Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-drm-fsl-dcu.git] / drivers / ntb / ntb_hw.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *
9  *   This program is free software; you can redistribute it and/or modify
10  *   it under the terms of version 2 of the GNU General Public License as
11  *   published by the Free Software Foundation.
12  *
13  *   BSD LICENSE
14  *
15  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
16  *
17  *   Redistribution and use in source and binary forms, with or without
18  *   modification, are permitted provided that the following conditions
19  *   are met:
20  *
21  *     * Redistributions of source code must retain the above copyright
22  *       notice, this list of conditions and the following disclaimer.
23  *     * Redistributions in binary form must reproduce the above copy
24  *       notice, this list of conditions and the following disclaimer in
25  *       the documentation and/or other materials provided with the
26  *       distribution.
27  *     * Neither the name of Intel Corporation nor the names of its
28  *       contributors may be used to endorse or promote products derived
29  *       from this software without specific prior written permission.
30  *
31  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  *
43  * Intel PCIe NTB Linux driver
44  *
45  * Contact Information:
46  * Jon Mason <jon.mason@intel.com>
47  */
48 #include <linux/debugfs.h>
49 #include <linux/delay.h>
50 #include <linux/init.h>
51 #include <linux/interrupt.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/random.h>
55 #include <linux/slab.h>
56 #include "ntb_hw.h"
57 #include "ntb_regs.h"
58
59 #define NTB_NAME        "Intel(R) PCI-E Non-Transparent Bridge Driver"
60 #define NTB_VER         "1.0"
61
62 MODULE_DESCRIPTION(NTB_NAME);
63 MODULE_VERSION(NTB_VER);
64 MODULE_LICENSE("Dual BSD/GPL");
65 MODULE_AUTHOR("Intel Corporation");
66
67 static bool xeon_errata_workaround = true;
68 module_param(xeon_errata_workaround, bool, 0644);
69 MODULE_PARM_DESC(xeon_errata_workaround, "Workaround for the Xeon Errata");
70
71 enum {
72         NTB_CONN_TRANSPARENT = 0,
73         NTB_CONN_B2B,
74         NTB_CONN_RP,
75 };
76
77 enum {
78         NTB_DEV_USD = 0,
79         NTB_DEV_DSD,
80 };
81
82 enum {
83         SNB_HW = 0,
84         BWD_HW,
85 };
86
87 static struct dentry *debugfs_dir;
88
89 #define BWD_LINK_RECOVERY_TIME  500
90
91 /* Translate memory window 0,1 to BAR 2,4 */
92 #define MW_TO_BAR(mw)   (mw * NTB_MAX_NUM_MW + 2)
93
94 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl) = {
95         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
96         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
97         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
98         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT)},
99         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX)},
100         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_JSF)},
101         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_SNB)},
102         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_IVT)},
103         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_HSX)},
104         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_JSF)},
105         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_SNB)},
106         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_IVT)},
107         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_HSX)},
108         {0}
109 };
110 MODULE_DEVICE_TABLE(pci, ntb_pci_tbl);
111
112 /**
113  * ntb_register_event_callback() - register event callback
114  * @ndev: pointer to ntb_device instance
115  * @func: callback function to register
116  *
117  * This function registers a callback for any HW driver events such as link
118  * up/down, power management notices and etc.
119  *
120  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
121  */
122 int ntb_register_event_callback(struct ntb_device *ndev,
123                             void (*func)(void *handle, enum ntb_hw_event event))
124 {
125         if (ndev->event_cb)
126                 return -EINVAL;
127
128         ndev->event_cb = func;
129
130         return 0;
131 }
132
133 /**
134  * ntb_unregister_event_callback() - unregisters the event callback
135  * @ndev: pointer to ntb_device instance
136  *
137  * This function unregisters the existing callback from transport
138  */
139 void ntb_unregister_event_callback(struct ntb_device *ndev)
140 {
141         ndev->event_cb = NULL;
142 }
143
144 /**
145  * ntb_register_db_callback() - register a callback for doorbell interrupt
146  * @ndev: pointer to ntb_device instance
147  * @idx: doorbell index to register callback, zero based
148  * @data: pointer to be returned to caller with every callback
149  * @func: callback function to register
150  *
151  * This function registers a callback function for the doorbell interrupt
152  * on the primary side. The function will unmask the doorbell as well to
153  * allow interrupt.
154  *
155  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
156  */
157 int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
158                              void *data, void (*func)(void *data, int db_num))
159 {
160         unsigned long mask;
161
162         if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) {
163                 dev_warn(&ndev->pdev->dev, "Invalid Index.\n");
164                 return -EINVAL;
165         }
166
167         ndev->db_cb[idx].callback = func;
168         ndev->db_cb[idx].data = data;
169
170         /* unmask interrupt */
171         mask = readw(ndev->reg_ofs.ldb_mask);
172         clear_bit(idx * ndev->bits_per_vector, &mask);
173         writew(mask, ndev->reg_ofs.ldb_mask);
174
175         return 0;
176 }
177
178 /**
179  * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
180  * @ndev: pointer to ntb_device instance
181  * @idx: doorbell index to register callback, zero based
182  *
183  * This function unregisters a callback function for the doorbell interrupt
184  * on the primary side. The function will also mask the said doorbell.
185  */
186 void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx)
187 {
188         unsigned long mask;
189
190         if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback)
191                 return;
192
193         mask = readw(ndev->reg_ofs.ldb_mask);
194         set_bit(idx * ndev->bits_per_vector, &mask);
195         writew(mask, ndev->reg_ofs.ldb_mask);
196
197         ndev->db_cb[idx].callback = NULL;
198 }
199
200 /**
201  * ntb_find_transport() - find the transport pointer
202  * @transport: pointer to pci device
203  *
204  * Given the pci device pointer, return the transport pointer passed in when
205  * the transport attached when it was inited.
206  *
207  * RETURNS: pointer to transport.
208  */
209 void *ntb_find_transport(struct pci_dev *pdev)
210 {
211         struct ntb_device *ndev = pci_get_drvdata(pdev);
212         return ndev->ntb_transport;
213 }
214
215 /**
216  * ntb_register_transport() - Register NTB transport with NTB HW driver
217  * @transport: transport identifier
218  *
219  * This function allows a transport to reserve the hardware driver for
220  * NTB usage.
221  *
222  * RETURNS: pointer to ntb_device, NULL on error.
223  */
224 struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport)
225 {
226         struct ntb_device *ndev = pci_get_drvdata(pdev);
227
228         if (ndev->ntb_transport)
229                 return NULL;
230
231         ndev->ntb_transport = transport;
232         return ndev;
233 }
234
235 /**
236  * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
237  * @ndev - ntb_device of the transport to be freed
238  *
239  * This function unregisters the transport from the HW driver and performs any
240  * necessary cleanups.
241  */
242 void ntb_unregister_transport(struct ntb_device *ndev)
243 {
244         int i;
245
246         if (!ndev->ntb_transport)
247                 return;
248
249         for (i = 0; i < ndev->max_cbs; i++)
250                 ntb_unregister_db_callback(ndev, i);
251
252         ntb_unregister_event_callback(ndev);
253         ndev->ntb_transport = NULL;
254 }
255
256 /**
257  * ntb_write_local_spad() - write to the secondary scratchpad register
258  * @ndev: pointer to ntb_device instance
259  * @idx: index to the scratchpad register, 0 based
260  * @val: the data value to put into the register
261  *
262  * This function allows writing of a 32bit value to the indexed scratchpad
263  * register. This writes over the data mirrored to the local scratchpad register
264  * by the remote system.
265  *
266  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
267  */
268 int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
269 {
270         if (idx >= ndev->limits.max_spads)
271                 return -EINVAL;
272
273         dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n",
274                 val, idx);
275         writel(val, ndev->reg_ofs.spad_read + idx * 4);
276
277         return 0;
278 }
279
280 /**
281  * ntb_read_local_spad() - read from the primary scratchpad register
282  * @ndev: pointer to ntb_device instance
283  * @idx: index to scratchpad register, 0 based
284  * @val: pointer to 32bit integer for storing the register value
285  *
286  * This function allows reading of the 32bit scratchpad register on
287  * the primary (internal) side.  This allows the local system to read data
288  * written and mirrored to the scratchpad register by the remote system.
289  *
290  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
291  */
292 int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
293 {
294         if (idx >= ndev->limits.max_spads)
295                 return -EINVAL;
296
297         *val = readl(ndev->reg_ofs.spad_write + idx * 4);
298         dev_dbg(&ndev->pdev->dev,
299                 "Reading %x from local scratch pad index %d\n", *val, idx);
300
301         return 0;
302 }
303
304 /**
305  * ntb_write_remote_spad() - write to the secondary scratchpad register
306  * @ndev: pointer to ntb_device instance
307  * @idx: index to the scratchpad register, 0 based
308  * @val: the data value to put into the register
309  *
310  * This function allows writing of a 32bit value to the indexed scratchpad
311  * register. The register resides on the secondary (external) side.  This allows
312  * the local system to write data to be mirrored to the remote systems
313  * scratchpad register.
314  *
315  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
316  */
317 int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
318 {
319         if (idx >= ndev->limits.max_spads)
320                 return -EINVAL;
321
322         dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n",
323                 val, idx);
324         writel(val, ndev->reg_ofs.spad_write + idx * 4);
325
326         return 0;
327 }
328
329 /**
330  * ntb_read_remote_spad() - read from the primary scratchpad register
331  * @ndev: pointer to ntb_device instance
332  * @idx: index to scratchpad register, 0 based
333  * @val: pointer to 32bit integer for storing the register value
334  *
335  * This function allows reading of the 32bit scratchpad register on
336  * the primary (internal) side.  This alloows the local system to read the data
337  * it wrote to be mirrored on the remote system.
338  *
339  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
340  */
341 int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
342 {
343         if (idx >= ndev->limits.max_spads)
344                 return -EINVAL;
345
346         *val = readl(ndev->reg_ofs.spad_read + idx * 4);
347         dev_dbg(&ndev->pdev->dev,
348                 "Reading %x from remote scratch pad index %d\n", *val, idx);
349
350         return 0;
351 }
352
353 /**
354  * ntb_get_mw_base() - get addr for the NTB memory window
355  * @ndev: pointer to ntb_device instance
356  * @mw: memory window number
357  *
358  * This function provides the base address of the memory window specified.
359  *
360  * RETURNS: address, or NULL on error.
361  */
362 resource_size_t ntb_get_mw_base(struct ntb_device *ndev, unsigned int mw)
363 {
364         if (mw >= ntb_max_mw(ndev))
365                 return 0;
366
367         return pci_resource_start(ndev->pdev, MW_TO_BAR(mw));
368 }
369
370 /**
371  * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
372  * @ndev: pointer to ntb_device instance
373  * @mw: memory window number
374  *
375  * This function provides the base virtual address of the memory window
376  * specified.
377  *
378  * RETURNS: pointer to virtual address, or NULL on error.
379  */
380 void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw)
381 {
382         if (mw >= ntb_max_mw(ndev))
383                 return NULL;
384
385         return ndev->mw[mw].vbase;
386 }
387
388 /**
389  * ntb_get_mw_size() - return size of NTB memory window
390  * @ndev: pointer to ntb_device instance
391  * @mw: memory window number
392  *
393  * This function provides the physical size of the memory window specified
394  *
395  * RETURNS: the size of the memory window or zero on error
396  */
397 u64 ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw)
398 {
399         if (mw >= ntb_max_mw(ndev))
400                 return 0;
401
402         return ndev->mw[mw].bar_sz;
403 }
404
405 /**
406  * ntb_set_mw_addr - set the memory window address
407  * @ndev: pointer to ntb_device instance
408  * @mw: memory window number
409  * @addr: base address for data
410  *
411  * This function sets the base physical address of the memory window.  This
412  * memory address is where data from the remote system will be transfered into
413  * or out of depending on how the transport is configured.
414  */
415 void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr)
416 {
417         if (mw >= ntb_max_mw(ndev))
418                 return;
419
420         dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr,
421                 MW_TO_BAR(mw));
422
423         ndev->mw[mw].phys_addr = addr;
424
425         switch (MW_TO_BAR(mw)) {
426         case NTB_BAR_23:
427                 writeq(addr, ndev->reg_ofs.bar2_xlat);
428                 break;
429         case NTB_BAR_45:
430                 writeq(addr, ndev->reg_ofs.bar4_xlat);
431                 break;
432         }
433 }
434
435 /**
436  * ntb_ring_doorbell() - Set the doorbell on the secondary/external side
437  * @ndev: pointer to ntb_device instance
438  * @db: doorbell to ring
439  *
440  * This function allows triggering of a doorbell on the secondary/external
441  * side that will initiate an interrupt on the remote host
442  *
443  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
444  */
445 void ntb_ring_doorbell(struct ntb_device *ndev, unsigned int db)
446 {
447         dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db);
448
449         if (ndev->hw_type == BWD_HW)
450                 writeq((u64) 1 << db, ndev->reg_ofs.rdb);
451         else
452                 writew(((1 << ndev->bits_per_vector) - 1) <<
453                        (db * ndev->bits_per_vector), ndev->reg_ofs.rdb);
454 }
455
456 static void bwd_recover_link(struct ntb_device *ndev)
457 {
458         u32 status;
459
460         /* Driver resets the NTB ModPhy lanes - magic! */
461         writeb(0xe0, ndev->reg_base + BWD_MODPHY_PCSREG6);
462         writeb(0x40, ndev->reg_base + BWD_MODPHY_PCSREG4);
463         writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG4);
464         writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG6);
465
466         /* Driver waits 100ms to allow the NTB ModPhy to settle */
467         msleep(100);
468
469         /* Clear AER Errors, write to clear */
470         status = readl(ndev->reg_base + BWD_ERRCORSTS_OFFSET);
471         dev_dbg(&ndev->pdev->dev, "ERRCORSTS = %x\n", status);
472         status &= PCI_ERR_COR_REP_ROLL;
473         writel(status, ndev->reg_base + BWD_ERRCORSTS_OFFSET);
474
475         /* Clear unexpected electrical idle event in LTSSM, write to clear */
476         status = readl(ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
477         dev_dbg(&ndev->pdev->dev, "LTSSMERRSTS0 = %x\n", status);
478         status |= BWD_LTSSMERRSTS0_UNEXPECTEDEI;
479         writel(status, ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
480
481         /* Clear DeSkew Buffer error, write to clear */
482         status = readl(ndev->reg_base + BWD_DESKEWSTS_OFFSET);
483         dev_dbg(&ndev->pdev->dev, "DESKEWSTS = %x\n", status);
484         status |= BWD_DESKEWSTS_DBERR;
485         writel(status, ndev->reg_base + BWD_DESKEWSTS_OFFSET);
486
487         status = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
488         dev_dbg(&ndev->pdev->dev, "IBSTERRRCRVSTS0 = %x\n", status);
489         status &= BWD_IBIST_ERR_OFLOW;
490         writel(status, ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
491
492         /* Releases the NTB state machine to allow the link to retrain */
493         status = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
494         dev_dbg(&ndev->pdev->dev, "LTSSMSTATEJMP = %x\n", status);
495         status &= ~BWD_LTSSMSTATEJMP_FORCEDETECT;
496         writel(status, ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
497 }
498
499 static void ntb_link_event(struct ntb_device *ndev, int link_state)
500 {
501         unsigned int event;
502
503         if (ndev->link_status == link_state)
504                 return;
505
506         if (link_state == NTB_LINK_UP) {
507                 u16 status;
508
509                 dev_info(&ndev->pdev->dev, "Link Up\n");
510                 ndev->link_status = NTB_LINK_UP;
511                 event = NTB_EVENT_HW_LINK_UP;
512
513                 if (ndev->hw_type == BWD_HW ||
514                     ndev->conn_type == NTB_CONN_TRANSPARENT)
515                         status = readw(ndev->reg_ofs.lnk_stat);
516                 else {
517                         int rc = pci_read_config_word(ndev->pdev,
518                                                       SNB_LINK_STATUS_OFFSET,
519                                                       &status);
520                         if (rc)
521                                 return;
522                 }
523
524                 ndev->link_width = (status & NTB_LINK_WIDTH_MASK) >> 4;
525                 ndev->link_speed = (status & NTB_LINK_SPEED_MASK);
526                 dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n",
527                          ndev->link_width, ndev->link_speed);
528         } else {
529                 dev_info(&ndev->pdev->dev, "Link Down\n");
530                 ndev->link_status = NTB_LINK_DOWN;
531                 event = NTB_EVENT_HW_LINK_DOWN;
532                 /* Don't modify link width/speed, we need it in link recovery */
533         }
534
535         /* notify the upper layer if we have an event change */
536         if (ndev->event_cb)
537                 ndev->event_cb(ndev->ntb_transport, event);
538 }
539
540 static int ntb_link_status(struct ntb_device *ndev)
541 {
542         int link_state;
543
544         if (ndev->hw_type == BWD_HW) {
545                 u32 ntb_cntl;
546
547                 ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
548                 if (ntb_cntl & BWD_CNTL_LINK_DOWN)
549                         link_state = NTB_LINK_DOWN;
550                 else
551                         link_state = NTB_LINK_UP;
552         } else {
553                 u16 status;
554                 int rc;
555
556                 rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET,
557                                           &status);
558                 if (rc)
559                         return rc;
560
561                 if (status & NTB_LINK_STATUS_ACTIVE)
562                         link_state = NTB_LINK_UP;
563                 else
564                         link_state = NTB_LINK_DOWN;
565         }
566
567         ntb_link_event(ndev, link_state);
568
569         return 0;
570 }
571
572 static void bwd_link_recovery(struct work_struct *work)
573 {
574         struct ntb_device *ndev = container_of(work, struct ntb_device,
575                                                lr_timer.work);
576         u32 status32;
577
578         bwd_recover_link(ndev);
579         /* There is a potential race between the 2 NTB devices recovering at the
580          * same time.  If the times are the same, the link will not recover and
581          * the driver will be stuck in this loop forever.  Add a random interval
582          * to the recovery time to prevent this race.
583          */
584         msleep(BWD_LINK_RECOVERY_TIME + prandom_u32() % BWD_LINK_RECOVERY_TIME);
585
586         status32 = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
587         if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT)
588                 goto retry;
589
590         status32 = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
591         if (status32 & BWD_IBIST_ERR_OFLOW)
592                 goto retry;
593
594         status32 = readl(ndev->reg_ofs.lnk_cntl);
595         if (!(status32 & BWD_CNTL_LINK_DOWN)) {
596                 unsigned char speed, width;
597                 u16 status16;
598
599                 status16 = readw(ndev->reg_ofs.lnk_stat);
600                 width = (status16 & NTB_LINK_WIDTH_MASK) >> 4;
601                 speed = (status16 & NTB_LINK_SPEED_MASK);
602                 if (ndev->link_width != width || ndev->link_speed != speed)
603                         goto retry;
604         }
605
606         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
607         return;
608
609 retry:
610         schedule_delayed_work(&ndev->lr_timer, NTB_HB_TIMEOUT);
611 }
612
613 /* BWD doesn't have link status interrupt, poll on that platform */
614 static void bwd_link_poll(struct work_struct *work)
615 {
616         struct ntb_device *ndev = container_of(work, struct ntb_device,
617                                                hb_timer.work);
618         unsigned long ts = jiffies;
619
620         /* If we haven't gotten an interrupt in a while, check the BWD link
621          * status bit
622          */
623         if (ts > ndev->last_ts + NTB_HB_TIMEOUT) {
624                 int rc = ntb_link_status(ndev);
625                 if (rc)
626                         dev_err(&ndev->pdev->dev,
627                                 "Error determining link status\n");
628
629                 /* Check to see if a link error is the cause of the link down */
630                 if (ndev->link_status == NTB_LINK_DOWN) {
631                         u32 status32 = readl(ndev->reg_base +
632                                              BWD_LTSSMSTATEJMP_OFFSET);
633                         if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT) {
634                                 schedule_delayed_work(&ndev->lr_timer, 0);
635                                 return;
636                         }
637                 }
638         }
639
640         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
641 }
642
643 static int ntb_xeon_setup(struct ntb_device *ndev)
644 {
645         int rc;
646         u8 val;
647
648         ndev->hw_type = SNB_HW;
649
650         rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val);
651         if (rc)
652                 return rc;
653
654         if (val & SNB_PPD_DEV_TYPE)
655                 ndev->dev_type = NTB_DEV_USD;
656         else
657                 ndev->dev_type = NTB_DEV_DSD;
658
659         switch (val & SNB_PPD_CONN_TYPE) {
660         case NTB_CONN_B2B:
661                 dev_info(&ndev->pdev->dev, "Conn Type = B2B\n");
662                 ndev->conn_type = NTB_CONN_B2B;
663                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
664                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
665                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
666                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
667                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
668                 ndev->limits.max_spads = SNB_MAX_B2B_SPADS;
669
670                 /* There is a Xeon hardware errata related to writes to
671                  * SDOORBELL or B2BDOORBELL in conjunction with inbound access
672                  * to NTB MMIO Space, which may hang the system.  To workaround
673                  * this use the second memory window to access the interrupt and
674                  * scratch pad registers on the remote system.
675                  */
676                 if (xeon_errata_workaround) {
677                         if (!ndev->mw[1].bar_sz)
678                                 return -EINVAL;
679
680                         ndev->limits.max_mw = SNB_ERRATA_MAX_MW;
681                         ndev->reg_ofs.spad_write = ndev->mw[1].vbase +
682                                                    SNB_SPAD_OFFSET;
683                         ndev->reg_ofs.rdb = ndev->mw[1].vbase +
684                                             SNB_PDOORBELL_OFFSET;
685
686                         /* Set the Limit register to 4k, the minimum size, to
687                          * prevent an illegal access
688                          */
689                         writeq(ndev->mw[1].bar_sz + 0x1000, ndev->reg_base +
690                                SNB_PBAR4LMT_OFFSET);
691                 } else {
692                         ndev->limits.max_mw = SNB_MAX_MW;
693                         ndev->reg_ofs.spad_write = ndev->reg_base +
694                                                    SNB_B2B_SPAD_OFFSET;
695                         ndev->reg_ofs.rdb = ndev->reg_base +
696                                             SNB_B2B_DOORBELL_OFFSET;
697
698                         /* Disable the Limit register, just incase it is set to
699                          * something silly
700                          */
701                         writeq(0, ndev->reg_base + SNB_PBAR4LMT_OFFSET);
702                 }
703
704                 /* The Xeon errata workaround requires setting SBAR Base
705                  * addresses to known values, so that the PBAR XLAT can be
706                  * pointed at SBAR0 of the remote system.
707                  */
708                 if (ndev->dev_type == NTB_DEV_USD) {
709                         writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
710                                SNB_PBAR2XLAT_OFFSET);
711                         if (xeon_errata_workaround)
712                                 writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
713                                        SNB_PBAR4XLAT_OFFSET);
714                         else {
715                                 writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
716                                        SNB_PBAR4XLAT_OFFSET);
717                                 /* B2B_XLAT_OFFSET is a 64bit register, but can
718                                  * only take 32bit writes
719                                  */
720                                 writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
721                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
722                                 writel(SNB_MBAR01_DSD_ADDR >> 32,
723                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
724                         }
725
726                         writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
727                                SNB_SBAR0BASE_OFFSET);
728                         writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
729                                SNB_SBAR2BASE_OFFSET);
730                         writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
731                                SNB_SBAR4BASE_OFFSET);
732                 } else {
733                         writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
734                                SNB_PBAR2XLAT_OFFSET);
735                         if (xeon_errata_workaround)
736                                 writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
737                                        SNB_PBAR4XLAT_OFFSET);
738                         else {
739                                 writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
740                                        SNB_PBAR4XLAT_OFFSET);
741                                 /* B2B_XLAT_OFFSET is a 64bit register, but can
742                                  * only take 32bit writes
743                                  */
744                                 writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
745                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
746                                 writel(SNB_MBAR01_USD_ADDR >> 32,
747                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
748                         }
749                         writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
750                                SNB_SBAR0BASE_OFFSET);
751                         writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
752                                SNB_SBAR2BASE_OFFSET);
753                         writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
754                                SNB_SBAR4BASE_OFFSET);
755                 }
756                 break;
757         case NTB_CONN_RP:
758                 dev_info(&ndev->pdev->dev, "Conn Type = RP\n");
759                 ndev->conn_type = NTB_CONN_RP;
760
761                 if (xeon_errata_workaround) {
762                         dev_err(&ndev->pdev->dev, 
763                                 "NTB-RP disabled due to hardware errata.  To disregard this warning and potentially lock-up the system, add the parameter 'xeon_errata_workaround=0'.\n");
764                         return -EINVAL;
765                 }
766
767                 /* Scratch pads need to have exclusive access from the primary
768                  * or secondary side.  Halve the num spads so that each side can
769                  * have an equal amount.
770                  */
771                 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
772                 /* Note: The SDOORBELL is the cause of the errata.  You REALLY
773                  * don't want to touch it.
774                  */
775                 ndev->reg_ofs.rdb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
776                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
777                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
778                 /* Offset the start of the spads to correspond to whether it is
779                  * primary or secondary
780                  */
781                 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET +
782                                            ndev->limits.max_spads * 4;
783                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
784                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
785                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
786                 ndev->limits.max_mw = SNB_MAX_MW;
787                 break;
788         case NTB_CONN_TRANSPARENT:
789                 dev_info(&ndev->pdev->dev, "Conn Type = TRANSPARENT\n");
790                 ndev->conn_type = NTB_CONN_TRANSPARENT;
791                 /* Scratch pads need to have exclusive access from the primary
792                  * or secondary side.  Halve the num spads so that each side can
793                  * have an equal amount.
794                  */
795                 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
796                 ndev->reg_ofs.rdb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
797                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
798                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_SDBMSK_OFFSET;
799                 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET;
800                 /* Offset the start of the spads to correspond to whether it is
801                  * primary or secondary
802                  */
803                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET +
804                                           ndev->limits.max_spads * 4;
805                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_PBAR2XLAT_OFFSET;
806                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_PBAR4XLAT_OFFSET;
807
808                 ndev->limits.max_mw = SNB_MAX_MW;
809                 break;
810         default:
811                 /* Most likely caused by the remote NTB-RP device not being
812                  * configured
813                  */
814                 dev_err(&ndev->pdev->dev, "Unknown PPD %x\n", val);
815                 return -EINVAL;
816         }
817
818         ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET;
819         ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_SLINK_STATUS_OFFSET;
820         ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET;
821
822         ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
823         ndev->limits.msix_cnt = SNB_MSIX_CNT;
824         ndev->bits_per_vector = SNB_DB_BITS_PER_VEC;
825
826         return 0;
827 }
828
829 static int ntb_bwd_setup(struct ntb_device *ndev)
830 {
831         int rc;
832         u32 val;
833
834         ndev->hw_type = BWD_HW;
835
836         rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val);
837         if (rc)
838                 return rc;
839
840         switch ((val & BWD_PPD_CONN_TYPE) >> 8) {
841         case NTB_CONN_B2B:
842                 ndev->conn_type = NTB_CONN_B2B;
843                 break;
844         case NTB_CONN_RP:
845         default:
846                 dev_err(&ndev->pdev->dev, "Unsupported NTB configuration\n");
847                 return -EINVAL;
848         }
849
850         if (val & BWD_PPD_DEV_TYPE)
851                 ndev->dev_type = NTB_DEV_DSD;
852         else
853                 ndev->dev_type = NTB_DEV_USD;
854
855         /* Initiate PCI-E link training */
856         rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET,
857                                     val | BWD_PPD_INIT_LINK);
858         if (rc)
859                 return rc;
860
861         ndev->reg_ofs.ldb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
862         ndev->reg_ofs.ldb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET;
863         ndev->reg_ofs.rdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET;
864         ndev->reg_ofs.bar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET;
865         ndev->reg_ofs.bar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET;
866         ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET;
867         ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET;
868         ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET;
869         ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET;
870         ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET;
871         ndev->limits.max_mw = BWD_MAX_MW;
872         ndev->limits.max_spads = BWD_MAX_SPADS;
873         ndev->limits.max_db_bits = BWD_MAX_DB_BITS;
874         ndev->limits.msix_cnt = BWD_MSIX_CNT;
875         ndev->bits_per_vector = BWD_DB_BITS_PER_VEC;
876
877         /* Since bwd doesn't have a link interrupt, setup a poll timer */
878         INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll);
879         INIT_DELAYED_WORK(&ndev->lr_timer, bwd_link_recovery);
880         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
881
882         return 0;
883 }
884
885 static int ntb_device_setup(struct ntb_device *ndev)
886 {
887         int rc;
888
889         switch (ndev->pdev->device) {
890         case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
891         case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
892         case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
893         case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
894         case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
895         case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
896         case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
897         case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
898         case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
899         case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
900         case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
901         case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
902                 rc = ntb_xeon_setup(ndev);
903                 break;
904         case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
905                 rc = ntb_bwd_setup(ndev);
906                 break;
907         default:
908                 rc = -ENODEV;
909         }
910
911         if (rc)
912                 return rc;
913
914         dev_info(&ndev->pdev->dev, "Device Type = %s\n",
915                  ndev->dev_type == NTB_DEV_USD ? "USD/DSP" : "DSD/USP");
916
917         if (ndev->conn_type == NTB_CONN_B2B)
918                 /* Enable Bus Master and Memory Space on the secondary side */
919                 writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
920                        ndev->reg_ofs.spci_cmd);
921
922         return 0;
923 }
924
925 static void ntb_device_free(struct ntb_device *ndev)
926 {
927         if (ndev->hw_type == BWD_HW) {
928                 cancel_delayed_work_sync(&ndev->hb_timer);
929                 cancel_delayed_work_sync(&ndev->lr_timer);
930         }
931 }
932
933 static irqreturn_t bwd_callback_msix_irq(int irq, void *data)
934 {
935         struct ntb_db_cb *db_cb = data;
936         struct ntb_device *ndev = db_cb->ndev;
937
938         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
939                 db_cb->db_num);
940
941         if (db_cb->callback)
942                 db_cb->callback(db_cb->data, db_cb->db_num);
943
944         /* No need to check for the specific HB irq, any interrupt means
945          * we're connected.
946          */
947         ndev->last_ts = jiffies;
948
949         writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.ldb);
950
951         return IRQ_HANDLED;
952 }
953
954 static irqreturn_t xeon_callback_msix_irq(int irq, void *data)
955 {
956         struct ntb_db_cb *db_cb = data;
957         struct ntb_device *ndev = db_cb->ndev;
958
959         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
960                 db_cb->db_num);
961
962         if (db_cb->callback)
963                 db_cb->callback(db_cb->data, db_cb->db_num);
964
965         /* On Sandybridge, there are 16 bits in the interrupt register
966          * but only 4 vectors.  So, 5 bits are assigned to the first 3
967          * vectors, with the 4th having a single bit for link
968          * interrupts.
969          */
970         writew(((1 << ndev->bits_per_vector) - 1) <<
971                (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.ldb);
972
973         return IRQ_HANDLED;
974 }
975
976 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
977 static irqreturn_t xeon_event_msix_irq(int irq, void *dev)
978 {
979         struct ntb_device *ndev = dev;
980         int rc;
981
982         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq);
983
984         rc = ntb_link_status(ndev);
985         if (rc)
986                 dev_err(&ndev->pdev->dev, "Error determining link status\n");
987
988         /* bit 15 is always the link bit */
989         writew(1 << ndev->limits.max_db_bits, ndev->reg_ofs.ldb);
990
991         return IRQ_HANDLED;
992 }
993
994 static irqreturn_t ntb_interrupt(int irq, void *dev)
995 {
996         struct ntb_device *ndev = dev;
997         unsigned int i = 0;
998
999         if (ndev->hw_type == BWD_HW) {
1000                 u64 ldb = readq(ndev->reg_ofs.ldb);
1001
1002                 dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %Lx\n", irq, ldb);
1003
1004                 while (ldb) {
1005                         i = __ffs(ldb);
1006                         ldb &= ldb - 1;
1007                         bwd_callback_msix_irq(irq, &ndev->db_cb[i]);
1008                 }
1009         } else {
1010                 u16 ldb = readw(ndev->reg_ofs.ldb);
1011
1012                 dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %x\n", irq, ldb);
1013
1014                 if (ldb & SNB_DB_HW_LINK) {
1015                         xeon_event_msix_irq(irq, dev);
1016                         ldb &= ~SNB_DB_HW_LINK;
1017                 }
1018
1019                 while (ldb) {
1020                         i = __ffs(ldb);
1021                         ldb &= ldb - 1;
1022                         xeon_callback_msix_irq(irq, &ndev->db_cb[i]);
1023                 }
1024         }
1025
1026         return IRQ_HANDLED;
1027 }
1028
1029 static int ntb_setup_msix(struct ntb_device *ndev)
1030 {
1031         struct pci_dev *pdev = ndev->pdev;
1032         struct msix_entry *msix;
1033         int msix_entries;
1034         int rc, i;
1035         u16 val;
1036
1037         if (!pdev->msix_cap) {
1038                 rc = -EIO;
1039                 goto err;
1040         }
1041
1042         rc = pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &val);
1043         if (rc)
1044                 goto err;
1045
1046         msix_entries = msix_table_size(val);
1047         if (msix_entries > ndev->limits.msix_cnt) {
1048                 rc = -EINVAL;
1049                 goto err;
1050         }
1051
1052         ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries,
1053                                      GFP_KERNEL);
1054         if (!ndev->msix_entries) {
1055                 rc = -ENOMEM;
1056                 goto err;
1057         }
1058
1059         for (i = 0; i < msix_entries; i++)
1060                 ndev->msix_entries[i].entry = i;
1061
1062         rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries);
1063         if (rc < 0)
1064                 goto err1;
1065         if (rc > 0) {
1066                 /* On SNB, the link interrupt is always tied to 4th vector.  If
1067                  * we can't get all 4, then we can't use MSI-X.
1068                  */
1069                 if (ndev->hw_type != BWD_HW) {
1070                         rc = -EIO;
1071                         goto err1;
1072                 }
1073
1074                 dev_warn(&pdev->dev,
1075                          "Only %d MSI-X vectors.  Limiting the number of queues to that number.\n",
1076                          rc);
1077                 msix_entries = rc;
1078         }
1079
1080         for (i = 0; i < msix_entries; i++) {
1081                 msix = &ndev->msix_entries[i];
1082                 WARN_ON(!msix->vector);
1083
1084                 /* Use the last MSI-X vector for Link status */
1085                 if (ndev->hw_type == BWD_HW) {
1086                         rc = request_irq(msix->vector, bwd_callback_msix_irq, 0,
1087                                          "ntb-callback-msix", &ndev->db_cb[i]);
1088                         if (rc)
1089                                 goto err2;
1090                 } else {
1091                         if (i == msix_entries - 1) {
1092                                 rc = request_irq(msix->vector,
1093                                                  xeon_event_msix_irq, 0,
1094                                                  "ntb-event-msix", ndev);
1095                                 if (rc)
1096                                         goto err2;
1097                         } else {
1098                                 rc = request_irq(msix->vector,
1099                                                  xeon_callback_msix_irq, 0,
1100                                                  "ntb-callback-msix",
1101                                                  &ndev->db_cb[i]);
1102                                 if (rc)
1103                                         goto err2;
1104                         }
1105                 }
1106         }
1107
1108         ndev->num_msix = msix_entries;
1109         if (ndev->hw_type == BWD_HW)
1110                 ndev->max_cbs = msix_entries;
1111         else
1112                 ndev->max_cbs = msix_entries - 1;
1113
1114         return 0;
1115
1116 err2:
1117         while (--i >= 0) {
1118                 msix = &ndev->msix_entries[i];
1119                 if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1120                         free_irq(msix->vector, ndev);
1121                 else
1122                         free_irq(msix->vector, &ndev->db_cb[i]);
1123         }
1124         pci_disable_msix(pdev);
1125 err1:
1126         kfree(ndev->msix_entries);
1127         dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n");
1128 err:
1129         ndev->num_msix = 0;
1130         return rc;
1131 }
1132
1133 static int ntb_setup_msi(struct ntb_device *ndev)
1134 {
1135         struct pci_dev *pdev = ndev->pdev;
1136         int rc;
1137
1138         rc = pci_enable_msi(pdev);
1139         if (rc)
1140                 return rc;
1141
1142         rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev);
1143         if (rc) {
1144                 pci_disable_msi(pdev);
1145                 dev_err(&pdev->dev, "Error allocating MSI interrupt\n");
1146                 return rc;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static int ntb_setup_intx(struct ntb_device *ndev)
1153 {
1154         struct pci_dev *pdev = ndev->pdev;
1155         int rc;
1156
1157         pci_msi_off(pdev);
1158
1159         /* Verify intx is enabled */
1160         pci_intx(pdev, 1);
1161
1162         rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx",
1163                          ndev);
1164         if (rc)
1165                 return rc;
1166
1167         return 0;
1168 }
1169
1170 static int ntb_setup_interrupts(struct ntb_device *ndev)
1171 {
1172         int rc;
1173
1174         /* On BWD, disable all interrupts.  On SNB, disable all but Link
1175          * Interrupt.  The rest will be unmasked as callbacks are registered.
1176          */
1177         if (ndev->hw_type == BWD_HW)
1178                 writeq(~0, ndev->reg_ofs.ldb_mask);
1179         else
1180                 writew(~(1 << ndev->limits.max_db_bits),
1181                        ndev->reg_ofs.ldb_mask);
1182
1183         rc = ntb_setup_msix(ndev);
1184         if (!rc)
1185                 goto done;
1186
1187         ndev->bits_per_vector = 1;
1188         ndev->max_cbs = ndev->limits.max_db_bits;
1189
1190         rc = ntb_setup_msi(ndev);
1191         if (!rc)
1192                 goto done;
1193
1194         rc = ntb_setup_intx(ndev);
1195         if (rc) {
1196                 dev_err(&ndev->pdev->dev, "no usable interrupts\n");
1197                 return rc;
1198         }
1199
1200 done:
1201         return 0;
1202 }
1203
1204 static void ntb_free_interrupts(struct ntb_device *ndev)
1205 {
1206         struct pci_dev *pdev = ndev->pdev;
1207
1208         /* mask interrupts */
1209         if (ndev->hw_type == BWD_HW)
1210                 writeq(~0, ndev->reg_ofs.ldb_mask);
1211         else
1212                 writew(~0, ndev->reg_ofs.ldb_mask);
1213
1214         if (ndev->num_msix) {
1215                 struct msix_entry *msix;
1216                 u32 i;
1217
1218                 for (i = 0; i < ndev->num_msix; i++) {
1219                         msix = &ndev->msix_entries[i];
1220                         if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1221                                 free_irq(msix->vector, ndev);
1222                         else
1223                                 free_irq(msix->vector, &ndev->db_cb[i]);
1224                 }
1225                 pci_disable_msix(pdev);
1226         } else {
1227                 free_irq(pdev->irq, ndev);
1228
1229                 if (pci_dev_msi_enabled(pdev))
1230                         pci_disable_msi(pdev);
1231         }
1232 }
1233
1234 static int ntb_create_callbacks(struct ntb_device *ndev)
1235 {
1236         int i;
1237
1238         /* Chicken-egg issue.  We won't know how many callbacks are necessary
1239          * until we see how many MSI-X vectors we get, but these pointers need
1240          * to be passed into the MSI-X register function.  So, we allocate the
1241          * max, knowing that they might not all be used, to work around this.
1242          */
1243         ndev->db_cb = kcalloc(ndev->limits.max_db_bits,
1244                               sizeof(struct ntb_db_cb),
1245                               GFP_KERNEL);
1246         if (!ndev->db_cb)
1247                 return -ENOMEM;
1248
1249         for (i = 0; i < ndev->limits.max_db_bits; i++) {
1250                 ndev->db_cb[i].db_num = i;
1251                 ndev->db_cb[i].ndev = ndev;
1252         }
1253
1254         return 0;
1255 }
1256
1257 static void ntb_free_callbacks(struct ntb_device *ndev)
1258 {
1259         int i;
1260
1261         for (i = 0; i < ndev->limits.max_db_bits; i++)
1262                 ntb_unregister_db_callback(ndev, i);
1263
1264         kfree(ndev->db_cb);
1265 }
1266
1267 static void ntb_setup_debugfs(struct ntb_device *ndev)
1268 {
1269         if (!debugfs_initialized())
1270                 return;
1271
1272         if (!debugfs_dir)
1273                 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1274
1275         ndev->debugfs_dir = debugfs_create_dir(pci_name(ndev->pdev),
1276                                                debugfs_dir);
1277 }
1278
1279 static void ntb_free_debugfs(struct ntb_device *ndev)
1280 {
1281         debugfs_remove_recursive(ndev->debugfs_dir);
1282
1283         if (debugfs_dir && simple_empty(debugfs_dir)) {
1284                 debugfs_remove_recursive(debugfs_dir);
1285                 debugfs_dir = NULL;
1286         }
1287 }
1288
1289 static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1290 {
1291         struct ntb_device *ndev;
1292         int rc, i;
1293
1294         ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL);
1295         if (!ndev)
1296                 return -ENOMEM;
1297
1298         ndev->pdev = pdev;
1299         ndev->link_status = NTB_LINK_DOWN;
1300         pci_set_drvdata(pdev, ndev);
1301         ntb_setup_debugfs(ndev);
1302
1303         rc = pci_enable_device(pdev);
1304         if (rc)
1305                 goto err;
1306
1307         pci_set_master(ndev->pdev);
1308
1309         rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME);
1310         if (rc)
1311                 goto err1;
1312
1313         ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO);
1314         if (!ndev->reg_base) {
1315                 dev_warn(&pdev->dev, "Cannot remap BAR 0\n");
1316                 rc = -EIO;
1317                 goto err2;
1318         }
1319
1320         for (i = 0; i < NTB_MAX_NUM_MW; i++) {
1321                 ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i));
1322                 ndev->mw[i].vbase =
1323                     ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)),
1324                                ndev->mw[i].bar_sz);
1325                 dev_info(&pdev->dev, "MW %d size %llu\n", i,
1326                          (unsigned long long) ndev->mw[i].bar_sz);
1327                 if (!ndev->mw[i].vbase) {
1328                         dev_warn(&pdev->dev, "Cannot remap BAR %d\n",
1329                                  MW_TO_BAR(i));
1330                         rc = -EIO;
1331                         goto err3;
1332                 }
1333         }
1334
1335         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1336         if (rc) {
1337                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1338                 if (rc)
1339                         goto err3;
1340
1341                 dev_warn(&pdev->dev, "Cannot DMA highmem\n");
1342         }
1343
1344         rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1345         if (rc) {
1346                 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1347                 if (rc)
1348                         goto err3;
1349
1350                 dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
1351         }
1352
1353         rc = ntb_device_setup(ndev);
1354         if (rc)
1355                 goto err3;
1356
1357         rc = ntb_create_callbacks(ndev);
1358         if (rc)
1359                 goto err4;
1360
1361         rc = ntb_setup_interrupts(ndev);
1362         if (rc)
1363                 goto err5;
1364
1365         /* The scratchpad registers keep the values between rmmod/insmod,
1366          * blast them now
1367          */
1368         for (i = 0; i < ndev->limits.max_spads; i++) {
1369                 ntb_write_local_spad(ndev, i, 0);
1370                 ntb_write_remote_spad(ndev, i, 0);
1371         }
1372
1373         rc = ntb_transport_init(pdev);
1374         if (rc)
1375                 goto err6;
1376
1377         /* Let's bring the NTB link up */
1378         writel(NTB_CNTL_BAR23_SNOOP | NTB_CNTL_BAR45_SNOOP,
1379                ndev->reg_ofs.lnk_cntl);
1380
1381         return 0;
1382
1383 err6:
1384         ntb_free_interrupts(ndev);
1385 err5:
1386         ntb_free_callbacks(ndev);
1387 err4:
1388         ntb_device_free(ndev);
1389 err3:
1390         for (i--; i >= 0; i--)
1391                 iounmap(ndev->mw[i].vbase);
1392         iounmap(ndev->reg_base);
1393 err2:
1394         pci_release_selected_regions(pdev, NTB_BAR_MASK);
1395 err1:
1396         pci_disable_device(pdev);
1397 err:
1398         ntb_free_debugfs(ndev);
1399         kfree(ndev);
1400
1401         dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME);
1402         return rc;
1403 }
1404
1405 static void ntb_pci_remove(struct pci_dev *pdev)
1406 {
1407         struct ntb_device *ndev = pci_get_drvdata(pdev);
1408         int i;
1409         u32 ntb_cntl;
1410
1411         /* Bring NTB link down */
1412         ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1413         ntb_cntl |= NTB_CNTL_LINK_DISABLE;
1414         writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1415
1416         ntb_transport_free(ndev->ntb_transport);
1417
1418         ntb_free_interrupts(ndev);
1419         ntb_free_callbacks(ndev);
1420         ntb_device_free(ndev);
1421
1422         for (i = 0; i < NTB_MAX_NUM_MW; i++)
1423                 iounmap(ndev->mw[i].vbase);
1424
1425         iounmap(ndev->reg_base);
1426         pci_release_selected_regions(pdev, NTB_BAR_MASK);
1427         pci_disable_device(pdev);
1428         ntb_free_debugfs(ndev);
1429         kfree(ndev);
1430 }
1431
1432 static struct pci_driver ntb_pci_driver = {
1433         .name = KBUILD_MODNAME,
1434         .id_table = ntb_pci_tbl,
1435         .probe = ntb_pci_probe,
1436         .remove = ntb_pci_remove,
1437 };
1438 module_pci_driver(ntb_pci_driver);