Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 memset(zero_mac_addr, 0, ETH_ALEN);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096                                                 GFP_ATOMIC,
1097                                                 qdev->lbq_buf_order);
1098                 if (unlikely(!rx_ring->pg_chunk.page)) {
1099                         netif_err(qdev, drv, qdev->ndev,
1100                                   "page allocation failed.\n");
1101                         return -ENOMEM;
1102                 }
1103                 rx_ring->pg_chunk.offset = 0;
1104                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105                                         0, ql_lbq_block_size(qdev),
1106                                         PCI_DMA_FROMDEVICE);
1107                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108                         __free_pages(rx_ring->pg_chunk.page,
1109                                         qdev->lbq_buf_order);
1110                         rx_ring->pg_chunk.page = NULL;
1111                         netif_err(qdev, drv, qdev->ndev,
1112                                   "PCI mapping failed.\n");
1113                         return -ENOMEM;
1114                 }
1115                 rx_ring->pg_chunk.map = map;
1116                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117         }
1118
1119         /* Copy the current master pg_chunk info
1120          * to the current descriptor.
1121          */
1122         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124         /* Adjust the master page chunk for next
1125          * buffer get.
1126          */
1127         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129                 rx_ring->pg_chunk.page = NULL;
1130                 lbq_desc->p.pg_chunk.last_flag = 1;
1131         } else {
1132                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133                 get_page(rx_ring->pg_chunk.page);
1134                 lbq_desc->p.pg_chunk.last_flag = 0;
1135         }
1136         return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141         u32 clean_idx = rx_ring->lbq_clean_idx;
1142         u32 start_idx = clean_idx;
1143         struct bq_desc *lbq_desc;
1144         u64 map;
1145         int i;
1146
1147         while (rx_ring->lbq_free_cnt > 32) {
1148                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150                                      "lbq: try cleaning clean_idx = %d.\n",
1151                                      clean_idx);
1152                         lbq_desc = &rx_ring->lbq[clean_idx];
1153                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154                                 rx_ring->lbq_clean_idx = clean_idx;
1155                                 netif_err(qdev, ifup, qdev->ndev,
1156                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157                                                 i, clean_idx);
1158                                 return;
1159                         }
1160
1161                         map = lbq_desc->p.pg_chunk.map +
1162                                 lbq_desc->p.pg_chunk.offset;
1163                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164                         dma_unmap_len_set(lbq_desc, maplen,
1165                                         rx_ring->lbq_buf_size);
1166                                 *lbq_desc->addr = cpu_to_le64(map);
1167
1168                         pci_dma_sync_single_for_device(qdev->pdev, map,
1169                                                 rx_ring->lbq_buf_size,
1170                                                 PCI_DMA_FROMDEVICE);
1171                         clean_idx++;
1172                         if (clean_idx == rx_ring->lbq_len)
1173                                 clean_idx = 0;
1174                 }
1175
1176                 rx_ring->lbq_clean_idx = clean_idx;
1177                 rx_ring->lbq_prod_idx += 16;
1178                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179                         rx_ring->lbq_prod_idx = 0;
1180                 rx_ring->lbq_free_cnt -= 16;
1181         }
1182
1183         if (start_idx != clean_idx) {
1184                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185                              "lbq: updating prod idx = %d.\n",
1186                              rx_ring->lbq_prod_idx);
1187                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188                                 rx_ring->lbq_prod_idx_db_reg);
1189         }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195         u32 clean_idx = rx_ring->sbq_clean_idx;
1196         u32 start_idx = clean_idx;
1197         struct bq_desc *sbq_desc;
1198         u64 map;
1199         int i;
1200
1201         while (rx_ring->sbq_free_cnt > 16) {
1202                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203                         sbq_desc = &rx_ring->sbq[clean_idx];
1204                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205                                      "sbq: try cleaning clean_idx = %d.\n",
1206                                      clean_idx);
1207                         if (sbq_desc->p.skb == NULL) {
1208                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1209                                              qdev->ndev,
1210                                              "sbq: getting new skb for index %d.\n",
1211                                              sbq_desc->index);
1212                                 sbq_desc->p.skb =
1213                                     netdev_alloc_skb(qdev->ndev,
1214                                                      SMALL_BUFFER_SIZE);
1215                                 if (sbq_desc->p.skb == NULL) {
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438                                  struct rx_ring *rx_ring)
1439 {
1440         struct nic_stats *stats = &qdev->nic_stats;
1441
1442         stats->rx_err_count++;
1443         rx_ring->rx_errors++;
1444
1445         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447                 stats->rx_code_err++;
1448                 break;
1449         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450                 stats->rx_oversize_err++;
1451                 break;
1452         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453                 stats->rx_undersize_err++;
1454                 break;
1455         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456                 stats->rx_preamble_err++;
1457                 break;
1458         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459                 stats->rx_frame_len_err++;
1460                 break;
1461         case IB_MAC_IOCB_RSP_ERR_CRC:
1462                 stats->rx_crc_err++;
1463         default:
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1474                                   void *page, size_t *len)
1475 {
1476         u16 *tags;
1477
1478         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479                 return;
1480         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481                 tags = (u16 *)page;
1482                 /* Look for stacked vlan tags in ethertype field */
1483                 if (tags[6] == ETH_P_8021Q &&
1484                     tags[8] == ETH_P_8021Q)
1485                         *len += 2 * VLAN_HLEN;
1486                 else
1487                         *len += VLAN_HLEN;
1488         }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493                                         struct rx_ring *rx_ring,
1494                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1495                                         u32 length,
1496                                         u16 vlan_id)
1497 {
1498         struct sk_buff *skb;
1499         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500         struct napi_struct *napi = &rx_ring->napi;
1501
1502         /* Frame error, so drop the packet. */
1503         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505                 put_page(lbq_desc->p.pg_chunk.page);
1506                 return;
1507         }
1508         napi->dev = qdev->ndev;
1509
1510         skb = napi_get_frags(napi);
1511         if (!skb) {
1512                 netif_err(qdev, drv, qdev->ndev,
1513                           "Couldn't get an skb, exiting.\n");
1514                 rx_ring->rx_dropped++;
1515                 put_page(lbq_desc->p.pg_chunk.page);
1516                 return;
1517         }
1518         prefetch(lbq_desc->p.pg_chunk.va);
1519         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520                              lbq_desc->p.pg_chunk.page,
1521                              lbq_desc->p.pg_chunk.offset,
1522                              length);
1523
1524         skb->len += length;
1525         skb->data_len += length;
1526         skb->truesize += length;
1527         skb_shinfo(skb)->nr_frags++;
1528
1529         rx_ring->rx_packets++;
1530         rx_ring->rx_bytes += length;
1531         skb->ip_summed = CHECKSUM_UNNECESSARY;
1532         skb_record_rx_queue(skb, rx_ring->cq_id);
1533         if (vlan_id != 0xffff)
1534                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535         napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540                                         struct rx_ring *rx_ring,
1541                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1542                                         u32 length,
1543                                         u16 vlan_id)
1544 {
1545         struct net_device *ndev = qdev->ndev;
1546         struct sk_buff *skb = NULL;
1547         void *addr;
1548         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549         struct napi_struct *napi = &rx_ring->napi;
1550         size_t hlen = ETH_HLEN;
1551
1552         skb = netdev_alloc_skb(ndev, length);
1553         if (!skb) {
1554                 rx_ring->rx_dropped++;
1555                 put_page(lbq_desc->p.pg_chunk.page);
1556                 return;
1557         }
1558
1559         addr = lbq_desc->p.pg_chunk.va;
1560         prefetch(addr);
1561
1562         /* Frame error, so drop the packet. */
1563         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565                 goto err_out;
1566         }
1567
1568         /* Update the MAC header length*/
1569         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571         /* The max framesize filter on this chip is set higher than
1572          * MTU since FCoE uses 2k frames.
1573          */
1574         if (skb->len > ndev->mtu + hlen) {
1575                 netif_err(qdev, drv, qdev->ndev,
1576                           "Segment too small, dropping.\n");
1577                 rx_ring->rx_dropped++;
1578                 goto err_out;
1579         }
1580         memcpy(skb_put(skb, hlen), addr, hlen);
1581         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583                      length);
1584         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585                                 lbq_desc->p.pg_chunk.offset + hlen,
1586                                 length - hlen);
1587         skb->len += length - hlen;
1588         skb->data_len += length - hlen;
1589         skb->truesize += length - hlen;
1590
1591         rx_ring->rx_packets++;
1592         rx_ring->rx_bytes += skb->len;
1593         skb->protocol = eth_type_trans(skb, ndev);
1594         skb_checksum_none_assert(skb);
1595
1596         if ((ndev->features & NETIF_F_RXCSUM) &&
1597                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598                 /* TCP frame. */
1599                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601                                      "TCP checksum done!\n");
1602                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1603                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605                         /* Unfragmented ipv4 UDP frame. */
1606                         struct iphdr *iph =
1607                                 (struct iphdr *)((u8 *)addr + hlen);
1608                         if (!(iph->frag_off &
1609                                 htons(IP_MF|IP_OFFSET))) {
1610                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1612                                              qdev->ndev,
1613                                              "UDP checksum done!\n");
1614                         }
1615                 }
1616         }
1617
1618         skb_record_rx_queue(skb, rx_ring->cq_id);
1619         if (vlan_id != 0xffff)
1620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622                 napi_gro_receive(napi, skb);
1623         else
1624                 netif_receive_skb(skb);
1625         return;
1626 err_out:
1627         dev_kfree_skb_any(skb);
1628         put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633                                         struct rx_ring *rx_ring,
1634                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1635                                         u32 length,
1636                                         u16 vlan_id)
1637 {
1638         struct net_device *ndev = qdev->ndev;
1639         struct sk_buff *skb = NULL;
1640         struct sk_buff *new_skb = NULL;
1641         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643         skb = sbq_desc->p.skb;
1644         /* Allocate new_skb and copy */
1645         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646         if (new_skb == NULL) {
1647                 rx_ring->rx_dropped++;
1648                 return;
1649         }
1650         skb_reserve(new_skb, NET_IP_ALIGN);
1651         memcpy(skb_put(new_skb, length), skb->data, length);
1652         skb = new_skb;
1653
1654         /* Frame error, so drop the packet. */
1655         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657                 dev_kfree_skb_any(skb);
1658                 return;
1659         }
1660
1661         /* loopback self test for ethtool */
1662         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663                 ql_check_lb_frame(qdev, skb);
1664                 dev_kfree_skb_any(skb);
1665                 return;
1666         }
1667
1668         /* The max framesize filter on this chip is set higher than
1669          * MTU since FCoE uses 2k frames.
1670          */
1671         if (skb->len > ndev->mtu + ETH_HLEN) {
1672                 dev_kfree_skb_any(skb);
1673                 rx_ring->rx_dropped++;
1674                 return;
1675         }
1676
1677         prefetch(skb->data);
1678         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680                              "%s Multicast.\n",
1681                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1687         }
1688         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690                              "Promiscuous Packet.\n");
1691
1692         rx_ring->rx_packets++;
1693         rx_ring->rx_bytes += skb->len;
1694         skb->protocol = eth_type_trans(skb, ndev);
1695         skb_checksum_none_assert(skb);
1696
1697         /* If rx checksum is on, and there are no
1698          * csum or frame errors.
1699          */
1700         if ((ndev->features & NETIF_F_RXCSUM) &&
1701                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702                 /* TCP frame. */
1703                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705                                      "TCP checksum done!\n");
1706                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1707                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709                         /* Unfragmented ipv4 UDP frame. */
1710                         struct iphdr *iph = (struct iphdr *) skb->data;
1711                         if (!(iph->frag_off &
1712                                 htons(IP_MF|IP_OFFSET))) {
1713                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1715                                              qdev->ndev,
1716                                              "UDP checksum done!\n");
1717                         }
1718                 }
1719         }
1720
1721         skb_record_rx_queue(skb, rx_ring->cq_id);
1722         if (vlan_id != 0xffff)
1723                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725                 napi_gro_receive(&rx_ring->napi, skb);
1726         else
1727                 netif_receive_skb(skb);
1728 }
1729
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1731 {
1732         void *temp_addr = skb->data;
1733
1734         /* Undo the skb_reserve(skb,32) we did before
1735          * giving to hardware, and realign data on
1736          * a 2-byte boundary.
1737          */
1738         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740         skb_copy_to_linear_data(skb, temp_addr,
1741                 (unsigned int)len);
1742 }
1743
1744 /*
1745  * This function builds an skb for the given inbound
1746  * completion.  It will be rewritten for readability in the near
1747  * future, but for not it works well.
1748  */
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750                                        struct rx_ring *rx_ring,
1751                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1752 {
1753         struct bq_desc *lbq_desc;
1754         struct bq_desc *sbq_desc;
1755         struct sk_buff *skb = NULL;
1756         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758         size_t hlen = ETH_HLEN;
1759
1760         /*
1761          * Handle the header buffer if present.
1762          */
1763         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766                              "Header of %d bytes in small buffer.\n", hdr_len);
1767                 /*
1768                  * Headers fit nicely into a small buffer.
1769                  */
1770                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771                 pci_unmap_single(qdev->pdev,
1772                                 dma_unmap_addr(sbq_desc, mapaddr),
1773                                 dma_unmap_len(sbq_desc, maplen),
1774                                 PCI_DMA_FROMDEVICE);
1775                 skb = sbq_desc->p.skb;
1776                 ql_realign_skb(skb, hdr_len);
1777                 skb_put(skb, hdr_len);
1778                 sbq_desc->p.skb = NULL;
1779         }
1780
1781         /*
1782          * Handle the data buffer(s).
1783          */
1784         if (unlikely(!length)) {        /* Is there data too? */
1785                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786                              "No Data buffer in this packet.\n");
1787                 return skb;
1788         }
1789
1790         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793                                      "Headers in small, data of %d bytes in small, combine them.\n",
1794                                      length);
1795                         /*
1796                          * Data is less than small buffer size so it's
1797                          * stuffed in a small buffer.
1798                          * For this case we append the data
1799                          * from the "data" small buffer to the "header" small
1800                          * buffer.
1801                          */
1802                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1803                         pci_dma_sync_single_for_cpu(qdev->pdev,
1804                                                     dma_unmap_addr
1805                                                     (sbq_desc, mapaddr),
1806                                                     dma_unmap_len
1807                                                     (sbq_desc, maplen),
1808                                                     PCI_DMA_FROMDEVICE);
1809                         memcpy(skb_put(skb, length),
1810                                sbq_desc->p.skb->data, length);
1811                         pci_dma_sync_single_for_device(qdev->pdev,
1812                                                        dma_unmap_addr
1813                                                        (sbq_desc,
1814                                                         mapaddr),
1815                                                        dma_unmap_len
1816                                                        (sbq_desc,
1817                                                         maplen),
1818                                                        PCI_DMA_FROMDEVICE);
1819                 } else {
1820                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821                                      "%d bytes in a single small buffer.\n",
1822                                      length);
1823                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1824                         skb = sbq_desc->p.skb;
1825                         ql_realign_skb(skb, length);
1826                         skb_put(skb, length);
1827                         pci_unmap_single(qdev->pdev,
1828                                          dma_unmap_addr(sbq_desc,
1829                                                         mapaddr),
1830                                          dma_unmap_len(sbq_desc,
1831                                                        maplen),
1832                                          PCI_DMA_FROMDEVICE);
1833                         sbq_desc->p.skb = NULL;
1834                 }
1835         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838                                      "Header in small, %d bytes in large. Chain large to small!\n",
1839                                      length);
1840                         /*
1841                          * The data is in a single large buffer.  We
1842                          * chain it to the header buffer's skb and let
1843                          * it rip.
1844                          */
1845                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1848                                      lbq_desc->p.pg_chunk.offset, length);
1849                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850                                                 lbq_desc->p.pg_chunk.offset,
1851                                                 length);
1852                         skb->len += length;
1853                         skb->data_len += length;
1854                         skb->truesize += length;
1855                 } else {
1856                         /*
1857                          * The headers and data are in a single large buffer. We
1858                          * copy it to a new skb and let it go. This can happen with
1859                          * jumbo mtu on a non-TCP/UDP frame.
1860                          */
1861                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862                         skb = netdev_alloc_skb(qdev->ndev, length);
1863                         if (skb == NULL) {
1864                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865                                              "No skb available, drop the packet.\n");
1866                                 return NULL;
1867                         }
1868                         pci_unmap_page(qdev->pdev,
1869                                        dma_unmap_addr(lbq_desc,
1870                                                       mapaddr),
1871                                        dma_unmap_len(lbq_desc, maplen),
1872                                        PCI_DMA_FROMDEVICE);
1873                         skb_reserve(skb, NET_IP_ALIGN);
1874                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876                                      length);
1877                         skb_fill_page_desc(skb, 0,
1878                                                 lbq_desc->p.pg_chunk.page,
1879                                                 lbq_desc->p.pg_chunk.offset,
1880                                                 length);
1881                         skb->len += length;
1882                         skb->data_len += length;
1883                         skb->truesize += length;
1884                         length -= length;
1885                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886                                               lbq_desc->p.pg_chunk.va,
1887                                               &hlen);
1888                         __pskb_pull_tail(skb, hlen);
1889                 }
1890         } else {
1891                 /*
1892                  * The data is in a chain of large buffers
1893                  * pointed to by a small buffer.  We loop
1894                  * thru and chain them to the our small header
1895                  * buffer's skb.
1896                  * frags:  There are 18 max frags and our small
1897                  *         buffer will hold 32 of them. The thing is,
1898                  *         we'll use 3 max for our 9000 byte jumbo
1899                  *         frames.  If the MTU goes up we could
1900                  *          eventually be in trouble.
1901                  */
1902                 int size, i = 0;
1903                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904                 pci_unmap_single(qdev->pdev,
1905                                  dma_unmap_addr(sbq_desc, mapaddr),
1906                                  dma_unmap_len(sbq_desc, maplen),
1907                                  PCI_DMA_FROMDEVICE);
1908                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909                         /*
1910                          * This is an non TCP/UDP IP frame, so
1911                          * the headers aren't split into a small
1912                          * buffer.  We have to use the small buffer
1913                          * that contains our sg list as our skb to
1914                          * send upstairs. Copy the sg list here to
1915                          * a local buffer and use it to find the
1916                          * pages to chain.
1917                          */
1918                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919                                      "%d bytes of headers & data in chain of large.\n",
1920                                      length);
1921                         skb = sbq_desc->p.skb;
1922                         sbq_desc->p.skb = NULL;
1923                         skb_reserve(skb, NET_IP_ALIGN);
1924                 }
1925                 do {
1926                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927                         size = (length < rx_ring->lbq_buf_size) ? length :
1928                                 rx_ring->lbq_buf_size;
1929
1930                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931                                      "Adding page %d to skb for %d bytes.\n",
1932                                      i, size);
1933                         skb_fill_page_desc(skb, i,
1934                                                 lbq_desc->p.pg_chunk.page,
1935                                                 lbq_desc->p.pg_chunk.offset,
1936                                                 size);
1937                         skb->len += size;
1938                         skb->data_len += size;
1939                         skb->truesize += size;
1940                         length -= size;
1941                         i++;
1942                 } while (length > 0);
1943                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944                                       &hlen);
1945                 __pskb_pull_tail(skb, hlen);
1946         }
1947         return skb;
1948 }
1949
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952                                    struct rx_ring *rx_ring,
1953                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1954                                    u16 vlan_id)
1955 {
1956         struct net_device *ndev = qdev->ndev;
1957         struct sk_buff *skb = NULL;
1958
1959         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962         if (unlikely(!skb)) {
1963                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964                              "No skb available, drop packet.\n");
1965                 rx_ring->rx_dropped++;
1966                 return;
1967         }
1968
1969         /* Frame error, so drop the packet. */
1970         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972                 dev_kfree_skb_any(skb);
1973                 return;
1974         }
1975
1976         /* The max framesize filter on this chip is set higher than
1977          * MTU since FCoE uses 2k frames.
1978          */
1979         if (skb->len > ndev->mtu + ETH_HLEN) {
1980                 dev_kfree_skb_any(skb);
1981                 rx_ring->rx_dropped++;
1982                 return;
1983         }
1984
1985         /* loopback self test for ethtool */
1986         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987                 ql_check_lb_frame(qdev, skb);
1988                 dev_kfree_skb_any(skb);
1989                 return;
1990         }
1991
1992         prefetch(skb->data);
1993         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001                 rx_ring->rx_multicast++;
2002         }
2003         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005                              "Promiscuous Packet.\n");
2006         }
2007
2008         skb->protocol = eth_type_trans(skb, ndev);
2009         skb_checksum_none_assert(skb);
2010
2011         /* If rx checksum is on, and there are no
2012          * csum or frame errors.
2013          */
2014         if ((ndev->features & NETIF_F_RXCSUM) &&
2015                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016                 /* TCP frame. */
2017                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019                                      "TCP checksum done!\n");
2020                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2021                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023                 /* Unfragmented ipv4 UDP frame. */
2024                         struct iphdr *iph = (struct iphdr *) skb->data;
2025                         if (!(iph->frag_off &
2026                                 htons(IP_MF|IP_OFFSET))) {
2027                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029                                              "TCP checksum done!\n");
2030                         }
2031                 }
2032         }
2033
2034         rx_ring->rx_packets++;
2035         rx_ring->rx_bytes += skb->len;
2036         skb_record_rx_queue(skb, rx_ring->cq_id);
2037         if (vlan_id != 0xffff)
2038                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040                 napi_gro_receive(&rx_ring->napi, skb);
2041         else
2042                 netif_receive_skb(skb);
2043 }
2044
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047                                         struct rx_ring *rx_ring,
2048                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2049 {
2050         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059                 /* The data and headers are split into
2060                  * separate buffers.
2061                  */
2062                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063                                                 vlan_id);
2064         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065                 /* The data fit in a single small buffer.
2066                  * Allocate a new skb, copy the data and
2067                  * return the buffer to the free pool.
2068                  */
2069                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070                                                 length, vlan_id);
2071         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074                 /* TCP packet in a page chunk that's been checksummed.
2075                  * Tack it on to our GRO skb and let it go.
2076                  */
2077                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078                                                 length, vlan_id);
2079         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080                 /* Non-TCP packet in a page chunk. Allocate an
2081                  * skb, tack it on frags, and send it up.
2082                  */
2083                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084                                                 length, vlan_id);
2085         } else {
2086                 /* Non-TCP/UDP large frames that span multiple buffers
2087                  * can be processed corrrectly by the split frame logic.
2088                  */
2089                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090                                                 vlan_id);
2091         }
2092
2093         return (unsigned long)length;
2094 }
2095
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098                                    struct ob_mac_iocb_rsp *mac_rsp)
2099 {
2100         struct tx_ring *tx_ring;
2101         struct tx_ring_desc *tx_ring_desc;
2102
2103         QL_DUMP_OB_MAC_RSP(mac_rsp);
2104         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108         tx_ring->tx_packets++;
2109         dev_kfree_skb(tx_ring_desc->skb);
2110         tx_ring_desc->skb = NULL;
2111
2112         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113                                         OB_MAC_IOCB_RSP_S |
2114                                         OB_MAC_IOCB_RSP_L |
2115                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117                         netif_warn(qdev, tx_done, qdev->ndev,
2118                                    "Total descriptor length did not match transfer length.\n");
2119                 }
2120                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121                         netif_warn(qdev, tx_done, qdev->ndev,
2122                                    "Frame too short to be valid, not sent.\n");
2123                 }
2124                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125                         netif_warn(qdev, tx_done, qdev->ndev,
2126                                    "Frame too long, but sent anyway.\n");
2127                 }
2128                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129                         netif_warn(qdev, tx_done, qdev->ndev,
2130                                    "PCI backplane error. Frame not sent.\n");
2131                 }
2132         }
2133         atomic_inc(&tx_ring->tx_count);
2134 }
2135
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2138 {
2139         ql_link_off(qdev);
2140         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141 }
2142
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2144 {
2145         ql_link_off(qdev);
2146         ql_disable_interrupts(qdev);
2147         /* Clear adapter up bit to signal the recovery
2148          * process that it shouldn't kill the reset worker
2149          * thread
2150          */
2151         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152         /* Set asic recovery bit to indicate reset process that we are
2153          * in fatal error recovery process rather than normal close
2154          */
2155         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157 }
2158
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2161 {
2162         switch (ib_ae_rsp->event) {
2163         case MGMT_ERR_EVENT:
2164                 netif_err(qdev, rx_err, qdev->ndev,
2165                           "Management Processor Fatal Error.\n");
2166                 ql_queue_fw_error(qdev);
2167                 return;
2168
2169         case CAM_LOOKUP_ERR_EVENT:
2170                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172                 ql_queue_asic_error(qdev);
2173                 return;
2174
2175         case SOFT_ECC_ERROR_EVENT:
2176                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177                 ql_queue_asic_error(qdev);
2178                 break;
2179
2180         case PCI_ERR_ANON_BUF_RD:
2181                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182                                         "anonymous buffers from rx_ring %d.\n",
2183                                         ib_ae_rsp->q_id);
2184                 ql_queue_asic_error(qdev);
2185                 break;
2186
2187         default:
2188                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189                           ib_ae_rsp->event);
2190                 ql_queue_asic_error(qdev);
2191                 break;
2192         }
2193 }
2194
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196 {
2197         struct ql_adapter *qdev = rx_ring->qdev;
2198         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199         struct ob_mac_iocb_rsp *net_rsp = NULL;
2200         int count = 0;
2201
2202         struct tx_ring *tx_ring;
2203         /* While there are entries in the completion queue. */
2204         while (prod != rx_ring->cnsmr_idx) {
2205
2206                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2209
2210                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211                 rmb();
2212                 switch (net_rsp->opcode) {
2213
2214                 case OPCODE_OB_MAC_TSO_IOCB:
2215                 case OPCODE_OB_MAC_IOCB:
2216                         ql_process_mac_tx_intr(qdev, net_rsp);
2217                         break;
2218                 default:
2219                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221                                      net_rsp->opcode);
2222                 }
2223                 count++;
2224                 ql_update_cq(rx_ring);
2225                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2226         }
2227         if (!net_rsp)
2228                 return 0;
2229         ql_write_cq_idx(rx_ring);
2230         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2233                         /*
2234                          * The queue got stopped because the tx_ring was full.
2235                          * Wake it up, because it's now at least 25% empty.
2236                          */
2237                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2238         }
2239
2240         return count;
2241 }
2242
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244 {
2245         struct ql_adapter *qdev = rx_ring->qdev;
2246         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247         struct ql_net_rsp_iocb *net_rsp;
2248         int count = 0;
2249
2250         /* While there are entries in the completion queue. */
2251         while (prod != rx_ring->cnsmr_idx) {
2252
2253                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2256
2257                 net_rsp = rx_ring->curr_entry;
2258                 rmb();
2259                 switch (net_rsp->opcode) {
2260                 case OPCODE_IB_MAC_IOCB:
2261                         ql_process_mac_rx_intr(qdev, rx_ring,
2262                                                (struct ib_mac_iocb_rsp *)
2263                                                net_rsp);
2264                         break;
2265
2266                 case OPCODE_IB_AE_IOCB:
2267                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268                                                 net_rsp);
2269                         break;
2270                 default:
2271                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273                                      net_rsp->opcode);
2274                         break;
2275                 }
2276                 count++;
2277                 ql_update_cq(rx_ring);
2278                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279                 if (count == budget)
2280                         break;
2281         }
2282         ql_update_buffer_queues(qdev, rx_ring);
2283         ql_write_cq_idx(rx_ring);
2284         return count;
2285 }
2286
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288 {
2289         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290         struct ql_adapter *qdev = rx_ring->qdev;
2291         struct rx_ring *trx_ring;
2292         int i, work_done = 0;
2293         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2294
2295         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2297
2298         /* Service the TX rings first.  They start
2299          * right after the RSS rings. */
2300         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301                 trx_ring = &qdev->rx_ring[i];
2302                 /* If this TX completion ring belongs to this vector and
2303                  * it's not empty then service it.
2304                  */
2305                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307                                         trx_ring->cnsmr_idx)) {
2308                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309                                      "%s: Servicing TX completion ring %d.\n",
2310                                      __func__, trx_ring->cq_id);
2311                         ql_clean_outbound_rx_ring(trx_ring);
2312                 }
2313         }
2314
2315         /*
2316          * Now service the RSS ring if it's active.
2317          */
2318         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319                                         rx_ring->cnsmr_idx) {
2320                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321                              "%s: Servicing RX completion ring %d.\n",
2322                              __func__, rx_ring->cq_id);
2323                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324         }
2325
2326         if (work_done < budget) {
2327                 napi_complete(napi);
2328                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329         }
2330         return work_done;
2331 }
2332
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2334 {
2335         struct ql_adapter *qdev = netdev_priv(ndev);
2336
2337         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2340         } else {
2341                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342         }
2343 }
2344
2345 /**
2346  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347  * based on the features to enable/disable hardware vlan accel
2348  */
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350                                         netdev_features_t features)
2351 {
2352         struct ql_adapter *qdev = netdev_priv(ndev);
2353         int status = 0;
2354         bool need_restart = netif_running(ndev);
2355
2356         if (need_restart) {
2357                 status = ql_adapter_down(qdev);
2358                 if (status) {
2359                         netif_err(qdev, link, qdev->ndev,
2360                                   "Failed to bring down the adapter\n");
2361                         return status;
2362                 }
2363         }
2364
2365         /* update the features with resent change */
2366         ndev->features = features;
2367
2368         if (need_restart) {
2369                 status = ql_adapter_up(qdev);
2370                 if (status) {
2371                         netif_err(qdev, link, qdev->ndev,
2372                                   "Failed to bring up the adapter\n");
2373                         return status;
2374                 }
2375         }
2376
2377         return status;
2378 }
2379
2380 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2381         netdev_features_t features)
2382 {
2383         int err;
2384
2385         /* Update the behavior of vlan accel in the adapter */
2386         err = qlge_update_hw_vlan_features(ndev, features);
2387         if (err)
2388                 return err;
2389
2390         return features;
2391 }
2392
2393 static int qlge_set_features(struct net_device *ndev,
2394         netdev_features_t features)
2395 {
2396         netdev_features_t changed = ndev->features ^ features;
2397
2398         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2399                 qlge_vlan_mode(ndev, features);
2400
2401         return 0;
2402 }
2403
2404 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2405 {
2406         u32 enable_bit = MAC_ADDR_E;
2407         int err;
2408
2409         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2410                                   MAC_ADDR_TYPE_VLAN, vid);
2411         if (err)
2412                 netif_err(qdev, ifup, qdev->ndev,
2413                           "Failed to init vlan address.\n");
2414         return err;
2415 }
2416
2417 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2418 {
2419         struct ql_adapter *qdev = netdev_priv(ndev);
2420         int status;
2421         int err;
2422
2423         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2424         if (status)
2425                 return status;
2426
2427         err = __qlge_vlan_rx_add_vid(qdev, vid);
2428         set_bit(vid, qdev->active_vlans);
2429
2430         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2431
2432         return err;
2433 }
2434
2435 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2436 {
2437         u32 enable_bit = 0;
2438         int err;
2439
2440         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2441                                   MAC_ADDR_TYPE_VLAN, vid);
2442         if (err)
2443                 netif_err(qdev, ifup, qdev->ndev,
2444                           "Failed to clear vlan address.\n");
2445         return err;
2446 }
2447
2448 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2449 {
2450         struct ql_adapter *qdev = netdev_priv(ndev);
2451         int status;
2452         int err;
2453
2454         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2455         if (status)
2456                 return status;
2457
2458         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2459         clear_bit(vid, qdev->active_vlans);
2460
2461         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2462
2463         return err;
2464 }
2465
2466 static void qlge_restore_vlan(struct ql_adapter *qdev)
2467 {
2468         int status;
2469         u16 vid;
2470
2471         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2472         if (status)
2473                 return;
2474
2475         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2476                 __qlge_vlan_rx_add_vid(qdev, vid);
2477
2478         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2479 }
2480
2481 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2482 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2483 {
2484         struct rx_ring *rx_ring = dev_id;
2485         napi_schedule(&rx_ring->napi);
2486         return IRQ_HANDLED;
2487 }
2488
2489 /* This handles a fatal error, MPI activity, and the default
2490  * rx_ring in an MSI-X multiple vector environment.
2491  * In MSI/Legacy environment it also process the rest of
2492  * the rx_rings.
2493  */
2494 static irqreturn_t qlge_isr(int irq, void *dev_id)
2495 {
2496         struct rx_ring *rx_ring = dev_id;
2497         struct ql_adapter *qdev = rx_ring->qdev;
2498         struct intr_context *intr_context = &qdev->intr_context[0];
2499         u32 var;
2500         int work_done = 0;
2501
2502         spin_lock(&qdev->hw_lock);
2503         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2504                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2505                              "Shared Interrupt, Not ours!\n");
2506                 spin_unlock(&qdev->hw_lock);
2507                 return IRQ_NONE;
2508         }
2509         spin_unlock(&qdev->hw_lock);
2510
2511         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2512
2513         /*
2514          * Check for fatal error.
2515          */
2516         if (var & STS_FE) {
2517                 ql_queue_asic_error(qdev);
2518                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2519                 var = ql_read32(qdev, ERR_STS);
2520                 netdev_err(qdev->ndev, "Resetting chip. "
2521                                         "Error Status Register = 0x%x\n", var);
2522                 return IRQ_HANDLED;
2523         }
2524
2525         /*
2526          * Check MPI processor activity.
2527          */
2528         if ((var & STS_PI) &&
2529                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2530                 /*
2531                  * We've got an async event or mailbox completion.
2532                  * Handle it and clear the source of the interrupt.
2533                  */
2534                 netif_err(qdev, intr, qdev->ndev,
2535                           "Got MPI processor interrupt.\n");
2536                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2537                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2538                 queue_delayed_work_on(smp_processor_id(),
2539                                 qdev->workqueue, &qdev->mpi_work, 0);
2540                 work_done++;
2541         }
2542
2543         /*
2544          * Get the bit-mask that shows the active queues for this
2545          * pass.  Compare it to the queues that this irq services
2546          * and call napi if there's a match.
2547          */
2548         var = ql_read32(qdev, ISR1);
2549         if (var & intr_context->irq_mask) {
2550                 netif_info(qdev, intr, qdev->ndev,
2551                            "Waking handler for rx_ring[0].\n");
2552                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2553                 napi_schedule(&rx_ring->napi);
2554                 work_done++;
2555         }
2556         ql_enable_completion_interrupt(qdev, intr_context->intr);
2557         return work_done ? IRQ_HANDLED : IRQ_NONE;
2558 }
2559
2560 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2561 {
2562
2563         if (skb_is_gso(skb)) {
2564                 int err;
2565                 __be16 l3_proto = vlan_get_protocol(skb);
2566
2567                 err = skb_cow_head(skb, 0);
2568                 if (err < 0)
2569                         return err;
2570
2571                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2572                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2573                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2574                 mac_iocb_ptr->total_hdrs_len =
2575                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2576                 mac_iocb_ptr->net_trans_offset =
2577                     cpu_to_le16(skb_network_offset(skb) |
2578                                 skb_transport_offset(skb)
2579                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2580                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2581                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2582                 if (likely(l3_proto == htons(ETH_P_IP))) {
2583                         struct iphdr *iph = ip_hdr(skb);
2584                         iph->check = 0;
2585                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2586                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2587                                                                  iph->daddr, 0,
2588                                                                  IPPROTO_TCP,
2589                                                                  0);
2590                 } else if (l3_proto == htons(ETH_P_IPV6)) {
2591                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2592                         tcp_hdr(skb)->check =
2593                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2594                                              &ipv6_hdr(skb)->daddr,
2595                                              0, IPPROTO_TCP, 0);
2596                 }
2597                 return 1;
2598         }
2599         return 0;
2600 }
2601
2602 static void ql_hw_csum_setup(struct sk_buff *skb,
2603                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2604 {
2605         int len;
2606         struct iphdr *iph = ip_hdr(skb);
2607         __sum16 *check;
2608         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2609         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2610         mac_iocb_ptr->net_trans_offset =
2611                 cpu_to_le16(skb_network_offset(skb) |
2612                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2613
2614         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2615         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2616         if (likely(iph->protocol == IPPROTO_TCP)) {
2617                 check = &(tcp_hdr(skb)->check);
2618                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2619                 mac_iocb_ptr->total_hdrs_len =
2620                     cpu_to_le16(skb_transport_offset(skb) +
2621                                 (tcp_hdr(skb)->doff << 2));
2622         } else {
2623                 check = &(udp_hdr(skb)->check);
2624                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2625                 mac_iocb_ptr->total_hdrs_len =
2626                     cpu_to_le16(skb_transport_offset(skb) +
2627                                 sizeof(struct udphdr));
2628         }
2629         *check = ~csum_tcpudp_magic(iph->saddr,
2630                                     iph->daddr, len, iph->protocol, 0);
2631 }
2632
2633 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2634 {
2635         struct tx_ring_desc *tx_ring_desc;
2636         struct ob_mac_iocb_req *mac_iocb_ptr;
2637         struct ql_adapter *qdev = netdev_priv(ndev);
2638         int tso;
2639         struct tx_ring *tx_ring;
2640         u32 tx_ring_idx = (u32) skb->queue_mapping;
2641
2642         tx_ring = &qdev->tx_ring[tx_ring_idx];
2643
2644         if (skb_padto(skb, ETH_ZLEN))
2645                 return NETDEV_TX_OK;
2646
2647         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2648                 netif_info(qdev, tx_queued, qdev->ndev,
2649                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2650                            __func__, tx_ring_idx);
2651                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2652                 tx_ring->tx_errors++;
2653                 return NETDEV_TX_BUSY;
2654         }
2655         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2656         mac_iocb_ptr = tx_ring_desc->queue_entry;
2657         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2658
2659         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2660         mac_iocb_ptr->tid = tx_ring_desc->index;
2661         /* We use the upper 32-bits to store the tx queue for this IO.
2662          * When we get the completion we can use it to establish the context.
2663          */
2664         mac_iocb_ptr->txq_idx = tx_ring_idx;
2665         tx_ring_desc->skb = skb;
2666
2667         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2668
2669         if (vlan_tx_tag_present(skb)) {
2670                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2671                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2672                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2673                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2674         }
2675         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676         if (tso < 0) {
2677                 dev_kfree_skb_any(skb);
2678                 return NETDEV_TX_OK;
2679         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2680                 ql_hw_csum_setup(skb,
2681                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2682         }
2683         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2684                         NETDEV_TX_OK) {
2685                 netif_err(qdev, tx_queued, qdev->ndev,
2686                           "Could not map the segments.\n");
2687                 tx_ring->tx_errors++;
2688                 return NETDEV_TX_BUSY;
2689         }
2690         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2691         tx_ring->prod_idx++;
2692         if (tx_ring->prod_idx == tx_ring->wq_len)
2693                 tx_ring->prod_idx = 0;
2694         wmb();
2695
2696         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2697         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2698                      "tx queued, slot %d, len %d\n",
2699                      tx_ring->prod_idx, skb->len);
2700
2701         atomic_dec(&tx_ring->tx_count);
2702
2703         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2704                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2705                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2706                         /*
2707                          * The queue got stopped because the tx_ring was full.
2708                          * Wake it up, because it's now at least 25% empty.
2709                          */
2710                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2711         }
2712         return NETDEV_TX_OK;
2713 }
2714
2715
2716 static void ql_free_shadow_space(struct ql_adapter *qdev)
2717 {
2718         if (qdev->rx_ring_shadow_reg_area) {
2719                 pci_free_consistent(qdev->pdev,
2720                                     PAGE_SIZE,
2721                                     qdev->rx_ring_shadow_reg_area,
2722                                     qdev->rx_ring_shadow_reg_dma);
2723                 qdev->rx_ring_shadow_reg_area = NULL;
2724         }
2725         if (qdev->tx_ring_shadow_reg_area) {
2726                 pci_free_consistent(qdev->pdev,
2727                                     PAGE_SIZE,
2728                                     qdev->tx_ring_shadow_reg_area,
2729                                     qdev->tx_ring_shadow_reg_dma);
2730                 qdev->tx_ring_shadow_reg_area = NULL;
2731         }
2732 }
2733
2734 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2735 {
2736         qdev->rx_ring_shadow_reg_area =
2737                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2738                                       &qdev->rx_ring_shadow_reg_dma);
2739         if (qdev->rx_ring_shadow_reg_area == NULL) {
2740                 netif_err(qdev, ifup, qdev->ndev,
2741                           "Allocation of RX shadow space failed.\n");
2742                 return -ENOMEM;
2743         }
2744
2745         qdev->tx_ring_shadow_reg_area =
2746                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2747                                       &qdev->tx_ring_shadow_reg_dma);
2748         if (qdev->tx_ring_shadow_reg_area == NULL) {
2749                 netif_err(qdev, ifup, qdev->ndev,
2750                           "Allocation of TX shadow space failed.\n");
2751                 goto err_wqp_sh_area;
2752         }
2753         return 0;
2754
2755 err_wqp_sh_area:
2756         pci_free_consistent(qdev->pdev,
2757                             PAGE_SIZE,
2758                             qdev->rx_ring_shadow_reg_area,
2759                             qdev->rx_ring_shadow_reg_dma);
2760         return -ENOMEM;
2761 }
2762
2763 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2764 {
2765         struct tx_ring_desc *tx_ring_desc;
2766         int i;
2767         struct ob_mac_iocb_req *mac_iocb_ptr;
2768
2769         mac_iocb_ptr = tx_ring->wq_base;
2770         tx_ring_desc = tx_ring->q;
2771         for (i = 0; i < tx_ring->wq_len; i++) {
2772                 tx_ring_desc->index = i;
2773                 tx_ring_desc->skb = NULL;
2774                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2775                 mac_iocb_ptr++;
2776                 tx_ring_desc++;
2777         }
2778         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2779 }
2780
2781 static void ql_free_tx_resources(struct ql_adapter *qdev,
2782                                  struct tx_ring *tx_ring)
2783 {
2784         if (tx_ring->wq_base) {
2785                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2786                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2787                 tx_ring->wq_base = NULL;
2788         }
2789         kfree(tx_ring->q);
2790         tx_ring->q = NULL;
2791 }
2792
2793 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2794                                  struct tx_ring *tx_ring)
2795 {
2796         tx_ring->wq_base =
2797             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2798                                  &tx_ring->wq_base_dma);
2799
2800         if ((tx_ring->wq_base == NULL) ||
2801             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2802                 goto pci_alloc_err;
2803
2804         tx_ring->q =
2805             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2806         if (tx_ring->q == NULL)
2807                 goto err;
2808
2809         return 0;
2810 err:
2811         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2812                             tx_ring->wq_base, tx_ring->wq_base_dma);
2813         tx_ring->wq_base = NULL;
2814 pci_alloc_err:
2815         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2816         return -ENOMEM;
2817 }
2818
2819 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2820 {
2821         struct bq_desc *lbq_desc;
2822
2823         uint32_t  curr_idx, clean_idx;
2824
2825         curr_idx = rx_ring->lbq_curr_idx;
2826         clean_idx = rx_ring->lbq_clean_idx;
2827         while (curr_idx != clean_idx) {
2828                 lbq_desc = &rx_ring->lbq[curr_idx];
2829
2830                 if (lbq_desc->p.pg_chunk.last_flag) {
2831                         pci_unmap_page(qdev->pdev,
2832                                 lbq_desc->p.pg_chunk.map,
2833                                 ql_lbq_block_size(qdev),
2834                                        PCI_DMA_FROMDEVICE);
2835                         lbq_desc->p.pg_chunk.last_flag = 0;
2836                 }
2837
2838                 put_page(lbq_desc->p.pg_chunk.page);
2839                 lbq_desc->p.pg_chunk.page = NULL;
2840
2841                 if (++curr_idx == rx_ring->lbq_len)
2842                         curr_idx = 0;
2843
2844         }
2845         if (rx_ring->pg_chunk.page) {
2846                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2847                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2848                 put_page(rx_ring->pg_chunk.page);
2849                 rx_ring->pg_chunk.page = NULL;
2850         }
2851 }
2852
2853 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2854 {
2855         int i;
2856         struct bq_desc *sbq_desc;
2857
2858         for (i = 0; i < rx_ring->sbq_len; i++) {
2859                 sbq_desc = &rx_ring->sbq[i];
2860                 if (sbq_desc == NULL) {
2861                         netif_err(qdev, ifup, qdev->ndev,
2862                                   "sbq_desc %d is NULL.\n", i);
2863                         return;
2864                 }
2865                 if (sbq_desc->p.skb) {
2866                         pci_unmap_single(qdev->pdev,
2867                                          dma_unmap_addr(sbq_desc, mapaddr),
2868                                          dma_unmap_len(sbq_desc, maplen),
2869                                          PCI_DMA_FROMDEVICE);
2870                         dev_kfree_skb(sbq_desc->p.skb);
2871                         sbq_desc->p.skb = NULL;
2872                 }
2873         }
2874 }
2875
2876 /* Free all large and small rx buffers associated
2877  * with the completion queues for this device.
2878  */
2879 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2880 {
2881         int i;
2882         struct rx_ring *rx_ring;
2883
2884         for (i = 0; i < qdev->rx_ring_count; i++) {
2885                 rx_ring = &qdev->rx_ring[i];
2886                 if (rx_ring->lbq)
2887                         ql_free_lbq_buffers(qdev, rx_ring);
2888                 if (rx_ring->sbq)
2889                         ql_free_sbq_buffers(qdev, rx_ring);
2890         }
2891 }
2892
2893 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2894 {
2895         struct rx_ring *rx_ring;
2896         int i;
2897
2898         for (i = 0; i < qdev->rx_ring_count; i++) {
2899                 rx_ring = &qdev->rx_ring[i];
2900                 if (rx_ring->type != TX_Q)
2901                         ql_update_buffer_queues(qdev, rx_ring);
2902         }
2903 }
2904
2905 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2906                                 struct rx_ring *rx_ring)
2907 {
2908         int i;
2909         struct bq_desc *lbq_desc;
2910         __le64 *bq = rx_ring->lbq_base;
2911
2912         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2913         for (i = 0; i < rx_ring->lbq_len; i++) {
2914                 lbq_desc = &rx_ring->lbq[i];
2915                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2916                 lbq_desc->index = i;
2917                 lbq_desc->addr = bq;
2918                 bq++;
2919         }
2920 }
2921
2922 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2923                                 struct rx_ring *rx_ring)
2924 {
2925         int i;
2926         struct bq_desc *sbq_desc;
2927         __le64 *bq = rx_ring->sbq_base;
2928
2929         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2930         for (i = 0; i < rx_ring->sbq_len; i++) {
2931                 sbq_desc = &rx_ring->sbq[i];
2932                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2933                 sbq_desc->index = i;
2934                 sbq_desc->addr = bq;
2935                 bq++;
2936         }
2937 }
2938
2939 static void ql_free_rx_resources(struct ql_adapter *qdev,
2940                                  struct rx_ring *rx_ring)
2941 {
2942         /* Free the small buffer queue. */
2943         if (rx_ring->sbq_base) {
2944                 pci_free_consistent(qdev->pdev,
2945                                     rx_ring->sbq_size,
2946                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2947                 rx_ring->sbq_base = NULL;
2948         }
2949
2950         /* Free the small buffer queue control blocks. */
2951         kfree(rx_ring->sbq);
2952         rx_ring->sbq = NULL;
2953
2954         /* Free the large buffer queue. */
2955         if (rx_ring->lbq_base) {
2956                 pci_free_consistent(qdev->pdev,
2957                                     rx_ring->lbq_size,
2958                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2959                 rx_ring->lbq_base = NULL;
2960         }
2961
2962         /* Free the large buffer queue control blocks. */
2963         kfree(rx_ring->lbq);
2964         rx_ring->lbq = NULL;
2965
2966         /* Free the rx queue. */
2967         if (rx_ring->cq_base) {
2968                 pci_free_consistent(qdev->pdev,
2969                                     rx_ring->cq_size,
2970                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2971                 rx_ring->cq_base = NULL;
2972         }
2973 }
2974
2975 /* Allocate queues and buffers for this completions queue based
2976  * on the values in the parameter structure. */
2977 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2978                                  struct rx_ring *rx_ring)
2979 {
2980
2981         /*
2982          * Allocate the completion queue for this rx_ring.
2983          */
2984         rx_ring->cq_base =
2985             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2986                                  &rx_ring->cq_base_dma);
2987
2988         if (rx_ring->cq_base == NULL) {
2989                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2990                 return -ENOMEM;
2991         }
2992
2993         if (rx_ring->sbq_len) {
2994                 /*
2995                  * Allocate small buffer queue.
2996                  */
2997                 rx_ring->sbq_base =
2998                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2999                                          &rx_ring->sbq_base_dma);
3000
3001                 if (rx_ring->sbq_base == NULL) {
3002                         netif_err(qdev, ifup, qdev->ndev,
3003                                   "Small buffer queue allocation failed.\n");
3004                         goto err_mem;
3005                 }
3006
3007                 /*
3008                  * Allocate small buffer queue control blocks.
3009                  */
3010                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3011                                              sizeof(struct bq_desc),
3012                                              GFP_KERNEL);
3013                 if (rx_ring->sbq == NULL)
3014                         goto err_mem;
3015
3016                 ql_init_sbq_ring(qdev, rx_ring);
3017         }
3018
3019         if (rx_ring->lbq_len) {
3020                 /*
3021                  * Allocate large buffer queue.
3022                  */
3023                 rx_ring->lbq_base =
3024                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3025                                          &rx_ring->lbq_base_dma);
3026
3027                 if (rx_ring->lbq_base == NULL) {
3028                         netif_err(qdev, ifup, qdev->ndev,
3029                                   "Large buffer queue allocation failed.\n");
3030                         goto err_mem;
3031                 }
3032                 /*
3033                  * Allocate large buffer queue control blocks.
3034                  */
3035                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3036                                              sizeof(struct bq_desc),
3037                                              GFP_KERNEL);
3038                 if (rx_ring->lbq == NULL)
3039                         goto err_mem;
3040
3041                 ql_init_lbq_ring(qdev, rx_ring);
3042         }
3043
3044         return 0;
3045
3046 err_mem:
3047         ql_free_rx_resources(qdev, rx_ring);
3048         return -ENOMEM;
3049 }
3050
3051 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3052 {
3053         struct tx_ring *tx_ring;
3054         struct tx_ring_desc *tx_ring_desc;
3055         int i, j;
3056
3057         /*
3058          * Loop through all queues and free
3059          * any resources.
3060          */
3061         for (j = 0; j < qdev->tx_ring_count; j++) {
3062                 tx_ring = &qdev->tx_ring[j];
3063                 for (i = 0; i < tx_ring->wq_len; i++) {
3064                         tx_ring_desc = &tx_ring->q[i];
3065                         if (tx_ring_desc && tx_ring_desc->skb) {
3066                                 netif_err(qdev, ifdown, qdev->ndev,
3067                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3068                                           tx_ring_desc->skb, j,
3069                                           tx_ring_desc->index);
3070                                 ql_unmap_send(qdev, tx_ring_desc,
3071                                               tx_ring_desc->map_cnt);
3072                                 dev_kfree_skb(tx_ring_desc->skb);
3073                                 tx_ring_desc->skb = NULL;
3074                         }
3075                 }
3076         }
3077 }
3078
3079 static void ql_free_mem_resources(struct ql_adapter *qdev)
3080 {
3081         int i;
3082
3083         for (i = 0; i < qdev->tx_ring_count; i++)
3084                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3085         for (i = 0; i < qdev->rx_ring_count; i++)
3086                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3087         ql_free_shadow_space(qdev);
3088 }
3089
3090 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3091 {
3092         int i;
3093
3094         /* Allocate space for our shadow registers and such. */
3095         if (ql_alloc_shadow_space(qdev))
3096                 return -ENOMEM;
3097
3098         for (i = 0; i < qdev->rx_ring_count; i++) {
3099                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3100                         netif_err(qdev, ifup, qdev->ndev,
3101                                   "RX resource allocation failed.\n");
3102                         goto err_mem;
3103                 }
3104         }
3105         /* Allocate tx queue resources */
3106         for (i = 0; i < qdev->tx_ring_count; i++) {
3107                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3108                         netif_err(qdev, ifup, qdev->ndev,
3109                                   "TX resource allocation failed.\n");
3110                         goto err_mem;
3111                 }
3112         }
3113         return 0;
3114
3115 err_mem:
3116         ql_free_mem_resources(qdev);
3117         return -ENOMEM;
3118 }
3119
3120 /* Set up the rx ring control block and pass it to the chip.
3121  * The control block is defined as
3122  * "Completion Queue Initialization Control Block", or cqicb.
3123  */
3124 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3125 {
3126         struct cqicb *cqicb = &rx_ring->cqicb;
3127         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3128                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3129         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3130                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3131         void __iomem *doorbell_area =
3132             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3133         int err = 0;
3134         u16 bq_len;
3135         u64 tmp;
3136         __le64 *base_indirect_ptr;
3137         int page_entries;
3138
3139         /* Set up the shadow registers for this ring. */
3140         rx_ring->prod_idx_sh_reg = shadow_reg;
3141         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3142         *rx_ring->prod_idx_sh_reg = 0;
3143         shadow_reg += sizeof(u64);
3144         shadow_reg_dma += sizeof(u64);
3145         rx_ring->lbq_base_indirect = shadow_reg;
3146         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3147         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3148         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3149         rx_ring->sbq_base_indirect = shadow_reg;
3150         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3151
3152         /* PCI doorbell mem area + 0x00 for consumer index register */
3153         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3154         rx_ring->cnsmr_idx = 0;
3155         rx_ring->curr_entry = rx_ring->cq_base;
3156
3157         /* PCI doorbell mem area + 0x04 for valid register */
3158         rx_ring->valid_db_reg = doorbell_area + 0x04;
3159
3160         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3161         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3162
3163         /* PCI doorbell mem area + 0x1c */
3164         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3165
3166         memset((void *)cqicb, 0, sizeof(struct cqicb));
3167         cqicb->msix_vect = rx_ring->irq;
3168
3169         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3170         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3171
3172         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3173
3174         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3175
3176         /*
3177          * Set up the control block load flags.
3178          */
3179         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3180             FLAGS_LV |          /* Load MSI-X vector */
3181             FLAGS_LI;           /* Load irq delay values */
3182         if (rx_ring->lbq_len) {
3183                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3184                 tmp = (u64)rx_ring->lbq_base_dma;
3185                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3186                 page_entries = 0;
3187                 do {
3188                         *base_indirect_ptr = cpu_to_le64(tmp);
3189                         tmp += DB_PAGE_SIZE;
3190                         base_indirect_ptr++;
3191                         page_entries++;
3192                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3193                 cqicb->lbq_addr =
3194                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3195                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3196                         (u16) rx_ring->lbq_buf_size;
3197                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3198                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3199                         (u16) rx_ring->lbq_len;
3200                 cqicb->lbq_len = cpu_to_le16(bq_len);
3201                 rx_ring->lbq_prod_idx = 0;
3202                 rx_ring->lbq_curr_idx = 0;
3203                 rx_ring->lbq_clean_idx = 0;
3204                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3205         }
3206         if (rx_ring->sbq_len) {
3207                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3208                 tmp = (u64)rx_ring->sbq_base_dma;
3209                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3210                 page_entries = 0;
3211                 do {
3212                         *base_indirect_ptr = cpu_to_le64(tmp);
3213                         tmp += DB_PAGE_SIZE;
3214                         base_indirect_ptr++;
3215                         page_entries++;
3216                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3217                 cqicb->sbq_addr =
3218                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3219                 cqicb->sbq_buf_size =
3220                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3221                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3222                         (u16) rx_ring->sbq_len;
3223                 cqicb->sbq_len = cpu_to_le16(bq_len);
3224                 rx_ring->sbq_prod_idx = 0;
3225                 rx_ring->sbq_curr_idx = 0;
3226                 rx_ring->sbq_clean_idx = 0;
3227                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3228         }
3229         switch (rx_ring->type) {
3230         case TX_Q:
3231                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3232                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3233                 break;
3234         case RX_Q:
3235                 /* Inbound completion handling rx_rings run in
3236                  * separate NAPI contexts.
3237                  */
3238                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3239                                64);
3240                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3241                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3242                 break;
3243         default:
3244                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3245                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3246         }
3247         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3248                            CFG_LCQ, rx_ring->cq_id);
3249         if (err) {
3250                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3251                 return err;
3252         }
3253         return err;
3254 }
3255
3256 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3257 {
3258         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3259         void __iomem *doorbell_area =
3260             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3261         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3262             (tx_ring->wq_id * sizeof(u64));
3263         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3264             (tx_ring->wq_id * sizeof(u64));
3265         int err = 0;
3266
3267         /*
3268          * Assign doorbell registers for this tx_ring.
3269          */
3270         /* TX PCI doorbell mem area for tx producer index */
3271         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3272         tx_ring->prod_idx = 0;
3273         /* TX PCI doorbell mem area + 0x04 */
3274         tx_ring->valid_db_reg = doorbell_area + 0x04;
3275
3276         /*
3277          * Assign shadow registers for this tx_ring.
3278          */
3279         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3280         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3281
3282         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3283         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3284                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3285         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3286         wqicb->rid = 0;
3287         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3288
3289         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3290
3291         ql_init_tx_ring(qdev, tx_ring);
3292
3293         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3294                            (u16) tx_ring->wq_id);
3295         if (err) {
3296                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3297                 return err;
3298         }
3299         return err;
3300 }
3301
3302 static void ql_disable_msix(struct ql_adapter *qdev)
3303 {
3304         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3305                 pci_disable_msix(qdev->pdev);
3306                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3307                 kfree(qdev->msi_x_entry);
3308                 qdev->msi_x_entry = NULL;
3309         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3310                 pci_disable_msi(qdev->pdev);
3311                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3312         }
3313 }
3314
3315 /* We start by trying to get the number of vectors
3316  * stored in qdev->intr_count. If we don't get that
3317  * many then we reduce the count and try again.
3318  */
3319 static void ql_enable_msix(struct ql_adapter *qdev)
3320 {
3321         int i, err;
3322
3323         /* Get the MSIX vectors. */
3324         if (qlge_irq_type == MSIX_IRQ) {
3325                 /* Try to alloc space for the msix struct,
3326                  * if it fails then go to MSI/legacy.
3327                  */
3328                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3329                                             sizeof(struct msix_entry),
3330                                             GFP_KERNEL);
3331                 if (!qdev->msi_x_entry) {
3332                         qlge_irq_type = MSI_IRQ;
3333                         goto msi;
3334                 }
3335
3336                 for (i = 0; i < qdev->intr_count; i++)
3337                         qdev->msi_x_entry[i].entry = i;
3338
3339                 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3340                                             1, qdev->intr_count);
3341                 if (err < 0) {
3342                         kfree(qdev->msi_x_entry);
3343                         qdev->msi_x_entry = NULL;
3344                         netif_warn(qdev, ifup, qdev->ndev,
3345                                    "MSI-X Enable failed, trying MSI.\n");
3346                         qlge_irq_type = MSI_IRQ;
3347                 } else {
3348                         qdev->intr_count = err;
3349                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3350                         netif_info(qdev, ifup, qdev->ndev,
3351                                    "MSI-X Enabled, got %d vectors.\n",
3352                                    qdev->intr_count);
3353                         return;
3354                 }
3355         }
3356 msi:
3357         qdev->intr_count = 1;
3358         if (qlge_irq_type == MSI_IRQ) {
3359                 if (!pci_enable_msi(qdev->pdev)) {
3360                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3361                         netif_info(qdev, ifup, qdev->ndev,
3362                                    "Running with MSI interrupts.\n");
3363                         return;
3364                 }
3365         }
3366         qlge_irq_type = LEG_IRQ;
3367         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3368                      "Running with legacy interrupts.\n");
3369 }
3370
3371 /* Each vector services 1 RSS ring and and 1 or more
3372  * TX completion rings.  This function loops through
3373  * the TX completion rings and assigns the vector that
3374  * will service it.  An example would be if there are
3375  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3376  * This would mean that vector 0 would service RSS ring 0
3377  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3378  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3379  */
3380 static void ql_set_tx_vect(struct ql_adapter *qdev)
3381 {
3382         int i, j, vect;
3383         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3384
3385         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3386                 /* Assign irq vectors to TX rx_rings.*/
3387                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3388                                          i < qdev->rx_ring_count; i++) {
3389                         if (j == tx_rings_per_vector) {
3390                                 vect++;
3391                                 j = 0;
3392                         }
3393                         qdev->rx_ring[i].irq = vect;
3394                         j++;
3395                 }
3396         } else {
3397                 /* For single vector all rings have an irq
3398                  * of zero.
3399                  */
3400                 for (i = 0; i < qdev->rx_ring_count; i++)
3401                         qdev->rx_ring[i].irq = 0;
3402         }
3403 }
3404
3405 /* Set the interrupt mask for this vector.  Each vector
3406  * will service 1 RSS ring and 1 or more TX completion
3407  * rings.  This function sets up a bit mask per vector
3408  * that indicates which rings it services.
3409  */
3410 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3411 {
3412         int j, vect = ctx->intr;
3413         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3414
3415         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3416                 /* Add the RSS ring serviced by this vector
3417                  * to the mask.
3418                  */
3419                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3420                 /* Add the TX ring(s) serviced by this vector
3421                  * to the mask. */
3422                 for (j = 0; j < tx_rings_per_vector; j++) {
3423                         ctx->irq_mask |=
3424                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3425                         (vect * tx_rings_per_vector) + j].cq_id);
3426                 }
3427         } else {
3428                 /* For single vector we just shift each queue's
3429                  * ID into the mask.
3430                  */
3431                 for (j = 0; j < qdev->rx_ring_count; j++)
3432                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3433         }
3434 }
3435
3436 /*
3437  * Here we build the intr_context structures based on
3438  * our rx_ring count and intr vector count.
3439  * The intr_context structure is used to hook each vector
3440  * to possibly different handlers.
3441  */
3442 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3443 {
3444         int i = 0;
3445         struct intr_context *intr_context = &qdev->intr_context[0];
3446
3447         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3448                 /* Each rx_ring has it's
3449                  * own intr_context since we have separate
3450                  * vectors for each queue.
3451                  */
3452                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3453                         qdev->rx_ring[i].irq = i;
3454                         intr_context->intr = i;
3455                         intr_context->qdev = qdev;
3456                         /* Set up this vector's bit-mask that indicates
3457                          * which queues it services.
3458                          */
3459                         ql_set_irq_mask(qdev, intr_context);
3460                         /*
3461                          * We set up each vectors enable/disable/read bits so
3462                          * there's no bit/mask calculations in the critical path.
3463                          */
3464                         intr_context->intr_en_mask =
3465                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3466                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3467                             | i;
3468                         intr_context->intr_dis_mask =
3469                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3470                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3471                             INTR_EN_IHD | i;
3472                         intr_context->intr_read_mask =
3473                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3474                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3475                             i;
3476                         if (i == 0) {
3477                                 /* The first vector/queue handles
3478                                  * broadcast/multicast, fatal errors,
3479                                  * and firmware events.  This in addition
3480                                  * to normal inbound NAPI processing.
3481                                  */
3482                                 intr_context->handler = qlge_isr;
3483                                 sprintf(intr_context->name, "%s-rx-%d",
3484                                         qdev->ndev->name, i);
3485                         } else {
3486                                 /*
3487                                  * Inbound queues handle unicast frames only.
3488                                  */
3489                                 intr_context->handler = qlge_msix_rx_isr;
3490                                 sprintf(intr_context->name, "%s-rx-%d",
3491                                         qdev->ndev->name, i);
3492                         }
3493                 }
3494         } else {
3495                 /*
3496                  * All rx_rings use the same intr_context since
3497                  * there is only one vector.
3498                  */
3499                 intr_context->intr = 0;
3500                 intr_context->qdev = qdev;
3501                 /*
3502                  * We set up each vectors enable/disable/read bits so
3503                  * there's no bit/mask calculations in the critical path.
3504                  */
3505                 intr_context->intr_en_mask =
3506                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3507                 intr_context->intr_dis_mask =
3508                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3509                     INTR_EN_TYPE_DISABLE;
3510                 intr_context->intr_read_mask =
3511                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3512                 /*
3513                  * Single interrupt means one handler for all rings.
3514                  */
3515                 intr_context->handler = qlge_isr;
3516                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3517                 /* Set up this vector's bit-mask that indicates
3518                  * which queues it services. In this case there is
3519                  * a single vector so it will service all RSS and
3520                  * TX completion rings.
3521                  */
3522                 ql_set_irq_mask(qdev, intr_context);
3523         }
3524         /* Tell the TX completion rings which MSIx vector
3525          * they will be using.
3526          */
3527         ql_set_tx_vect(qdev);
3528 }
3529
3530 static void ql_free_irq(struct ql_adapter *qdev)
3531 {
3532         int i;
3533         struct intr_context *intr_context = &qdev->intr_context[0];
3534
3535         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3536                 if (intr_context->hooked) {
3537                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3538                                 free_irq(qdev->msi_x_entry[i].vector,
3539                                          &qdev->rx_ring[i]);
3540                         } else {
3541                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3542                         }
3543                 }
3544         }
3545         ql_disable_msix(qdev);
3546 }
3547
3548 static int ql_request_irq(struct ql_adapter *qdev)
3549 {
3550         int i;
3551         int status = 0;
3552         struct pci_dev *pdev = qdev->pdev;
3553         struct intr_context *intr_context = &qdev->intr_context[0];
3554
3555         ql_resolve_queues_to_irqs(qdev);
3556
3557         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3558                 atomic_set(&intr_context->irq_cnt, 0);
3559                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3560                         status = request_irq(qdev->msi_x_entry[i].vector,
3561                                              intr_context->handler,
3562                                              0,
3563                                              intr_context->name,
3564                                              &qdev->rx_ring[i]);
3565                         if (status) {
3566                                 netif_err(qdev, ifup, qdev->ndev,
3567                                           "Failed request for MSIX interrupt %d.\n",
3568                                           i);
3569                                 goto err_irq;
3570                         }
3571                 } else {
3572                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3573                                      "trying msi or legacy interrupts.\n");
3574                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3575                                      "%s: irq = %d.\n", __func__, pdev->irq);
3576                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3577                                      "%s: context->name = %s.\n", __func__,
3578                                      intr_context->name);
3579                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580                                      "%s: dev_id = 0x%p.\n", __func__,
3581                                      &qdev->rx_ring[0]);
3582                         status =
3583                             request_irq(pdev->irq, qlge_isr,
3584                                         test_bit(QL_MSI_ENABLED,
3585                                                  &qdev->
3586                                                  flags) ? 0 : IRQF_SHARED,
3587                                         intr_context->name, &qdev->rx_ring[0]);
3588                         if (status)
3589                                 goto err_irq;
3590
3591                         netif_err(qdev, ifup, qdev->ndev,
3592                                   "Hooked intr %d, queue type %s, with name %s.\n",
3593                                   i,
3594                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3595                                   "DEFAULT_Q" :
3596                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3597                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3598                                   intr_context->name);
3599                 }
3600                 intr_context->hooked = 1;
3601         }
3602         return status;
3603 err_irq:
3604         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3605         ql_free_irq(qdev);
3606         return status;
3607 }
3608
3609 static int ql_start_rss(struct ql_adapter *qdev)
3610 {
3611         static const u8 init_hash_seed[] = {
3612                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3613                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3614                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3615                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3616                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3617         };
3618         struct ricb *ricb = &qdev->ricb;
3619         int status = 0;
3620         int i;
3621         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3622
3623         memset((void *)ricb, 0, sizeof(*ricb));
3624
3625         ricb->base_cq = RSS_L4K;
3626         ricb->flags =
3627                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3628         ricb->mask = cpu_to_le16((u16)(0x3ff));
3629
3630         /*
3631          * Fill out the Indirection Table.
3632          */
3633         for (i = 0; i < 1024; i++)
3634                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3635
3636         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3637         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3638
3639         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3640         if (status) {
3641                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3642                 return status;
3643         }
3644         return status;
3645 }
3646
3647 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3648 {
3649         int i, status = 0;
3650
3651         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3652         if (status)
3653                 return status;
3654         /* Clear all the entries in the routing table. */
3655         for (i = 0; i < 16; i++) {
3656                 status = ql_set_routing_reg(qdev, i, 0, 0);
3657                 if (status) {
3658                         netif_err(qdev, ifup, qdev->ndev,
3659                                   "Failed to init routing register for CAM packets.\n");
3660                         break;
3661                 }
3662         }
3663         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3664         return status;
3665 }
3666
3667 /* Initialize the frame-to-queue routing. */
3668 static int ql_route_initialize(struct ql_adapter *qdev)
3669 {
3670         int status = 0;
3671
3672         /* Clear all the entries in the routing table. */
3673         status = ql_clear_routing_entries(qdev);
3674         if (status)
3675                 return status;
3676
3677         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3678         if (status)
3679                 return status;
3680
3681         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3682                                                 RT_IDX_IP_CSUM_ERR, 1);
3683         if (status) {
3684                 netif_err(qdev, ifup, qdev->ndev,
3685                         "Failed to init routing register "
3686                         "for IP CSUM error packets.\n");
3687                 goto exit;
3688         }
3689         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3690                                                 RT_IDX_TU_CSUM_ERR, 1);
3691         if (status) {
3692                 netif_err(qdev, ifup, qdev->ndev,
3693                         "Failed to init routing register "
3694                         "for TCP/UDP CSUM error packets.\n");
3695                 goto exit;
3696         }
3697         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3698         if (status) {
3699                 netif_err(qdev, ifup, qdev->ndev,
3700                           "Failed to init routing register for broadcast packets.\n");
3701                 goto exit;
3702         }
3703         /* If we have more than one inbound queue, then turn on RSS in the
3704          * routing block.
3705          */
3706         if (qdev->rss_ring_count > 1) {
3707                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3708                                         RT_IDX_RSS_MATCH, 1);
3709                 if (status) {
3710                         netif_err(qdev, ifup, qdev->ndev,
3711                                   "Failed to init routing register for MATCH RSS packets.\n");
3712                         goto exit;
3713                 }
3714         }
3715
3716         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3717                                     RT_IDX_CAM_HIT, 1);
3718         if (status)
3719                 netif_err(qdev, ifup, qdev->ndev,
3720                           "Failed to init routing register for CAM packets.\n");
3721 exit:
3722         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3723         return status;
3724 }
3725
3726 int ql_cam_route_initialize(struct ql_adapter *qdev)
3727 {
3728         int status, set;
3729
3730         /* If check if the link is up and use to
3731          * determine if we are setting or clearing
3732          * the MAC address in the CAM.
3733          */
3734         set = ql_read32(qdev, STS);
3735         set &= qdev->port_link_up;
3736         status = ql_set_mac_addr(qdev, set);
3737         if (status) {
3738                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3739                 return status;
3740         }
3741
3742         status = ql_route_initialize(qdev);
3743         if (status)
3744                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3745
3746         return status;
3747 }
3748
3749 static int ql_adapter_initialize(struct ql_adapter *qdev)
3750 {
3751         u32 value, mask;
3752         int i;
3753         int status = 0;
3754
3755         /*
3756          * Set up the System register to halt on errors.
3757          */
3758         value = SYS_EFE | SYS_FAE;
3759         mask = value << 16;
3760         ql_write32(qdev, SYS, mask | value);
3761
3762         /* Set the default queue, and VLAN behavior. */
3763         value = NIC_RCV_CFG_DFQ;
3764         mask = NIC_RCV_CFG_DFQ_MASK;
3765         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3766                 value |= NIC_RCV_CFG_RV;
3767                 mask |= (NIC_RCV_CFG_RV << 16);
3768         }
3769         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3770
3771         /* Set the MPI interrupt to enabled. */
3772         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3773
3774         /* Enable the function, set pagesize, enable error checking. */
3775         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3776             FSC_EC | FSC_VM_PAGE_4K;
3777         value |= SPLT_SETTING;
3778
3779         /* Set/clear header splitting. */
3780         mask = FSC_VM_PAGESIZE_MASK |
3781             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3782         ql_write32(qdev, FSC, mask | value);
3783
3784         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3785
3786         /* Set RX packet routing to use port/pci function on which the
3787          * packet arrived on in addition to usual frame routing.
3788          * This is helpful on bonding where both interfaces can have
3789          * the same MAC address.
3790          */
3791         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3792         /* Reroute all packets to our Interface.
3793          * They may have been routed to MPI firmware
3794          * due to WOL.
3795          */
3796         value = ql_read32(qdev, MGMT_RCV_CFG);
3797         value &= ~MGMT_RCV_CFG_RM;
3798         mask = 0xffff0000;
3799
3800         /* Sticky reg needs clearing due to WOL. */
3801         ql_write32(qdev, MGMT_RCV_CFG, mask);
3802         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3803
3804         /* Default WOL is enable on Mezz cards */
3805         if (qdev->pdev->subsystem_device == 0x0068 ||
3806                         qdev->pdev->subsystem_device == 0x0180)
3807                 qdev->wol = WAKE_MAGIC;
3808
3809         /* Start up the rx queues. */
3810         for (i = 0; i < qdev->rx_ring_count; i++) {
3811                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3812                 if (status) {
3813                         netif_err(qdev, ifup, qdev->ndev,
3814                                   "Failed to start rx ring[%d].\n", i);
3815                         return status;
3816                 }
3817         }
3818
3819         /* If there is more than one inbound completion queue
3820          * then download a RICB to configure RSS.
3821          */
3822         if (qdev->rss_ring_count > 1) {
3823                 status = ql_start_rss(qdev);
3824                 if (status) {
3825                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3826                         return status;
3827                 }
3828         }
3829
3830         /* Start up the tx queues. */
3831         for (i = 0; i < qdev->tx_ring_count; i++) {
3832                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3833                 if (status) {
3834                         netif_err(qdev, ifup, qdev->ndev,
3835                                   "Failed to start tx ring[%d].\n", i);
3836                         return status;
3837                 }
3838         }
3839
3840         /* Initialize the port and set the max framesize. */
3841         status = qdev->nic_ops->port_initialize(qdev);
3842         if (status)
3843                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3844
3845         /* Set up the MAC address and frame routing filter. */
3846         status = ql_cam_route_initialize(qdev);
3847         if (status) {
3848                 netif_err(qdev, ifup, qdev->ndev,
3849                           "Failed to init CAM/Routing tables.\n");
3850                 return status;
3851         }
3852
3853         /* Start NAPI for the RSS queues. */
3854         for (i = 0; i < qdev->rss_ring_count; i++)
3855                 napi_enable(&qdev->rx_ring[i].napi);
3856
3857         return status;
3858 }
3859
3860 /* Issue soft reset to chip. */
3861 static int ql_adapter_reset(struct ql_adapter *qdev)
3862 {
3863         u32 value;
3864         int status = 0;
3865         unsigned long end_jiffies;
3866
3867         /* Clear all the entries in the routing table. */
3868         status = ql_clear_routing_entries(qdev);
3869         if (status) {
3870                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3871                 return status;
3872         }
3873
3874         end_jiffies = jiffies +
3875                 max((unsigned long)1, usecs_to_jiffies(30));
3876
3877         /* Check if bit is set then skip the mailbox command and
3878          * clear the bit, else we are in normal reset process.
3879          */
3880         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3881                 /* Stop management traffic. */
3882                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3883
3884                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3885                 ql_wait_fifo_empty(qdev);
3886         } else
3887                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3888
3889         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3890
3891         do {
3892                 value = ql_read32(qdev, RST_FO);
3893                 if ((value & RST_FO_FR) == 0)
3894                         break;
3895                 cpu_relax();
3896         } while (time_before(jiffies, end_jiffies));
3897
3898         if (value & RST_FO_FR) {
3899                 netif_err(qdev, ifdown, qdev->ndev,
3900                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3901                 status = -ETIMEDOUT;
3902         }
3903
3904         /* Resume management traffic. */
3905         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3906         return status;
3907 }
3908
3909 static void ql_display_dev_info(struct net_device *ndev)
3910 {
3911         struct ql_adapter *qdev = netdev_priv(ndev);
3912
3913         netif_info(qdev, probe, qdev->ndev,
3914                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3915                    "XG Roll = %d, XG Rev = %d.\n",
3916                    qdev->func,
3917                    qdev->port,
3918                    qdev->chip_rev_id & 0x0000000f,
3919                    qdev->chip_rev_id >> 4 & 0x0000000f,
3920                    qdev->chip_rev_id >> 8 & 0x0000000f,
3921                    qdev->chip_rev_id >> 12 & 0x0000000f);
3922         netif_info(qdev, probe, qdev->ndev,
3923                    "MAC address %pM\n", ndev->dev_addr);
3924 }
3925
3926 static int ql_wol(struct ql_adapter *qdev)
3927 {
3928         int status = 0;
3929         u32 wol = MB_WOL_DISABLE;
3930
3931         /* The CAM is still intact after a reset, but if we
3932          * are doing WOL, then we may need to program the
3933          * routing regs. We would also need to issue the mailbox
3934          * commands to instruct the MPI what to do per the ethtool
3935          * settings.
3936          */
3937
3938         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3939                         WAKE_MCAST | WAKE_BCAST)) {
3940                 netif_err(qdev, ifdown, qdev->ndev,
3941                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3942                           qdev->wol);
3943                 return -EINVAL;
3944         }
3945
3946         if (qdev->wol & WAKE_MAGIC) {
3947                 status = ql_mb_wol_set_magic(qdev, 1);
3948                 if (status) {
3949                         netif_err(qdev, ifdown, qdev->ndev,
3950                                   "Failed to set magic packet on %s.\n",
3951                                   qdev->ndev->name);
3952                         return status;
3953                 } else
3954                         netif_info(qdev, drv, qdev->ndev,
3955                                    "Enabled magic packet successfully on %s.\n",
3956                                    qdev->ndev->name);
3957
3958                 wol |= MB_WOL_MAGIC_PKT;
3959         }
3960
3961         if (qdev->wol) {
3962                 wol |= MB_WOL_MODE_ON;
3963                 status = ql_mb_wol_mode(qdev, wol);
3964                 netif_err(qdev, drv, qdev->ndev,
3965                           "WOL %s (wol code 0x%x) on %s\n",
3966                           (status == 0) ? "Successfully set" : "Failed",
3967                           wol, qdev->ndev->name);
3968         }
3969
3970         return status;
3971 }
3972
3973 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3974 {
3975
3976         /* Don't kill the reset worker thread if we
3977          * are in the process of recovery.
3978          */
3979         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3980                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3981         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3982         cancel_delayed_work_sync(&qdev->mpi_work);
3983         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3984         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3985         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3986 }
3987
3988 static int ql_adapter_down(struct ql_adapter *qdev)
3989 {
3990         int i, status = 0;
3991
3992         ql_link_off(qdev);
3993
3994         ql_cancel_all_work_sync(qdev);
3995
3996         for (i = 0; i < qdev->rss_ring_count; i++)
3997                 napi_disable(&qdev->rx_ring[i].napi);
3998
3999         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4000
4001         ql_disable_interrupts(qdev);
4002
4003         ql_tx_ring_clean(qdev);
4004
4005         /* Call netif_napi_del() from common point.
4006          */
4007         for (i = 0; i < qdev->rss_ring_count; i++)
4008                 netif_napi_del(&qdev->rx_ring[i].napi);
4009
4010         status = ql_adapter_reset(qdev);
4011         if (status)
4012                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4013                           qdev->func);
4014         ql_free_rx_buffers(qdev);
4015
4016         return status;
4017 }
4018
4019 static int ql_adapter_up(struct ql_adapter *qdev)
4020 {
4021         int err = 0;
4022
4023         err = ql_adapter_initialize(qdev);
4024         if (err) {
4025                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4026                 goto err_init;
4027         }
4028         set_bit(QL_ADAPTER_UP, &qdev->flags);
4029         ql_alloc_rx_buffers(qdev);
4030         /* If the port is initialized and the
4031          * link is up the turn on the carrier.
4032          */
4033         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4034                         (ql_read32(qdev, STS) & qdev->port_link_up))
4035                 ql_link_on(qdev);
4036         /* Restore rx mode. */
4037         clear_bit(QL_ALLMULTI, &qdev->flags);
4038         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4039         qlge_set_multicast_list(qdev->ndev);
4040
4041         /* Restore vlan setting. */
4042         qlge_restore_vlan(qdev);
4043
4044         ql_enable_interrupts(qdev);
4045         ql_enable_all_completion_interrupts(qdev);
4046         netif_tx_start_all_queues(qdev->ndev);
4047
4048         return 0;
4049 err_init:
4050         ql_adapter_reset(qdev);
4051         return err;
4052 }
4053
4054 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4055 {
4056         ql_free_mem_resources(qdev);
4057         ql_free_irq(qdev);
4058 }
4059
4060 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4061 {
4062         int status = 0;
4063
4064         if (ql_alloc_mem_resources(qdev)) {
4065                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4066                 return -ENOMEM;
4067         }
4068         status = ql_request_irq(qdev);
4069         return status;
4070 }
4071
4072 static int qlge_close(struct net_device *ndev)
4073 {
4074         struct ql_adapter *qdev = netdev_priv(ndev);
4075
4076         /* If we hit pci_channel_io_perm_failure
4077          * failure condition, then we already
4078          * brought the adapter down.
4079          */
4080         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4081                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4082                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4083                 return 0;
4084         }
4085
4086         /*
4087          * Wait for device to recover from a reset.
4088          * (Rarely happens, but possible.)
4089          */
4090         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4091                 msleep(1);
4092         ql_adapter_down(qdev);
4093         ql_release_adapter_resources(qdev);
4094         return 0;
4095 }
4096
4097 static int ql_configure_rings(struct ql_adapter *qdev)
4098 {
4099         int i;
4100         struct rx_ring *rx_ring;
4101         struct tx_ring *tx_ring;
4102         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4103         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4104                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4105
4106         qdev->lbq_buf_order = get_order(lbq_buf_len);
4107
4108         /* In a perfect world we have one RSS ring for each CPU
4109          * and each has it's own vector.  To do that we ask for
4110          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4111          * vector count to what we actually get.  We then
4112          * allocate an RSS ring for each.
4113          * Essentially, we are doing min(cpu_count, msix_vector_count).
4114          */
4115         qdev->intr_count = cpu_cnt;
4116         ql_enable_msix(qdev);
4117         /* Adjust the RSS ring count to the actual vector count. */
4118         qdev->rss_ring_count = qdev->intr_count;
4119         qdev->tx_ring_count = cpu_cnt;
4120         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4121
4122         for (i = 0; i < qdev->tx_ring_count; i++) {
4123                 tx_ring = &qdev->tx_ring[i];
4124                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4125                 tx_ring->qdev = qdev;
4126                 tx_ring->wq_id = i;
4127                 tx_ring->wq_len = qdev->tx_ring_size;
4128                 tx_ring->wq_size =
4129                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4130
4131                 /*
4132                  * The completion queue ID for the tx rings start
4133                  * immediately after the rss rings.
4134                  */
4135                 tx_ring->cq_id = qdev->rss_ring_count + i;
4136         }
4137
4138         for (i = 0; i < qdev->rx_ring_count; i++) {
4139                 rx_ring = &qdev->rx_ring[i];
4140                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4141                 rx_ring->qdev = qdev;
4142                 rx_ring->cq_id = i;
4143                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4144                 if (i < qdev->rss_ring_count) {
4145                         /*
4146                          * Inbound (RSS) queues.
4147                          */
4148                         rx_ring->cq_len = qdev->rx_ring_size;
4149                         rx_ring->cq_size =
4150                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4151                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4152                         rx_ring->lbq_size =
4153                             rx_ring->lbq_len * sizeof(__le64);
4154                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4155                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4156                         rx_ring->sbq_size =
4157                             rx_ring->sbq_len * sizeof(__le64);
4158                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4159                         rx_ring->type = RX_Q;
4160                 } else {
4161                         /*
4162                          * Outbound queue handles outbound completions only.
4163                          */
4164                         /* outbound cq is same size as tx_ring it services. */
4165                         rx_ring->cq_len = qdev->tx_ring_size;
4166                         rx_ring->cq_size =
4167                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4168                         rx_ring->lbq_len = 0;
4169                         rx_ring->lbq_size = 0;
4170                         rx_ring->lbq_buf_size = 0;
4171                         rx_ring->sbq_len = 0;
4172                         rx_ring->sbq_size = 0;
4173                         rx_ring->sbq_buf_size = 0;
4174                         rx_ring->type = TX_Q;
4175                 }
4176         }
4177         return 0;
4178 }
4179
4180 static int qlge_open(struct net_device *ndev)
4181 {
4182         int err = 0;
4183         struct ql_adapter *qdev = netdev_priv(ndev);
4184
4185         err = ql_adapter_reset(qdev);
4186         if (err)
4187                 return err;
4188
4189         err = ql_configure_rings(qdev);
4190         if (err)
4191                 return err;
4192
4193         err = ql_get_adapter_resources(qdev);
4194         if (err)
4195                 goto error_up;
4196
4197         err = ql_adapter_up(qdev);
4198         if (err)
4199                 goto error_up;
4200
4201         return err;
4202
4203 error_up:
4204         ql_release_adapter_resources(qdev);
4205         return err;
4206 }
4207
4208 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4209 {
4210         struct rx_ring *rx_ring;
4211         int i, status;
4212         u32 lbq_buf_len;
4213
4214         /* Wait for an outstanding reset to complete. */
4215         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4216                 int i = 3;
4217                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4218                         netif_err(qdev, ifup, qdev->ndev,
4219                                   "Waiting for adapter UP...\n");
4220                         ssleep(1);
4221                 }
4222
4223                 if (!i) {
4224                         netif_err(qdev, ifup, qdev->ndev,
4225                                   "Timed out waiting for adapter UP\n");
4226                         return -ETIMEDOUT;
4227                 }
4228         }
4229
4230         status = ql_adapter_down(qdev);
4231         if (status)
4232                 goto error;
4233
4234         /* Get the new rx buffer size. */
4235         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4236                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4237         qdev->lbq_buf_order = get_order(lbq_buf_len);
4238
4239         for (i = 0; i < qdev->rss_ring_count; i++) {
4240                 rx_ring = &qdev->rx_ring[i];
4241                 /* Set the new size. */
4242                 rx_ring->lbq_buf_size = lbq_buf_len;
4243         }
4244
4245         status = ql_adapter_up(qdev);
4246         if (status)
4247                 goto error;
4248
4249         return status;
4250 error:
4251         netif_alert(qdev, ifup, qdev->ndev,
4252                     "Driver up/down cycle failed, closing device.\n");
4253         set_bit(QL_ADAPTER_UP, &qdev->flags);
4254         dev_close(qdev->ndev);
4255         return status;
4256 }
4257
4258 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4259 {
4260         struct ql_adapter *qdev = netdev_priv(ndev);
4261         int status;
4262
4263         if (ndev->mtu == 1500 && new_mtu == 9000) {
4264                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4265         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4266                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4267         } else
4268                 return -EINVAL;
4269
4270         queue_delayed_work(qdev->workqueue,
4271                         &qdev->mpi_port_cfg_work, 3*HZ);
4272
4273         ndev->mtu = new_mtu;
4274
4275         if (!netif_running(qdev->ndev)) {
4276                 return 0;
4277         }
4278
4279         status = ql_change_rx_buffers(qdev);
4280         if (status) {
4281                 netif_err(qdev, ifup, qdev->ndev,
4282                           "Changing MTU failed.\n");
4283         }
4284
4285         return status;
4286 }
4287
4288 static struct net_device_stats *qlge_get_stats(struct net_device
4289                                                *ndev)
4290 {
4291         struct ql_adapter *qdev = netdev_priv(ndev);
4292         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4293         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4294         unsigned long pkts, mcast, dropped, errors, bytes;
4295         int i;
4296
4297         /* Get RX stats. */
4298         pkts = mcast = dropped = errors = bytes = 0;
4299         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4300                         pkts += rx_ring->rx_packets;
4301                         bytes += rx_ring->rx_bytes;
4302                         dropped += rx_ring->rx_dropped;
4303                         errors += rx_ring->rx_errors;
4304                         mcast += rx_ring->rx_multicast;
4305         }
4306         ndev->stats.rx_packets = pkts;
4307         ndev->stats.rx_bytes = bytes;
4308         ndev->stats.rx_dropped = dropped;
4309         ndev->stats.rx_errors = errors;
4310         ndev->stats.multicast = mcast;
4311
4312         /* Get TX stats. */
4313         pkts = errors = bytes = 0;
4314         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4315                         pkts += tx_ring->tx_packets;
4316                         bytes += tx_ring->tx_bytes;
4317                         errors += tx_ring->tx_errors;
4318         }
4319         ndev->stats.tx_packets = pkts;
4320         ndev->stats.tx_bytes = bytes;
4321         ndev->stats.tx_errors = errors;
4322         return &ndev->stats;
4323 }
4324
4325 static void qlge_set_multicast_list(struct net_device *ndev)
4326 {
4327         struct ql_adapter *qdev = netdev_priv(ndev);
4328         struct netdev_hw_addr *ha;
4329         int i, status;
4330
4331         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4332         if (status)
4333                 return;
4334         /*
4335          * Set or clear promiscuous mode if a
4336          * transition is taking place.
4337          */
4338         if (ndev->flags & IFF_PROMISC) {
4339                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4340                         if (ql_set_routing_reg
4341                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4342                                 netif_err(qdev, hw, qdev->ndev,
4343                                           "Failed to set promiscuous mode.\n");
4344                         } else {
4345                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4346                         }
4347                 }
4348         } else {
4349                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4350                         if (ql_set_routing_reg
4351                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4352                                 netif_err(qdev, hw, qdev->ndev,
4353                                           "Failed to clear promiscuous mode.\n");
4354                         } else {
4355                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4356                         }
4357                 }
4358         }
4359
4360         /*
4361          * Set or clear all multicast mode if a
4362          * transition is taking place.
4363          */
4364         if ((ndev->flags & IFF_ALLMULTI) ||
4365             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4366                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4367                         if (ql_set_routing_reg
4368                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4369                                 netif_err(qdev, hw, qdev->ndev,
4370                                           "Failed to set all-multi mode.\n");
4371                         } else {
4372                                 set_bit(QL_ALLMULTI, &qdev->flags);
4373                         }
4374                 }
4375         } else {
4376                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4377                         if (ql_set_routing_reg
4378                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4379                                 netif_err(qdev, hw, qdev->ndev,
4380                                           "Failed to clear all-multi mode.\n");
4381                         } else {
4382                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4383                         }
4384                 }
4385         }
4386
4387         if (!netdev_mc_empty(ndev)) {
4388                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4389                 if (status)
4390                         goto exit;
4391                 i = 0;
4392                 netdev_for_each_mc_addr(ha, ndev) {
4393                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4394                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4395                                 netif_err(qdev, hw, qdev->ndev,
4396                                           "Failed to loadmulticast address.\n");
4397                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4398                                 goto exit;
4399                         }
4400                         i++;
4401                 }
4402                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4403                 if (ql_set_routing_reg
4404                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4405                         netif_err(qdev, hw, qdev->ndev,
4406                                   "Failed to set multicast match mode.\n");
4407                 } else {
4408                         set_bit(QL_ALLMULTI, &qdev->flags);
4409                 }
4410         }
4411 exit:
4412         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4413 }
4414
4415 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4416 {
4417         struct ql_adapter *qdev = netdev_priv(ndev);
4418         struct sockaddr *addr = p;
4419         int status;
4420
4421         if (!is_valid_ether_addr(addr->sa_data))
4422                 return -EADDRNOTAVAIL;
4423         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4424         /* Update local copy of current mac address. */
4425         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4426
4427         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4428         if (status)
4429                 return status;
4430         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4431                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4432         if (status)
4433                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4434         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4435         return status;
4436 }
4437
4438 static void qlge_tx_timeout(struct net_device *ndev)
4439 {
4440         struct ql_adapter *qdev = netdev_priv(ndev);
4441         ql_queue_asic_error(qdev);
4442 }
4443
4444 static void ql_asic_reset_work(struct work_struct *work)
4445 {
4446         struct ql_adapter *qdev =
4447             container_of(work, struct ql_adapter, asic_reset_work.work);
4448         int status;
4449         rtnl_lock();
4450         status = ql_adapter_down(qdev);
4451         if (status)
4452                 goto error;
4453
4454         status = ql_adapter_up(qdev);
4455         if (status)
4456                 goto error;
4457
4458         /* Restore rx mode. */
4459         clear_bit(QL_ALLMULTI, &qdev->flags);
4460         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4461         qlge_set_multicast_list(qdev->ndev);
4462
4463         rtnl_unlock();
4464         return;
4465 error:
4466         netif_alert(qdev, ifup, qdev->ndev,
4467                     "Driver up/down cycle failed, closing device\n");
4468
4469         set_bit(QL_ADAPTER_UP, &qdev->flags);
4470         dev_close(qdev->ndev);
4471         rtnl_unlock();
4472 }
4473
4474 static const struct nic_operations qla8012_nic_ops = {
4475         .get_flash              = ql_get_8012_flash_params,
4476         .port_initialize        = ql_8012_port_initialize,
4477 };
4478
4479 static const struct nic_operations qla8000_nic_ops = {
4480         .get_flash              = ql_get_8000_flash_params,
4481         .port_initialize        = ql_8000_port_initialize,
4482 };
4483
4484 /* Find the pcie function number for the other NIC
4485  * on this chip.  Since both NIC functions share a
4486  * common firmware we have the lowest enabled function
4487  * do any common work.  Examples would be resetting
4488  * after a fatal firmware error, or doing a firmware
4489  * coredump.
4490  */
4491 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4492 {
4493         int status = 0;
4494         u32 temp;
4495         u32 nic_func1, nic_func2;
4496
4497         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4498                         &temp);
4499         if (status)
4500                 return status;
4501
4502         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4503                         MPI_TEST_NIC_FUNC_MASK);
4504         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4505                         MPI_TEST_NIC_FUNC_MASK);
4506
4507         if (qdev->func == nic_func1)
4508                 qdev->alt_func = nic_func2;
4509         else if (qdev->func == nic_func2)
4510                 qdev->alt_func = nic_func1;
4511         else
4512                 status = -EIO;
4513
4514         return status;
4515 }
4516
4517 static int ql_get_board_info(struct ql_adapter *qdev)
4518 {
4519         int status;
4520         qdev->func =
4521             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4522         if (qdev->func > 3)
4523                 return -EIO;
4524
4525         status = ql_get_alt_pcie_func(qdev);
4526         if (status)
4527                 return status;
4528
4529         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4530         if (qdev->port) {
4531                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4532                 qdev->port_link_up = STS_PL1;
4533                 qdev->port_init = STS_PI1;
4534                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4535                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4536         } else {
4537                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4538                 qdev->port_link_up = STS_PL0;
4539                 qdev->port_init = STS_PI0;
4540                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4541                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4542         }
4543         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4544         qdev->device_id = qdev->pdev->device;
4545         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4546                 qdev->nic_ops = &qla8012_nic_ops;
4547         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4548                 qdev->nic_ops = &qla8000_nic_ops;
4549         return status;
4550 }
4551
4552 static void ql_release_all(struct pci_dev *pdev)
4553 {
4554         struct net_device *ndev = pci_get_drvdata(pdev);
4555         struct ql_adapter *qdev = netdev_priv(ndev);
4556
4557         if (qdev->workqueue) {
4558                 destroy_workqueue(qdev->workqueue);
4559                 qdev->workqueue = NULL;
4560         }
4561
4562         if (qdev->reg_base)
4563                 iounmap(qdev->reg_base);
4564         if (qdev->doorbell_area)
4565                 iounmap(qdev->doorbell_area);
4566         vfree(qdev->mpi_coredump);
4567         pci_release_regions(pdev);
4568 }
4569
4570 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4571                           int cards_found)
4572 {
4573         struct ql_adapter *qdev = netdev_priv(ndev);
4574         int err = 0;
4575
4576         memset((void *)qdev, 0, sizeof(*qdev));
4577         err = pci_enable_device(pdev);
4578         if (err) {
4579                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4580                 return err;
4581         }
4582
4583         qdev->ndev = ndev;
4584         qdev->pdev = pdev;
4585         pci_set_drvdata(pdev, ndev);
4586
4587         /* Set PCIe read request size */
4588         err = pcie_set_readrq(pdev, 4096);
4589         if (err) {
4590                 dev_err(&pdev->dev, "Set readrq failed.\n");
4591                 goto err_out1;
4592         }
4593
4594         err = pci_request_regions(pdev, DRV_NAME);
4595         if (err) {
4596                 dev_err(&pdev->dev, "PCI region request failed.\n");
4597                 return err;
4598         }
4599
4600         pci_set_master(pdev);
4601         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4602                 set_bit(QL_DMA64, &qdev->flags);
4603                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4604         } else {
4605                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4606                 if (!err)
4607                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4608         }
4609
4610         if (err) {
4611                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4612                 goto err_out2;
4613         }
4614
4615         /* Set PCIe reset type for EEH to fundamental. */
4616         pdev->needs_freset = 1;
4617         pci_save_state(pdev);
4618         qdev->reg_base =
4619             ioremap_nocache(pci_resource_start(pdev, 1),
4620                             pci_resource_len(pdev, 1));
4621         if (!qdev->reg_base) {
4622                 dev_err(&pdev->dev, "Register mapping failed.\n");
4623                 err = -ENOMEM;
4624                 goto err_out2;
4625         }
4626
4627         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4628         qdev->doorbell_area =
4629             ioremap_nocache(pci_resource_start(pdev, 3),
4630                             pci_resource_len(pdev, 3));
4631         if (!qdev->doorbell_area) {
4632                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4633                 err = -ENOMEM;
4634                 goto err_out2;
4635         }
4636
4637         err = ql_get_board_info(qdev);
4638         if (err) {
4639                 dev_err(&pdev->dev, "Register access failed.\n");
4640                 err = -EIO;
4641                 goto err_out2;
4642         }
4643         qdev->msg_enable = netif_msg_init(debug, default_msg);
4644         spin_lock_init(&qdev->hw_lock);
4645         spin_lock_init(&qdev->stats_lock);
4646
4647         if (qlge_mpi_coredump) {
4648                 qdev->mpi_coredump =
4649                         vmalloc(sizeof(struct ql_mpi_coredump));
4650                 if (qdev->mpi_coredump == NULL) {
4651                         err = -ENOMEM;
4652                         goto err_out2;
4653                 }
4654                 if (qlge_force_coredump)
4655                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4656         }
4657         /* make sure the EEPROM is good */
4658         err = qdev->nic_ops->get_flash(qdev);
4659         if (err) {
4660                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4661                 goto err_out2;
4662         }
4663
4664         /* Keep local copy of current mac address. */
4665         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4666
4667         /* Set up the default ring sizes. */
4668         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4669         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4670
4671         /* Set up the coalescing parameters. */
4672         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4673         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4674         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4675         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4676
4677         /*
4678          * Set up the operating parameters.
4679          */
4680         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4681         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4682         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4683         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4684         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4685         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4686         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4687         init_completion(&qdev->ide_completion);
4688         mutex_init(&qdev->mpi_mutex);
4689
4690         if (!cards_found) {
4691                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4692                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4693                          DRV_NAME, DRV_VERSION);
4694         }
4695         return 0;
4696 err_out2:
4697         ql_release_all(pdev);
4698 err_out1:
4699         pci_disable_device(pdev);
4700         return err;
4701 }
4702
4703 static const struct net_device_ops qlge_netdev_ops = {
4704         .ndo_open               = qlge_open,
4705         .ndo_stop               = qlge_close,
4706         .ndo_start_xmit         = qlge_send,
4707         .ndo_change_mtu         = qlge_change_mtu,
4708         .ndo_get_stats          = qlge_get_stats,
4709         .ndo_set_rx_mode        = qlge_set_multicast_list,
4710         .ndo_set_mac_address    = qlge_set_mac_address,
4711         .ndo_validate_addr      = eth_validate_addr,
4712         .ndo_tx_timeout         = qlge_tx_timeout,
4713         .ndo_fix_features       = qlge_fix_features,
4714         .ndo_set_features       = qlge_set_features,
4715         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4716         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4717 };
4718
4719 static void ql_timer(unsigned long data)
4720 {
4721         struct ql_adapter *qdev = (struct ql_adapter *)data;
4722         u32 var = 0;
4723
4724         var = ql_read32(qdev, STS);
4725         if (pci_channel_offline(qdev->pdev)) {
4726                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4727                 return;
4728         }
4729
4730         mod_timer(&qdev->timer, jiffies + (5*HZ));
4731 }
4732
4733 static int qlge_probe(struct pci_dev *pdev,
4734                       const struct pci_device_id *pci_entry)
4735 {
4736         struct net_device *ndev = NULL;
4737         struct ql_adapter *qdev = NULL;
4738         static int cards_found = 0;
4739         int err = 0;
4740
4741         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4742                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4743         if (!ndev)
4744                 return -ENOMEM;
4745
4746         err = ql_init_device(pdev, ndev, cards_found);
4747         if (err < 0) {
4748                 free_netdev(ndev);
4749                 return err;
4750         }
4751
4752         qdev = netdev_priv(ndev);
4753         SET_NETDEV_DEV(ndev, &pdev->dev);
4754         ndev->hw_features = NETIF_F_SG |
4755                             NETIF_F_IP_CSUM |
4756                             NETIF_F_TSO |
4757                             NETIF_F_TSO_ECN |
4758                             NETIF_F_HW_VLAN_CTAG_TX |
4759                             NETIF_F_HW_VLAN_CTAG_RX |
4760                             NETIF_F_HW_VLAN_CTAG_FILTER |
4761                             NETIF_F_RXCSUM;
4762         ndev->features = ndev->hw_features;
4763         ndev->vlan_features = ndev->hw_features;
4764         /* vlan gets same features (except vlan filter) */
4765         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4766                                  NETIF_F_HW_VLAN_CTAG_TX |
4767                                  NETIF_F_HW_VLAN_CTAG_RX);
4768
4769         if (test_bit(QL_DMA64, &qdev->flags))
4770                 ndev->features |= NETIF_F_HIGHDMA;
4771
4772         /*
4773          * Set up net_device structure.
4774          */
4775         ndev->tx_queue_len = qdev->tx_ring_size;
4776         ndev->irq = pdev->irq;
4777
4778         ndev->netdev_ops = &qlge_netdev_ops;
4779         ndev->ethtool_ops = &qlge_ethtool_ops;
4780         ndev->watchdog_timeo = 10 * HZ;
4781
4782         err = register_netdev(ndev);
4783         if (err) {
4784                 dev_err(&pdev->dev, "net device registration failed.\n");
4785                 ql_release_all(pdev);
4786                 pci_disable_device(pdev);
4787                 free_netdev(ndev);
4788                 return err;
4789         }
4790         /* Start up the timer to trigger EEH if
4791          * the bus goes dead
4792          */
4793         init_timer_deferrable(&qdev->timer);
4794         qdev->timer.data = (unsigned long)qdev;
4795         qdev->timer.function = ql_timer;
4796         qdev->timer.expires = jiffies + (5*HZ);
4797         add_timer(&qdev->timer);
4798         ql_link_off(qdev);
4799         ql_display_dev_info(ndev);
4800         atomic_set(&qdev->lb_count, 0);
4801         cards_found++;
4802         return 0;
4803 }
4804
4805 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4806 {
4807         return qlge_send(skb, ndev);
4808 }
4809
4810 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4811 {
4812         return ql_clean_inbound_rx_ring(rx_ring, budget);
4813 }
4814
4815 static void qlge_remove(struct pci_dev *pdev)
4816 {
4817         struct net_device *ndev = pci_get_drvdata(pdev);
4818         struct ql_adapter *qdev = netdev_priv(ndev);
4819         del_timer_sync(&qdev->timer);
4820         ql_cancel_all_work_sync(qdev);
4821         unregister_netdev(ndev);
4822         ql_release_all(pdev);
4823         pci_disable_device(pdev);
4824         free_netdev(ndev);
4825 }
4826
4827 /* Clean up resources without touching hardware. */
4828 static void ql_eeh_close(struct net_device *ndev)
4829 {
4830         int i;
4831         struct ql_adapter *qdev = netdev_priv(ndev);
4832
4833         if (netif_carrier_ok(ndev)) {
4834                 netif_carrier_off(ndev);
4835                 netif_stop_queue(ndev);
4836         }
4837
4838         /* Disabling the timer */
4839         del_timer_sync(&qdev->timer);
4840         ql_cancel_all_work_sync(qdev);
4841
4842         for (i = 0; i < qdev->rss_ring_count; i++)
4843                 netif_napi_del(&qdev->rx_ring[i].napi);
4844
4845         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4846         ql_tx_ring_clean(qdev);
4847         ql_free_rx_buffers(qdev);
4848         ql_release_adapter_resources(qdev);
4849 }
4850
4851 /*
4852  * This callback is called by the PCI subsystem whenever
4853  * a PCI bus error is detected.
4854  */
4855 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4856                                                enum pci_channel_state state)
4857 {
4858         struct net_device *ndev = pci_get_drvdata(pdev);
4859         struct ql_adapter *qdev = netdev_priv(ndev);
4860
4861         switch (state) {
4862         case pci_channel_io_normal:
4863                 return PCI_ERS_RESULT_CAN_RECOVER;
4864         case pci_channel_io_frozen:
4865                 netif_device_detach(ndev);
4866                 if (netif_running(ndev))
4867                         ql_eeh_close(ndev);
4868                 pci_disable_device(pdev);
4869                 return PCI_ERS_RESULT_NEED_RESET;
4870         case pci_channel_io_perm_failure:
4871                 dev_err(&pdev->dev,
4872                         "%s: pci_channel_io_perm_failure.\n", __func__);
4873                 ql_eeh_close(ndev);
4874                 set_bit(QL_EEH_FATAL, &qdev->flags);
4875                 return PCI_ERS_RESULT_DISCONNECT;
4876         }
4877
4878         /* Request a slot reset. */
4879         return PCI_ERS_RESULT_NEED_RESET;
4880 }
4881
4882 /*
4883  * This callback is called after the PCI buss has been reset.
4884  * Basically, this tries to restart the card from scratch.
4885  * This is a shortened version of the device probe/discovery code,
4886  * it resembles the first-half of the () routine.
4887  */
4888 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4889 {
4890         struct net_device *ndev = pci_get_drvdata(pdev);
4891         struct ql_adapter *qdev = netdev_priv(ndev);
4892
4893         pdev->error_state = pci_channel_io_normal;
4894
4895         pci_restore_state(pdev);
4896         if (pci_enable_device(pdev)) {
4897                 netif_err(qdev, ifup, qdev->ndev,
4898                           "Cannot re-enable PCI device after reset.\n");
4899                 return PCI_ERS_RESULT_DISCONNECT;
4900         }
4901         pci_set_master(pdev);
4902
4903         if (ql_adapter_reset(qdev)) {
4904                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4905                 set_bit(QL_EEH_FATAL, &qdev->flags);
4906                 return PCI_ERS_RESULT_DISCONNECT;
4907         }
4908
4909         return PCI_ERS_RESULT_RECOVERED;
4910 }
4911
4912 static void qlge_io_resume(struct pci_dev *pdev)
4913 {
4914         struct net_device *ndev = pci_get_drvdata(pdev);
4915         struct ql_adapter *qdev = netdev_priv(ndev);
4916         int err = 0;
4917
4918         if (netif_running(ndev)) {
4919                 err = qlge_open(ndev);
4920                 if (err) {
4921                         netif_err(qdev, ifup, qdev->ndev,
4922                                   "Device initialization failed after reset.\n");
4923                         return;
4924                 }
4925         } else {
4926                 netif_err(qdev, ifup, qdev->ndev,
4927                           "Device was not running prior to EEH.\n");
4928         }
4929         mod_timer(&qdev->timer, jiffies + (5*HZ));
4930         netif_device_attach(ndev);
4931 }
4932
4933 static const struct pci_error_handlers qlge_err_handler = {
4934         .error_detected = qlge_io_error_detected,
4935         .slot_reset = qlge_io_slot_reset,
4936         .resume = qlge_io_resume,
4937 };
4938
4939 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4940 {
4941         struct net_device *ndev = pci_get_drvdata(pdev);
4942         struct ql_adapter *qdev = netdev_priv(ndev);
4943         int err;
4944
4945         netif_device_detach(ndev);
4946         del_timer_sync(&qdev->timer);
4947
4948         if (netif_running(ndev)) {
4949                 err = ql_adapter_down(qdev);
4950                 if (!err)
4951                         return err;
4952         }
4953
4954         ql_wol(qdev);
4955         err = pci_save_state(pdev);
4956         if (err)
4957                 return err;
4958
4959         pci_disable_device(pdev);
4960
4961         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4962
4963         return 0;
4964 }
4965
4966 #ifdef CONFIG_PM
4967 static int qlge_resume(struct pci_dev *pdev)
4968 {
4969         struct net_device *ndev = pci_get_drvdata(pdev);
4970         struct ql_adapter *qdev = netdev_priv(ndev);
4971         int err;
4972
4973         pci_set_power_state(pdev, PCI_D0);
4974         pci_restore_state(pdev);
4975         err = pci_enable_device(pdev);
4976         if (err) {
4977                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4978                 return err;
4979         }
4980         pci_set_master(pdev);
4981
4982         pci_enable_wake(pdev, PCI_D3hot, 0);
4983         pci_enable_wake(pdev, PCI_D3cold, 0);
4984
4985         if (netif_running(ndev)) {
4986                 err = ql_adapter_up(qdev);
4987                 if (err)
4988                         return err;
4989         }
4990
4991         mod_timer(&qdev->timer, jiffies + (5*HZ));
4992         netif_device_attach(ndev);
4993
4994         return 0;
4995 }
4996 #endif /* CONFIG_PM */
4997
4998 static void qlge_shutdown(struct pci_dev *pdev)
4999 {
5000         qlge_suspend(pdev, PMSG_SUSPEND);
5001 }
5002
5003 static struct pci_driver qlge_driver = {
5004         .name = DRV_NAME,
5005         .id_table = qlge_pci_tbl,
5006         .probe = qlge_probe,
5007         .remove = qlge_remove,
5008 #ifdef CONFIG_PM
5009         .suspend = qlge_suspend,
5010         .resume = qlge_resume,
5011 #endif
5012         .shutdown = qlge_shutdown,
5013         .err_handler = &qlge_err_handler
5014 };
5015
5016 module_pci_driver(qlge_driver);