Merge remote-tracking branches 'asoc/fix/atmel', 'asoc/fix/fsl', 'asoc/fix/tegra...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
42
43 #include "igb.h"
44
45 struct igb_stats {
46         char stat_string[ETH_GSTRING_LEN];
47         int sizeof_stat;
48         int stat_offset;
49 };
50
51 #define IGB_STAT(_name, _stat) { \
52         .stat_string = _name, \
53         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54         .stat_offset = offsetof(struct igb_adapter, _stat) \
55 }
56 static const struct igb_stats igb_gstrings_stats[] = {
57         IGB_STAT("rx_packets", stats.gprc),
58         IGB_STAT("tx_packets", stats.gptc),
59         IGB_STAT("rx_bytes", stats.gorc),
60         IGB_STAT("tx_bytes", stats.gotc),
61         IGB_STAT("rx_broadcast", stats.bprc),
62         IGB_STAT("tx_broadcast", stats.bptc),
63         IGB_STAT("rx_multicast", stats.mprc),
64         IGB_STAT("tx_multicast", stats.mptc),
65         IGB_STAT("multicast", stats.mprc),
66         IGB_STAT("collisions", stats.colc),
67         IGB_STAT("rx_crc_errors", stats.crcerrs),
68         IGB_STAT("rx_no_buffer_count", stats.rnbc),
69         IGB_STAT("rx_missed_errors", stats.mpc),
70         IGB_STAT("tx_aborted_errors", stats.ecol),
71         IGB_STAT("tx_carrier_errors", stats.tncrs),
72         IGB_STAT("tx_window_errors", stats.latecol),
73         IGB_STAT("tx_abort_late_coll", stats.latecol),
74         IGB_STAT("tx_deferred_ok", stats.dc),
75         IGB_STAT("tx_single_coll_ok", stats.scc),
76         IGB_STAT("tx_multi_coll_ok", stats.mcc),
77         IGB_STAT("tx_timeout_count", tx_timeout_count),
78         IGB_STAT("rx_long_length_errors", stats.roc),
79         IGB_STAT("rx_short_length_errors", stats.ruc),
80         IGB_STAT("rx_align_errors", stats.algnerrc),
81         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85         IGB_STAT("tx_flow_control_xon", stats.xontxc),
86         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87         IGB_STAT("rx_long_byte_count", stats.gorc),
88         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89         IGB_STAT("tx_smbus", stats.mgptc),
90         IGB_STAT("rx_smbus", stats.mgprc),
91         IGB_STAT("dropped_smbus", stats.mgpdc),
92         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98 };
99
100 #define IGB_NETDEV_STAT(_net_stat) { \
101         .stat_string = __stringify(_net_stat), \
102         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104 }
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106         IGB_NETDEV_STAT(rx_errors),
107         IGB_NETDEV_STAT(tx_errors),
108         IGB_NETDEV_STAT(tx_dropped),
109         IGB_NETDEV_STAT(rx_length_errors),
110         IGB_NETDEV_STAT(rx_over_errors),
111         IGB_NETDEV_STAT(rx_frame_errors),
112         IGB_NETDEV_STAT(rx_fifo_errors),
113         IGB_NETDEV_STAT(tx_fifo_errors),
114         IGB_NETDEV_STAT(tx_heartbeat_errors)
115 };
116
117 #define IGB_GLOBAL_STATS_LEN    \
118         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN    \
120         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126 #define IGB_QUEUE_STATS_LEN \
127         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128           IGB_RX_QUEUE_STATS_LEN) + \
129          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130           IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135         "Register test  (offline)", "Eeprom test    (offline)",
136         "Interrupt test (offline)", "Loopback test  (offline)",
137         "Link test   (on/offline)"
138 };
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142 {
143         struct igb_adapter *adapter = netdev_priv(netdev);
144         struct e1000_hw *hw = &adapter->hw;
145         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147         u32 status;
148
149         status = rd32(E1000_STATUS);
150         if (hw->phy.media_type == e1000_media_type_copper) {
151
152                 ecmd->supported = (SUPPORTED_10baseT_Half |
153                                    SUPPORTED_10baseT_Full |
154                                    SUPPORTED_100baseT_Half |
155                                    SUPPORTED_100baseT_Full |
156                                    SUPPORTED_1000baseT_Full|
157                                    SUPPORTED_Autoneg |
158                                    SUPPORTED_TP |
159                                    SUPPORTED_Pause);
160                 ecmd->advertising = ADVERTISED_TP;
161
162                 if (hw->mac.autoneg == 1) {
163                         ecmd->advertising |= ADVERTISED_Autoneg;
164                         /* the e1000 autoneg seems to match ethtool nicely */
165                         ecmd->advertising |= hw->phy.autoneg_advertised;
166                 }
167
168                 ecmd->port = PORT_TP;
169                 ecmd->phy_address = hw->phy.addr;
170                 ecmd->transceiver = XCVR_INTERNAL;
171         } else {
172                 ecmd->supported = (SUPPORTED_FIBRE |
173                                    SUPPORTED_1000baseKX_Full |
174                                    SUPPORTED_Autoneg |
175                                    SUPPORTED_Pause);
176                 ecmd->advertising = (ADVERTISED_FIBRE |
177                                      ADVERTISED_1000baseKX_Full);
178                 if (hw->mac.type == e1000_i354) {
179                         if ((hw->device_id ==
180                              E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
181                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
182                                 ecmd->supported |= SUPPORTED_2500baseX_Full;
183                                 ecmd->supported &=
184                                         ~SUPPORTED_1000baseKX_Full;
185                                 ecmd->advertising |= ADVERTISED_2500baseX_Full;
186                                 ecmd->advertising &=
187                                         ~ADVERTISED_1000baseKX_Full;
188                         }
189                 }
190                 if (eth_flags->e100_base_fx) {
191                         ecmd->supported |= SUPPORTED_100baseT_Full;
192                         ecmd->advertising |= ADVERTISED_100baseT_Full;
193                 }
194                 if (hw->mac.autoneg == 1)
195                         ecmd->advertising |= ADVERTISED_Autoneg;
196
197                 ecmd->port = PORT_FIBRE;
198                 ecmd->transceiver = XCVR_EXTERNAL;
199         }
200         if (hw->mac.autoneg != 1)
201                 ecmd->advertising &= ~(ADVERTISED_Pause |
202                                        ADVERTISED_Asym_Pause);
203
204         switch (hw->fc.requested_mode) {
205         case e1000_fc_full:
206                 ecmd->advertising |= ADVERTISED_Pause;
207                 break;
208         case e1000_fc_rx_pause:
209                 ecmd->advertising |= (ADVERTISED_Pause |
210                                       ADVERTISED_Asym_Pause);
211                 break;
212         case e1000_fc_tx_pause:
213                 ecmd->advertising |=  ADVERTISED_Asym_Pause;
214                 break;
215         default:
216                 ecmd->advertising &= ~(ADVERTISED_Pause |
217                                        ADVERTISED_Asym_Pause);
218         }
219         if (status & E1000_STATUS_LU) {
220                 if ((status & E1000_STATUS_2P5_SKU) &&
221                     !(status & E1000_STATUS_2P5_SKU_OVER)) {
222                         ecmd->speed = SPEED_2500;
223                 } else if (status & E1000_STATUS_SPEED_1000) {
224                         ecmd->speed = SPEED_1000;
225                 } else if (status & E1000_STATUS_SPEED_100) {
226                         ecmd->speed = SPEED_100;
227                 } else {
228                         ecmd->speed = SPEED_10;
229                 }
230                 if ((status & E1000_STATUS_FD) ||
231                     hw->phy.media_type != e1000_media_type_copper)
232                         ecmd->duplex = DUPLEX_FULL;
233                 else
234                         ecmd->duplex = DUPLEX_HALF;
235         } else {
236                 ecmd->speed = -1;
237                 ecmd->duplex = -1;
238         }
239         if ((hw->phy.media_type == e1000_media_type_fiber) ||
240             hw->mac.autoneg)
241                 ecmd->autoneg = AUTONEG_ENABLE;
242         else
243                 ecmd->autoneg = AUTONEG_DISABLE;
244
245         /* MDI-X => 2; MDI =>1; Invalid =>0 */
246         if (hw->phy.media_type == e1000_media_type_copper)
247                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
248                                                       ETH_TP_MDI;
249         else
250                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
251
252         if (hw->phy.mdix == AUTO_ALL_MODES)
253                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
254         else
255                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
256
257         return 0;
258 }
259
260 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
261 {
262         struct igb_adapter *adapter = netdev_priv(netdev);
263         struct e1000_hw *hw = &adapter->hw;
264
265         /* When SoL/IDER sessions are active, autoneg/speed/duplex
266          * cannot be changed
267          */
268         if (igb_check_reset_block(hw)) {
269                 dev_err(&adapter->pdev->dev,
270                         "Cannot change link characteristics when SoL/IDER is active.\n");
271                 return -EINVAL;
272         }
273
274         /* MDI setting is only allowed when autoneg enabled because
275          * some hardware doesn't allow MDI setting when speed or
276          * duplex is forced.
277          */
278         if (ecmd->eth_tp_mdix_ctrl) {
279                 if (hw->phy.media_type != e1000_media_type_copper)
280                         return -EOPNOTSUPP;
281
282                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
283                     (ecmd->autoneg != AUTONEG_ENABLE)) {
284                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
285                         return -EINVAL;
286                 }
287         }
288
289         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
290                 msleep(1);
291
292         if (ecmd->autoneg == AUTONEG_ENABLE) {
293                 hw->mac.autoneg = 1;
294                 if (hw->phy.media_type == e1000_media_type_fiber) {
295                         hw->phy.autoneg_advertised = ecmd->advertising |
296                                                      ADVERTISED_FIBRE |
297                                                      ADVERTISED_Autoneg;
298                         switch (adapter->link_speed) {
299                         case SPEED_2500:
300                                 hw->phy.autoneg_advertised =
301                                         ADVERTISED_2500baseX_Full;
302                                 break;
303                         case SPEED_1000:
304                                 hw->phy.autoneg_advertised =
305                                         ADVERTISED_1000baseT_Full;
306                                 break;
307                         case SPEED_100:
308                                 hw->phy.autoneg_advertised =
309                                         ADVERTISED_100baseT_Full;
310                                 break;
311                         default:
312                                 break;
313                         }
314                 } else {
315                         hw->phy.autoneg_advertised = ecmd->advertising |
316                                                      ADVERTISED_TP |
317                                                      ADVERTISED_Autoneg;
318                 }
319                 ecmd->advertising = hw->phy.autoneg_advertised;
320                 if (adapter->fc_autoneg)
321                         hw->fc.requested_mode = e1000_fc_default;
322         } else {
323                 u32 speed = ethtool_cmd_speed(ecmd);
324                 /* calling this overrides forced MDI setting */
325                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
326                         clear_bit(__IGB_RESETTING, &adapter->state);
327                         return -EINVAL;
328                 }
329         }
330
331         /* MDI-X => 2; MDI => 1; Auto => 3 */
332         if (ecmd->eth_tp_mdix_ctrl) {
333                 /* fix up the value for auto (3 => 0) as zero is mapped
334                  * internally to auto
335                  */
336                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
337                         hw->phy.mdix = AUTO_ALL_MODES;
338                 else
339                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
340         }
341
342         /* reset the link */
343         if (netif_running(adapter->netdev)) {
344                 igb_down(adapter);
345                 igb_up(adapter);
346         } else
347                 igb_reset(adapter);
348
349         clear_bit(__IGB_RESETTING, &adapter->state);
350         return 0;
351 }
352
353 static u32 igb_get_link(struct net_device *netdev)
354 {
355         struct igb_adapter *adapter = netdev_priv(netdev);
356         struct e1000_mac_info *mac = &adapter->hw.mac;
357
358         /* If the link is not reported up to netdev, interrupts are disabled,
359          * and so the physical link state may have changed since we last
360          * looked. Set get_link_status to make sure that the true link
361          * state is interrogated, rather than pulling a cached and possibly
362          * stale link state from the driver.
363          */
364         if (!netif_carrier_ok(netdev))
365                 mac->get_link_status = 1;
366
367         return igb_has_link(adapter);
368 }
369
370 static void igb_get_pauseparam(struct net_device *netdev,
371                                struct ethtool_pauseparam *pause)
372 {
373         struct igb_adapter *adapter = netdev_priv(netdev);
374         struct e1000_hw *hw = &adapter->hw;
375
376         pause->autoneg =
377                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
378
379         if (hw->fc.current_mode == e1000_fc_rx_pause)
380                 pause->rx_pause = 1;
381         else if (hw->fc.current_mode == e1000_fc_tx_pause)
382                 pause->tx_pause = 1;
383         else if (hw->fc.current_mode == e1000_fc_full) {
384                 pause->rx_pause = 1;
385                 pause->tx_pause = 1;
386         }
387 }
388
389 static int igb_set_pauseparam(struct net_device *netdev,
390                               struct ethtool_pauseparam *pause)
391 {
392         struct igb_adapter *adapter = netdev_priv(netdev);
393         struct e1000_hw *hw = &adapter->hw;
394         int retval = 0;
395
396         /* 100basefx does not support setting link flow control */
397         if (hw->dev_spec._82575.eth_flags.e100_base_fx)
398                 return -EINVAL;
399
400         adapter->fc_autoneg = pause->autoneg;
401
402         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
403                 msleep(1);
404
405         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
406                 hw->fc.requested_mode = e1000_fc_default;
407                 if (netif_running(adapter->netdev)) {
408                         igb_down(adapter);
409                         igb_up(adapter);
410                 } else {
411                         igb_reset(adapter);
412                 }
413         } else {
414                 if (pause->rx_pause && pause->tx_pause)
415                         hw->fc.requested_mode = e1000_fc_full;
416                 else if (pause->rx_pause && !pause->tx_pause)
417                         hw->fc.requested_mode = e1000_fc_rx_pause;
418                 else if (!pause->rx_pause && pause->tx_pause)
419                         hw->fc.requested_mode = e1000_fc_tx_pause;
420                 else if (!pause->rx_pause && !pause->tx_pause)
421                         hw->fc.requested_mode = e1000_fc_none;
422
423                 hw->fc.current_mode = hw->fc.requested_mode;
424
425                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
426                           igb_force_mac_fc(hw) : igb_setup_link(hw));
427         }
428
429         clear_bit(__IGB_RESETTING, &adapter->state);
430         return retval;
431 }
432
433 static u32 igb_get_msglevel(struct net_device *netdev)
434 {
435         struct igb_adapter *adapter = netdev_priv(netdev);
436         return adapter->msg_enable;
437 }
438
439 static void igb_set_msglevel(struct net_device *netdev, u32 data)
440 {
441         struct igb_adapter *adapter = netdev_priv(netdev);
442         adapter->msg_enable = data;
443 }
444
445 static int igb_get_regs_len(struct net_device *netdev)
446 {
447 #define IGB_REGS_LEN 739
448         return IGB_REGS_LEN * sizeof(u32);
449 }
450
451 static void igb_get_regs(struct net_device *netdev,
452                          struct ethtool_regs *regs, void *p)
453 {
454         struct igb_adapter *adapter = netdev_priv(netdev);
455         struct e1000_hw *hw = &adapter->hw;
456         u32 *regs_buff = p;
457         u8 i;
458
459         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
460
461         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
462
463         /* General Registers */
464         regs_buff[0] = rd32(E1000_CTRL);
465         regs_buff[1] = rd32(E1000_STATUS);
466         regs_buff[2] = rd32(E1000_CTRL_EXT);
467         regs_buff[3] = rd32(E1000_MDIC);
468         regs_buff[4] = rd32(E1000_SCTL);
469         regs_buff[5] = rd32(E1000_CONNSW);
470         regs_buff[6] = rd32(E1000_VET);
471         regs_buff[7] = rd32(E1000_LEDCTL);
472         regs_buff[8] = rd32(E1000_PBA);
473         regs_buff[9] = rd32(E1000_PBS);
474         regs_buff[10] = rd32(E1000_FRTIMER);
475         regs_buff[11] = rd32(E1000_TCPTIMER);
476
477         /* NVM Register */
478         regs_buff[12] = rd32(E1000_EECD);
479
480         /* Interrupt */
481         /* Reading EICS for EICR because they read the
482          * same but EICS does not clear on read
483          */
484         regs_buff[13] = rd32(E1000_EICS);
485         regs_buff[14] = rd32(E1000_EICS);
486         regs_buff[15] = rd32(E1000_EIMS);
487         regs_buff[16] = rd32(E1000_EIMC);
488         regs_buff[17] = rd32(E1000_EIAC);
489         regs_buff[18] = rd32(E1000_EIAM);
490         /* Reading ICS for ICR because they read the
491          * same but ICS does not clear on read
492          */
493         regs_buff[19] = rd32(E1000_ICS);
494         regs_buff[20] = rd32(E1000_ICS);
495         regs_buff[21] = rd32(E1000_IMS);
496         regs_buff[22] = rd32(E1000_IMC);
497         regs_buff[23] = rd32(E1000_IAC);
498         regs_buff[24] = rd32(E1000_IAM);
499         regs_buff[25] = rd32(E1000_IMIRVP);
500
501         /* Flow Control */
502         regs_buff[26] = rd32(E1000_FCAL);
503         regs_buff[27] = rd32(E1000_FCAH);
504         regs_buff[28] = rd32(E1000_FCTTV);
505         regs_buff[29] = rd32(E1000_FCRTL);
506         regs_buff[30] = rd32(E1000_FCRTH);
507         regs_buff[31] = rd32(E1000_FCRTV);
508
509         /* Receive */
510         regs_buff[32] = rd32(E1000_RCTL);
511         regs_buff[33] = rd32(E1000_RXCSUM);
512         regs_buff[34] = rd32(E1000_RLPML);
513         regs_buff[35] = rd32(E1000_RFCTL);
514         regs_buff[36] = rd32(E1000_MRQC);
515         regs_buff[37] = rd32(E1000_VT_CTL);
516
517         /* Transmit */
518         regs_buff[38] = rd32(E1000_TCTL);
519         regs_buff[39] = rd32(E1000_TCTL_EXT);
520         regs_buff[40] = rd32(E1000_TIPG);
521         regs_buff[41] = rd32(E1000_DTXCTL);
522
523         /* Wake Up */
524         regs_buff[42] = rd32(E1000_WUC);
525         regs_buff[43] = rd32(E1000_WUFC);
526         regs_buff[44] = rd32(E1000_WUS);
527         regs_buff[45] = rd32(E1000_IPAV);
528         regs_buff[46] = rd32(E1000_WUPL);
529
530         /* MAC */
531         regs_buff[47] = rd32(E1000_PCS_CFG0);
532         regs_buff[48] = rd32(E1000_PCS_LCTL);
533         regs_buff[49] = rd32(E1000_PCS_LSTAT);
534         regs_buff[50] = rd32(E1000_PCS_ANADV);
535         regs_buff[51] = rd32(E1000_PCS_LPAB);
536         regs_buff[52] = rd32(E1000_PCS_NPTX);
537         regs_buff[53] = rd32(E1000_PCS_LPABNP);
538
539         /* Statistics */
540         regs_buff[54] = adapter->stats.crcerrs;
541         regs_buff[55] = adapter->stats.algnerrc;
542         regs_buff[56] = adapter->stats.symerrs;
543         regs_buff[57] = adapter->stats.rxerrc;
544         regs_buff[58] = adapter->stats.mpc;
545         regs_buff[59] = adapter->stats.scc;
546         regs_buff[60] = adapter->stats.ecol;
547         regs_buff[61] = adapter->stats.mcc;
548         regs_buff[62] = adapter->stats.latecol;
549         regs_buff[63] = adapter->stats.colc;
550         regs_buff[64] = adapter->stats.dc;
551         regs_buff[65] = adapter->stats.tncrs;
552         regs_buff[66] = adapter->stats.sec;
553         regs_buff[67] = adapter->stats.htdpmc;
554         regs_buff[68] = adapter->stats.rlec;
555         regs_buff[69] = adapter->stats.xonrxc;
556         regs_buff[70] = adapter->stats.xontxc;
557         regs_buff[71] = adapter->stats.xoffrxc;
558         regs_buff[72] = adapter->stats.xofftxc;
559         regs_buff[73] = adapter->stats.fcruc;
560         regs_buff[74] = adapter->stats.prc64;
561         regs_buff[75] = adapter->stats.prc127;
562         regs_buff[76] = adapter->stats.prc255;
563         regs_buff[77] = adapter->stats.prc511;
564         regs_buff[78] = adapter->stats.prc1023;
565         regs_buff[79] = adapter->stats.prc1522;
566         regs_buff[80] = adapter->stats.gprc;
567         regs_buff[81] = adapter->stats.bprc;
568         regs_buff[82] = adapter->stats.mprc;
569         regs_buff[83] = adapter->stats.gptc;
570         regs_buff[84] = adapter->stats.gorc;
571         regs_buff[86] = adapter->stats.gotc;
572         regs_buff[88] = adapter->stats.rnbc;
573         regs_buff[89] = adapter->stats.ruc;
574         regs_buff[90] = adapter->stats.rfc;
575         regs_buff[91] = adapter->stats.roc;
576         regs_buff[92] = adapter->stats.rjc;
577         regs_buff[93] = adapter->stats.mgprc;
578         regs_buff[94] = adapter->stats.mgpdc;
579         regs_buff[95] = adapter->stats.mgptc;
580         regs_buff[96] = adapter->stats.tor;
581         regs_buff[98] = adapter->stats.tot;
582         regs_buff[100] = adapter->stats.tpr;
583         regs_buff[101] = adapter->stats.tpt;
584         regs_buff[102] = adapter->stats.ptc64;
585         regs_buff[103] = adapter->stats.ptc127;
586         regs_buff[104] = adapter->stats.ptc255;
587         regs_buff[105] = adapter->stats.ptc511;
588         regs_buff[106] = adapter->stats.ptc1023;
589         regs_buff[107] = adapter->stats.ptc1522;
590         regs_buff[108] = adapter->stats.mptc;
591         regs_buff[109] = adapter->stats.bptc;
592         regs_buff[110] = adapter->stats.tsctc;
593         regs_buff[111] = adapter->stats.iac;
594         regs_buff[112] = adapter->stats.rpthc;
595         regs_buff[113] = adapter->stats.hgptc;
596         regs_buff[114] = adapter->stats.hgorc;
597         regs_buff[116] = adapter->stats.hgotc;
598         regs_buff[118] = adapter->stats.lenerrs;
599         regs_buff[119] = adapter->stats.scvpc;
600         regs_buff[120] = adapter->stats.hrmpc;
601
602         for (i = 0; i < 4; i++)
603                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
604         for (i = 0; i < 4; i++)
605                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
606         for (i = 0; i < 4; i++)
607                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
608         for (i = 0; i < 4; i++)
609                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
610         for (i = 0; i < 4; i++)
611                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
612         for (i = 0; i < 4; i++)
613                 regs_buff[141 + i] = rd32(E1000_RDH(i));
614         for (i = 0; i < 4; i++)
615                 regs_buff[145 + i] = rd32(E1000_RDT(i));
616         for (i = 0; i < 4; i++)
617                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
618
619         for (i = 0; i < 10; i++)
620                 regs_buff[153 + i] = rd32(E1000_EITR(i));
621         for (i = 0; i < 8; i++)
622                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
623         for (i = 0; i < 8; i++)
624                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
625         for (i = 0; i < 16; i++)
626                 regs_buff[179 + i] = rd32(E1000_RAL(i));
627         for (i = 0; i < 16; i++)
628                 regs_buff[195 + i] = rd32(E1000_RAH(i));
629
630         for (i = 0; i < 4; i++)
631                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
632         for (i = 0; i < 4; i++)
633                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
634         for (i = 0; i < 4; i++)
635                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
636         for (i = 0; i < 4; i++)
637                 regs_buff[223 + i] = rd32(E1000_TDH(i));
638         for (i = 0; i < 4; i++)
639                 regs_buff[227 + i] = rd32(E1000_TDT(i));
640         for (i = 0; i < 4; i++)
641                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
642         for (i = 0; i < 4; i++)
643                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
644         for (i = 0; i < 4; i++)
645                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
646         for (i = 0; i < 4; i++)
647                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
648
649         for (i = 0; i < 4; i++)
650                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
651         for (i = 0; i < 4; i++)
652                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
653         for (i = 0; i < 32; i++)
654                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
655         for (i = 0; i < 128; i++)
656                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
657         for (i = 0; i < 128; i++)
658                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
659         for (i = 0; i < 4; i++)
660                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
661
662         regs_buff[547] = rd32(E1000_TDFH);
663         regs_buff[548] = rd32(E1000_TDFT);
664         regs_buff[549] = rd32(E1000_TDFHS);
665         regs_buff[550] = rd32(E1000_TDFPC);
666
667         if (hw->mac.type > e1000_82580) {
668                 regs_buff[551] = adapter->stats.o2bgptc;
669                 regs_buff[552] = adapter->stats.b2ospc;
670                 regs_buff[553] = adapter->stats.o2bspc;
671                 regs_buff[554] = adapter->stats.b2ogprc;
672         }
673
674         if (hw->mac.type != e1000_82576)
675                 return;
676         for (i = 0; i < 12; i++)
677                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
678         for (i = 0; i < 4; i++)
679                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
680         for (i = 0; i < 12; i++)
681                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
682         for (i = 0; i < 12; i++)
683                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
684         for (i = 0; i < 12; i++)
685                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
686         for (i = 0; i < 12; i++)
687                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
688         for (i = 0; i < 12; i++)
689                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
690         for (i = 0; i < 12; i++)
691                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
692
693         for (i = 0; i < 12; i++)
694                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
695         for (i = 0; i < 12; i++)
696                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
697         for (i = 0; i < 12; i++)
698                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
699         for (i = 0; i < 12; i++)
700                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
701         for (i = 0; i < 12; i++)
702                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
703         for (i = 0; i < 12; i++)
704                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
705         for (i = 0; i < 12; i++)
706                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
707         for (i = 0; i < 12; i++)
708                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
709 }
710
711 static int igb_get_eeprom_len(struct net_device *netdev)
712 {
713         struct igb_adapter *adapter = netdev_priv(netdev);
714         return adapter->hw.nvm.word_size * 2;
715 }
716
717 static int igb_get_eeprom(struct net_device *netdev,
718                           struct ethtool_eeprom *eeprom, u8 *bytes)
719 {
720         struct igb_adapter *adapter = netdev_priv(netdev);
721         struct e1000_hw *hw = &adapter->hw;
722         u16 *eeprom_buff;
723         int first_word, last_word;
724         int ret_val = 0;
725         u16 i;
726
727         if (eeprom->len == 0)
728                 return -EINVAL;
729
730         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
731
732         first_word = eeprom->offset >> 1;
733         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
734
735         eeprom_buff = kmalloc(sizeof(u16) *
736                         (last_word - first_word + 1), GFP_KERNEL);
737         if (!eeprom_buff)
738                 return -ENOMEM;
739
740         if (hw->nvm.type == e1000_nvm_eeprom_spi)
741                 ret_val = hw->nvm.ops.read(hw, first_word,
742                                            last_word - first_word + 1,
743                                            eeprom_buff);
744         else {
745                 for (i = 0; i < last_word - first_word + 1; i++) {
746                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
747                                                    &eeprom_buff[i]);
748                         if (ret_val)
749                                 break;
750                 }
751         }
752
753         /* Device's eeprom is always little-endian, word addressable */
754         for (i = 0; i < last_word - first_word + 1; i++)
755                 le16_to_cpus(&eeprom_buff[i]);
756
757         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
758                         eeprom->len);
759         kfree(eeprom_buff);
760
761         return ret_val;
762 }
763
764 static int igb_set_eeprom(struct net_device *netdev,
765                           struct ethtool_eeprom *eeprom, u8 *bytes)
766 {
767         struct igb_adapter *adapter = netdev_priv(netdev);
768         struct e1000_hw *hw = &adapter->hw;
769         u16 *eeprom_buff;
770         void *ptr;
771         int max_len, first_word, last_word, ret_val = 0;
772         u16 i;
773
774         if (eeprom->len == 0)
775                 return -EOPNOTSUPP;
776
777         if ((hw->mac.type >= e1000_i210) &&
778             !igb_get_flash_presence_i210(hw)) {
779                 return -EOPNOTSUPP;
780         }
781
782         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
783                 return -EFAULT;
784
785         max_len = hw->nvm.word_size * 2;
786
787         first_word = eeprom->offset >> 1;
788         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
789         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
790         if (!eeprom_buff)
791                 return -ENOMEM;
792
793         ptr = (void *)eeprom_buff;
794
795         if (eeprom->offset & 1) {
796                 /* need read/modify/write of first changed EEPROM word
797                  * only the second byte of the word is being modified
798                  */
799                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
800                                             &eeprom_buff[0]);
801                 ptr++;
802         }
803         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
804                 /* need read/modify/write of last changed EEPROM word
805                  * only the first byte of the word is being modified
806                  */
807                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
808                                    &eeprom_buff[last_word - first_word]);
809         }
810
811         /* Device's eeprom is always little-endian, word addressable */
812         for (i = 0; i < last_word - first_word + 1; i++)
813                 le16_to_cpus(&eeprom_buff[i]);
814
815         memcpy(ptr, bytes, eeprom->len);
816
817         for (i = 0; i < last_word - first_word + 1; i++)
818                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
819
820         ret_val = hw->nvm.ops.write(hw, first_word,
821                                     last_word - first_word + 1, eeprom_buff);
822
823         /* Update the checksum if nvm write succeeded */
824         if (ret_val == 0)
825                 hw->nvm.ops.update(hw);
826
827         igb_set_fw_version(adapter);
828         kfree(eeprom_buff);
829         return ret_val;
830 }
831
832 static void igb_get_drvinfo(struct net_device *netdev,
833                             struct ethtool_drvinfo *drvinfo)
834 {
835         struct igb_adapter *adapter = netdev_priv(netdev);
836
837         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
838         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
839
840         /* EEPROM image version # is reported as firmware version # for
841          * 82575 controllers
842          */
843         strlcpy(drvinfo->fw_version, adapter->fw_version,
844                 sizeof(drvinfo->fw_version));
845         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
846                 sizeof(drvinfo->bus_info));
847         drvinfo->n_stats = IGB_STATS_LEN;
848         drvinfo->testinfo_len = IGB_TEST_LEN;
849         drvinfo->regdump_len = igb_get_regs_len(netdev);
850         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
851 }
852
853 static void igb_get_ringparam(struct net_device *netdev,
854                               struct ethtool_ringparam *ring)
855 {
856         struct igb_adapter *adapter = netdev_priv(netdev);
857
858         ring->rx_max_pending = IGB_MAX_RXD;
859         ring->tx_max_pending = IGB_MAX_TXD;
860         ring->rx_pending = adapter->rx_ring_count;
861         ring->tx_pending = adapter->tx_ring_count;
862 }
863
864 static int igb_set_ringparam(struct net_device *netdev,
865                              struct ethtool_ringparam *ring)
866 {
867         struct igb_adapter *adapter = netdev_priv(netdev);
868         struct igb_ring *temp_ring;
869         int i, err = 0;
870         u16 new_rx_count, new_tx_count;
871
872         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
873                 return -EINVAL;
874
875         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
876         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
877         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
878
879         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
880         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
881         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
882
883         if ((new_tx_count == adapter->tx_ring_count) &&
884             (new_rx_count == adapter->rx_ring_count)) {
885                 /* nothing to do */
886                 return 0;
887         }
888
889         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
890                 msleep(1);
891
892         if (!netif_running(adapter->netdev)) {
893                 for (i = 0; i < adapter->num_tx_queues; i++)
894                         adapter->tx_ring[i]->count = new_tx_count;
895                 for (i = 0; i < adapter->num_rx_queues; i++)
896                         adapter->rx_ring[i]->count = new_rx_count;
897                 adapter->tx_ring_count = new_tx_count;
898                 adapter->rx_ring_count = new_rx_count;
899                 goto clear_reset;
900         }
901
902         if (adapter->num_tx_queues > adapter->num_rx_queues)
903                 temp_ring = vmalloc(adapter->num_tx_queues *
904                                     sizeof(struct igb_ring));
905         else
906                 temp_ring = vmalloc(adapter->num_rx_queues *
907                                     sizeof(struct igb_ring));
908
909         if (!temp_ring) {
910                 err = -ENOMEM;
911                 goto clear_reset;
912         }
913
914         igb_down(adapter);
915
916         /* We can't just free everything and then setup again,
917          * because the ISRs in MSI-X mode get passed pointers
918          * to the Tx and Rx ring structs.
919          */
920         if (new_tx_count != adapter->tx_ring_count) {
921                 for (i = 0; i < adapter->num_tx_queues; i++) {
922                         memcpy(&temp_ring[i], adapter->tx_ring[i],
923                                sizeof(struct igb_ring));
924
925                         temp_ring[i].count = new_tx_count;
926                         err = igb_setup_tx_resources(&temp_ring[i]);
927                         if (err) {
928                                 while (i) {
929                                         i--;
930                                         igb_free_tx_resources(&temp_ring[i]);
931                                 }
932                                 goto err_setup;
933                         }
934                 }
935
936                 for (i = 0; i < adapter->num_tx_queues; i++) {
937                         igb_free_tx_resources(adapter->tx_ring[i]);
938
939                         memcpy(adapter->tx_ring[i], &temp_ring[i],
940                                sizeof(struct igb_ring));
941                 }
942
943                 adapter->tx_ring_count = new_tx_count;
944         }
945
946         if (new_rx_count != adapter->rx_ring_count) {
947                 for (i = 0; i < adapter->num_rx_queues; i++) {
948                         memcpy(&temp_ring[i], adapter->rx_ring[i],
949                                sizeof(struct igb_ring));
950
951                         temp_ring[i].count = new_rx_count;
952                         err = igb_setup_rx_resources(&temp_ring[i]);
953                         if (err) {
954                                 while (i) {
955                                         i--;
956                                         igb_free_rx_resources(&temp_ring[i]);
957                                 }
958                                 goto err_setup;
959                         }
960
961                 }
962
963                 for (i = 0; i < adapter->num_rx_queues; i++) {
964                         igb_free_rx_resources(adapter->rx_ring[i]);
965
966                         memcpy(adapter->rx_ring[i], &temp_ring[i],
967                                sizeof(struct igb_ring));
968                 }
969
970                 adapter->rx_ring_count = new_rx_count;
971         }
972 err_setup:
973         igb_up(adapter);
974         vfree(temp_ring);
975 clear_reset:
976         clear_bit(__IGB_RESETTING, &adapter->state);
977         return err;
978 }
979
980 /* ethtool register test data */
981 struct igb_reg_test {
982         u16 reg;
983         u16 reg_offset;
984         u16 array_len;
985         u16 test_type;
986         u32 mask;
987         u32 write;
988 };
989
990 /* In the hardware, registers are laid out either singly, in arrays
991  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
992  * most tests take place on arrays or single registers (handled
993  * as a single-element array) and special-case the tables.
994  * Table tests are always pattern tests.
995  *
996  * We also make provision for some required setup steps by specifying
997  * registers to be written without any read-back testing.
998  */
999
1000 #define PATTERN_TEST    1
1001 #define SET_READ_TEST   2
1002 #define WRITE_NO_TEST   3
1003 #define TABLE32_TEST    4
1004 #define TABLE64_TEST_LO 5
1005 #define TABLE64_TEST_HI 6
1006
1007 /* i210 reg test */
1008 static struct igb_reg_test reg_test_i210[] = {
1009         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1012         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1013         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1015         /* RDH is read-only for i210, only test RDT. */
1016         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1017         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1018         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1020         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1021         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1022         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1023         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1025         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1026         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1027         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1028         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1029                                                 0xFFFFFFFF, 0xFFFFFFFF },
1030         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1031                                                 0x900FFFFF, 0xFFFFFFFF },
1032         { E1000_MTA,       0, 128, TABLE32_TEST,
1033                                                 0xFFFFFFFF, 0xFFFFFFFF },
1034         { 0, 0, 0, 0, 0 }
1035 };
1036
1037 /* i350 reg test */
1038 static struct igb_reg_test reg_test_i350[] = {
1039         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1042         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1043         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1046         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049         /* RDH is read-only for i350, only test RDT. */
1050         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1053         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1055         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1056         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1058         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1059         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1061         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1064         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1065         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1066         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1068                                                 0xFFFFFFFF, 0xFFFFFFFF },
1069         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1070                                                 0xC3FFFFFF, 0xFFFFFFFF },
1071         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1072                                                 0xFFFFFFFF, 0xFFFFFFFF },
1073         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1074                                                 0xC3FFFFFF, 0xFFFFFFFF },
1075         { E1000_MTA,       0, 128, TABLE32_TEST,
1076                                                 0xFFFFFFFF, 0xFFFFFFFF },
1077         { 0, 0, 0, 0 }
1078 };
1079
1080 /* 82580 reg test */
1081 static struct igb_reg_test reg_test_82580[] = {
1082         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1085         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1087         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1089         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092         /* RDH is read-only for 82580, only test RDT. */
1093         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1095         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1096         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1098         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1099         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1101         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1102         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1104         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1106         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1107         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1108         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1109         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1110         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1111                                                 0xFFFFFFFF, 0xFFFFFFFF },
1112         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1113                                                 0x83FFFFFF, 0xFFFFFFFF },
1114         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1115                                                 0xFFFFFFFF, 0xFFFFFFFF },
1116         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1117                                                 0x83FFFFFF, 0xFFFFFFFF },
1118         { E1000_MTA,       0, 128, TABLE32_TEST,
1119                                                 0xFFFFFFFF, 0xFFFFFFFF },
1120         { 0, 0, 0, 0 }
1121 };
1122
1123 /* 82576 reg test */
1124 static struct igb_reg_test reg_test_82576[] = {
1125         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1128         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1130         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1132         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1133         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1135         /* Enable all RX queues before testing. */
1136         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1137         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1138         /* RDH is read-only for 82576, only test RDT. */
1139         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1142         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1143         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1144         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1146         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1154         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1155         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1159         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1160         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161         { 0, 0, 0, 0 }
1162 };
1163
1164 /* 82575 register test */
1165 static struct igb_reg_test reg_test_82575[] = {
1166         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1169         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1171         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1173         /* Enable all four RX queues before testing. */
1174         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1175         /* RDH is read-only for 82575, only test RDT. */
1176         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1177         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1178         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1179         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1180         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1181         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1182         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1184         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1185         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1186         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1187         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1188         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1189         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1190         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1191         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192         { 0, 0, 0, 0 }
1193 };
1194
1195 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1196                              int reg, u32 mask, u32 write)
1197 {
1198         struct e1000_hw *hw = &adapter->hw;
1199         u32 pat, val;
1200         static const u32 _test[] =
1201                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1202         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1203                 wr32(reg, (_test[pat] & write));
1204                 val = rd32(reg) & mask;
1205                 if (val != (_test[pat] & write & mask)) {
1206                         dev_err(&adapter->pdev->dev,
1207                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1208                                 reg, val, (_test[pat] & write & mask));
1209                         *data = reg;
1210                         return 1;
1211                 }
1212         }
1213
1214         return 0;
1215 }
1216
1217 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1218                               int reg, u32 mask, u32 write)
1219 {
1220         struct e1000_hw *hw = &adapter->hw;
1221         u32 val;
1222         wr32(reg, write & mask);
1223         val = rd32(reg);
1224         if ((write & mask) != (val & mask)) {
1225                 dev_err(&adapter->pdev->dev,
1226                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1227                         (val & mask), (write & mask));
1228                 *data = reg;
1229                 return 1;
1230         }
1231
1232         return 0;
1233 }
1234
1235 #define REG_PATTERN_TEST(reg, mask, write) \
1236         do { \
1237                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1238                         return 1; \
1239         } while (0)
1240
1241 #define REG_SET_AND_CHECK(reg, mask, write) \
1242         do { \
1243                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1244                         return 1; \
1245         } while (0)
1246
1247 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1248 {
1249         struct e1000_hw *hw = &adapter->hw;
1250         struct igb_reg_test *test;
1251         u32 value, before, after;
1252         u32 i, toggle;
1253
1254         switch (adapter->hw.mac.type) {
1255         case e1000_i350:
1256         case e1000_i354:
1257                 test = reg_test_i350;
1258                 toggle = 0x7FEFF3FF;
1259                 break;
1260         case e1000_i210:
1261         case e1000_i211:
1262                 test = reg_test_i210;
1263                 toggle = 0x7FEFF3FF;
1264                 break;
1265         case e1000_82580:
1266                 test = reg_test_82580;
1267                 toggle = 0x7FEFF3FF;
1268                 break;
1269         case e1000_82576:
1270                 test = reg_test_82576;
1271                 toggle = 0x7FFFF3FF;
1272                 break;
1273         default:
1274                 test = reg_test_82575;
1275                 toggle = 0x7FFFF3FF;
1276                 break;
1277         }
1278
1279         /* Because the status register is such a special case,
1280          * we handle it separately from the rest of the register
1281          * tests.  Some bits are read-only, some toggle, and some
1282          * are writable on newer MACs.
1283          */
1284         before = rd32(E1000_STATUS);
1285         value = (rd32(E1000_STATUS) & toggle);
1286         wr32(E1000_STATUS, toggle);
1287         after = rd32(E1000_STATUS) & toggle;
1288         if (value != after) {
1289                 dev_err(&adapter->pdev->dev,
1290                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1291                         after, value);
1292                 *data = 1;
1293                 return 1;
1294         }
1295         /* restore previous status */
1296         wr32(E1000_STATUS, before);
1297
1298         /* Perform the remainder of the register test, looping through
1299          * the test table until we either fail or reach the null entry.
1300          */
1301         while (test->reg) {
1302                 for (i = 0; i < test->array_len; i++) {
1303                         switch (test->test_type) {
1304                         case PATTERN_TEST:
1305                                 REG_PATTERN_TEST(test->reg +
1306                                                 (i * test->reg_offset),
1307                                                 test->mask,
1308                                                 test->write);
1309                                 break;
1310                         case SET_READ_TEST:
1311                                 REG_SET_AND_CHECK(test->reg +
1312                                                 (i * test->reg_offset),
1313                                                 test->mask,
1314                                                 test->write);
1315                                 break;
1316                         case WRITE_NO_TEST:
1317                                 writel(test->write,
1318                                     (adapter->hw.hw_addr + test->reg)
1319                                         + (i * test->reg_offset));
1320                                 break;
1321                         case TABLE32_TEST:
1322                                 REG_PATTERN_TEST(test->reg + (i * 4),
1323                                                 test->mask,
1324                                                 test->write);
1325                                 break;
1326                         case TABLE64_TEST_LO:
1327                                 REG_PATTERN_TEST(test->reg + (i * 8),
1328                                                 test->mask,
1329                                                 test->write);
1330                                 break;
1331                         case TABLE64_TEST_HI:
1332                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1333                                                 test->mask,
1334                                                 test->write);
1335                                 break;
1336                         }
1337                 }
1338                 test++;
1339         }
1340
1341         *data = 0;
1342         return 0;
1343 }
1344
1345 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1346 {
1347         struct e1000_hw *hw = &adapter->hw;
1348
1349         *data = 0;
1350
1351         /* Validate eeprom on all parts but flashless */
1352         switch (hw->mac.type) {
1353         case e1000_i210:
1354         case e1000_i211:
1355                 if (igb_get_flash_presence_i210(hw)) {
1356                         if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357                                 *data = 2;
1358                 }
1359                 break;
1360         default:
1361                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1362                         *data = 2;
1363                 break;
1364         }
1365
1366         return *data;
1367 }
1368
1369 static irqreturn_t igb_test_intr(int irq, void *data)
1370 {
1371         struct igb_adapter *adapter = (struct igb_adapter *) data;
1372         struct e1000_hw *hw = &adapter->hw;
1373
1374         adapter->test_icr |= rd32(E1000_ICR);
1375
1376         return IRQ_HANDLED;
1377 }
1378
1379 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1380 {
1381         struct e1000_hw *hw = &adapter->hw;
1382         struct net_device *netdev = adapter->netdev;
1383         u32 mask, ics_mask, i = 0, shared_int = true;
1384         u32 irq = adapter->pdev->irq;
1385
1386         *data = 0;
1387
1388         /* Hook up test interrupt handler just for this test */
1389         if (adapter->msix_entries) {
1390                 if (request_irq(adapter->msix_entries[0].vector,
1391                                 igb_test_intr, 0, netdev->name, adapter)) {
1392                         *data = 1;
1393                         return -1;
1394                 }
1395         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1396                 shared_int = false;
1397                 if (request_irq(irq,
1398                                 igb_test_intr, 0, netdev->name, adapter)) {
1399                         *data = 1;
1400                         return -1;
1401                 }
1402         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1403                                 netdev->name, adapter)) {
1404                 shared_int = false;
1405         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1406                  netdev->name, adapter)) {
1407                 *data = 1;
1408                 return -1;
1409         }
1410         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1411                 (shared_int ? "shared" : "unshared"));
1412
1413         /* Disable all the interrupts */
1414         wr32(E1000_IMC, ~0);
1415         wrfl();
1416         msleep(10);
1417
1418         /* Define all writable bits for ICS */
1419         switch (hw->mac.type) {
1420         case e1000_82575:
1421                 ics_mask = 0x37F47EDD;
1422                 break;
1423         case e1000_82576:
1424                 ics_mask = 0x77D4FBFD;
1425                 break;
1426         case e1000_82580:
1427                 ics_mask = 0x77DCFED5;
1428                 break;
1429         case e1000_i350:
1430         case e1000_i354:
1431         case e1000_i210:
1432         case e1000_i211:
1433                 ics_mask = 0x77DCFED5;
1434                 break;
1435         default:
1436                 ics_mask = 0x7FFFFFFF;
1437                 break;
1438         }
1439
1440         /* Test each interrupt */
1441         for (; i < 31; i++) {
1442                 /* Interrupt to test */
1443                 mask = 1 << i;
1444
1445                 if (!(mask & ics_mask))
1446                         continue;
1447
1448                 if (!shared_int) {
1449                         /* Disable the interrupt to be reported in
1450                          * the cause register and then force the same
1451                          * interrupt and see if one gets posted.  If
1452                          * an interrupt was posted to the bus, the
1453                          * test failed.
1454                          */
1455                         adapter->test_icr = 0;
1456
1457                         /* Flush any pending interrupts */
1458                         wr32(E1000_ICR, ~0);
1459
1460                         wr32(E1000_IMC, mask);
1461                         wr32(E1000_ICS, mask);
1462                         wrfl();
1463                         msleep(10);
1464
1465                         if (adapter->test_icr & mask) {
1466                                 *data = 3;
1467                                 break;
1468                         }
1469                 }
1470
1471                 /* Enable the interrupt to be reported in
1472                  * the cause register and then force the same
1473                  * interrupt and see if one gets posted.  If
1474                  * an interrupt was not posted to the bus, the
1475                  * test failed.
1476                  */
1477                 adapter->test_icr = 0;
1478
1479                 /* Flush any pending interrupts */
1480                 wr32(E1000_ICR, ~0);
1481
1482                 wr32(E1000_IMS, mask);
1483                 wr32(E1000_ICS, mask);
1484                 wrfl();
1485                 msleep(10);
1486
1487                 if (!(adapter->test_icr & mask)) {
1488                         *data = 4;
1489                         break;
1490                 }
1491
1492                 if (!shared_int) {
1493                         /* Disable the other interrupts to be reported in
1494                          * the cause register and then force the other
1495                          * interrupts and see if any get posted.  If
1496                          * an interrupt was posted to the bus, the
1497                          * test failed.
1498                          */
1499                         adapter->test_icr = 0;
1500
1501                         /* Flush any pending interrupts */
1502                         wr32(E1000_ICR, ~0);
1503
1504                         wr32(E1000_IMC, ~mask);
1505                         wr32(E1000_ICS, ~mask);
1506                         wrfl();
1507                         msleep(10);
1508
1509                         if (adapter->test_icr & mask) {
1510                                 *data = 5;
1511                                 break;
1512                         }
1513                 }
1514         }
1515
1516         /* Disable all the interrupts */
1517         wr32(E1000_IMC, ~0);
1518         wrfl();
1519         msleep(10);
1520
1521         /* Unhook test interrupt handler */
1522         if (adapter->msix_entries)
1523                 free_irq(adapter->msix_entries[0].vector, adapter);
1524         else
1525                 free_irq(irq, adapter);
1526
1527         return *data;
1528 }
1529
1530 static void igb_free_desc_rings(struct igb_adapter *adapter)
1531 {
1532         igb_free_tx_resources(&adapter->test_tx_ring);
1533         igb_free_rx_resources(&adapter->test_rx_ring);
1534 }
1535
1536 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1537 {
1538         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1539         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1540         struct e1000_hw *hw = &adapter->hw;
1541         int ret_val;
1542
1543         /* Setup Tx descriptor ring and Tx buffers */
1544         tx_ring->count = IGB_DEFAULT_TXD;
1545         tx_ring->dev = &adapter->pdev->dev;
1546         tx_ring->netdev = adapter->netdev;
1547         tx_ring->reg_idx = adapter->vfs_allocated_count;
1548
1549         if (igb_setup_tx_resources(tx_ring)) {
1550                 ret_val = 1;
1551                 goto err_nomem;
1552         }
1553
1554         igb_setup_tctl(adapter);
1555         igb_configure_tx_ring(adapter, tx_ring);
1556
1557         /* Setup Rx descriptor ring and Rx buffers */
1558         rx_ring->count = IGB_DEFAULT_RXD;
1559         rx_ring->dev = &adapter->pdev->dev;
1560         rx_ring->netdev = adapter->netdev;
1561         rx_ring->reg_idx = adapter->vfs_allocated_count;
1562
1563         if (igb_setup_rx_resources(rx_ring)) {
1564                 ret_val = 3;
1565                 goto err_nomem;
1566         }
1567
1568         /* set the default queue to queue 0 of PF */
1569         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1570
1571         /* enable receive ring */
1572         igb_setup_rctl(adapter);
1573         igb_configure_rx_ring(adapter, rx_ring);
1574
1575         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1576
1577         return 0;
1578
1579 err_nomem:
1580         igb_free_desc_rings(adapter);
1581         return ret_val;
1582 }
1583
1584 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1585 {
1586         struct e1000_hw *hw = &adapter->hw;
1587
1588         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1589         igb_write_phy_reg(hw, 29, 0x001F);
1590         igb_write_phy_reg(hw, 30, 0x8FFC);
1591         igb_write_phy_reg(hw, 29, 0x001A);
1592         igb_write_phy_reg(hw, 30, 0x8FF0);
1593 }
1594
1595 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1596 {
1597         struct e1000_hw *hw = &adapter->hw;
1598         u32 ctrl_reg = 0;
1599
1600         hw->mac.autoneg = false;
1601
1602         if (hw->phy.type == e1000_phy_m88) {
1603                 if (hw->phy.id != I210_I_PHY_ID) {
1604                         /* Auto-MDI/MDIX Off */
1605                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1606                         /* reset to update Auto-MDI/MDIX */
1607                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1608                         /* autoneg off */
1609                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1610                 } else {
1611                         /* force 1000, set loopback  */
1612                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1613                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1614                 }
1615         } else if (hw->phy.type == e1000_phy_82580) {
1616                 /* enable MII loopback */
1617                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1618         }
1619
1620         /* add small delay to avoid loopback test failure */
1621         msleep(50);
1622
1623         /* force 1000, set loopback */
1624         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1625
1626         /* Now set up the MAC to the same speed/duplex as the PHY. */
1627         ctrl_reg = rd32(E1000_CTRL);
1628         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1629         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1630                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1631                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1632                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1633                      E1000_CTRL_SLU);    /* Set link up enable bit */
1634
1635         if (hw->phy.type == e1000_phy_m88)
1636                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1637
1638         wr32(E1000_CTRL, ctrl_reg);
1639
1640         /* Disable the receiver on the PHY so when a cable is plugged in, the
1641          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1642          */
1643         if (hw->phy.type == e1000_phy_m88)
1644                 igb_phy_disable_receiver(adapter);
1645
1646         mdelay(500);
1647         return 0;
1648 }
1649
1650 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1651 {
1652         return igb_integrated_phy_loopback(adapter);
1653 }
1654
1655 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1656 {
1657         struct e1000_hw *hw = &adapter->hw;
1658         u32 reg;
1659
1660         reg = rd32(E1000_CTRL_EXT);
1661
1662         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1663         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1664                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1665                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1666                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1667                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1668                 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1669
1670                         /* Enable DH89xxCC MPHY for near end loopback */
1671                         reg = rd32(E1000_MPHY_ADDR_CTL);
1672                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1673                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1674                         wr32(E1000_MPHY_ADDR_CTL, reg);
1675
1676                         reg = rd32(E1000_MPHY_DATA);
1677                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1678                         wr32(E1000_MPHY_DATA, reg);
1679                 }
1680
1681                 reg = rd32(E1000_RCTL);
1682                 reg |= E1000_RCTL_LBM_TCVR;
1683                 wr32(E1000_RCTL, reg);
1684
1685                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1686
1687                 reg = rd32(E1000_CTRL);
1688                 reg &= ~(E1000_CTRL_RFCE |
1689                          E1000_CTRL_TFCE |
1690                          E1000_CTRL_LRST);
1691                 reg |= E1000_CTRL_SLU |
1692                        E1000_CTRL_FD;
1693                 wr32(E1000_CTRL, reg);
1694
1695                 /* Unset switch control to serdes energy detect */
1696                 reg = rd32(E1000_CONNSW);
1697                 reg &= ~E1000_CONNSW_ENRGSRC;
1698                 wr32(E1000_CONNSW, reg);
1699
1700                 /* Unset sigdetect for SERDES loopback on
1701                  * 82580 and newer devices.
1702                  */
1703                 if (hw->mac.type >= e1000_82580) {
1704                         reg = rd32(E1000_PCS_CFG0);
1705                         reg |= E1000_PCS_CFG_IGN_SD;
1706                         wr32(E1000_PCS_CFG0, reg);
1707                 }
1708
1709                 /* Set PCS register for forced speed */
1710                 reg = rd32(E1000_PCS_LCTL);
1711                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1712                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1713                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1714                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1715                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1716                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1717                 wr32(E1000_PCS_LCTL, reg);
1718
1719                 return 0;
1720         }
1721
1722         return igb_set_phy_loopback(adapter);
1723 }
1724
1725 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1726 {
1727         struct e1000_hw *hw = &adapter->hw;
1728         u32 rctl;
1729         u16 phy_reg;
1730
1731         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1732         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1733         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1734         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1735         (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1736                 u32 reg;
1737
1738                 /* Disable near end loopback on DH89xxCC */
1739                 reg = rd32(E1000_MPHY_ADDR_CTL);
1740                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1741                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1742                 wr32(E1000_MPHY_ADDR_CTL, reg);
1743
1744                 reg = rd32(E1000_MPHY_DATA);
1745                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1746                 wr32(E1000_MPHY_DATA, reg);
1747         }
1748
1749         rctl = rd32(E1000_RCTL);
1750         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1751         wr32(E1000_RCTL, rctl);
1752
1753         hw->mac.autoneg = true;
1754         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1755         if (phy_reg & MII_CR_LOOPBACK) {
1756                 phy_reg &= ~MII_CR_LOOPBACK;
1757                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1758                 igb_phy_sw_reset(hw);
1759         }
1760 }
1761
1762 static void igb_create_lbtest_frame(struct sk_buff *skb,
1763                                     unsigned int frame_size)
1764 {
1765         memset(skb->data, 0xFF, frame_size);
1766         frame_size /= 2;
1767         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1768         memset(&skb->data[frame_size + 10], 0xBE, 1);
1769         memset(&skb->data[frame_size + 12], 0xAF, 1);
1770 }
1771
1772 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1773                                   unsigned int frame_size)
1774 {
1775         unsigned char *data;
1776         bool match = true;
1777
1778         frame_size >>= 1;
1779
1780         data = kmap(rx_buffer->page);
1781
1782         if (data[3] != 0xFF ||
1783             data[frame_size + 10] != 0xBE ||
1784             data[frame_size + 12] != 0xAF)
1785                 match = false;
1786
1787         kunmap(rx_buffer->page);
1788
1789         return match;
1790 }
1791
1792 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1793                                 struct igb_ring *tx_ring,
1794                                 unsigned int size)
1795 {
1796         union e1000_adv_rx_desc *rx_desc;
1797         struct igb_rx_buffer *rx_buffer_info;
1798         struct igb_tx_buffer *tx_buffer_info;
1799         u16 rx_ntc, tx_ntc, count = 0;
1800
1801         /* initialize next to clean and descriptor values */
1802         rx_ntc = rx_ring->next_to_clean;
1803         tx_ntc = tx_ring->next_to_clean;
1804         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1805
1806         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1807                 /* check Rx buffer */
1808                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1809
1810                 /* sync Rx buffer for CPU read */
1811                 dma_sync_single_for_cpu(rx_ring->dev,
1812                                         rx_buffer_info->dma,
1813                                         IGB_RX_BUFSZ,
1814                                         DMA_FROM_DEVICE);
1815
1816                 /* verify contents of skb */
1817                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1818                         count++;
1819
1820                 /* sync Rx buffer for device write */
1821                 dma_sync_single_for_device(rx_ring->dev,
1822                                            rx_buffer_info->dma,
1823                                            IGB_RX_BUFSZ,
1824                                            DMA_FROM_DEVICE);
1825
1826                 /* unmap buffer on Tx side */
1827                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1828                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1829
1830                 /* increment Rx/Tx next to clean counters */
1831                 rx_ntc++;
1832                 if (rx_ntc == rx_ring->count)
1833                         rx_ntc = 0;
1834                 tx_ntc++;
1835                 if (tx_ntc == tx_ring->count)
1836                         tx_ntc = 0;
1837
1838                 /* fetch next descriptor */
1839                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1840         }
1841
1842         netdev_tx_reset_queue(txring_txq(tx_ring));
1843
1844         /* re-map buffers to ring, store next to clean values */
1845         igb_alloc_rx_buffers(rx_ring, count);
1846         rx_ring->next_to_clean = rx_ntc;
1847         tx_ring->next_to_clean = tx_ntc;
1848
1849         return count;
1850 }
1851
1852 static int igb_run_loopback_test(struct igb_adapter *adapter)
1853 {
1854         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1855         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1856         u16 i, j, lc, good_cnt;
1857         int ret_val = 0;
1858         unsigned int size = IGB_RX_HDR_LEN;
1859         netdev_tx_t tx_ret_val;
1860         struct sk_buff *skb;
1861
1862         /* allocate test skb */
1863         skb = alloc_skb(size, GFP_KERNEL);
1864         if (!skb)
1865                 return 11;
1866
1867         /* place data into test skb */
1868         igb_create_lbtest_frame(skb, size);
1869         skb_put(skb, size);
1870
1871         /* Calculate the loop count based on the largest descriptor ring
1872          * The idea is to wrap the largest ring a number of times using 64
1873          * send/receive pairs during each loop
1874          */
1875
1876         if (rx_ring->count <= tx_ring->count)
1877                 lc = ((tx_ring->count / 64) * 2) + 1;
1878         else
1879                 lc = ((rx_ring->count / 64) * 2) + 1;
1880
1881         for (j = 0; j <= lc; j++) { /* loop count loop */
1882                 /* reset count of good packets */
1883                 good_cnt = 0;
1884
1885                 /* place 64 packets on the transmit queue*/
1886                 for (i = 0; i < 64; i++) {
1887                         skb_get(skb);
1888                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1889                         if (tx_ret_val == NETDEV_TX_OK)
1890                                 good_cnt++;
1891                 }
1892
1893                 if (good_cnt != 64) {
1894                         ret_val = 12;
1895                         break;
1896                 }
1897
1898                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1899                 msleep(200);
1900
1901                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1902                 if (good_cnt != 64) {
1903                         ret_val = 13;
1904                         break;
1905                 }
1906         } /* end loop count loop */
1907
1908         /* free the original skb */
1909         kfree_skb(skb);
1910
1911         return ret_val;
1912 }
1913
1914 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1915 {
1916         /* PHY loopback cannot be performed if SoL/IDER
1917          * sessions are active
1918          */
1919         if (igb_check_reset_block(&adapter->hw)) {
1920                 dev_err(&adapter->pdev->dev,
1921                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1922                 *data = 0;
1923                 goto out;
1924         }
1925
1926         if (adapter->hw.mac.type == e1000_i354) {
1927                 dev_info(&adapter->pdev->dev,
1928                         "Loopback test not supported on i354.\n");
1929                 *data = 0;
1930                 goto out;
1931         }
1932         *data = igb_setup_desc_rings(adapter);
1933         if (*data)
1934                 goto out;
1935         *data = igb_setup_loopback_test(adapter);
1936         if (*data)
1937                 goto err_loopback;
1938         *data = igb_run_loopback_test(adapter);
1939         igb_loopback_cleanup(adapter);
1940
1941 err_loopback:
1942         igb_free_desc_rings(adapter);
1943 out:
1944         return *data;
1945 }
1946
1947 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1948 {
1949         struct e1000_hw *hw = &adapter->hw;
1950         *data = 0;
1951         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1952                 int i = 0;
1953                 hw->mac.serdes_has_link = false;
1954
1955                 /* On some blade server designs, link establishment
1956                  * could take as long as 2-3 minutes
1957                  */
1958                 do {
1959                         hw->mac.ops.check_for_link(&adapter->hw);
1960                         if (hw->mac.serdes_has_link)
1961                                 return *data;
1962                         msleep(20);
1963                 } while (i++ < 3750);
1964
1965                 *data = 1;
1966         } else {
1967                 hw->mac.ops.check_for_link(&adapter->hw);
1968                 if (hw->mac.autoneg)
1969                         msleep(5000);
1970
1971                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1972                         *data = 1;
1973         }
1974         return *data;
1975 }
1976
1977 static void igb_diag_test(struct net_device *netdev,
1978                           struct ethtool_test *eth_test, u64 *data)
1979 {
1980         struct igb_adapter *adapter = netdev_priv(netdev);
1981         u16 autoneg_advertised;
1982         u8 forced_speed_duplex, autoneg;
1983         bool if_running = netif_running(netdev);
1984
1985         set_bit(__IGB_TESTING, &adapter->state);
1986         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1987                 /* Offline tests */
1988
1989                 /* save speed, duplex, autoneg settings */
1990                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1991                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1992                 autoneg = adapter->hw.mac.autoneg;
1993
1994                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1995
1996                 /* power up link for link test */
1997                 igb_power_up_link(adapter);
1998
1999                 /* Link test performed before hardware reset so autoneg doesn't
2000                  * interfere with test result
2001                  */
2002                 if (igb_link_test(adapter, &data[4]))
2003                         eth_test->flags |= ETH_TEST_FL_FAILED;
2004
2005                 if (if_running)
2006                         /* indicate we're in test mode */
2007                         dev_close(netdev);
2008                 else
2009                         igb_reset(adapter);
2010
2011                 if (igb_reg_test(adapter, &data[0]))
2012                         eth_test->flags |= ETH_TEST_FL_FAILED;
2013
2014                 igb_reset(adapter);
2015                 if (igb_eeprom_test(adapter, &data[1]))
2016                         eth_test->flags |= ETH_TEST_FL_FAILED;
2017
2018                 igb_reset(adapter);
2019                 if (igb_intr_test(adapter, &data[2]))
2020                         eth_test->flags |= ETH_TEST_FL_FAILED;
2021
2022                 igb_reset(adapter);
2023                 /* power up link for loopback test */
2024                 igb_power_up_link(adapter);
2025                 if (igb_loopback_test(adapter, &data[3]))
2026                         eth_test->flags |= ETH_TEST_FL_FAILED;
2027
2028                 /* restore speed, duplex, autoneg settings */
2029                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2030                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2031                 adapter->hw.mac.autoneg = autoneg;
2032
2033                 /* force this routine to wait until autoneg complete/timeout */
2034                 adapter->hw.phy.autoneg_wait_to_complete = true;
2035                 igb_reset(adapter);
2036                 adapter->hw.phy.autoneg_wait_to_complete = false;
2037
2038                 clear_bit(__IGB_TESTING, &adapter->state);
2039                 if (if_running)
2040                         dev_open(netdev);
2041         } else {
2042                 dev_info(&adapter->pdev->dev, "online testing starting\n");
2043
2044                 /* PHY is powered down when interface is down */
2045                 if (if_running && igb_link_test(adapter, &data[4]))
2046                         eth_test->flags |= ETH_TEST_FL_FAILED;
2047                 else
2048                         data[4] = 0;
2049
2050                 /* Online tests aren't run; pass by default */
2051                 data[0] = 0;
2052                 data[1] = 0;
2053                 data[2] = 0;
2054                 data[3] = 0;
2055
2056                 clear_bit(__IGB_TESTING, &adapter->state);
2057         }
2058         msleep_interruptible(4 * 1000);
2059 }
2060
2061 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2062 {
2063         struct igb_adapter *adapter = netdev_priv(netdev);
2064
2065         wol->wolopts = 0;
2066
2067         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2068                 return;
2069
2070         wol->supported = WAKE_UCAST | WAKE_MCAST |
2071                          WAKE_BCAST | WAKE_MAGIC |
2072                          WAKE_PHY;
2073
2074         /* apply any specific unsupported masks here */
2075         switch (adapter->hw.device_id) {
2076         default:
2077                 break;
2078         }
2079
2080         if (adapter->wol & E1000_WUFC_EX)
2081                 wol->wolopts |= WAKE_UCAST;
2082         if (adapter->wol & E1000_WUFC_MC)
2083                 wol->wolopts |= WAKE_MCAST;
2084         if (adapter->wol & E1000_WUFC_BC)
2085                 wol->wolopts |= WAKE_BCAST;
2086         if (adapter->wol & E1000_WUFC_MAG)
2087                 wol->wolopts |= WAKE_MAGIC;
2088         if (adapter->wol & E1000_WUFC_LNKC)
2089                 wol->wolopts |= WAKE_PHY;
2090 }
2091
2092 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2093 {
2094         struct igb_adapter *adapter = netdev_priv(netdev);
2095
2096         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2097                 return -EOPNOTSUPP;
2098
2099         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2100                 return wol->wolopts ? -EOPNOTSUPP : 0;
2101
2102         /* these settings will always override what we currently have */
2103         adapter->wol = 0;
2104
2105         if (wol->wolopts & WAKE_UCAST)
2106                 adapter->wol |= E1000_WUFC_EX;
2107         if (wol->wolopts & WAKE_MCAST)
2108                 adapter->wol |= E1000_WUFC_MC;
2109         if (wol->wolopts & WAKE_BCAST)
2110                 adapter->wol |= E1000_WUFC_BC;
2111         if (wol->wolopts & WAKE_MAGIC)
2112                 adapter->wol |= E1000_WUFC_MAG;
2113         if (wol->wolopts & WAKE_PHY)
2114                 adapter->wol |= E1000_WUFC_LNKC;
2115         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2116
2117         return 0;
2118 }
2119
2120 /* bit defines for adapter->led_status */
2121 #define IGB_LED_ON              0
2122
2123 static int igb_set_phys_id(struct net_device *netdev,
2124                            enum ethtool_phys_id_state state)
2125 {
2126         struct igb_adapter *adapter = netdev_priv(netdev);
2127         struct e1000_hw *hw = &adapter->hw;
2128
2129         switch (state) {
2130         case ETHTOOL_ID_ACTIVE:
2131                 igb_blink_led(hw);
2132                 return 2;
2133         case ETHTOOL_ID_ON:
2134                 igb_blink_led(hw);
2135                 break;
2136         case ETHTOOL_ID_OFF:
2137                 igb_led_off(hw);
2138                 break;
2139         case ETHTOOL_ID_INACTIVE:
2140                 igb_led_off(hw);
2141                 clear_bit(IGB_LED_ON, &adapter->led_status);
2142                 igb_cleanup_led(hw);
2143                 break;
2144         }
2145
2146         return 0;
2147 }
2148
2149 static int igb_set_coalesce(struct net_device *netdev,
2150                             struct ethtool_coalesce *ec)
2151 {
2152         struct igb_adapter *adapter = netdev_priv(netdev);
2153         int i;
2154
2155         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2156             ((ec->rx_coalesce_usecs > 3) &&
2157              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2158             (ec->rx_coalesce_usecs == 2))
2159                 return -EINVAL;
2160
2161         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2162             ((ec->tx_coalesce_usecs > 3) &&
2163              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2164             (ec->tx_coalesce_usecs == 2))
2165                 return -EINVAL;
2166
2167         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2168                 return -EINVAL;
2169
2170         /* If ITR is disabled, disable DMAC */
2171         if (ec->rx_coalesce_usecs == 0) {
2172                 if (adapter->flags & IGB_FLAG_DMAC)
2173                         adapter->flags &= ~IGB_FLAG_DMAC;
2174         }
2175
2176         /* convert to rate of irq's per second */
2177         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2178                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2179         else
2180                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2181
2182         /* convert to rate of irq's per second */
2183         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2184                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2185         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2186                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2187         else
2188                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2189
2190         for (i = 0; i < adapter->num_q_vectors; i++) {
2191                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2192                 q_vector->tx.work_limit = adapter->tx_work_limit;
2193                 if (q_vector->rx.ring)
2194                         q_vector->itr_val = adapter->rx_itr_setting;
2195                 else
2196                         q_vector->itr_val = adapter->tx_itr_setting;
2197                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2198                         q_vector->itr_val = IGB_START_ITR;
2199                 q_vector->set_itr = 1;
2200         }
2201
2202         return 0;
2203 }
2204
2205 static int igb_get_coalesce(struct net_device *netdev,
2206                             struct ethtool_coalesce *ec)
2207 {
2208         struct igb_adapter *adapter = netdev_priv(netdev);
2209
2210         if (adapter->rx_itr_setting <= 3)
2211                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2212         else
2213                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2214
2215         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2216                 if (adapter->tx_itr_setting <= 3)
2217                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2218                 else
2219                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2220         }
2221
2222         return 0;
2223 }
2224
2225 static int igb_nway_reset(struct net_device *netdev)
2226 {
2227         struct igb_adapter *adapter = netdev_priv(netdev);
2228         if (netif_running(netdev))
2229                 igb_reinit_locked(adapter);
2230         return 0;
2231 }
2232
2233 static int igb_get_sset_count(struct net_device *netdev, int sset)
2234 {
2235         switch (sset) {
2236         case ETH_SS_STATS:
2237                 return IGB_STATS_LEN;
2238         case ETH_SS_TEST:
2239                 return IGB_TEST_LEN;
2240         default:
2241                 return -ENOTSUPP;
2242         }
2243 }
2244
2245 static void igb_get_ethtool_stats(struct net_device *netdev,
2246                                   struct ethtool_stats *stats, u64 *data)
2247 {
2248         struct igb_adapter *adapter = netdev_priv(netdev);
2249         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2250         unsigned int start;
2251         struct igb_ring *ring;
2252         int i, j;
2253         char *p;
2254
2255         spin_lock(&adapter->stats64_lock);
2256         igb_update_stats(adapter, net_stats);
2257
2258         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2259                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2260                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2261                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2262         }
2263         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2264                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2265                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2266                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2267         }
2268         for (j = 0; j < adapter->num_tx_queues; j++) {
2269                 u64     restart2;
2270
2271                 ring = adapter->tx_ring[j];
2272                 do {
2273                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2274                         data[i]   = ring->tx_stats.packets;
2275                         data[i+1] = ring->tx_stats.bytes;
2276                         data[i+2] = ring->tx_stats.restart_queue;
2277                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2278                 do {
2279                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2280                         restart2  = ring->tx_stats.restart_queue2;
2281                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2282                 data[i+2] += restart2;
2283
2284                 i += IGB_TX_QUEUE_STATS_LEN;
2285         }
2286         for (j = 0; j < adapter->num_rx_queues; j++) {
2287                 ring = adapter->rx_ring[j];
2288                 do {
2289                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2290                         data[i]   = ring->rx_stats.packets;
2291                         data[i+1] = ring->rx_stats.bytes;
2292                         data[i+2] = ring->rx_stats.drops;
2293                         data[i+3] = ring->rx_stats.csum_err;
2294                         data[i+4] = ring->rx_stats.alloc_failed;
2295                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2296                 i += IGB_RX_QUEUE_STATS_LEN;
2297         }
2298         spin_unlock(&adapter->stats64_lock);
2299 }
2300
2301 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2302 {
2303         struct igb_adapter *adapter = netdev_priv(netdev);
2304         u8 *p = data;
2305         int i;
2306
2307         switch (stringset) {
2308         case ETH_SS_TEST:
2309                 memcpy(data, *igb_gstrings_test,
2310                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2311                 break;
2312         case ETH_SS_STATS:
2313                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2314                         memcpy(p, igb_gstrings_stats[i].stat_string,
2315                                ETH_GSTRING_LEN);
2316                         p += ETH_GSTRING_LEN;
2317                 }
2318                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2319                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2320                                ETH_GSTRING_LEN);
2321                         p += ETH_GSTRING_LEN;
2322                 }
2323                 for (i = 0; i < adapter->num_tx_queues; i++) {
2324                         sprintf(p, "tx_queue_%u_packets", i);
2325                         p += ETH_GSTRING_LEN;
2326                         sprintf(p, "tx_queue_%u_bytes", i);
2327                         p += ETH_GSTRING_LEN;
2328                         sprintf(p, "tx_queue_%u_restart", i);
2329                         p += ETH_GSTRING_LEN;
2330                 }
2331                 for (i = 0; i < adapter->num_rx_queues; i++) {
2332                         sprintf(p, "rx_queue_%u_packets", i);
2333                         p += ETH_GSTRING_LEN;
2334                         sprintf(p, "rx_queue_%u_bytes", i);
2335                         p += ETH_GSTRING_LEN;
2336                         sprintf(p, "rx_queue_%u_drops", i);
2337                         p += ETH_GSTRING_LEN;
2338                         sprintf(p, "rx_queue_%u_csum_err", i);
2339                         p += ETH_GSTRING_LEN;
2340                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2341                         p += ETH_GSTRING_LEN;
2342                 }
2343                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2344                 break;
2345         }
2346 }
2347
2348 static int igb_get_ts_info(struct net_device *dev,
2349                            struct ethtool_ts_info *info)
2350 {
2351         struct igb_adapter *adapter = netdev_priv(dev);
2352
2353         switch (adapter->hw.mac.type) {
2354         case e1000_82575:
2355                 info->so_timestamping =
2356                         SOF_TIMESTAMPING_TX_SOFTWARE |
2357                         SOF_TIMESTAMPING_RX_SOFTWARE |
2358                         SOF_TIMESTAMPING_SOFTWARE;
2359                 return 0;
2360         case e1000_82576:
2361         case e1000_82580:
2362         case e1000_i350:
2363         case e1000_i354:
2364         case e1000_i210:
2365         case e1000_i211:
2366                 info->so_timestamping =
2367                         SOF_TIMESTAMPING_TX_SOFTWARE |
2368                         SOF_TIMESTAMPING_RX_SOFTWARE |
2369                         SOF_TIMESTAMPING_SOFTWARE |
2370                         SOF_TIMESTAMPING_TX_HARDWARE |
2371                         SOF_TIMESTAMPING_RX_HARDWARE |
2372                         SOF_TIMESTAMPING_RAW_HARDWARE;
2373
2374                 if (adapter->ptp_clock)
2375                         info->phc_index = ptp_clock_index(adapter->ptp_clock);
2376                 else
2377                         info->phc_index = -1;
2378
2379                 info->tx_types =
2380                         (1 << HWTSTAMP_TX_OFF) |
2381                         (1 << HWTSTAMP_TX_ON);
2382
2383                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2384
2385                 /* 82576 does not support timestamping all packets. */
2386                 if (adapter->hw.mac.type >= e1000_82580)
2387                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2388                 else
2389                         info->rx_filters |=
2390                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2391                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2392                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2393                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2394                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2395                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2396                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2397
2398                 return 0;
2399         default:
2400                 return -EOPNOTSUPP;
2401         }
2402 }
2403
2404 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2405                                  struct ethtool_rxnfc *cmd)
2406 {
2407         cmd->data = 0;
2408
2409         /* Report default options for RSS on igb */
2410         switch (cmd->flow_type) {
2411         case TCP_V4_FLOW:
2412                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2413         case UDP_V4_FLOW:
2414                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2415                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2416         case SCTP_V4_FLOW:
2417         case AH_ESP_V4_FLOW:
2418         case AH_V4_FLOW:
2419         case ESP_V4_FLOW:
2420         case IPV4_FLOW:
2421                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2422                 break;
2423         case TCP_V6_FLOW:
2424                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2425         case UDP_V6_FLOW:
2426                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2427                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2428         case SCTP_V6_FLOW:
2429         case AH_ESP_V6_FLOW:
2430         case AH_V6_FLOW:
2431         case ESP_V6_FLOW:
2432         case IPV6_FLOW:
2433                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2434                 break;
2435         default:
2436                 return -EINVAL;
2437         }
2438
2439         return 0;
2440 }
2441
2442 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2443                          u32 *rule_locs)
2444 {
2445         struct igb_adapter *adapter = netdev_priv(dev);
2446         int ret = -EOPNOTSUPP;
2447
2448         switch (cmd->cmd) {
2449         case ETHTOOL_GRXRINGS:
2450                 cmd->data = adapter->num_rx_queues;
2451                 ret = 0;
2452                 break;
2453         case ETHTOOL_GRXFH:
2454                 ret = igb_get_rss_hash_opts(adapter, cmd);
2455                 break;
2456         default:
2457                 break;
2458         }
2459
2460         return ret;
2461 }
2462
2463 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2464                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2465 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2466                                 struct ethtool_rxnfc *nfc)
2467 {
2468         u32 flags = adapter->flags;
2469
2470         /* RSS does not support anything other than hashing
2471          * to queues on src and dst IPs and ports
2472          */
2473         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2474                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2475                 return -EINVAL;
2476
2477         switch (nfc->flow_type) {
2478         case TCP_V4_FLOW:
2479         case TCP_V6_FLOW:
2480                 if (!(nfc->data & RXH_IP_SRC) ||
2481                     !(nfc->data & RXH_IP_DST) ||
2482                     !(nfc->data & RXH_L4_B_0_1) ||
2483                     !(nfc->data & RXH_L4_B_2_3))
2484                         return -EINVAL;
2485                 break;
2486         case UDP_V4_FLOW:
2487                 if (!(nfc->data & RXH_IP_SRC) ||
2488                     !(nfc->data & RXH_IP_DST))
2489                         return -EINVAL;
2490                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2491                 case 0:
2492                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2493                         break;
2494                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2495                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2496                         break;
2497                 default:
2498                         return -EINVAL;
2499                 }
2500                 break;
2501         case UDP_V6_FLOW:
2502                 if (!(nfc->data & RXH_IP_SRC) ||
2503                     !(nfc->data & RXH_IP_DST))
2504                         return -EINVAL;
2505                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2506                 case 0:
2507                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2508                         break;
2509                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2510                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2511                         break;
2512                 default:
2513                         return -EINVAL;
2514                 }
2515                 break;
2516         case AH_ESP_V4_FLOW:
2517         case AH_V4_FLOW:
2518         case ESP_V4_FLOW:
2519         case SCTP_V4_FLOW:
2520         case AH_ESP_V6_FLOW:
2521         case AH_V6_FLOW:
2522         case ESP_V6_FLOW:
2523         case SCTP_V6_FLOW:
2524                 if (!(nfc->data & RXH_IP_SRC) ||
2525                     !(nfc->data & RXH_IP_DST) ||
2526                     (nfc->data & RXH_L4_B_0_1) ||
2527                     (nfc->data & RXH_L4_B_2_3))
2528                         return -EINVAL;
2529                 break;
2530         default:
2531                 return -EINVAL;
2532         }
2533
2534         /* if we changed something we need to update flags */
2535         if (flags != adapter->flags) {
2536                 struct e1000_hw *hw = &adapter->hw;
2537                 u32 mrqc = rd32(E1000_MRQC);
2538
2539                 if ((flags & UDP_RSS_FLAGS) &&
2540                     !(adapter->flags & UDP_RSS_FLAGS))
2541                         dev_err(&adapter->pdev->dev,
2542                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2543
2544                 adapter->flags = flags;
2545
2546                 /* Perform hash on these packet types */
2547                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2548                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2549                         E1000_MRQC_RSS_FIELD_IPV6 |
2550                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2551
2552                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2553                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2554
2555                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2556                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2557
2558                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2559                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2560
2561                 wr32(E1000_MRQC, mrqc);
2562         }
2563
2564         return 0;
2565 }
2566
2567 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2568 {
2569         struct igb_adapter *adapter = netdev_priv(dev);
2570         int ret = -EOPNOTSUPP;
2571
2572         switch (cmd->cmd) {
2573         case ETHTOOL_SRXFH:
2574                 ret = igb_set_rss_hash_opt(adapter, cmd);
2575                 break;
2576         default:
2577                 break;
2578         }
2579
2580         return ret;
2581 }
2582
2583 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2584 {
2585         struct igb_adapter *adapter = netdev_priv(netdev);
2586         struct e1000_hw *hw = &adapter->hw;
2587         u32 ipcnfg, eeer, ret_val;
2588         u16 phy_data;
2589
2590         if ((hw->mac.type < e1000_i350) ||
2591             (hw->phy.media_type != e1000_media_type_copper))
2592                 return -EOPNOTSUPP;
2593
2594         edata->supported = (SUPPORTED_1000baseT_Full |
2595                             SUPPORTED_100baseT_Full);
2596
2597         ipcnfg = rd32(E1000_IPCNFG);
2598         eeer = rd32(E1000_EEER);
2599
2600         /* EEE status on negotiated link */
2601         if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2602                 edata->advertised = ADVERTISED_1000baseT_Full;
2603
2604         if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2605                 edata->advertised |= ADVERTISED_100baseT_Full;
2606
2607         /* EEE Link Partner Advertised */
2608         switch (hw->mac.type) {
2609         case e1000_i350:
2610                 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2611                                            &phy_data);
2612                 if (ret_val)
2613                         return -ENODATA;
2614
2615                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2616
2617                 break;
2618         case e1000_i210:
2619         case e1000_i211:
2620                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2621                                              E1000_EEE_LP_ADV_DEV_I210,
2622                                              &phy_data);
2623                 if (ret_val)
2624                         return -ENODATA;
2625
2626                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2627
2628                 break;
2629         default:
2630                 break;
2631         }
2632
2633         if (eeer & E1000_EEER_EEE_NEG)
2634                 edata->eee_active = true;
2635
2636         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2637
2638         if (eeer & E1000_EEER_TX_LPI_EN)
2639                 edata->tx_lpi_enabled = true;
2640
2641         /* Report correct negotiated EEE status for devices that
2642          * wrongly report EEE at half-duplex
2643          */
2644         if (adapter->link_duplex == HALF_DUPLEX) {
2645                 edata->eee_enabled = false;
2646                 edata->eee_active = false;
2647                 edata->tx_lpi_enabled = false;
2648                 edata->advertised &= ~edata->advertised;
2649         }
2650
2651         return 0;
2652 }
2653
2654 static int igb_set_eee(struct net_device *netdev,
2655                        struct ethtool_eee *edata)
2656 {
2657         struct igb_adapter *adapter = netdev_priv(netdev);
2658         struct e1000_hw *hw = &adapter->hw;
2659         struct ethtool_eee eee_curr;
2660         s32 ret_val;
2661
2662         if ((hw->mac.type < e1000_i350) ||
2663             (hw->phy.media_type != e1000_media_type_copper))
2664                 return -EOPNOTSUPP;
2665
2666         memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2667
2668         ret_val = igb_get_eee(netdev, &eee_curr);
2669         if (ret_val)
2670                 return ret_val;
2671
2672         if (eee_curr.eee_enabled) {
2673                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2674                         dev_err(&adapter->pdev->dev,
2675                                 "Setting EEE tx-lpi is not supported\n");
2676                         return -EINVAL;
2677                 }
2678
2679                 /* Tx LPI timer is not implemented currently */
2680                 if (edata->tx_lpi_timer) {
2681                         dev_err(&adapter->pdev->dev,
2682                                 "Setting EEE Tx LPI timer is not supported\n");
2683                         return -EINVAL;
2684                 }
2685
2686                 if (eee_curr.advertised != edata->advertised) {
2687                         dev_err(&adapter->pdev->dev,
2688                                 "Setting EEE Advertisement is not supported\n");
2689                         return -EINVAL;
2690                 }
2691
2692         } else if (!edata->eee_enabled) {
2693                 dev_err(&adapter->pdev->dev,
2694                         "Setting EEE options are not supported with EEE disabled\n");
2695                         return -EINVAL;
2696                 }
2697
2698         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2699                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2700                 igb_set_eee_i350(hw);
2701
2702                 /* reset link */
2703                 if (netif_running(netdev))
2704                         igb_reinit_locked(adapter);
2705                 else
2706                         igb_reset(adapter);
2707         }
2708
2709         return 0;
2710 }
2711
2712 static int igb_get_module_info(struct net_device *netdev,
2713                                struct ethtool_modinfo *modinfo)
2714 {
2715         struct igb_adapter *adapter = netdev_priv(netdev);
2716         struct e1000_hw *hw = &adapter->hw;
2717         u32 status = E1000_SUCCESS;
2718         u16 sff8472_rev, addr_mode;
2719         bool page_swap = false;
2720
2721         if ((hw->phy.media_type == e1000_media_type_copper) ||
2722             (hw->phy.media_type == e1000_media_type_unknown))
2723                 return -EOPNOTSUPP;
2724
2725         /* Check whether we support SFF-8472 or not */
2726         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2727         if (status != E1000_SUCCESS)
2728                 return -EIO;
2729
2730         /* addressing mode is not supported */
2731         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2732         if (status != E1000_SUCCESS)
2733                 return -EIO;
2734
2735         /* addressing mode is not supported */
2736         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2737                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2738                 page_swap = true;
2739         }
2740
2741         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2742                 /* We have an SFP, but it does not support SFF-8472 */
2743                 modinfo->type = ETH_MODULE_SFF_8079;
2744                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2745         } else {
2746                 /* We have an SFP which supports a revision of SFF-8472 */
2747                 modinfo->type = ETH_MODULE_SFF_8472;
2748                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2749         }
2750
2751         return 0;
2752 }
2753
2754 static int igb_get_module_eeprom(struct net_device *netdev,
2755                                  struct ethtool_eeprom *ee, u8 *data)
2756 {
2757         struct igb_adapter *adapter = netdev_priv(netdev);
2758         struct e1000_hw *hw = &adapter->hw;
2759         u32 status = E1000_SUCCESS;
2760         u16 *dataword;
2761         u16 first_word, last_word;
2762         int i = 0;
2763
2764         if (ee->len == 0)
2765                 return -EINVAL;
2766
2767         first_word = ee->offset >> 1;
2768         last_word = (ee->offset + ee->len - 1) >> 1;
2769
2770         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2771                            GFP_KERNEL);
2772         if (!dataword)
2773                 return -ENOMEM;
2774
2775         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2776         for (i = 0; i < last_word - first_word + 1; i++) {
2777                 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2778                 if (status != E1000_SUCCESS)
2779                         /* Error occurred while reading module */
2780                         return -EIO;
2781
2782                 be16_to_cpus(&dataword[i]);
2783         }
2784
2785         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2786         kfree(dataword);
2787
2788         return 0;
2789 }
2790
2791 static int igb_ethtool_begin(struct net_device *netdev)
2792 {
2793         struct igb_adapter *adapter = netdev_priv(netdev);
2794         pm_runtime_get_sync(&adapter->pdev->dev);
2795         return 0;
2796 }
2797
2798 static void igb_ethtool_complete(struct net_device *netdev)
2799 {
2800         struct igb_adapter *adapter = netdev_priv(netdev);
2801         pm_runtime_put(&adapter->pdev->dev);
2802 }
2803
2804 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2805 {
2806         return IGB_RETA_SIZE;
2807 }
2808
2809 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2810 {
2811         struct igb_adapter *adapter = netdev_priv(netdev);
2812         int i;
2813
2814         for (i = 0; i < IGB_RETA_SIZE; i++)
2815                 indir[i] = adapter->rss_indir_tbl[i];
2816
2817         return 0;
2818 }
2819
2820 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         u32 reg = E1000_RETA(0);
2824         u32 shift = 0;
2825         int i = 0;
2826
2827         switch (hw->mac.type) {
2828         case e1000_82575:
2829                 shift = 6;
2830                 break;
2831         case e1000_82576:
2832                 /* 82576 supports 2 RSS queues for SR-IOV */
2833                 if (adapter->vfs_allocated_count)
2834                         shift = 3;
2835                 break;
2836         default:
2837                 break;
2838         }
2839
2840         while (i < IGB_RETA_SIZE) {
2841                 u32 val = 0;
2842                 int j;
2843
2844                 for (j = 3; j >= 0; j--) {
2845                         val <<= 8;
2846                         val |= adapter->rss_indir_tbl[i + j];
2847                 }
2848
2849                 wr32(reg, val << shift);
2850                 reg += 4;
2851                 i += 4;
2852         }
2853 }
2854
2855 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2856 {
2857         struct igb_adapter *adapter = netdev_priv(netdev);
2858         struct e1000_hw *hw = &adapter->hw;
2859         int i;
2860         u32 num_queues;
2861
2862         num_queues = adapter->rss_queues;
2863
2864         switch (hw->mac.type) {
2865         case e1000_82576:
2866                 /* 82576 supports 2 RSS queues for SR-IOV */
2867                 if (adapter->vfs_allocated_count)
2868                         num_queues = 2;
2869                 break;
2870         default:
2871                 break;
2872         }
2873
2874         /* Verify user input. */
2875         for (i = 0; i < IGB_RETA_SIZE; i++)
2876                 if (indir[i] >= num_queues)
2877                         return -EINVAL;
2878
2879
2880         for (i = 0; i < IGB_RETA_SIZE; i++)
2881                 adapter->rss_indir_tbl[i] = indir[i];
2882
2883         igb_write_rss_indir_tbl(adapter);
2884
2885         return 0;
2886 }
2887
2888 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2889 {
2890         struct e1000_hw *hw = &adapter->hw;
2891         unsigned int max_combined = 0;
2892
2893         switch (hw->mac.type) {
2894         case e1000_i211:
2895                 max_combined = IGB_MAX_RX_QUEUES_I211;
2896                 break;
2897         case e1000_82575:
2898         case e1000_i210:
2899                 max_combined = IGB_MAX_RX_QUEUES_82575;
2900                 break;
2901         case e1000_i350:
2902                 if (!!adapter->vfs_allocated_count) {
2903                         max_combined = 1;
2904                         break;
2905                 }
2906                 /* fall through */
2907         case e1000_82576:
2908                 if (!!adapter->vfs_allocated_count) {
2909                         max_combined = 2;
2910                         break;
2911                 }
2912                 /* fall through */
2913         case e1000_82580:
2914         case e1000_i354:
2915         default:
2916                 max_combined = IGB_MAX_RX_QUEUES;
2917                 break;
2918         }
2919
2920         return max_combined;
2921 }
2922
2923 static void igb_get_channels(struct net_device *netdev,
2924                              struct ethtool_channels *ch)
2925 {
2926         struct igb_adapter *adapter = netdev_priv(netdev);
2927
2928         /* Report maximum channels */
2929         ch->max_combined = igb_max_channels(adapter);
2930
2931         /* Report info for other vector */
2932         if (adapter->msix_entries) {
2933                 ch->max_other = NON_Q_VECTORS;
2934                 ch->other_count = NON_Q_VECTORS;
2935         }
2936
2937         ch->combined_count = adapter->rss_queues;
2938 }
2939
2940 static int igb_set_channels(struct net_device *netdev,
2941                             struct ethtool_channels *ch)
2942 {
2943         struct igb_adapter *adapter = netdev_priv(netdev);
2944         unsigned int count = ch->combined_count;
2945
2946         /* Verify they are not requesting separate vectors */
2947         if (!count || ch->rx_count || ch->tx_count)
2948                 return -EINVAL;
2949
2950         /* Verify other_count is valid and has not been changed */
2951         if (ch->other_count != NON_Q_VECTORS)
2952                 return -EINVAL;
2953
2954         /* Verify the number of channels doesn't exceed hw limits */
2955         if (count > igb_max_channels(adapter))
2956                 return -EINVAL;
2957
2958         if (count != adapter->rss_queues) {
2959                 adapter->rss_queues = count;
2960
2961                 /* Hardware has to reinitialize queues and interrupts to
2962                  * match the new configuration.
2963                  */
2964                 return igb_reinit_queues(adapter);
2965         }
2966
2967         return 0;
2968 }
2969
2970 static const struct ethtool_ops igb_ethtool_ops = {
2971         .get_settings           = igb_get_settings,
2972         .set_settings           = igb_set_settings,
2973         .get_drvinfo            = igb_get_drvinfo,
2974         .get_regs_len           = igb_get_regs_len,
2975         .get_regs               = igb_get_regs,
2976         .get_wol                = igb_get_wol,
2977         .set_wol                = igb_set_wol,
2978         .get_msglevel           = igb_get_msglevel,
2979         .set_msglevel           = igb_set_msglevel,
2980         .nway_reset             = igb_nway_reset,
2981         .get_link               = igb_get_link,
2982         .get_eeprom_len         = igb_get_eeprom_len,
2983         .get_eeprom             = igb_get_eeprom,
2984         .set_eeprom             = igb_set_eeprom,
2985         .get_ringparam          = igb_get_ringparam,
2986         .set_ringparam          = igb_set_ringparam,
2987         .get_pauseparam         = igb_get_pauseparam,
2988         .set_pauseparam         = igb_set_pauseparam,
2989         .self_test              = igb_diag_test,
2990         .get_strings            = igb_get_strings,
2991         .set_phys_id            = igb_set_phys_id,
2992         .get_sset_count         = igb_get_sset_count,
2993         .get_ethtool_stats      = igb_get_ethtool_stats,
2994         .get_coalesce           = igb_get_coalesce,
2995         .set_coalesce           = igb_set_coalesce,
2996         .get_ts_info            = igb_get_ts_info,
2997         .get_rxnfc              = igb_get_rxnfc,
2998         .set_rxnfc              = igb_set_rxnfc,
2999         .get_eee                = igb_get_eee,
3000         .set_eee                = igb_set_eee,
3001         .get_module_info        = igb_get_module_info,
3002         .get_module_eeprom      = igb_get_module_eeprom,
3003         .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3004         .get_rxfh_indir         = igb_get_rxfh_indir,
3005         .set_rxfh_indir         = igb_set_rxfh_indir,
3006         .get_channels           = igb_get_channels,
3007         .set_channels           = igb_set_channels,
3008         .begin                  = igb_ethtool_begin,
3009         .complete               = igb_ethtool_complete,
3010 };
3011
3012 void igb_set_ethtool_ops(struct net_device *netdev)
3013 {
3014         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3015 }