Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER |    */
58     NETIF_MSG_IFDOWN |
59     NETIF_MSG_IFUP |
60     NETIF_MSG_RX_ERR |
61     NETIF_MSG_TX_ERR |
62 /*  NETIF_MSG_TX_QUEUED | */
63 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1;  /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81                 "Option to enable MPI firmware dump. "
82                 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87                 "Option to allow force of firmware core dump. "
88                 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *);
100 static void qlge_set_multicast_list(struct net_device *);
101 static int ql_adapter_down(struct ql_adapter *);
102 static int ql_adapter_up(struct ql_adapter *);
103
104 /* This hardware semaphore causes exclusive access to
105  * resources shared between the NIC driver, MPI firmware,
106  * FCOE firmware and the FC driver.
107  */
108 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
109 {
110         u32 sem_bits = 0;
111
112         switch (sem_mask) {
113         case SEM_XGMAC0_MASK:
114                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
115                 break;
116         case SEM_XGMAC1_MASK:
117                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
118                 break;
119         case SEM_ICB_MASK:
120                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
121                 break;
122         case SEM_MAC_ADDR_MASK:
123                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
124                 break;
125         case SEM_FLASH_MASK:
126                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
127                 break;
128         case SEM_PROBE_MASK:
129                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
130                 break;
131         case SEM_RT_IDX_MASK:
132                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
133                 break;
134         case SEM_PROC_REG_MASK:
135                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
136                 break;
137         default:
138                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
139                 return -EINVAL;
140         }
141
142         ql_write32(qdev, SEM, sem_bits | sem_mask);
143         return !(ql_read32(qdev, SEM) & sem_bits);
144 }
145
146 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
147 {
148         unsigned int wait_count = 30;
149         do {
150                 if (!ql_sem_trylock(qdev, sem_mask))
151                         return 0;
152                 udelay(100);
153         } while (--wait_count);
154         return -ETIMEDOUT;
155 }
156
157 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
158 {
159         ql_write32(qdev, SEM, sem_mask);
160         ql_read32(qdev, SEM);   /* flush */
161 }
162
163 /* This function waits for a specific bit to come ready
164  * in a given register.  It is used mostly by the initialize
165  * process, but is also used in kernel thread API such as
166  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
167  */
168 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
169 {
170         u32 temp;
171         int count = UDELAY_COUNT;
172
173         while (count) {
174                 temp = ql_read32(qdev, reg);
175
176                 /* check for errors */
177                 if (temp & err_bit) {
178                         netif_alert(qdev, probe, qdev->ndev,
179                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
180                                     reg, temp);
181                         return -EIO;
182                 } else if (temp & bit)
183                         return 0;
184                 udelay(UDELAY_DELAY);
185                 count--;
186         }
187         netif_alert(qdev, probe, qdev->ndev,
188                     "Timed out waiting for reg %x to come ready.\n", reg);
189         return -ETIMEDOUT;
190 }
191
192 /* The CFG register is used to download TX and RX control blocks
193  * to the chip. This function waits for an operation to complete.
194  */
195 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
196 {
197         int count = UDELAY_COUNT;
198         u32 temp;
199
200         while (count) {
201                 temp = ql_read32(qdev, CFG);
202                 if (temp & CFG_LE)
203                         return -EIO;
204                 if (!(temp & bit))
205                         return 0;
206                 udelay(UDELAY_DELAY);
207                 count--;
208         }
209         return -ETIMEDOUT;
210 }
211
212
213 /* Used to issue init control blocks to hw. Maps control block,
214  * sets address, triggers download, waits for completion.
215  */
216 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
217                  u16 q_id)
218 {
219         u64 map;
220         int status = 0;
221         int direction;
222         u32 mask;
223         u32 value;
224
225         direction =
226             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
227             PCI_DMA_FROMDEVICE;
228
229         map = pci_map_single(qdev->pdev, ptr, size, direction);
230         if (pci_dma_mapping_error(qdev->pdev, map)) {
231                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
232                 return -ENOMEM;
233         }
234
235         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
236         if (status)
237                 return status;
238
239         status = ql_wait_cfg(qdev, bit);
240         if (status) {
241                 netif_err(qdev, ifup, qdev->ndev,
242                           "Timed out waiting for CFG to come ready.\n");
243                 goto exit;
244         }
245
246         ql_write32(qdev, ICB_L, (u32) map);
247         ql_write32(qdev, ICB_H, (u32) (map >> 32));
248
249         mask = CFG_Q_MASK | (bit << 16);
250         value = bit | (q_id << CFG_Q_SHIFT);
251         ql_write32(qdev, CFG, (mask | value));
252
253         /*
254          * Wait for the bit to clear after signaling hw.
255          */
256         status = ql_wait_cfg(qdev, bit);
257 exit:
258         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
259         pci_unmap_single(qdev->pdev, map, size, direction);
260         return status;
261 }
262
263 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
264 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
265                         u32 *value)
266 {
267         u32 offset = 0;
268         int status;
269
270         switch (type) {
271         case MAC_ADDR_TYPE_MULTI_MAC:
272         case MAC_ADDR_TYPE_CAM_MAC:
273                 {
274                         status =
275                             ql_wait_reg_rdy(qdev,
276                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
277                         if (status)
278                                 goto exit;
279                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
280                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
281                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
282                         status =
283                             ql_wait_reg_rdy(qdev,
284                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
285                         if (status)
286                                 goto exit;
287                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
288                         status =
289                             ql_wait_reg_rdy(qdev,
290                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
291                         if (status)
292                                 goto exit;
293                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
294                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
295                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
296                         status =
297                             ql_wait_reg_rdy(qdev,
298                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
299                         if (status)
300                                 goto exit;
301                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
302                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
303                                 status =
304                                     ql_wait_reg_rdy(qdev,
305                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
306                                 if (status)
307                                         goto exit;
308                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
309                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
310                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
311                                 status =
312                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
313                                                     MAC_ADDR_MR, 0);
314                                 if (status)
315                                         goto exit;
316                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
317                         }
318                         break;
319                 }
320         case MAC_ADDR_TYPE_VLAN:
321         case MAC_ADDR_TYPE_MULTI_FLTR:
322         default:
323                 netif_crit(qdev, ifup, qdev->ndev,
324                            "Address type %d not yet supported.\n", type);
325                 status = -EPERM;
326         }
327 exit:
328         return status;
329 }
330
331 /* Set up a MAC, multicast or VLAN address for the
332  * inbound frame matching.
333  */
334 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
335                                u16 index)
336 {
337         u32 offset = 0;
338         int status = 0;
339
340         switch (type) {
341         case MAC_ADDR_TYPE_MULTI_MAC:
342                 {
343                         u32 upper = (addr[0] << 8) | addr[1];
344                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
345                                         (addr[4] << 8) | (addr[5]);
346
347                         status =
348                                 ql_wait_reg_rdy(qdev,
349                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350                         if (status)
351                                 goto exit;
352                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
353                                 (index << MAC_ADDR_IDX_SHIFT) |
354                                 type | MAC_ADDR_E);
355                         ql_write32(qdev, MAC_ADDR_DATA, lower);
356                         status =
357                                 ql_wait_reg_rdy(qdev,
358                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359                         if (status)
360                                 goto exit;
361                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
362                                 (index << MAC_ADDR_IDX_SHIFT) |
363                                 type | MAC_ADDR_E);
364
365                         ql_write32(qdev, MAC_ADDR_DATA, upper);
366                         status =
367                                 ql_wait_reg_rdy(qdev,
368                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
369                         if (status)
370                                 goto exit;
371                         break;
372                 }
373         case MAC_ADDR_TYPE_CAM_MAC:
374                 {
375                         u32 cam_output;
376                         u32 upper = (addr[0] << 8) | addr[1];
377                         u32 lower =
378                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
379                             (addr[5]);
380                         status =
381                             ql_wait_reg_rdy(qdev,
382                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
383                         if (status)
384                                 goto exit;
385                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
386                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
387                                    type);       /* type */
388                         ql_write32(qdev, MAC_ADDR_DATA, lower);
389                         status =
390                             ql_wait_reg_rdy(qdev,
391                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
392                         if (status)
393                                 goto exit;
394                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
395                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
396                                    type);       /* type */
397                         ql_write32(qdev, MAC_ADDR_DATA, upper);
398                         status =
399                             ql_wait_reg_rdy(qdev,
400                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
401                         if (status)
402                                 goto exit;
403                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
404                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
405                                    type);       /* type */
406                         /* This field should also include the queue id
407                            and possibly the function id.  Right now we hardcode
408                            the route field to NIC core.
409                          */
410                         cam_output = (CAM_OUT_ROUTE_NIC |
411                                       (qdev->
412                                        func << CAM_OUT_FUNC_SHIFT) |
413                                         (0 << CAM_OUT_CQ_ID_SHIFT));
414                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415                                 cam_output |= CAM_OUT_RV;
416                         /* route to NIC core */
417                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
418                         break;
419                 }
420         case MAC_ADDR_TYPE_VLAN:
421                 {
422                         u32 enable_bit = *((u32 *) &addr[0]);
423                         /* For VLAN, the addr actually holds a bit that
424                          * either enables or disables the vlan id we are
425                          * addressing. It's either MAC_ADDR_E on or off.
426                          * That's bit-27 we're talking about.
427                          */
428                         status =
429                             ql_wait_reg_rdy(qdev,
430                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
431                         if (status)
432                                 goto exit;
433                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
434                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
435                                    type |       /* type */
436                                    enable_bit); /* enable/disable */
437                         break;
438                 }
439         case MAC_ADDR_TYPE_MULTI_FLTR:
440         default:
441                 netif_crit(qdev, ifup, qdev->ndev,
442                            "Address type %d not yet supported.\n", type);
443                 status = -EPERM;
444         }
445 exit:
446         return status;
447 }
448
449 /* Set or clear MAC address in hardware. We sometimes
450  * have to clear it to prevent wrong frame routing
451  * especially in a bonding environment.
452  */
453 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
454 {
455         int status;
456         char zero_mac_addr[ETH_ALEN];
457         char *addr;
458
459         if (set) {
460                 addr = &qdev->current_mac_addr[0];
461                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
462                              "Set Mac addr %pM\n", addr);
463         } else {
464                 memset(zero_mac_addr, 0, ETH_ALEN);
465                 addr = &zero_mac_addr[0];
466                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
467                              "Clearing MAC address\n");
468         }
469         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
470         if (status)
471                 return status;
472         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
473                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
474         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
475         if (status)
476                 netif_err(qdev, ifup, qdev->ndev,
477                           "Failed to init mac address.\n");
478         return status;
479 }
480
481 void ql_link_on(struct ql_adapter *qdev)
482 {
483         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
484         netif_carrier_on(qdev->ndev);
485         ql_set_mac_addr(qdev, 1);
486 }
487
488 void ql_link_off(struct ql_adapter *qdev)
489 {
490         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
491         netif_carrier_off(qdev->ndev);
492         ql_set_mac_addr(qdev, 0);
493 }
494
495 /* Get a specific frame routing value from the CAM.
496  * Used for debug and reg dump.
497  */
498 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
499 {
500         int status = 0;
501
502         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
503         if (status)
504                 goto exit;
505
506         ql_write32(qdev, RT_IDX,
507                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
508         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
509         if (status)
510                 goto exit;
511         *value = ql_read32(qdev, RT_DATA);
512 exit:
513         return status;
514 }
515
516 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
517  * to route different frame types to various inbound queues.  We send broadcast/
518  * multicast/error frames to the default queue for slow handling,
519  * and CAM hit/RSS frames to the fast handling queues.
520  */
521 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
522                               int enable)
523 {
524         int status = -EINVAL; /* Return error if no mask match. */
525         u32 value = 0;
526
527         switch (mask) {
528         case RT_IDX_CAM_HIT:
529                 {
530                         value = RT_IDX_DST_CAM_Q |      /* dest */
531                             RT_IDX_TYPE_NICQ |  /* type */
532                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
533                         break;
534                 }
535         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
536                 {
537                         value = RT_IDX_DST_DFLT_Q |     /* dest */
538                             RT_IDX_TYPE_NICQ |  /* type */
539                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
540                         break;
541                 }
542         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
543                 {
544                         value = RT_IDX_DST_DFLT_Q |     /* dest */
545                             RT_IDX_TYPE_NICQ |  /* type */
546                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
547                         break;
548                 }
549         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
550                 {
551                         value = RT_IDX_DST_DFLT_Q | /* dest */
552                                 RT_IDX_TYPE_NICQ | /* type */
553                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
554                                 RT_IDX_IDX_SHIFT); /* index */
555                         break;
556                 }
557         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
558                 {
559                         value = RT_IDX_DST_DFLT_Q | /* dest */
560                                 RT_IDX_TYPE_NICQ | /* type */
561                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
562                                 RT_IDX_IDX_SHIFT); /* index */
563                         break;
564                 }
565         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
566                 {
567                         value = RT_IDX_DST_DFLT_Q |     /* dest */
568                             RT_IDX_TYPE_NICQ |  /* type */
569                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
570                         break;
571                 }
572         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
573                 {
574                         value = RT_IDX_DST_DFLT_Q |     /* dest */
575                             RT_IDX_TYPE_NICQ |  /* type */
576                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
577                         break;
578                 }
579         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
580                 {
581                         value = RT_IDX_DST_DFLT_Q |     /* dest */
582                             RT_IDX_TYPE_NICQ |  /* type */
583                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
584                         break;
585                 }
586         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
587                 {
588                         value = RT_IDX_DST_RSS |        /* dest */
589                             RT_IDX_TYPE_NICQ |  /* type */
590                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
591                         break;
592                 }
593         case 0:         /* Clear the E-bit on an entry. */
594                 {
595                         value = RT_IDX_DST_DFLT_Q |     /* dest */
596                             RT_IDX_TYPE_NICQ |  /* type */
597                             (index << RT_IDX_IDX_SHIFT);/* index */
598                         break;
599                 }
600         default:
601                 netif_err(qdev, ifup, qdev->ndev,
602                           "Mask type %d not yet supported.\n", mask);
603                 status = -EPERM;
604                 goto exit;
605         }
606
607         if (value) {
608                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
609                 if (status)
610                         goto exit;
611                 value |= (enable ? RT_IDX_E : 0);
612                 ql_write32(qdev, RT_IDX, value);
613                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
614         }
615 exit:
616         return status;
617 }
618
619 static void ql_enable_interrupts(struct ql_adapter *qdev)
620 {
621         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
622 }
623
624 static void ql_disable_interrupts(struct ql_adapter *qdev)
625 {
626         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
627 }
628
629 /* If we're running with multiple MSI-X vectors then we enable on the fly.
630  * Otherwise, we may have multiple outstanding workers and don't want to
631  * enable until the last one finishes. In this case, the irq_cnt gets
632  * incremented every time we queue a worker and decremented every time
633  * a worker finishes.  Once it hits zero we enable the interrupt.
634  */
635 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
636 {
637         u32 var = 0;
638         unsigned long hw_flags = 0;
639         struct intr_context *ctx = qdev->intr_context + intr;
640
641         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
642                 /* Always enable if we're MSIX multi interrupts and
643                  * it's not the default (zeroeth) interrupt.
644                  */
645                 ql_write32(qdev, INTR_EN,
646                            ctx->intr_en_mask);
647                 var = ql_read32(qdev, STS);
648                 return var;
649         }
650
651         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
652         if (atomic_dec_and_test(&ctx->irq_cnt)) {
653                 ql_write32(qdev, INTR_EN,
654                            ctx->intr_en_mask);
655                 var = ql_read32(qdev, STS);
656         }
657         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
658         return var;
659 }
660
661 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
662 {
663         u32 var = 0;
664         struct intr_context *ctx;
665
666         /* HW disables for us if we're MSIX multi interrupts and
667          * it's not the default (zeroeth) interrupt.
668          */
669         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
670                 return 0;
671
672         ctx = qdev->intr_context + intr;
673         spin_lock(&qdev->hw_lock);
674         if (!atomic_read(&ctx->irq_cnt)) {
675                 ql_write32(qdev, INTR_EN,
676                 ctx->intr_dis_mask);
677                 var = ql_read32(qdev, STS);
678         }
679         atomic_inc(&ctx->irq_cnt);
680         spin_unlock(&qdev->hw_lock);
681         return var;
682 }
683
684 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
685 {
686         int i;
687         for (i = 0; i < qdev->intr_count; i++) {
688                 /* The enable call does a atomic_dec_and_test
689                  * and enables only if the result is zero.
690                  * So we precharge it here.
691                  */
692                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
693                         i == 0))
694                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
695                 ql_enable_completion_interrupt(qdev, i);
696         }
697
698 }
699
700 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
701 {
702         int status, i;
703         u16 csum = 0;
704         __le16 *flash = (__le16 *)&qdev->flash;
705
706         status = strncmp((char *)&qdev->flash, str, 4);
707         if (status) {
708                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
709                 return  status;
710         }
711
712         for (i = 0; i < size; i++)
713                 csum += le16_to_cpu(*flash++);
714
715         if (csum)
716                 netif_err(qdev, ifup, qdev->ndev,
717                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
718
719         return csum;
720 }
721
722 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
723 {
724         int status = 0;
725         /* wait for reg to come ready */
726         status = ql_wait_reg_rdy(qdev,
727                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
728         if (status)
729                 goto exit;
730         /* set up for reg read */
731         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
732         /* wait for reg to come ready */
733         status = ql_wait_reg_rdy(qdev,
734                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
735         if (status)
736                 goto exit;
737          /* This data is stored on flash as an array of
738          * __le32.  Since ql_read32() returns cpu endian
739          * we need to swap it back.
740          */
741         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
742 exit:
743         return status;
744 }
745
746 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
747 {
748         u32 i, size;
749         int status;
750         __le32 *p = (__le32 *)&qdev->flash;
751         u32 offset;
752         u8 mac_addr[6];
753
754         /* Get flash offset for function and adjust
755          * for dword access.
756          */
757         if (!qdev->port)
758                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
759         else
760                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
761
762         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
763                 return -ETIMEDOUT;
764
765         size = sizeof(struct flash_params_8000) / sizeof(u32);
766         for (i = 0; i < size; i++, p++) {
767                 status = ql_read_flash_word(qdev, i+offset, p);
768                 if (status) {
769                         netif_err(qdev, ifup, qdev->ndev,
770                                   "Error reading flash.\n");
771                         goto exit;
772                 }
773         }
774
775         status = ql_validate_flash(qdev,
776                         sizeof(struct flash_params_8000) / sizeof(u16),
777                         "8000");
778         if (status) {
779                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
780                 status = -EINVAL;
781                 goto exit;
782         }
783
784         /* Extract either manufacturer or BOFM modified
785          * MAC address.
786          */
787         if (qdev->flash.flash_params_8000.data_type1 == 2)
788                 memcpy(mac_addr,
789                         qdev->flash.flash_params_8000.mac_addr1,
790                         qdev->ndev->addr_len);
791         else
792                 memcpy(mac_addr,
793                         qdev->flash.flash_params_8000.mac_addr,
794                         qdev->ndev->addr_len);
795
796         if (!is_valid_ether_addr(mac_addr)) {
797                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
798                 status = -EINVAL;
799                 goto exit;
800         }
801
802         memcpy(qdev->ndev->dev_addr,
803                 mac_addr,
804                 qdev->ndev->addr_len);
805
806 exit:
807         ql_sem_unlock(qdev, SEM_FLASH_MASK);
808         return status;
809 }
810
811 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
812 {
813         int i;
814         int status;
815         __le32 *p = (__le32 *)&qdev->flash;
816         u32 offset = 0;
817         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
818
819         /* Second function's parameters follow the first
820          * function's.
821          */
822         if (qdev->port)
823                 offset = size;
824
825         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
826                 return -ETIMEDOUT;
827
828         for (i = 0; i < size; i++, p++) {
829                 status = ql_read_flash_word(qdev, i+offset, p);
830                 if (status) {
831                         netif_err(qdev, ifup, qdev->ndev,
832                                   "Error reading flash.\n");
833                         goto exit;
834                 }
835
836         }
837
838         status = ql_validate_flash(qdev,
839                         sizeof(struct flash_params_8012) / sizeof(u16),
840                         "8012");
841         if (status) {
842                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
843                 status = -EINVAL;
844                 goto exit;
845         }
846
847         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
848                 status = -EINVAL;
849                 goto exit;
850         }
851
852         memcpy(qdev->ndev->dev_addr,
853                 qdev->flash.flash_params_8012.mac_addr,
854                 qdev->ndev->addr_len);
855
856 exit:
857         ql_sem_unlock(qdev, SEM_FLASH_MASK);
858         return status;
859 }
860
861 /* xgmac register are located behind the xgmac_addr and xgmac_data
862  * register pair.  Each read/write requires us to wait for the ready
863  * bit before reading/writing the data.
864  */
865 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
866 {
867         int status;
868         /* wait for reg to come ready */
869         status = ql_wait_reg_rdy(qdev,
870                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
871         if (status)
872                 return status;
873         /* write the data to the data reg */
874         ql_write32(qdev, XGMAC_DATA, data);
875         /* trigger the write */
876         ql_write32(qdev, XGMAC_ADDR, reg);
877         return status;
878 }
879
880 /* xgmac register are located behind the xgmac_addr and xgmac_data
881  * register pair.  Each read/write requires us to wait for the ready
882  * bit before reading/writing the data.
883  */
884 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
885 {
886         int status = 0;
887         /* wait for reg to come ready */
888         status = ql_wait_reg_rdy(qdev,
889                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
890         if (status)
891                 goto exit;
892         /* set up for reg read */
893         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
894         /* wait for reg to come ready */
895         status = ql_wait_reg_rdy(qdev,
896                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
897         if (status)
898                 goto exit;
899         /* get the data */
900         *data = ql_read32(qdev, XGMAC_DATA);
901 exit:
902         return status;
903 }
904
905 /* This is used for reading the 64-bit statistics regs. */
906 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
907 {
908         int status = 0;
909         u32 hi = 0;
910         u32 lo = 0;
911
912         status = ql_read_xgmac_reg(qdev, reg, &lo);
913         if (status)
914                 goto exit;
915
916         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
917         if (status)
918                 goto exit;
919
920         *data = (u64) lo | ((u64) hi << 32);
921
922 exit:
923         return status;
924 }
925
926 static int ql_8000_port_initialize(struct ql_adapter *qdev)
927 {
928         int status;
929         /*
930          * Get MPI firmware version for driver banner
931          * and ethool info.
932          */
933         status = ql_mb_about_fw(qdev);
934         if (status)
935                 goto exit;
936         status = ql_mb_get_fw_state(qdev);
937         if (status)
938                 goto exit;
939         /* Wake up a worker to get/set the TX/RX frame sizes. */
940         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
941 exit:
942         return status;
943 }
944
945 /* Take the MAC Core out of reset.
946  * Enable statistics counting.
947  * Take the transmitter/receiver out of reset.
948  * This functionality may be done in the MPI firmware at a
949  * later date.
950  */
951 static int ql_8012_port_initialize(struct ql_adapter *qdev)
952 {
953         int status = 0;
954         u32 data;
955
956         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
957                 /* Another function has the semaphore, so
958                  * wait for the port init bit to come ready.
959                  */
960                 netif_info(qdev, link, qdev->ndev,
961                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
962                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
963                 if (status) {
964                         netif_crit(qdev, link, qdev->ndev,
965                                    "Port initialize timed out.\n");
966                 }
967                 return status;
968         }
969
970         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
971         /* Set the core reset. */
972         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
973         if (status)
974                 goto end;
975         data |= GLOBAL_CFG_RESET;
976         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
977         if (status)
978                 goto end;
979
980         /* Clear the core reset and turn on jumbo for receiver. */
981         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
982         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
983         data |= GLOBAL_CFG_TX_STAT_EN;
984         data |= GLOBAL_CFG_RX_STAT_EN;
985         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
986         if (status)
987                 goto end;
988
989         /* Enable transmitter, and clear it's reset. */
990         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
991         if (status)
992                 goto end;
993         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
994         data |= TX_CFG_EN;      /* Enable the transmitter. */
995         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
996         if (status)
997                 goto end;
998
999         /* Enable receiver and clear it's reset. */
1000         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1001         if (status)
1002                 goto end;
1003         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1004         data |= RX_CFG_EN;      /* Enable the receiver. */
1005         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1006         if (status)
1007                 goto end;
1008
1009         /* Turn on jumbo. */
1010         status =
1011             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1012         if (status)
1013                 goto end;
1014         status =
1015             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1016         if (status)
1017                 goto end;
1018
1019         /* Signal to the world that the port is enabled.        */
1020         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1021 end:
1022         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1023         return status;
1024 }
1025
1026 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1027 {
1028         return PAGE_SIZE << qdev->lbq_buf_order;
1029 }
1030
1031 /* Get the next large buffer. */
1032 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1033 {
1034         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1035         rx_ring->lbq_curr_idx++;
1036         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1037                 rx_ring->lbq_curr_idx = 0;
1038         rx_ring->lbq_free_cnt++;
1039         return lbq_desc;
1040 }
1041
1042 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1043                 struct rx_ring *rx_ring)
1044 {
1045         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1046
1047         pci_dma_sync_single_for_cpu(qdev->pdev,
1048                                         dma_unmap_addr(lbq_desc, mapaddr),
1049                                     rx_ring->lbq_buf_size,
1050                                         PCI_DMA_FROMDEVICE);
1051
1052         /* If it's the last chunk of our master page then
1053          * we unmap it.
1054          */
1055         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1056                                         == ql_lbq_block_size(qdev))
1057                 pci_unmap_page(qdev->pdev,
1058                                 lbq_desc->p.pg_chunk.map,
1059                                 ql_lbq_block_size(qdev),
1060                                 PCI_DMA_FROMDEVICE);
1061         return lbq_desc;
1062 }
1063
1064 /* Get the next small buffer. */
1065 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1066 {
1067         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1068         rx_ring->sbq_curr_idx++;
1069         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1070                 rx_ring->sbq_curr_idx = 0;
1071         rx_ring->sbq_free_cnt++;
1072         return sbq_desc;
1073 }
1074
1075 /* Update an rx ring index. */
1076 static void ql_update_cq(struct rx_ring *rx_ring)
1077 {
1078         rx_ring->cnsmr_idx++;
1079         rx_ring->curr_entry++;
1080         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1081                 rx_ring->cnsmr_idx = 0;
1082                 rx_ring->curr_entry = rx_ring->cq_base;
1083         }
1084 }
1085
1086 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1087 {
1088         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1089 }
1090
1091 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1092                                                 struct bq_desc *lbq_desc)
1093 {
1094         if (!rx_ring->pg_chunk.page) {
1095                 u64 map;
1096                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1097                                                 GFP_ATOMIC,
1098                                                 qdev->lbq_buf_order);
1099                 if (unlikely(!rx_ring->pg_chunk.page)) {
1100                         netif_err(qdev, drv, qdev->ndev,
1101                                   "page allocation failed.\n");
1102                         return -ENOMEM;
1103                 }
1104                 rx_ring->pg_chunk.offset = 0;
1105                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1106                                         0, ql_lbq_block_size(qdev),
1107                                         PCI_DMA_FROMDEVICE);
1108                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1109                         __free_pages(rx_ring->pg_chunk.page,
1110                                         qdev->lbq_buf_order);
1111                         rx_ring->pg_chunk.page = NULL;
1112                         netif_err(qdev, drv, qdev->ndev,
1113                                   "PCI mapping failed.\n");
1114                         return -ENOMEM;
1115                 }
1116                 rx_ring->pg_chunk.map = map;
1117                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1118         }
1119
1120         /* Copy the current master pg_chunk info
1121          * to the current descriptor.
1122          */
1123         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1124
1125         /* Adjust the master page chunk for next
1126          * buffer get.
1127          */
1128         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1129         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1130                 rx_ring->pg_chunk.page = NULL;
1131                 lbq_desc->p.pg_chunk.last_flag = 1;
1132         } else {
1133                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1134                 get_page(rx_ring->pg_chunk.page);
1135                 lbq_desc->p.pg_chunk.last_flag = 0;
1136         }
1137         return 0;
1138 }
1139 /* Process (refill) a large buffer queue. */
1140 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1141 {
1142         u32 clean_idx = rx_ring->lbq_clean_idx;
1143         u32 start_idx = clean_idx;
1144         struct bq_desc *lbq_desc;
1145         u64 map;
1146         int i;
1147
1148         while (rx_ring->lbq_free_cnt > 32) {
1149                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1150                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1151                                      "lbq: try cleaning clean_idx = %d.\n",
1152                                      clean_idx);
1153                         lbq_desc = &rx_ring->lbq[clean_idx];
1154                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1155                                 rx_ring->lbq_clean_idx = clean_idx;
1156                                 netif_err(qdev, ifup, qdev->ndev,
1157                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1158                                                 i, clean_idx);
1159                                 return;
1160                         }
1161
1162                         map = lbq_desc->p.pg_chunk.map +
1163                                 lbq_desc->p.pg_chunk.offset;
1164                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1165                         dma_unmap_len_set(lbq_desc, maplen,
1166                                         rx_ring->lbq_buf_size);
1167                                 *lbq_desc->addr = cpu_to_le64(map);
1168
1169                         pci_dma_sync_single_for_device(qdev->pdev, map,
1170                                                 rx_ring->lbq_buf_size,
1171                                                 PCI_DMA_FROMDEVICE);
1172                         clean_idx++;
1173                         if (clean_idx == rx_ring->lbq_len)
1174                                 clean_idx = 0;
1175                 }
1176
1177                 rx_ring->lbq_clean_idx = clean_idx;
1178                 rx_ring->lbq_prod_idx += 16;
1179                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1180                         rx_ring->lbq_prod_idx = 0;
1181                 rx_ring->lbq_free_cnt -= 16;
1182         }
1183
1184         if (start_idx != clean_idx) {
1185                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1186                              "lbq: updating prod idx = %d.\n",
1187                              rx_ring->lbq_prod_idx);
1188                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1189                                 rx_ring->lbq_prod_idx_db_reg);
1190         }
1191 }
1192
1193 /* Process (refill) a small buffer queue. */
1194 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1195 {
1196         u32 clean_idx = rx_ring->sbq_clean_idx;
1197         u32 start_idx = clean_idx;
1198         struct bq_desc *sbq_desc;
1199         u64 map;
1200         int i;
1201
1202         while (rx_ring->sbq_free_cnt > 16) {
1203                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1204                         sbq_desc = &rx_ring->sbq[clean_idx];
1205                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1206                                      "sbq: try cleaning clean_idx = %d.\n",
1207                                      clean_idx);
1208                         if (sbq_desc->p.skb == NULL) {
1209                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1210                                              qdev->ndev,
1211                                              "sbq: getting new skb for index %d.\n",
1212                                              sbq_desc->index);
1213                                 sbq_desc->p.skb =
1214                                     netdev_alloc_skb(qdev->ndev,
1215                                                      SMALL_BUFFER_SIZE);
1216                                 if (sbq_desc->p.skb == NULL) {
1217                                         rx_ring->sbq_clean_idx = clean_idx;
1218                                         return;
1219                                 }
1220                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1221                                 map = pci_map_single(qdev->pdev,
1222                                                      sbq_desc->p.skb->data,
1223                                                      rx_ring->sbq_buf_size,
1224                                                      PCI_DMA_FROMDEVICE);
1225                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1226                                         netif_err(qdev, ifup, qdev->ndev,
1227                                                   "PCI mapping failed.\n");
1228                                         rx_ring->sbq_clean_idx = clean_idx;
1229                                         dev_kfree_skb_any(sbq_desc->p.skb);
1230                                         sbq_desc->p.skb = NULL;
1231                                         return;
1232                                 }
1233                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1234                                 dma_unmap_len_set(sbq_desc, maplen,
1235                                                   rx_ring->sbq_buf_size);
1236                                 *sbq_desc->addr = cpu_to_le64(map);
1237                         }
1238
1239                         clean_idx++;
1240                         if (clean_idx == rx_ring->sbq_len)
1241                                 clean_idx = 0;
1242                 }
1243                 rx_ring->sbq_clean_idx = clean_idx;
1244                 rx_ring->sbq_prod_idx += 16;
1245                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1246                         rx_ring->sbq_prod_idx = 0;
1247                 rx_ring->sbq_free_cnt -= 16;
1248         }
1249
1250         if (start_idx != clean_idx) {
1251                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1252                              "sbq: updating prod idx = %d.\n",
1253                              rx_ring->sbq_prod_idx);
1254                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1255                                 rx_ring->sbq_prod_idx_db_reg);
1256         }
1257 }
1258
1259 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1260                                     struct rx_ring *rx_ring)
1261 {
1262         ql_update_sbq(qdev, rx_ring);
1263         ql_update_lbq(qdev, rx_ring);
1264 }
1265
1266 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1267  * fails at some stage, or from the interrupt when a tx completes.
1268  */
1269 static void ql_unmap_send(struct ql_adapter *qdev,
1270                           struct tx_ring_desc *tx_ring_desc, int mapped)
1271 {
1272         int i;
1273         for (i = 0; i < mapped; i++) {
1274                 if (i == 0 || (i == 7 && mapped > 7)) {
1275                         /*
1276                          * Unmap the skb->data area, or the
1277                          * external sglist (AKA the Outbound
1278                          * Address List (OAL)).
1279                          * If its the zeroeth element, then it's
1280                          * the skb->data area.  If it's the 7th
1281                          * element and there is more than 6 frags,
1282                          * then its an OAL.
1283                          */
1284                         if (i == 7) {
1285                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1286                                              qdev->ndev,
1287                                              "unmapping OAL area.\n");
1288                         }
1289                         pci_unmap_single(qdev->pdev,
1290                                          dma_unmap_addr(&tx_ring_desc->map[i],
1291                                                         mapaddr),
1292                                          dma_unmap_len(&tx_ring_desc->map[i],
1293                                                        maplen),
1294                                          PCI_DMA_TODEVICE);
1295                 } else {
1296                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1297                                      "unmapping frag %d.\n", i);
1298                         pci_unmap_page(qdev->pdev,
1299                                        dma_unmap_addr(&tx_ring_desc->map[i],
1300                                                       mapaddr),
1301                                        dma_unmap_len(&tx_ring_desc->map[i],
1302                                                      maplen), PCI_DMA_TODEVICE);
1303                 }
1304         }
1305
1306 }
1307
1308 /* Map the buffers for this transmit.  This will return
1309  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1310  */
1311 static int ql_map_send(struct ql_adapter *qdev,
1312                        struct ob_mac_iocb_req *mac_iocb_ptr,
1313                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1314 {
1315         int len = skb_headlen(skb);
1316         dma_addr_t map;
1317         int frag_idx, err, map_idx = 0;
1318         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1319         int frag_cnt = skb_shinfo(skb)->nr_frags;
1320
1321         if (frag_cnt) {
1322                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1323                              "frag_cnt = %d.\n", frag_cnt);
1324         }
1325         /*
1326          * Map the skb buffer first.
1327          */
1328         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1329
1330         err = pci_dma_mapping_error(qdev->pdev, map);
1331         if (err) {
1332                 netif_err(qdev, tx_queued, qdev->ndev,
1333                           "PCI mapping failed with error: %d\n", err);
1334
1335                 return NETDEV_TX_BUSY;
1336         }
1337
1338         tbd->len = cpu_to_le32(len);
1339         tbd->addr = cpu_to_le64(map);
1340         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1341         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1342         map_idx++;
1343
1344         /*
1345          * This loop fills the remainder of the 8 address descriptors
1346          * in the IOCB.  If there are more than 7 fragments, then the
1347          * eighth address desc will point to an external list (OAL).
1348          * When this happens, the remainder of the frags will be stored
1349          * in this list.
1350          */
1351         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1352                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1353                 tbd++;
1354                 if (frag_idx == 6 && frag_cnt > 7) {
1355                         /* Let's tack on an sglist.
1356                          * Our control block will now
1357                          * look like this:
1358                          * iocb->seg[0] = skb->data
1359                          * iocb->seg[1] = frag[0]
1360                          * iocb->seg[2] = frag[1]
1361                          * iocb->seg[3] = frag[2]
1362                          * iocb->seg[4] = frag[3]
1363                          * iocb->seg[5] = frag[4]
1364                          * iocb->seg[6] = frag[5]
1365                          * iocb->seg[7] = ptr to OAL (external sglist)
1366                          * oal->seg[0] = frag[6]
1367                          * oal->seg[1] = frag[7]
1368                          * oal->seg[2] = frag[8]
1369                          * oal->seg[3] = frag[9]
1370                          * oal->seg[4] = frag[10]
1371                          *      etc...
1372                          */
1373                         /* Tack on the OAL in the eighth segment of IOCB. */
1374                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1375                                              sizeof(struct oal),
1376                                              PCI_DMA_TODEVICE);
1377                         err = pci_dma_mapping_error(qdev->pdev, map);
1378                         if (err) {
1379                                 netif_err(qdev, tx_queued, qdev->ndev,
1380                                           "PCI mapping outbound address list with error: %d\n",
1381                                           err);
1382                                 goto map_error;
1383                         }
1384
1385                         tbd->addr = cpu_to_le64(map);
1386                         /*
1387                          * The length is the number of fragments
1388                          * that remain to be mapped times the length
1389                          * of our sglist (OAL).
1390                          */
1391                         tbd->len =
1392                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1393                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1394                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1395                                            map);
1396                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1397                                           sizeof(struct oal));
1398                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1399                         map_idx++;
1400                 }
1401
1402                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1403                                        DMA_TO_DEVICE);
1404
1405                 err = dma_mapping_error(&qdev->pdev->dev, map);
1406                 if (err) {
1407                         netif_err(qdev, tx_queued, qdev->ndev,
1408                                   "PCI mapping frags failed with error: %d.\n",
1409                                   err);
1410                         goto map_error;
1411                 }
1412
1413                 tbd->addr = cpu_to_le64(map);
1414                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1415                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1416                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1417                                   skb_frag_size(frag));
1418
1419         }
1420         /* Save the number of segments we've mapped. */
1421         tx_ring_desc->map_cnt = map_idx;
1422         /* Terminate the last segment. */
1423         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1424         return NETDEV_TX_OK;
1425
1426 map_error:
1427         /*
1428          * If the first frag mapping failed, then i will be zero.
1429          * This causes the unmap of the skb->data area.  Otherwise
1430          * we pass in the number of frags that mapped successfully
1431          * so they can be umapped.
1432          */
1433         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1434         return NETDEV_TX_BUSY;
1435 }
1436
1437 /* Categorizing receive firmware frame errors */
1438 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1439                                  struct rx_ring *rx_ring)
1440 {
1441         struct nic_stats *stats = &qdev->nic_stats;
1442
1443         stats->rx_err_count++;
1444         rx_ring->rx_errors++;
1445
1446         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1447         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1448                 stats->rx_code_err++;
1449                 break;
1450         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1451                 stats->rx_oversize_err++;
1452                 break;
1453         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1454                 stats->rx_undersize_err++;
1455                 break;
1456         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1457                 stats->rx_preamble_err++;
1458                 break;
1459         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1460                 stats->rx_frame_len_err++;
1461                 break;
1462         case IB_MAC_IOCB_RSP_ERR_CRC:
1463                 stats->rx_crc_err++;
1464         default:
1465                 break;
1466         }
1467 }
1468
1469 /**
1470  * ql_update_mac_hdr_len - helper routine to update the mac header length
1471  * based on vlan tags if present
1472  */
1473 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1474                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1475                                   void *page, size_t *len)
1476 {
1477         u16 *tags;
1478
1479         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1480                 return;
1481         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1482                 tags = (u16 *)page;
1483                 /* Look for stacked vlan tags in ethertype field */
1484                 if (tags[6] == ETH_P_8021Q &&
1485                     tags[8] == ETH_P_8021Q)
1486                         *len += 2 * VLAN_HLEN;
1487                 else
1488                         *len += VLAN_HLEN;
1489         }
1490 }
1491
1492 /* Process an inbound completion from an rx ring. */
1493 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1494                                         struct rx_ring *rx_ring,
1495                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1496                                         u32 length,
1497                                         u16 vlan_id)
1498 {
1499         struct sk_buff *skb;
1500         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1501         struct napi_struct *napi = &rx_ring->napi;
1502
1503         /* Frame error, so drop the packet. */
1504         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1505                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1506                 put_page(lbq_desc->p.pg_chunk.page);
1507                 return;
1508         }
1509         napi->dev = qdev->ndev;
1510
1511         skb = napi_get_frags(napi);
1512         if (!skb) {
1513                 netif_err(qdev, drv, qdev->ndev,
1514                           "Couldn't get an skb, exiting.\n");
1515                 rx_ring->rx_dropped++;
1516                 put_page(lbq_desc->p.pg_chunk.page);
1517                 return;
1518         }
1519         prefetch(lbq_desc->p.pg_chunk.va);
1520         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1521                              lbq_desc->p.pg_chunk.page,
1522                              lbq_desc->p.pg_chunk.offset,
1523                              length);
1524
1525         skb->len += length;
1526         skb->data_len += length;
1527         skb->truesize += length;
1528         skb_shinfo(skb)->nr_frags++;
1529
1530         rx_ring->rx_packets++;
1531         rx_ring->rx_bytes += length;
1532         skb->ip_summed = CHECKSUM_UNNECESSARY;
1533         skb_record_rx_queue(skb, rx_ring->cq_id);
1534         if (vlan_id != 0xffff)
1535                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1536         napi_gro_frags(napi);
1537 }
1538
1539 /* Process an inbound completion from an rx ring. */
1540 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1541                                         struct rx_ring *rx_ring,
1542                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1543                                         u32 length,
1544                                         u16 vlan_id)
1545 {
1546         struct net_device *ndev = qdev->ndev;
1547         struct sk_buff *skb = NULL;
1548         void *addr;
1549         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1550         struct napi_struct *napi = &rx_ring->napi;
1551         size_t hlen = ETH_HLEN;
1552
1553         skb = netdev_alloc_skb(ndev, length);
1554         if (!skb) {
1555                 rx_ring->rx_dropped++;
1556                 put_page(lbq_desc->p.pg_chunk.page);
1557                 return;
1558         }
1559
1560         addr = lbq_desc->p.pg_chunk.va;
1561         prefetch(addr);
1562
1563         /* Frame error, so drop the packet. */
1564         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1565                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1566                 goto err_out;
1567         }
1568
1569         /* Update the MAC header length*/
1570         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1571
1572         /* The max framesize filter on this chip is set higher than
1573          * MTU since FCoE uses 2k frames.
1574          */
1575         if (skb->len > ndev->mtu + hlen) {
1576                 netif_err(qdev, drv, qdev->ndev,
1577                           "Segment too small, dropping.\n");
1578                 rx_ring->rx_dropped++;
1579                 goto err_out;
1580         }
1581         memcpy(skb_put(skb, hlen), addr, hlen);
1582         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1583                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1584                      length);
1585         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1586                                 lbq_desc->p.pg_chunk.offset + hlen,
1587                                 length - hlen);
1588         skb->len += length - hlen;
1589         skb->data_len += length - hlen;
1590         skb->truesize += length - hlen;
1591
1592         rx_ring->rx_packets++;
1593         rx_ring->rx_bytes += skb->len;
1594         skb->protocol = eth_type_trans(skb, ndev);
1595         skb_checksum_none_assert(skb);
1596
1597         if ((ndev->features & NETIF_F_RXCSUM) &&
1598                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1599                 /* TCP frame. */
1600                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1601                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1602                                      "TCP checksum done!\n");
1603                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1604                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1605                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1606                         /* Unfragmented ipv4 UDP frame. */
1607                         struct iphdr *iph =
1608                                 (struct iphdr *)((u8 *)addr + hlen);
1609                         if (!(iph->frag_off &
1610                                 htons(IP_MF|IP_OFFSET))) {
1611                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1612                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1613                                              qdev->ndev,
1614                                              "UDP checksum done!\n");
1615                         }
1616                 }
1617         }
1618
1619         skb_record_rx_queue(skb, rx_ring->cq_id);
1620         if (vlan_id != 0xffff)
1621                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1622         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1623                 napi_gro_receive(napi, skb);
1624         else
1625                 netif_receive_skb(skb);
1626         return;
1627 err_out:
1628         dev_kfree_skb_any(skb);
1629         put_page(lbq_desc->p.pg_chunk.page);
1630 }
1631
1632 /* Process an inbound completion from an rx ring. */
1633 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1634                                         struct rx_ring *rx_ring,
1635                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1636                                         u32 length,
1637                                         u16 vlan_id)
1638 {
1639         struct net_device *ndev = qdev->ndev;
1640         struct sk_buff *skb = NULL;
1641         struct sk_buff *new_skb = NULL;
1642         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1643
1644         skb = sbq_desc->p.skb;
1645         /* Allocate new_skb and copy */
1646         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1647         if (new_skb == NULL) {
1648                 rx_ring->rx_dropped++;
1649                 return;
1650         }
1651         skb_reserve(new_skb, NET_IP_ALIGN);
1652         memcpy(skb_put(new_skb, length), skb->data, length);
1653         skb = new_skb;
1654
1655         /* Frame error, so drop the packet. */
1656         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1657                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1658                 dev_kfree_skb_any(skb);
1659                 return;
1660         }
1661
1662         /* loopback self test for ethtool */
1663         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1664                 ql_check_lb_frame(qdev, skb);
1665                 dev_kfree_skb_any(skb);
1666                 return;
1667         }
1668
1669         /* The max framesize filter on this chip is set higher than
1670          * MTU since FCoE uses 2k frames.
1671          */
1672         if (skb->len > ndev->mtu + ETH_HLEN) {
1673                 dev_kfree_skb_any(skb);
1674                 rx_ring->rx_dropped++;
1675                 return;
1676         }
1677
1678         prefetch(skb->data);
1679         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1680                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1681                              "%s Multicast.\n",
1682                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1683                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1684                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1685                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1686                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1687                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1688         }
1689         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1690                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691                              "Promiscuous Packet.\n");
1692
1693         rx_ring->rx_packets++;
1694         rx_ring->rx_bytes += skb->len;
1695         skb->protocol = eth_type_trans(skb, ndev);
1696         skb_checksum_none_assert(skb);
1697
1698         /* If rx checksum is on, and there are no
1699          * csum or frame errors.
1700          */
1701         if ((ndev->features & NETIF_F_RXCSUM) &&
1702                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1703                 /* TCP frame. */
1704                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1705                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1706                                      "TCP checksum done!\n");
1707                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1708                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1709                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1710                         /* Unfragmented ipv4 UDP frame. */
1711                         struct iphdr *iph = (struct iphdr *) skb->data;
1712                         if (!(iph->frag_off &
1713                                 htons(IP_MF|IP_OFFSET))) {
1714                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1715                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1716                                              qdev->ndev,
1717                                              "UDP checksum done!\n");
1718                         }
1719                 }
1720         }
1721
1722         skb_record_rx_queue(skb, rx_ring->cq_id);
1723         if (vlan_id != 0xffff)
1724                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1725         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1726                 napi_gro_receive(&rx_ring->napi, skb);
1727         else
1728                 netif_receive_skb(skb);
1729 }
1730
1731 static void ql_realign_skb(struct sk_buff *skb, int len)
1732 {
1733         void *temp_addr = skb->data;
1734
1735         /* Undo the skb_reserve(skb,32) we did before
1736          * giving to hardware, and realign data on
1737          * a 2-byte boundary.
1738          */
1739         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1740         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1741         skb_copy_to_linear_data(skb, temp_addr,
1742                 (unsigned int)len);
1743 }
1744
1745 /*
1746  * This function builds an skb for the given inbound
1747  * completion.  It will be rewritten for readability in the near
1748  * future, but for not it works well.
1749  */
1750 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1751                                        struct rx_ring *rx_ring,
1752                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1753 {
1754         struct bq_desc *lbq_desc;
1755         struct bq_desc *sbq_desc;
1756         struct sk_buff *skb = NULL;
1757         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1758         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1759         size_t hlen = ETH_HLEN;
1760
1761         /*
1762          * Handle the header buffer if present.
1763          */
1764         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1765             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1766                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1767                              "Header of %d bytes in small buffer.\n", hdr_len);
1768                 /*
1769                  * Headers fit nicely into a small buffer.
1770                  */
1771                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1772                 pci_unmap_single(qdev->pdev,
1773                                 dma_unmap_addr(sbq_desc, mapaddr),
1774                                 dma_unmap_len(sbq_desc, maplen),
1775                                 PCI_DMA_FROMDEVICE);
1776                 skb = sbq_desc->p.skb;
1777                 ql_realign_skb(skb, hdr_len);
1778                 skb_put(skb, hdr_len);
1779                 sbq_desc->p.skb = NULL;
1780         }
1781
1782         /*
1783          * Handle the data buffer(s).
1784          */
1785         if (unlikely(!length)) {        /* Is there data too? */
1786                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1787                              "No Data buffer in this packet.\n");
1788                 return skb;
1789         }
1790
1791         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1792                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1793                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1794                                      "Headers in small, data of %d bytes in small, combine them.\n",
1795                                      length);
1796                         /*
1797                          * Data is less than small buffer size so it's
1798                          * stuffed in a small buffer.
1799                          * For this case we append the data
1800                          * from the "data" small buffer to the "header" small
1801                          * buffer.
1802                          */
1803                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1804                         pci_dma_sync_single_for_cpu(qdev->pdev,
1805                                                     dma_unmap_addr
1806                                                     (sbq_desc, mapaddr),
1807                                                     dma_unmap_len
1808                                                     (sbq_desc, maplen),
1809                                                     PCI_DMA_FROMDEVICE);
1810                         memcpy(skb_put(skb, length),
1811                                sbq_desc->p.skb->data, length);
1812                         pci_dma_sync_single_for_device(qdev->pdev,
1813                                                        dma_unmap_addr
1814                                                        (sbq_desc,
1815                                                         mapaddr),
1816                                                        dma_unmap_len
1817                                                        (sbq_desc,
1818                                                         maplen),
1819                                                        PCI_DMA_FROMDEVICE);
1820                 } else {
1821                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1822                                      "%d bytes in a single small buffer.\n",
1823                                      length);
1824                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1825                         skb = sbq_desc->p.skb;
1826                         ql_realign_skb(skb, length);
1827                         skb_put(skb, length);
1828                         pci_unmap_single(qdev->pdev,
1829                                          dma_unmap_addr(sbq_desc,
1830                                                         mapaddr),
1831                                          dma_unmap_len(sbq_desc,
1832                                                        maplen),
1833                                          PCI_DMA_FROMDEVICE);
1834                         sbq_desc->p.skb = NULL;
1835                 }
1836         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1837                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1838                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1839                                      "Header in small, %d bytes in large. Chain large to small!\n",
1840                                      length);
1841                         /*
1842                          * The data is in a single large buffer.  We
1843                          * chain it to the header buffer's skb and let
1844                          * it rip.
1845                          */
1846                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1847                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1848                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1849                                      lbq_desc->p.pg_chunk.offset, length);
1850                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1851                                                 lbq_desc->p.pg_chunk.offset,
1852                                                 length);
1853                         skb->len += length;
1854                         skb->data_len += length;
1855                         skb->truesize += length;
1856                 } else {
1857                         /*
1858                          * The headers and data are in a single large buffer. We
1859                          * copy it to a new skb and let it go. This can happen with
1860                          * jumbo mtu on a non-TCP/UDP frame.
1861                          */
1862                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1863                         skb = netdev_alloc_skb(qdev->ndev, length);
1864                         if (skb == NULL) {
1865                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1866                                              "No skb available, drop the packet.\n");
1867                                 return NULL;
1868                         }
1869                         pci_unmap_page(qdev->pdev,
1870                                        dma_unmap_addr(lbq_desc,
1871                                                       mapaddr),
1872                                        dma_unmap_len(lbq_desc, maplen),
1873                                        PCI_DMA_FROMDEVICE);
1874                         skb_reserve(skb, NET_IP_ALIGN);
1875                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1876                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1877                                      length);
1878                         skb_fill_page_desc(skb, 0,
1879                                                 lbq_desc->p.pg_chunk.page,
1880                                                 lbq_desc->p.pg_chunk.offset,
1881                                                 length);
1882                         skb->len += length;
1883                         skb->data_len += length;
1884                         skb->truesize += length;
1885                         length -= length;
1886                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1887                                               lbq_desc->p.pg_chunk.va,
1888                                               &hlen);
1889                         __pskb_pull_tail(skb, hlen);
1890                 }
1891         } else {
1892                 /*
1893                  * The data is in a chain of large buffers
1894                  * pointed to by a small buffer.  We loop
1895                  * thru and chain them to the our small header
1896                  * buffer's skb.
1897                  * frags:  There are 18 max frags and our small
1898                  *         buffer will hold 32 of them. The thing is,
1899                  *         we'll use 3 max for our 9000 byte jumbo
1900                  *         frames.  If the MTU goes up we could
1901                  *          eventually be in trouble.
1902                  */
1903                 int size, i = 0;
1904                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1905                 pci_unmap_single(qdev->pdev,
1906                                  dma_unmap_addr(sbq_desc, mapaddr),
1907                                  dma_unmap_len(sbq_desc, maplen),
1908                                  PCI_DMA_FROMDEVICE);
1909                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1910                         /*
1911                          * This is an non TCP/UDP IP frame, so
1912                          * the headers aren't split into a small
1913                          * buffer.  We have to use the small buffer
1914                          * that contains our sg list as our skb to
1915                          * send upstairs. Copy the sg list here to
1916                          * a local buffer and use it to find the
1917                          * pages to chain.
1918                          */
1919                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1920                                      "%d bytes of headers & data in chain of large.\n",
1921                                      length);
1922                         skb = sbq_desc->p.skb;
1923                         sbq_desc->p.skb = NULL;
1924                         skb_reserve(skb, NET_IP_ALIGN);
1925                 }
1926                 while (length > 0) {
1927                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1928                         size = (length < rx_ring->lbq_buf_size) ? length :
1929                                 rx_ring->lbq_buf_size;
1930
1931                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1932                                      "Adding page %d to skb for %d bytes.\n",
1933                                      i, size);
1934                         skb_fill_page_desc(skb, i,
1935                                                 lbq_desc->p.pg_chunk.page,
1936                                                 lbq_desc->p.pg_chunk.offset,
1937                                                 size);
1938                         skb->len += size;
1939                         skb->data_len += size;
1940                         skb->truesize += size;
1941                         length -= size;
1942                         i++;
1943                 }
1944                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1945                                       &hlen);
1946                 __pskb_pull_tail(skb, hlen);
1947         }
1948         return skb;
1949 }
1950
1951 /* Process an inbound completion from an rx ring. */
1952 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1953                                    struct rx_ring *rx_ring,
1954                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1955                                    u16 vlan_id)
1956 {
1957         struct net_device *ndev = qdev->ndev;
1958         struct sk_buff *skb = NULL;
1959
1960         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1961
1962         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1963         if (unlikely(!skb)) {
1964                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1965                              "No skb available, drop packet.\n");
1966                 rx_ring->rx_dropped++;
1967                 return;
1968         }
1969
1970         /* Frame error, so drop the packet. */
1971         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1972                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1973                 dev_kfree_skb_any(skb);
1974                 return;
1975         }
1976
1977         /* The max framesize filter on this chip is set higher than
1978          * MTU since FCoE uses 2k frames.
1979          */
1980         if (skb->len > ndev->mtu + ETH_HLEN) {
1981                 dev_kfree_skb_any(skb);
1982                 rx_ring->rx_dropped++;
1983                 return;
1984         }
1985
1986         /* loopback self test for ethtool */
1987         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1988                 ql_check_lb_frame(qdev, skb);
1989                 dev_kfree_skb_any(skb);
1990                 return;
1991         }
1992
1993         prefetch(skb->data);
1994         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1995                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1996                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1997                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1998                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1999                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2000                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2001                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2002                 rx_ring->rx_multicast++;
2003         }
2004         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2005                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2006                              "Promiscuous Packet.\n");
2007         }
2008
2009         skb->protocol = eth_type_trans(skb, ndev);
2010         skb_checksum_none_assert(skb);
2011
2012         /* If rx checksum is on, and there are no
2013          * csum or frame errors.
2014          */
2015         if ((ndev->features & NETIF_F_RXCSUM) &&
2016                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2017                 /* TCP frame. */
2018                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2019                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2020                                      "TCP checksum done!\n");
2021                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2022                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2023                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2024                 /* Unfragmented ipv4 UDP frame. */
2025                         struct iphdr *iph = (struct iphdr *) skb->data;
2026                         if (!(iph->frag_off &
2027                                 htons(IP_MF|IP_OFFSET))) {
2028                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2029                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030                                              "TCP checksum done!\n");
2031                         }
2032                 }
2033         }
2034
2035         rx_ring->rx_packets++;
2036         rx_ring->rx_bytes += skb->len;
2037         skb_record_rx_queue(skb, rx_ring->cq_id);
2038         if (vlan_id != 0xffff)
2039                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2040         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2041                 napi_gro_receive(&rx_ring->napi, skb);
2042         else
2043                 netif_receive_skb(skb);
2044 }
2045
2046 /* Process an inbound completion from an rx ring. */
2047 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2048                                         struct rx_ring *rx_ring,
2049                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2050 {
2051         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2052         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2053                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2054                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2055                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2056
2057         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2058
2059         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2060                 /* The data and headers are split into
2061                  * separate buffers.
2062                  */
2063                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2064                                                 vlan_id);
2065         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2066                 /* The data fit in a single small buffer.
2067                  * Allocate a new skb, copy the data and
2068                  * return the buffer to the free pool.
2069                  */
2070                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2071                                                 length, vlan_id);
2072         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2073                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2074                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2075                 /* TCP packet in a page chunk that's been checksummed.
2076                  * Tack it on to our GRO skb and let it go.
2077                  */
2078                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2079                                                 length, vlan_id);
2080         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2081                 /* Non-TCP packet in a page chunk. Allocate an
2082                  * skb, tack it on frags, and send it up.
2083                  */
2084                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2085                                                 length, vlan_id);
2086         } else {
2087                 /* Non-TCP/UDP large frames that span multiple buffers
2088                  * can be processed corrrectly by the split frame logic.
2089                  */
2090                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2091                                                 vlan_id);
2092         }
2093
2094         return (unsigned long)length;
2095 }
2096
2097 /* Process an outbound completion from an rx ring. */
2098 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2099                                    struct ob_mac_iocb_rsp *mac_rsp)
2100 {
2101         struct tx_ring *tx_ring;
2102         struct tx_ring_desc *tx_ring_desc;
2103
2104         QL_DUMP_OB_MAC_RSP(mac_rsp);
2105         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2106         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2107         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2108         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2109         tx_ring->tx_packets++;
2110         dev_kfree_skb(tx_ring_desc->skb);
2111         tx_ring_desc->skb = NULL;
2112
2113         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2114                                         OB_MAC_IOCB_RSP_S |
2115                                         OB_MAC_IOCB_RSP_L |
2116                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2117                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2118                         netif_warn(qdev, tx_done, qdev->ndev,
2119                                    "Total descriptor length did not match transfer length.\n");
2120                 }
2121                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2122                         netif_warn(qdev, tx_done, qdev->ndev,
2123                                    "Frame too short to be valid, not sent.\n");
2124                 }
2125                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2126                         netif_warn(qdev, tx_done, qdev->ndev,
2127                                    "Frame too long, but sent anyway.\n");
2128                 }
2129                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2130                         netif_warn(qdev, tx_done, qdev->ndev,
2131                                    "PCI backplane error. Frame not sent.\n");
2132                 }
2133         }
2134         atomic_inc(&tx_ring->tx_count);
2135 }
2136
2137 /* Fire up a handler to reset the MPI processor. */
2138 void ql_queue_fw_error(struct ql_adapter *qdev)
2139 {
2140         ql_link_off(qdev);
2141         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2142 }
2143
2144 void ql_queue_asic_error(struct ql_adapter *qdev)
2145 {
2146         ql_link_off(qdev);
2147         ql_disable_interrupts(qdev);
2148         /* Clear adapter up bit to signal the recovery
2149          * process that it shouldn't kill the reset worker
2150          * thread
2151          */
2152         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2153         /* Set asic recovery bit to indicate reset process that we are
2154          * in fatal error recovery process rather than normal close
2155          */
2156         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2157         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2158 }
2159
2160 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2161                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2162 {
2163         switch (ib_ae_rsp->event) {
2164         case MGMT_ERR_EVENT:
2165                 netif_err(qdev, rx_err, qdev->ndev,
2166                           "Management Processor Fatal Error.\n");
2167                 ql_queue_fw_error(qdev);
2168                 return;
2169
2170         case CAM_LOOKUP_ERR_EVENT:
2171                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2172                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2173                 ql_queue_asic_error(qdev);
2174                 return;
2175
2176         case SOFT_ECC_ERROR_EVENT:
2177                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2178                 ql_queue_asic_error(qdev);
2179                 break;
2180
2181         case PCI_ERR_ANON_BUF_RD:
2182                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2183                                         "anonymous buffers from rx_ring %d.\n",
2184                                         ib_ae_rsp->q_id);
2185                 ql_queue_asic_error(qdev);
2186                 break;
2187
2188         default:
2189                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2190                           ib_ae_rsp->event);
2191                 ql_queue_asic_error(qdev);
2192                 break;
2193         }
2194 }
2195
2196 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2197 {
2198         struct ql_adapter *qdev = rx_ring->qdev;
2199         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2200         struct ob_mac_iocb_rsp *net_rsp = NULL;
2201         int count = 0;
2202
2203         struct tx_ring *tx_ring;
2204         /* While there are entries in the completion queue. */
2205         while (prod != rx_ring->cnsmr_idx) {
2206
2207                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2208                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2209                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2210
2211                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2212                 rmb();
2213                 switch (net_rsp->opcode) {
2214
2215                 case OPCODE_OB_MAC_TSO_IOCB:
2216                 case OPCODE_OB_MAC_IOCB:
2217                         ql_process_mac_tx_intr(qdev, net_rsp);
2218                         break;
2219                 default:
2220                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2221                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2222                                      net_rsp->opcode);
2223                 }
2224                 count++;
2225                 ql_update_cq(rx_ring);
2226                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2227         }
2228         if (!net_rsp)
2229                 return 0;
2230         ql_write_cq_idx(rx_ring);
2231         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2232         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2233                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2234                         /*
2235                          * The queue got stopped because the tx_ring was full.
2236                          * Wake it up, because it's now at least 25% empty.
2237                          */
2238                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2239         }
2240
2241         return count;
2242 }
2243
2244 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2245 {
2246         struct ql_adapter *qdev = rx_ring->qdev;
2247         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2248         struct ql_net_rsp_iocb *net_rsp;
2249         int count = 0;
2250
2251         /* While there are entries in the completion queue. */
2252         while (prod != rx_ring->cnsmr_idx) {
2253
2254                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2255                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2256                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2257
2258                 net_rsp = rx_ring->curr_entry;
2259                 rmb();
2260                 switch (net_rsp->opcode) {
2261                 case OPCODE_IB_MAC_IOCB:
2262                         ql_process_mac_rx_intr(qdev, rx_ring,
2263                                                (struct ib_mac_iocb_rsp *)
2264                                                net_rsp);
2265                         break;
2266
2267                 case OPCODE_IB_AE_IOCB:
2268                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2269                                                 net_rsp);
2270                         break;
2271                 default:
2272                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2273                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2274                                      net_rsp->opcode);
2275                         break;
2276                 }
2277                 count++;
2278                 ql_update_cq(rx_ring);
2279                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2280                 if (count == budget)
2281                         break;
2282         }
2283         ql_update_buffer_queues(qdev, rx_ring);
2284         ql_write_cq_idx(rx_ring);
2285         return count;
2286 }
2287
2288 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2289 {
2290         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2291         struct ql_adapter *qdev = rx_ring->qdev;
2292         struct rx_ring *trx_ring;
2293         int i, work_done = 0;
2294         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2295
2296         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2297                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2298
2299         /* Service the TX rings first.  They start
2300          * right after the RSS rings. */
2301         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2302                 trx_ring = &qdev->rx_ring[i];
2303                 /* If this TX completion ring belongs to this vector and
2304                  * it's not empty then service it.
2305                  */
2306                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2307                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2308                                         trx_ring->cnsmr_idx)) {
2309                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2310                                      "%s: Servicing TX completion ring %d.\n",
2311                                      __func__, trx_ring->cq_id);
2312                         ql_clean_outbound_rx_ring(trx_ring);
2313                 }
2314         }
2315
2316         /*
2317          * Now service the RSS ring if it's active.
2318          */
2319         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2320                                         rx_ring->cnsmr_idx) {
2321                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2322                              "%s: Servicing RX completion ring %d.\n",
2323                              __func__, rx_ring->cq_id);
2324                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2325         }
2326
2327         if (work_done < budget) {
2328                 napi_complete(napi);
2329                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2330         }
2331         return work_done;
2332 }
2333
2334 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2335 {
2336         struct ql_adapter *qdev = netdev_priv(ndev);
2337
2338         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2339                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2340                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2341         } else {
2342                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2343         }
2344 }
2345
2346 /**
2347  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2348  * based on the features to enable/disable hardware vlan accel
2349  */
2350 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2351                                         netdev_features_t features)
2352 {
2353         struct ql_adapter *qdev = netdev_priv(ndev);
2354         int status = 0;
2355
2356         status = ql_adapter_down(qdev);
2357         if (status) {
2358                 netif_err(qdev, link, qdev->ndev,
2359                           "Failed to bring down the adapter\n");
2360                 return status;
2361         }
2362
2363         /* update the features with resent change */
2364         ndev->features = features;
2365
2366         status = ql_adapter_up(qdev);
2367         if (status) {
2368                 netif_err(qdev, link, qdev->ndev,
2369                           "Failed to bring up the adapter\n");
2370                 return status;
2371         }
2372         return status;
2373 }
2374
2375 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2376         netdev_features_t features)
2377 {
2378         int err;
2379
2380         /* Update the behavior of vlan accel in the adapter */
2381         err = qlge_update_hw_vlan_features(ndev, features);
2382         if (err)
2383                 return err;
2384
2385         return features;
2386 }
2387
2388 static int qlge_set_features(struct net_device *ndev,
2389         netdev_features_t features)
2390 {
2391         netdev_features_t changed = ndev->features ^ features;
2392
2393         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2394                 qlge_vlan_mode(ndev, features);
2395
2396         return 0;
2397 }
2398
2399 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2400 {
2401         u32 enable_bit = MAC_ADDR_E;
2402         int err;
2403
2404         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2405                                   MAC_ADDR_TYPE_VLAN, vid);
2406         if (err)
2407                 netif_err(qdev, ifup, qdev->ndev,
2408                           "Failed to init vlan address.\n");
2409         return err;
2410 }
2411
2412 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2413 {
2414         struct ql_adapter *qdev = netdev_priv(ndev);
2415         int status;
2416         int err;
2417
2418         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2419         if (status)
2420                 return status;
2421
2422         err = __qlge_vlan_rx_add_vid(qdev, vid);
2423         set_bit(vid, qdev->active_vlans);
2424
2425         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2426
2427         return err;
2428 }
2429
2430 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2431 {
2432         u32 enable_bit = 0;
2433         int err;
2434
2435         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2436                                   MAC_ADDR_TYPE_VLAN, vid);
2437         if (err)
2438                 netif_err(qdev, ifup, qdev->ndev,
2439                           "Failed to clear vlan address.\n");
2440         return err;
2441 }
2442
2443 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2444 {
2445         struct ql_adapter *qdev = netdev_priv(ndev);
2446         int status;
2447         int err;
2448
2449         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2450         if (status)
2451                 return status;
2452
2453         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2454         clear_bit(vid, qdev->active_vlans);
2455
2456         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2457
2458         return err;
2459 }
2460
2461 static void qlge_restore_vlan(struct ql_adapter *qdev)
2462 {
2463         int status;
2464         u16 vid;
2465
2466         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2467         if (status)
2468                 return;
2469
2470         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2471                 __qlge_vlan_rx_add_vid(qdev, vid);
2472
2473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2474 }
2475
2476 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2477 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2478 {
2479         struct rx_ring *rx_ring = dev_id;
2480         napi_schedule(&rx_ring->napi);
2481         return IRQ_HANDLED;
2482 }
2483
2484 /* This handles a fatal error, MPI activity, and the default
2485  * rx_ring in an MSI-X multiple vector environment.
2486  * In MSI/Legacy environment it also process the rest of
2487  * the rx_rings.
2488  */
2489 static irqreturn_t qlge_isr(int irq, void *dev_id)
2490 {
2491         struct rx_ring *rx_ring = dev_id;
2492         struct ql_adapter *qdev = rx_ring->qdev;
2493         struct intr_context *intr_context = &qdev->intr_context[0];
2494         u32 var;
2495         int work_done = 0;
2496
2497         spin_lock(&qdev->hw_lock);
2498         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2499                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2500                              "Shared Interrupt, Not ours!\n");
2501                 spin_unlock(&qdev->hw_lock);
2502                 return IRQ_NONE;
2503         }
2504         spin_unlock(&qdev->hw_lock);
2505
2506         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2507
2508         /*
2509          * Check for fatal error.
2510          */
2511         if (var & STS_FE) {
2512                 ql_queue_asic_error(qdev);
2513                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2514                 var = ql_read32(qdev, ERR_STS);
2515                 netdev_err(qdev->ndev, "Resetting chip. "
2516                                         "Error Status Register = 0x%x\n", var);
2517                 return IRQ_HANDLED;
2518         }
2519
2520         /*
2521          * Check MPI processor activity.
2522          */
2523         if ((var & STS_PI) &&
2524                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2525                 /*
2526                  * We've got an async event or mailbox completion.
2527                  * Handle it and clear the source of the interrupt.
2528                  */
2529                 netif_err(qdev, intr, qdev->ndev,
2530                           "Got MPI processor interrupt.\n");
2531                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2532                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2533                 queue_delayed_work_on(smp_processor_id(),
2534                                 qdev->workqueue, &qdev->mpi_work, 0);
2535                 work_done++;
2536         }
2537
2538         /*
2539          * Get the bit-mask that shows the active queues for this
2540          * pass.  Compare it to the queues that this irq services
2541          * and call napi if there's a match.
2542          */
2543         var = ql_read32(qdev, ISR1);
2544         if (var & intr_context->irq_mask) {
2545                 netif_info(qdev, intr, qdev->ndev,
2546                            "Waking handler for rx_ring[0].\n");
2547                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2548                 napi_schedule(&rx_ring->napi);
2549                 work_done++;
2550         }
2551         ql_enable_completion_interrupt(qdev, intr_context->intr);
2552         return work_done ? IRQ_HANDLED : IRQ_NONE;
2553 }
2554
2555 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2556 {
2557
2558         if (skb_is_gso(skb)) {
2559                 int err;
2560                 if (skb_header_cloned(skb)) {
2561                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2562                         if (err)
2563                                 return err;
2564                 }
2565
2566                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2567                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2568                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2569                 mac_iocb_ptr->total_hdrs_len =
2570                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2571                 mac_iocb_ptr->net_trans_offset =
2572                     cpu_to_le16(skb_network_offset(skb) |
2573                                 skb_transport_offset(skb)
2574                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2575                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2576                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2577                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2578                         struct iphdr *iph = ip_hdr(skb);
2579                         iph->check = 0;
2580                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2581                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2582                                                                  iph->daddr, 0,
2583                                                                  IPPROTO_TCP,
2584                                                                  0);
2585                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2586                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2587                         tcp_hdr(skb)->check =
2588                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2589                                              &ipv6_hdr(skb)->daddr,
2590                                              0, IPPROTO_TCP, 0);
2591                 }
2592                 return 1;
2593         }
2594         return 0;
2595 }
2596
2597 static void ql_hw_csum_setup(struct sk_buff *skb,
2598                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2599 {
2600         int len;
2601         struct iphdr *iph = ip_hdr(skb);
2602         __sum16 *check;
2603         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2604         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2605         mac_iocb_ptr->net_trans_offset =
2606                 cpu_to_le16(skb_network_offset(skb) |
2607                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2608
2609         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2610         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2611         if (likely(iph->protocol == IPPROTO_TCP)) {
2612                 check = &(tcp_hdr(skb)->check);
2613                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2614                 mac_iocb_ptr->total_hdrs_len =
2615                     cpu_to_le16(skb_transport_offset(skb) +
2616                                 (tcp_hdr(skb)->doff << 2));
2617         } else {
2618                 check = &(udp_hdr(skb)->check);
2619                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2620                 mac_iocb_ptr->total_hdrs_len =
2621                     cpu_to_le16(skb_transport_offset(skb) +
2622                                 sizeof(struct udphdr));
2623         }
2624         *check = ~csum_tcpudp_magic(iph->saddr,
2625                                     iph->daddr, len, iph->protocol, 0);
2626 }
2627
2628 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2629 {
2630         struct tx_ring_desc *tx_ring_desc;
2631         struct ob_mac_iocb_req *mac_iocb_ptr;
2632         struct ql_adapter *qdev = netdev_priv(ndev);
2633         int tso;
2634         struct tx_ring *tx_ring;
2635         u32 tx_ring_idx = (u32) skb->queue_mapping;
2636
2637         tx_ring = &qdev->tx_ring[tx_ring_idx];
2638
2639         if (skb_padto(skb, ETH_ZLEN))
2640                 return NETDEV_TX_OK;
2641
2642         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2643                 netif_info(qdev, tx_queued, qdev->ndev,
2644                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2645                            __func__, tx_ring_idx);
2646                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2647                 tx_ring->tx_errors++;
2648                 return NETDEV_TX_BUSY;
2649         }
2650         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2651         mac_iocb_ptr = tx_ring_desc->queue_entry;
2652         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2653
2654         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2655         mac_iocb_ptr->tid = tx_ring_desc->index;
2656         /* We use the upper 32-bits to store the tx queue for this IO.
2657          * When we get the completion we can use it to establish the context.
2658          */
2659         mac_iocb_ptr->txq_idx = tx_ring_idx;
2660         tx_ring_desc->skb = skb;
2661
2662         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2663
2664         if (vlan_tx_tag_present(skb)) {
2665                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2666                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2667                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2668                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2669         }
2670         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2671         if (tso < 0) {
2672                 dev_kfree_skb_any(skb);
2673                 return NETDEV_TX_OK;
2674         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2675                 ql_hw_csum_setup(skb,
2676                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2677         }
2678         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2679                         NETDEV_TX_OK) {
2680                 netif_err(qdev, tx_queued, qdev->ndev,
2681                           "Could not map the segments.\n");
2682                 tx_ring->tx_errors++;
2683                 return NETDEV_TX_BUSY;
2684         }
2685         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2686         tx_ring->prod_idx++;
2687         if (tx_ring->prod_idx == tx_ring->wq_len)
2688                 tx_ring->prod_idx = 0;
2689         wmb();
2690
2691         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2692         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2693                      "tx queued, slot %d, len %d\n",
2694                      tx_ring->prod_idx, skb->len);
2695
2696         atomic_dec(&tx_ring->tx_count);
2697
2698         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2699                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2700                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2701                         /*
2702                          * The queue got stopped because the tx_ring was full.
2703                          * Wake it up, because it's now at least 25% empty.
2704                          */
2705                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2706         }
2707         return NETDEV_TX_OK;
2708 }
2709
2710
2711 static void ql_free_shadow_space(struct ql_adapter *qdev)
2712 {
2713         if (qdev->rx_ring_shadow_reg_area) {
2714                 pci_free_consistent(qdev->pdev,
2715                                     PAGE_SIZE,
2716                                     qdev->rx_ring_shadow_reg_area,
2717                                     qdev->rx_ring_shadow_reg_dma);
2718                 qdev->rx_ring_shadow_reg_area = NULL;
2719         }
2720         if (qdev->tx_ring_shadow_reg_area) {
2721                 pci_free_consistent(qdev->pdev,
2722                                     PAGE_SIZE,
2723                                     qdev->tx_ring_shadow_reg_area,
2724                                     qdev->tx_ring_shadow_reg_dma);
2725                 qdev->tx_ring_shadow_reg_area = NULL;
2726         }
2727 }
2728
2729 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2730 {
2731         qdev->rx_ring_shadow_reg_area =
2732             pci_alloc_consistent(qdev->pdev,
2733                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2734         if (qdev->rx_ring_shadow_reg_area == NULL) {
2735                 netif_err(qdev, ifup, qdev->ndev,
2736                           "Allocation of RX shadow space failed.\n");
2737                 return -ENOMEM;
2738         }
2739         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2740         qdev->tx_ring_shadow_reg_area =
2741             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2742                                  &qdev->tx_ring_shadow_reg_dma);
2743         if (qdev->tx_ring_shadow_reg_area == NULL) {
2744                 netif_err(qdev, ifup, qdev->ndev,
2745                           "Allocation of TX shadow space failed.\n");
2746                 goto err_wqp_sh_area;
2747         }
2748         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2749         return 0;
2750
2751 err_wqp_sh_area:
2752         pci_free_consistent(qdev->pdev,
2753                             PAGE_SIZE,
2754                             qdev->rx_ring_shadow_reg_area,
2755                             qdev->rx_ring_shadow_reg_dma);
2756         return -ENOMEM;
2757 }
2758
2759 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2760 {
2761         struct tx_ring_desc *tx_ring_desc;
2762         int i;
2763         struct ob_mac_iocb_req *mac_iocb_ptr;
2764
2765         mac_iocb_ptr = tx_ring->wq_base;
2766         tx_ring_desc = tx_ring->q;
2767         for (i = 0; i < tx_ring->wq_len; i++) {
2768                 tx_ring_desc->index = i;
2769                 tx_ring_desc->skb = NULL;
2770                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2771                 mac_iocb_ptr++;
2772                 tx_ring_desc++;
2773         }
2774         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2775 }
2776
2777 static void ql_free_tx_resources(struct ql_adapter *qdev,
2778                                  struct tx_ring *tx_ring)
2779 {
2780         if (tx_ring->wq_base) {
2781                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2782                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2783                 tx_ring->wq_base = NULL;
2784         }
2785         kfree(tx_ring->q);
2786         tx_ring->q = NULL;
2787 }
2788
2789 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2790                                  struct tx_ring *tx_ring)
2791 {
2792         tx_ring->wq_base =
2793             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2794                                  &tx_ring->wq_base_dma);
2795
2796         if ((tx_ring->wq_base == NULL) ||
2797             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2798                 goto pci_alloc_err;
2799
2800         tx_ring->q =
2801             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2802         if (tx_ring->q == NULL)
2803                 goto err;
2804
2805         return 0;
2806 err:
2807         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2808                             tx_ring->wq_base, tx_ring->wq_base_dma);
2809         tx_ring->wq_base = NULL;
2810 pci_alloc_err:
2811         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2812         return -ENOMEM;
2813 }
2814
2815 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2816 {
2817         struct bq_desc *lbq_desc;
2818
2819         uint32_t  curr_idx, clean_idx;
2820
2821         curr_idx = rx_ring->lbq_curr_idx;
2822         clean_idx = rx_ring->lbq_clean_idx;
2823         while (curr_idx != clean_idx) {
2824                 lbq_desc = &rx_ring->lbq[curr_idx];
2825
2826                 if (lbq_desc->p.pg_chunk.last_flag) {
2827                         pci_unmap_page(qdev->pdev,
2828                                 lbq_desc->p.pg_chunk.map,
2829                                 ql_lbq_block_size(qdev),
2830                                        PCI_DMA_FROMDEVICE);
2831                         lbq_desc->p.pg_chunk.last_flag = 0;
2832                 }
2833
2834                 put_page(lbq_desc->p.pg_chunk.page);
2835                 lbq_desc->p.pg_chunk.page = NULL;
2836
2837                 if (++curr_idx == rx_ring->lbq_len)
2838                         curr_idx = 0;
2839
2840         }
2841         if (rx_ring->pg_chunk.page) {
2842                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2843                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2844                 put_page(rx_ring->pg_chunk.page);
2845                 rx_ring->pg_chunk.page = NULL;
2846         }
2847 }
2848
2849 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2850 {
2851         int i;
2852         struct bq_desc *sbq_desc;
2853
2854         for (i = 0; i < rx_ring->sbq_len; i++) {
2855                 sbq_desc = &rx_ring->sbq[i];
2856                 if (sbq_desc == NULL) {
2857                         netif_err(qdev, ifup, qdev->ndev,
2858                                   "sbq_desc %d is NULL.\n", i);
2859                         return;
2860                 }
2861                 if (sbq_desc->p.skb) {
2862                         pci_unmap_single(qdev->pdev,
2863                                          dma_unmap_addr(sbq_desc, mapaddr),
2864                                          dma_unmap_len(sbq_desc, maplen),
2865                                          PCI_DMA_FROMDEVICE);
2866                         dev_kfree_skb(sbq_desc->p.skb);
2867                         sbq_desc->p.skb = NULL;
2868                 }
2869         }
2870 }
2871
2872 /* Free all large and small rx buffers associated
2873  * with the completion queues for this device.
2874  */
2875 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2876 {
2877         int i;
2878         struct rx_ring *rx_ring;
2879
2880         for (i = 0; i < qdev->rx_ring_count; i++) {
2881                 rx_ring = &qdev->rx_ring[i];
2882                 if (rx_ring->lbq)
2883                         ql_free_lbq_buffers(qdev, rx_ring);
2884                 if (rx_ring->sbq)
2885                         ql_free_sbq_buffers(qdev, rx_ring);
2886         }
2887 }
2888
2889 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2890 {
2891         struct rx_ring *rx_ring;
2892         int i;
2893
2894         for (i = 0; i < qdev->rx_ring_count; i++) {
2895                 rx_ring = &qdev->rx_ring[i];
2896                 if (rx_ring->type != TX_Q)
2897                         ql_update_buffer_queues(qdev, rx_ring);
2898         }
2899 }
2900
2901 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2902                                 struct rx_ring *rx_ring)
2903 {
2904         int i;
2905         struct bq_desc *lbq_desc;
2906         __le64 *bq = rx_ring->lbq_base;
2907
2908         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2909         for (i = 0; i < rx_ring->lbq_len; i++) {
2910                 lbq_desc = &rx_ring->lbq[i];
2911                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2912                 lbq_desc->index = i;
2913                 lbq_desc->addr = bq;
2914                 bq++;
2915         }
2916 }
2917
2918 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2919                                 struct rx_ring *rx_ring)
2920 {
2921         int i;
2922         struct bq_desc *sbq_desc;
2923         __le64 *bq = rx_ring->sbq_base;
2924
2925         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2926         for (i = 0; i < rx_ring->sbq_len; i++) {
2927                 sbq_desc = &rx_ring->sbq[i];
2928                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2929                 sbq_desc->index = i;
2930                 sbq_desc->addr = bq;
2931                 bq++;
2932         }
2933 }
2934
2935 static void ql_free_rx_resources(struct ql_adapter *qdev,
2936                                  struct rx_ring *rx_ring)
2937 {
2938         /* Free the small buffer queue. */
2939         if (rx_ring->sbq_base) {
2940                 pci_free_consistent(qdev->pdev,
2941                                     rx_ring->sbq_size,
2942                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2943                 rx_ring->sbq_base = NULL;
2944         }
2945
2946         /* Free the small buffer queue control blocks. */
2947         kfree(rx_ring->sbq);
2948         rx_ring->sbq = NULL;
2949
2950         /* Free the large buffer queue. */
2951         if (rx_ring->lbq_base) {
2952                 pci_free_consistent(qdev->pdev,
2953                                     rx_ring->lbq_size,
2954                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2955                 rx_ring->lbq_base = NULL;
2956         }
2957
2958         /* Free the large buffer queue control blocks. */
2959         kfree(rx_ring->lbq);
2960         rx_ring->lbq = NULL;
2961
2962         /* Free the rx queue. */
2963         if (rx_ring->cq_base) {
2964                 pci_free_consistent(qdev->pdev,
2965                                     rx_ring->cq_size,
2966                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2967                 rx_ring->cq_base = NULL;
2968         }
2969 }
2970
2971 /* Allocate queues and buffers for this completions queue based
2972  * on the values in the parameter structure. */
2973 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2974                                  struct rx_ring *rx_ring)
2975 {
2976
2977         /*
2978          * Allocate the completion queue for this rx_ring.
2979          */
2980         rx_ring->cq_base =
2981             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2982                                  &rx_ring->cq_base_dma);
2983
2984         if (rx_ring->cq_base == NULL) {
2985                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2986                 return -ENOMEM;
2987         }
2988
2989         if (rx_ring->sbq_len) {
2990                 /*
2991                  * Allocate small buffer queue.
2992                  */
2993                 rx_ring->sbq_base =
2994                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2995                                          &rx_ring->sbq_base_dma);
2996
2997                 if (rx_ring->sbq_base == NULL) {
2998                         netif_err(qdev, ifup, qdev->ndev,
2999                                   "Small buffer queue allocation failed.\n");
3000                         goto err_mem;
3001                 }
3002
3003                 /*
3004                  * Allocate small buffer queue control blocks.
3005                  */
3006                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3007                                              sizeof(struct bq_desc),
3008                                              GFP_KERNEL);
3009                 if (rx_ring->sbq == NULL)
3010                         goto err_mem;
3011
3012                 ql_init_sbq_ring(qdev, rx_ring);
3013         }
3014
3015         if (rx_ring->lbq_len) {
3016                 /*
3017                  * Allocate large buffer queue.
3018                  */
3019                 rx_ring->lbq_base =
3020                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3021                                          &rx_ring->lbq_base_dma);
3022
3023                 if (rx_ring->lbq_base == NULL) {
3024                         netif_err(qdev, ifup, qdev->ndev,
3025                                   "Large buffer queue allocation failed.\n");
3026                         goto err_mem;
3027                 }
3028                 /*
3029                  * Allocate large buffer queue control blocks.
3030                  */
3031                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3032                                              sizeof(struct bq_desc),
3033                                              GFP_KERNEL);
3034                 if (rx_ring->lbq == NULL)
3035                         goto err_mem;
3036
3037                 ql_init_lbq_ring(qdev, rx_ring);
3038         }
3039
3040         return 0;
3041
3042 err_mem:
3043         ql_free_rx_resources(qdev, rx_ring);
3044         return -ENOMEM;
3045 }
3046
3047 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3048 {
3049         struct tx_ring *tx_ring;
3050         struct tx_ring_desc *tx_ring_desc;
3051         int i, j;
3052
3053         /*
3054          * Loop through all queues and free
3055          * any resources.
3056          */
3057         for (j = 0; j < qdev->tx_ring_count; j++) {
3058                 tx_ring = &qdev->tx_ring[j];
3059                 for (i = 0; i < tx_ring->wq_len; i++) {
3060                         tx_ring_desc = &tx_ring->q[i];
3061                         if (tx_ring_desc && tx_ring_desc->skb) {
3062                                 netif_err(qdev, ifdown, qdev->ndev,
3063                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3064                                           tx_ring_desc->skb, j,
3065                                           tx_ring_desc->index);
3066                                 ql_unmap_send(qdev, tx_ring_desc,
3067                                               tx_ring_desc->map_cnt);
3068                                 dev_kfree_skb(tx_ring_desc->skb);
3069                                 tx_ring_desc->skb = NULL;
3070                         }
3071                 }
3072         }
3073 }
3074
3075 static void ql_free_mem_resources(struct ql_adapter *qdev)
3076 {
3077         int i;
3078
3079         for (i = 0; i < qdev->tx_ring_count; i++)
3080                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3081         for (i = 0; i < qdev->rx_ring_count; i++)
3082                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3083         ql_free_shadow_space(qdev);
3084 }
3085
3086 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3087 {
3088         int i;
3089
3090         /* Allocate space for our shadow registers and such. */
3091         if (ql_alloc_shadow_space(qdev))
3092                 return -ENOMEM;
3093
3094         for (i = 0; i < qdev->rx_ring_count; i++) {
3095                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3096                         netif_err(qdev, ifup, qdev->ndev,
3097                                   "RX resource allocation failed.\n");
3098                         goto err_mem;
3099                 }
3100         }
3101         /* Allocate tx queue resources */
3102         for (i = 0; i < qdev->tx_ring_count; i++) {
3103                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3104                         netif_err(qdev, ifup, qdev->ndev,
3105                                   "TX resource allocation failed.\n");
3106                         goto err_mem;
3107                 }
3108         }
3109         return 0;
3110
3111 err_mem:
3112         ql_free_mem_resources(qdev);
3113         return -ENOMEM;
3114 }
3115
3116 /* Set up the rx ring control block and pass it to the chip.
3117  * The control block is defined as
3118  * "Completion Queue Initialization Control Block", or cqicb.
3119  */
3120 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3121 {
3122         struct cqicb *cqicb = &rx_ring->cqicb;
3123         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3124                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3125         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3126                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3127         void __iomem *doorbell_area =
3128             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3129         int err = 0;
3130         u16 bq_len;
3131         u64 tmp;
3132         __le64 *base_indirect_ptr;
3133         int page_entries;
3134
3135         /* Set up the shadow registers for this ring. */
3136         rx_ring->prod_idx_sh_reg = shadow_reg;
3137         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3138         *rx_ring->prod_idx_sh_reg = 0;
3139         shadow_reg += sizeof(u64);
3140         shadow_reg_dma += sizeof(u64);
3141         rx_ring->lbq_base_indirect = shadow_reg;
3142         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3143         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3144         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3145         rx_ring->sbq_base_indirect = shadow_reg;
3146         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3147
3148         /* PCI doorbell mem area + 0x00 for consumer index register */
3149         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3150         rx_ring->cnsmr_idx = 0;
3151         rx_ring->curr_entry = rx_ring->cq_base;
3152
3153         /* PCI doorbell mem area + 0x04 for valid register */
3154         rx_ring->valid_db_reg = doorbell_area + 0x04;
3155
3156         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3157         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3158
3159         /* PCI doorbell mem area + 0x1c */
3160         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3161
3162         memset((void *)cqicb, 0, sizeof(struct cqicb));
3163         cqicb->msix_vect = rx_ring->irq;
3164
3165         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3166         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3167
3168         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3169
3170         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3171
3172         /*
3173          * Set up the control block load flags.
3174          */
3175         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3176             FLAGS_LV |          /* Load MSI-X vector */
3177             FLAGS_LI;           /* Load irq delay values */
3178         if (rx_ring->lbq_len) {
3179                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3180                 tmp = (u64)rx_ring->lbq_base_dma;
3181                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3182                 page_entries = 0;
3183                 do {
3184                         *base_indirect_ptr = cpu_to_le64(tmp);
3185                         tmp += DB_PAGE_SIZE;
3186                         base_indirect_ptr++;
3187                         page_entries++;
3188                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3189                 cqicb->lbq_addr =
3190                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3191                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3192                         (u16) rx_ring->lbq_buf_size;
3193                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3194                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3195                         (u16) rx_ring->lbq_len;
3196                 cqicb->lbq_len = cpu_to_le16(bq_len);
3197                 rx_ring->lbq_prod_idx = 0;
3198                 rx_ring->lbq_curr_idx = 0;
3199                 rx_ring->lbq_clean_idx = 0;
3200                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3201         }
3202         if (rx_ring->sbq_len) {
3203                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3204                 tmp = (u64)rx_ring->sbq_base_dma;
3205                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3206                 page_entries = 0;
3207                 do {
3208                         *base_indirect_ptr = cpu_to_le64(tmp);
3209                         tmp += DB_PAGE_SIZE;
3210                         base_indirect_ptr++;
3211                         page_entries++;
3212                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3213                 cqicb->sbq_addr =
3214                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3215                 cqicb->sbq_buf_size =
3216                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3217                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3218                         (u16) rx_ring->sbq_len;
3219                 cqicb->sbq_len = cpu_to_le16(bq_len);
3220                 rx_ring->sbq_prod_idx = 0;
3221                 rx_ring->sbq_curr_idx = 0;
3222                 rx_ring->sbq_clean_idx = 0;
3223                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3224         }
3225         switch (rx_ring->type) {
3226         case TX_Q:
3227                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3228                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3229                 break;
3230         case RX_Q:
3231                 /* Inbound completion handling rx_rings run in
3232                  * separate NAPI contexts.
3233                  */
3234                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3235                                64);
3236                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3237                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3238                 break;
3239         default:
3240                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3241                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3242         }
3243         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3244                            CFG_LCQ, rx_ring->cq_id);
3245         if (err) {
3246                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3247                 return err;
3248         }
3249         return err;
3250 }
3251
3252 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3253 {
3254         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3255         void __iomem *doorbell_area =
3256             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3257         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3258             (tx_ring->wq_id * sizeof(u64));
3259         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3260             (tx_ring->wq_id * sizeof(u64));
3261         int err = 0;
3262
3263         /*
3264          * Assign doorbell registers for this tx_ring.
3265          */
3266         /* TX PCI doorbell mem area for tx producer index */
3267         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3268         tx_ring->prod_idx = 0;
3269         /* TX PCI doorbell mem area + 0x04 */
3270         tx_ring->valid_db_reg = doorbell_area + 0x04;
3271
3272         /*
3273          * Assign shadow registers for this tx_ring.
3274          */
3275         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3276         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3277
3278         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3279         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3280                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3281         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3282         wqicb->rid = 0;
3283         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3284
3285         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3286
3287         ql_init_tx_ring(qdev, tx_ring);
3288
3289         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3290                            (u16) tx_ring->wq_id);
3291         if (err) {
3292                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3293                 return err;
3294         }
3295         return err;
3296 }
3297
3298 static void ql_disable_msix(struct ql_adapter *qdev)
3299 {
3300         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3301                 pci_disable_msix(qdev->pdev);
3302                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3303                 kfree(qdev->msi_x_entry);
3304                 qdev->msi_x_entry = NULL;
3305         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3306                 pci_disable_msi(qdev->pdev);
3307                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3308         }
3309 }
3310
3311 /* We start by trying to get the number of vectors
3312  * stored in qdev->intr_count. If we don't get that
3313  * many then we reduce the count and try again.
3314  */
3315 static void ql_enable_msix(struct ql_adapter *qdev)
3316 {
3317         int i, err;
3318
3319         /* Get the MSIX vectors. */
3320         if (qlge_irq_type == MSIX_IRQ) {
3321                 /* Try to alloc space for the msix struct,
3322                  * if it fails then go to MSI/legacy.
3323                  */
3324                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3325                                             sizeof(struct msix_entry),
3326                                             GFP_KERNEL);
3327                 if (!qdev->msi_x_entry) {
3328                         qlge_irq_type = MSI_IRQ;
3329                         goto msi;
3330                 }
3331
3332                 for (i = 0; i < qdev->intr_count; i++)
3333                         qdev->msi_x_entry[i].entry = i;
3334
3335                 /* Loop to get our vectors.  We start with
3336                  * what we want and settle for what we get.
3337                  */
3338                 do {
3339                         err = pci_enable_msix(qdev->pdev,
3340                                 qdev->msi_x_entry, qdev->intr_count);
3341                         if (err > 0)
3342                                 qdev->intr_count = err;
3343                 } while (err > 0);
3344
3345                 if (err < 0) {
3346                         kfree(qdev->msi_x_entry);
3347                         qdev->msi_x_entry = NULL;
3348                         netif_warn(qdev, ifup, qdev->ndev,
3349                                    "MSI-X Enable failed, trying MSI.\n");
3350                         qdev->intr_count = 1;
3351                         qlge_irq_type = MSI_IRQ;
3352                 } else if (err == 0) {
3353                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3354                         netif_info(qdev, ifup, qdev->ndev,
3355                                    "MSI-X Enabled, got %d vectors.\n",
3356                                    qdev->intr_count);
3357                         return;
3358                 }
3359         }
3360 msi:
3361         qdev->intr_count = 1;
3362         if (qlge_irq_type == MSI_IRQ) {
3363                 if (!pci_enable_msi(qdev->pdev)) {
3364                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3365                         netif_info(qdev, ifup, qdev->ndev,
3366                                    "Running with MSI interrupts.\n");
3367                         return;
3368                 }
3369         }
3370         qlge_irq_type = LEG_IRQ;
3371         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3372                      "Running with legacy interrupts.\n");
3373 }
3374
3375 /* Each vector services 1 RSS ring and and 1 or more
3376  * TX completion rings.  This function loops through
3377  * the TX completion rings and assigns the vector that
3378  * will service it.  An example would be if there are
3379  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3380  * This would mean that vector 0 would service RSS ring 0
3381  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3382  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3383  */
3384 static void ql_set_tx_vect(struct ql_adapter *qdev)
3385 {
3386         int i, j, vect;
3387         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3388
3389         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3390                 /* Assign irq vectors to TX rx_rings.*/
3391                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3392                                          i < qdev->rx_ring_count; i++) {
3393                         if (j == tx_rings_per_vector) {
3394                                 vect++;
3395                                 j = 0;
3396                         }
3397                         qdev->rx_ring[i].irq = vect;
3398                         j++;
3399                 }
3400         } else {
3401                 /* For single vector all rings have an irq
3402                  * of zero.
3403                  */
3404                 for (i = 0; i < qdev->rx_ring_count; i++)
3405                         qdev->rx_ring[i].irq = 0;
3406         }
3407 }
3408
3409 /* Set the interrupt mask for this vector.  Each vector
3410  * will service 1 RSS ring and 1 or more TX completion
3411  * rings.  This function sets up a bit mask per vector
3412  * that indicates which rings it services.
3413  */
3414 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3415 {
3416         int j, vect = ctx->intr;
3417         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3418
3419         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3420                 /* Add the RSS ring serviced by this vector
3421                  * to the mask.
3422                  */
3423                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3424                 /* Add the TX ring(s) serviced by this vector
3425                  * to the mask. */
3426                 for (j = 0; j < tx_rings_per_vector; j++) {
3427                         ctx->irq_mask |=
3428                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3429                         (vect * tx_rings_per_vector) + j].cq_id);
3430                 }
3431         } else {
3432                 /* For single vector we just shift each queue's
3433                  * ID into the mask.
3434                  */
3435                 for (j = 0; j < qdev->rx_ring_count; j++)
3436                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3437         }
3438 }
3439
3440 /*
3441  * Here we build the intr_context structures based on
3442  * our rx_ring count and intr vector count.
3443  * The intr_context structure is used to hook each vector
3444  * to possibly different handlers.
3445  */
3446 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3447 {
3448         int i = 0;
3449         struct intr_context *intr_context = &qdev->intr_context[0];
3450
3451         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3452                 /* Each rx_ring has it's
3453                  * own intr_context since we have separate
3454                  * vectors for each queue.
3455                  */
3456                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3457                         qdev->rx_ring[i].irq = i;
3458                         intr_context->intr = i;
3459                         intr_context->qdev = qdev;
3460                         /* Set up this vector's bit-mask that indicates
3461                          * which queues it services.
3462                          */
3463                         ql_set_irq_mask(qdev, intr_context);
3464                         /*
3465                          * We set up each vectors enable/disable/read bits so
3466                          * there's no bit/mask calculations in the critical path.
3467                          */
3468                         intr_context->intr_en_mask =
3469                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3470                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3471                             | i;
3472                         intr_context->intr_dis_mask =
3473                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3474                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3475                             INTR_EN_IHD | i;
3476                         intr_context->intr_read_mask =
3477                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3478                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3479                             i;
3480                         if (i == 0) {
3481                                 /* The first vector/queue handles
3482                                  * broadcast/multicast, fatal errors,
3483                                  * and firmware events.  This in addition
3484                                  * to normal inbound NAPI processing.
3485                                  */
3486                                 intr_context->handler = qlge_isr;
3487                                 sprintf(intr_context->name, "%s-rx-%d",
3488                                         qdev->ndev->name, i);
3489                         } else {
3490                                 /*
3491                                  * Inbound queues handle unicast frames only.
3492                                  */
3493                                 intr_context->handler = qlge_msix_rx_isr;
3494                                 sprintf(intr_context->name, "%s-rx-%d",
3495                                         qdev->ndev->name, i);
3496                         }
3497                 }
3498         } else {
3499                 /*
3500                  * All rx_rings use the same intr_context since
3501                  * there is only one vector.
3502                  */
3503                 intr_context->intr = 0;
3504                 intr_context->qdev = qdev;
3505                 /*
3506                  * We set up each vectors enable/disable/read bits so
3507                  * there's no bit/mask calculations in the critical path.
3508                  */
3509                 intr_context->intr_en_mask =
3510                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3511                 intr_context->intr_dis_mask =
3512                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3513                     INTR_EN_TYPE_DISABLE;
3514                 intr_context->intr_read_mask =
3515                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3516                 /*
3517                  * Single interrupt means one handler for all rings.
3518                  */
3519                 intr_context->handler = qlge_isr;
3520                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3521                 /* Set up this vector's bit-mask that indicates
3522                  * which queues it services. In this case there is
3523                  * a single vector so it will service all RSS and
3524                  * TX completion rings.
3525                  */
3526                 ql_set_irq_mask(qdev, intr_context);
3527         }
3528         /* Tell the TX completion rings which MSIx vector
3529          * they will be using.
3530          */
3531         ql_set_tx_vect(qdev);
3532 }
3533
3534 static void ql_free_irq(struct ql_adapter *qdev)
3535 {
3536         int i;
3537         struct intr_context *intr_context = &qdev->intr_context[0];
3538
3539         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3540                 if (intr_context->hooked) {
3541                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3542                                 free_irq(qdev->msi_x_entry[i].vector,
3543                                          &qdev->rx_ring[i]);
3544                         } else {
3545                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3546                         }
3547                 }
3548         }
3549         ql_disable_msix(qdev);
3550 }
3551
3552 static int ql_request_irq(struct ql_adapter *qdev)
3553 {
3554         int i;
3555         int status = 0;
3556         struct pci_dev *pdev = qdev->pdev;
3557         struct intr_context *intr_context = &qdev->intr_context[0];
3558
3559         ql_resolve_queues_to_irqs(qdev);
3560
3561         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3562                 atomic_set(&intr_context->irq_cnt, 0);
3563                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3564                         status = request_irq(qdev->msi_x_entry[i].vector,
3565                                              intr_context->handler,
3566                                              0,
3567                                              intr_context->name,
3568                                              &qdev->rx_ring[i]);
3569                         if (status) {
3570                                 netif_err(qdev, ifup, qdev->ndev,
3571                                           "Failed request for MSIX interrupt %d.\n",
3572                                           i);
3573                                 goto err_irq;
3574                         }
3575                 } else {
3576                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3577                                      "trying msi or legacy interrupts.\n");
3578                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3579                                      "%s: irq = %d.\n", __func__, pdev->irq);
3580                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3581                                      "%s: context->name = %s.\n", __func__,
3582                                      intr_context->name);
3583                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584                                      "%s: dev_id = 0x%p.\n", __func__,
3585                                      &qdev->rx_ring[0]);
3586                         status =
3587                             request_irq(pdev->irq, qlge_isr,
3588                                         test_bit(QL_MSI_ENABLED,
3589                                                  &qdev->
3590                                                  flags) ? 0 : IRQF_SHARED,
3591                                         intr_context->name, &qdev->rx_ring[0]);
3592                         if (status)
3593                                 goto err_irq;
3594
3595                         netif_err(qdev, ifup, qdev->ndev,
3596                                   "Hooked intr %d, queue type %s, with name %s.\n",
3597                                   i,
3598                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3599                                   "DEFAULT_Q" :
3600                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3601                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3602                                   intr_context->name);
3603                 }
3604                 intr_context->hooked = 1;
3605         }
3606         return status;
3607 err_irq:
3608         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3609         ql_free_irq(qdev);
3610         return status;
3611 }
3612
3613 static int ql_start_rss(struct ql_adapter *qdev)
3614 {
3615         static const u8 init_hash_seed[] = {
3616                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3617                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3618                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3619                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3620                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3621         };
3622         struct ricb *ricb = &qdev->ricb;
3623         int status = 0;
3624         int i;
3625         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3626
3627         memset((void *)ricb, 0, sizeof(*ricb));
3628
3629         ricb->base_cq = RSS_L4K;
3630         ricb->flags =
3631                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3632         ricb->mask = cpu_to_le16((u16)(0x3ff));
3633
3634         /*
3635          * Fill out the Indirection Table.
3636          */
3637         for (i = 0; i < 1024; i++)
3638                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3639
3640         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3641         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3642
3643         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3644         if (status) {
3645                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3646                 return status;
3647         }
3648         return status;
3649 }
3650
3651 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3652 {
3653         int i, status = 0;
3654
3655         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3656         if (status)
3657                 return status;
3658         /* Clear all the entries in the routing table. */
3659         for (i = 0; i < 16; i++) {
3660                 status = ql_set_routing_reg(qdev, i, 0, 0);
3661                 if (status) {
3662                         netif_err(qdev, ifup, qdev->ndev,
3663                                   "Failed to init routing register for CAM packets.\n");
3664                         break;
3665                 }
3666         }
3667         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3668         return status;
3669 }
3670
3671 /* Initialize the frame-to-queue routing. */
3672 static int ql_route_initialize(struct ql_adapter *qdev)
3673 {
3674         int status = 0;
3675
3676         /* Clear all the entries in the routing table. */
3677         status = ql_clear_routing_entries(qdev);
3678         if (status)
3679                 return status;
3680
3681         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3682         if (status)
3683                 return status;
3684
3685         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3686                                                 RT_IDX_IP_CSUM_ERR, 1);
3687         if (status) {
3688                 netif_err(qdev, ifup, qdev->ndev,
3689                         "Failed to init routing register "
3690                         "for IP CSUM error packets.\n");
3691                 goto exit;
3692         }
3693         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3694                                                 RT_IDX_TU_CSUM_ERR, 1);
3695         if (status) {
3696                 netif_err(qdev, ifup, qdev->ndev,
3697                         "Failed to init routing register "
3698                         "for TCP/UDP CSUM error packets.\n");
3699                 goto exit;
3700         }
3701         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3702         if (status) {
3703                 netif_err(qdev, ifup, qdev->ndev,
3704                           "Failed to init routing register for broadcast packets.\n");
3705                 goto exit;
3706         }
3707         /* If we have more than one inbound queue, then turn on RSS in the
3708          * routing block.
3709          */
3710         if (qdev->rss_ring_count > 1) {
3711                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3712                                         RT_IDX_RSS_MATCH, 1);
3713                 if (status) {
3714                         netif_err(qdev, ifup, qdev->ndev,
3715                                   "Failed to init routing register for MATCH RSS packets.\n");
3716                         goto exit;
3717                 }
3718         }
3719
3720         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3721                                     RT_IDX_CAM_HIT, 1);
3722         if (status)
3723                 netif_err(qdev, ifup, qdev->ndev,
3724                           "Failed to init routing register for CAM packets.\n");
3725 exit:
3726         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3727         return status;
3728 }
3729
3730 int ql_cam_route_initialize(struct ql_adapter *qdev)
3731 {
3732         int status, set;
3733
3734         /* If check if the link is up and use to
3735          * determine if we are setting or clearing
3736          * the MAC address in the CAM.
3737          */
3738         set = ql_read32(qdev, STS);
3739         set &= qdev->port_link_up;
3740         status = ql_set_mac_addr(qdev, set);
3741         if (status) {
3742                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3743                 return status;
3744         }
3745
3746         status = ql_route_initialize(qdev);
3747         if (status)
3748                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3749
3750         return status;
3751 }
3752
3753 static int ql_adapter_initialize(struct ql_adapter *qdev)
3754 {
3755         u32 value, mask;
3756         int i;
3757         int status = 0;
3758
3759         /*
3760          * Set up the System register to halt on errors.
3761          */
3762         value = SYS_EFE | SYS_FAE;
3763         mask = value << 16;
3764         ql_write32(qdev, SYS, mask | value);
3765
3766         /* Set the default queue, and VLAN behavior. */
3767         value = NIC_RCV_CFG_DFQ;
3768         mask = NIC_RCV_CFG_DFQ_MASK;
3769         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3770                 value |= NIC_RCV_CFG_RV;
3771                 mask |= (NIC_RCV_CFG_RV << 16);
3772         }
3773         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3774
3775         /* Set the MPI interrupt to enabled. */
3776         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3777
3778         /* Enable the function, set pagesize, enable error checking. */
3779         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3780             FSC_EC | FSC_VM_PAGE_4K;
3781         value |= SPLT_SETTING;
3782
3783         /* Set/clear header splitting. */
3784         mask = FSC_VM_PAGESIZE_MASK |
3785             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3786         ql_write32(qdev, FSC, mask | value);
3787
3788         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3789
3790         /* Set RX packet routing to use port/pci function on which the
3791          * packet arrived on in addition to usual frame routing.
3792          * This is helpful on bonding where both interfaces can have
3793          * the same MAC address.
3794          */
3795         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3796         /* Reroute all packets to our Interface.
3797          * They may have been routed to MPI firmware
3798          * due to WOL.
3799          */
3800         value = ql_read32(qdev, MGMT_RCV_CFG);
3801         value &= ~MGMT_RCV_CFG_RM;
3802         mask = 0xffff0000;
3803
3804         /* Sticky reg needs clearing due to WOL. */
3805         ql_write32(qdev, MGMT_RCV_CFG, mask);
3806         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3807
3808         /* Default WOL is enable on Mezz cards */
3809         if (qdev->pdev->subsystem_device == 0x0068 ||
3810                         qdev->pdev->subsystem_device == 0x0180)
3811                 qdev->wol = WAKE_MAGIC;
3812
3813         /* Start up the rx queues. */
3814         for (i = 0; i < qdev->rx_ring_count; i++) {
3815                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3816                 if (status) {
3817                         netif_err(qdev, ifup, qdev->ndev,
3818                                   "Failed to start rx ring[%d].\n", i);
3819                         return status;
3820                 }
3821         }
3822
3823         /* If there is more than one inbound completion queue
3824          * then download a RICB to configure RSS.
3825          */
3826         if (qdev->rss_ring_count > 1) {
3827                 status = ql_start_rss(qdev);
3828                 if (status) {
3829                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3830                         return status;
3831                 }
3832         }
3833
3834         /* Start up the tx queues. */
3835         for (i = 0; i < qdev->tx_ring_count; i++) {
3836                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3837                 if (status) {
3838                         netif_err(qdev, ifup, qdev->ndev,
3839                                   "Failed to start tx ring[%d].\n", i);
3840                         return status;
3841                 }
3842         }
3843
3844         /* Initialize the port and set the max framesize. */
3845         status = qdev->nic_ops->port_initialize(qdev);
3846         if (status)
3847                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3848
3849         /* Set up the MAC address and frame routing filter. */
3850         status = ql_cam_route_initialize(qdev);
3851         if (status) {
3852                 netif_err(qdev, ifup, qdev->ndev,
3853                           "Failed to init CAM/Routing tables.\n");
3854                 return status;
3855         }
3856
3857         /* Start NAPI for the RSS queues. */
3858         for (i = 0; i < qdev->rss_ring_count; i++)
3859                 napi_enable(&qdev->rx_ring[i].napi);
3860
3861         return status;
3862 }
3863
3864 /* Issue soft reset to chip. */
3865 static int ql_adapter_reset(struct ql_adapter *qdev)
3866 {
3867         u32 value;
3868         int status = 0;
3869         unsigned long end_jiffies;
3870
3871         /* Clear all the entries in the routing table. */
3872         status = ql_clear_routing_entries(qdev);
3873         if (status) {
3874                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3875                 return status;
3876         }
3877
3878         end_jiffies = jiffies +
3879                 max((unsigned long)1, usecs_to_jiffies(30));
3880
3881         /* Check if bit is set then skip the mailbox command and
3882          * clear the bit, else we are in normal reset process.
3883          */
3884         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3885                 /* Stop management traffic. */
3886                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3887
3888                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3889                 ql_wait_fifo_empty(qdev);
3890         } else
3891                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3892
3893         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3894
3895         do {
3896                 value = ql_read32(qdev, RST_FO);
3897                 if ((value & RST_FO_FR) == 0)
3898                         break;
3899                 cpu_relax();
3900         } while (time_before(jiffies, end_jiffies));
3901
3902         if (value & RST_FO_FR) {
3903                 netif_err(qdev, ifdown, qdev->ndev,
3904                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3905                 status = -ETIMEDOUT;
3906         }
3907
3908         /* Resume management traffic. */
3909         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3910         return status;
3911 }
3912
3913 static void ql_display_dev_info(struct net_device *ndev)
3914 {
3915         struct ql_adapter *qdev = netdev_priv(ndev);
3916
3917         netif_info(qdev, probe, qdev->ndev,
3918                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3919                    "XG Roll = %d, XG Rev = %d.\n",
3920                    qdev->func,
3921                    qdev->port,
3922                    qdev->chip_rev_id & 0x0000000f,
3923                    qdev->chip_rev_id >> 4 & 0x0000000f,
3924                    qdev->chip_rev_id >> 8 & 0x0000000f,
3925                    qdev->chip_rev_id >> 12 & 0x0000000f);
3926         netif_info(qdev, probe, qdev->ndev,
3927                    "MAC address %pM\n", ndev->dev_addr);
3928 }
3929
3930 static int ql_wol(struct ql_adapter *qdev)
3931 {
3932         int status = 0;
3933         u32 wol = MB_WOL_DISABLE;
3934
3935         /* The CAM is still intact after a reset, but if we
3936          * are doing WOL, then we may need to program the
3937          * routing regs. We would also need to issue the mailbox
3938          * commands to instruct the MPI what to do per the ethtool
3939          * settings.
3940          */
3941
3942         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3943                         WAKE_MCAST | WAKE_BCAST)) {
3944                 netif_err(qdev, ifdown, qdev->ndev,
3945                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3946                           qdev->wol);
3947                 return -EINVAL;
3948         }
3949
3950         if (qdev->wol & WAKE_MAGIC) {
3951                 status = ql_mb_wol_set_magic(qdev, 1);
3952                 if (status) {
3953                         netif_err(qdev, ifdown, qdev->ndev,
3954                                   "Failed to set magic packet on %s.\n",
3955                                   qdev->ndev->name);
3956                         return status;
3957                 } else
3958                         netif_info(qdev, drv, qdev->ndev,
3959                                    "Enabled magic packet successfully on %s.\n",
3960                                    qdev->ndev->name);
3961
3962                 wol |= MB_WOL_MAGIC_PKT;
3963         }
3964
3965         if (qdev->wol) {
3966                 wol |= MB_WOL_MODE_ON;
3967                 status = ql_mb_wol_mode(qdev, wol);
3968                 netif_err(qdev, drv, qdev->ndev,
3969                           "WOL %s (wol code 0x%x) on %s\n",
3970                           (status == 0) ? "Successfully set" : "Failed",
3971                           wol, qdev->ndev->name);
3972         }
3973
3974         return status;
3975 }
3976
3977 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3978 {
3979
3980         /* Don't kill the reset worker thread if we
3981          * are in the process of recovery.
3982          */
3983         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3984                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3985         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3986         cancel_delayed_work_sync(&qdev->mpi_work);
3987         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3988         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3989         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3990 }
3991
3992 static int ql_adapter_down(struct ql_adapter *qdev)
3993 {
3994         int i, status = 0;
3995
3996         ql_link_off(qdev);
3997
3998         ql_cancel_all_work_sync(qdev);
3999
4000         for (i = 0; i < qdev->rss_ring_count; i++)
4001                 napi_disable(&qdev->rx_ring[i].napi);
4002
4003         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4004
4005         ql_disable_interrupts(qdev);
4006
4007         ql_tx_ring_clean(qdev);
4008
4009         /* Call netif_napi_del() from common point.
4010          */
4011         for (i = 0; i < qdev->rss_ring_count; i++)
4012                 netif_napi_del(&qdev->rx_ring[i].napi);
4013
4014         status = ql_adapter_reset(qdev);
4015         if (status)
4016                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4017                           qdev->func);
4018         ql_free_rx_buffers(qdev);
4019
4020         return status;
4021 }
4022
4023 static int ql_adapter_up(struct ql_adapter *qdev)
4024 {
4025         int err = 0;
4026
4027         err = ql_adapter_initialize(qdev);
4028         if (err) {
4029                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4030                 goto err_init;
4031         }
4032         set_bit(QL_ADAPTER_UP, &qdev->flags);
4033         ql_alloc_rx_buffers(qdev);
4034         /* If the port is initialized and the
4035          * link is up the turn on the carrier.
4036          */
4037         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4038                         (ql_read32(qdev, STS) & qdev->port_link_up))
4039                 ql_link_on(qdev);
4040         /* Restore rx mode. */
4041         clear_bit(QL_ALLMULTI, &qdev->flags);
4042         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4043         qlge_set_multicast_list(qdev->ndev);
4044
4045         /* Restore vlan setting. */
4046         qlge_restore_vlan(qdev);
4047
4048         ql_enable_interrupts(qdev);
4049         ql_enable_all_completion_interrupts(qdev);
4050         netif_tx_start_all_queues(qdev->ndev);
4051
4052         return 0;
4053 err_init:
4054         ql_adapter_reset(qdev);
4055         return err;
4056 }
4057
4058 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4059 {
4060         ql_free_mem_resources(qdev);
4061         ql_free_irq(qdev);
4062 }
4063
4064 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4065 {
4066         int status = 0;
4067
4068         if (ql_alloc_mem_resources(qdev)) {
4069                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4070                 return -ENOMEM;
4071         }
4072         status = ql_request_irq(qdev);
4073         return status;
4074 }
4075
4076 static int qlge_close(struct net_device *ndev)
4077 {
4078         struct ql_adapter *qdev = netdev_priv(ndev);
4079
4080         /* If we hit pci_channel_io_perm_failure
4081          * failure condition, then we already
4082          * brought the adapter down.
4083          */
4084         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4085                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4086                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4087                 return 0;
4088         }
4089
4090         /*
4091          * Wait for device to recover from a reset.
4092          * (Rarely happens, but possible.)
4093          */
4094         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4095                 msleep(1);
4096         ql_adapter_down(qdev);
4097         ql_release_adapter_resources(qdev);
4098         return 0;
4099 }
4100
4101 static int ql_configure_rings(struct ql_adapter *qdev)
4102 {
4103         int i;
4104         struct rx_ring *rx_ring;
4105         struct tx_ring *tx_ring;
4106         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4107         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4108                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4109
4110         qdev->lbq_buf_order = get_order(lbq_buf_len);
4111
4112         /* In a perfect world we have one RSS ring for each CPU
4113          * and each has it's own vector.  To do that we ask for
4114          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4115          * vector count to what we actually get.  We then
4116          * allocate an RSS ring for each.
4117          * Essentially, we are doing min(cpu_count, msix_vector_count).
4118          */
4119         qdev->intr_count = cpu_cnt;
4120         ql_enable_msix(qdev);
4121         /* Adjust the RSS ring count to the actual vector count. */
4122         qdev->rss_ring_count = qdev->intr_count;
4123         qdev->tx_ring_count = cpu_cnt;
4124         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4125
4126         for (i = 0; i < qdev->tx_ring_count; i++) {
4127                 tx_ring = &qdev->tx_ring[i];
4128                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4129                 tx_ring->qdev = qdev;
4130                 tx_ring->wq_id = i;
4131                 tx_ring->wq_len = qdev->tx_ring_size;
4132                 tx_ring->wq_size =
4133                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4134
4135                 /*
4136                  * The completion queue ID for the tx rings start
4137                  * immediately after the rss rings.
4138                  */
4139                 tx_ring->cq_id = qdev->rss_ring_count + i;
4140         }
4141
4142         for (i = 0; i < qdev->rx_ring_count; i++) {
4143                 rx_ring = &qdev->rx_ring[i];
4144                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4145                 rx_ring->qdev = qdev;
4146                 rx_ring->cq_id = i;
4147                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4148                 if (i < qdev->rss_ring_count) {
4149                         /*
4150                          * Inbound (RSS) queues.
4151                          */
4152                         rx_ring->cq_len = qdev->rx_ring_size;
4153                         rx_ring->cq_size =
4154                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4155                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4156                         rx_ring->lbq_size =
4157                             rx_ring->lbq_len * sizeof(__le64);
4158                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4159                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4160                         rx_ring->sbq_size =
4161                             rx_ring->sbq_len * sizeof(__le64);
4162                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4163                         rx_ring->type = RX_Q;
4164                 } else {
4165                         /*
4166                          * Outbound queue handles outbound completions only.
4167                          */
4168                         /* outbound cq is same size as tx_ring it services. */
4169                         rx_ring->cq_len = qdev->tx_ring_size;
4170                         rx_ring->cq_size =
4171                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4172                         rx_ring->lbq_len = 0;
4173                         rx_ring->lbq_size = 0;
4174                         rx_ring->lbq_buf_size = 0;
4175                         rx_ring->sbq_len = 0;
4176                         rx_ring->sbq_size = 0;
4177                         rx_ring->sbq_buf_size = 0;
4178                         rx_ring->type = TX_Q;
4179                 }
4180         }
4181         return 0;
4182 }
4183
4184 static int qlge_open(struct net_device *ndev)
4185 {
4186         int err = 0;
4187         struct ql_adapter *qdev = netdev_priv(ndev);
4188
4189         err = ql_adapter_reset(qdev);
4190         if (err)
4191                 return err;
4192
4193         err = ql_configure_rings(qdev);
4194         if (err)
4195                 return err;
4196
4197         err = ql_get_adapter_resources(qdev);
4198         if (err)
4199                 goto error_up;
4200
4201         err = ql_adapter_up(qdev);
4202         if (err)
4203                 goto error_up;
4204
4205         return err;
4206
4207 error_up:
4208         ql_release_adapter_resources(qdev);
4209         return err;
4210 }
4211
4212 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4213 {
4214         struct rx_ring *rx_ring;
4215         int i, status;
4216         u32 lbq_buf_len;
4217
4218         /* Wait for an outstanding reset to complete. */
4219         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4220                 int i = 3;
4221                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4222                         netif_err(qdev, ifup, qdev->ndev,
4223                                   "Waiting for adapter UP...\n");
4224                         ssleep(1);
4225                 }
4226
4227                 if (!i) {
4228                         netif_err(qdev, ifup, qdev->ndev,
4229                                   "Timed out waiting for adapter UP\n");
4230                         return -ETIMEDOUT;
4231                 }
4232         }
4233
4234         status = ql_adapter_down(qdev);
4235         if (status)
4236                 goto error;
4237
4238         /* Get the new rx buffer size. */
4239         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4240                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4241         qdev->lbq_buf_order = get_order(lbq_buf_len);
4242
4243         for (i = 0; i < qdev->rss_ring_count; i++) {
4244                 rx_ring = &qdev->rx_ring[i];
4245                 /* Set the new size. */
4246                 rx_ring->lbq_buf_size = lbq_buf_len;
4247         }
4248
4249         status = ql_adapter_up(qdev);
4250         if (status)
4251                 goto error;
4252
4253         return status;
4254 error:
4255         netif_alert(qdev, ifup, qdev->ndev,
4256                     "Driver up/down cycle failed, closing device.\n");
4257         set_bit(QL_ADAPTER_UP, &qdev->flags);
4258         dev_close(qdev->ndev);
4259         return status;
4260 }
4261
4262 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4263 {
4264         struct ql_adapter *qdev = netdev_priv(ndev);
4265         int status;
4266
4267         if (ndev->mtu == 1500 && new_mtu == 9000) {
4268                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4269         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4270                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4271         } else
4272                 return -EINVAL;
4273
4274         queue_delayed_work(qdev->workqueue,
4275                         &qdev->mpi_port_cfg_work, 3*HZ);
4276
4277         ndev->mtu = new_mtu;
4278
4279         if (!netif_running(qdev->ndev)) {
4280                 return 0;
4281         }
4282
4283         status = ql_change_rx_buffers(qdev);
4284         if (status) {
4285                 netif_err(qdev, ifup, qdev->ndev,
4286                           "Changing MTU failed.\n");
4287         }
4288
4289         return status;
4290 }
4291
4292 static struct net_device_stats *qlge_get_stats(struct net_device
4293                                                *ndev)
4294 {
4295         struct ql_adapter *qdev = netdev_priv(ndev);
4296         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4297         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4298         unsigned long pkts, mcast, dropped, errors, bytes;
4299         int i;
4300
4301         /* Get RX stats. */
4302         pkts = mcast = dropped = errors = bytes = 0;
4303         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4304                         pkts += rx_ring->rx_packets;
4305                         bytes += rx_ring->rx_bytes;
4306                         dropped += rx_ring->rx_dropped;
4307                         errors += rx_ring->rx_errors;
4308                         mcast += rx_ring->rx_multicast;
4309         }
4310         ndev->stats.rx_packets = pkts;
4311         ndev->stats.rx_bytes = bytes;
4312         ndev->stats.rx_dropped = dropped;
4313         ndev->stats.rx_errors = errors;
4314         ndev->stats.multicast = mcast;
4315
4316         /* Get TX stats. */
4317         pkts = errors = bytes = 0;
4318         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4319                         pkts += tx_ring->tx_packets;
4320                         bytes += tx_ring->tx_bytes;
4321                         errors += tx_ring->tx_errors;
4322         }
4323         ndev->stats.tx_packets = pkts;
4324         ndev->stats.tx_bytes = bytes;
4325         ndev->stats.tx_errors = errors;
4326         return &ndev->stats;
4327 }
4328
4329 static void qlge_set_multicast_list(struct net_device *ndev)
4330 {
4331         struct ql_adapter *qdev = netdev_priv(ndev);
4332         struct netdev_hw_addr *ha;
4333         int i, status;
4334
4335         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4336         if (status)
4337                 return;
4338         /*
4339          * Set or clear promiscuous mode if a
4340          * transition is taking place.
4341          */
4342         if (ndev->flags & IFF_PROMISC) {
4343                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4344                         if (ql_set_routing_reg
4345                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4346                                 netif_err(qdev, hw, qdev->ndev,
4347                                           "Failed to set promiscuous mode.\n");
4348                         } else {
4349                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4350                         }
4351                 }
4352         } else {
4353                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4354                         if (ql_set_routing_reg
4355                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4356                                 netif_err(qdev, hw, qdev->ndev,
4357                                           "Failed to clear promiscuous mode.\n");
4358                         } else {
4359                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4360                         }
4361                 }
4362         }
4363
4364         /*
4365          * Set or clear all multicast mode if a
4366          * transition is taking place.
4367          */
4368         if ((ndev->flags & IFF_ALLMULTI) ||
4369             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4370                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4371                         if (ql_set_routing_reg
4372                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4373                                 netif_err(qdev, hw, qdev->ndev,
4374                                           "Failed to set all-multi mode.\n");
4375                         } else {
4376                                 set_bit(QL_ALLMULTI, &qdev->flags);
4377                         }
4378                 }
4379         } else {
4380                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4381                         if (ql_set_routing_reg
4382                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4383                                 netif_err(qdev, hw, qdev->ndev,
4384                                           "Failed to clear all-multi mode.\n");
4385                         } else {
4386                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4387                         }
4388                 }
4389         }
4390
4391         if (!netdev_mc_empty(ndev)) {
4392                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4393                 if (status)
4394                         goto exit;
4395                 i = 0;
4396                 netdev_for_each_mc_addr(ha, ndev) {
4397                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4398                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4399                                 netif_err(qdev, hw, qdev->ndev,
4400                                           "Failed to loadmulticast address.\n");
4401                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4402                                 goto exit;
4403                         }
4404                         i++;
4405                 }
4406                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4407                 if (ql_set_routing_reg
4408                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4409                         netif_err(qdev, hw, qdev->ndev,
4410                                   "Failed to set multicast match mode.\n");
4411                 } else {
4412                         set_bit(QL_ALLMULTI, &qdev->flags);
4413                 }
4414         }
4415 exit:
4416         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4417 }
4418
4419 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4420 {
4421         struct ql_adapter *qdev = netdev_priv(ndev);
4422         struct sockaddr *addr = p;
4423         int status;
4424
4425         if (!is_valid_ether_addr(addr->sa_data))
4426                 return -EADDRNOTAVAIL;
4427         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4428         /* Update local copy of current mac address. */
4429         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4430
4431         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4432         if (status)
4433                 return status;
4434         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4435                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4436         if (status)
4437                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4438         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4439         return status;
4440 }
4441
4442 static void qlge_tx_timeout(struct net_device *ndev)
4443 {
4444         struct ql_adapter *qdev = netdev_priv(ndev);
4445         ql_queue_asic_error(qdev);
4446 }
4447
4448 static void ql_asic_reset_work(struct work_struct *work)
4449 {
4450         struct ql_adapter *qdev =
4451             container_of(work, struct ql_adapter, asic_reset_work.work);
4452         int status;
4453         rtnl_lock();
4454         status = ql_adapter_down(qdev);
4455         if (status)
4456                 goto error;
4457
4458         status = ql_adapter_up(qdev);
4459         if (status)
4460                 goto error;
4461
4462         /* Restore rx mode. */
4463         clear_bit(QL_ALLMULTI, &qdev->flags);
4464         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4465         qlge_set_multicast_list(qdev->ndev);
4466
4467         rtnl_unlock();
4468         return;
4469 error:
4470         netif_alert(qdev, ifup, qdev->ndev,
4471                     "Driver up/down cycle failed, closing device\n");
4472
4473         set_bit(QL_ADAPTER_UP, &qdev->flags);
4474         dev_close(qdev->ndev);
4475         rtnl_unlock();
4476 }
4477
4478 static const struct nic_operations qla8012_nic_ops = {
4479         .get_flash              = ql_get_8012_flash_params,
4480         .port_initialize        = ql_8012_port_initialize,
4481 };
4482
4483 static const struct nic_operations qla8000_nic_ops = {
4484         .get_flash              = ql_get_8000_flash_params,
4485         .port_initialize        = ql_8000_port_initialize,
4486 };
4487
4488 /* Find the pcie function number for the other NIC
4489  * on this chip.  Since both NIC functions share a
4490  * common firmware we have the lowest enabled function
4491  * do any common work.  Examples would be resetting
4492  * after a fatal firmware error, or doing a firmware
4493  * coredump.
4494  */
4495 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4496 {
4497         int status = 0;
4498         u32 temp;
4499         u32 nic_func1, nic_func2;
4500
4501         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4502                         &temp);
4503         if (status)
4504                 return status;
4505
4506         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4507                         MPI_TEST_NIC_FUNC_MASK);
4508         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4509                         MPI_TEST_NIC_FUNC_MASK);
4510
4511         if (qdev->func == nic_func1)
4512                 qdev->alt_func = nic_func2;
4513         else if (qdev->func == nic_func2)
4514                 qdev->alt_func = nic_func1;
4515         else
4516                 status = -EIO;
4517
4518         return status;
4519 }
4520
4521 static int ql_get_board_info(struct ql_adapter *qdev)
4522 {
4523         int status;
4524         qdev->func =
4525             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4526         if (qdev->func > 3)
4527                 return -EIO;
4528
4529         status = ql_get_alt_pcie_func(qdev);
4530         if (status)
4531                 return status;
4532
4533         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4534         if (qdev->port) {
4535                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4536                 qdev->port_link_up = STS_PL1;
4537                 qdev->port_init = STS_PI1;
4538                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4539                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4540         } else {
4541                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4542                 qdev->port_link_up = STS_PL0;
4543                 qdev->port_init = STS_PI0;
4544                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4545                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4546         }
4547         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4548         qdev->device_id = qdev->pdev->device;
4549         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4550                 qdev->nic_ops = &qla8012_nic_ops;
4551         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4552                 qdev->nic_ops = &qla8000_nic_ops;
4553         return status;
4554 }
4555
4556 static void ql_release_all(struct pci_dev *pdev)
4557 {
4558         struct net_device *ndev = pci_get_drvdata(pdev);
4559         struct ql_adapter *qdev = netdev_priv(ndev);
4560
4561         if (qdev->workqueue) {
4562                 destroy_workqueue(qdev->workqueue);
4563                 qdev->workqueue = NULL;
4564         }
4565
4566         if (qdev->reg_base)
4567                 iounmap(qdev->reg_base);
4568         if (qdev->doorbell_area)
4569                 iounmap(qdev->doorbell_area);
4570         vfree(qdev->mpi_coredump);
4571         pci_release_regions(pdev);
4572 }
4573
4574 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4575                           int cards_found)
4576 {
4577         struct ql_adapter *qdev = netdev_priv(ndev);
4578         int err = 0;
4579
4580         memset((void *)qdev, 0, sizeof(*qdev));
4581         err = pci_enable_device(pdev);
4582         if (err) {
4583                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4584                 return err;
4585         }
4586
4587         qdev->ndev = ndev;
4588         qdev->pdev = pdev;
4589         pci_set_drvdata(pdev, ndev);
4590
4591         /* Set PCIe read request size */
4592         err = pcie_set_readrq(pdev, 4096);
4593         if (err) {
4594                 dev_err(&pdev->dev, "Set readrq failed.\n");
4595                 goto err_out1;
4596         }
4597
4598         err = pci_request_regions(pdev, DRV_NAME);
4599         if (err) {
4600                 dev_err(&pdev->dev, "PCI region request failed.\n");
4601                 return err;
4602         }
4603
4604         pci_set_master(pdev);
4605         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4606                 set_bit(QL_DMA64, &qdev->flags);
4607                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4608         } else {
4609                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4610                 if (!err)
4611                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4612         }
4613
4614         if (err) {
4615                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4616                 goto err_out2;
4617         }
4618
4619         /* Set PCIe reset type for EEH to fundamental. */
4620         pdev->needs_freset = 1;
4621         pci_save_state(pdev);
4622         qdev->reg_base =
4623             ioremap_nocache(pci_resource_start(pdev, 1),
4624                             pci_resource_len(pdev, 1));
4625         if (!qdev->reg_base) {
4626                 dev_err(&pdev->dev, "Register mapping failed.\n");
4627                 err = -ENOMEM;
4628                 goto err_out2;
4629         }
4630
4631         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4632         qdev->doorbell_area =
4633             ioremap_nocache(pci_resource_start(pdev, 3),
4634                             pci_resource_len(pdev, 3));
4635         if (!qdev->doorbell_area) {
4636                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4637                 err = -ENOMEM;
4638                 goto err_out2;
4639         }
4640
4641         err = ql_get_board_info(qdev);
4642         if (err) {
4643                 dev_err(&pdev->dev, "Register access failed.\n");
4644                 err = -EIO;
4645                 goto err_out2;
4646         }
4647         qdev->msg_enable = netif_msg_init(debug, default_msg);
4648         spin_lock_init(&qdev->hw_lock);
4649         spin_lock_init(&qdev->stats_lock);
4650
4651         if (qlge_mpi_coredump) {
4652                 qdev->mpi_coredump =
4653                         vmalloc(sizeof(struct ql_mpi_coredump));
4654                 if (qdev->mpi_coredump == NULL) {
4655                         err = -ENOMEM;
4656                         goto err_out2;
4657                 }
4658                 if (qlge_force_coredump)
4659                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4660         }
4661         /* make sure the EEPROM is good */
4662         err = qdev->nic_ops->get_flash(qdev);
4663         if (err) {
4664                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4665                 goto err_out2;
4666         }
4667
4668         /* Keep local copy of current mac address. */
4669         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4670
4671         /* Set up the default ring sizes. */
4672         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4673         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4674
4675         /* Set up the coalescing parameters. */
4676         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4677         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4678         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4679         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4680
4681         /*
4682          * Set up the operating parameters.
4683          */
4684         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4685         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4686         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4687         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4688         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4689         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4690         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4691         init_completion(&qdev->ide_completion);
4692         mutex_init(&qdev->mpi_mutex);
4693
4694         if (!cards_found) {
4695                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4696                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4697                          DRV_NAME, DRV_VERSION);
4698         }
4699         return 0;
4700 err_out2:
4701         ql_release_all(pdev);
4702 err_out1:
4703         pci_disable_device(pdev);
4704         return err;
4705 }
4706
4707 static const struct net_device_ops qlge_netdev_ops = {
4708         .ndo_open               = qlge_open,
4709         .ndo_stop               = qlge_close,
4710         .ndo_start_xmit         = qlge_send,
4711         .ndo_change_mtu         = qlge_change_mtu,
4712         .ndo_get_stats          = qlge_get_stats,
4713         .ndo_set_rx_mode        = qlge_set_multicast_list,
4714         .ndo_set_mac_address    = qlge_set_mac_address,
4715         .ndo_validate_addr      = eth_validate_addr,
4716         .ndo_tx_timeout         = qlge_tx_timeout,
4717         .ndo_fix_features       = qlge_fix_features,
4718         .ndo_set_features       = qlge_set_features,
4719         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4720         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4721 };
4722
4723 static void ql_timer(unsigned long data)
4724 {
4725         struct ql_adapter *qdev = (struct ql_adapter *)data;
4726         u32 var = 0;
4727
4728         var = ql_read32(qdev, STS);
4729         if (pci_channel_offline(qdev->pdev)) {
4730                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4731                 return;
4732         }
4733
4734         mod_timer(&qdev->timer, jiffies + (5*HZ));
4735 }
4736
4737 static int qlge_probe(struct pci_dev *pdev,
4738                       const struct pci_device_id *pci_entry)
4739 {
4740         struct net_device *ndev = NULL;
4741         struct ql_adapter *qdev = NULL;
4742         static int cards_found = 0;
4743         int err = 0;
4744
4745         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4746                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4747         if (!ndev)
4748                 return -ENOMEM;
4749
4750         err = ql_init_device(pdev, ndev, cards_found);
4751         if (err < 0) {
4752                 free_netdev(ndev);
4753                 return err;
4754         }
4755
4756         qdev = netdev_priv(ndev);
4757         SET_NETDEV_DEV(ndev, &pdev->dev);
4758         ndev->hw_features = NETIF_F_SG |
4759                             NETIF_F_IP_CSUM |
4760                             NETIF_F_TSO |
4761                             NETIF_F_TSO_ECN |
4762                             NETIF_F_HW_VLAN_CTAG_TX |
4763                             NETIF_F_HW_VLAN_CTAG_RX |
4764                             NETIF_F_HW_VLAN_CTAG_FILTER |
4765                             NETIF_F_RXCSUM;
4766         ndev->features = ndev->hw_features;
4767         ndev->vlan_features = ndev->hw_features;
4768
4769         if (test_bit(QL_DMA64, &qdev->flags))
4770                 ndev->features |= NETIF_F_HIGHDMA;
4771
4772         /*
4773          * Set up net_device structure.
4774          */
4775         ndev->tx_queue_len = qdev->tx_ring_size;
4776         ndev->irq = pdev->irq;
4777
4778         ndev->netdev_ops = &qlge_netdev_ops;
4779         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4780         ndev->watchdog_timeo = 10 * HZ;
4781
4782         err = register_netdev(ndev);
4783         if (err) {
4784                 dev_err(&pdev->dev, "net device registration failed.\n");
4785                 ql_release_all(pdev);
4786                 pci_disable_device(pdev);
4787                 free_netdev(ndev);
4788                 return err;
4789         }
4790         /* Start up the timer to trigger EEH if
4791          * the bus goes dead
4792          */
4793         init_timer_deferrable(&qdev->timer);
4794         qdev->timer.data = (unsigned long)qdev;
4795         qdev->timer.function = ql_timer;
4796         qdev->timer.expires = jiffies + (5*HZ);
4797         add_timer(&qdev->timer);
4798         ql_link_off(qdev);
4799         ql_display_dev_info(ndev);
4800         atomic_set(&qdev->lb_count, 0);
4801         cards_found++;
4802         return 0;
4803 }
4804
4805 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4806 {
4807         return qlge_send(skb, ndev);
4808 }
4809
4810 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4811 {
4812         return ql_clean_inbound_rx_ring(rx_ring, budget);
4813 }
4814
4815 static void qlge_remove(struct pci_dev *pdev)
4816 {
4817         struct net_device *ndev = pci_get_drvdata(pdev);
4818         struct ql_adapter *qdev = netdev_priv(ndev);
4819         del_timer_sync(&qdev->timer);
4820         ql_cancel_all_work_sync(qdev);
4821         unregister_netdev(ndev);
4822         ql_release_all(pdev);
4823         pci_disable_device(pdev);
4824         free_netdev(ndev);
4825 }
4826
4827 /* Clean up resources without touching hardware. */
4828 static void ql_eeh_close(struct net_device *ndev)
4829 {
4830         int i;
4831         struct ql_adapter *qdev = netdev_priv(ndev);
4832
4833         if (netif_carrier_ok(ndev)) {
4834                 netif_carrier_off(ndev);
4835                 netif_stop_queue(ndev);
4836         }
4837
4838         /* Disabling the timer */
4839         del_timer_sync(&qdev->timer);
4840         ql_cancel_all_work_sync(qdev);
4841
4842         for (i = 0; i < qdev->rss_ring_count; i++)
4843                 netif_napi_del(&qdev->rx_ring[i].napi);
4844
4845         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4846         ql_tx_ring_clean(qdev);
4847         ql_free_rx_buffers(qdev);
4848         ql_release_adapter_resources(qdev);
4849 }
4850
4851 /*
4852  * This callback is called by the PCI subsystem whenever
4853  * a PCI bus error is detected.
4854  */
4855 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4856                                                enum pci_channel_state state)
4857 {
4858         struct net_device *ndev = pci_get_drvdata(pdev);
4859         struct ql_adapter *qdev = netdev_priv(ndev);
4860
4861         switch (state) {
4862         case pci_channel_io_normal:
4863                 return PCI_ERS_RESULT_CAN_RECOVER;
4864         case pci_channel_io_frozen:
4865                 netif_device_detach(ndev);
4866                 if (netif_running(ndev))
4867                         ql_eeh_close(ndev);
4868                 pci_disable_device(pdev);
4869                 return PCI_ERS_RESULT_NEED_RESET;
4870         case pci_channel_io_perm_failure:
4871                 dev_err(&pdev->dev,
4872                         "%s: pci_channel_io_perm_failure.\n", __func__);
4873                 ql_eeh_close(ndev);
4874                 set_bit(QL_EEH_FATAL, &qdev->flags);
4875                 return PCI_ERS_RESULT_DISCONNECT;
4876         }
4877
4878         /* Request a slot reset. */
4879         return PCI_ERS_RESULT_NEED_RESET;
4880 }
4881
4882 /*
4883  * This callback is called after the PCI buss has been reset.
4884  * Basically, this tries to restart the card from scratch.
4885  * This is a shortened version of the device probe/discovery code,
4886  * it resembles the first-half of the () routine.
4887  */
4888 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4889 {
4890         struct net_device *ndev = pci_get_drvdata(pdev);
4891         struct ql_adapter *qdev = netdev_priv(ndev);
4892
4893         pdev->error_state = pci_channel_io_normal;
4894
4895         pci_restore_state(pdev);
4896         if (pci_enable_device(pdev)) {
4897                 netif_err(qdev, ifup, qdev->ndev,
4898                           "Cannot re-enable PCI device after reset.\n");
4899                 return PCI_ERS_RESULT_DISCONNECT;
4900         }
4901         pci_set_master(pdev);
4902
4903         if (ql_adapter_reset(qdev)) {
4904                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4905                 set_bit(QL_EEH_FATAL, &qdev->flags);
4906                 return PCI_ERS_RESULT_DISCONNECT;
4907         }
4908
4909         return PCI_ERS_RESULT_RECOVERED;
4910 }
4911
4912 static void qlge_io_resume(struct pci_dev *pdev)
4913 {
4914         struct net_device *ndev = pci_get_drvdata(pdev);
4915         struct ql_adapter *qdev = netdev_priv(ndev);
4916         int err = 0;
4917
4918         if (netif_running(ndev)) {
4919                 err = qlge_open(ndev);
4920                 if (err) {
4921                         netif_err(qdev, ifup, qdev->ndev,
4922                                   "Device initialization failed after reset.\n");
4923                         return;
4924                 }
4925         } else {
4926                 netif_err(qdev, ifup, qdev->ndev,
4927                           "Device was not running prior to EEH.\n");
4928         }
4929         mod_timer(&qdev->timer, jiffies + (5*HZ));
4930         netif_device_attach(ndev);
4931 }
4932
4933 static const struct pci_error_handlers qlge_err_handler = {
4934         .error_detected = qlge_io_error_detected,
4935         .slot_reset = qlge_io_slot_reset,
4936         .resume = qlge_io_resume,
4937 };
4938
4939 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4940 {
4941         struct net_device *ndev = pci_get_drvdata(pdev);
4942         struct ql_adapter *qdev = netdev_priv(ndev);
4943         int err;
4944
4945         netif_device_detach(ndev);
4946         del_timer_sync(&qdev->timer);
4947
4948         if (netif_running(ndev)) {
4949                 err = ql_adapter_down(qdev);
4950                 if (!err)
4951                         return err;
4952         }
4953
4954         ql_wol(qdev);
4955         err = pci_save_state(pdev);
4956         if (err)
4957                 return err;
4958
4959         pci_disable_device(pdev);
4960
4961         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4962
4963         return 0;
4964 }
4965
4966 #ifdef CONFIG_PM
4967 static int qlge_resume(struct pci_dev *pdev)
4968 {
4969         struct net_device *ndev = pci_get_drvdata(pdev);
4970         struct ql_adapter *qdev = netdev_priv(ndev);
4971         int err;
4972
4973         pci_set_power_state(pdev, PCI_D0);
4974         pci_restore_state(pdev);
4975         err = pci_enable_device(pdev);
4976         if (err) {
4977                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4978                 return err;
4979         }
4980         pci_set_master(pdev);
4981
4982         pci_enable_wake(pdev, PCI_D3hot, 0);
4983         pci_enable_wake(pdev, PCI_D3cold, 0);
4984
4985         if (netif_running(ndev)) {
4986                 err = ql_adapter_up(qdev);
4987                 if (err)
4988                         return err;
4989         }
4990
4991         mod_timer(&qdev->timer, jiffies + (5*HZ));
4992         netif_device_attach(ndev);
4993
4994         return 0;
4995 }
4996 #endif /* CONFIG_PM */
4997
4998 static void qlge_shutdown(struct pci_dev *pdev)
4999 {
5000         qlge_suspend(pdev, PMSG_SUSPEND);
5001 }
5002
5003 static struct pci_driver qlge_driver = {
5004         .name = DRV_NAME,
5005         .id_table = qlge_pci_tbl,
5006         .probe = qlge_probe,
5007         .remove = qlge_remove,
5008 #ifdef CONFIG_PM
5009         .suspend = qlge_suspend,
5010         .resume = qlge_resume,
5011 #endif
5012         .shutdown = qlge_shutdown,
5013         .err_handler = &qlge_err_handler
5014 };
5015
5016 module_pci_driver(qlge_driver);