Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / sun / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * This driver uses the sungem driver (c) David Miller
20  * (davem@redhat.com) as its basis.
21  *
22  * The cassini chip has a number of features that distinguish it from
23  * the gem chip:
24  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
25  *      load balancing (non-VLAN mode)
26  *  batching of multiple packets
27  *  multiple CPU dispatching
28  *  page-based RX descriptor engine with separate completion rings
29  *  Gigabit support (GMII and PCS interface)
30  *  MIF link up/down detection works
31  *
32  * RX is handled by page sized buffers that are attached as fragments to
33  * the skb. here's what's done:
34  *  -- driver allocates pages at a time and keeps reference counts
35  *     on them.
36  *  -- the upper protocol layers assume that the header is in the skb
37  *     itself. as a result, cassini will copy a small amount (64 bytes)
38  *     to make them happy.
39  *  -- driver appends the rest of the data pages as frags to skbuffs
40  *     and increments the reference count
41  *  -- on page reclamation, the driver swaps the page with a spare page.
42  *     if that page is still in use, it frees its reference to that page,
43  *     and allocates a new page for use. otherwise, it just recycles the
44  *     the page.
45  *
46  * NOTE: cassini can parse the header. however, it's not worth it
47  *       as long as the network stack requires a header copy.
48  *
49  * TX has 4 queues. currently these queues are used in a round-robin
50  * fashion for load balancing. They can also be used for QoS. for that
51  * to work, however, QoS information needs to be exposed down to the driver
52  * level so that subqueues get targeted to particular transmit rings.
53  * alternatively, the queues can be configured via use of the all-purpose
54  * ioctl.
55  *
56  * RX DATA: the rx completion ring has all the info, but the rx desc
57  * ring has all of the data. RX can conceivably come in under multiple
58  * interrupts, but the INT# assignment needs to be set up properly by
59  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60  * that. also, the two descriptor rings are designed to distinguish between
61  * encrypted and non-encrypted packets, but we use them for buffering
62  * instead.
63  *
64  * by default, the selective clear mask is set up to process rx packets.
65  */
66
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/types.h>
72 #include <linux/compiler.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
96
97 #include <net/checksum.h>
98
99 #include <linux/atomic.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
103
104 #define cas_page_map(x)      kmap_atomic((x))
105 #define cas_page_unmap(x)    kunmap_atomic((x))
106 #define CAS_NCPUS            num_online_cpus()
107
108 #define cas_skb_release(x)  netif_rx(x)
109
110 /* select which firmware to use */
111 #define USE_HP_WORKAROUND
112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
114
115 #include "cassini.h"
116
117 #define USE_TX_COMPWB      /* use completion writeback registers */
118 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
119 #define USE_RX_BLANK       /* hw interrupt mitigation */
120 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
121
122 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
123  * also, we need to make cp->lock finer-grained.
124  */
125 #undef  USE_PCI_INTB
126 #undef  USE_PCI_INTC
127 #undef  USE_PCI_INTD
128 #undef  USE_QOS
129
130 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
131
132 /* rx processing options */
133 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
134 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
135 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
136 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
137 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
138
139 #define DRV_MODULE_NAME         "cassini"
140 #define DRV_MODULE_VERSION      "1.6"
141 #define DRV_MODULE_RELDATE      "21 May 2008"
142
143 #define CAS_DEF_MSG_ENABLE        \
144         (NETIF_MSG_DRV          | \
145          NETIF_MSG_PROBE        | \
146          NETIF_MSG_LINK         | \
147          NETIF_MSG_TIMER        | \
148          NETIF_MSG_IFDOWN       | \
149          NETIF_MSG_IFUP         | \
150          NETIF_MSG_RX_ERR       | \
151          NETIF_MSG_TX_ERR)
152
153 /* length of time before we decide the hardware is borked,
154  * and dev->tx_timeout() should be called to fix the problem
155  */
156 #define CAS_TX_TIMEOUT                  (HZ)
157 #define CAS_LINK_TIMEOUT                (22*HZ/10)
158 #define CAS_LINK_FAST_TIMEOUT           (1)
159
160 /* timeout values for state changing. these specify the number
161  * of 10us delays to be used before giving up.
162  */
163 #define STOP_TRIES_PHY 1000
164 #define STOP_TRIES     5000
165
166 /* specify a minimum frame size to deal with some fifo issues
167  * max mtu == 2 * page size - ethernet header - 64 - swivel =
168  *            2 * page_size - 0x50
169  */
170 #define CAS_MIN_FRAME                   97
171 #define CAS_1000MB_MIN_FRAME            255
172 #define CAS_MIN_MTU                     60
173 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
174
175 #if 1
176 /*
177  * Eliminate these and use separate atomic counters for each, to
178  * avoid a race condition.
179  */
180 #else
181 #define CAS_RESET_MTU                   1
182 #define CAS_RESET_ALL                   2
183 #define CAS_RESET_SPARE                 3
184 #endif
185
186 static char version[] =
187         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
188
189 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
190 static int link_mode;
191
192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194 MODULE_LICENSE("GPL");
195 MODULE_FIRMWARE("sun/cassini.bin");
196 module_param(cassini_debug, int, 0);
197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
198 module_param(link_mode, int, 0);
199 MODULE_PARM_DESC(link_mode, "default link mode");
200
201 /*
202  * Work around for a PCS bug in which the link goes down due to the chip
203  * being confused and never showing a link status of "up."
204  */
205 #define DEFAULT_LINKDOWN_TIMEOUT 5
206 /*
207  * Value in seconds, for user input.
208  */
209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
210 module_param(linkdown_timeout, int, 0);
211 MODULE_PARM_DESC(linkdown_timeout,
212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
213
214 /*
215  * value in 'ticks' (units used by jiffies). Set when we init the
216  * module because 'HZ' in actually a function call on some flavors of
217  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
218  */
219 static int link_transition_timeout;
220
221
222
223 static u16 link_modes[] = {
224         BMCR_ANENABLE,                   /* 0 : autoneg */
225         0,                               /* 1 : 10bt half duplex */
226         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
227         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
228         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
229         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
230 };
231
232 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
233         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
234           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
235         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
236           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237         { 0, }
238 };
239
240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
241
242 static void cas_set_link_modes(struct cas *cp);
243
244 static inline void cas_lock_tx(struct cas *cp)
245 {
246         int i;
247
248         for (i = 0; i < N_TX_RINGS; i++)
249                 spin_lock(&cp->tx_lock[i]);
250 }
251
252 static inline void cas_lock_all(struct cas *cp)
253 {
254         spin_lock_irq(&cp->lock);
255         cas_lock_tx(cp);
256 }
257
258 /* WTZ: QA was finding deadlock problems with the previous
259  * versions after long test runs with multiple cards per machine.
260  * See if replacing cas_lock_all with safer versions helps. The
261  * symptoms QA is reporting match those we'd expect if interrupts
262  * aren't being properly restored, and we fixed a previous deadlock
263  * with similar symptoms by using save/restore versions in other
264  * places.
265  */
266 #define cas_lock_all_save(cp, flags) \
267 do { \
268         struct cas *xxxcp = (cp); \
269         spin_lock_irqsave(&xxxcp->lock, flags); \
270         cas_lock_tx(xxxcp); \
271 } while (0)
272
273 static inline void cas_unlock_tx(struct cas *cp)
274 {
275         int i;
276
277         for (i = N_TX_RINGS; i > 0; i--)
278                 spin_unlock(&cp->tx_lock[i - 1]);
279 }
280
281 static inline void cas_unlock_all(struct cas *cp)
282 {
283         cas_unlock_tx(cp);
284         spin_unlock_irq(&cp->lock);
285 }
286
287 #define cas_unlock_all_restore(cp, flags) \
288 do { \
289         struct cas *xxxcp = (cp); \
290         cas_unlock_tx(xxxcp); \
291         spin_unlock_irqrestore(&xxxcp->lock, flags); \
292 } while (0)
293
294 static void cas_disable_irq(struct cas *cp, const int ring)
295 {
296         /* Make sure we won't get any more interrupts */
297         if (ring == 0) {
298                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
299                 return;
300         }
301
302         /* disable completion interrupts and selectively mask */
303         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
304                 switch (ring) {
305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
306 #ifdef USE_PCI_INTB
307                 case 1:
308 #endif
309 #ifdef USE_PCI_INTC
310                 case 2:
311 #endif
312 #ifdef USE_PCI_INTD
313                 case 3:
314 #endif
315                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
316                                cp->regs + REG_PLUS_INTRN_MASK(ring));
317                         break;
318 #endif
319                 default:
320                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
321                                REG_PLUS_INTRN_MASK(ring));
322                         break;
323                 }
324         }
325 }
326
327 static inline void cas_mask_intr(struct cas *cp)
328 {
329         int i;
330
331         for (i = 0; i < N_RX_COMP_RINGS; i++)
332                 cas_disable_irq(cp, i);
333 }
334
335 static void cas_enable_irq(struct cas *cp, const int ring)
336 {
337         if (ring == 0) { /* all but TX_DONE */
338                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
339                 return;
340         }
341
342         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
343                 switch (ring) {
344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
345 #ifdef USE_PCI_INTB
346                 case 1:
347 #endif
348 #ifdef USE_PCI_INTC
349                 case 2:
350 #endif
351 #ifdef USE_PCI_INTD
352                 case 3:
353 #endif
354                         writel(INTRN_MASK_RX_EN, cp->regs +
355                                REG_PLUS_INTRN_MASK(ring));
356                         break;
357 #endif
358                 default:
359                         break;
360                 }
361         }
362 }
363
364 static inline void cas_unmask_intr(struct cas *cp)
365 {
366         int i;
367
368         for (i = 0; i < N_RX_COMP_RINGS; i++)
369                 cas_enable_irq(cp, i);
370 }
371
372 static inline void cas_entropy_gather(struct cas *cp)
373 {
374 #ifdef USE_ENTROPY_DEV
375         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376                 return;
377
378         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
379                             readl(cp->regs + REG_ENTROPY_IV),
380                             sizeof(uint64_t)*8);
381 #endif
382 }
383
384 static inline void cas_entropy_reset(struct cas *cp)
385 {
386 #ifdef USE_ENTROPY_DEV
387         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
388                 return;
389
390         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
391                cp->regs + REG_BIM_LOCAL_DEV_EN);
392         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
393         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
394
395         /* if we read back 0x0, we don't have an entropy device */
396         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
397                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
398 #endif
399 }
400
401 /* access to the phy. the following assumes that we've initialized the MIF to
402  * be in frame rather than bit-bang mode
403  */
404 static u16 cas_phy_read(struct cas *cp, int reg)
405 {
406         u32 cmd;
407         int limit = STOP_TRIES_PHY;
408
409         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
410         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
411         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
412         cmd |= MIF_FRAME_TURN_AROUND_MSB;
413         writel(cmd, cp->regs + REG_MIF_FRAME);
414
415         /* poll for completion */
416         while (limit-- > 0) {
417                 udelay(10);
418                 cmd = readl(cp->regs + REG_MIF_FRAME);
419                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
420                         return cmd & MIF_FRAME_DATA_MASK;
421         }
422         return 0xFFFF; /* -1 */
423 }
424
425 static int cas_phy_write(struct cas *cp, int reg, u16 val)
426 {
427         int limit = STOP_TRIES_PHY;
428         u32 cmd;
429
430         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
431         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
432         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
433         cmd |= MIF_FRAME_TURN_AROUND_MSB;
434         cmd |= val & MIF_FRAME_DATA_MASK;
435         writel(cmd, cp->regs + REG_MIF_FRAME);
436
437         /* poll for completion */
438         while (limit-- > 0) {
439                 udelay(10);
440                 cmd = readl(cp->regs + REG_MIF_FRAME);
441                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
442                         return 0;
443         }
444         return -1;
445 }
446
447 static void cas_phy_powerup(struct cas *cp)
448 {
449         u16 ctl = cas_phy_read(cp, MII_BMCR);
450
451         if ((ctl & BMCR_PDOWN) == 0)
452                 return;
453         ctl &= ~BMCR_PDOWN;
454         cas_phy_write(cp, MII_BMCR, ctl);
455 }
456
457 static void cas_phy_powerdown(struct cas *cp)
458 {
459         u16 ctl = cas_phy_read(cp, MII_BMCR);
460
461         if (ctl & BMCR_PDOWN)
462                 return;
463         ctl |= BMCR_PDOWN;
464         cas_phy_write(cp, MII_BMCR, ctl);
465 }
466
467 /* cp->lock held. note: the last put_page will free the buffer */
468 static int cas_page_free(struct cas *cp, cas_page_t *page)
469 {
470         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
471                        PCI_DMA_FROMDEVICE);
472         __free_pages(page->buffer, cp->page_order);
473         kfree(page);
474         return 0;
475 }
476
477 #ifdef RX_COUNT_BUFFERS
478 #define RX_USED_ADD(x, y)       ((x)->used += (y))
479 #define RX_USED_SET(x, y)       ((x)->used  = (y))
480 #else
481 #define RX_USED_ADD(x, y)
482 #define RX_USED_SET(x, y)
483 #endif
484
485 /* local page allocation routines for the receive buffers. jumbo pages
486  * require at least 8K contiguous and 8K aligned buffers.
487  */
488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
489 {
490         cas_page_t *page;
491
492         page = kmalloc(sizeof(cas_page_t), flags);
493         if (!page)
494                 return NULL;
495
496         INIT_LIST_HEAD(&page->list);
497         RX_USED_SET(page, 0);
498         page->buffer = alloc_pages(flags, cp->page_order);
499         if (!page->buffer)
500                 goto page_err;
501         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
502                                       cp->page_size, PCI_DMA_FROMDEVICE);
503         return page;
504
505 page_err:
506         kfree(page);
507         return NULL;
508 }
509
510 /* initialize spare pool of rx buffers, but allocate during the open */
511 static void cas_spare_init(struct cas *cp)
512 {
513         spin_lock(&cp->rx_inuse_lock);
514         INIT_LIST_HEAD(&cp->rx_inuse_list);
515         spin_unlock(&cp->rx_inuse_lock);
516
517         spin_lock(&cp->rx_spare_lock);
518         INIT_LIST_HEAD(&cp->rx_spare_list);
519         cp->rx_spares_needed = RX_SPARE_COUNT;
520         spin_unlock(&cp->rx_spare_lock);
521 }
522
523 /* used on close. free all the spare buffers. */
524 static void cas_spare_free(struct cas *cp)
525 {
526         struct list_head list, *elem, *tmp;
527
528         /* free spare buffers */
529         INIT_LIST_HEAD(&list);
530         spin_lock(&cp->rx_spare_lock);
531         list_splice_init(&cp->rx_spare_list, &list);
532         spin_unlock(&cp->rx_spare_lock);
533         list_for_each_safe(elem, tmp, &list) {
534                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
535         }
536
537         INIT_LIST_HEAD(&list);
538 #if 1
539         /*
540          * Looks like Adrian had protected this with a different
541          * lock than used everywhere else to manipulate this list.
542          */
543         spin_lock(&cp->rx_inuse_lock);
544         list_splice_init(&cp->rx_inuse_list, &list);
545         spin_unlock(&cp->rx_inuse_lock);
546 #else
547         spin_lock(&cp->rx_spare_lock);
548         list_splice_init(&cp->rx_inuse_list, &list);
549         spin_unlock(&cp->rx_spare_lock);
550 #endif
551         list_for_each_safe(elem, tmp, &list) {
552                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
553         }
554 }
555
556 /* replenish spares if needed */
557 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
558 {
559         struct list_head list, *elem, *tmp;
560         int needed, i;
561
562         /* check inuse list. if we don't need any more free buffers,
563          * just free it
564          */
565
566         /* make a local copy of the list */
567         INIT_LIST_HEAD(&list);
568         spin_lock(&cp->rx_inuse_lock);
569         list_splice_init(&cp->rx_inuse_list, &list);
570         spin_unlock(&cp->rx_inuse_lock);
571
572         list_for_each_safe(elem, tmp, &list) {
573                 cas_page_t *page = list_entry(elem, cas_page_t, list);
574
575                 /*
576                  * With the lockless pagecache, cassini buffering scheme gets
577                  * slightly less accurate: we might find that a page has an
578                  * elevated reference count here, due to a speculative ref,
579                  * and skip it as in-use. Ideally we would be able to reclaim
580                  * it. However this would be such a rare case, it doesn't
581                  * matter too much as we should pick it up the next time round.
582                  *
583                  * Importantly, if we find that the page has a refcount of 1
584                  * here (our refcount), then we know it is definitely not inuse
585                  * so we can reuse it.
586                  */
587                 if (page_count(page->buffer) > 1)
588                         continue;
589
590                 list_del(elem);
591                 spin_lock(&cp->rx_spare_lock);
592                 if (cp->rx_spares_needed > 0) {
593                         list_add(elem, &cp->rx_spare_list);
594                         cp->rx_spares_needed--;
595                         spin_unlock(&cp->rx_spare_lock);
596                 } else {
597                         spin_unlock(&cp->rx_spare_lock);
598                         cas_page_free(cp, page);
599                 }
600         }
601
602         /* put any inuse buffers back on the list */
603         if (!list_empty(&list)) {
604                 spin_lock(&cp->rx_inuse_lock);
605                 list_splice(&list, &cp->rx_inuse_list);
606                 spin_unlock(&cp->rx_inuse_lock);
607         }
608
609         spin_lock(&cp->rx_spare_lock);
610         needed = cp->rx_spares_needed;
611         spin_unlock(&cp->rx_spare_lock);
612         if (!needed)
613                 return;
614
615         /* we still need spares, so try to allocate some */
616         INIT_LIST_HEAD(&list);
617         i = 0;
618         while (i < needed) {
619                 cas_page_t *spare = cas_page_alloc(cp, flags);
620                 if (!spare)
621                         break;
622                 list_add(&spare->list, &list);
623                 i++;
624         }
625
626         spin_lock(&cp->rx_spare_lock);
627         list_splice(&list, &cp->rx_spare_list);
628         cp->rx_spares_needed -= i;
629         spin_unlock(&cp->rx_spare_lock);
630 }
631
632 /* pull a page from the list. */
633 static cas_page_t *cas_page_dequeue(struct cas *cp)
634 {
635         struct list_head *entry;
636         int recover;
637
638         spin_lock(&cp->rx_spare_lock);
639         if (list_empty(&cp->rx_spare_list)) {
640                 /* try to do a quick recovery */
641                 spin_unlock(&cp->rx_spare_lock);
642                 cas_spare_recover(cp, GFP_ATOMIC);
643                 spin_lock(&cp->rx_spare_lock);
644                 if (list_empty(&cp->rx_spare_list)) {
645                         netif_err(cp, rx_err, cp->dev,
646                                   "no spare buffers available\n");
647                         spin_unlock(&cp->rx_spare_lock);
648                         return NULL;
649                 }
650         }
651
652         entry = cp->rx_spare_list.next;
653         list_del(entry);
654         recover = ++cp->rx_spares_needed;
655         spin_unlock(&cp->rx_spare_lock);
656
657         /* trigger the timer to do the recovery */
658         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
659 #if 1
660                 atomic_inc(&cp->reset_task_pending);
661                 atomic_inc(&cp->reset_task_pending_spare);
662                 schedule_work(&cp->reset_task);
663 #else
664                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
665                 schedule_work(&cp->reset_task);
666 #endif
667         }
668         return list_entry(entry, cas_page_t, list);
669 }
670
671
672 static void cas_mif_poll(struct cas *cp, const int enable)
673 {
674         u32 cfg;
675
676         cfg  = readl(cp->regs + REG_MIF_CFG);
677         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
678
679         if (cp->phy_type & CAS_PHY_MII_MDIO1)
680                 cfg |= MIF_CFG_PHY_SELECT;
681
682         /* poll and interrupt on link status change. */
683         if (enable) {
684                 cfg |= MIF_CFG_POLL_EN;
685                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
686                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
687         }
688         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
689                cp->regs + REG_MIF_MASK);
690         writel(cfg, cp->regs + REG_MIF_CFG);
691 }
692
693 /* Must be invoked under cp->lock */
694 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
695 {
696         u16 ctl;
697 #if 1
698         int lcntl;
699         int changed = 0;
700         int oldstate = cp->lstate;
701         int link_was_not_down = !(oldstate == link_down);
702 #endif
703         /* Setup link parameters */
704         if (!ep)
705                 goto start_aneg;
706         lcntl = cp->link_cntl;
707         if (ep->autoneg == AUTONEG_ENABLE)
708                 cp->link_cntl = BMCR_ANENABLE;
709         else {
710                 u32 speed = ethtool_cmd_speed(ep);
711                 cp->link_cntl = 0;
712                 if (speed == SPEED_100)
713                         cp->link_cntl |= BMCR_SPEED100;
714                 else if (speed == SPEED_1000)
715                         cp->link_cntl |= CAS_BMCR_SPEED1000;
716                 if (ep->duplex == DUPLEX_FULL)
717                         cp->link_cntl |= BMCR_FULLDPLX;
718         }
719 #if 1
720         changed = (lcntl != cp->link_cntl);
721 #endif
722 start_aneg:
723         if (cp->lstate == link_up) {
724                 netdev_info(cp->dev, "PCS link down\n");
725         } else {
726                 if (changed) {
727                         netdev_info(cp->dev, "link configuration changed\n");
728                 }
729         }
730         cp->lstate = link_down;
731         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
732         if (!cp->hw_running)
733                 return;
734 #if 1
735         /*
736          * WTZ: If the old state was link_up, we turn off the carrier
737          * to replicate everything we do elsewhere on a link-down
738          * event when we were already in a link-up state..
739          */
740         if (oldstate == link_up)
741                 netif_carrier_off(cp->dev);
742         if (changed  && link_was_not_down) {
743                 /*
744                  * WTZ: This branch will simply schedule a full reset after
745                  * we explicitly changed link modes in an ioctl. See if this
746                  * fixes the link-problems we were having for forced mode.
747                  */
748                 atomic_inc(&cp->reset_task_pending);
749                 atomic_inc(&cp->reset_task_pending_all);
750                 schedule_work(&cp->reset_task);
751                 cp->timer_ticks = 0;
752                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
753                 return;
754         }
755 #endif
756         if (cp->phy_type & CAS_PHY_SERDES) {
757                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
758
759                 if (cp->link_cntl & BMCR_ANENABLE) {
760                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
761                         cp->lstate = link_aneg;
762                 } else {
763                         if (cp->link_cntl & BMCR_FULLDPLX)
764                                 val |= PCS_MII_CTRL_DUPLEX;
765                         val &= ~PCS_MII_AUTONEG_EN;
766                         cp->lstate = link_force_ok;
767                 }
768                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
769                 writel(val, cp->regs + REG_PCS_MII_CTRL);
770
771         } else {
772                 cas_mif_poll(cp, 0);
773                 ctl = cas_phy_read(cp, MII_BMCR);
774                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
775                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
776                 ctl |= cp->link_cntl;
777                 if (ctl & BMCR_ANENABLE) {
778                         ctl |= BMCR_ANRESTART;
779                         cp->lstate = link_aneg;
780                 } else {
781                         cp->lstate = link_force_ok;
782                 }
783                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
784                 cas_phy_write(cp, MII_BMCR, ctl);
785                 cas_mif_poll(cp, 1);
786         }
787
788         cp->timer_ticks = 0;
789         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
790 }
791
792 /* Must be invoked under cp->lock. */
793 static int cas_reset_mii_phy(struct cas *cp)
794 {
795         int limit = STOP_TRIES_PHY;
796         u16 val;
797
798         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
799         udelay(100);
800         while (--limit) {
801                 val = cas_phy_read(cp, MII_BMCR);
802                 if ((val & BMCR_RESET) == 0)
803                         break;
804                 udelay(10);
805         }
806         return limit <= 0;
807 }
808
809 static void cas_saturn_firmware_init(struct cas *cp)
810 {
811         const struct firmware *fw;
812         const char fw_name[] = "sun/cassini.bin";
813         int err;
814
815         if (PHY_NS_DP83065 != cp->phy_id)
816                 return;
817
818         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
819         if (err) {
820                 pr_err("Failed to load firmware \"%s\"\n",
821                        fw_name);
822                 return;
823         }
824         if (fw->size < 2) {
825                 pr_err("bogus length %zu in \"%s\"\n",
826                        fw->size, fw_name);
827                 goto out;
828         }
829         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
830         cp->fw_size = fw->size - 2;
831         cp->fw_data = vmalloc(cp->fw_size);
832         if (!cp->fw_data)
833                 goto out;
834         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
835 out:
836         release_firmware(fw);
837 }
838
839 static void cas_saturn_firmware_load(struct cas *cp)
840 {
841         int i;
842
843         if (!cp->fw_data)
844                 return;
845
846         cas_phy_powerdown(cp);
847
848         /* expanded memory access mode */
849         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
850
851         /* pointer configuration for new firmware */
852         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
853         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
854         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
855         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
856         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
857         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
858         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
859         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
860
861         /* download new firmware */
862         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
863         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
864         for (i = 0; i < cp->fw_size; i++)
865                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
866
867         /* enable firmware */
868         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
869         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
870 }
871
872
873 /* phy initialization */
874 static void cas_phy_init(struct cas *cp)
875 {
876         u16 val;
877
878         /* if we're in MII/GMII mode, set up phy */
879         if (CAS_PHY_MII(cp->phy_type)) {
880                 writel(PCS_DATAPATH_MODE_MII,
881                        cp->regs + REG_PCS_DATAPATH_MODE);
882
883                 cas_mif_poll(cp, 0);
884                 cas_reset_mii_phy(cp); /* take out of isolate mode */
885
886                 if (PHY_LUCENT_B0 == cp->phy_id) {
887                         /* workaround link up/down issue with lucent */
888                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
889                         cas_phy_write(cp, MII_BMCR, 0x00f1);
890                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
891
892                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
893                         /* workarounds for broadcom phy */
894                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
895                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
896                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
897                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
898                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
899                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
900                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
901                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
903                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
904                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
905
906                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
907                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
908                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
909                         if (val & 0x0080) {
910                                 /* link workaround */
911                                 cas_phy_write(cp, BROADCOM_MII_REG4,
912                                               val & ~0x0080);
913                         }
914
915                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
916                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
917                                SATURN_PCFG_FSI : 0x0,
918                                cp->regs + REG_SATURN_PCFG);
919
920                         /* load firmware to address 10Mbps auto-negotiation
921                          * issue. NOTE: this will need to be changed if the
922                          * default firmware gets fixed.
923                          */
924                         if (PHY_NS_DP83065 == cp->phy_id) {
925                                 cas_saturn_firmware_load(cp);
926                         }
927                         cas_phy_powerup(cp);
928                 }
929
930                 /* advertise capabilities */
931                 val = cas_phy_read(cp, MII_BMCR);
932                 val &= ~BMCR_ANENABLE;
933                 cas_phy_write(cp, MII_BMCR, val);
934                 udelay(10);
935
936                 cas_phy_write(cp, MII_ADVERTISE,
937                               cas_phy_read(cp, MII_ADVERTISE) |
938                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
939                                ADVERTISE_100HALF | ADVERTISE_100FULL |
940                                CAS_ADVERTISE_PAUSE |
941                                CAS_ADVERTISE_ASYM_PAUSE));
942
943                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
944                         /* make sure that we don't advertise half
945                          * duplex to avoid a chip issue
946                          */
947                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
948                         val &= ~CAS_ADVERTISE_1000HALF;
949                         val |= CAS_ADVERTISE_1000FULL;
950                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
951                 }
952
953         } else {
954                 /* reset pcs for serdes */
955                 u32 val;
956                 int limit;
957
958                 writel(PCS_DATAPATH_MODE_SERDES,
959                        cp->regs + REG_PCS_DATAPATH_MODE);
960
961                 /* enable serdes pins on saturn */
962                 if (cp->cas_flags & CAS_FLAG_SATURN)
963                         writel(0, cp->regs + REG_SATURN_PCFG);
964
965                 /* Reset PCS unit. */
966                 val = readl(cp->regs + REG_PCS_MII_CTRL);
967                 val |= PCS_MII_RESET;
968                 writel(val, cp->regs + REG_PCS_MII_CTRL);
969
970                 limit = STOP_TRIES;
971                 while (--limit > 0) {
972                         udelay(10);
973                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
974                              PCS_MII_RESET) == 0)
975                                 break;
976                 }
977                 if (limit <= 0)
978                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
979                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
980
981                 /* Make sure PCS is disabled while changing advertisement
982                  * configuration.
983                  */
984                 writel(0x0, cp->regs + REG_PCS_CFG);
985
986                 /* Advertise all capabilities except half-duplex. */
987                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
988                 val &= ~PCS_MII_ADVERT_HD;
989                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
990                         PCS_MII_ADVERT_ASYM_PAUSE);
991                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
992
993                 /* enable PCS */
994                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
995
996                 /* pcs workaround: enable sync detect */
997                 writel(PCS_SERDES_CTRL_SYNCD_EN,
998                        cp->regs + REG_PCS_SERDES_CTRL);
999         }
1000 }
1001
1002
1003 static int cas_pcs_link_check(struct cas *cp)
1004 {
1005         u32 stat, state_machine;
1006         int retval = 0;
1007
1008         /* The link status bit latches on zero, so you must
1009          * read it twice in such a case to see a transition
1010          * to the link being up.
1011          */
1012         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1013         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1014                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015
1016         /* The remote-fault indication is only valid
1017          * when autoneg has completed.
1018          */
1019         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1020                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1021             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1022                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1023
1024         /* work around link detection issue by querying the PCS state
1025          * machine directly.
1026          */
1027         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1028         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1029                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1030         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1031                 stat |= PCS_MII_STATUS_LINK_STATUS;
1032         }
1033
1034         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1035                 if (cp->lstate != link_up) {
1036                         if (cp->opened) {
1037                                 cp->lstate = link_up;
1038                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1039
1040                                 cas_set_link_modes(cp);
1041                                 netif_carrier_on(cp->dev);
1042                         }
1043                 }
1044         } else if (cp->lstate == link_up) {
1045                 cp->lstate = link_down;
1046                 if (link_transition_timeout != 0 &&
1047                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1048                     !cp->link_transition_jiffies_valid) {
1049                         /*
1050                          * force a reset, as a workaround for the
1051                          * link-failure problem. May want to move this to a
1052                          * point a bit earlier in the sequence. If we had
1053                          * generated a reset a short time ago, we'll wait for
1054                          * the link timer to check the status until a
1055                          * timer expires (link_transistion_jiffies_valid is
1056                          * true when the timer is running.)  Instead of using
1057                          * a system timer, we just do a check whenever the
1058                          * link timer is running - this clears the flag after
1059                          * a suitable delay.
1060                          */
1061                         retval = 1;
1062                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1063                         cp->link_transition_jiffies = jiffies;
1064                         cp->link_transition_jiffies_valid = 1;
1065                 } else {
1066                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1067                 }
1068                 netif_carrier_off(cp->dev);
1069                 if (cp->opened)
1070                         netif_info(cp, link, cp->dev, "PCS link down\n");
1071
1072                 /* Cassini only: if you force a mode, there can be
1073                  * sync problems on link down. to fix that, the following
1074                  * things need to be checked:
1075                  * 1) read serialink state register
1076                  * 2) read pcs status register to verify link down.
1077                  * 3) if link down and serial link == 0x03, then you need
1078                  *    to global reset the chip.
1079                  */
1080                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1081                         /* should check to see if we're in a forced mode */
1082                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1083                         if (stat == 0x03)
1084                                 return 1;
1085                 }
1086         } else if (cp->lstate == link_down) {
1087                 if (link_transition_timeout != 0 &&
1088                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1089                     !cp->link_transition_jiffies_valid) {
1090                         /* force a reset, as a workaround for the
1091                          * link-failure problem.  May want to move
1092                          * this to a point a bit earlier in the
1093                          * sequence.
1094                          */
1095                         retval = 1;
1096                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1097                         cp->link_transition_jiffies = jiffies;
1098                         cp->link_transition_jiffies_valid = 1;
1099                 } else {
1100                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1101                 }
1102         }
1103
1104         return retval;
1105 }
1106
1107 static int cas_pcs_interrupt(struct net_device *dev,
1108                              struct cas *cp, u32 status)
1109 {
1110         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111
1112         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1113                 return 0;
1114         return cas_pcs_link_check(cp);
1115 }
1116
1117 static int cas_txmac_interrupt(struct net_device *dev,
1118                                struct cas *cp, u32 status)
1119 {
1120         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121
1122         if (!txmac_stat)
1123                 return 0;
1124
1125         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1126                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1127
1128         /* Defer timer expiration is quite normal,
1129          * don't even log the event.
1130          */
1131         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133                 return 0;
1134
1135         spin_lock(&cp->stat_lock[0]);
1136         if (txmac_stat & MAC_TX_UNDERRUN) {
1137                 netdev_err(dev, "TX MAC xmit underrun\n");
1138                 cp->net_stats[0].tx_fifo_errors++;
1139         }
1140
1141         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1142                 netdev_err(dev, "TX MAC max packet size error\n");
1143                 cp->net_stats[0].tx_errors++;
1144         }
1145
1146         /* The rest are all cases of one of the 16-bit TX
1147          * counters expiring.
1148          */
1149         if (txmac_stat & MAC_TX_COLL_NORMAL)
1150                 cp->net_stats[0].collisions += 0x10000;
1151
1152         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1153                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1154                 cp->net_stats[0].collisions += 0x10000;
1155         }
1156
1157         if (txmac_stat & MAC_TX_COLL_LATE) {
1158                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1159                 cp->net_stats[0].collisions += 0x10000;
1160         }
1161         spin_unlock(&cp->stat_lock[0]);
1162
1163         /* We do not keep track of MAC_TX_COLL_FIRST and
1164          * MAC_TX_PEAK_ATTEMPTS events.
1165          */
1166         return 0;
1167 }
1168
1169 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1170 {
1171         cas_hp_inst_t *inst;
1172         u32 val;
1173         int i;
1174
1175         i = 0;
1176         while ((inst = firmware) && inst->note) {
1177                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1178
1179                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1180                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1181                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1182
1183                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1184                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1185                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1186                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1187                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1190                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1191
1192                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1193                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1194                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1195                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1196                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1197                 ++firmware;
1198                 ++i;
1199         }
1200 }
1201
1202 static void cas_init_rx_dma(struct cas *cp)
1203 {
1204         u64 desc_dma = cp->block_dvma;
1205         u32 val;
1206         int i, size;
1207
1208         /* rx free descriptors */
1209         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1210         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1211         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1212         if ((N_RX_DESC_RINGS > 1) &&
1213             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1214                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1215         writel(val, cp->regs + REG_RX_CFG);
1216
1217         val = (unsigned long) cp->init_rxds[0] -
1218                 (unsigned long) cp->init_block;
1219         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1220         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1221         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1222
1223         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1224                 /* rx desc 2 is for IPSEC packets. however,
1225                  * we don't it that for that purpose.
1226                  */
1227                 val = (unsigned long) cp->init_rxds[1] -
1228                         (unsigned long) cp->init_block;
1229                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1230                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1231                        REG_PLUS_RX_DB1_LOW);
1232                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1233                        REG_PLUS_RX_KICK1);
1234         }
1235
1236         /* rx completion registers */
1237         val = (unsigned long) cp->init_rxcs[0] -
1238                 (unsigned long) cp->init_block;
1239         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1240         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1241
1242         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1243                 /* rx comp 2-4 */
1244                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1245                         val = (unsigned long) cp->init_rxcs[i] -
1246                                 (unsigned long) cp->init_block;
1247                         writel((desc_dma + val) >> 32, cp->regs +
1248                                REG_PLUS_RX_CBN_HI(i));
1249                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1250                                REG_PLUS_RX_CBN_LOW(i));
1251                 }
1252         }
1253
1254         /* read selective clear regs to prevent spurious interrupts
1255          * on reset because complete == kick.
1256          * selective clear set up to prevent interrupts on resets
1257          */
1258         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1259         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1260         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1261                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1262                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1263
1264                 /* 2 is different from 3 and 4 */
1265                 if (N_RX_COMP_RINGS > 1)
1266                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1267                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1268
1269                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1270                         writel(INTR_RX_DONE_ALT,
1271                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1272         }
1273
1274         /* set up pause thresholds */
1275         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1276                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1277         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1278                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1279         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1280
1281         /* zero out dma reassembly buffers */
1282         for (i = 0; i < 64; i++) {
1283                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1284                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1285                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1286                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1287         }
1288
1289         /* make sure address register is 0 for normal operation */
1290         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1291         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1292
1293         /* interrupt mitigation */
1294 #ifdef USE_RX_BLANK
1295         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1296         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1297         writel(val, cp->regs + REG_RX_BLANK);
1298 #else
1299         writel(0x0, cp->regs + REG_RX_BLANK);
1300 #endif
1301
1302         /* interrupt generation as a function of low water marks for
1303          * free desc and completion entries. these are used to trigger
1304          * housekeeping for rx descs. we don't use the free interrupt
1305          * as it's not very useful
1306          */
1307         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1308         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1309         writel(val, cp->regs + REG_RX_AE_THRESH);
1310         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1311                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1312                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1313         }
1314
1315         /* Random early detect registers. useful for congestion avoidance.
1316          * this should be tunable.
1317          */
1318         writel(0x0, cp->regs + REG_RX_RED);
1319
1320         /* receive page sizes. default == 2K (0x800) */
1321         val = 0;
1322         if (cp->page_size == 0x1000)
1323                 val = 0x1;
1324         else if (cp->page_size == 0x2000)
1325                 val = 0x2;
1326         else if (cp->page_size == 0x4000)
1327                 val = 0x3;
1328
1329         /* round mtu + offset. constrain to page size. */
1330         size = cp->dev->mtu + 64;
1331         if (size > cp->page_size)
1332                 size = cp->page_size;
1333
1334         if (size <= 0x400)
1335                 i = 0x0;
1336         else if (size <= 0x800)
1337                 i = 0x1;
1338         else if (size <= 0x1000)
1339                 i = 0x2;
1340         else
1341                 i = 0x3;
1342
1343         cp->mtu_stride = 1 << (i + 10);
1344         val  = CAS_BASE(RX_PAGE_SIZE, val);
1345         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1346         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1347         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1348         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1349
1350         /* enable the header parser if desired */
1351         if (CAS_HP_FIRMWARE == cas_prog_null)
1352                 return;
1353
1354         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1355         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1356         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1357         writel(val, cp->regs + REG_HP_CFG);
1358 }
1359
1360 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1361 {
1362         memset(rxc, 0, sizeof(*rxc));
1363         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1364 }
1365
1366 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1367  * flipping is protected by the fact that the chip will not
1368  * hand back the same page index while it's being processed.
1369  */
1370 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1371 {
1372         cas_page_t *page = cp->rx_pages[1][index];
1373         cas_page_t *new;
1374
1375         if (page_count(page->buffer) == 1)
1376                 return page;
1377
1378         new = cas_page_dequeue(cp);
1379         if (new) {
1380                 spin_lock(&cp->rx_inuse_lock);
1381                 list_add(&page->list, &cp->rx_inuse_list);
1382                 spin_unlock(&cp->rx_inuse_lock);
1383         }
1384         return new;
1385 }
1386
1387 /* this needs to be changed if we actually use the ENC RX DESC ring */
1388 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1389                                  const int index)
1390 {
1391         cas_page_t **page0 = cp->rx_pages[0];
1392         cas_page_t **page1 = cp->rx_pages[1];
1393
1394         /* swap if buffer is in use */
1395         if (page_count(page0[index]->buffer) > 1) {
1396                 cas_page_t *new = cas_page_spare(cp, index);
1397                 if (new) {
1398                         page1[index] = page0[index];
1399                         page0[index] = new;
1400                 }
1401         }
1402         RX_USED_SET(page0[index], 0);
1403         return page0[index];
1404 }
1405
1406 static void cas_clean_rxds(struct cas *cp)
1407 {
1408         /* only clean ring 0 as ring 1 is used for spare buffers */
1409         struct cas_rx_desc *rxd = cp->init_rxds[0];
1410         int i, size;
1411
1412         /* release all rx flows */
1413         for (i = 0; i < N_RX_FLOWS; i++) {
1414                 struct sk_buff *skb;
1415                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1416                         cas_skb_release(skb);
1417                 }
1418         }
1419
1420         /* initialize descriptors */
1421         size = RX_DESC_RINGN_SIZE(0);
1422         for (i = 0; i < size; i++) {
1423                 cas_page_t *page = cas_page_swap(cp, 0, i);
1424                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1425                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1426                                             CAS_BASE(RX_INDEX_RING, 0));
1427         }
1428
1429         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1430         cp->rx_last[0] = 0;
1431         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1432 }
1433
1434 static void cas_clean_rxcs(struct cas *cp)
1435 {
1436         int i, j;
1437
1438         /* take ownership of rx comp descriptors */
1439         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1440         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1441         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1442                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1443                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1444                         cas_rxc_init(rxc + j);
1445                 }
1446         }
1447 }
1448
1449 #if 0
1450 /* When we get a RX fifo overflow, the RX unit is probably hung
1451  * so we do the following.
1452  *
1453  * If any part of the reset goes wrong, we return 1 and that causes the
1454  * whole chip to be reset.
1455  */
1456 static int cas_rxmac_reset(struct cas *cp)
1457 {
1458         struct net_device *dev = cp->dev;
1459         int limit;
1460         u32 val;
1461
1462         /* First, reset MAC RX. */
1463         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1464         for (limit = 0; limit < STOP_TRIES; limit++) {
1465                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1466                         break;
1467                 udelay(10);
1468         }
1469         if (limit == STOP_TRIES) {
1470                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1471                 return 1;
1472         }
1473
1474         /* Second, disable RX DMA. */
1475         writel(0, cp->regs + REG_RX_CFG);
1476         for (limit = 0; limit < STOP_TRIES; limit++) {
1477                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1478                         break;
1479                 udelay(10);
1480         }
1481         if (limit == STOP_TRIES) {
1482                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1483                 return 1;
1484         }
1485
1486         mdelay(5);
1487
1488         /* Execute RX reset command. */
1489         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1490         for (limit = 0; limit < STOP_TRIES; limit++) {
1491                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1492                         break;
1493                 udelay(10);
1494         }
1495         if (limit == STOP_TRIES) {
1496                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1497                 return 1;
1498         }
1499
1500         /* reset driver rx state */
1501         cas_clean_rxds(cp);
1502         cas_clean_rxcs(cp);
1503
1504         /* Now, reprogram the rest of RX unit. */
1505         cas_init_rx_dma(cp);
1506
1507         /* re-enable */
1508         val = readl(cp->regs + REG_RX_CFG);
1509         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1510         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1511         val = readl(cp->regs + REG_MAC_RX_CFG);
1512         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1513         return 0;
1514 }
1515 #endif
1516
1517 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1518                                u32 status)
1519 {
1520         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1521
1522         if (!stat)
1523                 return 0;
1524
1525         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1526
1527         /* these are all rollovers */
1528         spin_lock(&cp->stat_lock[0]);
1529         if (stat & MAC_RX_ALIGN_ERR)
1530                 cp->net_stats[0].rx_frame_errors += 0x10000;
1531
1532         if (stat & MAC_RX_CRC_ERR)
1533                 cp->net_stats[0].rx_crc_errors += 0x10000;
1534
1535         if (stat & MAC_RX_LEN_ERR)
1536                 cp->net_stats[0].rx_length_errors += 0x10000;
1537
1538         if (stat & MAC_RX_OVERFLOW) {
1539                 cp->net_stats[0].rx_over_errors++;
1540                 cp->net_stats[0].rx_fifo_errors++;
1541         }
1542
1543         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1544          * events.
1545          */
1546         spin_unlock(&cp->stat_lock[0]);
1547         return 0;
1548 }
1549
1550 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1551                              u32 status)
1552 {
1553         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1554
1555         if (!stat)
1556                 return 0;
1557
1558         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1559                      "mac interrupt, stat: 0x%x\n", stat);
1560
1561         /* This interrupt is just for pause frame and pause
1562          * tracking.  It is useful for diagnostics and debug
1563          * but probably by default we will mask these events.
1564          */
1565         if (stat & MAC_CTRL_PAUSE_STATE)
1566                 cp->pause_entered++;
1567
1568         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1569                 cp->pause_last_time_recvd = (stat >> 16);
1570
1571         return 0;
1572 }
1573
1574
1575 /* Must be invoked under cp->lock. */
1576 static inline int cas_mdio_link_not_up(struct cas *cp)
1577 {
1578         u16 val;
1579
1580         switch (cp->lstate) {
1581         case link_force_ret:
1582                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1583                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1584                 cp->timer_ticks = 5;
1585                 cp->lstate = link_force_ok;
1586                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587                 break;
1588
1589         case link_aneg:
1590                 val = cas_phy_read(cp, MII_BMCR);
1591
1592                 /* Try forced modes. we try things in the following order:
1593                  * 1000 full -> 100 full/half -> 10 half
1594                  */
1595                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1596                 val |= BMCR_FULLDPLX;
1597                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1598                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1599                 cas_phy_write(cp, MII_BMCR, val);
1600                 cp->timer_ticks = 5;
1601                 cp->lstate = link_force_try;
1602                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1603                 break;
1604
1605         case link_force_try:
1606                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1607                 val = cas_phy_read(cp, MII_BMCR);
1608                 cp->timer_ticks = 5;
1609                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1610                         val &= ~CAS_BMCR_SPEED1000;
1611                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1612                         cas_phy_write(cp, MII_BMCR, val);
1613                         break;
1614                 }
1615
1616                 if (val & BMCR_SPEED100) {
1617                         if (val & BMCR_FULLDPLX) /* fd failed */
1618                                 val &= ~BMCR_FULLDPLX;
1619                         else { /* 100Mbps failed */
1620                                 val &= ~BMCR_SPEED100;
1621                         }
1622                         cas_phy_write(cp, MII_BMCR, val);
1623                         break;
1624                 }
1625         default:
1626                 break;
1627         }
1628         return 0;
1629 }
1630
1631
1632 /* must be invoked with cp->lock held */
1633 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1634 {
1635         int restart;
1636
1637         if (bmsr & BMSR_LSTATUS) {
1638                 /* Ok, here we got a link. If we had it due to a forced
1639                  * fallback, and we were configured for autoneg, we
1640                  * retry a short autoneg pass. If you know your hub is
1641                  * broken, use ethtool ;)
1642                  */
1643                 if ((cp->lstate == link_force_try) &&
1644                     (cp->link_cntl & BMCR_ANENABLE)) {
1645                         cp->lstate = link_force_ret;
1646                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1647                         cas_mif_poll(cp, 0);
1648                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1649                         cp->timer_ticks = 5;
1650                         if (cp->opened)
1651                                 netif_info(cp, link, cp->dev,
1652                                            "Got link after fallback, retrying autoneg once...\n");
1653                         cas_phy_write(cp, MII_BMCR,
1654                                       cp->link_fcntl | BMCR_ANENABLE |
1655                                       BMCR_ANRESTART);
1656                         cas_mif_poll(cp, 1);
1657
1658                 } else if (cp->lstate != link_up) {
1659                         cp->lstate = link_up;
1660                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1661
1662                         if (cp->opened) {
1663                                 cas_set_link_modes(cp);
1664                                 netif_carrier_on(cp->dev);
1665                         }
1666                 }
1667                 return 0;
1668         }
1669
1670         /* link not up. if the link was previously up, we restart the
1671          * whole process
1672          */
1673         restart = 0;
1674         if (cp->lstate == link_up) {
1675                 cp->lstate = link_down;
1676                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1677
1678                 netif_carrier_off(cp->dev);
1679                 if (cp->opened)
1680                         netif_info(cp, link, cp->dev, "Link down\n");
1681                 restart = 1;
1682
1683         } else if (++cp->timer_ticks > 10)
1684                 cas_mdio_link_not_up(cp);
1685
1686         return restart;
1687 }
1688
1689 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1690                              u32 status)
1691 {
1692         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1693         u16 bmsr;
1694
1695         /* check for a link change */
1696         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1697                 return 0;
1698
1699         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1700         return cas_mii_link_check(cp, bmsr);
1701 }
1702
1703 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1704                              u32 status)
1705 {
1706         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1707
1708         if (!stat)
1709                 return 0;
1710
1711         netdev_err(dev, "PCI error [%04x:%04x]",
1712                    stat, readl(cp->regs + REG_BIM_DIAG));
1713
1714         /* cassini+ has this reserved */
1715         if ((stat & PCI_ERR_BADACK) &&
1716             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1717                 pr_cont(" <No ACK64# during ABS64 cycle>");
1718
1719         if (stat & PCI_ERR_DTRTO)
1720                 pr_cont(" <Delayed transaction timeout>");
1721         if (stat & PCI_ERR_OTHER)
1722                 pr_cont(" <other>");
1723         if (stat & PCI_ERR_BIM_DMA_WRITE)
1724                 pr_cont(" <BIM DMA 0 write req>");
1725         if (stat & PCI_ERR_BIM_DMA_READ)
1726                 pr_cont(" <BIM DMA 0 read req>");
1727         pr_cont("\n");
1728
1729         if (stat & PCI_ERR_OTHER) {
1730                 u16 cfg;
1731
1732                 /* Interrogate PCI config space for the
1733                  * true cause.
1734                  */
1735                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1736                 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1737                 if (cfg & PCI_STATUS_PARITY)
1738                         netdev_err(dev, "PCI parity error detected\n");
1739                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1740                         netdev_err(dev, "PCI target abort\n");
1741                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1742                         netdev_err(dev, "PCI master acks target abort\n");
1743                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1744                         netdev_err(dev, "PCI master abort\n");
1745                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1746                         netdev_err(dev, "PCI system error SERR#\n");
1747                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1748                         netdev_err(dev, "PCI parity error\n");
1749
1750                 /* Write the error bits back to clear them. */
1751                 cfg &= (PCI_STATUS_PARITY |
1752                         PCI_STATUS_SIG_TARGET_ABORT |
1753                         PCI_STATUS_REC_TARGET_ABORT |
1754                         PCI_STATUS_REC_MASTER_ABORT |
1755                         PCI_STATUS_SIG_SYSTEM_ERROR |
1756                         PCI_STATUS_DETECTED_PARITY);
1757                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1758         }
1759
1760         /* For all PCI errors, we should reset the chip. */
1761         return 1;
1762 }
1763
1764 /* All non-normal interrupt conditions get serviced here.
1765  * Returns non-zero if we should just exit the interrupt
1766  * handler right now (ie. if we reset the card which invalidates
1767  * all of the other original irq status bits).
1768  */
1769 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1770                             u32 status)
1771 {
1772         if (status & INTR_RX_TAG_ERROR) {
1773                 /* corrupt RX tag framing */
1774                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1775                              "corrupt rx tag framing\n");
1776                 spin_lock(&cp->stat_lock[0]);
1777                 cp->net_stats[0].rx_errors++;
1778                 spin_unlock(&cp->stat_lock[0]);
1779                 goto do_reset;
1780         }
1781
1782         if (status & INTR_RX_LEN_MISMATCH) {
1783                 /* length mismatch. */
1784                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1785                              "length mismatch for rx frame\n");
1786                 spin_lock(&cp->stat_lock[0]);
1787                 cp->net_stats[0].rx_errors++;
1788                 spin_unlock(&cp->stat_lock[0]);
1789                 goto do_reset;
1790         }
1791
1792         if (status & INTR_PCS_STATUS) {
1793                 if (cas_pcs_interrupt(dev, cp, status))
1794                         goto do_reset;
1795         }
1796
1797         if (status & INTR_TX_MAC_STATUS) {
1798                 if (cas_txmac_interrupt(dev, cp, status))
1799                         goto do_reset;
1800         }
1801
1802         if (status & INTR_RX_MAC_STATUS) {
1803                 if (cas_rxmac_interrupt(dev, cp, status))
1804                         goto do_reset;
1805         }
1806
1807         if (status & INTR_MAC_CTRL_STATUS) {
1808                 if (cas_mac_interrupt(dev, cp, status))
1809                         goto do_reset;
1810         }
1811
1812         if (status & INTR_MIF_STATUS) {
1813                 if (cas_mif_interrupt(dev, cp, status))
1814                         goto do_reset;
1815         }
1816
1817         if (status & INTR_PCI_ERROR_STATUS) {
1818                 if (cas_pci_interrupt(dev, cp, status))
1819                         goto do_reset;
1820         }
1821         return 0;
1822
1823 do_reset:
1824 #if 1
1825         atomic_inc(&cp->reset_task_pending);
1826         atomic_inc(&cp->reset_task_pending_all);
1827         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1828         schedule_work(&cp->reset_task);
1829 #else
1830         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1831         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1832         schedule_work(&cp->reset_task);
1833 #endif
1834         return 1;
1835 }
1836
1837 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1838  *       determining whether to do a netif_stop/wakeup
1839  */
1840 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1841 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1842 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1843                                   const int len)
1844 {
1845         unsigned long off = addr + len;
1846
1847         if (CAS_TABORT(cp) == 1)
1848                 return 0;
1849         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1850                 return 0;
1851         return TX_TARGET_ABORT_LEN;
1852 }
1853
1854 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1855 {
1856         struct cas_tx_desc *txds;
1857         struct sk_buff **skbs;
1858         struct net_device *dev = cp->dev;
1859         int entry, count;
1860
1861         spin_lock(&cp->tx_lock[ring]);
1862         txds = cp->init_txds[ring];
1863         skbs = cp->tx_skbs[ring];
1864         entry = cp->tx_old[ring];
1865
1866         count = TX_BUFF_COUNT(ring, entry, limit);
1867         while (entry != limit) {
1868                 struct sk_buff *skb = skbs[entry];
1869                 dma_addr_t daddr;
1870                 u32 dlen;
1871                 int frag;
1872
1873                 if (!skb) {
1874                         /* this should never occur */
1875                         entry = TX_DESC_NEXT(ring, entry);
1876                         continue;
1877                 }
1878
1879                 /* however, we might get only a partial skb release. */
1880                 count -= skb_shinfo(skb)->nr_frags +
1881                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1882                 if (count < 0)
1883                         break;
1884
1885                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1886                              "tx[%d] done, slot %d\n", ring, entry);
1887
1888                 skbs[entry] = NULL;
1889                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1890
1891                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1892                         struct cas_tx_desc *txd = txds + entry;
1893
1894                         daddr = le64_to_cpu(txd->buffer);
1895                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1896                                        le64_to_cpu(txd->control));
1897                         pci_unmap_page(cp->pdev, daddr, dlen,
1898                                        PCI_DMA_TODEVICE);
1899                         entry = TX_DESC_NEXT(ring, entry);
1900
1901                         /* tiny buffer may follow */
1902                         if (cp->tx_tiny_use[ring][entry].used) {
1903                                 cp->tx_tiny_use[ring][entry].used = 0;
1904                                 entry = TX_DESC_NEXT(ring, entry);
1905                         }
1906                 }
1907
1908                 spin_lock(&cp->stat_lock[ring]);
1909                 cp->net_stats[ring].tx_packets++;
1910                 cp->net_stats[ring].tx_bytes += skb->len;
1911                 spin_unlock(&cp->stat_lock[ring]);
1912                 dev_kfree_skb_irq(skb);
1913         }
1914         cp->tx_old[ring] = entry;
1915
1916         /* this is wrong for multiple tx rings. the net device needs
1917          * multiple queues for this to do the right thing.  we wait
1918          * for 2*packets to be available when using tiny buffers
1919          */
1920         if (netif_queue_stopped(dev) &&
1921             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1922                 netif_wake_queue(dev);
1923         spin_unlock(&cp->tx_lock[ring]);
1924 }
1925
1926 static void cas_tx(struct net_device *dev, struct cas *cp,
1927                    u32 status)
1928 {
1929         int limit, ring;
1930 #ifdef USE_TX_COMPWB
1931         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1932 #endif
1933         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1934                      "tx interrupt, status: 0x%x, %llx\n",
1935                      status, (unsigned long long)compwb);
1936         /* process all the rings */
1937         for (ring = 0; ring < N_TX_RINGS; ring++) {
1938 #ifdef USE_TX_COMPWB
1939                 /* use the completion writeback registers */
1940                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1941                         CAS_VAL(TX_COMPWB_LSB, compwb);
1942                 compwb = TX_COMPWB_NEXT(compwb);
1943 #else
1944                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1945 #endif
1946                 if (cp->tx_old[ring] != limit)
1947                         cas_tx_ringN(cp, ring, limit);
1948         }
1949 }
1950
1951
1952 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1953                               int entry, const u64 *words,
1954                               struct sk_buff **skbref)
1955 {
1956         int dlen, hlen, len, i, alloclen;
1957         int off, swivel = RX_SWIVEL_OFF_VAL;
1958         struct cas_page *page;
1959         struct sk_buff *skb;
1960         void *addr, *crcaddr;
1961         __sum16 csum;
1962         char *p;
1963
1964         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1965         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1966         len  = hlen + dlen;
1967
1968         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1969                 alloclen = len;
1970         else
1971                 alloclen = max(hlen, RX_COPY_MIN);
1972
1973         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1974         if (skb == NULL)
1975                 return -1;
1976
1977         *skbref = skb;
1978         skb_reserve(skb, swivel);
1979
1980         p = skb->data;
1981         addr = crcaddr = NULL;
1982         if (hlen) { /* always copy header pages */
1983                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1984                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1985                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1986                         swivel;
1987
1988                 i = hlen;
1989                 if (!dlen) /* attach FCS */
1990                         i += cp->crc_size;
1991                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1992                                     PCI_DMA_FROMDEVICE);
1993                 addr = cas_page_map(page->buffer);
1994                 memcpy(p, addr + off, i);
1995                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1996                                     PCI_DMA_FROMDEVICE);
1997                 cas_page_unmap(addr);
1998                 RX_USED_ADD(page, 0x100);
1999                 p += hlen;
2000                 swivel = 0;
2001         }
2002
2003
2004         if (alloclen < (hlen + dlen)) {
2005                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2006
2007                 /* normal or jumbo packets. we use frags */
2008                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2009                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2010                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2011
2012                 hlen = min(cp->page_size - off, dlen);
2013                 if (hlen < 0) {
2014                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2015                                      "rx page overflow: %d\n", hlen);
2016                         dev_kfree_skb_irq(skb);
2017                         return -1;
2018                 }
2019                 i = hlen;
2020                 if (i == dlen)  /* attach FCS */
2021                         i += cp->crc_size;
2022                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2023                                     PCI_DMA_FROMDEVICE);
2024
2025                 /* make sure we always copy a header */
2026                 swivel = 0;
2027                 if (p == (char *) skb->data) { /* not split */
2028                         addr = cas_page_map(page->buffer);
2029                         memcpy(p, addr + off, RX_COPY_MIN);
2030                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2031                                         PCI_DMA_FROMDEVICE);
2032                         cas_page_unmap(addr);
2033                         off += RX_COPY_MIN;
2034                         swivel = RX_COPY_MIN;
2035                         RX_USED_ADD(page, cp->mtu_stride);
2036                 } else {
2037                         RX_USED_ADD(page, hlen);
2038                 }
2039                 skb_put(skb, alloclen);
2040
2041                 skb_shinfo(skb)->nr_frags++;
2042                 skb->data_len += hlen - swivel;
2043                 skb->truesize += hlen - swivel;
2044                 skb->len      += hlen - swivel;
2045
2046                 __skb_frag_set_page(frag, page->buffer);
2047                 __skb_frag_ref(frag);
2048                 frag->page_offset = off;
2049                 skb_frag_size_set(frag, hlen - swivel);
2050
2051                 /* any more data? */
2052                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2053                         hlen = dlen;
2054                         off = 0;
2055
2056                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2057                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2058                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2059                                             hlen + cp->crc_size,
2060                                             PCI_DMA_FROMDEVICE);
2061                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2062                                             hlen + cp->crc_size,
2063                                             PCI_DMA_FROMDEVICE);
2064
2065                         skb_shinfo(skb)->nr_frags++;
2066                         skb->data_len += hlen;
2067                         skb->len      += hlen;
2068                         frag++;
2069
2070                         __skb_frag_set_page(frag, page->buffer);
2071                         __skb_frag_ref(frag);
2072                         frag->page_offset = 0;
2073                         skb_frag_size_set(frag, hlen);
2074                         RX_USED_ADD(page, hlen + cp->crc_size);
2075                 }
2076
2077                 if (cp->crc_size) {
2078                         addr = cas_page_map(page->buffer);
2079                         crcaddr  = addr + off + hlen;
2080                 }
2081
2082         } else {
2083                 /* copying packet */
2084                 if (!dlen)
2085                         goto end_copy_pkt;
2086
2087                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2088                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2089                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2090                 hlen = min(cp->page_size - off, dlen);
2091                 if (hlen < 0) {
2092                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2093                                      "rx page overflow: %d\n", hlen);
2094                         dev_kfree_skb_irq(skb);
2095                         return -1;
2096                 }
2097                 i = hlen;
2098                 if (i == dlen) /* attach FCS */
2099                         i += cp->crc_size;
2100                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2101                                     PCI_DMA_FROMDEVICE);
2102                 addr = cas_page_map(page->buffer);
2103                 memcpy(p, addr + off, i);
2104                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2105                                     PCI_DMA_FROMDEVICE);
2106                 cas_page_unmap(addr);
2107                 if (p == (char *) skb->data) /* not split */
2108                         RX_USED_ADD(page, cp->mtu_stride);
2109                 else
2110                         RX_USED_ADD(page, i);
2111
2112                 /* any more data? */
2113                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2114                         p += hlen;
2115                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2116                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2117                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2118                                             dlen + cp->crc_size,
2119                                             PCI_DMA_FROMDEVICE);
2120                         addr = cas_page_map(page->buffer);
2121                         memcpy(p, addr, dlen + cp->crc_size);
2122                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2123                                             dlen + cp->crc_size,
2124                                             PCI_DMA_FROMDEVICE);
2125                         cas_page_unmap(addr);
2126                         RX_USED_ADD(page, dlen + cp->crc_size);
2127                 }
2128 end_copy_pkt:
2129                 if (cp->crc_size) {
2130                         addr    = NULL;
2131                         crcaddr = skb->data + alloclen;
2132                 }
2133                 skb_put(skb, alloclen);
2134         }
2135
2136         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2137         if (cp->crc_size) {
2138                 /* checksum includes FCS. strip it out. */
2139                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2140                                               csum_unfold(csum)));
2141                 if (addr)
2142                         cas_page_unmap(addr);
2143         }
2144         skb->protocol = eth_type_trans(skb, cp->dev);
2145         if (skb->protocol == htons(ETH_P_IP)) {
2146                 skb->csum = csum_unfold(~csum);
2147                 skb->ip_summed = CHECKSUM_COMPLETE;
2148         } else
2149                 skb_checksum_none_assert(skb);
2150         return len;
2151 }
2152
2153
2154 /* we can handle up to 64 rx flows at a time. we do the same thing
2155  * as nonreassm except that we batch up the buffers.
2156  * NOTE: we currently just treat each flow as a bunch of packets that
2157  *       we pass up. a better way would be to coalesce the packets
2158  *       into a jumbo packet. to do that, we need to do the following:
2159  *       1) the first packet will have a clean split between header and
2160  *          data. save both.
2161  *       2) each time the next flow packet comes in, extend the
2162  *          data length and merge the checksums.
2163  *       3) on flow release, fix up the header.
2164  *       4) make sure the higher layer doesn't care.
2165  * because packets get coalesced, we shouldn't run into fragment count
2166  * issues.
2167  */
2168 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2169                                    struct sk_buff *skb)
2170 {
2171         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2172         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2173
2174         /* this is protected at a higher layer, so no need to
2175          * do any additional locking here. stick the buffer
2176          * at the end.
2177          */
2178         __skb_queue_tail(flow, skb);
2179         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2180                 while ((skb = __skb_dequeue(flow))) {
2181                         cas_skb_release(skb);
2182                 }
2183         }
2184 }
2185
2186 /* put rx descriptor back on ring. if a buffer is in use by a higher
2187  * layer, this will need to put in a replacement.
2188  */
2189 static void cas_post_page(struct cas *cp, const int ring, const int index)
2190 {
2191         cas_page_t *new;
2192         int entry;
2193
2194         entry = cp->rx_old[ring];
2195
2196         new = cas_page_swap(cp, ring, index);
2197         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2198         cp->init_rxds[ring][entry].index  =
2199                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2200                             CAS_BASE(RX_INDEX_RING, ring));
2201
2202         entry = RX_DESC_ENTRY(ring, entry + 1);
2203         cp->rx_old[ring] = entry;
2204
2205         if (entry % 4)
2206                 return;
2207
2208         if (ring == 0)
2209                 writel(entry, cp->regs + REG_RX_KICK);
2210         else if ((N_RX_DESC_RINGS > 1) &&
2211                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2212                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2213 }
2214
2215
2216 /* only when things are bad */
2217 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2218 {
2219         unsigned int entry, last, count, released;
2220         int cluster;
2221         cas_page_t **page = cp->rx_pages[ring];
2222
2223         entry = cp->rx_old[ring];
2224
2225         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2226                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2227
2228         cluster = -1;
2229         count = entry & 0x3;
2230         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2231         released = 0;
2232         while (entry != last) {
2233                 /* make a new buffer if it's still in use */
2234                 if (page_count(page[entry]->buffer) > 1) {
2235                         cas_page_t *new = cas_page_dequeue(cp);
2236                         if (!new) {
2237                                 /* let the timer know that we need to
2238                                  * do this again
2239                                  */
2240                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2241                                 if (!timer_pending(&cp->link_timer))
2242                                         mod_timer(&cp->link_timer, jiffies +
2243                                                   CAS_LINK_FAST_TIMEOUT);
2244                                 cp->rx_old[ring]  = entry;
2245                                 cp->rx_last[ring] = num ? num - released : 0;
2246                                 return -ENOMEM;
2247                         }
2248                         spin_lock(&cp->rx_inuse_lock);
2249                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2250                         spin_unlock(&cp->rx_inuse_lock);
2251                         cp->init_rxds[ring][entry].buffer =
2252                                 cpu_to_le64(new->dma_addr);
2253                         page[entry] = new;
2254
2255                 }
2256
2257                 if (++count == 4) {
2258                         cluster = entry;
2259                         count = 0;
2260                 }
2261                 released++;
2262                 entry = RX_DESC_ENTRY(ring, entry + 1);
2263         }
2264         cp->rx_old[ring] = entry;
2265
2266         if (cluster < 0)
2267                 return 0;
2268
2269         if (ring == 0)
2270                 writel(cluster, cp->regs + REG_RX_KICK);
2271         else if ((N_RX_DESC_RINGS > 1) &&
2272                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2273                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2274         return 0;
2275 }
2276
2277
2278 /* process a completion ring. packets are set up in three basic ways:
2279  * small packets: should be copied header + data in single buffer.
2280  * large packets: header and data in a single buffer.
2281  * split packets: header in a separate buffer from data.
2282  *                data may be in multiple pages. data may be > 256
2283  *                bytes but in a single page.
2284  *
2285  * NOTE: RX page posting is done in this routine as well. while there's
2286  *       the capability of using multiple RX completion rings, it isn't
2287  *       really worthwhile due to the fact that the page posting will
2288  *       force serialization on the single descriptor ring.
2289  */
2290 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2291 {
2292         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2293         int entry, drops;
2294         int npackets = 0;
2295
2296         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2297                      "rx[%d] interrupt, done: %d/%d\n",
2298                      ring,
2299                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2300
2301         entry = cp->rx_new[ring];
2302         drops = 0;
2303         while (1) {
2304                 struct cas_rx_comp *rxc = rxcs + entry;
2305                 struct sk_buff *uninitialized_var(skb);
2306                 int type, len;
2307                 u64 words[4];
2308                 int i, dring;
2309
2310                 words[0] = le64_to_cpu(rxc->word1);
2311                 words[1] = le64_to_cpu(rxc->word2);
2312                 words[2] = le64_to_cpu(rxc->word3);
2313                 words[3] = le64_to_cpu(rxc->word4);
2314
2315                 /* don't touch if still owned by hw */
2316                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2317                 if (type == 0)
2318                         break;
2319
2320                 /* hw hasn't cleared the zero bit yet */
2321                 if (words[3] & RX_COMP4_ZERO) {
2322                         break;
2323                 }
2324
2325                 /* get info on the packet */
2326                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2327                         spin_lock(&cp->stat_lock[ring]);
2328                         cp->net_stats[ring].rx_errors++;
2329                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2330                                 cp->net_stats[ring].rx_length_errors++;
2331                         if (words[3] & RX_COMP4_BAD)
2332                                 cp->net_stats[ring].rx_crc_errors++;
2333                         spin_unlock(&cp->stat_lock[ring]);
2334
2335                         /* We'll just return it to Cassini. */
2336                 drop_it:
2337                         spin_lock(&cp->stat_lock[ring]);
2338                         ++cp->net_stats[ring].rx_dropped;
2339                         spin_unlock(&cp->stat_lock[ring]);
2340                         goto next;
2341                 }
2342
2343                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2344                 if (len < 0) {
2345                         ++drops;
2346                         goto drop_it;
2347                 }
2348
2349                 /* see if it's a flow re-assembly or not. the driver
2350                  * itself handles release back up.
2351                  */
2352                 if (RX_DONT_BATCH || (type == 0x2)) {
2353                         /* non-reassm: these always get released */
2354                         cas_skb_release(skb);
2355                 } else {
2356                         cas_rx_flow_pkt(cp, words, skb);
2357                 }
2358
2359                 spin_lock(&cp->stat_lock[ring]);
2360                 cp->net_stats[ring].rx_packets++;
2361                 cp->net_stats[ring].rx_bytes += len;
2362                 spin_unlock(&cp->stat_lock[ring]);
2363
2364         next:
2365                 npackets++;
2366
2367                 /* should it be released? */
2368                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2369                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2370                         dring = CAS_VAL(RX_INDEX_RING, i);
2371                         i = CAS_VAL(RX_INDEX_NUM, i);
2372                         cas_post_page(cp, dring, i);
2373                 }
2374
2375                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2376                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2377                         dring = CAS_VAL(RX_INDEX_RING, i);
2378                         i = CAS_VAL(RX_INDEX_NUM, i);
2379                         cas_post_page(cp, dring, i);
2380                 }
2381
2382                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2383                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2384                         dring = CAS_VAL(RX_INDEX_RING, i);
2385                         i = CAS_VAL(RX_INDEX_NUM, i);
2386                         cas_post_page(cp, dring, i);
2387                 }
2388
2389                 /* skip to the next entry */
2390                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2391                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2392 #ifdef USE_NAPI
2393                 if (budget && (npackets >= budget))
2394                         break;
2395 #endif
2396         }
2397         cp->rx_new[ring] = entry;
2398
2399         if (drops)
2400                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2401         return npackets;
2402 }
2403
2404
2405 /* put completion entries back on the ring */
2406 static void cas_post_rxcs_ringN(struct net_device *dev,
2407                                 struct cas *cp, int ring)
2408 {
2409         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2410         int last, entry;
2411
2412         last = cp->rx_cur[ring];
2413         entry = cp->rx_new[ring];
2414         netif_printk(cp, intr, KERN_DEBUG, dev,
2415                      "rxc[%d] interrupt, done: %d/%d\n",
2416                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2417
2418         /* zero and re-mark descriptors */
2419         while (last != entry) {
2420                 cas_rxc_init(rxc + last);
2421                 last = RX_COMP_ENTRY(ring, last + 1);
2422         }
2423         cp->rx_cur[ring] = last;
2424
2425         if (ring == 0)
2426                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2427         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2428                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2429 }
2430
2431
2432
2433 /* cassini can use all four PCI interrupts for the completion ring.
2434  * rings 3 and 4 are identical
2435  */
2436 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2437 static inline void cas_handle_irqN(struct net_device *dev,
2438                                    struct cas *cp, const u32 status,
2439                                    const int ring)
2440 {
2441         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2442                 cas_post_rxcs_ringN(dev, cp, ring);
2443 }
2444
2445 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2446 {
2447         struct net_device *dev = dev_id;
2448         struct cas *cp = netdev_priv(dev);
2449         unsigned long flags;
2450         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2451         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2452
2453         /* check for shared irq */
2454         if (status == 0)
2455                 return IRQ_NONE;
2456
2457         spin_lock_irqsave(&cp->lock, flags);
2458         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2459 #ifdef USE_NAPI
2460                 cas_mask_intr(cp);
2461                 napi_schedule(&cp->napi);
2462 #else
2463                 cas_rx_ringN(cp, ring, 0);
2464 #endif
2465                 status &= ~INTR_RX_DONE_ALT;
2466         }
2467
2468         if (status)
2469                 cas_handle_irqN(dev, cp, status, ring);
2470         spin_unlock_irqrestore(&cp->lock, flags);
2471         return IRQ_HANDLED;
2472 }
2473 #endif
2474
2475 #ifdef USE_PCI_INTB
2476 /* everything but rx packets */
2477 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2478 {
2479         if (status & INTR_RX_BUF_UNAVAIL_1) {
2480                 /* Frame arrived, no free RX buffers available.
2481                  * NOTE: we can get this on a link transition. */
2482                 cas_post_rxds_ringN(cp, 1, 0);
2483                 spin_lock(&cp->stat_lock[1]);
2484                 cp->net_stats[1].rx_dropped++;
2485                 spin_unlock(&cp->stat_lock[1]);
2486         }
2487
2488         if (status & INTR_RX_BUF_AE_1)
2489                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2490                                     RX_AE_FREEN_VAL(1));
2491
2492         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493                 cas_post_rxcs_ringN(cp, 1);
2494 }
2495
2496 /* ring 2 handles a few more events than 3 and 4 */
2497 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2498 {
2499         struct net_device *dev = dev_id;
2500         struct cas *cp = netdev_priv(dev);
2501         unsigned long flags;
2502         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2503
2504         /* check for shared interrupt */
2505         if (status == 0)
2506                 return IRQ_NONE;
2507
2508         spin_lock_irqsave(&cp->lock, flags);
2509         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2510 #ifdef USE_NAPI
2511                 cas_mask_intr(cp);
2512                 napi_schedule(&cp->napi);
2513 #else
2514                 cas_rx_ringN(cp, 1, 0);
2515 #endif
2516                 status &= ~INTR_RX_DONE_ALT;
2517         }
2518         if (status)
2519                 cas_handle_irq1(cp, status);
2520         spin_unlock_irqrestore(&cp->lock, flags);
2521         return IRQ_HANDLED;
2522 }
2523 #endif
2524
2525 static inline void cas_handle_irq(struct net_device *dev,
2526                                   struct cas *cp, const u32 status)
2527 {
2528         /* housekeeping interrupts */
2529         if (status & INTR_ERROR_MASK)
2530                 cas_abnormal_irq(dev, cp, status);
2531
2532         if (status & INTR_RX_BUF_UNAVAIL) {
2533                 /* Frame arrived, no free RX buffers available.
2534                  * NOTE: we can get this on a link transition.
2535                  */
2536                 cas_post_rxds_ringN(cp, 0, 0);
2537                 spin_lock(&cp->stat_lock[0]);
2538                 cp->net_stats[0].rx_dropped++;
2539                 spin_unlock(&cp->stat_lock[0]);
2540         } else if (status & INTR_RX_BUF_AE) {
2541                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2542                                     RX_AE_FREEN_VAL(0));
2543         }
2544
2545         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2546                 cas_post_rxcs_ringN(dev, cp, 0);
2547 }
2548
2549 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2550 {
2551         struct net_device *dev = dev_id;
2552         struct cas *cp = netdev_priv(dev);
2553         unsigned long flags;
2554         u32 status = readl(cp->regs + REG_INTR_STATUS);
2555
2556         if (status == 0)
2557                 return IRQ_NONE;
2558
2559         spin_lock_irqsave(&cp->lock, flags);
2560         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2561                 cas_tx(dev, cp, status);
2562                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2563         }
2564
2565         if (status & INTR_RX_DONE) {
2566 #ifdef USE_NAPI
2567                 cas_mask_intr(cp);
2568                 napi_schedule(&cp->napi);
2569 #else
2570                 cas_rx_ringN(cp, 0, 0);
2571 #endif
2572                 status &= ~INTR_RX_DONE;
2573         }
2574
2575         if (status)
2576                 cas_handle_irq(dev, cp, status);
2577         spin_unlock_irqrestore(&cp->lock, flags);
2578         return IRQ_HANDLED;
2579 }
2580
2581
2582 #ifdef USE_NAPI
2583 static int cas_poll(struct napi_struct *napi, int budget)
2584 {
2585         struct cas *cp = container_of(napi, struct cas, napi);
2586         struct net_device *dev = cp->dev;
2587         int i, enable_intr, credits;
2588         u32 status = readl(cp->regs + REG_INTR_STATUS);
2589         unsigned long flags;
2590
2591         spin_lock_irqsave(&cp->lock, flags);
2592         cas_tx(dev, cp, status);
2593         spin_unlock_irqrestore(&cp->lock, flags);
2594
2595         /* NAPI rx packets. we spread the credits across all of the
2596          * rxc rings
2597          *
2598          * to make sure we're fair with the work we loop through each
2599          * ring N_RX_COMP_RING times with a request of
2600          * budget / N_RX_COMP_RINGS
2601          */
2602         enable_intr = 1;
2603         credits = 0;
2604         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2605                 int j;
2606                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2607                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2608                         if (credits >= budget) {
2609                                 enable_intr = 0;
2610                                 goto rx_comp;
2611                         }
2612                 }
2613         }
2614
2615 rx_comp:
2616         /* final rx completion */
2617         spin_lock_irqsave(&cp->lock, flags);
2618         if (status)
2619                 cas_handle_irq(dev, cp, status);
2620
2621 #ifdef USE_PCI_INTB
2622         if (N_RX_COMP_RINGS > 1) {
2623                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2624                 if (status)
2625                         cas_handle_irq1(dev, cp, status);
2626         }
2627 #endif
2628
2629 #ifdef USE_PCI_INTC
2630         if (N_RX_COMP_RINGS > 2) {
2631                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2632                 if (status)
2633                         cas_handle_irqN(dev, cp, status, 2);
2634         }
2635 #endif
2636
2637 #ifdef USE_PCI_INTD
2638         if (N_RX_COMP_RINGS > 3) {
2639                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2640                 if (status)
2641                         cas_handle_irqN(dev, cp, status, 3);
2642         }
2643 #endif
2644         spin_unlock_irqrestore(&cp->lock, flags);
2645         if (enable_intr) {
2646                 napi_complete(napi);
2647                 cas_unmask_intr(cp);
2648         }
2649         return credits;
2650 }
2651 #endif
2652
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 static void cas_netpoll(struct net_device *dev)
2655 {
2656         struct cas *cp = netdev_priv(dev);
2657
2658         cas_disable_irq(cp, 0);
2659         cas_interrupt(cp->pdev->irq, dev);
2660         cas_enable_irq(cp, 0);
2661
2662 #ifdef USE_PCI_INTB
2663         if (N_RX_COMP_RINGS > 1) {
2664                 /* cas_interrupt1(); */
2665         }
2666 #endif
2667 #ifdef USE_PCI_INTC
2668         if (N_RX_COMP_RINGS > 2) {
2669                 /* cas_interruptN(); */
2670         }
2671 #endif
2672 #ifdef USE_PCI_INTD
2673         if (N_RX_COMP_RINGS > 3) {
2674                 /* cas_interruptN(); */
2675         }
2676 #endif
2677 }
2678 #endif
2679
2680 static void cas_tx_timeout(struct net_device *dev)
2681 {
2682         struct cas *cp = netdev_priv(dev);
2683
2684         netdev_err(dev, "transmit timed out, resetting\n");
2685         if (!cp->hw_running) {
2686                 netdev_err(dev, "hrm.. hw not running!\n");
2687                 return;
2688         }
2689
2690         netdev_err(dev, "MIF_STATE[%08x]\n",
2691                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2692
2693         netdev_err(dev, "MAC_STATE[%08x]\n",
2694                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2695
2696         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2697                    readl(cp->regs + REG_TX_CFG),
2698                    readl(cp->regs + REG_MAC_TX_STATUS),
2699                    readl(cp->regs + REG_MAC_TX_CFG),
2700                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2701                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2702                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2703                    readl(cp->regs + REG_TX_SM_1),
2704                    readl(cp->regs + REG_TX_SM_2));
2705
2706         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2707                    readl(cp->regs + REG_RX_CFG),
2708                    readl(cp->regs + REG_MAC_RX_STATUS),
2709                    readl(cp->regs + REG_MAC_RX_CFG));
2710
2711         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2712                    readl(cp->regs + REG_HP_STATE_MACHINE),
2713                    readl(cp->regs + REG_HP_STATUS0),
2714                    readl(cp->regs + REG_HP_STATUS1),
2715                    readl(cp->regs + REG_HP_STATUS2));
2716
2717 #if 1
2718         atomic_inc(&cp->reset_task_pending);
2719         atomic_inc(&cp->reset_task_pending_all);
2720         schedule_work(&cp->reset_task);
2721 #else
2722         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2723         schedule_work(&cp->reset_task);
2724 #endif
2725 }
2726
2727 static inline int cas_intme(int ring, int entry)
2728 {
2729         /* Algorithm: IRQ every 1/2 of descriptors. */
2730         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2731                 return 1;
2732         return 0;
2733 }
2734
2735
2736 static void cas_write_txd(struct cas *cp, int ring, int entry,
2737                           dma_addr_t mapping, int len, u64 ctrl, int last)
2738 {
2739         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2740
2741         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2742         if (cas_intme(ring, entry))
2743                 ctrl |= TX_DESC_INTME;
2744         if (last)
2745                 ctrl |= TX_DESC_EOF;
2746         txd->control = cpu_to_le64(ctrl);
2747         txd->buffer = cpu_to_le64(mapping);
2748 }
2749
2750 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2751                                 const int entry)
2752 {
2753         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2754 }
2755
2756 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2757                                      const int entry, const int tentry)
2758 {
2759         cp->tx_tiny_use[ring][tentry].nbufs++;
2760         cp->tx_tiny_use[ring][entry].used = 1;
2761         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2762 }
2763
2764 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2765                                     struct sk_buff *skb)
2766 {
2767         struct net_device *dev = cp->dev;
2768         int entry, nr_frags, frag, tabort, tentry;
2769         dma_addr_t mapping;
2770         unsigned long flags;
2771         u64 ctrl;
2772         u32 len;
2773
2774         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2775
2776         /* This is a hard error, log it. */
2777         if (TX_BUFFS_AVAIL(cp, ring) <=
2778             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2779                 netif_stop_queue(dev);
2780                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2781                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2782                 return 1;
2783         }
2784
2785         ctrl = 0;
2786         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2787                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2788                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2789
2790                 ctrl =  TX_DESC_CSUM_EN |
2791                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2792                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2793         }
2794
2795         entry = cp->tx_new[ring];
2796         cp->tx_skbs[ring][entry] = skb;
2797
2798         nr_frags = skb_shinfo(skb)->nr_frags;
2799         len = skb_headlen(skb);
2800         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2801                                offset_in_page(skb->data), len,
2802                                PCI_DMA_TODEVICE);
2803
2804         tentry = entry;
2805         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2806         if (unlikely(tabort)) {
2807                 /* NOTE: len is always >  tabort */
2808                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2809                               ctrl | TX_DESC_SOF, 0);
2810                 entry = TX_DESC_NEXT(ring, entry);
2811
2812                 skb_copy_from_linear_data_offset(skb, len - tabort,
2813                               tx_tiny_buf(cp, ring, entry), tabort);
2814                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2815                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2816                               (nr_frags == 0));
2817         } else {
2818                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2819                               TX_DESC_SOF, (nr_frags == 0));
2820         }
2821         entry = TX_DESC_NEXT(ring, entry);
2822
2823         for (frag = 0; frag < nr_frags; frag++) {
2824                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2825
2826                 len = skb_frag_size(fragp);
2827                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2828                                            DMA_TO_DEVICE);
2829
2830                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2831                 if (unlikely(tabort)) {
2832                         void *addr;
2833
2834                         /* NOTE: len is always > tabort */
2835                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2836                                       ctrl, 0);
2837                         entry = TX_DESC_NEXT(ring, entry);
2838
2839                         addr = cas_page_map(skb_frag_page(fragp));
2840                         memcpy(tx_tiny_buf(cp, ring, entry),
2841                                addr + fragp->page_offset + len - tabort,
2842                                tabort);
2843                         cas_page_unmap(addr);
2844                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2845                         len     = tabort;
2846                 }
2847
2848                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2849                               (frag + 1 == nr_frags));
2850                 entry = TX_DESC_NEXT(ring, entry);
2851         }
2852
2853         cp->tx_new[ring] = entry;
2854         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2855                 netif_stop_queue(dev);
2856
2857         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2858                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2859                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2860         writel(entry, cp->regs + REG_TX_KICKN(ring));
2861         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2862         return 0;
2863 }
2864
2865 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2866 {
2867         struct cas *cp = netdev_priv(dev);
2868
2869         /* this is only used as a load-balancing hint, so it doesn't
2870          * need to be SMP safe
2871          */
2872         static int ring;
2873
2874         if (skb_padto(skb, cp->min_frame_size))
2875                 return NETDEV_TX_OK;
2876
2877         /* XXX: we need some higher-level QoS hooks to steer packets to
2878          *      individual queues.
2879          */
2880         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2881                 return NETDEV_TX_BUSY;
2882         return NETDEV_TX_OK;
2883 }
2884
2885 static void cas_init_tx_dma(struct cas *cp)
2886 {
2887         u64 desc_dma = cp->block_dvma;
2888         unsigned long off;
2889         u32 val;
2890         int i;
2891
2892         /* set up tx completion writeback registers. must be 8-byte aligned */
2893 #ifdef USE_TX_COMPWB
2894         off = offsetof(struct cas_init_block, tx_compwb);
2895         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2896         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2897 #endif
2898
2899         /* enable completion writebacks, enable paced mode,
2900          * disable read pipe, and disable pre-interrupt compwbs
2901          */
2902         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2903                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2904                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2905                 TX_CFG_INTR_COMPWB_DIS;
2906
2907         /* write out tx ring info and tx desc bases */
2908         for (i = 0; i < MAX_TX_RINGS; i++) {
2909                 off = (unsigned long) cp->init_txds[i] -
2910                         (unsigned long) cp->init_block;
2911
2912                 val |= CAS_TX_RINGN_BASE(i);
2913                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2914                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2915                        REG_TX_DBN_LOW(i));
2916                 /* don't zero out the kick register here as the system
2917                  * will wedge
2918                  */
2919         }
2920         writel(val, cp->regs + REG_TX_CFG);
2921
2922         /* program max burst sizes. these numbers should be different
2923          * if doing QoS.
2924          */
2925 #ifdef USE_QOS
2926         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2927         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2928         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2929         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2930 #else
2931         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2933         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2934         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2935 #endif
2936 }
2937
2938 /* Must be invoked under cp->lock. */
2939 static inline void cas_init_dma(struct cas *cp)
2940 {
2941         cas_init_tx_dma(cp);
2942         cas_init_rx_dma(cp);
2943 }
2944
2945 static void cas_process_mc_list(struct cas *cp)
2946 {
2947         u16 hash_table[16];
2948         u32 crc;
2949         struct netdev_hw_addr *ha;
2950         int i = 1;
2951
2952         memset(hash_table, 0, sizeof(hash_table));
2953         netdev_for_each_mc_addr(ha, cp->dev) {
2954                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2955                         /* use the alternate mac address registers for the
2956                          * first 15 multicast addresses
2957                          */
2958                         writel((ha->addr[4] << 8) | ha->addr[5],
2959                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2960                         writel((ha->addr[2] << 8) | ha->addr[3],
2961                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2962                         writel((ha->addr[0] << 8) | ha->addr[1],
2963                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2964                         i++;
2965                 }
2966                 else {
2967                         /* use hw hash table for the next series of
2968                          * multicast addresses
2969                          */
2970                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2971                         crc >>= 24;
2972                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2973                 }
2974         }
2975         for (i = 0; i < 16; i++)
2976                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2977 }
2978
2979 /* Must be invoked under cp->lock. */
2980 static u32 cas_setup_multicast(struct cas *cp)
2981 {
2982         u32 rxcfg = 0;
2983         int i;
2984
2985         if (cp->dev->flags & IFF_PROMISC) {
2986                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2987
2988         } else if (cp->dev->flags & IFF_ALLMULTI) {
2989                 for (i=0; i < 16; i++)
2990                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2991                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2992
2993         } else {
2994                 cas_process_mc_list(cp);
2995                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996         }
2997
2998         return rxcfg;
2999 }
3000
3001 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3002 static void cas_clear_mac_err(struct cas *cp)
3003 {
3004         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3005         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3006         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3007         writel(0, cp->regs + REG_MAC_COLL_LATE);
3008         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3009         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3010         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3011         writel(0, cp->regs + REG_MAC_LEN_ERR);
3012         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3013         writel(0, cp->regs + REG_MAC_FCS_ERR);
3014         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3015 }
3016
3017
3018 static void cas_mac_reset(struct cas *cp)
3019 {
3020         int i;
3021
3022         /* do both TX and RX reset */
3023         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3024         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3025
3026         /* wait for TX */
3027         i = STOP_TRIES;
3028         while (i-- > 0) {
3029                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3030                         break;
3031                 udelay(10);
3032         }
3033
3034         /* wait for RX */
3035         i = STOP_TRIES;
3036         while (i-- > 0) {
3037                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3038                         break;
3039                 udelay(10);
3040         }
3041
3042         if (readl(cp->regs + REG_MAC_TX_RESET) |
3043             readl(cp->regs + REG_MAC_RX_RESET))
3044                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3045                            readl(cp->regs + REG_MAC_TX_RESET),
3046                            readl(cp->regs + REG_MAC_RX_RESET),
3047                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3048 }
3049
3050
3051 /* Must be invoked under cp->lock. */
3052 static void cas_init_mac(struct cas *cp)
3053 {
3054         unsigned char *e = &cp->dev->dev_addr[0];
3055         int i;
3056         cas_mac_reset(cp);
3057
3058         /* setup core arbitration weight register */
3059         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3060
3061         /* XXX Use pci_dma_burst_advice() */
3062 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3063         /* set the infinite burst register for chips that don't have
3064          * pci issues.
3065          */
3066         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3067                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3068 #endif
3069
3070         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3071
3072         writel(0x00, cp->regs + REG_MAC_IPG0);
3073         writel(0x08, cp->regs + REG_MAC_IPG1);
3074         writel(0x04, cp->regs + REG_MAC_IPG2);
3075
3076         /* change later for 802.3z */
3077         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3078
3079         /* min frame + FCS */
3080         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3081
3082         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3083          * specify the maximum frame size to prevent RX tag errors on
3084          * oversized frames.
3085          */
3086         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3087                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3088                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3089                cp->regs + REG_MAC_FRAMESIZE_MAX);
3090
3091         /* NOTE: crc_size is used as a surrogate for half-duplex.
3092          * workaround saturn half-duplex issue by increasing preamble
3093          * size to 65 bytes.
3094          */
3095         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3096                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3097         else
3098                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3099         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3100         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3101         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3102
3103         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3104
3105         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3106         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3107         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3108         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3109         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3110
3111         /* setup mac address in perfect filter array */
3112         for (i = 0; i < 45; i++)
3113                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3114
3115         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3116         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3117         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3118
3119         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3120         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3121         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3122
3123         cp->mac_rx_cfg = cas_setup_multicast(cp);
3124
3125         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3126         cas_clear_mac_err(cp);
3127         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3128
3129         /* Setup MAC interrupts.  We want to get all of the interesting
3130          * counter expiration events, but we do not want to hear about
3131          * normal rx/tx as the DMA engine tells us that.
3132          */
3133         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3134         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3135
3136         /* Don't enable even the PAUSE interrupts for now, we
3137          * make no use of those events other than to record them.
3138          */
3139         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3140 }
3141
3142 /* Must be invoked under cp->lock. */
3143 static void cas_init_pause_thresholds(struct cas *cp)
3144 {
3145         /* Calculate pause thresholds.  Setting the OFF threshold to the
3146          * full RX fifo size effectively disables PAUSE generation
3147          */
3148         if (cp->rx_fifo_size <= (2 * 1024)) {
3149                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3150         } else {
3151                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3152                 if (max_frame * 3 > cp->rx_fifo_size) {
3153                         cp->rx_pause_off = 7104;
3154                         cp->rx_pause_on  = 960;
3155                 } else {
3156                         int off = (cp->rx_fifo_size - (max_frame * 2));
3157                         int on = off - max_frame;
3158                         cp->rx_pause_off = off;
3159                         cp->rx_pause_on = on;
3160                 }
3161         }
3162 }
3163
3164 static int cas_vpd_match(const void __iomem *p, const char *str)
3165 {
3166         int len = strlen(str) + 1;
3167         int i;
3168
3169         for (i = 0; i < len; i++) {
3170                 if (readb(p + i) != str[i])
3171                         return 0;
3172         }
3173         return 1;
3174 }
3175
3176
3177 /* get the mac address by reading the vpd information in the rom.
3178  * also get the phy type and determine if there's an entropy generator.
3179  * NOTE: this is a bit convoluted for the following reasons:
3180  *  1) vpd info has order-dependent mac addresses for multinic cards
3181  *  2) the only way to determine the nic order is to use the slot
3182  *     number.
3183  *  3) fiber cards don't have bridges, so their slot numbers don't
3184  *     mean anything.
3185  *  4) we don't actually know we have a fiber card until after
3186  *     the mac addresses are parsed.
3187  */
3188 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3189                             const int offset)
3190 {
3191         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3192         void __iomem *base, *kstart;
3193         int i, len;
3194         int found = 0;
3195 #define VPD_FOUND_MAC        0x01
3196 #define VPD_FOUND_PHY        0x02
3197
3198         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3199         int mac_off  = 0;
3200
3201 #if defined(CONFIG_SPARC)
3202         const unsigned char *addr;
3203 #endif
3204
3205         /* give us access to the PROM */
3206         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3207                cp->regs + REG_BIM_LOCAL_DEV_EN);
3208
3209         /* check for an expansion rom */
3210         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3211                 goto use_random_mac_addr;
3212
3213         /* search for beginning of vpd */
3214         base = NULL;
3215         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3216                 /* check for PCIR */
3217                 if ((readb(p + i + 0) == 0x50) &&
3218                     (readb(p + i + 1) == 0x43) &&
3219                     (readb(p + i + 2) == 0x49) &&
3220                     (readb(p + i + 3) == 0x52)) {
3221                         base = p + (readb(p + i + 8) |
3222                                     (readb(p + i + 9) << 8));
3223                         break;
3224                 }
3225         }
3226
3227         if (!base || (readb(base) != 0x82))
3228                 goto use_random_mac_addr;
3229
3230         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3231         while (i < EXPANSION_ROM_SIZE) {
3232                 if (readb(base + i) != 0x90) /* no vpd found */
3233                         goto use_random_mac_addr;
3234
3235                 /* found a vpd field */
3236                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3237
3238                 /* extract keywords */
3239                 kstart = base + i + 3;
3240                 p = kstart;
3241                 while ((p - kstart) < len) {
3242                         int klen = readb(p + 2);
3243                         int j;
3244                         char type;
3245
3246                         p += 3;
3247
3248                         /* look for the following things:
3249                          * -- correct length == 29
3250                          * 3 (type) + 2 (size) +
3251                          * 18 (strlen("local-mac-address") + 1) +
3252                          * 6 (mac addr)
3253                          * -- VPD Instance 'I'
3254                          * -- VPD Type Bytes 'B'
3255                          * -- VPD data length == 6
3256                          * -- property string == local-mac-address
3257                          *
3258                          * -- correct length == 24
3259                          * 3 (type) + 2 (size) +
3260                          * 12 (strlen("entropy-dev") + 1) +
3261                          * 7 (strlen("vms110") + 1)
3262                          * -- VPD Instance 'I'
3263                          * -- VPD Type String 'B'
3264                          * -- VPD data length == 7
3265                          * -- property string == entropy-dev
3266                          *
3267                          * -- correct length == 18
3268                          * 3 (type) + 2 (size) +
3269                          * 9 (strlen("phy-type") + 1) +
3270                          * 4 (strlen("pcs") + 1)
3271                          * -- VPD Instance 'I'
3272                          * -- VPD Type String 'S'
3273                          * -- VPD data length == 4
3274                          * -- property string == phy-type
3275                          *
3276                          * -- correct length == 23
3277                          * 3 (type) + 2 (size) +
3278                          * 14 (strlen("phy-interface") + 1) +
3279                          * 4 (strlen("pcs") + 1)
3280                          * -- VPD Instance 'I'
3281                          * -- VPD Type String 'S'
3282                          * -- VPD data length == 4
3283                          * -- property string == phy-interface
3284                          */
3285                         if (readb(p) != 'I')
3286                                 goto next;
3287
3288                         /* finally, check string and length */
3289                         type = readb(p + 3);
3290                         if (type == 'B') {
3291                                 if ((klen == 29) && readb(p + 4) == 6 &&
3292                                     cas_vpd_match(p + 5,
3293                                                   "local-mac-address")) {
3294                                         if (mac_off++ > offset)
3295                                                 goto next;
3296
3297                                         /* set mac address */
3298                                         for (j = 0; j < 6; j++)
3299                                                 dev_addr[j] =
3300                                                         readb(p + 23 + j);
3301                                         goto found_mac;
3302                                 }
3303                         }
3304
3305                         if (type != 'S')
3306                                 goto next;
3307
3308 #ifdef USE_ENTROPY_DEV
3309                         if ((klen == 24) &&
3310                             cas_vpd_match(p + 5, "entropy-dev") &&
3311                             cas_vpd_match(p + 17, "vms110")) {
3312                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3313                                 goto next;
3314                         }
3315 #endif
3316
3317                         if (found & VPD_FOUND_PHY)
3318                                 goto next;
3319
3320                         if ((klen == 18) && readb(p + 4) == 4 &&
3321                             cas_vpd_match(p + 5, "phy-type")) {
3322                                 if (cas_vpd_match(p + 14, "pcs")) {
3323                                         phy_type = CAS_PHY_SERDES;
3324                                         goto found_phy;
3325                                 }
3326                         }
3327
3328                         if ((klen == 23) && readb(p + 4) == 4 &&
3329                             cas_vpd_match(p + 5, "phy-interface")) {
3330                                 if (cas_vpd_match(p + 19, "pcs")) {
3331                                         phy_type = CAS_PHY_SERDES;
3332                                         goto found_phy;
3333                                 }
3334                         }
3335 found_mac:
3336                         found |= VPD_FOUND_MAC;
3337                         goto next;
3338
3339 found_phy:
3340                         found |= VPD_FOUND_PHY;
3341
3342 next:
3343                         p += klen;
3344                 }
3345                 i += len + 3;
3346         }
3347
3348 use_random_mac_addr:
3349         if (found & VPD_FOUND_MAC)
3350                 goto done;
3351
3352 #if defined(CONFIG_SPARC)
3353         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3354         if (addr != NULL) {
3355                 memcpy(dev_addr, addr, ETH_ALEN);
3356                 goto done;
3357         }
3358 #endif
3359
3360         /* Sun MAC prefix then 3 random bytes. */
3361         pr_info("MAC address not found in ROM VPD\n");
3362         dev_addr[0] = 0x08;
3363         dev_addr[1] = 0x00;
3364         dev_addr[2] = 0x20;
3365         get_random_bytes(dev_addr + 3, 3);
3366
3367 done:
3368         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3369         return phy_type;
3370 }
3371
3372 /* check pci invariants */
3373 static void cas_check_pci_invariants(struct cas *cp)
3374 {
3375         struct pci_dev *pdev = cp->pdev;
3376
3377         cp->cas_flags = 0;
3378         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3379             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3380                 if (pdev->revision >= CAS_ID_REVPLUS)
3381                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3382                 if (pdev->revision < CAS_ID_REVPLUS02u)
3383                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3384
3385                 /* Original Cassini supports HW CSUM, but it's not
3386                  * enabled by default as it can trigger TX hangs.
3387                  */
3388                 if (pdev->revision < CAS_ID_REV2)
3389                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3390         } else {
3391                 /* Only sun has original cassini chips.  */
3392                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3393
3394                 /* We use a flag because the same phy might be externally
3395                  * connected.
3396                  */
3397                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3398                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3399                         cp->cas_flags |= CAS_FLAG_SATURN;
3400         }
3401 }
3402
3403
3404 static int cas_check_invariants(struct cas *cp)
3405 {
3406         struct pci_dev *pdev = cp->pdev;
3407         u32 cfg;
3408         int i;
3409
3410         /* get page size for rx buffers. */
3411         cp->page_order = 0;
3412 #ifdef USE_PAGE_ORDER
3413         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3414                 /* see if we can allocate larger pages */
3415                 struct page *page = alloc_pages(GFP_ATOMIC,
3416                                                 CAS_JUMBO_PAGE_SHIFT -
3417                                                 PAGE_SHIFT);
3418                 if (page) {
3419                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3420                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3421                 } else {
3422                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3423                 }
3424         }
3425 #endif
3426         cp->page_size = (PAGE_SIZE << cp->page_order);
3427
3428         /* Fetch the FIFO configurations. */
3429         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3430         cp->rx_fifo_size = RX_FIFO_SIZE;
3431
3432         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3433          * they're both connected.
3434          */
3435         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3436                                         PCI_SLOT(pdev->devfn));
3437         if (cp->phy_type & CAS_PHY_SERDES) {
3438                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3439                 return 0; /* no more checking needed */
3440         }
3441
3442         /* MII */
3443         cfg = readl(cp->regs + REG_MIF_CFG);
3444         if (cfg & MIF_CFG_MDIO_1) {
3445                 cp->phy_type = CAS_PHY_MII_MDIO1;
3446         } else if (cfg & MIF_CFG_MDIO_0) {
3447                 cp->phy_type = CAS_PHY_MII_MDIO0;
3448         }
3449
3450         cas_mif_poll(cp, 0);
3451         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3452
3453         for (i = 0; i < 32; i++) {
3454                 u32 phy_id;
3455                 int j;
3456
3457                 for (j = 0; j < 3; j++) {
3458                         cp->phy_addr = i;
3459                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3460                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3461                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3462                                 cp->phy_id = phy_id;
3463                                 goto done;
3464                         }
3465                 }
3466         }
3467         pr_err("MII phy did not respond [%08x]\n",
3468                readl(cp->regs + REG_MIF_STATE_MACHINE));
3469         return -1;
3470
3471 done:
3472         /* see if we can do gigabit */
3473         cfg = cas_phy_read(cp, MII_BMSR);
3474         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3475             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3476                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3477         return 0;
3478 }
3479
3480 /* Must be invoked under cp->lock. */
3481 static inline void cas_start_dma(struct cas *cp)
3482 {
3483         int i;
3484         u32 val;
3485         int txfailed = 0;
3486
3487         /* enable dma */
3488         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3489         writel(val, cp->regs + REG_TX_CFG);
3490         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3491         writel(val, cp->regs + REG_RX_CFG);
3492
3493         /* enable the mac */
3494         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3495         writel(val, cp->regs + REG_MAC_TX_CFG);
3496         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3497         writel(val, cp->regs + REG_MAC_RX_CFG);
3498
3499         i = STOP_TRIES;
3500         while (i-- > 0) {
3501                 val = readl(cp->regs + REG_MAC_TX_CFG);
3502                 if ((val & MAC_TX_CFG_EN))
3503                         break;
3504                 udelay(10);
3505         }
3506         if (i < 0) txfailed = 1;
3507         i = STOP_TRIES;
3508         while (i-- > 0) {
3509                 val = readl(cp->regs + REG_MAC_RX_CFG);
3510                 if ((val & MAC_RX_CFG_EN)) {
3511                         if (txfailed) {
3512                                 netdev_err(cp->dev,
3513                                            "enabling mac failed [tx:%08x:%08x]\n",
3514                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3515                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3516                         }
3517                         goto enable_rx_done;
3518                 }
3519                 udelay(10);
3520         }
3521         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3522                    (txfailed ? "tx,rx" : "rx"),
3523                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3524                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3525
3526 enable_rx_done:
3527         cas_unmask_intr(cp); /* enable interrupts */
3528         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3529         writel(0, cp->regs + REG_RX_COMP_TAIL);
3530
3531         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3532                 if (N_RX_DESC_RINGS > 1)
3533                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3534                                cp->regs + REG_PLUS_RX_KICK1);
3535
3536                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3537                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3538         }
3539 }
3540
3541 /* Must be invoked under cp->lock. */
3542 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3543                                    int *pause)
3544 {
3545         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3546         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3547         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3548         if (val & PCS_MII_LPA_ASYM_PAUSE)
3549                 *pause |= 0x10;
3550         *spd = 1000;
3551 }
3552
3553 /* Must be invoked under cp->lock. */
3554 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3555                                    int *pause)
3556 {
3557         u32 val;
3558
3559         *fd = 0;
3560         *spd = 10;
3561         *pause = 0;
3562
3563         /* use GMII registers */
3564         val = cas_phy_read(cp, MII_LPA);
3565         if (val & CAS_LPA_PAUSE)
3566                 *pause = 0x01;
3567
3568         if (val & CAS_LPA_ASYM_PAUSE)
3569                 *pause |= 0x10;
3570
3571         if (val & LPA_DUPLEX)
3572                 *fd = 1;
3573         if (val & LPA_100)
3574                 *spd = 100;
3575
3576         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3577                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3578                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3579                         *spd = 1000;
3580                 if (val & CAS_LPA_1000FULL)
3581                         *fd = 1;
3582         }
3583 }
3584
3585 /* A link-up condition has occurred, initialize and enable the
3586  * rest of the chip.
3587  *
3588  * Must be invoked under cp->lock.
3589  */
3590 static void cas_set_link_modes(struct cas *cp)
3591 {
3592         u32 val;
3593         int full_duplex, speed, pause;
3594
3595         full_duplex = 0;
3596         speed = 10;
3597         pause = 0;
3598
3599         if (CAS_PHY_MII(cp->phy_type)) {
3600                 cas_mif_poll(cp, 0);
3601                 val = cas_phy_read(cp, MII_BMCR);
3602                 if (val & BMCR_ANENABLE) {
3603                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3604                                                &pause);
3605                 } else {
3606                         if (val & BMCR_FULLDPLX)
3607                                 full_duplex = 1;
3608
3609                         if (val & BMCR_SPEED100)
3610                                 speed = 100;
3611                         else if (val & CAS_BMCR_SPEED1000)
3612                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3613                                         1000 : 100;
3614                 }
3615                 cas_mif_poll(cp, 1);
3616
3617         } else {
3618                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3619                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3620                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3621                         if (val & PCS_MII_CTRL_DUPLEX)
3622                                 full_duplex = 1;
3623                 }
3624         }
3625
3626         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3627                    speed, full_duplex ? "full" : "half");
3628
3629         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3630         if (CAS_PHY_MII(cp->phy_type)) {
3631                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3632                 if (!full_duplex)
3633                         val |= MAC_XIF_DISABLE_ECHO;
3634         }
3635         if (full_duplex)
3636                 val |= MAC_XIF_FDPLX_LED;
3637         if (speed == 1000)
3638                 val |= MAC_XIF_GMII_MODE;
3639         writel(val, cp->regs + REG_MAC_XIF_CFG);
3640
3641         /* deal with carrier and collision detect. */
3642         val = MAC_TX_CFG_IPG_EN;
3643         if (full_duplex) {
3644                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3645                 val |= MAC_TX_CFG_IGNORE_COLL;
3646         } else {
3647 #ifndef USE_CSMA_CD_PROTO
3648                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3649                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3650 #endif
3651         }
3652         /* val now set up for REG_MAC_TX_CFG */
3653
3654         /* If gigabit and half-duplex, enable carrier extension
3655          * mode.  increase slot time to 512 bytes as well.
3656          * else, disable it and make sure slot time is 64 bytes.
3657          * also activate checksum bug workaround
3658          */
3659         if ((speed == 1000) && !full_duplex) {
3660                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3661                        cp->regs + REG_MAC_TX_CFG);
3662
3663                 val = readl(cp->regs + REG_MAC_RX_CFG);
3664                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3665                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3666                        cp->regs + REG_MAC_RX_CFG);
3667
3668                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3669
3670                 cp->crc_size = 4;
3671                 /* minimum size gigabit frame at half duplex */
3672                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3673
3674         } else {
3675                 writel(val, cp->regs + REG_MAC_TX_CFG);
3676
3677                 /* checksum bug workaround. don't strip FCS when in
3678                  * half-duplex mode
3679                  */
3680                 val = readl(cp->regs + REG_MAC_RX_CFG);
3681                 if (full_duplex) {
3682                         val |= MAC_RX_CFG_STRIP_FCS;
3683                         cp->crc_size = 0;
3684                         cp->min_frame_size = CAS_MIN_MTU;
3685                 } else {
3686                         val &= ~MAC_RX_CFG_STRIP_FCS;
3687                         cp->crc_size = 4;
3688                         cp->min_frame_size = CAS_MIN_FRAME;
3689                 }
3690                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3691                        cp->regs + REG_MAC_RX_CFG);
3692                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3693         }
3694
3695         if (netif_msg_link(cp)) {
3696                 if (pause & 0x01) {
3697                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3698                                     cp->rx_fifo_size,
3699                                     cp->rx_pause_off,
3700                                     cp->rx_pause_on);
3701                 } else if (pause & 0x10) {
3702                         netdev_info(cp->dev, "TX pause enabled\n");
3703                 } else {
3704                         netdev_info(cp->dev, "Pause is disabled\n");
3705                 }
3706         }
3707
3708         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3709         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3710         if (pause) { /* symmetric or asymmetric pause */
3711                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3712                 if (pause & 0x01) { /* symmetric pause */
3713                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3714                 }
3715         }
3716         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3717         cas_start_dma(cp);
3718 }
3719
3720 /* Must be invoked under cp->lock. */
3721 static void cas_init_hw(struct cas *cp, int restart_link)
3722 {
3723         if (restart_link)
3724                 cas_phy_init(cp);
3725
3726         cas_init_pause_thresholds(cp);
3727         cas_init_mac(cp);
3728         cas_init_dma(cp);
3729
3730         if (restart_link) {
3731                 /* Default aneg parameters */
3732                 cp->timer_ticks = 0;
3733                 cas_begin_auto_negotiation(cp, NULL);
3734         } else if (cp->lstate == link_up) {
3735                 cas_set_link_modes(cp);
3736                 netif_carrier_on(cp->dev);
3737         }
3738 }
3739
3740 /* Must be invoked under cp->lock. on earlier cassini boards,
3741  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3742  * let it settle out, and then restore pci state.
3743  */
3744 static void cas_hard_reset(struct cas *cp)
3745 {
3746         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3747         udelay(20);
3748         pci_restore_state(cp->pdev);
3749 }
3750
3751
3752 static void cas_global_reset(struct cas *cp, int blkflag)
3753 {
3754         int limit;
3755
3756         /* issue a global reset. don't use RSTOUT. */
3757         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3758                 /* For PCS, when the blkflag is set, we should set the
3759                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3760                  * the last autonegotiation from being cleared.  We'll
3761                  * need some special handling if the chip is set into a
3762                  * loopback mode.
3763                  */
3764                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3765                        cp->regs + REG_SW_RESET);
3766         } else {
3767                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3768         }
3769
3770         /* need to wait at least 3ms before polling register */
3771         mdelay(3);
3772
3773         limit = STOP_TRIES;
3774         while (limit-- > 0) {
3775                 u32 val = readl(cp->regs + REG_SW_RESET);
3776                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3777                         goto done;
3778                 udelay(10);
3779         }
3780         netdev_err(cp->dev, "sw reset failed\n");
3781
3782 done:
3783         /* enable various BIM interrupts */
3784         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3785                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3786
3787         /* clear out pci error status mask for handled errors.
3788          * we don't deal with DMA counter overflows as they happen
3789          * all the time.
3790          */
3791         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3792                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3793                                PCI_ERR_BIM_DMA_READ), cp->regs +
3794                REG_PCI_ERR_STATUS_MASK);
3795
3796         /* set up for MII by default to address mac rx reset timeout
3797          * issue
3798          */
3799         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3800 }
3801
3802 static void cas_reset(struct cas *cp, int blkflag)
3803 {
3804         u32 val;
3805
3806         cas_mask_intr(cp);
3807         cas_global_reset(cp, blkflag);
3808         cas_mac_reset(cp);
3809         cas_entropy_reset(cp);
3810
3811         /* disable dma engines. */
3812         val = readl(cp->regs + REG_TX_CFG);
3813         val &= ~TX_CFG_DMA_EN;
3814         writel(val, cp->regs + REG_TX_CFG);
3815
3816         val = readl(cp->regs + REG_RX_CFG);
3817         val &= ~RX_CFG_DMA_EN;
3818         writel(val, cp->regs + REG_RX_CFG);
3819
3820         /* program header parser */
3821         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3822             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3823                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3824         } else {
3825                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3826         }
3827
3828         /* clear out error registers */
3829         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3830         cas_clear_mac_err(cp);
3831         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3832 }
3833
3834 /* Shut down the chip, must be called with pm_mutex held.  */
3835 static void cas_shutdown(struct cas *cp)
3836 {
3837         unsigned long flags;
3838
3839         /* Make us not-running to avoid timers respawning */
3840         cp->hw_running = 0;
3841
3842         del_timer_sync(&cp->link_timer);
3843
3844         /* Stop the reset task */
3845 #if 0
3846         while (atomic_read(&cp->reset_task_pending_mtu) ||
3847                atomic_read(&cp->reset_task_pending_spare) ||
3848                atomic_read(&cp->reset_task_pending_all))
3849                 schedule();
3850
3851 #else
3852         while (atomic_read(&cp->reset_task_pending))
3853                 schedule();
3854 #endif
3855         /* Actually stop the chip */
3856         cas_lock_all_save(cp, flags);
3857         cas_reset(cp, 0);
3858         if (cp->cas_flags & CAS_FLAG_SATURN)
3859                 cas_phy_powerdown(cp);
3860         cas_unlock_all_restore(cp, flags);
3861 }
3862
3863 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3864 {
3865         struct cas *cp = netdev_priv(dev);
3866
3867         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3868                 return -EINVAL;
3869
3870         dev->mtu = new_mtu;
3871         if (!netif_running(dev) || !netif_device_present(dev))
3872                 return 0;
3873
3874         /* let the reset task handle it */
3875 #if 1
3876         atomic_inc(&cp->reset_task_pending);
3877         if ((cp->phy_type & CAS_PHY_SERDES)) {
3878                 atomic_inc(&cp->reset_task_pending_all);
3879         } else {
3880                 atomic_inc(&cp->reset_task_pending_mtu);
3881         }
3882         schedule_work(&cp->reset_task);
3883 #else
3884         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3885                    CAS_RESET_ALL : CAS_RESET_MTU);
3886         pr_err("reset called in cas_change_mtu\n");
3887         schedule_work(&cp->reset_task);
3888 #endif
3889
3890         flush_work(&cp->reset_task);
3891         return 0;
3892 }
3893
3894 static void cas_clean_txd(struct cas *cp, int ring)
3895 {
3896         struct cas_tx_desc *txd = cp->init_txds[ring];
3897         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3898         u64 daddr, dlen;
3899         int i, size;
3900
3901         size = TX_DESC_RINGN_SIZE(ring);
3902         for (i = 0; i < size; i++) {
3903                 int frag;
3904
3905                 if (skbs[i] == NULL)
3906                         continue;
3907
3908                 skb = skbs[i];
3909                 skbs[i] = NULL;
3910
3911                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3912                         int ent = i & (size - 1);
3913
3914                         /* first buffer is never a tiny buffer and so
3915                          * needs to be unmapped.
3916                          */
3917                         daddr = le64_to_cpu(txd[ent].buffer);
3918                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3919                                          le64_to_cpu(txd[ent].control));
3920                         pci_unmap_page(cp->pdev, daddr, dlen,
3921                                        PCI_DMA_TODEVICE);
3922
3923                         if (frag != skb_shinfo(skb)->nr_frags) {
3924                                 i++;
3925
3926                                 /* next buffer might by a tiny buffer.
3927                                  * skip past it.
3928                                  */
3929                                 ent = i & (size - 1);
3930                                 if (cp->tx_tiny_use[ring][ent].used)
3931                                         i++;
3932                         }
3933                 }
3934                 dev_kfree_skb_any(skb);
3935         }
3936
3937         /* zero out tiny buf usage */
3938         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3939 }
3940
3941 /* freed on close */
3942 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3943 {
3944         cas_page_t **page = cp->rx_pages[ring];
3945         int i, size;
3946
3947         size = RX_DESC_RINGN_SIZE(ring);
3948         for (i = 0; i < size; i++) {
3949                 if (page[i]) {
3950                         cas_page_free(cp, page[i]);
3951                         page[i] = NULL;
3952                 }
3953         }
3954 }
3955
3956 static void cas_free_rxds(struct cas *cp)
3957 {
3958         int i;
3959
3960         for (i = 0; i < N_RX_DESC_RINGS; i++)
3961                 cas_free_rx_desc(cp, i);
3962 }
3963
3964 /* Must be invoked under cp->lock. */
3965 static void cas_clean_rings(struct cas *cp)
3966 {
3967         int i;
3968
3969         /* need to clean all tx rings */
3970         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3971         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3972         for (i = 0; i < N_TX_RINGS; i++)
3973                 cas_clean_txd(cp, i);
3974
3975         /* zero out init block */
3976         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3977         cas_clean_rxds(cp);
3978         cas_clean_rxcs(cp);
3979 }
3980
3981 /* allocated on open */
3982 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3983 {
3984         cas_page_t **page = cp->rx_pages[ring];
3985         int size, i = 0;
3986
3987         size = RX_DESC_RINGN_SIZE(ring);
3988         for (i = 0; i < size; i++) {
3989                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3990                         return -1;
3991         }
3992         return 0;
3993 }
3994
3995 static int cas_alloc_rxds(struct cas *cp)
3996 {
3997         int i;
3998
3999         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4000                 if (cas_alloc_rx_desc(cp, i) < 0) {
4001                         cas_free_rxds(cp);
4002                         return -1;
4003                 }
4004         }
4005         return 0;
4006 }
4007
4008 static void cas_reset_task(struct work_struct *work)
4009 {
4010         struct cas *cp = container_of(work, struct cas, reset_task);
4011 #if 0
4012         int pending = atomic_read(&cp->reset_task_pending);
4013 #else
4014         int pending_all = atomic_read(&cp->reset_task_pending_all);
4015         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4016         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4017
4018         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4019                 /* We can have more tasks scheduled than actually
4020                  * needed.
4021                  */
4022                 atomic_dec(&cp->reset_task_pending);
4023                 return;
4024         }
4025 #endif
4026         /* The link went down, we reset the ring, but keep
4027          * DMA stopped. Use this function for reset
4028          * on error as well.
4029          */
4030         if (cp->hw_running) {
4031                 unsigned long flags;
4032
4033                 /* Make sure we don't get interrupts or tx packets */
4034                 netif_device_detach(cp->dev);
4035                 cas_lock_all_save(cp, flags);
4036
4037                 if (cp->opened) {
4038                         /* We call cas_spare_recover when we call cas_open.
4039                          * but we do not initialize the lists cas_spare_recover
4040                          * uses until cas_open is called.
4041                          */
4042                         cas_spare_recover(cp, GFP_ATOMIC);
4043                 }
4044 #if 1
4045                 /* test => only pending_spare set */
4046                 if (!pending_all && !pending_mtu)
4047                         goto done;
4048 #else
4049                 if (pending == CAS_RESET_SPARE)
4050                         goto done;
4051 #endif
4052                 /* when pending == CAS_RESET_ALL, the following
4053                  * call to cas_init_hw will restart auto negotiation.
4054                  * Setting the second argument of cas_reset to
4055                  * !(pending == CAS_RESET_ALL) will set this argument
4056                  * to 1 (avoiding reinitializing the PHY for the normal
4057                  * PCS case) when auto negotiation is not restarted.
4058                  */
4059 #if 1
4060                 cas_reset(cp, !(pending_all > 0));
4061                 if (cp->opened)
4062                         cas_clean_rings(cp);
4063                 cas_init_hw(cp, (pending_all > 0));
4064 #else
4065                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4066                 if (cp->opened)
4067                         cas_clean_rings(cp);
4068                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4069 #endif
4070
4071 done:
4072                 cas_unlock_all_restore(cp, flags);
4073                 netif_device_attach(cp->dev);
4074         }
4075 #if 1
4076         atomic_sub(pending_all, &cp->reset_task_pending_all);
4077         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4078         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4079         atomic_dec(&cp->reset_task_pending);
4080 #else
4081         atomic_set(&cp->reset_task_pending, 0);
4082 #endif
4083 }
4084
4085 static void cas_link_timer(unsigned long data)
4086 {
4087         struct cas *cp = (struct cas *) data;
4088         int mask, pending = 0, reset = 0;
4089         unsigned long flags;
4090
4091         if (link_transition_timeout != 0 &&
4092             cp->link_transition_jiffies_valid &&
4093             ((jiffies - cp->link_transition_jiffies) >
4094               (link_transition_timeout))) {
4095                 /* One-second counter so link-down workaround doesn't
4096                  * cause resets to occur so fast as to fool the switch
4097                  * into thinking the link is down.
4098                  */
4099                 cp->link_transition_jiffies_valid = 0;
4100         }
4101
4102         if (!cp->hw_running)
4103                 return;
4104
4105         spin_lock_irqsave(&cp->lock, flags);
4106         cas_lock_tx(cp);
4107         cas_entropy_gather(cp);
4108
4109         /* If the link task is still pending, we just
4110          * reschedule the link timer
4111          */
4112 #if 1
4113         if (atomic_read(&cp->reset_task_pending_all) ||
4114             atomic_read(&cp->reset_task_pending_spare) ||
4115             atomic_read(&cp->reset_task_pending_mtu))
4116                 goto done;
4117 #else
4118         if (atomic_read(&cp->reset_task_pending))
4119                 goto done;
4120 #endif
4121
4122         /* check for rx cleaning */
4123         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4124                 int i, rmask;
4125
4126                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4127                         rmask = CAS_FLAG_RXD_POST(i);
4128                         if ((mask & rmask) == 0)
4129                                 continue;
4130
4131                         /* post_rxds will do a mod_timer */
4132                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4133                                 pending = 1;
4134                                 continue;
4135                         }
4136                         cp->cas_flags &= ~rmask;
4137                 }
4138         }
4139
4140         if (CAS_PHY_MII(cp->phy_type)) {
4141                 u16 bmsr;
4142                 cas_mif_poll(cp, 0);
4143                 bmsr = cas_phy_read(cp, MII_BMSR);
4144                 /* WTZ: Solaris driver reads this twice, but that
4145                  * may be due to the PCS case and the use of a
4146                  * common implementation. Read it twice here to be
4147                  * safe.
4148                  */
4149                 bmsr = cas_phy_read(cp, MII_BMSR);
4150                 cas_mif_poll(cp, 1);
4151                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4152                 reset = cas_mii_link_check(cp, bmsr);
4153         } else {
4154                 reset = cas_pcs_link_check(cp);
4155         }
4156
4157         if (reset)
4158                 goto done;
4159
4160         /* check for tx state machine confusion */
4161         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4162                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4163                 u32 wptr, rptr;
4164                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4165
4166                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4167                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4168                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4169                                      "tx err: MAC_STATE[%08x]\n", val);
4170                         reset = 1;
4171                         goto done;
4172                 }
4173
4174                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4175                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4176                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4177                 if ((val == 0) && (wptr != rptr)) {
4178                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4179                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4180                                      val, wptr, rptr);
4181                         reset = 1;
4182                 }
4183
4184                 if (reset)
4185                         cas_hard_reset(cp);
4186         }
4187
4188 done:
4189         if (reset) {
4190 #if 1
4191                 atomic_inc(&cp->reset_task_pending);
4192                 atomic_inc(&cp->reset_task_pending_all);
4193                 schedule_work(&cp->reset_task);
4194 #else
4195                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4196                 pr_err("reset called in cas_link_timer\n");
4197                 schedule_work(&cp->reset_task);
4198 #endif
4199         }
4200
4201         if (!pending)
4202                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4203         cas_unlock_tx(cp);
4204         spin_unlock_irqrestore(&cp->lock, flags);
4205 }
4206
4207 /* tiny buffers are used to avoid target abort issues with
4208  * older cassini's
4209  */
4210 static void cas_tx_tiny_free(struct cas *cp)
4211 {
4212         struct pci_dev *pdev = cp->pdev;
4213         int i;
4214
4215         for (i = 0; i < N_TX_RINGS; i++) {
4216                 if (!cp->tx_tiny_bufs[i])
4217                         continue;
4218
4219                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4220                                     cp->tx_tiny_bufs[i],
4221                                     cp->tx_tiny_dvma[i]);
4222                 cp->tx_tiny_bufs[i] = NULL;
4223         }
4224 }
4225
4226 static int cas_tx_tiny_alloc(struct cas *cp)
4227 {
4228         struct pci_dev *pdev = cp->pdev;
4229         int i;
4230
4231         for (i = 0; i < N_TX_RINGS; i++) {
4232                 cp->tx_tiny_bufs[i] =
4233                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4234                                              &cp->tx_tiny_dvma[i]);
4235                 if (!cp->tx_tiny_bufs[i]) {
4236                         cas_tx_tiny_free(cp);
4237                         return -1;
4238                 }
4239         }
4240         return 0;
4241 }
4242
4243
4244 static int cas_open(struct net_device *dev)
4245 {
4246         struct cas *cp = netdev_priv(dev);
4247         int hw_was_up, err;
4248         unsigned long flags;
4249
4250         mutex_lock(&cp->pm_mutex);
4251
4252         hw_was_up = cp->hw_running;
4253
4254         /* The power-management mutex protects the hw_running
4255          * etc. state so it is safe to do this bit without cp->lock
4256          */
4257         if (!cp->hw_running) {
4258                 /* Reset the chip */
4259                 cas_lock_all_save(cp, flags);
4260                 /* We set the second arg to cas_reset to zero
4261                  * because cas_init_hw below will have its second
4262                  * argument set to non-zero, which will force
4263                  * autonegotiation to start.
4264                  */
4265                 cas_reset(cp, 0);
4266                 cp->hw_running = 1;
4267                 cas_unlock_all_restore(cp, flags);
4268         }
4269
4270         err = -ENOMEM;
4271         if (cas_tx_tiny_alloc(cp) < 0)
4272                 goto err_unlock;
4273
4274         /* alloc rx descriptors */
4275         if (cas_alloc_rxds(cp) < 0)
4276                 goto err_tx_tiny;
4277
4278         /* allocate spares */
4279         cas_spare_init(cp);
4280         cas_spare_recover(cp, GFP_KERNEL);
4281
4282         /* We can now request the interrupt as we know it's masked
4283          * on the controller. cassini+ has up to 4 interrupts
4284          * that can be used, but you need to do explicit pci interrupt
4285          * mapping to expose them
4286          */
4287         if (request_irq(cp->pdev->irq, cas_interrupt,
4288                         IRQF_SHARED, dev->name, (void *) dev)) {
4289                 netdev_err(cp->dev, "failed to request irq !\n");
4290                 err = -EAGAIN;
4291                 goto err_spare;
4292         }
4293
4294 #ifdef USE_NAPI
4295         napi_enable(&cp->napi);
4296 #endif
4297         /* init hw */
4298         cas_lock_all_save(cp, flags);
4299         cas_clean_rings(cp);
4300         cas_init_hw(cp, !hw_was_up);
4301         cp->opened = 1;
4302         cas_unlock_all_restore(cp, flags);
4303
4304         netif_start_queue(dev);
4305         mutex_unlock(&cp->pm_mutex);
4306         return 0;
4307
4308 err_spare:
4309         cas_spare_free(cp);
4310         cas_free_rxds(cp);
4311 err_tx_tiny:
4312         cas_tx_tiny_free(cp);
4313 err_unlock:
4314         mutex_unlock(&cp->pm_mutex);
4315         return err;
4316 }
4317
4318 static int cas_close(struct net_device *dev)
4319 {
4320         unsigned long flags;
4321         struct cas *cp = netdev_priv(dev);
4322
4323 #ifdef USE_NAPI
4324         napi_disable(&cp->napi);
4325 #endif
4326         /* Make sure we don't get distracted by suspend/resume */
4327         mutex_lock(&cp->pm_mutex);
4328
4329         netif_stop_queue(dev);
4330
4331         /* Stop traffic, mark us closed */
4332         cas_lock_all_save(cp, flags);
4333         cp->opened = 0;
4334         cas_reset(cp, 0);
4335         cas_phy_init(cp);
4336         cas_begin_auto_negotiation(cp, NULL);
4337         cas_clean_rings(cp);
4338         cas_unlock_all_restore(cp, flags);
4339
4340         free_irq(cp->pdev->irq, (void *) dev);
4341         cas_spare_free(cp);
4342         cas_free_rxds(cp);
4343         cas_tx_tiny_free(cp);
4344         mutex_unlock(&cp->pm_mutex);
4345         return 0;
4346 }
4347
4348 static struct {
4349         const char name[ETH_GSTRING_LEN];
4350 } ethtool_cassini_statnames[] = {
4351         {"collisions"},
4352         {"rx_bytes"},
4353         {"rx_crc_errors"},
4354         {"rx_dropped"},
4355         {"rx_errors"},
4356         {"rx_fifo_errors"},
4357         {"rx_frame_errors"},
4358         {"rx_length_errors"},
4359         {"rx_over_errors"},
4360         {"rx_packets"},
4361         {"tx_aborted_errors"},
4362         {"tx_bytes"},
4363         {"tx_dropped"},
4364         {"tx_errors"},
4365         {"tx_fifo_errors"},
4366         {"tx_packets"}
4367 };
4368 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4369
4370 static struct {
4371         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4372 } ethtool_register_table[] = {
4373         {-MII_BMSR},
4374         {-MII_BMCR},
4375         {REG_CAWR},
4376         {REG_INF_BURST},
4377         {REG_BIM_CFG},
4378         {REG_RX_CFG},
4379         {REG_HP_CFG},
4380         {REG_MAC_TX_CFG},
4381         {REG_MAC_RX_CFG},
4382         {REG_MAC_CTRL_CFG},
4383         {REG_MAC_XIF_CFG},
4384         {REG_MIF_CFG},
4385         {REG_PCS_CFG},
4386         {REG_SATURN_PCFG},
4387         {REG_PCS_MII_STATUS},
4388         {REG_PCS_STATE_MACHINE},
4389         {REG_MAC_COLL_EXCESS},
4390         {REG_MAC_COLL_LATE}
4391 };
4392 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4393 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4394
4395 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4396 {
4397         u8 *p;
4398         int i;
4399         unsigned long flags;
4400
4401         spin_lock_irqsave(&cp->lock, flags);
4402         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4403                 u16 hval;
4404                 u32 val;
4405                 if (ethtool_register_table[i].offsets < 0) {
4406                         hval = cas_phy_read(cp,
4407                                     -ethtool_register_table[i].offsets);
4408                         val = hval;
4409                 } else {
4410                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4411                 }
4412                 memcpy(p, (u8 *)&val, sizeof(u32));
4413         }
4414         spin_unlock_irqrestore(&cp->lock, flags);
4415 }
4416
4417 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4418 {
4419         struct cas *cp = netdev_priv(dev);
4420         struct net_device_stats *stats = cp->net_stats;
4421         unsigned long flags;
4422         int i;
4423         unsigned long tmp;
4424
4425         /* we collate all of the stats into net_stats[N_TX_RING] */
4426         if (!cp->hw_running)
4427                 return stats + N_TX_RINGS;
4428
4429         /* collect outstanding stats */
4430         /* WTZ: the Cassini spec gives these as 16 bit counters but
4431          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4432          * in case the chip somehow puts any garbage in the other bits.
4433          * Also, counter usage didn't seem to mach what Adrian did
4434          * in the parts of the code that set these quantities. Made
4435          * that consistent.
4436          */
4437         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4438         stats[N_TX_RINGS].rx_crc_errors +=
4439           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4440         stats[N_TX_RINGS].rx_frame_errors +=
4441                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4442         stats[N_TX_RINGS].rx_length_errors +=
4443                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4444 #if 1
4445         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4446                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4447         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4448         stats[N_TX_RINGS].collisions +=
4449           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4450 #else
4451         stats[N_TX_RINGS].tx_aborted_errors +=
4452                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4453         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4454                 readl(cp->regs + REG_MAC_COLL_LATE);
4455 #endif
4456         cas_clear_mac_err(cp);
4457
4458         /* saved bits that are unique to ring 0 */
4459         spin_lock(&cp->stat_lock[0]);
4460         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4461         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4462         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4463         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4464         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4465         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4466         spin_unlock(&cp->stat_lock[0]);
4467
4468         for (i = 0; i < N_TX_RINGS; i++) {
4469                 spin_lock(&cp->stat_lock[i]);
4470                 stats[N_TX_RINGS].rx_length_errors +=
4471                         stats[i].rx_length_errors;
4472                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4473                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4474                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4475                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4476                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4477                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4478                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4479                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4480                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4481                 memset(stats + i, 0, sizeof(struct net_device_stats));
4482                 spin_unlock(&cp->stat_lock[i]);
4483         }
4484         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4485         return stats + N_TX_RINGS;
4486 }
4487
4488
4489 static void cas_set_multicast(struct net_device *dev)
4490 {
4491         struct cas *cp = netdev_priv(dev);
4492         u32 rxcfg, rxcfg_new;
4493         unsigned long flags;
4494         int limit = STOP_TRIES;
4495
4496         if (!cp->hw_running)
4497                 return;
4498
4499         spin_lock_irqsave(&cp->lock, flags);
4500         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4501
4502         /* disable RX MAC and wait for completion */
4503         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4504         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4505                 if (!limit--)
4506                         break;
4507                 udelay(10);
4508         }
4509
4510         /* disable hash filter and wait for completion */
4511         limit = STOP_TRIES;
4512         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4513         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4514         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4515                 if (!limit--)
4516                         break;
4517                 udelay(10);
4518         }
4519
4520         /* program hash filters */
4521         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4522         rxcfg |= rxcfg_new;
4523         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4524         spin_unlock_irqrestore(&cp->lock, flags);
4525 }
4526
4527 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4528 {
4529         struct cas *cp = netdev_priv(dev);
4530         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4531         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4532         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4533         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4534                 cp->casreg_len : CAS_MAX_REGS;
4535         info->n_stats = CAS_NUM_STAT_KEYS;
4536 }
4537
4538 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4539 {
4540         struct cas *cp = netdev_priv(dev);
4541         u16 bmcr;
4542         int full_duplex, speed, pause;
4543         unsigned long flags;
4544         enum link_state linkstate = link_up;
4545
4546         cmd->advertising = 0;
4547         cmd->supported = SUPPORTED_Autoneg;
4548         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4549                 cmd->supported |= SUPPORTED_1000baseT_Full;
4550                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4551         }
4552
4553         /* Record PHY settings if HW is on. */
4554         spin_lock_irqsave(&cp->lock, flags);
4555         bmcr = 0;
4556         linkstate = cp->lstate;
4557         if (CAS_PHY_MII(cp->phy_type)) {
4558                 cmd->port = PORT_MII;
4559                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4560                         XCVR_INTERNAL : XCVR_EXTERNAL;
4561                 cmd->phy_address = cp->phy_addr;
4562                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4563                         ADVERTISED_10baseT_Half |
4564                         ADVERTISED_10baseT_Full |
4565                         ADVERTISED_100baseT_Half |
4566                         ADVERTISED_100baseT_Full;
4567
4568                 cmd->supported |=
4569                         (SUPPORTED_10baseT_Half |
4570                          SUPPORTED_10baseT_Full |
4571                          SUPPORTED_100baseT_Half |
4572                          SUPPORTED_100baseT_Full |
4573                          SUPPORTED_TP | SUPPORTED_MII);
4574
4575                 if (cp->hw_running) {
4576                         cas_mif_poll(cp, 0);
4577                         bmcr = cas_phy_read(cp, MII_BMCR);
4578                         cas_read_mii_link_mode(cp, &full_duplex,
4579                                                &speed, &pause);
4580                         cas_mif_poll(cp, 1);
4581                 }
4582
4583         } else {
4584                 cmd->port = PORT_FIBRE;
4585                 cmd->transceiver = XCVR_INTERNAL;
4586                 cmd->phy_address = 0;
4587                 cmd->supported   |= SUPPORTED_FIBRE;
4588                 cmd->advertising |= ADVERTISED_FIBRE;
4589
4590                 if (cp->hw_running) {
4591                         /* pcs uses the same bits as mii */
4592                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4593                         cas_read_pcs_link_mode(cp, &full_duplex,
4594                                                &speed, &pause);
4595                 }
4596         }
4597         spin_unlock_irqrestore(&cp->lock, flags);
4598
4599         if (bmcr & BMCR_ANENABLE) {
4600                 cmd->advertising |= ADVERTISED_Autoneg;
4601                 cmd->autoneg = AUTONEG_ENABLE;
4602                 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4603                                             SPEED_10 :
4604                                             ((speed == 1000) ?
4605                                              SPEED_1000 : SPEED_100)));
4606                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4607         } else {
4608                 cmd->autoneg = AUTONEG_DISABLE;
4609                 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4610                                             SPEED_1000 :
4611                                             ((bmcr & BMCR_SPEED100) ?
4612                                              SPEED_100 : SPEED_10)));
4613                 cmd->duplex =
4614                         (bmcr & BMCR_FULLDPLX) ?
4615                         DUPLEX_FULL : DUPLEX_HALF;
4616         }
4617         if (linkstate != link_up) {
4618                 /* Force these to "unknown" if the link is not up and
4619                  * autonogotiation in enabled. We can set the link
4620                  * speed to 0, but not cmd->duplex,
4621                  * because its legal values are 0 and 1.  Ethtool will
4622                  * print the value reported in parentheses after the
4623                  * word "Unknown" for unrecognized values.
4624                  *
4625                  * If in forced mode, we report the speed and duplex
4626                  * settings that we configured.
4627                  */
4628                 if (cp->link_cntl & BMCR_ANENABLE) {
4629                         ethtool_cmd_speed_set(cmd, 0);
4630                         cmd->duplex = 0xff;
4631                 } else {
4632                         ethtool_cmd_speed_set(cmd, SPEED_10);
4633                         if (cp->link_cntl & BMCR_SPEED100) {
4634                                 ethtool_cmd_speed_set(cmd, SPEED_100);
4635                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4636                                 ethtool_cmd_speed_set(cmd, SPEED_1000);
4637                         }
4638                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4639                                 DUPLEX_FULL : DUPLEX_HALF;
4640                 }
4641         }
4642         return 0;
4643 }
4644
4645 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4646 {
4647         struct cas *cp = netdev_priv(dev);
4648         unsigned long flags;
4649         u32 speed = ethtool_cmd_speed(cmd);
4650
4651         /* Verify the settings we care about. */
4652         if (cmd->autoneg != AUTONEG_ENABLE &&
4653             cmd->autoneg != AUTONEG_DISABLE)
4654                 return -EINVAL;
4655
4656         if (cmd->autoneg == AUTONEG_DISABLE &&
4657             ((speed != SPEED_1000 &&
4658               speed != SPEED_100 &&
4659               speed != SPEED_10) ||
4660              (cmd->duplex != DUPLEX_HALF &&
4661               cmd->duplex != DUPLEX_FULL)))
4662                 return -EINVAL;
4663
4664         /* Apply settings and restart link process. */
4665         spin_lock_irqsave(&cp->lock, flags);
4666         cas_begin_auto_negotiation(cp, cmd);
4667         spin_unlock_irqrestore(&cp->lock, flags);
4668         return 0;
4669 }
4670
4671 static int cas_nway_reset(struct net_device *dev)
4672 {
4673         struct cas *cp = netdev_priv(dev);
4674         unsigned long flags;
4675
4676         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4677                 return -EINVAL;
4678
4679         /* Restart link process. */
4680         spin_lock_irqsave(&cp->lock, flags);
4681         cas_begin_auto_negotiation(cp, NULL);
4682         spin_unlock_irqrestore(&cp->lock, flags);
4683
4684         return 0;
4685 }
4686
4687 static u32 cas_get_link(struct net_device *dev)
4688 {
4689         struct cas *cp = netdev_priv(dev);
4690         return cp->lstate == link_up;
4691 }
4692
4693 static u32 cas_get_msglevel(struct net_device *dev)
4694 {
4695         struct cas *cp = netdev_priv(dev);
4696         return cp->msg_enable;
4697 }
4698
4699 static void cas_set_msglevel(struct net_device *dev, u32 value)
4700 {
4701         struct cas *cp = netdev_priv(dev);
4702         cp->msg_enable = value;
4703 }
4704
4705 static int cas_get_regs_len(struct net_device *dev)
4706 {
4707         struct cas *cp = netdev_priv(dev);
4708         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4709 }
4710
4711 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4712                              void *p)
4713 {
4714         struct cas *cp = netdev_priv(dev);
4715         regs->version = 0;
4716         /* cas_read_regs handles locks (cp->lock).  */
4717         cas_read_regs(cp, p, regs->len / sizeof(u32));
4718 }
4719
4720 static int cas_get_sset_count(struct net_device *dev, int sset)
4721 {
4722         switch (sset) {
4723         case ETH_SS_STATS:
4724                 return CAS_NUM_STAT_KEYS;
4725         default:
4726                 return -EOPNOTSUPP;
4727         }
4728 }
4729
4730 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4731 {
4732          memcpy(data, &ethtool_cassini_statnames,
4733                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4734 }
4735
4736 static void cas_get_ethtool_stats(struct net_device *dev,
4737                                       struct ethtool_stats *estats, u64 *data)
4738 {
4739         struct cas *cp = netdev_priv(dev);
4740         struct net_device_stats *stats = cas_get_stats(cp->dev);
4741         int i = 0;
4742         data[i++] = stats->collisions;
4743         data[i++] = stats->rx_bytes;
4744         data[i++] = stats->rx_crc_errors;
4745         data[i++] = stats->rx_dropped;
4746         data[i++] = stats->rx_errors;
4747         data[i++] = stats->rx_fifo_errors;
4748         data[i++] = stats->rx_frame_errors;
4749         data[i++] = stats->rx_length_errors;
4750         data[i++] = stats->rx_over_errors;
4751         data[i++] = stats->rx_packets;
4752         data[i++] = stats->tx_aborted_errors;
4753         data[i++] = stats->tx_bytes;
4754         data[i++] = stats->tx_dropped;
4755         data[i++] = stats->tx_errors;
4756         data[i++] = stats->tx_fifo_errors;
4757         data[i++] = stats->tx_packets;
4758         BUG_ON(i != CAS_NUM_STAT_KEYS);
4759 }
4760
4761 static const struct ethtool_ops cas_ethtool_ops = {
4762         .get_drvinfo            = cas_get_drvinfo,
4763         .get_settings           = cas_get_settings,
4764         .set_settings           = cas_set_settings,
4765         .nway_reset             = cas_nway_reset,
4766         .get_link               = cas_get_link,
4767         .get_msglevel           = cas_get_msglevel,
4768         .set_msglevel           = cas_set_msglevel,
4769         .get_regs_len           = cas_get_regs_len,
4770         .get_regs               = cas_get_regs,
4771         .get_sset_count         = cas_get_sset_count,
4772         .get_strings            = cas_get_strings,
4773         .get_ethtool_stats      = cas_get_ethtool_stats,
4774 };
4775
4776 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4777 {
4778         struct cas *cp = netdev_priv(dev);
4779         struct mii_ioctl_data *data = if_mii(ifr);
4780         unsigned long flags;
4781         int rc = -EOPNOTSUPP;
4782
4783         /* Hold the PM mutex while doing ioctl's or we may collide
4784          * with open/close and power management and oops.
4785          */
4786         mutex_lock(&cp->pm_mutex);
4787         switch (cmd) {
4788         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4789                 data->phy_id = cp->phy_addr;
4790                 /* Fallthrough... */
4791
4792         case SIOCGMIIREG:               /* Read MII PHY register. */
4793                 spin_lock_irqsave(&cp->lock, flags);
4794                 cas_mif_poll(cp, 0);
4795                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4796                 cas_mif_poll(cp, 1);
4797                 spin_unlock_irqrestore(&cp->lock, flags);
4798                 rc = 0;
4799                 break;
4800
4801         case SIOCSMIIREG:               /* Write MII PHY register. */
4802                 spin_lock_irqsave(&cp->lock, flags);
4803                 cas_mif_poll(cp, 0);
4804                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4805                 cas_mif_poll(cp, 1);
4806                 spin_unlock_irqrestore(&cp->lock, flags);
4807                 break;
4808         default:
4809                 break;
4810         }
4811
4812         mutex_unlock(&cp->pm_mutex);
4813         return rc;
4814 }
4815
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817  * only subordinate device and we can tweak the bridge settings to
4818  * reflect that fact.
4819  */
4820 static void cas_program_bridge(struct pci_dev *cas_pdev)
4821 {
4822         struct pci_dev *pdev = cas_pdev->bus->self;
4823         u32 val;
4824
4825         if (!pdev)
4826                 return;
4827
4828         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4829                 return;
4830
4831         /* Clear bit 10 (Bus Parking Control) in the Secondary
4832          * Arbiter Control/Status Register which lives at offset
4833          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4834          * is much simpler so that's how we do this.
4835          */
4836         pci_read_config_dword(pdev, 0x40, &val);
4837         val &= ~0x00040000;
4838         pci_write_config_dword(pdev, 0x40, val);
4839
4840         /* Max out the Multi-Transaction Timer settings since
4841          * Cassini is the only device present.
4842          *
4843          * The register is 16-bit and lives at 0x50.  When the
4844          * settings are enabled, it extends the GRANT# signal
4845          * for a requestor after a transaction is complete.  This
4846          * allows the next request to run without first needing
4847          * to negotiate the GRANT# signal back.
4848          *
4849          * Bits 12:10 define the grant duration:
4850          *
4851          *      1       --      16 clocks
4852          *      2       --      32 clocks
4853          *      3       --      64 clocks
4854          *      4       --      128 clocks
4855          *      5       --      256 clocks
4856          *
4857          * All other values are illegal.
4858          *
4859          * Bits 09:00 define which REQ/GNT signal pairs get the
4860          * GRANT# signal treatment.  We set them all.
4861          */
4862         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4863
4864         /* The Read Prefecth Policy register is 16-bit and sits at
4865          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4866          * enable it and max out all of the settings since only one
4867          * device is sitting underneath and thus bandwidth sharing is
4868          * not an issue.
4869          *
4870          * The register has several 3 bit fields, which indicates a
4871          * multiplier applied to the base amount of prefetching the
4872          * chip would do.  These fields are at:
4873          *
4874          *      15:13   ---     ReRead Primary Bus
4875          *      12:10   ---     FirstRead Primary Bus
4876          *      09:07   ---     ReRead Secondary Bus
4877          *      06:04   ---     FirstRead Secondary Bus
4878          *
4879          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880          * get enabled on.  Bit 3 is a grouped enabler which controls
4881          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4882          * the individual REQ/GNT pairs [2:0].
4883          */
4884         pci_write_config_word(pdev, 0x52,
4885                               (0x7 << 13) |
4886                               (0x7 << 10) |
4887                               (0x7 <<  7) |
4888                               (0x7 <<  4) |
4889                               (0xf <<  0));
4890
4891         /* Force cacheline size to 0x8 */
4892         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4893
4894         /* Force latency timer to maximum setting so Cassini can
4895          * sit on the bus as long as it likes.
4896          */
4897         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4898 }
4899
4900 static const struct net_device_ops cas_netdev_ops = {
4901         .ndo_open               = cas_open,
4902         .ndo_stop               = cas_close,
4903         .ndo_start_xmit         = cas_start_xmit,
4904         .ndo_get_stats          = cas_get_stats,
4905         .ndo_set_rx_mode        = cas_set_multicast,
4906         .ndo_do_ioctl           = cas_ioctl,
4907         .ndo_tx_timeout         = cas_tx_timeout,
4908         .ndo_change_mtu         = cas_change_mtu,
4909         .ndo_set_mac_address    = eth_mac_addr,
4910         .ndo_validate_addr      = eth_validate_addr,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912         .ndo_poll_controller    = cas_netpoll,
4913 #endif
4914 };
4915
4916 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4917 {
4918         static int cas_version_printed = 0;
4919         unsigned long casreg_len;
4920         struct net_device *dev;
4921         struct cas *cp;
4922         int i, err, pci_using_dac;
4923         u16 pci_cmd;
4924         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4925
4926         if (cas_version_printed++ == 0)
4927                 pr_info("%s", version);
4928
4929         err = pci_enable_device(pdev);
4930         if (err) {
4931                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4932                 return err;
4933         }
4934
4935         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4936                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4937                        "base address, aborting\n");
4938                 err = -ENODEV;
4939                 goto err_out_disable_pdev;
4940         }
4941
4942         dev = alloc_etherdev(sizeof(*cp));
4943         if (!dev) {
4944                 err = -ENOMEM;
4945                 goto err_out_disable_pdev;
4946         }
4947         SET_NETDEV_DEV(dev, &pdev->dev);
4948
4949         err = pci_request_regions(pdev, dev->name);
4950         if (err) {
4951                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4952                 goto err_out_free_netdev;
4953         }
4954         pci_set_master(pdev);
4955
4956         /* we must always turn on parity response or else parity
4957          * doesn't get generated properly. disable SERR/PERR as well.
4958          * in addition, we want to turn MWI on.
4959          */
4960         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4961         pci_cmd &= ~PCI_COMMAND_SERR;
4962         pci_cmd |= PCI_COMMAND_PARITY;
4963         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4964         if (pci_try_set_mwi(pdev))
4965                 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4966
4967         cas_program_bridge(pdev);
4968
4969         /*
4970          * On some architectures, the default cache line size set
4971          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4972          * it for this case.  To start, we'll print some configuration
4973          * data.
4974          */
4975 #if 1
4976         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4977                              &orig_cacheline_size);
4978         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4979                 cas_cacheline_size =
4980                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4981                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4982                 if (pci_write_config_byte(pdev,
4983                                           PCI_CACHE_LINE_SIZE,
4984                                           cas_cacheline_size)) {
4985                         dev_err(&pdev->dev, "Could not set PCI cache "
4986                                "line size\n");
4987                         goto err_write_cacheline;
4988                 }
4989         }
4990 #endif
4991
4992
4993         /* Configure DMA attributes. */
4994         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4995                 pci_using_dac = 1;
4996                 err = pci_set_consistent_dma_mask(pdev,
4997                                                   DMA_BIT_MASK(64));
4998                 if (err < 0) {
4999                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5000                                "for consistent allocations\n");
5001                         goto err_out_free_res;
5002                 }
5003
5004         } else {
5005                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5006                 if (err) {
5007                         dev_err(&pdev->dev, "No usable DMA configuration, "
5008                                "aborting\n");
5009                         goto err_out_free_res;
5010                 }
5011                 pci_using_dac = 0;
5012         }
5013
5014         casreg_len = pci_resource_len(pdev, 0);
5015
5016         cp = netdev_priv(dev);
5017         cp->pdev = pdev;
5018 #if 1
5019         /* A value of 0 indicates we never explicitly set it */
5020         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5021 #endif
5022         cp->dev = dev;
5023         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5024           cassini_debug;
5025
5026 #if defined(CONFIG_SPARC)
5027         cp->of_node = pci_device_to_OF_node(pdev);
5028 #endif
5029
5030         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5031         cp->link_transition_jiffies_valid = 0;
5032
5033         spin_lock_init(&cp->lock);
5034         spin_lock_init(&cp->rx_inuse_lock);
5035         spin_lock_init(&cp->rx_spare_lock);
5036         for (i = 0; i < N_TX_RINGS; i++) {
5037                 spin_lock_init(&cp->stat_lock[i]);
5038                 spin_lock_init(&cp->tx_lock[i]);
5039         }
5040         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5041         mutex_init(&cp->pm_mutex);
5042
5043         init_timer(&cp->link_timer);
5044         cp->link_timer.function = cas_link_timer;
5045         cp->link_timer.data = (unsigned long) cp;
5046
5047 #if 1
5048         /* Just in case the implementation of atomic operations
5049          * change so that an explicit initialization is necessary.
5050          */
5051         atomic_set(&cp->reset_task_pending, 0);
5052         atomic_set(&cp->reset_task_pending_all, 0);
5053         atomic_set(&cp->reset_task_pending_spare, 0);
5054         atomic_set(&cp->reset_task_pending_mtu, 0);
5055 #endif
5056         INIT_WORK(&cp->reset_task, cas_reset_task);
5057
5058         /* Default link parameters */
5059         if (link_mode >= 0 && link_mode < 6)
5060                 cp->link_cntl = link_modes[link_mode];
5061         else
5062                 cp->link_cntl = BMCR_ANENABLE;
5063         cp->lstate = link_down;
5064         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5065         netif_carrier_off(cp->dev);
5066         cp->timer_ticks = 0;
5067
5068         /* give us access to cassini registers */
5069         cp->regs = pci_iomap(pdev, 0, casreg_len);
5070         if (!cp->regs) {
5071                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5072                 goto err_out_free_res;
5073         }
5074         cp->casreg_len = casreg_len;
5075
5076         pci_save_state(pdev);
5077         cas_check_pci_invariants(cp);
5078         cas_hard_reset(cp);
5079         cas_reset(cp, 0);
5080         if (cas_check_invariants(cp))
5081                 goto err_out_iounmap;
5082         if (cp->cas_flags & CAS_FLAG_SATURN)
5083                 cas_saturn_firmware_init(cp);
5084
5085         cp->init_block = (struct cas_init_block *)
5086                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5087                                      &cp->block_dvma);
5088         if (!cp->init_block) {
5089                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5090                 goto err_out_iounmap;
5091         }
5092
5093         for (i = 0; i < N_TX_RINGS; i++)
5094                 cp->init_txds[i] = cp->init_block->txds[i];
5095
5096         for (i = 0; i < N_RX_DESC_RINGS; i++)
5097                 cp->init_rxds[i] = cp->init_block->rxds[i];
5098
5099         for (i = 0; i < N_RX_COMP_RINGS; i++)
5100                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5101
5102         for (i = 0; i < N_RX_FLOWS; i++)
5103                 skb_queue_head_init(&cp->rx_flows[i]);
5104
5105         dev->netdev_ops = &cas_netdev_ops;
5106         dev->ethtool_ops = &cas_ethtool_ops;
5107         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5108
5109 #ifdef USE_NAPI
5110         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5111 #endif
5112         dev->irq = pdev->irq;
5113         dev->dma = 0;
5114
5115         /* Cassini features. */
5116         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5117                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5118
5119         if (pci_using_dac)
5120                 dev->features |= NETIF_F_HIGHDMA;
5121
5122         if (register_netdev(dev)) {
5123                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5124                 goto err_out_free_consistent;
5125         }
5126
5127         i = readl(cp->regs + REG_BIM_CFG);
5128         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5129                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5130                     (i & BIM_CFG_32BIT) ? "32" : "64",
5131                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5132                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5133                     dev->dev_addr);
5134
5135         pci_set_drvdata(pdev, dev);
5136         cp->hw_running = 1;
5137         cas_entropy_reset(cp);
5138         cas_phy_init(cp);
5139         cas_begin_auto_negotiation(cp, NULL);
5140         return 0;
5141
5142 err_out_free_consistent:
5143         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5144                             cp->init_block, cp->block_dvma);
5145
5146 err_out_iounmap:
5147         mutex_lock(&cp->pm_mutex);
5148         if (cp->hw_running)
5149                 cas_shutdown(cp);
5150         mutex_unlock(&cp->pm_mutex);
5151
5152         pci_iounmap(pdev, cp->regs);
5153
5154
5155 err_out_free_res:
5156         pci_release_regions(pdev);
5157
5158 err_write_cacheline:
5159         /* Try to restore it in case the error occurred after we
5160          * set it.
5161          */
5162         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5163
5164 err_out_free_netdev:
5165         free_netdev(dev);
5166
5167 err_out_disable_pdev:
5168         pci_disable_device(pdev);
5169         return -ENODEV;
5170 }
5171
5172 static void cas_remove_one(struct pci_dev *pdev)
5173 {
5174         struct net_device *dev = pci_get_drvdata(pdev);
5175         struct cas *cp;
5176         if (!dev)
5177                 return;
5178
5179         cp = netdev_priv(dev);
5180         unregister_netdev(dev);
5181
5182         if (cp->fw_data)
5183                 vfree(cp->fw_data);
5184
5185         mutex_lock(&cp->pm_mutex);
5186         cancel_work_sync(&cp->reset_task);
5187         if (cp->hw_running)
5188                 cas_shutdown(cp);
5189         mutex_unlock(&cp->pm_mutex);
5190
5191 #if 1
5192         if (cp->orig_cacheline_size) {
5193                 /* Restore the cache line size if we had modified
5194                  * it.
5195                  */
5196                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5197                                       cp->orig_cacheline_size);
5198         }
5199 #endif
5200         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5201                             cp->init_block, cp->block_dvma);
5202         pci_iounmap(pdev, cp->regs);
5203         free_netdev(dev);
5204         pci_release_regions(pdev);
5205         pci_disable_device(pdev);
5206 }
5207
5208 #ifdef CONFIG_PM
5209 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5210 {
5211         struct net_device *dev = pci_get_drvdata(pdev);
5212         struct cas *cp = netdev_priv(dev);
5213         unsigned long flags;
5214
5215         mutex_lock(&cp->pm_mutex);
5216
5217         /* If the driver is opened, we stop the DMA */
5218         if (cp->opened) {
5219                 netif_device_detach(dev);
5220
5221                 cas_lock_all_save(cp, flags);
5222
5223                 /* We can set the second arg of cas_reset to 0
5224                  * because on resume, we'll call cas_init_hw with
5225                  * its second arg set so that autonegotiation is
5226                  * restarted.
5227                  */
5228                 cas_reset(cp, 0);
5229                 cas_clean_rings(cp);
5230                 cas_unlock_all_restore(cp, flags);
5231         }
5232
5233         if (cp->hw_running)
5234                 cas_shutdown(cp);
5235         mutex_unlock(&cp->pm_mutex);
5236
5237         return 0;
5238 }
5239
5240 static int cas_resume(struct pci_dev *pdev)
5241 {
5242         struct net_device *dev = pci_get_drvdata(pdev);
5243         struct cas *cp = netdev_priv(dev);
5244
5245         netdev_info(dev, "resuming\n");
5246
5247         mutex_lock(&cp->pm_mutex);
5248         cas_hard_reset(cp);
5249         if (cp->opened) {
5250                 unsigned long flags;
5251                 cas_lock_all_save(cp, flags);
5252                 cas_reset(cp, 0);
5253                 cp->hw_running = 1;
5254                 cas_clean_rings(cp);
5255                 cas_init_hw(cp, 1);
5256                 cas_unlock_all_restore(cp, flags);
5257
5258                 netif_device_attach(dev);
5259         }
5260         mutex_unlock(&cp->pm_mutex);
5261         return 0;
5262 }
5263 #endif /* CONFIG_PM */
5264
5265 static struct pci_driver cas_driver = {
5266         .name           = DRV_MODULE_NAME,
5267         .id_table       = cas_pci_tbl,
5268         .probe          = cas_init_one,
5269         .remove         = cas_remove_one,
5270 #ifdef CONFIG_PM
5271         .suspend        = cas_suspend,
5272         .resume         = cas_resume
5273 #endif
5274 };
5275
5276 static int __init cas_init(void)
5277 {
5278         if (linkdown_timeout > 0)
5279                 link_transition_timeout = linkdown_timeout * HZ;
5280         else
5281                 link_transition_timeout = 0;
5282
5283         return pci_register_driver(&cas_driver);
5284 }
5285
5286 static void __exit cas_cleanup(void)
5287 {
5288         pci_unregister_driver(&cas_driver);
5289 }
5290
5291 module_init(cas_init);
5292 module_exit(cas_cleanup);