Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac                    = e1000_vfadapt,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac                    = e1000_vfadapt_i350,
77         .flags                  = 0,
78         .pba                    = 10,
79         .init_ops               = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]              = &igbvf_vf_info,
84         [board_i350_vf]         = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         u16 vid;
111
112         if (status & E1000_RXD_STAT_VP) {
113                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114                     (status & E1000_RXDEXT_STATERR_LB))
115                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116                 else
117                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118                 if (test_bit(vid, adapter->active_vlans))
119                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120         }
121
122         napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                          u32 status_err, struct sk_buff *skb)
127 {
128         skb_checksum_none_assert(skb);
129
130         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131         if ((status_err & E1000_RXD_STAT_IXSM) ||
132             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133                 return;
134
135         /* TCP/UDP checksum error bit is set */
136         if (status_err &
137             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138                 /* let the stack verify checksum errors */
139                 adapter->hw_csum_err++;
140                 return;
141         }
142
143         /* It must be a TCP or UDP packet with a valid checksum */
144         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145                 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147         adapter->hw_csum_good++;
148 }
149
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                    int cleaned_count)
157 {
158         struct igbvf_adapter *adapter = rx_ring->adapter;
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         union e1000_adv_rx_desc *rx_desc;
162         struct igbvf_buffer *buffer_info;
163         struct sk_buff *skb;
164         unsigned int i;
165         int bufsz;
166
167         i = rx_ring->next_to_use;
168         buffer_info = &rx_ring->buffer_info[i];
169
170         if (adapter->rx_ps_hdr_size)
171                 bufsz = adapter->rx_ps_hdr_size;
172         else
173                 bufsz = adapter->rx_buffer_len;
174
175         while (cleaned_count--) {
176                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179                         if (!buffer_info->page) {
180                                 buffer_info->page = alloc_page(GFP_ATOMIC);
181                                 if (!buffer_info->page) {
182                                         adapter->alloc_rx_buff_failed++;
183                                         goto no_buffers;
184                                 }
185                                 buffer_info->page_offset = 0;
186                         } else {
187                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
188                         }
189                         buffer_info->page_dma =
190                                 dma_map_page(&pdev->dev, buffer_info->page,
191                                              buffer_info->page_offset,
192                                              PAGE_SIZE / 2,
193                                              DMA_FROM_DEVICE);
194                         if (dma_mapping_error(&pdev->dev,
195                                               buffer_info->page_dma)) {
196                                 __free_page(buffer_info->page);
197                                 buffer_info->page = NULL;
198                                 dev_err(&pdev->dev, "RX DMA map failed\n");
199                                 break;
200                         }
201                 }
202
203                 if (!buffer_info->skb) {
204                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205                         if (!skb) {
206                                 adapter->alloc_rx_buff_failed++;
207                                 goto no_buffers;
208                         }
209
210                         buffer_info->skb = skb;
211                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212                                                           bufsz,
213                                                           DMA_FROM_DEVICE);
214                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215                                 dev_kfree_skb(buffer_info->skb);
216                                 buffer_info->skb = NULL;
217                                 dev_err(&pdev->dev, "RX DMA map failed\n");
218                                 goto no_buffers;
219                         }
220                 }
221                 /* Refresh the desc even if buffer_addrs didn't change because
222                  * each write-back erases this info. */
223                 if (adapter->rx_ps_hdr_size) {
224                         rx_desc->read.pkt_addr =
225                              cpu_to_le64(buffer_info->page_dma);
226                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227                 } else {
228                         rx_desc->read.pkt_addr =
229                              cpu_to_le64(buffer_info->dma);
230                         rx_desc->read.hdr_addr = 0;
231                 }
232
233                 i++;
234                 if (i == rx_ring->count)
235                         i = 0;
236                 buffer_info = &rx_ring->buffer_info[i];
237         }
238
239 no_buffers:
240         if (rx_ring->next_to_use != i) {
241                 rx_ring->next_to_use = i;
242                 if (i == 0)
243                         i = (rx_ring->count - 1);
244                 else
245                         i--;
246
247                 /* Force memory writes to complete before letting h/w
248                  * know there are new descriptors to fetch.  (Only
249                  * applicable for weak-ordered memory model archs,
250                  * such as IA-64). */
251                 wmb();
252                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253         }
254 }
255
256 /**
257  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258  * @adapter: board private structure
259  *
260  * the return value indicates whether actual cleaning was done, there
261  * is no guarantee that everything was cleaned
262  **/
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264                                int *work_done, int work_to_do)
265 {
266         struct igbvf_ring *rx_ring = adapter->rx_ring;
267         struct net_device *netdev = adapter->netdev;
268         struct pci_dev *pdev = adapter->pdev;
269         union e1000_adv_rx_desc *rx_desc, *next_rxd;
270         struct igbvf_buffer *buffer_info, *next_buffer;
271         struct sk_buff *skb;
272         bool cleaned = false;
273         int cleaned_count = 0;
274         unsigned int total_bytes = 0, total_packets = 0;
275         unsigned int i;
276         u32 length, hlen, staterr;
277
278         i = rx_ring->next_to_clean;
279         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282         while (staterr & E1000_RXD_STAT_DD) {
283                 if (*work_done >= work_to_do)
284                         break;
285                 (*work_done)++;
286                 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288                 buffer_info = &rx_ring->buffer_info[i];
289
290                 /* HW will not DMA in data larger than the given buffer, even
291                  * if it parses the (NFS, of course) header to be larger.  In
292                  * that case, it fills the header buffer and spills the rest
293                  * into the page.
294                  */
295                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297                 if (hlen > adapter->rx_ps_hdr_size)
298                         hlen = adapter->rx_ps_hdr_size;
299
300                 length = le16_to_cpu(rx_desc->wb.upper.length);
301                 cleaned = true;
302                 cleaned_count++;
303
304                 skb = buffer_info->skb;
305                 prefetch(skb->data - NET_IP_ALIGN);
306                 buffer_info->skb = NULL;
307                 if (!adapter->rx_ps_hdr_size) {
308                         dma_unmap_single(&pdev->dev, buffer_info->dma,
309                                          adapter->rx_buffer_len,
310                                          DMA_FROM_DEVICE);
311                         buffer_info->dma = 0;
312                         skb_put(skb, length);
313                         goto send_up;
314                 }
315
316                 if (!skb_shinfo(skb)->nr_frags) {
317                         dma_unmap_single(&pdev->dev, buffer_info->dma,
318                                          adapter->rx_ps_hdr_size,
319                                          DMA_FROM_DEVICE);
320                         skb_put(skb, hlen);
321                 }
322
323                 if (length) {
324                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325                                        PAGE_SIZE / 2,
326                                        DMA_FROM_DEVICE);
327                         buffer_info->page_dma = 0;
328
329                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330                                            buffer_info->page,
331                                            buffer_info->page_offset,
332                                            length);
333
334                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335                             (page_count(buffer_info->page) != 1))
336                                 buffer_info->page = NULL;
337                         else
338                                 get_page(buffer_info->page);
339
340                         skb->len += length;
341                         skb->data_len += length;
342                         skb->truesize += PAGE_SIZE / 2;
343                 }
344 send_up:
345                 i++;
346                 if (i == rx_ring->count)
347                         i = 0;
348                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349                 prefetch(next_rxd);
350                 next_buffer = &rx_ring->buffer_info[i];
351
352                 if (!(staterr & E1000_RXD_STAT_EOP)) {
353                         buffer_info->skb = next_buffer->skb;
354                         buffer_info->dma = next_buffer->dma;
355                         next_buffer->skb = skb;
356                         next_buffer->dma = 0;
357                         goto next_desc;
358                 }
359
360                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361                         dev_kfree_skb_irq(skb);
362                         goto next_desc;
363                 }
364
365                 total_bytes += skb->len;
366                 total_packets++;
367
368                 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370                 skb->protocol = eth_type_trans(skb, netdev);
371
372                 igbvf_receive_skb(adapter, netdev, skb, staterr,
373                                   rx_desc->wb.upper.vlan);
374
375 next_desc:
376                 rx_desc->wb.upper.status_error = 0;
377
378                 /* return some buffers to hardware, one at a time is too slow */
379                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381                         cleaned_count = 0;
382                 }
383
384                 /* use prefetched values */
385                 rx_desc = next_rxd;
386                 buffer_info = next_buffer;
387
388                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389         }
390
391         rx_ring->next_to_clean = i;
392         cleaned_count = igbvf_desc_unused(rx_ring);
393
394         if (cleaned_count)
395                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397         adapter->total_rx_packets += total_packets;
398         adapter->total_rx_bytes += total_bytes;
399         adapter->net_stats.rx_bytes += total_bytes;
400         adapter->net_stats.rx_packets += total_packets;
401         return cleaned;
402 }
403
404 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405                             struct igbvf_buffer *buffer_info)
406 {
407         if (buffer_info->dma) {
408                 if (buffer_info->mapped_as_page)
409                         dma_unmap_page(&adapter->pdev->dev,
410                                        buffer_info->dma,
411                                        buffer_info->length,
412                                        DMA_TO_DEVICE);
413                 else
414                         dma_unmap_single(&adapter->pdev->dev,
415                                          buffer_info->dma,
416                                          buffer_info->length,
417                                          DMA_TO_DEVICE);
418                 buffer_info->dma = 0;
419         }
420         if (buffer_info->skb) {
421                 dev_kfree_skb_any(buffer_info->skb);
422                 buffer_info->skb = NULL;
423         }
424         buffer_info->time_stamp = 0;
425 }
426
427 /**
428  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429  * @adapter: board private structure
430  *
431  * Return 0 on success, negative on failure
432  **/
433 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434                              struct igbvf_ring *tx_ring)
435 {
436         struct pci_dev *pdev = adapter->pdev;
437         int size;
438
439         size = sizeof(struct igbvf_buffer) * tx_ring->count;
440         tx_ring->buffer_info = vzalloc(size);
441         if (!tx_ring->buffer_info)
442                 goto err;
443
444         /* round up to nearest 4K */
445         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446         tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449                                            &tx_ring->dma, GFP_KERNEL);
450         if (!tx_ring->desc)
451                 goto err;
452
453         tx_ring->adapter = adapter;
454         tx_ring->next_to_use = 0;
455         tx_ring->next_to_clean = 0;
456
457         return 0;
458 err:
459         vfree(tx_ring->buffer_info);
460         dev_err(&adapter->pdev->dev,
461                 "Unable to allocate memory for the transmit descriptor ring\n");
462         return -ENOMEM;
463 }
464
465 /**
466  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467  * @adapter: board private structure
468  *
469  * Returns 0 on success, negative on failure
470  **/
471 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472                              struct igbvf_ring *rx_ring)
473 {
474         struct pci_dev *pdev = adapter->pdev;
475         int size, desc_len;
476
477         size = sizeof(struct igbvf_buffer) * rx_ring->count;
478         rx_ring->buffer_info = vzalloc(size);
479         if (!rx_ring->buffer_info)
480                 goto err;
481
482         desc_len = sizeof(union e1000_adv_rx_desc);
483
484         /* Round up to nearest 4K */
485         rx_ring->size = rx_ring->count * desc_len;
486         rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489                                            &rx_ring->dma, GFP_KERNEL);
490         if (!rx_ring->desc)
491                 goto err;
492
493         rx_ring->next_to_clean = 0;
494         rx_ring->next_to_use = 0;
495
496         rx_ring->adapter = adapter;
497
498         return 0;
499
500 err:
501         vfree(rx_ring->buffer_info);
502         rx_ring->buffer_info = NULL;
503         dev_err(&adapter->pdev->dev,
504                 "Unable to allocate memory for the receive descriptor ring\n");
505         return -ENOMEM;
506 }
507
508 /**
509  * igbvf_clean_tx_ring - Free Tx Buffers
510  * @tx_ring: ring to be cleaned
511  **/
512 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513 {
514         struct igbvf_adapter *adapter = tx_ring->adapter;
515         struct igbvf_buffer *buffer_info;
516         unsigned long size;
517         unsigned int i;
518
519         if (!tx_ring->buffer_info)
520                 return;
521
522         /* Free all the Tx ring sk_buffs */
523         for (i = 0; i < tx_ring->count; i++) {
524                 buffer_info = &tx_ring->buffer_info[i];
525                 igbvf_put_txbuf(adapter, buffer_info);
526         }
527
528         size = sizeof(struct igbvf_buffer) * tx_ring->count;
529         memset(tx_ring->buffer_info, 0, size);
530
531         /* Zero out the descriptor ring */
532         memset(tx_ring->desc, 0, tx_ring->size);
533
534         tx_ring->next_to_use = 0;
535         tx_ring->next_to_clean = 0;
536
537         writel(0, adapter->hw.hw_addr + tx_ring->head);
538         writel(0, adapter->hw.hw_addr + tx_ring->tail);
539 }
540
541 /**
542  * igbvf_free_tx_resources - Free Tx Resources per Queue
543  * @tx_ring: ring to free resources from
544  *
545  * Free all transmit software resources
546  **/
547 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548 {
549         struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551         igbvf_clean_tx_ring(tx_ring);
552
553         vfree(tx_ring->buffer_info);
554         tx_ring->buffer_info = NULL;
555
556         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557                           tx_ring->dma);
558
559         tx_ring->desc = NULL;
560 }
561
562 /**
563  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564  * @adapter: board private structure
565  **/
566 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567 {
568         struct igbvf_adapter *adapter = rx_ring->adapter;
569         struct igbvf_buffer *buffer_info;
570         struct pci_dev *pdev = adapter->pdev;
571         unsigned long size;
572         unsigned int i;
573
574         if (!rx_ring->buffer_info)
575                 return;
576
577         /* Free all the Rx ring sk_buffs */
578         for (i = 0; i < rx_ring->count; i++) {
579                 buffer_info = &rx_ring->buffer_info[i];
580                 if (buffer_info->dma) {
581                         if (adapter->rx_ps_hdr_size){
582                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
583                                                  adapter->rx_ps_hdr_size,
584                                                  DMA_FROM_DEVICE);
585                         } else {
586                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
587                                                  adapter->rx_buffer_len,
588                                                  DMA_FROM_DEVICE);
589                         }
590                         buffer_info->dma = 0;
591                 }
592
593                 if (buffer_info->skb) {
594                         dev_kfree_skb(buffer_info->skb);
595                         buffer_info->skb = NULL;
596                 }
597
598                 if (buffer_info->page) {
599                         if (buffer_info->page_dma)
600                                 dma_unmap_page(&pdev->dev,
601                                                buffer_info->page_dma,
602                                                PAGE_SIZE / 2,
603                                                DMA_FROM_DEVICE);
604                         put_page(buffer_info->page);
605                         buffer_info->page = NULL;
606                         buffer_info->page_dma = 0;
607                         buffer_info->page_offset = 0;
608                 }
609         }
610
611         size = sizeof(struct igbvf_buffer) * rx_ring->count;
612         memset(rx_ring->buffer_info, 0, size);
613
614         /* Zero out the descriptor ring */
615         memset(rx_ring->desc, 0, rx_ring->size);
616
617         rx_ring->next_to_clean = 0;
618         rx_ring->next_to_use = 0;
619
620         writel(0, adapter->hw.hw_addr + rx_ring->head);
621         writel(0, adapter->hw.hw_addr + rx_ring->tail);
622 }
623
624 /**
625  * igbvf_free_rx_resources - Free Rx Resources
626  * @rx_ring: ring to clean the resources from
627  *
628  * Free all receive software resources
629  **/
630
631 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632 {
633         struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635         igbvf_clean_rx_ring(rx_ring);
636
637         vfree(rx_ring->buffer_info);
638         rx_ring->buffer_info = NULL;
639
640         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641                           rx_ring->dma);
642         rx_ring->desc = NULL;
643 }
644
645 /**
646  * igbvf_update_itr - update the dynamic ITR value based on statistics
647  * @adapter: pointer to adapter
648  * @itr_setting: current adapter->itr
649  * @packets: the number of packets during this measurement interval
650  * @bytes: the number of bytes during this measurement interval
651  *
652  *      Stores a new ITR value based on packets and byte
653  *      counts during the last interrupt.  The advantage of per interrupt
654  *      computation is faster updates and more accurate ITR for the current
655  *      traffic pattern.  Constants in this function were computed
656  *      based on theoretical maximum wire speed and thresholds were set based
657  *      on testing data as well as attempting to minimize response time
658  *      while increasing bulk throughput.
659  **/
660 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661                                            enum latency_range itr_setting,
662                                            int packets, int bytes)
663 {
664         enum latency_range retval = itr_setting;
665
666         if (packets == 0)
667                 goto update_itr_done;
668
669         switch (itr_setting) {
670         case lowest_latency:
671                 /* handle TSO and jumbo frames */
672                 if (bytes/packets > 8000)
673                         retval = bulk_latency;
674                 else if ((packets < 5) && (bytes > 512))
675                         retval = low_latency;
676                 break;
677         case low_latency:  /* 50 usec aka 20000 ints/s */
678                 if (bytes > 10000) {
679                         /* this if handles the TSO accounting */
680                         if (bytes/packets > 8000)
681                                 retval = bulk_latency;
682                         else if ((packets < 10) || ((bytes/packets) > 1200))
683                                 retval = bulk_latency;
684                         else if ((packets > 35))
685                                 retval = lowest_latency;
686                 } else if (bytes/packets > 2000) {
687                         retval = bulk_latency;
688                 } else if (packets <= 2 && bytes < 512) {
689                         retval = lowest_latency;
690                 }
691                 break;
692         case bulk_latency: /* 250 usec aka 4000 ints/s */
693                 if (bytes > 25000) {
694                         if (packets > 35)
695                                 retval = low_latency;
696                 } else if (bytes < 6000) {
697                         retval = low_latency;
698                 }
699                 break;
700         default:
701                 break;
702         }
703
704 update_itr_done:
705         return retval;
706 }
707
708 static int igbvf_range_to_itr(enum latency_range current_range)
709 {
710         int new_itr;
711
712         switch (current_range) {
713         /* counts and packets in update_itr are dependent on these numbers */
714         case lowest_latency:
715                 new_itr = IGBVF_70K_ITR;
716                 break;
717         case low_latency:
718                 new_itr = IGBVF_20K_ITR;
719                 break;
720         case bulk_latency:
721                 new_itr = IGBVF_4K_ITR;
722                 break;
723         default:
724                 new_itr = IGBVF_START_ITR;
725                 break;
726         }
727         return new_itr;
728 }
729
730 static void igbvf_set_itr(struct igbvf_adapter *adapter)
731 {
732         u32 new_itr;
733
734         adapter->tx_ring->itr_range =
735                         igbvf_update_itr(adapter,
736                                          adapter->tx_ring->itr_val,
737                                          adapter->total_tx_packets,
738                                          adapter->total_tx_bytes);
739
740         /* conservative mode (itr 3) eliminates the lowest_latency setting */
741         if (adapter->requested_itr == 3 &&
742             adapter->tx_ring->itr_range == lowest_latency)
743                 adapter->tx_ring->itr_range = low_latency;
744
745         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748         if (new_itr != adapter->tx_ring->itr_val) {
749                 u32 current_itr = adapter->tx_ring->itr_val;
750                 /*
751                  * this attempts to bias the interrupt rate towards Bulk
752                  * by adding intermediate steps when interrupt rate is
753                  * increasing
754                  */
755                 new_itr = new_itr > current_itr ?
756                              min(current_itr + (new_itr >> 2), new_itr) :
757                              new_itr;
758                 adapter->tx_ring->itr_val = new_itr;
759
760                 adapter->tx_ring->set_itr = 1;
761         }
762
763         adapter->rx_ring->itr_range =
764                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765                                          adapter->total_rx_packets,
766                                          adapter->total_rx_bytes);
767         if (adapter->requested_itr == 3 &&
768             adapter->rx_ring->itr_range == lowest_latency)
769                 adapter->rx_ring->itr_range = low_latency;
770
771         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773         if (new_itr != adapter->rx_ring->itr_val) {
774                 u32 current_itr = adapter->rx_ring->itr_val;
775                 new_itr = new_itr > current_itr ?
776                              min(current_itr + (new_itr >> 2), new_itr) :
777                              new_itr;
778                 adapter->rx_ring->itr_val = new_itr;
779
780                 adapter->rx_ring->set_itr = 1;
781         }
782 }
783
784 /**
785  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786  * @adapter: board private structure
787  *
788  * returns true if ring is completely cleaned
789  **/
790 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791 {
792         struct igbvf_adapter *adapter = tx_ring->adapter;
793         struct net_device *netdev = adapter->netdev;
794         struct igbvf_buffer *buffer_info;
795         struct sk_buff *skb;
796         union e1000_adv_tx_desc *tx_desc, *eop_desc;
797         unsigned int total_bytes = 0, total_packets = 0;
798         unsigned int i, count = 0;
799         bool cleaned = false;
800
801         i = tx_ring->next_to_clean;
802         buffer_info = &tx_ring->buffer_info[i];
803         eop_desc = buffer_info->next_to_watch;
804
805         do {
806                 /* if next_to_watch is not set then there is no work pending */
807                 if (!eop_desc)
808                         break;
809
810                 /* prevent any other reads prior to eop_desc */
811                 read_barrier_depends();
812
813                 /* if DD is not set pending work has not been completed */
814                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815                         break;
816
817                 /* clear next_to_watch to prevent false hangs */
818                 buffer_info->next_to_watch = NULL;
819
820                 for (cleaned = false; !cleaned; count++) {
821                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822                         cleaned = (tx_desc == eop_desc);
823                         skb = buffer_info->skb;
824
825                         if (skb) {
826                                 unsigned int segs, bytecount;
827
828                                 /* gso_segs is currently only valid for tcp */
829                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
830                                 /* multiply data chunks by size of headers */
831                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
832                                             skb->len;
833                                 total_packets += segs;
834                                 total_bytes += bytecount;
835                         }
836
837                         igbvf_put_txbuf(adapter, buffer_info);
838                         tx_desc->wb.status = 0;
839
840                         i++;
841                         if (i == tx_ring->count)
842                                 i = 0;
843
844                         buffer_info = &tx_ring->buffer_info[i];
845                 }
846
847                 eop_desc = buffer_info->next_to_watch;
848         } while (count < tx_ring->count);
849
850         tx_ring->next_to_clean = i;
851
852         if (unlikely(count &&
853                      netif_carrier_ok(netdev) &&
854                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855                 /* Make sure that anybody stopping the queue after this
856                  * sees the new next_to_clean.
857                  */
858                 smp_mb();
859                 if (netif_queue_stopped(netdev) &&
860                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861                         netif_wake_queue(netdev);
862                         ++adapter->restart_queue;
863                 }
864         }
865
866         adapter->net_stats.tx_bytes += total_bytes;
867         adapter->net_stats.tx_packets += total_packets;
868         return count < tx_ring->count;
869 }
870
871 static irqreturn_t igbvf_msix_other(int irq, void *data)
872 {
873         struct net_device *netdev = data;
874         struct igbvf_adapter *adapter = netdev_priv(netdev);
875         struct e1000_hw *hw = &adapter->hw;
876
877         adapter->int_counter1++;
878
879         netif_carrier_off(netdev);
880         hw->mac.get_link_status = 1;
881         if (!test_bit(__IGBVF_DOWN, &adapter->state))
882                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884         ew32(EIMS, adapter->eims_other);
885
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891         struct net_device *netdev = data;
892         struct igbvf_adapter *adapter = netdev_priv(netdev);
893         struct e1000_hw *hw = &adapter->hw;
894         struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896         if (tx_ring->set_itr) {
897                 writel(tx_ring->itr_val,
898                        adapter->hw.hw_addr + tx_ring->itr_register);
899                 adapter->tx_ring->set_itr = 0;
900         }
901
902         adapter->total_tx_bytes = 0;
903         adapter->total_tx_packets = 0;
904
905         /* auto mask will automatically reenable the interrupt when we write
906          * EICS */
907         if (!igbvf_clean_tx_irq(tx_ring))
908                 /* Ring was not completely cleaned, so fire another interrupt */
909                 ew32(EICS, tx_ring->eims_value);
910         else
911                 ew32(EIMS, tx_ring->eims_value);
912
913         return IRQ_HANDLED;
914 }
915
916 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917 {
918         struct net_device *netdev = data;
919         struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921         adapter->int_counter0++;
922
923         /* Write the ITR value calculated at the end of the
924          * previous interrupt.
925          */
926         if (adapter->rx_ring->set_itr) {
927                 writel(adapter->rx_ring->itr_val,
928                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929                 adapter->rx_ring->set_itr = 0;
930         }
931
932         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933                 adapter->total_rx_bytes = 0;
934                 adapter->total_rx_packets = 0;
935                 __napi_schedule(&adapter->rx_ring->napi);
936         }
937
938         return IRQ_HANDLED;
939 }
940
941 #define IGBVF_NO_QUEUE -1
942
943 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944                                 int tx_queue, int msix_vector)
945 {
946         struct e1000_hw *hw = &adapter->hw;
947         u32 ivar, index;
948
949         /* 82576 uses a table-based method for assigning vectors.
950            Each queue has a single entry in the table to which we write
951            a vector number along with a "valid" bit.  Sadly, the layout
952            of the table is somewhat counterintuitive. */
953         if (rx_queue > IGBVF_NO_QUEUE) {
954                 index = (rx_queue >> 1);
955                 ivar = array_er32(IVAR0, index);
956                 if (rx_queue & 0x1) {
957                         /* vector goes into third byte of register */
958                         ivar = ivar & 0xFF00FFFF;
959                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960                 } else {
961                         /* vector goes into low byte of register */
962                         ivar = ivar & 0xFFFFFF00;
963                         ivar |= msix_vector | E1000_IVAR_VALID;
964                 }
965                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966                 array_ew32(IVAR0, index, ivar);
967         }
968         if (tx_queue > IGBVF_NO_QUEUE) {
969                 index = (tx_queue >> 1);
970                 ivar = array_er32(IVAR0, index);
971                 if (tx_queue & 0x1) {
972                         /* vector goes into high byte of register */
973                         ivar = ivar & 0x00FFFFFF;
974                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975                 } else {
976                         /* vector goes into second byte of register */
977                         ivar = ivar & 0xFFFF00FF;
978                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979                 }
980                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981                 array_ew32(IVAR0, index, ivar);
982         }
983 }
984
985 /**
986  * igbvf_configure_msix - Configure MSI-X hardware
987  *
988  * igbvf_configure_msix sets up the hardware to properly
989  * generate MSI-X interrupts.
990  **/
991 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992 {
993         u32 tmp;
994         struct e1000_hw *hw = &adapter->hw;
995         struct igbvf_ring *tx_ring = adapter->tx_ring;
996         struct igbvf_ring *rx_ring = adapter->rx_ring;
997         int vector = 0;
998
999         adapter->eims_enable_mask = 0;
1000
1001         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002         adapter->eims_enable_mask |= tx_ring->eims_value;
1003         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005         adapter->eims_enable_mask |= rx_ring->eims_value;
1006         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008         /* set vector for other causes, i.e. link changes */
1009
1010         tmp = (vector++ | E1000_IVAR_VALID);
1011
1012         ew32(IVAR_MISC, tmp);
1013
1014         adapter->eims_enable_mask = (1 << (vector)) - 1;
1015         adapter->eims_other = 1 << (vector - 1);
1016         e1e_flush();
1017 }
1018
1019 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021         if (adapter->msix_entries) {
1022                 pci_disable_msix(adapter->pdev);
1023                 kfree(adapter->msix_entries);
1024                 adapter->msix_entries = NULL;
1025         }
1026 }
1027
1028 /**
1029  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030  *
1031  * Attempt to configure interrupts using the best available
1032  * capabilities of the hardware and kernel.
1033  **/
1034 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035 {
1036         int err = -ENOMEM;
1037         int i;
1038
1039         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041                                         GFP_KERNEL);
1042         if (adapter->msix_entries) {
1043                 for (i = 0; i < 3; i++)
1044                         adapter->msix_entries[i].entry = i;
1045
1046                 err = pci_enable_msix_range(adapter->pdev,
1047                                             adapter->msix_entries, 3, 3);
1048         }
1049
1050         if (err < 0) {
1051                 /* MSI-X failed */
1052                 dev_err(&adapter->pdev->dev,
1053                         "Failed to initialize MSI-X interrupts.\n");
1054                 igbvf_reset_interrupt_capability(adapter);
1055         }
1056 }
1057
1058 /**
1059  * igbvf_request_msix - Initialize MSI-X interrupts
1060  *
1061  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062  * kernel.
1063  **/
1064 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065 {
1066         struct net_device *netdev = adapter->netdev;
1067         int err = 0, vector = 0;
1068
1069         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072         } else {
1073                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075         }
1076
1077         err = request_irq(adapter->msix_entries[vector].vector,
1078                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079                           netdev);
1080         if (err)
1081                 goto out;
1082
1083         adapter->tx_ring->itr_register = E1000_EITR(vector);
1084         adapter->tx_ring->itr_val = adapter->current_itr;
1085         vector++;
1086
1087         err = request_irq(adapter->msix_entries[vector].vector,
1088                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089                           netdev);
1090         if (err)
1091                 goto out;
1092
1093         adapter->rx_ring->itr_register = E1000_EITR(vector);
1094         adapter->rx_ring->itr_val = adapter->current_itr;
1095         vector++;
1096
1097         err = request_irq(adapter->msix_entries[vector].vector,
1098                           igbvf_msix_other, 0, netdev->name, netdev);
1099         if (err)
1100                 goto out;
1101
1102         igbvf_configure_msix(adapter);
1103         return 0;
1104 out:
1105         return err;
1106 }
1107
1108 /**
1109  * igbvf_alloc_queues - Allocate memory for all rings
1110  * @adapter: board private structure to initialize
1111  **/
1112 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113 {
1114         struct net_device *netdev = adapter->netdev;
1115
1116         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117         if (!adapter->tx_ring)
1118                 return -ENOMEM;
1119
1120         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121         if (!adapter->rx_ring) {
1122                 kfree(adapter->tx_ring);
1123                 return -ENOMEM;
1124         }
1125
1126         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128         return 0;
1129 }
1130
1131 /**
1132  * igbvf_request_irq - initialize interrupts
1133  *
1134  * Attempts to configure interrupts using the best available
1135  * capabilities of the hardware and kernel.
1136  **/
1137 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138 {
1139         int err = -1;
1140
1141         /* igbvf supports msi-x only */
1142         if (adapter->msix_entries)
1143                 err = igbvf_request_msix(adapter);
1144
1145         if (!err)
1146                 return err;
1147
1148         dev_err(&adapter->pdev->dev,
1149                 "Unable to allocate interrupt, Error: %d\n", err);
1150
1151         return err;
1152 }
1153
1154 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155 {
1156         struct net_device *netdev = adapter->netdev;
1157         int vector;
1158
1159         if (adapter->msix_entries) {
1160                 for (vector = 0; vector < 3; vector++)
1161                         free_irq(adapter->msix_entries[vector].vector, netdev);
1162         }
1163 }
1164
1165 /**
1166  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167  **/
1168 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169 {
1170         struct e1000_hw *hw = &adapter->hw;
1171
1172         ew32(EIMC, ~0);
1173
1174         if (adapter->msix_entries)
1175                 ew32(EIAC, 0);
1176 }
1177
1178 /**
1179  * igbvf_irq_enable - Enable default interrupt generation settings
1180  **/
1181 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182 {
1183         struct e1000_hw *hw = &adapter->hw;
1184
1185         ew32(EIAC, adapter->eims_enable_mask);
1186         ew32(EIAM, adapter->eims_enable_mask);
1187         ew32(EIMS, adapter->eims_enable_mask);
1188 }
1189
1190 /**
1191  * igbvf_poll - NAPI Rx polling callback
1192  * @napi: struct associated with this polling callback
1193  * @budget: amount of packets driver is allowed to process this poll
1194  **/
1195 static int igbvf_poll(struct napi_struct *napi, int budget)
1196 {
1197         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198         struct igbvf_adapter *adapter = rx_ring->adapter;
1199         struct e1000_hw *hw = &adapter->hw;
1200         int work_done = 0;
1201
1202         igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204         /* If not enough Rx work done, exit the polling mode */
1205         if (work_done < budget) {
1206                 napi_complete(napi);
1207
1208                 if (adapter->requested_itr & 3)
1209                         igbvf_set_itr(adapter);
1210
1211                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212                         ew32(EIMS, adapter->rx_ring->eims_value);
1213         }
1214
1215         return work_done;
1216 }
1217
1218 /**
1219  * igbvf_set_rlpml - set receive large packet maximum length
1220  * @adapter: board private structure
1221  *
1222  * Configure the maximum size of packets that will be received
1223  */
1224 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225 {
1226         int max_frame_size;
1227         struct e1000_hw *hw = &adapter->hw;
1228
1229         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230         e1000_rlpml_set_vf(hw, max_frame_size);
1231 }
1232
1233 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234                                  __be16 proto, u16 vid)
1235 {
1236         struct igbvf_adapter *adapter = netdev_priv(netdev);
1237         struct e1000_hw *hw = &adapter->hw;
1238
1239         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1241                 return -EINVAL;
1242         }
1243         set_bit(vid, adapter->active_vlans);
1244         return 0;
1245 }
1246
1247 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248                                   __be16 proto, u16 vid)
1249 {
1250         struct igbvf_adapter *adapter = netdev_priv(netdev);
1251         struct e1000_hw *hw = &adapter->hw;
1252
1253         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254                 dev_err(&adapter->pdev->dev,
1255                         "Failed to remove vlan id %d\n", vid);
1256                 return -EINVAL;
1257         }
1258         clear_bit(vid, adapter->active_vlans);
1259         return 0;
1260 }
1261
1262 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263 {
1264         u16 vid;
1265
1266         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268 }
1269
1270 /**
1271  * igbvf_configure_tx - Configure Transmit Unit after Reset
1272  * @adapter: board private structure
1273  *
1274  * Configure the Tx unit of the MAC after a reset.
1275  **/
1276 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277 {
1278         struct e1000_hw *hw = &adapter->hw;
1279         struct igbvf_ring *tx_ring = adapter->tx_ring;
1280         u64 tdba;
1281         u32 txdctl, dca_txctrl;
1282
1283         /* disable transmits */
1284         txdctl = er32(TXDCTL(0));
1285         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286         e1e_flush();
1287         msleep(10);
1288
1289         /* Setup the HW Tx Head and Tail descriptor pointers */
1290         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291         tdba = tx_ring->dma;
1292         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293         ew32(TDBAH(0), (tdba >> 32));
1294         ew32(TDH(0), 0);
1295         ew32(TDT(0), 0);
1296         tx_ring->head = E1000_TDH(0);
1297         tx_ring->tail = E1000_TDT(0);
1298
1299         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1300          * MUST be delivered in order or it will completely screw up
1301          * our bookeeping.
1302          */
1303         dca_txctrl = er32(DCA_TXCTRL(0));
1304         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305         ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307         /* enable transmits */
1308         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309         ew32(TXDCTL(0), txdctl);
1310
1311         /* Setup Transmit Descriptor Settings for eop descriptor */
1312         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314         /* enable Report Status bit */
1315         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316 }
1317
1318 /**
1319  * igbvf_setup_srrctl - configure the receive control registers
1320  * @adapter: Board private structure
1321  **/
1322 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323 {
1324         struct e1000_hw *hw = &adapter->hw;
1325         u32 srrctl = 0;
1326
1327         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328                     E1000_SRRCTL_BSIZEHDR_MASK |
1329                     E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331         /* Enable queue drop to avoid head of line blocking */
1332         srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334         /* Setup buffer sizes */
1335         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338         if (adapter->rx_buffer_len < 2048) {
1339                 adapter->rx_ps_hdr_size = 0;
1340                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341         } else {
1342                 adapter->rx_ps_hdr_size = 128;
1343                 srrctl |= adapter->rx_ps_hdr_size <<
1344                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346         }
1347
1348         ew32(SRRCTL(0), srrctl);
1349 }
1350
1351 /**
1352  * igbvf_configure_rx - Configure Receive Unit after Reset
1353  * @adapter: board private structure
1354  *
1355  * Configure the Rx unit of the MAC after a reset.
1356  **/
1357 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358 {
1359         struct e1000_hw *hw = &adapter->hw;
1360         struct igbvf_ring *rx_ring = adapter->rx_ring;
1361         u64 rdba;
1362         u32 rdlen, rxdctl;
1363
1364         /* disable receives */
1365         rxdctl = er32(RXDCTL(0));
1366         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367         e1e_flush();
1368         msleep(10);
1369
1370         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372         /*
1373          * Setup the HW Rx Head and Tail Descriptor Pointers and
1374          * the Base and Length of the Rx Descriptor Ring
1375          */
1376         rdba = rx_ring->dma;
1377         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378         ew32(RDBAH(0), (rdba >> 32));
1379         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380         rx_ring->head = E1000_RDH(0);
1381         rx_ring->tail = E1000_RDT(0);
1382         ew32(RDH(0), 0);
1383         ew32(RDT(0), 0);
1384
1385         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386         rxdctl &= 0xFFF00000;
1387         rxdctl |= IGBVF_RX_PTHRESH;
1388         rxdctl |= IGBVF_RX_HTHRESH << 8;
1389         rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391         igbvf_set_rlpml(adapter);
1392
1393         /* enable receives */
1394         ew32(RXDCTL(0), rxdctl);
1395 }
1396
1397 /**
1398  * igbvf_set_multi - Multicast and Promiscuous mode set
1399  * @netdev: network interface device structure
1400  *
1401  * The set_multi entry point is called whenever the multicast address
1402  * list or the network interface flags are updated.  This routine is
1403  * responsible for configuring the hardware for proper multicast,
1404  * promiscuous mode, and all-multi behavior.
1405  **/
1406 static void igbvf_set_multi(struct net_device *netdev)
1407 {
1408         struct igbvf_adapter *adapter = netdev_priv(netdev);
1409         struct e1000_hw *hw = &adapter->hw;
1410         struct netdev_hw_addr *ha;
1411         u8  *mta_list = NULL;
1412         int i;
1413
1414         if (!netdev_mc_empty(netdev)) {
1415                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416                                          GFP_ATOMIC);
1417                 if (!mta_list)
1418                         return;
1419         }
1420
1421         /* prepare a packed array of only addresses. */
1422         i = 0;
1423         netdev_for_each_mc_addr(ha, netdev)
1424                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427         kfree(mta_list);
1428 }
1429
1430 /**
1431  * igbvf_configure - configure the hardware for Rx and Tx
1432  * @adapter: private board structure
1433  **/
1434 static void igbvf_configure(struct igbvf_adapter *adapter)
1435 {
1436         igbvf_set_multi(adapter->netdev);
1437
1438         igbvf_restore_vlan(adapter);
1439
1440         igbvf_configure_tx(adapter);
1441         igbvf_setup_srrctl(adapter);
1442         igbvf_configure_rx(adapter);
1443         igbvf_alloc_rx_buffers(adapter->rx_ring,
1444                                igbvf_desc_unused(adapter->rx_ring));
1445 }
1446
1447 /* igbvf_reset - bring the hardware into a known good state
1448  *
1449  * This function boots the hardware and enables some settings that
1450  * require a configuration cycle of the hardware - those cannot be
1451  * set/changed during runtime. After reset the device needs to be
1452  * properly configured for Rx, Tx etc.
1453  */
1454 static void igbvf_reset(struct igbvf_adapter *adapter)
1455 {
1456         struct e1000_mac_info *mac = &adapter->hw.mac;
1457         struct net_device *netdev = adapter->netdev;
1458         struct e1000_hw *hw = &adapter->hw;
1459
1460         /* Allow time for pending master requests to run */
1461         if (mac->ops.reset_hw(hw))
1462                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464         mac->ops.init_hw(hw);
1465
1466         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468                        netdev->addr_len);
1469                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470                        netdev->addr_len);
1471         }
1472
1473         adapter->last_reset = jiffies;
1474 }
1475
1476 int igbvf_up(struct igbvf_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* hardware has been reset, we need to reload some things */
1481         igbvf_configure(adapter);
1482
1483         clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485         napi_enable(&adapter->rx_ring->napi);
1486         if (adapter->msix_entries)
1487                 igbvf_configure_msix(adapter);
1488
1489         /* Clear any pending interrupts. */
1490         er32(EICR);
1491         igbvf_irq_enable(adapter);
1492
1493         /* start the watchdog */
1494         hw->mac.get_link_status = 1;
1495         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498         return 0;
1499 }
1500
1501 void igbvf_down(struct igbvf_adapter *adapter)
1502 {
1503         struct net_device *netdev = adapter->netdev;
1504         struct e1000_hw *hw = &adapter->hw;
1505         u32 rxdctl, txdctl;
1506
1507         /*
1508          * signal that we're down so the interrupt handler does not
1509          * reschedule our watchdog timer
1510          */
1511         set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513         /* disable receives in the hardware */
1514         rxdctl = er32(RXDCTL(0));
1515         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517         netif_stop_queue(netdev);
1518
1519         /* disable transmits in the hardware */
1520         txdctl = er32(TXDCTL(0));
1521         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523         /* flush both disables and wait for them to finish */
1524         e1e_flush();
1525         msleep(10);
1526
1527         napi_disable(&adapter->rx_ring->napi);
1528
1529         igbvf_irq_disable(adapter);
1530
1531         del_timer_sync(&adapter->watchdog_timer);
1532
1533         netif_carrier_off(netdev);
1534
1535         /* record the stats before reset*/
1536         igbvf_update_stats(adapter);
1537
1538         adapter->link_speed = 0;
1539         adapter->link_duplex = 0;
1540
1541         igbvf_reset(adapter);
1542         igbvf_clean_tx_ring(adapter->tx_ring);
1543         igbvf_clean_rx_ring(adapter->rx_ring);
1544 }
1545
1546 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547 {
1548         might_sleep();
1549         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550                 msleep(1);
1551         igbvf_down(adapter);
1552         igbvf_up(adapter);
1553         clear_bit(__IGBVF_RESETTING, &adapter->state);
1554 }
1555
1556 /**
1557  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558  * @adapter: board private structure to initialize
1559  *
1560  * igbvf_sw_init initializes the Adapter private data structure.
1561  * Fields are initialized based on PCI device information and
1562  * OS network device settings (MTU size).
1563  **/
1564 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565 {
1566         struct net_device *netdev = adapter->netdev;
1567         s32 rc;
1568
1569         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570         adapter->rx_ps_hdr_size = 0;
1571         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574         adapter->tx_int_delay = 8;
1575         adapter->tx_abs_int_delay = 32;
1576         adapter->rx_int_delay = 0;
1577         adapter->rx_abs_int_delay = 8;
1578         adapter->requested_itr = 3;
1579         adapter->current_itr = IGBVF_START_ITR;
1580
1581         /* Set various function pointers */
1582         adapter->ei->init_ops(&adapter->hw);
1583
1584         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585         if (rc)
1586                 return rc;
1587
1588         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589         if (rc)
1590                 return rc;
1591
1592         igbvf_set_interrupt_capability(adapter);
1593
1594         if (igbvf_alloc_queues(adapter))
1595                 return -ENOMEM;
1596
1597         spin_lock_init(&adapter->tx_queue_lock);
1598
1599         /* Explicitly disable IRQ since the NIC can be in any state. */
1600         igbvf_irq_disable(adapter);
1601
1602         spin_lock_init(&adapter->stats_lock);
1603
1604         set_bit(__IGBVF_DOWN, &adapter->state);
1605         return 0;
1606 }
1607
1608 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609 {
1610         struct e1000_hw *hw = &adapter->hw;
1611
1612         adapter->stats.last_gprc = er32(VFGPRC);
1613         adapter->stats.last_gorc = er32(VFGORC);
1614         adapter->stats.last_gptc = er32(VFGPTC);
1615         adapter->stats.last_gotc = er32(VFGOTC);
1616         adapter->stats.last_mprc = er32(VFMPRC);
1617         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619         adapter->stats.last_gorlbc = er32(VFGORLBC);
1620         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622         adapter->stats.base_gprc = er32(VFGPRC);
1623         adapter->stats.base_gorc = er32(VFGORC);
1624         adapter->stats.base_gptc = er32(VFGPTC);
1625         adapter->stats.base_gotc = er32(VFGOTC);
1626         adapter->stats.base_mprc = er32(VFMPRC);
1627         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629         adapter->stats.base_gorlbc = er32(VFGORLBC);
1630         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631 }
1632
1633 /**
1634  * igbvf_open - Called when a network interface is made active
1635  * @netdev: network interface device structure
1636  *
1637  * Returns 0 on success, negative value on failure
1638  *
1639  * The open entry point is called when a network interface is made
1640  * active by the system (IFF_UP).  At this point all resources needed
1641  * for transmit and receive operations are allocated, the interrupt
1642  * handler is registered with the OS, the watchdog timer is started,
1643  * and the stack is notified that the interface is ready.
1644  **/
1645 static int igbvf_open(struct net_device *netdev)
1646 {
1647         struct igbvf_adapter *adapter = netdev_priv(netdev);
1648         struct e1000_hw *hw = &adapter->hw;
1649         int err;
1650
1651         /* disallow open during test */
1652         if (test_bit(__IGBVF_TESTING, &adapter->state))
1653                 return -EBUSY;
1654
1655         /* allocate transmit descriptors */
1656         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657         if (err)
1658                 goto err_setup_tx;
1659
1660         /* allocate receive descriptors */
1661         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662         if (err)
1663                 goto err_setup_rx;
1664
1665         /*
1666          * before we allocate an interrupt, we must be ready to handle it.
1667          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668          * as soon as we call pci_request_irq, so we have to setup our
1669          * clean_rx handler before we do so.
1670          */
1671         igbvf_configure(adapter);
1672
1673         err = igbvf_request_irq(adapter);
1674         if (err)
1675                 goto err_req_irq;
1676
1677         /* From here on the code is the same as igbvf_up() */
1678         clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680         napi_enable(&adapter->rx_ring->napi);
1681
1682         /* clear any pending interrupts */
1683         er32(EICR);
1684
1685         igbvf_irq_enable(adapter);
1686
1687         /* start the watchdog */
1688         hw->mac.get_link_status = 1;
1689         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691         return 0;
1692
1693 err_req_irq:
1694         igbvf_free_rx_resources(adapter->rx_ring);
1695 err_setup_rx:
1696         igbvf_free_tx_resources(adapter->tx_ring);
1697 err_setup_tx:
1698         igbvf_reset(adapter);
1699
1700         return err;
1701 }
1702
1703 /**
1704  * igbvf_close - Disables a network interface
1705  * @netdev: network interface device structure
1706  *
1707  * Returns 0, this is not allowed to fail
1708  *
1709  * The close entry point is called when an interface is de-activated
1710  * by the OS.  The hardware is still under the drivers control, but
1711  * needs to be disabled.  A global MAC reset is issued to stop the
1712  * hardware, and all transmit and receive resources are freed.
1713  **/
1714 static int igbvf_close(struct net_device *netdev)
1715 {
1716         struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719         igbvf_down(adapter);
1720
1721         igbvf_free_irq(adapter);
1722
1723         igbvf_free_tx_resources(adapter->tx_ring);
1724         igbvf_free_rx_resources(adapter->rx_ring);
1725
1726         return 0;
1727 }
1728 /**
1729  * igbvf_set_mac - Change the Ethernet Address of the NIC
1730  * @netdev: network interface device structure
1731  * @p: pointer to an address structure
1732  *
1733  * Returns 0 on success, negative on failure
1734  **/
1735 static int igbvf_set_mac(struct net_device *netdev, void *p)
1736 {
1737         struct igbvf_adapter *adapter = netdev_priv(netdev);
1738         struct e1000_hw *hw = &adapter->hw;
1739         struct sockaddr *addr = p;
1740
1741         if (!is_valid_ether_addr(addr->sa_data))
1742                 return -EADDRNOTAVAIL;
1743
1744         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749                 return -EADDRNOTAVAIL;
1750
1751         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753         return 0;
1754 }
1755
1756 #define UPDATE_VF_COUNTER(reg, name)                                    \
1757         {                                                               \
1758                 u32 current_counter = er32(reg);                        \
1759                 if (current_counter < adapter->stats.last_##name)       \
1760                         adapter->stats.name += 0x100000000LL;           \
1761                 adapter->stats.last_##name = current_counter;           \
1762                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1763                 adapter->stats.name |= current_counter;                 \
1764         }
1765
1766 /**
1767  * igbvf_update_stats - Update the board statistics counters
1768  * @adapter: board private structure
1769 **/
1770 void igbvf_update_stats(struct igbvf_adapter *adapter)
1771 {
1772         struct e1000_hw *hw = &adapter->hw;
1773         struct pci_dev *pdev = adapter->pdev;
1774
1775         /*
1776          * Prevent stats update while adapter is being reset, link is down
1777          * or if the pci connection is down.
1778          */
1779         if (adapter->link_speed == 0)
1780                 return;
1781
1782         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783                 return;
1784
1785         if (pci_channel_offline(pdev))
1786                 return;
1787
1788         UPDATE_VF_COUNTER(VFGPRC, gprc);
1789         UPDATE_VF_COUNTER(VFGORC, gorc);
1790         UPDATE_VF_COUNTER(VFGPTC, gptc);
1791         UPDATE_VF_COUNTER(VFGOTC, gotc);
1792         UPDATE_VF_COUNTER(VFMPRC, mprc);
1793         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798         /* Fill out the OS statistics structure */
1799         adapter->net_stats.multicast = adapter->stats.mprc;
1800 }
1801
1802 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803 {
1804         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805                  adapter->link_speed,
1806                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807 }
1808
1809 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810 {
1811         struct e1000_hw *hw = &adapter->hw;
1812         s32 ret_val = E1000_SUCCESS;
1813         bool link_active;
1814
1815         /* If interface is down, stay link down */
1816         if (test_bit(__IGBVF_DOWN, &adapter->state))
1817                 return false;
1818
1819         ret_val = hw->mac.ops.check_for_link(hw);
1820         link_active = !hw->mac.get_link_status;
1821
1822         /* if check for link returns error we will need to reset */
1823         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824                 schedule_work(&adapter->reset_task);
1825
1826         return link_active;
1827 }
1828
1829 /**
1830  * igbvf_watchdog - Timer Call-back
1831  * @data: pointer to adapter cast into an unsigned long
1832  **/
1833 static void igbvf_watchdog(unsigned long data)
1834 {
1835         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837         /* Do the rest outside of interrupt context */
1838         schedule_work(&adapter->watchdog_task);
1839 }
1840
1841 static void igbvf_watchdog_task(struct work_struct *work)
1842 {
1843         struct igbvf_adapter *adapter = container_of(work,
1844                                                      struct igbvf_adapter,
1845                                                      watchdog_task);
1846         struct net_device *netdev = adapter->netdev;
1847         struct e1000_mac_info *mac = &adapter->hw.mac;
1848         struct igbvf_ring *tx_ring = adapter->tx_ring;
1849         struct e1000_hw *hw = &adapter->hw;
1850         u32 link;
1851         int tx_pending = 0;
1852
1853         link = igbvf_has_link(adapter);
1854
1855         if (link) {
1856                 if (!netif_carrier_ok(netdev)) {
1857                         mac->ops.get_link_up_info(&adapter->hw,
1858                                                   &adapter->link_speed,
1859                                                   &adapter->link_duplex);
1860                         igbvf_print_link_info(adapter);
1861
1862                         netif_carrier_on(netdev);
1863                         netif_wake_queue(netdev);
1864                 }
1865         } else {
1866                 if (netif_carrier_ok(netdev)) {
1867                         adapter->link_speed = 0;
1868                         adapter->link_duplex = 0;
1869                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1870                         netif_carrier_off(netdev);
1871                         netif_stop_queue(netdev);
1872                 }
1873         }
1874
1875         if (netif_carrier_ok(netdev)) {
1876                 igbvf_update_stats(adapter);
1877         } else {
1878                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879                               tx_ring->count);
1880                 if (tx_pending) {
1881                         /*
1882                          * We've lost link, so the controller stops DMA,
1883                          * but we've got queued Tx work that's never going
1884                          * to get done, so reset controller to flush Tx.
1885                          * (Do the reset outside of interrupt context).
1886                          */
1887                         adapter->tx_timeout_count++;
1888                         schedule_work(&adapter->reset_task);
1889                 }
1890         }
1891
1892         /* Cause software interrupt to ensure Rx ring is cleaned */
1893         ew32(EICS, adapter->rx_ring->eims_value);
1894
1895         /* Reset the timer */
1896         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897                 mod_timer(&adapter->watchdog_timer,
1898                           round_jiffies(jiffies + (2 * HZ)));
1899 }
1900
1901 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1902 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1903 #define IGBVF_TX_FLAGS_TSO              0x00000004
1904 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1905 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1906 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1907
1908 static int igbvf_tso(struct igbvf_adapter *adapter,
1909                      struct igbvf_ring *tx_ring,
1910                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1911                      __be16 protocol)
1912 {
1913         struct e1000_adv_tx_context_desc *context_desc;
1914         struct igbvf_buffer *buffer_info;
1915         u32 info = 0, tu_cmd = 0;
1916         u32 mss_l4len_idx, l4len;
1917         unsigned int i;
1918         int err;
1919
1920         *hdr_len = 0;
1921
1922         err = skb_cow_head(skb, 0);
1923         if (err < 0) {
1924                 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1925                 return err;
1926         }
1927
1928         l4len = tcp_hdrlen(skb);
1929         *hdr_len += l4len;
1930
1931         if (protocol == htons(ETH_P_IP)) {
1932                 struct iphdr *iph = ip_hdr(skb);
1933                 iph->tot_len = 0;
1934                 iph->check = 0;
1935                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1936                                                          iph->daddr, 0,
1937                                                          IPPROTO_TCP,
1938                                                          0);
1939         } else if (skb_is_gso_v6(skb)) {
1940                 ipv6_hdr(skb)->payload_len = 0;
1941                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1942                                                        &ipv6_hdr(skb)->daddr,
1943                                                        0, IPPROTO_TCP, 0);
1944         }
1945
1946         i = tx_ring->next_to_use;
1947
1948         buffer_info = &tx_ring->buffer_info[i];
1949         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1950         /* VLAN MACLEN IPLEN */
1951         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1952                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1953         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1954         *hdr_len += skb_network_offset(skb);
1955         info |= (skb_transport_header(skb) - skb_network_header(skb));
1956         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1957         context_desc->vlan_macip_lens = cpu_to_le32(info);
1958
1959         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1960         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961
1962         if (protocol == htons(ETH_P_IP))
1963                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1964         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1965
1966         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1967
1968         /* MSS L4LEN IDX */
1969         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1970         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1971
1972         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1973         context_desc->seqnum_seed = 0;
1974
1975         buffer_info->time_stamp = jiffies;
1976         buffer_info->dma = 0;
1977         i++;
1978         if (i == tx_ring->count)
1979                 i = 0;
1980
1981         tx_ring->next_to_use = i;
1982
1983         return true;
1984 }
1985
1986 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1987                                  struct igbvf_ring *tx_ring,
1988                                  struct sk_buff *skb, u32 tx_flags,
1989                                  __be16 protocol)
1990 {
1991         struct e1000_adv_tx_context_desc *context_desc;
1992         unsigned int i;
1993         struct igbvf_buffer *buffer_info;
1994         u32 info = 0, tu_cmd = 0;
1995
1996         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1997             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1998                 i = tx_ring->next_to_use;
1999                 buffer_info = &tx_ring->buffer_info[i];
2000                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2001
2002                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2003                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2004
2005                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2006                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2007                         info |= (skb_transport_header(skb) -
2008                                  skb_network_header(skb));
2009
2010
2011                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2012
2013                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2014
2015                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2016                         switch (protocol) {
2017                         case htons(ETH_P_IP):
2018                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2019                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2020                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2021                                 break;
2022                         case htons(ETH_P_IPV6):
2023                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2024                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2025                                 break;
2026                         default:
2027                                 break;
2028                         }
2029                 }
2030
2031                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2032                 context_desc->seqnum_seed = 0;
2033                 context_desc->mss_l4len_idx = 0;
2034
2035                 buffer_info->time_stamp = jiffies;
2036                 buffer_info->dma = 0;
2037                 i++;
2038                 if (i == tx_ring->count)
2039                         i = 0;
2040                 tx_ring->next_to_use = i;
2041
2042                 return true;
2043         }
2044
2045         return false;
2046 }
2047
2048 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2049 {
2050         struct igbvf_adapter *adapter = netdev_priv(netdev);
2051
2052         /* there is enough descriptors then we don't need to worry  */
2053         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2054                 return 0;
2055
2056         netif_stop_queue(netdev);
2057
2058         smp_mb();
2059
2060         /* We need to check again just in case room has been made available */
2061         if (igbvf_desc_unused(adapter->tx_ring) < size)
2062                 return -EBUSY;
2063
2064         netif_wake_queue(netdev);
2065
2066         ++adapter->restart_queue;
2067         return 0;
2068 }
2069
2070 #define IGBVF_MAX_TXD_PWR       16
2071 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2072
2073 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2074                                    struct igbvf_ring *tx_ring,
2075                                    struct sk_buff *skb)
2076 {
2077         struct igbvf_buffer *buffer_info;
2078         struct pci_dev *pdev = adapter->pdev;
2079         unsigned int len = skb_headlen(skb);
2080         unsigned int count = 0, i;
2081         unsigned int f;
2082
2083         i = tx_ring->next_to_use;
2084
2085         buffer_info = &tx_ring->buffer_info[i];
2086         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2087         buffer_info->length = len;
2088         /* set time_stamp *before* dma to help avoid a possible race */
2089         buffer_info->time_stamp = jiffies;
2090         buffer_info->mapped_as_page = false;
2091         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2092                                           DMA_TO_DEVICE);
2093         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2094                 goto dma_error;
2095
2096
2097         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2098                 const struct skb_frag_struct *frag;
2099
2100                 count++;
2101                 i++;
2102                 if (i == tx_ring->count)
2103                         i = 0;
2104
2105                 frag = &skb_shinfo(skb)->frags[f];
2106                 len = skb_frag_size(frag);
2107
2108                 buffer_info = &tx_ring->buffer_info[i];
2109                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2110                 buffer_info->length = len;
2111                 buffer_info->time_stamp = jiffies;
2112                 buffer_info->mapped_as_page = true;
2113                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2114                                                 DMA_TO_DEVICE);
2115                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2116                         goto dma_error;
2117         }
2118
2119         tx_ring->buffer_info[i].skb = skb;
2120
2121         return ++count;
2122
2123 dma_error:
2124         dev_err(&pdev->dev, "TX DMA map failed\n");
2125
2126         /* clear timestamp and dma mappings for failed buffer_info mapping */
2127         buffer_info->dma = 0;
2128         buffer_info->time_stamp = 0;
2129         buffer_info->length = 0;
2130         buffer_info->mapped_as_page = false;
2131         if (count)
2132                 count--;
2133
2134         /* clear timestamp and dma mappings for remaining portion of packet */
2135         while (count--) {
2136                 if (i==0)
2137                         i += tx_ring->count;
2138                 i--;
2139                 buffer_info = &tx_ring->buffer_info[i];
2140                 igbvf_put_txbuf(adapter, buffer_info);
2141         }
2142
2143         return 0;
2144 }
2145
2146 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2147                                       struct igbvf_ring *tx_ring,
2148                                       int tx_flags, int count,
2149                                       unsigned int first, u32 paylen,
2150                                       u8 hdr_len)
2151 {
2152         union e1000_adv_tx_desc *tx_desc = NULL;
2153         struct igbvf_buffer *buffer_info;
2154         u32 olinfo_status = 0, cmd_type_len;
2155         unsigned int i;
2156
2157         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2158                         E1000_ADVTXD_DCMD_DEXT);
2159
2160         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2161                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2162
2163         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2164                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2165
2166                 /* insert tcp checksum */
2167                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2168
2169                 /* insert ip checksum */
2170                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2171                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2172
2173         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2174                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2175         }
2176
2177         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2178
2179         i = tx_ring->next_to_use;
2180         while (count--) {
2181                 buffer_info = &tx_ring->buffer_info[i];
2182                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2183                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2184                 tx_desc->read.cmd_type_len =
2185                          cpu_to_le32(cmd_type_len | buffer_info->length);
2186                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2187                 i++;
2188                 if (i == tx_ring->count)
2189                         i = 0;
2190         }
2191
2192         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2193         /* Force memory writes to complete before letting h/w
2194          * know there are new descriptors to fetch.  (Only
2195          * applicable for weak-ordered memory model archs,
2196          * such as IA-64). */
2197         wmb();
2198
2199         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2200         tx_ring->next_to_use = i;
2201         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2202         /* we need this if more than one processor can write to our tail
2203          * at a time, it syncronizes IO on IA64/Altix systems */
2204         mmiowb();
2205 }
2206
2207 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2208                                              struct net_device *netdev,
2209                                              struct igbvf_ring *tx_ring)
2210 {
2211         struct igbvf_adapter *adapter = netdev_priv(netdev);
2212         unsigned int first, tx_flags = 0;
2213         u8 hdr_len = 0;
2214         int count = 0;
2215         int tso = 0;
2216         __be16 protocol = vlan_get_protocol(skb);
2217
2218         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2219                 dev_kfree_skb_any(skb);
2220                 return NETDEV_TX_OK;
2221         }
2222
2223         if (skb->len <= 0) {
2224                 dev_kfree_skb_any(skb);
2225                 return NETDEV_TX_OK;
2226         }
2227
2228         /*
2229          * need: count + 4 desc gap to keep tail from touching
2230          *       + 2 desc gap to keep tail from touching head,
2231          *       + 1 desc for skb->data,
2232          *       + 1 desc for context descriptor,
2233          * head, otherwise try next time
2234          */
2235         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2236                 /* this is a hard error */
2237                 return NETDEV_TX_BUSY;
2238         }
2239
2240         if (vlan_tx_tag_present(skb)) {
2241                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2242                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2243         }
2244
2245         if (protocol == htons(ETH_P_IP))
2246                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2247
2248         first = tx_ring->next_to_use;
2249
2250         tso = skb_is_gso(skb) ?
2251                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2252         if (unlikely(tso < 0)) {
2253                 dev_kfree_skb_any(skb);
2254                 return NETDEV_TX_OK;
2255         }
2256
2257         if (tso)
2258                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2259         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2260                  (skb->ip_summed == CHECKSUM_PARTIAL))
2261                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2262
2263         /*
2264          * count reflects descriptors mapped, if 0 then mapping error
2265          * has occurred and we need to rewind the descriptor queue
2266          */
2267         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2268
2269         if (count) {
2270                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2271                                    first, skb->len, hdr_len);
2272                 /* Make sure there is space in the ring for the next send. */
2273                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2274         } else {
2275                 dev_kfree_skb_any(skb);
2276                 tx_ring->buffer_info[first].time_stamp = 0;
2277                 tx_ring->next_to_use = first;
2278         }
2279
2280         return NETDEV_TX_OK;
2281 }
2282
2283 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2284                                     struct net_device *netdev)
2285 {
2286         struct igbvf_adapter *adapter = netdev_priv(netdev);
2287         struct igbvf_ring *tx_ring;
2288
2289         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2290                 dev_kfree_skb_any(skb);
2291                 return NETDEV_TX_OK;
2292         }
2293
2294         tx_ring = &adapter->tx_ring[0];
2295
2296         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2297 }
2298
2299 /**
2300  * igbvf_tx_timeout - Respond to a Tx Hang
2301  * @netdev: network interface device structure
2302  **/
2303 static void igbvf_tx_timeout(struct net_device *netdev)
2304 {
2305         struct igbvf_adapter *adapter = netdev_priv(netdev);
2306
2307         /* Do the reset outside of interrupt context */
2308         adapter->tx_timeout_count++;
2309         schedule_work(&adapter->reset_task);
2310 }
2311
2312 static void igbvf_reset_task(struct work_struct *work)
2313 {
2314         struct igbvf_adapter *adapter;
2315         adapter = container_of(work, struct igbvf_adapter, reset_task);
2316
2317         igbvf_reinit_locked(adapter);
2318 }
2319
2320 /**
2321  * igbvf_get_stats - Get System Network Statistics
2322  * @netdev: network interface device structure
2323  *
2324  * Returns the address of the device statistics structure.
2325  * The statistics are actually updated from the timer callback.
2326  **/
2327 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2328 {
2329         struct igbvf_adapter *adapter = netdev_priv(netdev);
2330
2331         /* only return the current stats */
2332         return &adapter->net_stats;
2333 }
2334
2335 /**
2336  * igbvf_change_mtu - Change the Maximum Transfer Unit
2337  * @netdev: network interface device structure
2338  * @new_mtu: new value for maximum frame size
2339  *
2340  * Returns 0 on success, negative on failure
2341  **/
2342 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2343 {
2344         struct igbvf_adapter *adapter = netdev_priv(netdev);
2345         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2346
2347         if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2348             max_frame > MAX_JUMBO_FRAME_SIZE)
2349                 return -EINVAL;
2350
2351 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2352         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2353                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2354                 return -EINVAL;
2355         }
2356
2357         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2358                 msleep(1);
2359         /* igbvf_down has a dependency on max_frame_size */
2360         adapter->max_frame_size = max_frame;
2361         if (netif_running(netdev))
2362                 igbvf_down(adapter);
2363
2364         /*
2365          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2366          * means we reserve 2 more, this pushes us to allocate from the next
2367          * larger slab size.
2368          * i.e. RXBUFFER_2048 --> size-4096 slab
2369          * However with the new *_jumbo_rx* routines, jumbo receives will use
2370          * fragmented skbs
2371          */
2372
2373         if (max_frame <= 1024)
2374                 adapter->rx_buffer_len = 1024;
2375         else if (max_frame <= 2048)
2376                 adapter->rx_buffer_len = 2048;
2377         else
2378 #if (PAGE_SIZE / 2) > 16384
2379                 adapter->rx_buffer_len = 16384;
2380 #else
2381                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2382 #endif
2383
2384
2385         /* adjust allocation if LPE protects us, and we aren't using SBP */
2386         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2387              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2388                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2389                                          ETH_FCS_LEN;
2390
2391         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2392                  netdev->mtu, new_mtu);
2393         netdev->mtu = new_mtu;
2394
2395         if (netif_running(netdev))
2396                 igbvf_up(adapter);
2397         else
2398                 igbvf_reset(adapter);
2399
2400         clear_bit(__IGBVF_RESETTING, &adapter->state);
2401
2402         return 0;
2403 }
2404
2405 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2406 {
2407         switch (cmd) {
2408         default:
2409                 return -EOPNOTSUPP;
2410         }
2411 }
2412
2413 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2414 {
2415         struct net_device *netdev = pci_get_drvdata(pdev);
2416         struct igbvf_adapter *adapter = netdev_priv(netdev);
2417 #ifdef CONFIG_PM
2418         int retval = 0;
2419 #endif
2420
2421         netif_device_detach(netdev);
2422
2423         if (netif_running(netdev)) {
2424                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2425                 igbvf_down(adapter);
2426                 igbvf_free_irq(adapter);
2427         }
2428
2429 #ifdef CONFIG_PM
2430         retval = pci_save_state(pdev);
2431         if (retval)
2432                 return retval;
2433 #endif
2434
2435         pci_disable_device(pdev);
2436
2437         return 0;
2438 }
2439
2440 #ifdef CONFIG_PM
2441 static int igbvf_resume(struct pci_dev *pdev)
2442 {
2443         struct net_device *netdev = pci_get_drvdata(pdev);
2444         struct igbvf_adapter *adapter = netdev_priv(netdev);
2445         u32 err;
2446
2447         pci_restore_state(pdev);
2448         err = pci_enable_device_mem(pdev);
2449         if (err) {
2450                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2451                 return err;
2452         }
2453
2454         pci_set_master(pdev);
2455
2456         if (netif_running(netdev)) {
2457                 err = igbvf_request_irq(adapter);
2458                 if (err)
2459                         return err;
2460         }
2461
2462         igbvf_reset(adapter);
2463
2464         if (netif_running(netdev))
2465                 igbvf_up(adapter);
2466
2467         netif_device_attach(netdev);
2468
2469         return 0;
2470 }
2471 #endif
2472
2473 static void igbvf_shutdown(struct pci_dev *pdev)
2474 {
2475         igbvf_suspend(pdev, PMSG_SUSPEND);
2476 }
2477
2478 #ifdef CONFIG_NET_POLL_CONTROLLER
2479 /*
2480  * Polling 'interrupt' - used by things like netconsole to send skbs
2481  * without having to re-enable interrupts. It's not called while
2482  * the interrupt routine is executing.
2483  */
2484 static void igbvf_netpoll(struct net_device *netdev)
2485 {
2486         struct igbvf_adapter *adapter = netdev_priv(netdev);
2487
2488         disable_irq(adapter->pdev->irq);
2489
2490         igbvf_clean_tx_irq(adapter->tx_ring);
2491
2492         enable_irq(adapter->pdev->irq);
2493 }
2494 #endif
2495
2496 /**
2497  * igbvf_io_error_detected - called when PCI error is detected
2498  * @pdev: Pointer to PCI device
2499  * @state: The current pci connection state
2500  *
2501  * This function is called after a PCI bus error affecting
2502  * this device has been detected.
2503  */
2504 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2505                                                 pci_channel_state_t state)
2506 {
2507         struct net_device *netdev = pci_get_drvdata(pdev);
2508         struct igbvf_adapter *adapter = netdev_priv(netdev);
2509
2510         netif_device_detach(netdev);
2511
2512         if (state == pci_channel_io_perm_failure)
2513                 return PCI_ERS_RESULT_DISCONNECT;
2514
2515         if (netif_running(netdev))
2516                 igbvf_down(adapter);
2517         pci_disable_device(pdev);
2518
2519         /* Request a slot slot reset. */
2520         return PCI_ERS_RESULT_NEED_RESET;
2521 }
2522
2523 /**
2524  * igbvf_io_slot_reset - called after the pci bus has been reset.
2525  * @pdev: Pointer to PCI device
2526  *
2527  * Restart the card from scratch, as if from a cold-boot. Implementation
2528  * resembles the first-half of the igbvf_resume routine.
2529  */
2530 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2531 {
2532         struct net_device *netdev = pci_get_drvdata(pdev);
2533         struct igbvf_adapter *adapter = netdev_priv(netdev);
2534
2535         if (pci_enable_device_mem(pdev)) {
2536                 dev_err(&pdev->dev,
2537                         "Cannot re-enable PCI device after reset.\n");
2538                 return PCI_ERS_RESULT_DISCONNECT;
2539         }
2540         pci_set_master(pdev);
2541
2542         igbvf_reset(adapter);
2543
2544         return PCI_ERS_RESULT_RECOVERED;
2545 }
2546
2547 /**
2548  * igbvf_io_resume - called when traffic can start flowing again.
2549  * @pdev: Pointer to PCI device
2550  *
2551  * This callback is called when the error recovery driver tells us that
2552  * its OK to resume normal operation. Implementation resembles the
2553  * second-half of the igbvf_resume routine.
2554  */
2555 static void igbvf_io_resume(struct pci_dev *pdev)
2556 {
2557         struct net_device *netdev = pci_get_drvdata(pdev);
2558         struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560         if (netif_running(netdev)) {
2561                 if (igbvf_up(adapter)) {
2562                         dev_err(&pdev->dev,
2563                                 "can't bring device back up after reset\n");
2564                         return;
2565                 }
2566         }
2567
2568         netif_device_attach(netdev);
2569 }
2570
2571 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2572 {
2573         struct e1000_hw *hw = &adapter->hw;
2574         struct net_device *netdev = adapter->netdev;
2575         struct pci_dev *pdev = adapter->pdev;
2576
2577         if (hw->mac.type == e1000_vfadapt_i350)
2578                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2579         else
2580                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2581         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2582 }
2583
2584 static int igbvf_set_features(struct net_device *netdev,
2585         netdev_features_t features)
2586 {
2587         struct igbvf_adapter *adapter = netdev_priv(netdev);
2588
2589         if (features & NETIF_F_RXCSUM)
2590                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2591         else
2592                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2593
2594         return 0;
2595 }
2596
2597 static const struct net_device_ops igbvf_netdev_ops = {
2598         .ndo_open                       = igbvf_open,
2599         .ndo_stop                       = igbvf_close,
2600         .ndo_start_xmit                 = igbvf_xmit_frame,
2601         .ndo_get_stats                  = igbvf_get_stats,
2602         .ndo_set_rx_mode                = igbvf_set_multi,
2603         .ndo_set_mac_address            = igbvf_set_mac,
2604         .ndo_change_mtu                 = igbvf_change_mtu,
2605         .ndo_do_ioctl                   = igbvf_ioctl,
2606         .ndo_tx_timeout                 = igbvf_tx_timeout,
2607         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2608         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2609 #ifdef CONFIG_NET_POLL_CONTROLLER
2610         .ndo_poll_controller            = igbvf_netpoll,
2611 #endif
2612         .ndo_set_features               = igbvf_set_features,
2613 };
2614
2615 /**
2616  * igbvf_probe - Device Initialization Routine
2617  * @pdev: PCI device information struct
2618  * @ent: entry in igbvf_pci_tbl
2619  *
2620  * Returns 0 on success, negative on failure
2621  *
2622  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2623  * The OS initialization, configuring of the adapter private structure,
2624  * and a hardware reset occur.
2625  **/
2626 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2627 {
2628         struct net_device *netdev;
2629         struct igbvf_adapter *adapter;
2630         struct e1000_hw *hw;
2631         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2632
2633         static int cards_found;
2634         int err, pci_using_dac;
2635
2636         err = pci_enable_device_mem(pdev);
2637         if (err)
2638                 return err;
2639
2640         pci_using_dac = 0;
2641         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2642         if (!err) {
2643                 pci_using_dac = 1;
2644         } else {
2645                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2646                 if (err) {
2647                         dev_err(&pdev->dev, "No usable DMA "
2648                                 "configuration, aborting\n");
2649                         goto err_dma;
2650                 }
2651         }
2652
2653         err = pci_request_regions(pdev, igbvf_driver_name);
2654         if (err)
2655                 goto err_pci_reg;
2656
2657         pci_set_master(pdev);
2658
2659         err = -ENOMEM;
2660         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2661         if (!netdev)
2662                 goto err_alloc_etherdev;
2663
2664         SET_NETDEV_DEV(netdev, &pdev->dev);
2665
2666         pci_set_drvdata(pdev, netdev);
2667         adapter = netdev_priv(netdev);
2668         hw = &adapter->hw;
2669         adapter->netdev = netdev;
2670         adapter->pdev = pdev;
2671         adapter->ei = ei;
2672         adapter->pba = ei->pba;
2673         adapter->flags = ei->flags;
2674         adapter->hw.back = adapter;
2675         adapter->hw.mac.type = ei->mac;
2676         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2677
2678         /* PCI config space info */
2679
2680         hw->vendor_id = pdev->vendor;
2681         hw->device_id = pdev->device;
2682         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2683         hw->subsystem_device_id = pdev->subsystem_device;
2684         hw->revision_id = pdev->revision;
2685
2686         err = -EIO;
2687         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2688                                       pci_resource_len(pdev, 0));
2689
2690         if (!adapter->hw.hw_addr)
2691                 goto err_ioremap;
2692
2693         if (ei->get_variants) {
2694                 err = ei->get_variants(adapter);
2695                 if (err)
2696                         goto err_get_variants;
2697         }
2698
2699         /* setup adapter struct */
2700         err = igbvf_sw_init(adapter);
2701         if (err)
2702                 goto err_sw_init;
2703
2704         /* construct the net_device struct */
2705         netdev->netdev_ops = &igbvf_netdev_ops;
2706
2707         igbvf_set_ethtool_ops(netdev);
2708         netdev->watchdog_timeo = 5 * HZ;
2709         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2710
2711         adapter->bd_number = cards_found++;
2712
2713         netdev->hw_features = NETIF_F_SG |
2714                            NETIF_F_IP_CSUM |
2715                            NETIF_F_IPV6_CSUM |
2716                            NETIF_F_TSO |
2717                            NETIF_F_TSO6 |
2718                            NETIF_F_RXCSUM;
2719
2720         netdev->features = netdev->hw_features |
2721                            NETIF_F_HW_VLAN_CTAG_TX |
2722                            NETIF_F_HW_VLAN_CTAG_RX |
2723                            NETIF_F_HW_VLAN_CTAG_FILTER;
2724
2725         if (pci_using_dac)
2726                 netdev->features |= NETIF_F_HIGHDMA;
2727
2728         netdev->vlan_features |= NETIF_F_TSO;
2729         netdev->vlan_features |= NETIF_F_TSO6;
2730         netdev->vlan_features |= NETIF_F_IP_CSUM;
2731         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2732         netdev->vlan_features |= NETIF_F_SG;
2733
2734         /*reset the controller to put the device in a known good state */
2735         err = hw->mac.ops.reset_hw(hw);
2736         if (err) {
2737                 dev_info(&pdev->dev,
2738                          "PF still in reset state. Is the PF interface up?\n");
2739         } else {
2740                 err = hw->mac.ops.read_mac_addr(hw);
2741                 if (err)
2742                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2743                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2744                         dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2745                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2746                        netdev->addr_len);
2747         }
2748
2749         if (!is_valid_ether_addr(netdev->dev_addr)) {
2750                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2751                 eth_hw_addr_random(netdev);
2752                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2753                         netdev->addr_len);
2754         }
2755
2756         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2757                     (unsigned long) adapter);
2758
2759         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2760         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2761
2762         /* ring size defaults */
2763         adapter->rx_ring->count = 1024;
2764         adapter->tx_ring->count = 1024;
2765
2766         /* reset the hardware with the new settings */
2767         igbvf_reset(adapter);
2768
2769         /* set hardware-specific flags */
2770         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2771                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2772
2773         strcpy(netdev->name, "eth%d");
2774         err = register_netdev(netdev);
2775         if (err)
2776                 goto err_hw_init;
2777
2778         /* tell the stack to leave us alone until igbvf_open() is called */
2779         netif_carrier_off(netdev);
2780         netif_stop_queue(netdev);
2781
2782         igbvf_print_device_info(adapter);
2783
2784         igbvf_initialize_last_counter_stats(adapter);
2785
2786         return 0;
2787
2788 err_hw_init:
2789         kfree(adapter->tx_ring);
2790         kfree(adapter->rx_ring);
2791 err_sw_init:
2792         igbvf_reset_interrupt_capability(adapter);
2793 err_get_variants:
2794         iounmap(adapter->hw.hw_addr);
2795 err_ioremap:
2796         free_netdev(netdev);
2797 err_alloc_etherdev:
2798         pci_release_regions(pdev);
2799 err_pci_reg:
2800 err_dma:
2801         pci_disable_device(pdev);
2802         return err;
2803 }
2804
2805 /**
2806  * igbvf_remove - Device Removal Routine
2807  * @pdev: PCI device information struct
2808  *
2809  * igbvf_remove is called by the PCI subsystem to alert the driver
2810  * that it should release a PCI device.  The could be caused by a
2811  * Hot-Plug event, or because the driver is going to be removed from
2812  * memory.
2813  **/
2814 static void igbvf_remove(struct pci_dev *pdev)
2815 {
2816         struct net_device *netdev = pci_get_drvdata(pdev);
2817         struct igbvf_adapter *adapter = netdev_priv(netdev);
2818         struct e1000_hw *hw = &adapter->hw;
2819
2820         /*
2821          * The watchdog timer may be rescheduled, so explicitly
2822          * disable it from being rescheduled.
2823          */
2824         set_bit(__IGBVF_DOWN, &adapter->state);
2825         del_timer_sync(&adapter->watchdog_timer);
2826
2827         cancel_work_sync(&adapter->reset_task);
2828         cancel_work_sync(&adapter->watchdog_task);
2829
2830         unregister_netdev(netdev);
2831
2832         igbvf_reset_interrupt_capability(adapter);
2833
2834         /*
2835          * it is important to delete the napi struct prior to freeing the
2836          * rx ring so that you do not end up with null pointer refs
2837          */
2838         netif_napi_del(&adapter->rx_ring->napi);
2839         kfree(adapter->tx_ring);
2840         kfree(adapter->rx_ring);
2841
2842         iounmap(hw->hw_addr);
2843         if (hw->flash_address)
2844                 iounmap(hw->flash_address);
2845         pci_release_regions(pdev);
2846
2847         free_netdev(netdev);
2848
2849         pci_disable_device(pdev);
2850 }
2851
2852 /* PCI Error Recovery (ERS) */
2853 static const struct pci_error_handlers igbvf_err_handler = {
2854         .error_detected = igbvf_io_error_detected,
2855         .slot_reset = igbvf_io_slot_reset,
2856         .resume = igbvf_io_resume,
2857 };
2858
2859 static const struct pci_device_id igbvf_pci_tbl[] = {
2860         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2861         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2862         { } /* terminate list */
2863 };
2864 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2865
2866 /* PCI Device API Driver */
2867 static struct pci_driver igbvf_driver = {
2868         .name     = igbvf_driver_name,
2869         .id_table = igbvf_pci_tbl,
2870         .probe    = igbvf_probe,
2871         .remove   = igbvf_remove,
2872 #ifdef CONFIG_PM
2873         /* Power Management Hooks */
2874         .suspend  = igbvf_suspend,
2875         .resume   = igbvf_resume,
2876 #endif
2877         .shutdown = igbvf_shutdown,
2878         .err_handler = &igbvf_err_handler
2879 };
2880
2881 /**
2882  * igbvf_init_module - Driver Registration Routine
2883  *
2884  * igbvf_init_module is the first routine called when the driver is
2885  * loaded. All it does is register with the PCI subsystem.
2886  **/
2887 static int __init igbvf_init_module(void)
2888 {
2889         int ret;
2890         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2891         pr_info("%s\n", igbvf_copyright);
2892
2893         ret = pci_register_driver(&igbvf_driver);
2894
2895         return ret;
2896 }
2897 module_init(igbvf_init_module);
2898
2899 /**
2900  * igbvf_exit_module - Driver Exit Cleanup Routine
2901  *
2902  * igbvf_exit_module is called just before the driver is removed
2903  * from memory.
2904  **/
2905 static void __exit igbvf_exit_module(void)
2906 {
2907         pci_unregister_driver(&igbvf_driver);
2908 }
2909 module_exit(igbvf_exit_module);
2910
2911
2912 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2913 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2914 MODULE_LICENSE("GPL");
2915 MODULE_VERSION(DRV_VERSION);
2916
2917 /* netdev.c */