Merge branch 'clockevents/fixes' of git://git.linaro.org/people/daniel.lezcano/linux...
[linux-drm-fsl-dcu.git] / drivers / net / wireless / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37
38 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
39         {0, 0, 0, 2},
40         {0, 1, 0, 2},
41         {0, 2, 0, 2},
42         {1, 0, 0, 1},
43         {1, 0, 1, 1},
44         {1, 1, 0, 1},
45         {1, 1, 1, 3},
46         {1, 3, 0, 17},
47         {3, 3, 1, 48},
48         {10, 0, 0, 6},
49         {10, 3, 0, 1},
50         {10, 3, 1, 1},
51         {11, 0, 0, 28}
52 };
53
54 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
55                                     u8 *value);
56 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
57                                     u16 *value);
58 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
59                                     u32 *value);
60 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
61                                      u8 value);
62 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
63                                      u16 value);
64 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
65                                      u32 value);
66 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
67                                         u8 *data);
68 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
69                                         u8 data);
70 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
71 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
72                                         u8 *data);
73 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
74                                  u8 word_en, u8 *data);
75 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
76                                         u8 *targetdata);
77 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
78                                        u16 efuse_addr, u8 word_en, u8 *data);
79 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
80                                         u8 pwrstate);
81 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
82 static u8 efuse_calculate_word_cnts(u8 word_en);
83
84 void efuse_initialize(struct ieee80211_hw *hw)
85 {
86         struct rtl_priv *rtlpriv = rtl_priv(hw);
87         u8 bytetemp;
88         u8 temp;
89
90         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
91         temp = bytetemp | 0x20;
92         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
93
94         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
95         temp = bytetemp & 0xFE;
96         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
97
98         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
99         temp = bytetemp | 0x80;
100         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
101
102         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
103
104         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
105
106 }
107
108 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
109 {
110         struct rtl_priv *rtlpriv = rtl_priv(hw);
111         u8 data;
112         u8 bytetemp;
113         u8 temp;
114         u32 k = 0;
115         const u32 efuse_len =
116                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
117
118         if (address < efuse_len) {
119                 temp = address & 0xFF;
120                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
121                                temp);
122                 bytetemp = rtl_read_byte(rtlpriv,
123                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
124                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
125                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
126                                temp);
127
128                 bytetemp = rtl_read_byte(rtlpriv,
129                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130                 temp = bytetemp & 0x7F;
131                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
132                                temp);
133
134                 bytetemp = rtl_read_byte(rtlpriv,
135                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
136                 while (!(bytetemp & 0x80)) {
137                         bytetemp = rtl_read_byte(rtlpriv,
138                                                  rtlpriv->cfg->
139                                                  maps[EFUSE_CTRL] + 3);
140                         k++;
141                         if (k == 1000) {
142                                 k = 0;
143                                 break;
144                         }
145                 }
146                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
147                 return data;
148         } else
149                 return 0xFF;
150
151 }
152 EXPORT_SYMBOL(efuse_read_1byte);
153
154 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
155 {
156         struct rtl_priv *rtlpriv = rtl_priv(hw);
157         u8 bytetemp;
158         u8 temp;
159         u32 k = 0;
160         const u32 efuse_len =
161                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
162
163         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
164                  address, value);
165
166         if (address < efuse_len) {
167                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
168
169                 temp = address & 0xFF;
170                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
171                                temp);
172                 bytetemp = rtl_read_byte(rtlpriv,
173                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
174
175                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
176                 rtl_write_byte(rtlpriv,
177                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
178
179                 bytetemp = rtl_read_byte(rtlpriv,
180                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
181                 temp = bytetemp | 0x80;
182                 rtl_write_byte(rtlpriv,
183                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
184
185                 bytetemp = rtl_read_byte(rtlpriv,
186                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
187
188                 while (bytetemp & 0x80) {
189                         bytetemp = rtl_read_byte(rtlpriv,
190                                                  rtlpriv->cfg->
191                                                  maps[EFUSE_CTRL] + 3);
192                         k++;
193                         if (k == 100) {
194                                 k = 0;
195                                 break;
196                         }
197                 }
198         }
199
200 }
201
202 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
203 {
204         struct rtl_priv *rtlpriv = rtl_priv(hw);
205         u32 value32;
206         u8 readbyte;
207         u16 retry;
208
209         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
210                        (_offset & 0xff));
211         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
212         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
213                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
214
215         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
216         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
217                        (readbyte & 0x7f));
218
219         retry = 0;
220         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
221         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
222                 value32 = rtl_read_dword(rtlpriv,
223                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
224                 retry++;
225         }
226
227         udelay(50);
228         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
229
230         *pbuf = (u8) (value32 & 0xff);
231 }
232 EXPORT_SYMBOL_GPL(read_efuse_byte);
233
234 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
235 {
236         struct rtl_priv *rtlpriv = rtl_priv(hw);
237         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
238         u8 *efuse_tbl;
239         u8 rtemp8[1];
240         u16 efuse_addr = 0;
241         u8 offset, wren;
242         u8 u1temp = 0;
243         u16 i;
244         u16 j;
245         const u16 efuse_max_section =
246                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247         const u32 efuse_len =
248                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249         u16 **efuse_word;
250         u16 efuse_utilized = 0;
251         u8 efuse_usage;
252
253         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255                          "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256                          _offset, _size_byte);
257                 return;
258         }
259
260         /* allocate memory for efuse_tbl and efuse_word */
261         efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262                             sizeof(u8), GFP_ATOMIC);
263         if (!efuse_tbl)
264                 return;
265         efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266         if (!efuse_word)
267                 goto out;
268         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269                 efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270                                         GFP_ATOMIC);
271                 if (!efuse_word[i])
272                         goto done;
273         }
274
275         for (i = 0; i < efuse_max_section; i++)
276                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277                         efuse_word[j][i] = 0xFFFF;
278
279         read_efuse_byte(hw, efuse_addr, rtemp8);
280         if (*rtemp8 != 0xFF) {
281                 efuse_utilized++;
282                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283                         "Addr=%d\n", efuse_addr);
284                 efuse_addr++;
285         }
286
287         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288                 /*  Check PG header for section num.  */
289                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
290                         u1temp = ((*rtemp8 & 0xE0) >> 5);
291                         read_efuse_byte(hw, efuse_addr, rtemp8);
292
293                         if ((*rtemp8 & 0x0F) == 0x0F) {
294                                 efuse_addr++;
295                                 read_efuse_byte(hw, efuse_addr, rtemp8);
296
297                                 if (*rtemp8 != 0xFF &&
298                                     (efuse_addr < efuse_len)) {
299                                         efuse_addr++;
300                                 }
301                                 continue;
302                         } else {
303                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
304                                 wren = (*rtemp8 & 0x0F);
305                                 efuse_addr++;
306                         }
307                 } else {
308                         offset = ((*rtemp8 >> 4) & 0x0f);
309                         wren = (*rtemp8 & 0x0f);
310                 }
311
312                 if (offset < efuse_max_section) {
313                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
314                                 "offset-%d Worden=%x\n", offset, wren);
315
316                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
317                                 if (!(wren & 0x01)) {
318                                         RTPRINT(rtlpriv, FEEPROM,
319                                                 EFUSE_READ_ALL,
320                                                 "Addr=%d\n", efuse_addr);
321
322                                         read_efuse_byte(hw, efuse_addr, rtemp8);
323                                         efuse_addr++;
324                                         efuse_utilized++;
325                                         efuse_word[i][offset] =
326                                                          (*rtemp8 & 0xff);
327
328                                         if (efuse_addr >= efuse_len)
329                                                 break;
330
331                                         RTPRINT(rtlpriv, FEEPROM,
332                                                 EFUSE_READ_ALL,
333                                                 "Addr=%d\n", efuse_addr);
334
335                                         read_efuse_byte(hw, efuse_addr, rtemp8);
336                                         efuse_addr++;
337                                         efuse_utilized++;
338                                         efuse_word[i][offset] |=
339                                             (((u16)*rtemp8 << 8) & 0xff00);
340
341                                         if (efuse_addr >= efuse_len)
342                                                 break;
343                                 }
344
345                                 wren >>= 1;
346                         }
347                 }
348
349                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
350                         "Addr=%d\n", efuse_addr);
351                 read_efuse_byte(hw, efuse_addr, rtemp8);
352                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
353                         efuse_utilized++;
354                         efuse_addr++;
355                 }
356         }
357
358         for (i = 0; i < efuse_max_section; i++) {
359                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
360                         efuse_tbl[(i * 8) + (j * 2)] =
361                             (efuse_word[j][i] & 0xff);
362                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
363                             ((efuse_word[j][i] >> 8) & 0xff);
364                 }
365         }
366
367         for (i = 0; i < _size_byte; i++)
368                 pbuf[i] = efuse_tbl[_offset + i];
369
370         rtlefuse->efuse_usedbytes = efuse_utilized;
371         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
372         rtlefuse->efuse_usedpercentage = efuse_usage;
373         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
374                                       (u8 *)&efuse_utilized);
375         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
376                                       &efuse_usage);
377 done:
378         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
379                 kfree(efuse_word[i]);
380         kfree(efuse_word);
381 out:
382         kfree(efuse_tbl);
383 }
384
385 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
386 {
387         struct rtl_priv *rtlpriv = rtl_priv(hw);
388         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
389         u8 section_idx, i, Base;
390         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
391         bool wordchanged, result = true;
392
393         for (section_idx = 0; section_idx < 16; section_idx++) {
394                 Base = section_idx * 8;
395                 wordchanged = false;
396
397                 for (i = 0; i < 8; i = i + 2) {
398                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
399                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
400                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
401                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
402                                                                    1])) {
403                                 words_need++;
404                                 wordchanged = true;
405                         }
406                 }
407
408                 if (wordchanged)
409                         hdr_num++;
410         }
411
412         totalbytes = hdr_num + words_need * 2;
413         efuse_used = rtlefuse->efuse_usedbytes;
414
415         if ((totalbytes + efuse_used) >=
416             (EFUSE_MAX_SIZE -
417              rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
418                 result = false;
419
420         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
421                  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
422                  totalbytes, hdr_num, words_need, efuse_used);
423
424         return result;
425 }
426
427 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
428                        u16 offset, u32 *value)
429 {
430         if (type == 1)
431                 efuse_shadow_read_1byte(hw, offset, (u8 *) value);
432         else if (type == 2)
433                 efuse_shadow_read_2byte(hw, offset, (u16 *) value);
434         else if (type == 4)
435                 efuse_shadow_read_4byte(hw, offset, value);
436
437 }
438
439 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
440                                 u32 value)
441 {
442         if (type == 1)
443                 efuse_shadow_write_1byte(hw, offset, (u8) value);
444         else if (type == 2)
445                 efuse_shadow_write_2byte(hw, offset, (u16) value);
446         else if (type == 4)
447                 efuse_shadow_write_4byte(hw, offset, value);
448
449 }
450
451 bool efuse_shadow_update(struct ieee80211_hw *hw)
452 {
453         struct rtl_priv *rtlpriv = rtl_priv(hw);
454         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
455         u16 i, offset, base;
456         u8 word_en = 0x0F;
457         u8 first_pg = false;
458
459         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
460
461         if (!efuse_shadow_update_chk(hw)) {
462                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
463                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
464                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
465                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
466
467                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
468                          "<---efuse out of capacity!!\n");
469                 return false;
470         }
471         efuse_power_switch(hw, true, true);
472
473         for (offset = 0; offset < 16; offset++) {
474
475                 word_en = 0x0F;
476                 base = offset * 8;
477
478                 for (i = 0; i < 8; i++) {
479                         if (first_pg) {
480
481                                 word_en &= ~(BIT(i / 2));
482
483                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
484                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
485                         } else {
486
487                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
488                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
489                                         word_en &= ~(BIT(i / 2));
490
491                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
492                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
493                                 }
494                         }
495                 }
496
497                 if (word_en != 0x0F) {
498                         u8 tmpdata[8];
499                         memcpy(tmpdata,
500                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
501                                8);
502                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
503                                       "U-efuse", tmpdata, 8);
504
505                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
506                                                    tmpdata)) {
507                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
508                                          "PG section(%#x) fail!!\n", offset);
509                                 break;
510                         }
511                 }
512
513         }
514
515         efuse_power_switch(hw, true, false);
516         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
517
518         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
519                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
520                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
521
522         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
523         return true;
524 }
525
526 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
527 {
528         struct rtl_priv *rtlpriv = rtl_priv(hw);
529         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
530
531         if (rtlefuse->autoload_failflag)
532                 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
533                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
534         else
535                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
536
537         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
538                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
539                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
540
541 }
542 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
543
544 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
545 {
546         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
547
548         efuse_power_switch(hw, true, true);
549
550         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
551
552         efuse_power_switch(hw, true, false);
553
554 }
555
556 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
557 {
558 }
559
560 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
561                                     u16 offset, u8 *value)
562 {
563         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
564         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
565 }
566
567 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
568                                     u16 offset, u16 *value)
569 {
570         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
571
572         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
573         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
574
575 }
576
577 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
578                                     u16 offset, u32 *value)
579 {
580         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
581
582         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
583         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
584         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
585         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
586 }
587
588 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
589                                      u16 offset, u8 value)
590 {
591         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
592
593         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
594 }
595
596 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
597                                      u16 offset, u16 value)
598 {
599         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
600
601         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
602         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
603
604 }
605
606 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
607                                      u16 offset, u32 value)
608 {
609         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
610
611         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
612             (u8) (value & 0x000000FF);
613         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
614             (u8) ((value >> 8) & 0x0000FF);
615         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
616             (u8) ((value >> 16) & 0x00FF);
617         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
618             (u8) ((value >> 24) & 0xFF);
619
620 }
621
622 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
623 {
624         struct rtl_priv *rtlpriv = rtl_priv(hw);
625         u8 tmpidx = 0;
626         int result;
627
628         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
629                        (u8) (addr & 0xff));
630         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
631                        ((u8) ((addr >> 8) & 0x03)) |
632                        (rtl_read_byte(rtlpriv,
633                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
634                         0xFC));
635
636         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
637
638         while (!(0x80 & rtl_read_byte(rtlpriv,
639                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
640                && (tmpidx < 100)) {
641                 tmpidx++;
642         }
643
644         if (tmpidx < 100) {
645                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
646                 result = true;
647         } else {
648                 *data = 0xff;
649                 result = false;
650         }
651         return result;
652 }
653
654 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
655 {
656         struct rtl_priv *rtlpriv = rtl_priv(hw);
657         u8 tmpidx = 0;
658
659         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
660                  addr, data);
661
662         rtl_write_byte(rtlpriv,
663                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
664         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
665                        (rtl_read_byte(rtlpriv,
666                          rtlpriv->cfg->maps[EFUSE_CTRL] +
667                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
668
669         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
670         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
671
672         while ((0x80 & rtl_read_byte(rtlpriv,
673                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
674                && (tmpidx < 100)) {
675                 tmpidx++;
676         }
677
678         if (tmpidx < 100)
679                 return true;
680
681         return false;
682 }
683
684 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
685 {
686         struct rtl_priv *rtlpriv = rtl_priv(hw);
687         efuse_power_switch(hw, false, true);
688         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
689         efuse_power_switch(hw, false, false);
690 }
691
692 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
693                                 u8 efuse_data, u8 offset, u8 *tmpdata,
694                                 u8 *readstate)
695 {
696         bool dataempty = true;
697         u8 hoffset;
698         u8 tmpidx;
699         u8 hworden;
700         u8 word_cnts;
701
702         hoffset = (efuse_data >> 4) & 0x0F;
703         hworden = efuse_data & 0x0F;
704         word_cnts = efuse_calculate_word_cnts(hworden);
705
706         if (hoffset == offset) {
707                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
708                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
709                             &efuse_data)) {
710                                 tmpdata[tmpidx] = efuse_data;
711                                 if (efuse_data != 0xff)
712                                         dataempty = true;
713                         }
714                 }
715
716                 if (dataempty) {
717                         *readstate = PG_STATE_DATA;
718                 } else {
719                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
720                         *readstate = PG_STATE_HEADER;
721                 }
722
723         } else {
724                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
725                 *readstate = PG_STATE_HEADER;
726         }
727 }
728
729 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
730 {
731         u8 readstate = PG_STATE_HEADER;
732         bool continual = true;
733         u8 efuse_data, word_cnts = 0;
734         u16 efuse_addr = 0;
735         u8 tmpdata[8];
736
737         if (data == NULL)
738                 return false;
739         if (offset > 15)
740                 return false;
741
742         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
743         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
744
745         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
746                 if (readstate & PG_STATE_HEADER) {
747                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
748                             && (efuse_data != 0xFF))
749                                 efuse_read_data_case1(hw, &efuse_addr,
750                                                       efuse_data,
751                                                       offset, tmpdata,
752                                                       &readstate);
753                         else
754                                 continual = false;
755                 } else if (readstate & PG_STATE_DATA) {
756                         efuse_word_enable_data_read(0, tmpdata, data);
757                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
758                         readstate = PG_STATE_HEADER;
759                 }
760
761         }
762
763         if ((data[0] == 0xff) && (data[1] == 0xff) &&
764             (data[2] == 0xff) && (data[3] == 0xff) &&
765             (data[4] == 0xff) && (data[5] == 0xff) &&
766             (data[6] == 0xff) && (data[7] == 0xff))
767                 return false;
768         else
769                 return true;
770
771 }
772
773 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
774                         u8 efuse_data, u8 offset, int *continual,
775                         u8 *write_state, struct pgpkt_struct *target_pkt,
776                         int *repeat_times, int *result, u8 word_en)
777 {
778         struct rtl_priv *rtlpriv = rtl_priv(hw);
779         struct pgpkt_struct tmp_pkt;
780         bool dataempty = true;
781         u8 originaldata[8 * sizeof(u8)];
782         u8 badworden = 0x0F;
783         u8 match_word_en, tmp_word_en;
784         u8 tmpindex;
785         u8 tmp_header = efuse_data;
786         u8 tmp_word_cnts;
787
788         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
789         tmp_pkt.word_en = tmp_header & 0x0F;
790         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
791
792         if (tmp_pkt.offset != target_pkt->offset) {
793                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
794                 *write_state = PG_STATE_HEADER;
795         } else {
796                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
797                         u16 address = *efuse_addr + 1 + tmpindex;
798                         if (efuse_one_byte_read(hw, address,
799                              &efuse_data) && (efuse_data != 0xFF))
800                                 dataempty = false;
801                 }
802
803                 if (!dataempty) {
804                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
805                         *write_state = PG_STATE_HEADER;
806                 } else {
807                         match_word_en = 0x0F;
808                         if (!((target_pkt->word_en & BIT(0)) |
809                              (tmp_pkt.word_en & BIT(0))))
810                                 match_word_en &= (~BIT(0));
811
812                         if (!((target_pkt->word_en & BIT(1)) |
813                              (tmp_pkt.word_en & BIT(1))))
814                                 match_word_en &= (~BIT(1));
815
816                         if (!((target_pkt->word_en & BIT(2)) |
817                              (tmp_pkt.word_en & BIT(2))))
818                                 match_word_en &= (~BIT(2));
819
820                         if (!((target_pkt->word_en & BIT(3)) |
821                              (tmp_pkt.word_en & BIT(3))))
822                                 match_word_en &= (~BIT(3));
823
824                         if ((match_word_en & 0x0F) != 0x0F) {
825                                 badworden = efuse_word_enable_data_write(
826                                                             hw, *efuse_addr + 1,
827                                                             tmp_pkt.word_en,
828                                                             target_pkt->data);
829
830                                 if (0x0F != (badworden & 0x0F)) {
831                                         u8 reorg_offset = offset;
832                                         u8 reorg_worden = badworden;
833                                         efuse_pg_packet_write(hw, reorg_offset,
834                                                                reorg_worden,
835                                                                originaldata);
836                                 }
837
838                                 tmp_word_en = 0x0F;
839                                 if ((target_pkt->word_en & BIT(0)) ^
840                                     (match_word_en & BIT(0)))
841                                         tmp_word_en &= (~BIT(0));
842
843                                 if ((target_pkt->word_en & BIT(1)) ^
844                                     (match_word_en & BIT(1)))
845                                         tmp_word_en &= (~BIT(1));
846
847                                 if ((target_pkt->word_en & BIT(2)) ^
848                                      (match_word_en & BIT(2)))
849                                         tmp_word_en &= (~BIT(2));
850
851                                 if ((target_pkt->word_en & BIT(3)) ^
852                                      (match_word_en & BIT(3)))
853                                         tmp_word_en &= (~BIT(3));
854
855                                 if ((tmp_word_en & 0x0F) != 0x0F) {
856                                         *efuse_addr = efuse_get_current_size(hw);
857                                         target_pkt->offset = offset;
858                                         target_pkt->word_en = tmp_word_en;
859                                 } else {
860                                         *continual = false;
861                                 }
862                                 *write_state = PG_STATE_HEADER;
863                                 *repeat_times += 1;
864                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
865                                         *continual = false;
866                                         *result = false;
867                                 }
868                         } else {
869                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
870                                 target_pkt->offset = offset;
871                                 target_pkt->word_en = word_en;
872                                 *write_state = PG_STATE_HEADER;
873                         }
874                 }
875         }
876         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse PG_STATE_HEADER-1\n");
877 }
878
879 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
880                                    int *continual, u8 *write_state,
881                                    struct pgpkt_struct target_pkt,
882                                    int *repeat_times, int *result)
883 {
884         struct rtl_priv *rtlpriv = rtl_priv(hw);
885         struct pgpkt_struct tmp_pkt;
886         u8 pg_header;
887         u8 tmp_header;
888         u8 originaldata[8 * sizeof(u8)];
889         u8 tmp_word_cnts;
890         u8 badworden = 0x0F;
891
892         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
893         efuse_one_byte_write(hw, *efuse_addr, pg_header);
894         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
895
896         if (tmp_header == pg_header) {
897                 *write_state = PG_STATE_DATA;
898         } else if (tmp_header == 0xFF) {
899                 *write_state = PG_STATE_HEADER;
900                 *repeat_times += 1;
901                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
902                         *continual = false;
903                         *result = false;
904                 }
905         } else {
906                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
907                 tmp_pkt.word_en = tmp_header & 0x0F;
908
909                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
910
911                 memset(originaldata, 0xff, 8 * sizeof(u8));
912
913                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
914                         badworden = efuse_word_enable_data_write(hw,
915                                     *efuse_addr + 1, tmp_pkt.word_en,
916                                     originaldata);
917
918                         if (0x0F != (badworden & 0x0F)) {
919                                 u8 reorg_offset = tmp_pkt.offset;
920                                 u8 reorg_worden = badworden;
921                                 efuse_pg_packet_write(hw, reorg_offset,
922                                                       reorg_worden,
923                                                       originaldata);
924                                 *efuse_addr = efuse_get_current_size(hw);
925                         } else {
926                                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
927                                               + 1;
928                         }
929                 } else {
930                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
931                 }
932
933                 *write_state = PG_STATE_HEADER;
934                 *repeat_times += 1;
935                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
936                         *continual = false;
937                         *result = false;
938                 }
939
940                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
941                         "efuse PG_STATE_HEADER-2\n");
942         }
943 }
944
945 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
946                                  u8 offset, u8 word_en, u8 *data)
947 {
948         struct rtl_priv *rtlpriv = rtl_priv(hw);
949         struct pgpkt_struct target_pkt;
950         u8 write_state = PG_STATE_HEADER;
951         int continual = true, result = true;
952         u16 efuse_addr = 0;
953         u8 efuse_data;
954         u8 target_word_cnts = 0;
955         u8 badworden = 0x0F;
956         static int repeat_times;
957
958         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
959             rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
960                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
961                         "efuse_pg_packet_write error\n");
962                 return false;
963         }
964
965         target_pkt.offset = offset;
966         target_pkt.word_en = word_en;
967
968         memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
969
970         efuse_word_enable_data_read(word_en, data, target_pkt.data);
971         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
972
973         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse Power ON\n");
974
975         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
976                rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
977
978                 if (write_state == PG_STATE_HEADER) {
979                         badworden = 0x0F;
980                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
981                                 "efuse PG_STATE_HEADER\n");
982
983                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
984                             (efuse_data != 0xFF))
985                                 efuse_write_data_case1(hw, &efuse_addr,
986                                                        efuse_data, offset,
987                                                        &continual,
988                                                        &write_state, &target_pkt,
989                                                        &repeat_times, &result,
990                                                        word_en);
991                         else
992                                 efuse_write_data_case2(hw, &efuse_addr,
993                                                        &continual,
994                                                        &write_state,
995                                                        target_pkt,
996                                                        &repeat_times,
997                                                        &result);
998
999                 } else if (write_state == PG_STATE_DATA) {
1000                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001                                 "efuse PG_STATE_DATA\n");
1002                         badworden =
1003                             efuse_word_enable_data_write(hw, efuse_addr + 1,
1004                                                          target_pkt.word_en,
1005                                                          target_pkt.data);
1006
1007                         if ((badworden & 0x0F) == 0x0F) {
1008                                 continual = false;
1009                         } else {
1010                                 efuse_addr += (2 * target_word_cnts) + 1;
1011
1012                                 target_pkt.offset = offset;
1013                                 target_pkt.word_en = badworden;
1014                                 target_word_cnts =
1015                                     efuse_calculate_word_cnts(target_pkt.
1016                                                               word_en);
1017                                 write_state = PG_STATE_HEADER;
1018                                 repeat_times++;
1019                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1020                                         continual = false;
1021                                         result = false;
1022                                 }
1023                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1024                                         "efuse PG_STATE_HEADER-3\n");
1025                         }
1026                 }
1027         }
1028
1029         if (efuse_addr >= (EFUSE_MAX_SIZE -
1030             rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1031                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1032                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1033         }
1034
1035         return true;
1036 }
1037
1038 static void efuse_word_enable_data_read(u8 word_en,
1039                                         u8 *sourdata, u8 *targetdata)
1040 {
1041         if (!(word_en & BIT(0))) {
1042                 targetdata[0] = sourdata[0];
1043                 targetdata[1] = sourdata[1];
1044         }
1045
1046         if (!(word_en & BIT(1))) {
1047                 targetdata[2] = sourdata[2];
1048                 targetdata[3] = sourdata[3];
1049         }
1050
1051         if (!(word_en & BIT(2))) {
1052                 targetdata[4] = sourdata[4];
1053                 targetdata[5] = sourdata[5];
1054         }
1055
1056         if (!(word_en & BIT(3))) {
1057                 targetdata[6] = sourdata[6];
1058                 targetdata[7] = sourdata[7];
1059         }
1060 }
1061
1062 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1063                                        u16 efuse_addr, u8 word_en, u8 *data)
1064 {
1065         struct rtl_priv *rtlpriv = rtl_priv(hw);
1066         u16 tmpaddr;
1067         u16 start_addr = efuse_addr;
1068         u8 badworden = 0x0F;
1069         u8 tmpdata[8];
1070
1071         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1072         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
1073                  word_en, efuse_addr);
1074
1075         if (!(word_en & BIT(0))) {
1076                 tmpaddr = start_addr;
1077                 efuse_one_byte_write(hw, start_addr++, data[0]);
1078                 efuse_one_byte_write(hw, start_addr++, data[1]);
1079
1080                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1081                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1082                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1083                         badworden &= (~BIT(0));
1084         }
1085
1086         if (!(word_en & BIT(1))) {
1087                 tmpaddr = start_addr;
1088                 efuse_one_byte_write(hw, start_addr++, data[2]);
1089                 efuse_one_byte_write(hw, start_addr++, data[3]);
1090
1091                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1092                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1093                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1094                         badworden &= (~BIT(1));
1095         }
1096
1097         if (!(word_en & BIT(2))) {
1098                 tmpaddr = start_addr;
1099                 efuse_one_byte_write(hw, start_addr++, data[4]);
1100                 efuse_one_byte_write(hw, start_addr++, data[5]);
1101
1102                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1103                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1104                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1105                         badworden &= (~BIT(2));
1106         }
1107
1108         if (!(word_en & BIT(3))) {
1109                 tmpaddr = start_addr;
1110                 efuse_one_byte_write(hw, start_addr++, data[6]);
1111                 efuse_one_byte_write(hw, start_addr++, data[7]);
1112
1113                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1114                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1115                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1116                         badworden &= (~BIT(3));
1117         }
1118
1119         return badworden;
1120 }
1121
1122 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1123 {
1124         struct rtl_priv *rtlpriv = rtl_priv(hw);
1125         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1126         u8 tempval;
1127         u16 tmpV16;
1128
1129         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1130                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
1131                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS],
1132                                        0x69);
1133
1134                 tmpV16 = rtl_read_word(rtlpriv,
1135                                        rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1136                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1137                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1138                         rtl_write_word(rtlpriv,
1139                                        rtlpriv->cfg->maps[SYS_ISO_CTRL],
1140                                        tmpV16);
1141                 }
1142
1143                 tmpV16 = rtl_read_word(rtlpriv,
1144                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1145                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1146                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1147                         rtl_write_word(rtlpriv,
1148                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1149                 }
1150
1151                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1152                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1153                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1154                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1155                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1156                         rtl_write_word(rtlpriv,
1157                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1158                 }
1159         }
1160
1161         if (pwrstate) {
1162                 if (write) {
1163                         tempval = rtl_read_byte(rtlpriv,
1164                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1165                                                 3);
1166
1167                         if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1168                                 tempval &= 0x0F;
1169                                 tempval |= (VOLTAGE_V25 << 4);
1170                         }
1171
1172                         rtl_write_byte(rtlpriv,
1173                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1174                                        (tempval | 0x80));
1175                 }
1176
1177                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1178                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1179                                                 0x03);
1180                 }
1181
1182         } else {
1183                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
1184                         rtl_write_byte(rtlpriv,
1185                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1186
1187                 if (write) {
1188                         tempval = rtl_read_byte(rtlpriv,
1189                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1190                                                 3);
1191                         rtl_write_byte(rtlpriv,
1192                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1193                                        (tempval & 0x7F));
1194                 }
1195
1196                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1197                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1198                                                 0x02);
1199                 }
1200
1201         }
1202
1203 }
1204
1205 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1206 {
1207         u16 efuse_addr = 0;
1208         u8 hworden;
1209         u8 efuse_data, word_cnts;
1210
1211         while (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1212                efuse_addr < EFUSE_MAX_SIZE) {
1213                 if (efuse_data == 0xFF)
1214                         break;
1215
1216                 hworden = efuse_data & 0x0F;
1217                 word_cnts = efuse_calculate_word_cnts(hworden);
1218                 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1219         }
1220
1221         return efuse_addr;
1222 }
1223
1224 static u8 efuse_calculate_word_cnts(u8 word_en)
1225 {
1226         u8 word_cnts = 0;
1227         if (!(word_en & BIT(0)))
1228                 word_cnts++;
1229         if (!(word_en & BIT(1)))
1230                 word_cnts++;
1231         if (!(word_en & BIT(2)))
1232                 word_cnts++;
1233         if (!(word_en & BIT(3)))
1234                 word_cnts++;
1235         return word_cnts;
1236 }
1237