPARENT = 0,
73         NTB_CONN_B2B,
74         NTB_CONN_RP,
75 };
76
77 enum {
78         NTB_DEV_USD = 0,
79         NTB_DEV_DSD,
80 };
81
82 enum {
83         SNB_HW = 0,
84         BWD_HW,
85 };
86
87 static struct dentry *debugfs_dir;
88
89 #define BWD_LINK_RECOVERY_TIME  500
90
91 /* Translate memory window 0,1 to BAR 2,4 */
92 #define MW_TO_BAR(mw)   (mw * NTB_MAX_NUM_MW + 2)
93
94 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl) = {
95         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
96         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
97         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
98         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT)},
99         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX)},
100         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_JSF)},
101         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_SNB)},
102         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_IVT)},
103         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_HSX)},
104         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_JSF)},
105         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_SNB)},
106         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_IVT)},
107         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_HSX)},
108         {0}
109 };
110 MODULE_DEVICE_TABLE(pci, ntb_pci_tbl);
111
112 /**
113  * ntb_register_event_callback() - register event callback
114  * @ndev: pointer to ntb_device instance
115  * @func: callback function to register
116  *
117  * This function registers a callback for any HW driver events such as link
118  * up/down, power management notices and etc.
119  *
120  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
121  */
122 int ntb_register_event_callback(struct ntb_device *ndev,
123                             void (*func)(void *handle, enum ntb_hw_event event))
124 {
125         if (ndev->event_cb)
126                 return -EINVAL;
127
128         ndev->event_cb = func;
129
130         return 0;
131 }
132
133 /**
134  * ntb_unregister_event_callback() - unregisters the event callback
135  * @ndev: pointer to ntb_device instance
136  *
137  * This function unregisters the existing callback from transport
138  */
139 void ntb_unregister_event_callback(struct ntb_device *ndev)
140 {
141         ndev->event_cb = NULL;
142 }
143
144 /**
145  * ntb_register_db_callback() - register a callback for doorbell interrupt
146  * @ndev: pointer to ntb_device instance
147  * @idx: doorbell index to register callback, zero based
148  * @data: pointer to be returned to caller with every callback
149  * @func: callback function to register
150  *
151  * This function registers a callback function for the doorbell interrupt
152  * on the primary side. The function will unmask the doorbell as well to
153  * allow interrupt.
154  *
155  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
156  */
157 int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
158                              void *data, void (*func)(void *data, int db_num))
159 {
160         unsigned long mask;
161
162         if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) {
163                 dev_warn(&ndev->pdev->dev, "Invalid Index.\n");
164                 return -EINVAL;
165         }
166
167         ndev->db_cb[idx].callback = func;
168         ndev->db_cb[idx].data = data;
169
170         /* unmask interrupt */
171         mask = readw(ndev->reg_ofs.ldb_mask);
172         clear_bit(idx * ndev->bits_per_vector, &mask);
173         writew(mask, ndev->reg_ofs.ldb_mask);
174
175         return 0;
176 }
177
178 /**
179  * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
180  * @ndev: pointer to ntb_device instance
181  * @idx: doorbell index to register callback, zero based
182  *
183  * This function unregisters a callback function for the doorbell interrupt
184  * on the primary side. The function will also mask the said doorbell.
185  */
186 void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx)
187 {
188         unsigned long mask;
189
190         if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback)
191                 return;
192
193         mask = readw(ndev->reg_ofs.ldb_mask);
194         set_bit(idx * ndev->bits_per_vector, &mask);
195         writew(mask, ndev->reg_ofs.ldb_mask);
196
197         ndev->db_cb[idx].callback = NULL;
198 }
199
200 /**
201  * ntb_find_transport() - find the transport pointer
202  * @transport: pointer to pci device
203  *
204  * Given the pci device pointer, return the transport pointer passed in when
205  * the transport attached when it was inited.
206  *
207  * RETURNS: pointer to transport.
208  */
209 void *ntb_find_transport(struct pci_dev *pdev)
210 {
211         struct ntb_device *ndev = pci_get_drvdata(pdev);
212         return ndev->ntb_transport;
213 }
214
215 /**
216  * ntb_register_transport() - Register NTB transport with NTB HW driver
217  * @transport: transport identifier
218  *
219  * This function allows a transport to reserve the hardware driver for
220  * NTB usage.
221  *
222  * RETURNS: pointer to ntb_device, NULL on error.
223  */
224 struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport)
225 {
226         struct ntb_device *ndev = pci_get_drvdata(pdev);
227
228         if (ndev->ntb_transport)
229                 return NULL;
230
231         ndev->ntb_transport = transport;
232         return ndev;
233 }
234
235 /**
236  * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
237  * @ndev - ntb_device of the transport to be freed
238  *
239  * This function unregisters the transport from the HW driver and performs any
240  * necessary cleanups.
241  */
242 void ntb_unregister_transport(struct ntb_device *ndev)
243 {
244         int i;
245
246         if (!ndev->ntb_transport)
247                 return;
248
249         for (i = 0; i < ndev->max_cbs; i++)
250                 ntb_unregister_db_callback(ndev, i);
251
252         ntb_unregister_event_callback(ndev);
253         ndev->ntb_transport = NULL;
254 }
255
256 /**
257  * ntb_write_local_spad() - write to the secondary scratchpad register
258  * @ndev: pointer to ntb_device instance
259  * @idx: index to the scratchpad register, 0 based
260  * @val: the data value to put into the register
261  *
262  * This function allows writing of a 32bit value to the indexed scratchpad
263  * register. This writes over the data mirrored to the local scratchpad register
264  * by the remote system.
265  *
266  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
267  */
268 int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
269 {
270         if (idx >= ndev->limits.max_spads)
271                 return -EINVAL;
272
273         dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n",
274                 val, idx);
275         writel(val, ndev->reg_ofs.spad_read + idx * 4);
276
277         return 0;
278 }
279
280 /**
281  * ntb_read_local_spad() - read from the primary scratchpad register
282  * @ndev: pointer to ntb_device instance
283  * @idx: index to scratchpad register, 0 based
284  * @val: pointer to 32bit integer for storing the register value
285  *
286  * This function allows reading of the 32bit scratchpad register on
287  * the primary (internal) side.  This allows the local system to read data
288  * written and mirrored to the scratchpad register by the remote system.
289  *
290  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
291  */
292 int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
293 {
294         if (idx >= ndev->limits.max_spads)
295                 return -EINVAL;
296
297         *val = readl(ndev->reg_ofs.spad_write + idx * 4);
298         dev_dbg(&ndev->pdev->dev,
299                 "Reading %x from local scratch pad index %d\n", *val, idx);
300
301         return 0;
302 }
303
304 /**
305  * ntb_write_remote_spad() - write to the secondary scratchpad register
306  * @ndev: pointer to ntb_device instance
307  * @idx: index to the scratchpad register, 0 based
308  * @val: the data value to put into the register
309  *
310  * This function allows writing of a 32bit value to the indexed scratchpad
311  * register. The register resides on the secondary (external) side.  This allows
312  * the local system to write data to be mirrored to the remote systems
313  * scratchpad register.
314  *
315  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
316  */
317 int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
318 {
319         if (idx >= ndev->limits.max_spads)
320                 return -EINVAL;
321
322         dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n",
323                 val, idx);
324         writel(val, ndev->reg_ofs.spad_write + idx * 4);
325
326         return 0;
327 }
328
329 /**
330  * ntb_read_remote_spad() - read from the primary scratchpad register
331  * @ndev: pointer to ntb_device instance
332  * @idx: index to scratchpad register, 0 based
333  * @val: pointer to 32bit integer for storing the register value
334  *
335  * This function allows reading of the 32bit scratchpad register on
336  * the primary (internal) side.  This alloows the local system to read the data
337  * it wrote to be mirrored on the remote system.
338  *
339  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
340  */
341 int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
342 {
343         if (idx >= ndev->limits.max_spads)
344                 return -EINVAL;
345
346         *val = readl(ndev->reg_ofs.spad_read + idx * 4);
347         dev_dbg(&ndev->pdev->dev,
348                 "Reading %x from remote scratch pad index %d\n", *val, idx);
349
350         return 0;
351 }
352
353 /**
354  * ntb_get_mw_base() - get addr for the NTB memory window
355  * @ndev: pointer to ntb_device instance
356  * @mw: memory window number
357  *
358  * This function provides the base address of the memory window specified.
359  *
360  * RETURNS: address, or NULL on error.
361  */
362 resource_size_t ntb_get_mw_base(struct ntb_device *ndev, unsigned int mw)
363 {
364         if (mw >= ntb_max_mw(ndev))
365                 return 0;
366
367         return pci_resource_start(ndev->pdev, MW_TO_BAR(mw));
368 }
369
370 /**
371  * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
372  * @ndev: pointer to ntb_device instance
373  * @mw: memory window number
374  *
375  * This function provides the base virtual address of the memory window
376  * specified.
377  *
378  * RETURNS: pointer to virtual address, or NULL on error.
379  */
380 void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw)
381 {
382         if (mw >= ntb_max_mw(ndev))
383                 return NULL;
384
385         return ndev->mw[mw].vbase;
386 }
387
388 /**
389  * ntb_get_mw_size() - return size of NTB memory window
390  * @ndev: pointer to ntb_device instance
391  * @mw: memory window number
392  *
393  * This function provides the physical size of the memory window specified
394  *
395  * RETURNS: the size of the memory window or zero on error
396  */
397 u64 ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw)
398 {
399         if (mw >= ntb_max_mw(ndev))
400                 return 0;
401
402         return ndev->mw[mw].bar_sz;
403 }
404
405 /**
406  * ntb_set_mw_addr - set the memory window address
407  * @ndev: pointer to ntb_device instance
408  * @mw: memory window number
409  * @addr: base address for data
410  *
411  * This function sets the base physical address of the memory window.  This
412  * memory address is where data from the remote system will be transfered into
413  * or out of depending on how the transport is configured.
414  */
415 void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr)
416 {
417         if (mw >= ntb_max_mw(ndev))
418                 return;
419
420         dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr,
421                 MW_TO_BAR(mw));
422
423         ndev->mw[mw].phys_addr = addr;
424
425         switch (MW_TO_BAR(mw)) {
426         case NTB_BAR_23:
427                 writeq(addr, ndev->reg_ofs.bar2_xlat);
428                 break;
429         case NTB_BAR_45:
430                 writeq(addr, ndev->reg_ofs.bar4_xlat);
431                 break;
432         }
433 }
434
435 /**
436  * ntb_ring_doorbell() - Set the doorbell on the secondary/external side
437  * @ndev: pointer to ntb_device instance
438  * @db: doorbell to ring
439  *
440  * This function allows triggering of a doorbell on the secondary/external
441  * side that will initiate an interrupt on the remote host
442  *
443  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
444  */
445 void ntb_ring_doorbell(struct ntb_device *ndev, unsigned int db)
446 {
447         dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db);
448
449         if (ndev->hw_type == BWD_HW)
450                 writeq((u64) 1 << db, ndev->reg_ofs.rdb);
451         else
452                 writew(((1 << ndev->bits_per_vector) - 1) <<
453                        (db * ndev->bits_per_vector), ndev->reg_ofs.rdb);
454 }
455
456 static void bwd_recover_link(struct ntb_device *ndev)
457 {
458         u32 status;
459
460         /* Driver resets the NTB ModPhy lanes - magic! */
461         writeb(0xe0, ndev->reg_base + BWD_MODPHY_PCSREG6);
462         writeb(0x40, ndev->reg_base + BWD_MODPHY_PCSREG4);
463         writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG4);
464         writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG6);
465
466         /* Driver waits 100ms to allow the NTB ModPhy to settle */
467         msleep(100);
468
469         /* Clear AER Errors, write to clear */
470         status = readl(ndev->reg_base + BWD_ERRCORSTS_OFFSET);
471         dev_dbg(&ndev->pdev->dev, "ERRCORSTS = %x\n", status);
472         status &= PCI_ERR_COR_REP_ROLL;
473         writel(status, ndev->reg_base + BWD_ERRCORSTS_OFFSET);
474
475         /* Clear unexpected electrical idle event in LTSSM, write to clear */
476         status = readl(ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
477         dev_dbg(&ndev->pdev->dev, "LTSSMERRSTS0 = %x\n", status);
478         status |= BWD_LTSSMERRSTS0_UNEXPECTEDEI;
479         writel(status, ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
480
481         /* Clear DeSkew Buffer error, write to clear */
482         status = readl(ndev->reg_base + BWD_DESKEWSTS_OFFSET);
483         dev_dbg(&ndev->pdev->dev, "DESKEWSTS = %x\n", status);
484         status |= BWD_DESKEWSTS_DBERR;
485         writel(status, ndev->reg_base + BWD_DESKEWSTS_OFFSET);
486
487         status = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
488         dev_dbg(&ndev->pdev->dev, "IBSTERRRCRVSTS0 = %x\n", status);
489         status &= BWD_IBIST_ERR_OFLOW;
490         writel(status, ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
491
492         /* Releases the NTB state machine to allow the link to retrain */
493         status = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
494         dev_dbg(&ndev->pdev->dev, "LTSSMSTATEJMP = %x\n", status);
495         status &= ~BWD_LTSSMSTATEJMP_FORCEDETECT;
496         writel(status, ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
497 }
498
499 static void ntb_link_event(struct ntb_device *ndev, int link_state)
500 {
501         unsigned int event;
502
503         if (ndev->link_status == link_state)
504                 return;
505
506         if (link_state == NTB_LINK_UP) {
507                 u16 status;
508
509                 dev_info(&ndev->pdev->dev, "Link Up\n");
510                 ndev->link_status = NTB_LINK_UP;
511                 event = NTB_EVENT_HW_LINK_UP;
512
513                 if (ndev->hw_type == BWD_HW ||
514                     ndev->conn_type == NTB_CONN_TRANSPARENT)
515                         status = readw(ndev->reg_ofs.lnk_stat);
516                 else {
517                         int rc = pci_read_config_word(ndev->pdev,
518                                                       SNB_LINK_STATUS_OFFSET,
519                                                       &status);
520                         if (rc)
521                                 return;
522                 }
523
524                 ndev->link_width = (status & NTB_LINK_WIDTH_MASK) >> 4;
525                 ndev->link_speed = (status & NTB_LINK_SPEED_MASK);
526                 dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n",
527                          ndev->link_width, ndev->link_speed);
528         } else {
529                 dev_info(&ndev->pdev->dev, "Link Down\n");
530                 ndev->link_status = NTB_LINK_DOWN;
531                 event = NTB_EVENT_HW_LINK_DOWN;
532                 /* Don't modify link width/speed, we need it in link recovery */
533         }
534
535         /* notify the upper layer if we have an event change */
536         if (ndev->event_cb)
537                 ndev->event_cb(ndev->ntb_transport, event);
538 }
539
540 static int ntb_link_status(struct ntb_device *ndev)
541 {
542         int link_state;
543
544         if (ndev->hw_type == BWD_HW) {
545                 u32 ntb_cntl;
546
547                 ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
548                 if (ntb_cntl & BWD_CNTL_LINK_DOWN)
549                         link_state = NTB_LINK_DOWN;
550                 else
551                         link_state = NTB_LINK_UP;
552         } else {
553                 u16 status;
554                 int rc;
555
556                 rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET,
557                                           &status);
558                 if (rc)
559                         return rc;
560
561                 if (status & NTB_LINK_STATUS_ACTIVE)
562                         link_state = NTB_LINK_UP;
563                 else
564                         link_state = NTB_LINK_DOWN;
565         }
566
567         ntb_link_event(ndev, link_state);
568
569         return 0;
570 }
571
572 static void bwd_link_recovery(struct work_struct *work)
573 {
574         struct ntb_device *ndev = container_of(work, struct ntb_device,
575                                                lr_timer.work);
576         u32 status32;
577
578         bwd_recover_link(ndev);
579         /* There is a potential race between the 2 NTB devices recovering at the
580          * same time.  If the times are the same, the link will not recover and
581          * the driver will be stuck in this loop forever.  Add a random interval
582          * to the recovery time to prevent this race.
583          */
584         msleep(BWD_LINK_RECOVERY_TIME + prandom_u32() % BWD_LINK_RECOVERY_TIME);
585
586         status32 = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
587         if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT)
588                 goto retry;
589
590         status32 = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
591         if (status32 & BWD_IBIST_ERR_OFLOW)
592                 goto retry;
593
594         status32 = readl(ndev->reg_ofs.lnk_cntl);
595         if (!(status32 & BWD_CNTL_LINK_DOWN)) {
596                 unsigned char speed, width;
597                 u16 status16;
598
599                 status16 = readw(ndev->reg_ofs.lnk_stat);
600                 width = (status16 & NTB_LINK_WIDTH_MASK) >> 4;
601                 speed = (status16 & NTB_LINK_SPEED_MASK);
602                 if (ndev->link_width != width || ndev->link_speed != speed)
603                         goto retry;
604         }
605
606         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
607         return;
608
609 retry:
610         schedule_delayed_work(&ndev->lr_timer, NTB_HB_TIMEOUT);
611 }
612
613 /* BWD doesn't have link status interrupt, poll on that platform */
614 static void bwd_link_poll(struct work_struct *work)
615 {
616         struct ntb_device *ndev = container_of(work, struct ntb_device,
617                                                hb_timer.work);
618         unsigned long ts = jiffies;
619
620         /* If we haven't gotten an interrupt in a while, check the BWD link
621          * status bit
622          */
623         if (ts > ndev->last_ts + NTB_HB_TIMEOUT) {
624                 int rc = ntb_link_status(ndev);
625                 if (rc)
626                         dev_err(&ndev->pdev->dev,
627                                 "Error determining link status\n");
628
629                 /* Check to see if a link error is the cause of the link down */
630                 if (ndev->link_status == NTB_LINK_DOWN) {
631                         u32 status32 = readl(ndev->reg_base +
632                                              BWD_LTSSMSTATEJMP_OFFSET);
633                         if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT) {
634                                 schedule_delayed_work(&ndev->lr_timer, 0);
635                                 return;
636                         }
637                 }
638         }
639
640         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
641 }
642
643 static int ntb_xeon_setup(struct ntb_device *ndev)
644 {
645         int rc;
646         u8 val;
647
648         ndev->hw_type = SNB_HW;
649
650         rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val);
651         if (rc)
652                 return rc;
653
654         if (val & SNB_PPD_DEV_TYPE)
655                 ndev->dev_type = NTB_DEV_USD;
656         else
657                 ndev->dev_type = NTB_DEV_DSD;
658
659         switch (val & SNB_PPD_CONN_TYPE) {
660         case NTB_CONN_B2B:
661                 dev_info(&ndev->pdev->dev, "Conn Type = B2B\n");
662                 ndev->conn_type = NTB_CONN_B2B;
663                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
664                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
665                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
666                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
667                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
668                 ndev->limits.max_spads = SNB_MAX_B2B_SPADS;
669
670                 /* There is a Xeon hardware errata related to writes to
671                  * SDOORBELL or B2BDOORBELL in conjunction with inbound access
672                  * to NTB MMIO Space, which may hang the system.  To workaround
673                  * this use the second memory window to access the interrupt and
674                  * scratch pad registers on the remote system.
675                  */
676                 if (xeon_errata_workaround) {
677                         if (!ndev->mw[1].bar_sz)
678                                 return -EINVAL;
679
680                         ndev->limits.max_mw = SNB_ERRATA_MAX_MW;
681                         ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
682                         ndev->reg_ofs.spad_write = ndev->mw[1].vbase +
683                                                    SNB_SPAD_OFFSET;
684                         ndev->reg_ofs.rdb = ndev->mw[1].vbase +
685                                             SNB_PDOORBELL_OFFSET;
686
687                         /* Set the Limit register to 4k, the minimum size, to
688                          * prevent an illegal access
689                          */
690                         writeq(ndev->mw[1].bar_sz + 0x1000, ndev->reg_base +
691                                SNB_PBAR4LMT_OFFSET);
692                         /* HW errata on the Limit registers.  They can only be
693                          * written when the base register is 4GB aligned and
694                          * < 32bit.  This should already be the case based on the
695                          * driver defaults, but write the Limit registers first
696                          * just in case.
697                          */
698                 } else {
699                         ndev->limits.max_mw = SNB_MAX_MW;
700
701                         /* HW Errata on bit 14 of b2bdoorbell register.  Writes
702                          * will not be mirrored to the remote system.  Shrink
703                          * the number of bits by one, since bit 14 is the last
704                          * bit.
705                          */
706                         ndev->limits.max_db_bits = SNB_MAX_DB_BITS - 1;
707                         ndev->reg_ofs.spad_write = ndev->reg_base +
708                                                    SNB_B2B_SPAD_OFFSET;
709                         ndev->reg_ofs.rdb = ndev->reg_base +
710                                             SNB_B2B_DOORBELL_OFFSET;
711
712                         /* Disable the Limit register, just incase it is set to
713                          * something silly
714                          */
715                         writeq(0, ndev->reg_base + SNB_PBAR4LMT_OFFSET);
716                         /* HW errata on the Limit registers.  They can only be
717                          * written when the base register is 4GB aligned and
718                          * < 32bit.  This should already be the case based on the
719                          * driver defaults, but write the Limit registers first
720                          * just in case.
721                          */
722                 }
723
724                 /* The Xeon errata workaround requires setting SBAR Base
725                  * addresses to known values, so that the PBAR XLAT can be
726                  * pointed at SBAR0 of the remote system.
727                  */
728                 if (ndev->dev_type == NTB_DEV_USD) {
729                         writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
730                                SNB_PBAR2XLAT_OFFSET);
731                         if (xeon_errata_workaround)
732                                 writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
733                                        SNB_PBAR4XLAT_OFFSET);
734                         else {
735                                 writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
736                                        SNB_PBAR4XLAT_OFFSET);
737                                 /* B2B_XLAT_OFFSET is a 64bit register, but can
738                                  * only take 32bit writes
739                                  */
740                                 writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
741                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
742                                 writel(SNB_MBAR01_DSD_ADDR >> 32,
743                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
744                         }
745
746                         writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
747                                SNB_SBAR0BASE_OFFSET);
748                         writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
749                                SNB_SBAR2BASE_OFFSET);
750                         writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
751                                SNB_SBAR4BASE_OFFSET);
752                 } else {
753                         writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
754                                SNB_PBAR2XLAT_OFFSET);
755                         if (xeon_errata_workaround)
756                                 writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
757                                        SNB_PBAR4XLAT_OFFSET);
758                         else {
759                                 writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
760                                        SNB_PBAR4XLAT_OFFSET);
761                                 /* B2B_XLAT_OFFSET is a 64bit register, but can
762                                  * only take 32bit writes
763                                  */
764                                 writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
765                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
766                                 writel(SNB_MBAR01_USD_ADDR >> 32,
767                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
768                         }
769                         writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
770                                SNB_SBAR0BASE_OFFSET);
771                         writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
772                                SNB_SBAR2BASE_OFFSET);
773                         writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
774                                SNB_SBAR4BASE_OFFSET);
775                 }
776                 break;
777         case NTB_CONN_RP:
778                 dev_info(&ndev->pdev->dev, "Conn Type = RP\n");
779                 ndev->conn_type = NTB_CONN_RP;
780
781                 if (xeon_errata_workaround) {
782                         dev_err(&ndev->pdev->dev, 
783                                 "NTB-RP disabled due to hardware errata.  To disregard this warning and potentially lock-up the system, add the parameter 'xeon_errata_workaround=0'.\n");
784                         return -EINVAL;
785                 }
786
787                 /* Scratch pads need to have exclusive access from the primary
788                  * or secondary side.  Halve the num spads so that each side can
789                  * have an equal amount.
790                  */
791                 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
792                 ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
793                 /* Note: The SDOORBELL is the cause of the errata.  You REALLY
794                  * don't want to touch it.
795                  */
796                 ndev->reg_ofs.rdb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
797                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
798                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
799                 /* Offset the start of the spads to correspond to whether it is
800                  * primary or secondary
801                  */
802                 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET +
803                                            ndev->limits.max_spads * 4;
804                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
805                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
806                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
807                 ndev->limits.max_mw = SNB_MAX_MW;
808                 break;
809         case NTB_CONN_TRANSPARENT:
810                 dev_info(&ndev->pdev->dev, "Conn Type = TRANSPARENT\n");
811                 ndev->conn_type = NTB_CONN_TRANSPARENT;
812                 /* Scratch pads need to have exclusive access from the primary
813                  * or secondary side.  Halve the num spads so that each side can
814                  * have an equal amount.
815                  */
816                 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
817                 ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
818                 ndev->reg_ofs.rdb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
819                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
820                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_SDBMSK_OFFSET;
821                 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET;
822                 /* Offset the start of the spads to correspond to whether it is
823                  * primary or secondary
824                  */
825                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET +
826                                           ndev->limits.max_spads * 4;
827                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_PBAR2XLAT_OFFSET;
828                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_PBAR4XLAT_OFFSET;
829
830                 ndev->limits.max_mw = SNB_MAX_MW;
831                 break;
832         default:
833                 /* Most likely caused by the remote NTB-RP device not being
834                  * configured
835                  */
836                 dev_err(&ndev->pdev->dev, "Unknown PPD %x\n", val);
837                 return -EINVAL;
838         }
839
840         ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET;
841         ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_SLINK_STATUS_OFFSET;
842         ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET;
843
844         ndev->limits.msix_cnt = SNB_MSIX_CNT;
845         ndev->bits_per_vector = SNB_DB_BITS_PER_VEC;
846
847         return 0;
848 }
849
850 static int ntb_bwd_setup(struct ntb_device *ndev)
851 {
852         int rc;
853         u32 val;
854
855         ndev->hw_type = BWD_HW;
856
857         rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val);
858         if (rc)
859                 return rc;
860
861         switch ((val & BWD_PPD_CONN_TYPE) >> 8) {
862         case NTB_CONN_B2B:
863                 ndev->conn_type = NTB_CONN_B2B;
864                 break;
865         case NTB_CONN_RP:
866         default:
867                 dev_err(&ndev->pdev->dev, "Unsupported NTB configuration\n");
868                 return -EINVAL;
869         }
870
871         if (val & BWD_PPD_DEV_TYPE)
872                 ndev->dev_type = NTB_DEV_DSD;
873         else
874                 ndev->dev_type = NTB_DEV_USD;
875
876         /* Initiate PCI-E link training */
877         rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET,
878                                     val | BWD_PPD_INIT_LINK);
879         if (rc)
880                 return rc;
881
882         ndev->reg_ofs.ldb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
883         ndev->reg_ofs.ldb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET;
884         ndev->reg_ofs.rdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET;
885         ndev->reg_ofs.bar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET;
886         ndev->reg_ofs.bar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET;
887         ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET;
888         ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET;
889         ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET;
890         ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET;
891         ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET;
892         ndev->limits.max_mw = BWD_MAX_MW;
893         ndev->limits.max_spads = BWD_MAX_SPADS;
894         ndev->limits.max_db_bits = BWD_MAX_DB_BITS;
895         ndev->limits.msix_cnt = BWD_MSIX_CNT;
896         ndev->bits_per_vector = BWD_DB_BITS_PER_VEC;
897
898         /* Since bwd doesn't have a link interrupt, setup a poll timer */
899         INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll);
900         INIT_DELAYED_WORK(&ndev->lr_timer, bwd_link_recovery);
901         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
902
903         return 0;
904 }
905
906 static int ntb_device_setup(struct ntb_device *ndev)
907 {
908         int rc;
909
910         switch (ndev->pdev->device) {
911         case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
912         case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
913         case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
914         case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
915         case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
916         case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
917         case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
918         case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
919         case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
920         case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
921         case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
922         case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
923                 rc = ntb_xeon_setup(ndev);
924                 break;
925         case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
926                 rc = ntb_bwd_setup(ndev);
927                 break;
928         default:
929                 rc = -ENODEV;
930         }
931
932         if (rc)
933                 return rc;
934
935         dev_info(&ndev->pdev->dev, "Device Type = %s\n",
936                  ndev->dev_type == NTB_DEV_USD ? "USD/DSP" : "DSD/USP");
937
938         if (ndev->conn_type == NTB_CONN_B2B)
939                 /* Enable Bus Master and Memory Space on the secondary side */
940                 writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
941                        ndev->reg_ofs.spci_cmd);
942
943         return 0;
944 }
945
946 static void ntb_device_free(struct ntb_device *ndev)
947 {
948         if (ndev->hw_type == BWD_HW) {
949                 cancel_delayed_work_sync(&ndev->hb_timer);
950                 cancel_delayed_work_sync(&ndev->lr_timer);
951         }
952 }
953
954 static irqreturn_t bwd_callback_msix_irq(int irq, void *data)
955 {
956         struct ntb_db_cb *db_cb = data;
957         struct ntb_device *ndev = db_cb->ndev;
958
959         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
960                 db_cb->db_num);
961
962         if (db_cb->callback)
963                 db_cb->callback(db_cb->data, db_cb->db_num);
964
965         /* No need to check for the specific HB irq, any interrupt means
966          * we're connected.
967          */
968         ndev->last_ts = jiffies;
969
970         writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.ldb);
971
972         return IRQ_HANDLED;
973 }
974
975 static irqreturn_t xeon_callback_msix_irq(int irq, void *data)
976 {
977         struct ntb_db_cb *db_cb = data;
978         struct ntb_device *ndev = db_cb->ndev;
979
980         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
981                 db_cb->db_num);
982
983         if (db_cb->callback)
984                 db_cb->callback(db_cb->data, db_cb->db_num);
985
986         /* On Sandybridge, there are 16 bits in the interrupt register
987          * but only 4 vectors.  So, 5 bits are assigned to the first 3
988          * vectors, with the 4th having a single bit for link
989          * interrupts.
990          */
991         writew(((1 << ndev->bits_per_vector) - 1) <<
992                (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.ldb);
993
994         return IRQ_HANDLED;
995 }
996
997 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
998 static irqreturn_t xeon_event_msix_irq(int irq, void *dev)
999 {
1000         struct ntb_device *ndev = dev;
1001         int rc;
1002
1003         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq);
1004
1005         rc = ntb_link_status(ndev);
1006         if (rc)
1007                 dev_err(&ndev->pdev->dev, "Error determining link status\n");
1008
1009         /* bit 15 is always the link bit */
1010         writew(1 << SNB_LINK_DB, ndev->reg_ofs.ldb);
1011
1012         return IRQ_HANDLED;
1013 }
1014
1015 static irqreturn_t ntb_interrupt(int irq, void *dev)
1016 {
1017         struct ntb_device *ndev = dev;
1018         unsigned int i = 0;
1019
1020         if (ndev->hw_type == BWD_HW) {
1021                 u64 ldb = readq(ndev->reg_ofs.ldb);
1022
1023                 dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %Lx\n", irq, ldb);
1024
1025                 while (ldb) {
1026                         i = __ffs(ldb);
1027                         ldb &= ldb - 1;
1028                         bwd_callback_msix_irq(irq, &ndev->db_cb[i]);
1029                 }
1030         } else {
1031                 u16 ldb = readw(ndev->reg_ofs.ldb);
1032
1033                 dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %x\n", irq, ldb);
1034
1035                 if (ldb & SNB_DB_HW_LINK) {
1036                         xeon_event_msix_irq(irq, dev);
1037                         ldb &= ~SNB_DB_HW_LINK;
1038                 }
1039
1040                 while (ldb) {
1041                         i = __ffs(ldb);
1042                         ldb &= ldb - 1;
1043                         xeon_callback_msix_irq(irq, &ndev->db_cb[i]);
1044                 }
1045         }
1046
1047         return IRQ_HANDLED;
1048 }
1049
1050 static int ntb_setup_msix(struct ntb_device *ndev)
1051 {
1052         struct pci_dev *pdev = ndev->pdev;
1053         struct msix_entry *msix;
1054         int msix_entries;
1055         int rc, i;
1056         u16 val;
1057
1058         if (!pdev->msix_cap) {
1059                 rc = -EIO;
1060                 goto err;
1061         }
1062
1063         rc = pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &val);
1064         if (rc)
1065                 goto err;
1066
1067         msix_entries = msix_table_size(val);
1068         if (msix_entries > ndev->limits.msix_cnt) {
1069                 rc = -EINVAL;
1070                 goto err;
1071         }
1072
1073         ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries,
1074                                      GFP_KERNEL);
1075         if (!ndev->msix_entries) {
1076                 rc = -ENOMEM;
1077                 goto err;
1078         }
1079
1080         for (i = 0; i < msix_entries; i++)
1081                 ndev->msix_entries[i].entry = i;
1082
1083         rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries);
1084         if (rc < 0)
1085                 goto err1;
1086         if (rc > 0) {
1087                 /* On SNB, the link interrupt is always tied to 4th vector.  If
1088                  * we can't get all 4, then we can't use MSI-X.
1089                  */
1090                 if (ndev->hw_type != BWD_HW) {
1091                         rc = -EIO;
1092                         goto err1;
1093                 }
1094
1095                 dev_warn(&pdev->dev,
1096                          "Only %d MSI-X vectors.  Limiting the number of queues to that number.\n",
1097                          rc);
1098                 msix_entries = rc;
1099
1100                 rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries);
1101                 if (rc)
1102                         goto err1;
1103         }
1104
1105         for (i = 0; i < msix_entries; i++) {
1106                 msix = &ndev->msix_entries[i];
1107                 WARN_ON(!msix->vector);
1108
1109                 /* Use the last MSI-X vector for Link status */
1110                 if (ndev->hw_type == BWD_HW) {
1111                         rc = request_irq(msix->vector, bwd_callback_msix_irq, 0,
1112                                          "ntb-callback-msix", &ndev->db_cb[i]);
1113                         if (rc)
1114                                 goto err2;
1115                 } else {
1116                         if (i == msix_entries - 1) {
1117                                 rc = request_irq(msix->vector,
1118                                                  xeon_event_msix_irq, 0,
1119                                                  "ntb-event-msix", ndev);
1120                                 if (rc)
1121                                         goto err2;
1122                         } else {
1123                                 rc = request_irq(msix->vector,
1124                                                  xeon_callback_msix_irq, 0,
1125                                                  "ntb-callback-msix",
1126                                                  &ndev->db_cb[i]);
1127                                 if (rc)
1128                                         goto err2;
1129                         }
1130                 }
1131         }
1132
1133         ndev->num_msix = msix_entries;
1134         if (ndev->hw_type == BWD_HW)
1135                 ndev->max_cbs = msix_entries;
1136         else
1137                 ndev->max_cbs = msix_entries - 1;
1138
1139         return 0;
1140
1141 err2:
1142         while (--i >= 0) {
1143                 msix = &ndev->msix_entries[i];
1144                 if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1145                         free_irq(msix->vector, ndev);
1146                 else
1147                         free_irq(msix->vector, &ndev->db_cb[i]);
1148         }
1149         pci_disable_msix(pdev);
1150 err1:
1151         kfree(ndev->msix_entries);
1152         dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n");
1153 err:
1154         ndev->num_msix = 0;
1155         return rc;
1156 }
1157
1158 static int ntb_setup_msi(struct ntb_device *ndev)
1159 {
1160         struct pci_dev *pdev = ndev->pdev;
1161         int rc;
1162
1163         rc = pci_enable_msi(pdev);
1164         if (rc)
1165                 return rc;
1166
1167         rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev);
1168         if (rc) {
1169                 pci_disable_msi(pdev);
1170                 dev_err(&pdev->dev, "Error allocating MSI interrupt\n");
1171                 return rc;
1172         }
1173
1174         return 0;
1175 }
1176
1177 static int ntb_setup_intx(struct ntb_device *ndev)
1178 {
1179         struct pci_dev *pdev = ndev->pdev;
1180         int rc;
1181
1182         pci_msi_off(pdev);
1183
1184         /* Verify intx is enabled */
1185         pci_intx(pdev, 1);
1186
1187         rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx",
1188                          ndev);
1189         if (rc)
1190                 return rc;
1191
1192         return 0;
1193 }
1194
1195 static int ntb_setup_interrupts(struct ntb_device *ndev)
1196 {
1197         int rc;
1198
1199         /* On BWD, disable all interrupts.  On SNB, disable all but Link
1200          * Interrupt.  The rest will be unmasked as callbacks are registered.
1201          */
1202         if (ndev->hw_type == BWD_HW)
1203                 writeq(~0, ndev->reg_ofs.ldb_mask);
1204         else {
1205                 u16 var = 1 << SNB_LINK_DB;
1206                 writew(~var, ndev->reg_ofs.ldb_mask);
1207         }
1208
1209         rc = ntb_setup_msix(ndev);
1210         if (!rc)
1211                 goto done;
1212
1213         ndev->bits_per_vector = 1;
1214         ndev->max_cbs = ndev->limits.max_db_bits;
1215
1216         rc = ntb_setup_msi(ndev);
1217         if (!rc)
1218                 goto done;
1219
1220         rc = ntb_setup_intx(ndev);
1221         if (rc) {
1222                 dev_err(&ndev->pdev->dev, "no usable interrupts\n");
1223                 return rc;
1224         }
1225
1226 done:
1227         return 0;
1228 }
1229
1230 static void ntb_free_interrupts(struct ntb_device *ndev)
1231 {
1232         struct pci_dev *pdev = ndev->pdev;
1233
1234         /* mask interrupts */
1235         if (ndev->hw_type == BWD_HW)
1236                 writeq(~0, ndev->reg_ofs.ldb_mask);
1237         else
1238                 writew(~0, ndev->reg_ofs.ldb_mask);
1239
1240         if (ndev->num_msix) {
1241                 struct msix_entry *msix;
1242                 u32 i;
1243
1244                 for (i = 0; i < ndev->num_msix; i++) {
1245                         msix = &ndev->msix_entries[i];
1246                         if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1247                                 free_irq(msix->vector, ndev);
1248                         else
1249                                 free_irq(msix->vector, &ndev->db_cb[i]);
1250                 }
1251                 pci_disable_msix(pdev);
1252         } else {
1253                 free_irq(pdev->irq, ndev);
1254
1255                 if (pci_dev_msi_enabled(pdev))
1256                         pci_disable_msi(pdev);
1257         }
1258 }
1259
1260 static int ntb_create_callbacks(struct ntb_device *ndev)
1261 {
1262         int i;
1263
1264         /* Chicken-egg issue.  We won't know how many callbacks are necessary
1265          * until we see how many MSI-X vectors we get, but these pointers need
1266          * to be passed into the MSI-X register function.  So, we allocate the
1267          * max, knowing that they might not all be used, to work around this.
1268          */
1269         ndev->db_cb = kcalloc(ndev->limits.max_db_bits,
1270                               sizeof(struct ntb_db_cb),
1271                               GFP_KERNEL);
1272         if (!ndev->db_cb)
1273                 return -ENOMEM;
1274
1275         for (i = 0; i < ndev->limits.max_db_bits; i++) {
1276                 ndev->db_cb[i].db_num = i;
1277                 ndev->db_cb[i].ndev = ndev;
1278         }
1279
1280         return 0;
1281 }
1282
1283 static void ntb_free_callbacks(struct ntb_device *ndev)
1284 {
1285         int i;
1286
1287         for (i = 0; i < ndev->limits.max_db_bits; i++)
1288                 ntb_unregister_db_callback(ndev, i);
1289
1290         kfree(ndev->db_cb);
1291 }
1292
1293 static void ntb_setup_debugfs(struct ntb_device *ndev)
1294 {
1295         if (!debugfs_initialized())
1296                 return;
1297
1298         if (!debugfs_dir)
1299                 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1300
1301         ndev->debugfs_dir = debugfs_create_dir(pci_name(ndev->pdev),
1302                                                debugfs_dir);
1303 }
1304
1305 static void ntb_free_debugfs(struct ntb_device *ndev)
1306 {
1307         debugfs_remove_recursive(ndev->debugfs_dir);
1308
1309         if (debugfs_dir && simple_empty(debugfs_dir)) {
1310                 debugfs_remove_recursive(debugfs_dir);
1311                 debugfs_dir = NULL;
1312         }
1313 }
1314
1315 static void ntb_hw_link_up(struct ntb_device *ndev)
1316 {
1317         if (ndev->conn_type == NTB_CONN_TRANSPARENT)
1318                 ntb_link_event(ndev, NTB_LINK_UP);
1319         else {
1320                 u32 ntb_cntl;
1321
1322                 /* Let's bring the NTB link up */
1323                 ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1324                 ntb_cntl &= ~(NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK);
1325                 ntb_cntl |= NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP;
1326                 ntb_cntl |= NTB_CNTL_P2S_BAR45_SNOOP | NTB_CNTL_S2P_BAR45_SNOOP;
1327                 writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1328         }
1329 }
1330
1331 static void ntb_hw_link_down(struct ntb_device *ndev)
1332 {
1333         u32 ntb_cntl;
1334
1335         if (ndev->conn_type == NTB_CONN_TRANSPARENT) {
1336                 ntb_link_event(ndev, NTB_LINK_DOWN);
1337                 return;
1338         }
1339
1340         /* Bring NTB link down */
1341         ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1342         ntb_cntl &= ~(NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP);
1343         ntb_cntl &= ~(NTB_CNTL_P2S_BAR45_SNOOP | NTB_CNTL_S2P_BAR45_SNOOP);
1344         ntb_cntl |= NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK;
1345         writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1346 }
1347
1348 static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1349 {
1350         struct ntb_device *ndev;
1351         int rc, i;
1352
1353         ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL);
1354         if (!ndev)
1355                 return -ENOMEM;
1356
1357         ndev->pdev = pdev;
1358         ndev->link_status = NTB_LINK_DOWN;
1359         pci_set_drvdata(pdev, ndev);
1360         ntb_setup_debugfs(ndev);
1361
1362         rc = pci_enable_device(pdev);
1363         if (rc)
1364                 goto err;
1365
1366         pci_set_master(ndev->pdev);
1367
1368         rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME);
1369         if (rc)
1370                 goto err1;
1371
1372         ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO);
1373         if (!ndev->reg_base) {
1374                 dev_warn(&pdev->dev, "Cannot remap BAR 0\n");
1375                 rc = -EIO;
1376                 goto err2;
1377         }
1378
1379         for (i = 0; i < NTB_MAX_NUM_MW; i++) {
1380                 ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i));
1381                 ndev->mw[i].vbase =
1382                     ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)),
1383                                ndev->mw[i].bar_sz);
1384                 dev_info(&pdev->dev, "MW %d size %llu\n", i,
1385                          (unsigned long long) ndev->mw[i].bar_sz);
1386                 if (!ndev->mw[i].vbase) {
1387                         dev_warn(&pdev->dev, "Cannot remap BAR %d\n",
1388                                  MW_TO_BAR(i));
1389                         rc = -EIO;
1390                         goto err3;
1391                 }
1392         }
1393
1394         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1395         if (rc) {
1396                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1397                 if (rc)
1398                         goto err3;
1399
1400                 dev_warn(&pdev->dev, "Cannot DMA highmem\n");
1401         }
1402
1403         rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1404         if (rc) {
1405                 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1406                 if (rc)
1407                         goto err3;
1408
1409                 dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
1410         }
1411
1412         rc = ntb_device_setup(ndev);
1413         if (rc)
1414                 goto err3;
1415
1416         rc = ntb_create_callbacks(ndev);
1417         if (rc)
1418                 goto err4;
1419
1420         rc = ntb_setup_interrupts(ndev);
1421         if (rc)
1422                 goto err5;
1423
1424         /* The scratchpad registers keep the values between rmmod/insmod,
1425          * blast them now
1426          */
1427         for (i = 0; i < ndev->limits.max_spads; i++) {
1428                 ntb_write_local_spad(ndev, i, 0);
1429                 ntb_write_remote_spad(ndev, i, 0);
1430         }
1431
1432         rc = ntb_transport_init(pdev);
1433         if (rc)
1434                 goto err6;
1435
1436         ntb_hw_link_up(ndev);
1437
1438         return 0;
1439
1440 err6:
1441         ntb_free_interrupts(ndev);
1442 err5:
1443         ntb_free_callbacks(ndev);
1444 err4:
1445         ntb_device_free(ndev);
1446 err3:
1447         for (i--; i >= 0; i--)
1448                 iounmap(ndev->mw[i].vbase);
1449         iounmap(ndev->reg_base);
1450 err2:
1451         pci_release_selected_regions(pdev, NTB_BAR_MASK);
1452 err1:
1453         pci_disable_device(pdev);
1454 err:
1455         ntb_free_debugfs(ndev);
1456         kfree(ndev);
1457
1458         dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME);
1459         return rc;
1460 }
1461
1462 static void ntb_pci_remove(struct pci_dev *pdev)
1463 {
1464         struct ntb_device *ndev = pci_get_drvdata(pdev);
1465         int i;
1466
1467         ntb_hw_link_down(ndev);
1468
1469         ntb_transport_free(ndev->ntb_transport);
1470
1471         ntb_free_interrupts(ndev);
1472         ntb_free_callbacks(ndev);
1473         ntb_device_free(ndev);
1474
1475         for (i = 0; i < NTB_MAX_NUM_MW; i++)
1476                 iounmap(ndev->mw[i].vbase);
1477
1478         iounmap(ndev->reg_base);
1479         pci_release_selected_regions(pdev, NTB_BAR_MASK);
1480         pci_disable_device(pdev);
1481         ntb_free_debugfs(ndev);
1482         kfree(ndev);
1483 }
1484
1485 static struct pci_driver ntb_pci_driver = {
1486         .name = KBUILD_MODNAME,
1487         .id_table = ntb_pci_tbl,
1488         .probe = ntb_pci_probe,
1489         .remove = ntb_pci_remove,
1490 };
1491 module_pci_driver(ntb_pci_driver);