Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168                                      bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170                                  __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172                                   __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190         "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static const struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = e1000_remove,
208 #ifdef CONFIG_PM
209         /* Power Management Hooks */
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234         struct e1000_adapter *adapter = hw->back;
235         return adapter->netdev;
236 }
237
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246         int ret;
247         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249         pr_info("%s\n", e1000_copyright);
250
251         ret = pci_register_driver(&e1000_driver);
252         if (copybreak != COPYBREAK_DEFAULT) {
253                 if (copybreak == 0)
254                         pr_info("copybreak disabled\n");
255                 else
256                         pr_info("copybreak enabled for "
257                                    "packets <= %u bytes\n", copybreak);
258         }
259         return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272         pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279         struct net_device *netdev = adapter->netdev;
280         irq_handler_t handler = e1000_intr;
281         int irq_flags = IRQF_SHARED;
282         int err;
283
284         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285                           netdev);
286         if (err) {
287                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288         }
289
290         return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296
297         free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306         struct e1000_hw *hw = &adapter->hw;
307
308         ew32(IMC, ~0);
309         E1000_WRITE_FLUSH();
310         synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320
321         ew32(IMS, IMS_ENABLE_MASK);
322         E1000_WRITE_FLUSH();
323 }
324
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327         struct e1000_hw *hw = &adapter->hw;
328         struct net_device *netdev = adapter->netdev;
329         u16 vid = hw->mng_cookie.vlan_id;
330         u16 old_vid = adapter->mng_vlan_id;
331
332         if (!e1000_vlan_used(adapter))
333                 return;
334
335         if (!test_bit(vid, adapter->active_vlans)) {
336                 if (hw->mng_cookie.status &
337                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339                         adapter->mng_vlan_id = vid;
340                 } else {
341                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342                 }
343                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344                     (vid != old_vid) &&
345                     !test_bit(old_vid, adapter->active_vlans))
346                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347                                                old_vid);
348         } else {
349                 adapter->mng_vlan_id = vid;
350         }
351 }
352
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355         struct e1000_hw *hw = &adapter->hw;
356
357         if (adapter->en_mng_pt) {
358                 u32 manc = er32(MANC);
359
360                 /* disable hardware interception of ARP */
361                 manc &= ~(E1000_MANC_ARP_EN);
362
363                 ew32(MANC, manc);
364         }
365 }
366
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369         struct e1000_hw *hw = &adapter->hw;
370
371         if (adapter->en_mng_pt) {
372                 u32 manc = er32(MANC);
373
374                 /* re-enable hardware interception of ARP */
375                 manc |= E1000_MANC_ARP_EN;
376
377                 ew32(MANC, manc);
378         }
379 }
380
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387         struct net_device *netdev = adapter->netdev;
388         int i;
389
390         e1000_set_rx_mode(netdev);
391
392         e1000_restore_vlan(adapter);
393         e1000_init_manageability(adapter);
394
395         e1000_configure_tx(adapter);
396         e1000_setup_rctl(adapter);
397         e1000_configure_rx(adapter);
398         /* call E1000_DESC_UNUSED which always leaves
399          * at least 1 descriptor unused to make sure
400          * next_to_use != next_to_clean
401          */
402         for (i = 0; i < adapter->num_rx_queues; i++) {
403                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404                 adapter->alloc_rx_buf(adapter, ring,
405                                       E1000_DESC_UNUSED(ring));
406         }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411         struct e1000_hw *hw = &adapter->hw;
412
413         /* hardware has been reset, we need to reload some things */
414         e1000_configure(adapter);
415
416         clear_bit(__E1000_DOWN, &adapter->flags);
417
418         napi_enable(&adapter->napi);
419
420         e1000_irq_enable(adapter);
421
422         netif_wake_queue(adapter->netdev);
423
424         /* fire a link change interrupt to start the watchdog */
425         ew32(ICS, E1000_ICS_LSC);
426         return 0;
427 }
428
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439         struct e1000_hw *hw = &adapter->hw;
440         u16 mii_reg = 0;
441
442         /* Just clear the power down bit to wake the phy back up */
443         if (hw->media_type == e1000_media_type_copper) {
444                 /* according to the manual, the phy will retain its
445                  * settings across a power-down/up cycle
446                  */
447                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448                 mii_reg &= ~MII_CR_POWER_DOWN;
449                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450         }
451 }
452
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455         struct e1000_hw *hw = &adapter->hw;
456
457         /* Power down the PHY so no link is implied when interface is down *
458          * The PHY cannot be powered down if any of the following is true *
459          * (a) WoL is enabled
460          * (b) AMT is active
461          * (c) SoL/IDER session is active
462          */
463         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464            hw->media_type == e1000_media_type_copper) {
465                 u16 mii_reg = 0;
466
467                 switch (hw->mac_type) {
468                 case e1000_82540:
469                 case e1000_82545:
470                 case e1000_82545_rev_3:
471                 case e1000_82546:
472                 case e1000_ce4100:
473                 case e1000_82546_rev_3:
474                 case e1000_82541:
475                 case e1000_82541_rev_2:
476                 case e1000_82547:
477                 case e1000_82547_rev_2:
478                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
479                                 goto out;
480                         break;
481                 default:
482                         goto out;
483                 }
484                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485                 mii_reg |= MII_CR_POWER_DOWN;
486                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487                 msleep(1);
488         }
489 out:
490         return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495         set_bit(__E1000_DOWN, &adapter->flags);
496
497         cancel_delayed_work_sync(&adapter->watchdog_task);
498
499         /*
500          * Since the watchdog task can reschedule other tasks, we should cancel
501          * it first, otherwise we can run into the situation when a work is
502          * still running after the adapter has been turned down.
503          */
504
505         cancel_delayed_work_sync(&adapter->phy_info_task);
506         cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508         /* Only kill reset task if adapter is not resetting */
509         if (!test_bit(__E1000_RESETTING, &adapter->flags))
510                 cancel_work_sync(&adapter->reset_task);
511 }
512
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515         struct e1000_hw *hw = &adapter->hw;
516         struct net_device *netdev = adapter->netdev;
517         u32 rctl, tctl;
518
519
520         /* disable receives in the hardware */
521         rctl = er32(RCTL);
522         ew32(RCTL, rctl & ~E1000_RCTL_EN);
523         /* flush and sleep below */
524
525         netif_tx_disable(netdev);
526
527         /* disable transmits in the hardware */
528         tctl = er32(TCTL);
529         tctl &= ~E1000_TCTL_EN;
530         ew32(TCTL, tctl);
531         /* flush both disables and wait for them to finish */
532         E1000_WRITE_FLUSH();
533         msleep(10);
534
535         napi_disable(&adapter->napi);
536
537         e1000_irq_disable(adapter);
538
539         /* Setting DOWN must be after irq_disable to prevent
540          * a screaming interrupt.  Setting DOWN also prevents
541          * tasks from rescheduling.
542          */
543         e1000_down_and_stop(adapter);
544
545         adapter->link_speed = 0;
546         adapter->link_duplex = 0;
547         netif_carrier_off(netdev);
548
549         e1000_reset(adapter);
550         e1000_clean_all_tx_rings(adapter);
551         e1000_clean_all_rx_rings(adapter);
552 }
553
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556         WARN_ON(in_interrupt());
557         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558                 msleep(1);
559         e1000_down(adapter);
560         e1000_up(adapter);
561         clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566         struct e1000_hw *hw = &adapter->hw;
567         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568         bool legacy_pba_adjust = false;
569         u16 hwm;
570
571         /* Repartition Pba for greater than 9k mtu
572          * To take effect CTRL.RST is required.
573          */
574
575         switch (hw->mac_type) {
576         case e1000_82542_rev2_0:
577         case e1000_82542_rev2_1:
578         case e1000_82543:
579         case e1000_82544:
580         case e1000_82540:
581         case e1000_82541:
582         case e1000_82541_rev_2:
583                 legacy_pba_adjust = true;
584                 pba = E1000_PBA_48K;
585                 break;
586         case e1000_82545:
587         case e1000_82545_rev_3:
588         case e1000_82546:
589         case e1000_ce4100:
590         case e1000_82546_rev_3:
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82547:
594         case e1000_82547_rev_2:
595                 legacy_pba_adjust = true;
596                 pba = E1000_PBA_30K;
597                 break;
598         case e1000_undefined:
599         case e1000_num_macs:
600                 break;
601         }
602
603         if (legacy_pba_adjust) {
604                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605                         pba -= 8; /* allocate more FIFO for Tx */
606
607                 if (hw->mac_type == e1000_82547) {
608                         adapter->tx_fifo_head = 0;
609                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610                         adapter->tx_fifo_size =
611                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612                         atomic_set(&adapter->tx_fifo_stall, 0);
613                 }
614         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615                 /* adjust PBA for jumbo frames */
616                 ew32(PBA, pba);
617
618                 /* To maintain wire speed transmits, the Tx FIFO should be
619                  * large enough to accommodate two full transmit packets,
620                  * rounded up to the next 1KB and expressed in KB.  Likewise,
621                  * the Rx FIFO should be large enough to accommodate at least
622                  * one full receive packet and is similarly rounded up and
623                  * expressed in KB.
624                  */
625                 pba = er32(PBA);
626                 /* upper 16 bits has Tx packet buffer allocation size in KB */
627                 tx_space = pba >> 16;
628                 /* lower 16 bits has Rx packet buffer allocation size in KB */
629                 pba &= 0xffff;
630                 /* the Tx fifo also stores 16 bytes of information about the Tx
631                  * but don't include ethernet FCS because hardware appends it
632                  */
633                 min_tx_space = (hw->max_frame_size +
634                                 sizeof(struct e1000_tx_desc) -
635                                 ETH_FCS_LEN) * 2;
636                 min_tx_space = ALIGN(min_tx_space, 1024);
637                 min_tx_space >>= 10;
638                 /* software strips receive CRC, so leave room for it */
639                 min_rx_space = hw->max_frame_size;
640                 min_rx_space = ALIGN(min_rx_space, 1024);
641                 min_rx_space >>= 10;
642
643                 /* If current Tx allocation is less than the min Tx FIFO size,
644                  * and the min Tx FIFO size is less than the current Rx FIFO
645                  * allocation, take space away from current Rx allocation
646                  */
647                 if (tx_space < min_tx_space &&
648                     ((min_tx_space - tx_space) < pba)) {
649                         pba = pba - (min_tx_space - tx_space);
650
651                         /* PCI/PCIx hardware has PBA alignment constraints */
652                         switch (hw->mac_type) {
653                         case e1000_82545 ... e1000_82546_rev_3:
654                                 pba &= ~(E1000_PBA_8K - 1);
655                                 break;
656                         default:
657                                 break;
658                         }
659
660                         /* if short on Rx space, Rx wins and must trump Tx
661                          * adjustment or use Early Receive if available
662                          */
663                         if (pba < min_rx_space)
664                                 pba = min_rx_space;
665                 }
666         }
667
668         ew32(PBA, pba);
669
670         /* flow control settings:
671          * The high water mark must be low enough to fit one full frame
672          * (or the size used for early receive) above it in the Rx FIFO.
673          * Set it to the lower of:
674          * - 90% of the Rx FIFO size, and
675          * - the full Rx FIFO size minus the early receive size (for parts
676          *   with ERT support assuming ERT set to E1000_ERT_2048), or
677          * - the full Rx FIFO size minus one full frame
678          */
679         hwm = min(((pba << 10) * 9 / 10),
680                   ((pba << 10) - hw->max_frame_size));
681
682         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
683         hw->fc_low_water = hw->fc_high_water - 8;
684         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685         hw->fc_send_xon = 1;
686         hw->fc = hw->original_fc;
687
688         /* Allow time for pending master requests to run */
689         e1000_reset_hw(hw);
690         if (hw->mac_type >= e1000_82544)
691                 ew32(WUC, 0);
692
693         if (e1000_init_hw(hw))
694                 e_dev_err("Hardware Error\n");
695         e1000_update_mng_vlan(adapter);
696
697         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698         if (hw->mac_type >= e1000_82544 &&
699             hw->autoneg == 1 &&
700             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701                 u32 ctrl = er32(CTRL);
702                 /* clear phy power management bit if we are in gig only mode,
703                  * which if enabled will attempt negotiation to 100Mb, which
704                  * can cause a loss of link at power off or driver unload
705                  */
706                 ctrl &= ~E1000_CTRL_SWDPIN3;
707                 ew32(CTRL, ctrl);
708         }
709
710         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713         e1000_reset_adaptive(hw);
714         e1000_phy_get_info(hw, &adapter->phy_info);
715
716         e1000_release_manageability(adapter);
717 }
718
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722         struct net_device *netdev = adapter->netdev;
723         struct ethtool_eeprom eeprom;
724         const struct ethtool_ops *ops = netdev->ethtool_ops;
725         u8 *data;
726         int i;
727         u16 csum_old, csum_new = 0;
728
729         eeprom.len = ops->get_eeprom_len(netdev);
730         eeprom.offset = 0;
731
732         data = kmalloc(eeprom.len, GFP_KERNEL);
733         if (!data)
734                 return;
735
736         ops->get_eeprom(netdev, &eeprom, data);
737
738         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741                 csum_new += data[i] + (data[i + 1] << 8);
742         csum_new = EEPROM_SUM - csum_new;
743
744         pr_err("/*********************/\n");
745         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746         pr_err("Calculated              : 0x%04x\n", csum_new);
747
748         pr_err("Offset    Values\n");
749         pr_err("========  ======\n");
750         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752         pr_err("Include this output when contacting your support provider.\n");
753         pr_err("This is not a software error! Something bad happened to\n");
754         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755         pr_err("result in further problems, possibly loss of data,\n");
756         pr_err("corruption or system hangs!\n");
757         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758         pr_err("which is invalid and requires you to set the proper MAC\n");
759         pr_err("address manually before continuing to enable this network\n");
760         pr_err("device. Please inspect the EEPROM dump and report the\n");
761         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762         pr_err("/*********************/\n");
763
764         kfree(data);
765 }
766
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775         switch (pdev->device) {
776         case E1000_DEV_ID_82540EM:
777         case E1000_DEV_ID_82540EM_LOM:
778         case E1000_DEV_ID_82540EP:
779         case E1000_DEV_ID_82540EP_LOM:
780         case E1000_DEV_ID_82540EP_LP:
781         case E1000_DEV_ID_82541EI:
782         case E1000_DEV_ID_82541EI_MOBILE:
783         case E1000_DEV_ID_82541ER:
784         case E1000_DEV_ID_82541ER_LOM:
785         case E1000_DEV_ID_82541GI:
786         case E1000_DEV_ID_82541GI_LF:
787         case E1000_DEV_ID_82541GI_MOBILE:
788         case E1000_DEV_ID_82544EI_COPPER:
789         case E1000_DEV_ID_82544EI_FIBER:
790         case E1000_DEV_ID_82544GC_COPPER:
791         case E1000_DEV_ID_82544GC_LOM:
792         case E1000_DEV_ID_82545EM_COPPER:
793         case E1000_DEV_ID_82545EM_FIBER:
794         case E1000_DEV_ID_82546EB_COPPER:
795         case E1000_DEV_ID_82546EB_FIBER:
796         case E1000_DEV_ID_82546EB_QUAD_COPPER:
797                 return true;
798         default:
799                 return false;
800         }
801 }
802
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804         netdev_features_t features)
805 {
806         /* Since there is no support for separate Rx/Tx vlan accel
807          * enable/disable make sure Tx flag is always in same state as Rx.
808          */
809         if (features & NETIF_F_HW_VLAN_CTAG_RX)
810                 features |= NETIF_F_HW_VLAN_CTAG_TX;
811         else
812                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814         return features;
815 }
816
817 static int e1000_set_features(struct net_device *netdev,
818         netdev_features_t features)
819 {
820         struct e1000_adapter *adapter = netdev_priv(netdev);
821         netdev_features_t changed = features ^ netdev->features;
822
823         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824                 e1000_vlan_mode(netdev, features);
825
826         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827                 return 0;
828
829         netdev->features = features;
830         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832         if (netif_running(netdev))
833                 e1000_reinit_locked(adapter);
834         else
835                 e1000_reset(adapter);
836
837         return 0;
838 }
839
840 static const struct net_device_ops e1000_netdev_ops = {
841         .ndo_open               = e1000_open,
842         .ndo_stop               = e1000_close,
843         .ndo_start_xmit         = e1000_xmit_frame,
844         .ndo_get_stats          = e1000_get_stats,
845         .ndo_set_rx_mode        = e1000_set_rx_mode,
846         .ndo_set_mac_address    = e1000_set_mac,
847         .ndo_tx_timeout         = e1000_tx_timeout,
848         .ndo_change_mtu         = e1000_change_mtu,
849         .ndo_do_ioctl           = e1000_ioctl,
850         .ndo_validate_addr      = eth_validate_addr,
851         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
852         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854         .ndo_poll_controller    = e1000_netpoll,
855 #endif
856         .ndo_fix_features       = e1000_fix_features,
857         .ndo_set_features       = e1000_set_features,
858 };
859
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872                                 struct e1000_hw *hw)
873 {
874         struct pci_dev *pdev = adapter->pdev;
875
876         /* PCI config space info */
877         hw->vendor_id = pdev->vendor;
878         hw->device_id = pdev->device;
879         hw->subsystem_vendor_id = pdev->subsystem_vendor;
880         hw->subsystem_id = pdev->subsystem_device;
881         hw->revision_id = pdev->revision;
882
883         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885         hw->max_frame_size = adapter->netdev->mtu +
886                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889         /* identify the MAC */
890         if (e1000_set_mac_type(hw)) {
891                 e_err(probe, "Unknown MAC Type\n");
892                 return -EIO;
893         }
894
895         switch (hw->mac_type) {
896         default:
897                 break;
898         case e1000_82541:
899         case e1000_82547:
900         case e1000_82541_rev_2:
901         case e1000_82547_rev_2:
902                 hw->phy_init_script = 1;
903                 break;
904         }
905
906         e1000_set_media_type(hw);
907         e1000_get_bus_info(hw);
908
909         hw->wait_autoneg_complete = false;
910         hw->tbi_compatibility_en = true;
911         hw->adaptive_ifs = true;
912
913         /* Copper options */
914
915         if (hw->media_type == e1000_media_type_copper) {
916                 hw->mdix = AUTO_ALL_MODES;
917                 hw->disable_polarity_correction = false;
918                 hw->master_slave = E1000_MASTER_SLAVE;
919         }
920
921         return 0;
922 }
923
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937         struct net_device *netdev;
938         struct e1000_adapter *adapter;
939         struct e1000_hw *hw;
940
941         static int cards_found = 0;
942         static int global_quad_port_a = 0; /* global ksp3 port a indication */
943         int i, err, pci_using_dac;
944         u16 eeprom_data = 0;
945         u16 tmp = 0;
946         u16 eeprom_apme_mask = E1000_EEPROM_APME;
947         int bars, need_ioport;
948
949         /* do not allocate ioport bars when not needed */
950         need_ioport = e1000_is_need_ioport(pdev);
951         if (need_ioport) {
952                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953                 err = pci_enable_device(pdev);
954         } else {
955                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956                 err = pci_enable_device_mem(pdev);
957         }
958         if (err)
959                 return err;
960
961         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962         if (err)
963                 goto err_pci_reg;
964
965         pci_set_master(pdev);
966         err = pci_save_state(pdev);
967         if (err)
968                 goto err_alloc_etherdev;
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         /* make ready for any if (hw->...) below */
1005         err = e1000_init_hw_struct(adapter, hw);
1006         if (err)
1007                 goto err_sw_init;
1008
1009         /* there is a workaround being applied below that limits
1010          * 64-bit DMA addresses to 64-bit hardware.  There are some
1011          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012          */
1013         pci_using_dac = 0;
1014         if ((hw->bus_type == e1000_bus_type_pcix) &&
1015             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016                 pci_using_dac = 1;
1017         } else {
1018                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019                 if (err) {
1020                         pr_err("No usable DMA config, aborting\n");
1021                         goto err_dma;
1022                 }
1023         }
1024
1025         netdev->netdev_ops = &e1000_netdev_ops;
1026         e1000_set_ethtool_ops(netdev);
1027         netdev->watchdog_timeo = 5 * HZ;
1028         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032         adapter->bd_number = cards_found;
1033
1034         /* setup the private structure */
1035
1036         err = e1000_sw_init(adapter);
1037         if (err)
1038                 goto err_sw_init;
1039
1040         err = -EIO;
1041         if (hw->mac_type == e1000_ce4100) {
1042                 hw->ce4100_gbe_mdio_base_virt =
1043                                         ioremap(pci_resource_start(pdev, BAR_1),
1044                                                 pci_resource_len(pdev, BAR_1));
1045
1046                 if (!hw->ce4100_gbe_mdio_base_virt)
1047                         goto err_mdio_ioremap;
1048         }
1049
1050         if (hw->mac_type >= e1000_82543) {
1051                 netdev->hw_features = NETIF_F_SG |
1052                                    NETIF_F_HW_CSUM |
1053                                    NETIF_F_HW_VLAN_CTAG_RX;
1054                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1056         }
1057
1058         if ((hw->mac_type >= e1000_82544) &&
1059            (hw->mac_type != e1000_82547))
1060                 netdev->hw_features |= NETIF_F_TSO;
1061
1062         netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064         netdev->features |= netdev->hw_features;
1065         netdev->hw_features |= (NETIF_F_RXCSUM |
1066                                 NETIF_F_RXALL |
1067                                 NETIF_F_RXFCS);
1068
1069         if (pci_using_dac) {
1070                 netdev->features |= NETIF_F_HIGHDMA;
1071                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072         }
1073
1074         netdev->vlan_features |= (NETIF_F_TSO |
1075                                   NETIF_F_HW_CSUM |
1076                                   NETIF_F_SG);
1077
1078         netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1080         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082         /* initialize eeprom parameters */
1083         if (e1000_init_eeprom_params(hw)) {
1084                 e_err(probe, "EEPROM initialization failed\n");
1085                 goto err_eeprom;
1086         }
1087
1088         /* before reading the EEPROM, reset the controller to
1089          * put the device in a known good starting state
1090          */
1091
1092         e1000_reset_hw(hw);
1093
1094         /* make sure the EEPROM is good */
1095         if (e1000_validate_eeprom_checksum(hw) < 0) {
1096                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097                 e1000_dump_eeprom(adapter);
1098                 /* set MAC address to all zeroes to invalidate and temporary
1099                  * disable this device for the user. This blocks regular
1100                  * traffic while still permitting ethtool ioctls from reaching
1101                  * the hardware as well as allowing the user to run the
1102                  * interface after manually setting a hw addr using
1103                  * `ip set address`
1104                  */
1105                 memset(hw->mac_addr, 0, netdev->addr_len);
1106         } else {
1107                 /* copy the MAC address out of the EEPROM */
1108                 if (e1000_read_mac_addr(hw))
1109                         e_err(probe, "EEPROM Read Error\n");
1110         }
1111         /* don't block initalization here due to bad MAC address */
1112         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114         if (!is_valid_ether_addr(netdev->dev_addr))
1115                 e_err(probe, "Invalid MAC Address\n");
1116
1117
1118         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120                           e1000_82547_tx_fifo_stall_task);
1121         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124         e1000_check_options(adapter);
1125
1126         /* Initial Wake on LAN setting
1127          * If APM wake is enabled in the EEPROM,
1128          * enable the ACPI Magic Packet filter
1129          */
1130
1131         switch (hw->mac_type) {
1132         case e1000_82542_rev2_0:
1133         case e1000_82542_rev2_1:
1134         case e1000_82543:
1135                 break;
1136         case e1000_82544:
1137                 e1000_read_eeprom(hw,
1138                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140                 break;
1141         case e1000_82546:
1142         case e1000_82546_rev_3:
1143                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144                         e1000_read_eeprom(hw,
1145                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146                         break;
1147                 }
1148                 /* Fall Through */
1149         default:
1150                 e1000_read_eeprom(hw,
1151                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152                 break;
1153         }
1154         if (eeprom_data & eeprom_apme_mask)
1155                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157         /* now that we have the eeprom settings, apply the special cases
1158          * where the eeprom may be wrong or the board simply won't support
1159          * wake on lan on a particular port
1160          */
1161         switch (pdev->device) {
1162         case E1000_DEV_ID_82546GB_PCIE:
1163                 adapter->eeprom_wol = 0;
1164                 break;
1165         case E1000_DEV_ID_82546EB_FIBER:
1166         case E1000_DEV_ID_82546GB_FIBER:
1167                 /* Wake events only supported on port A for dual fiber
1168                  * regardless of eeprom setting
1169                  */
1170                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171                         adapter->eeprom_wol = 0;
1172                 break;
1173         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174                 /* if quad port adapter, disable WoL on all but port A */
1175                 if (global_quad_port_a != 0)
1176                         adapter->eeprom_wol = 0;
1177                 else
1178                         adapter->quad_port_a = true;
1179                 /* Reset for multiple quad port adapters */
1180                 if (++global_quad_port_a == 4)
1181                         global_quad_port_a = 0;
1182                 break;
1183         }
1184
1185         /* initialize the wol settings based on the eeprom settings */
1186         adapter->wol = adapter->eeprom_wol;
1187         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189         /* Auto detect PHY address */
1190         if (hw->mac_type == e1000_ce4100) {
1191                 for (i = 0; i < 32; i++) {
1192                         hw->phy_addr = i;
1193                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194                         if (tmp == 0 || tmp == 0xFF) {
1195                                 if (i == 31)
1196                                         goto err_eeprom;
1197                                 continue;
1198                         } else
1199                                 break;
1200                 }
1201         }
1202
1203         /* reset the hardware with the new settings */
1204         e1000_reset(adapter);
1205
1206         strcpy(netdev->name, "eth%d");
1207         err = register_netdev(netdev);
1208         if (err)
1209                 goto err_register;
1210
1211         e1000_vlan_filter_on_off(adapter, false);
1212
1213         /* print bus type/speed/width info */
1214         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221                netdev->dev_addr);
1222
1223         /* carrier off reporting is important to ethtool even BEFORE open */
1224         netif_carrier_off(netdev);
1225
1226         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228         cards_found++;
1229         return 0;
1230
1231 err_register:
1232 err_eeprom:
1233         e1000_phy_hw_reset(hw);
1234
1235         if (hw->flash_address)
1236                 iounmap(hw->flash_address);
1237         kfree(adapter->tx_ring);
1238         kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242         iounmap(hw->ce4100_gbe_mdio_base_virt);
1243         iounmap(hw->hw_addr);
1244 err_ioremap:
1245         free_netdev(netdev);
1246 err_alloc_etherdev:
1247         pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249         pci_disable_device(pdev);
1250         return err;
1251 }
1252
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device.  The could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264         struct net_device *netdev = pci_get_drvdata(pdev);
1265         struct e1000_adapter *adapter = netdev_priv(netdev);
1266         struct e1000_hw *hw = &adapter->hw;
1267
1268         e1000_down_and_stop(adapter);
1269         e1000_release_manageability(adapter);
1270
1271         unregister_netdev(netdev);
1272
1273         e1000_phy_hw_reset(hw);
1274
1275         kfree(adapter->tx_ring);
1276         kfree(adapter->rx_ring);
1277
1278         if (hw->mac_type == e1000_ce4100)
1279                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1280         iounmap(hw->hw_addr);
1281         if (hw->flash_address)
1282                 iounmap(hw->flash_address);
1283         pci_release_selected_regions(pdev, adapter->bars);
1284
1285         free_netdev(netdev);
1286
1287         pci_disable_device(pdev);
1288 }
1289
1290 /**
1291  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292  * @adapter: board private structure to initialize
1293  *
1294  * e1000_sw_init initializes the Adapter private data structure.
1295  * e1000_init_hw_struct MUST be called before this function
1296  **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301         adapter->num_tx_queues = 1;
1302         adapter->num_rx_queues = 1;
1303
1304         if (e1000_alloc_queues(adapter)) {
1305                 e_err(probe, "Unable to allocate memory for queues\n");
1306                 return -ENOMEM;
1307         }
1308
1309         /* Explicitly disable IRQ since the NIC can be in any state. */
1310         e1000_irq_disable(adapter);
1311
1312         spin_lock_init(&adapter->stats_lock);
1313
1314         set_bit(__E1000_DOWN, &adapter->flags);
1315
1316         return 0;
1317 }
1318
1319 /**
1320  * e1000_alloc_queues - Allocate memory for all rings
1321  * @adapter: board private structure to initialize
1322  *
1323  * We allocate one ring per queue at run-time since we don't know the
1324  * number of queues at compile-time.
1325  **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330         if (!adapter->tx_ring)
1331                 return -ENOMEM;
1332
1333         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335         if (!adapter->rx_ring) {
1336                 kfree(adapter->tx_ring);
1337                 return -ENOMEM;
1338         }
1339
1340         return E1000_SUCCESS;
1341 }
1342
1343 /**
1344  * e1000_open - Called when a network interface is made active
1345  * @netdev: network interface device structure
1346  *
1347  * Returns 0 on success, negative value on failure
1348  *
1349  * The open entry point is called when a network interface is made
1350  * active by the system (IFF_UP).  At this point all resources needed
1351  * for transmit and receive operations are allocated, the interrupt
1352  * handler is registered with the OS, the watchdog task is started,
1353  * and the stack is notified that the interface is ready.
1354  **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357         struct e1000_adapter *adapter = netdev_priv(netdev);
1358         struct e1000_hw *hw = &adapter->hw;
1359         int err;
1360
1361         /* disallow open during test */
1362         if (test_bit(__E1000_TESTING, &adapter->flags))
1363                 return -EBUSY;
1364
1365         netif_carrier_off(netdev);
1366
1367         /* allocate transmit descriptors */
1368         err = e1000_setup_all_tx_resources(adapter);
1369         if (err)
1370                 goto err_setup_tx;
1371
1372         /* allocate receive descriptors */
1373         err = e1000_setup_all_rx_resources(adapter);
1374         if (err)
1375                 goto err_setup_rx;
1376
1377         e1000_power_up_phy(adapter);
1378
1379         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380         if ((hw->mng_cookie.status &
1381                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382                 e1000_update_mng_vlan(adapter);
1383         }
1384
1385         /* before we allocate an interrupt, we must be ready to handle it.
1386          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387          * as soon as we call pci_request_irq, so we have to setup our
1388          * clean_rx handler before we do so.
1389          */
1390         e1000_configure(adapter);
1391
1392         err = e1000_request_irq(adapter);
1393         if (err)
1394                 goto err_req_irq;
1395
1396         /* From here on the code is the same as e1000_up() */
1397         clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399         napi_enable(&adapter->napi);
1400
1401         e1000_irq_enable(adapter);
1402
1403         netif_start_queue(netdev);
1404
1405         /* fire a link status change interrupt to start the watchdog */
1406         ew32(ICS, E1000_ICS_LSC);
1407
1408         return E1000_SUCCESS;
1409
1410 err_req_irq:
1411         e1000_power_down_phy(adapter);
1412         e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414         e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416         e1000_reset(adapter);
1417
1418         return err;
1419 }
1420
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434         struct e1000_adapter *adapter = netdev_priv(netdev);
1435         struct e1000_hw *hw = &adapter->hw;
1436         int count = E1000_CHECK_RESET_COUNT;
1437
1438         while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439                 usleep_range(10000, 20000);
1440
1441         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442         e1000_down(adapter);
1443         e1000_power_down_phy(adapter);
1444         e1000_free_irq(adapter);
1445
1446         e1000_free_all_tx_resources(adapter);
1447         e1000_free_all_rx_resources(adapter);
1448
1449         /* kill manageability vlan ID if supported, but not if a vlan with
1450          * the same ID is registered on the host OS (let 8021q kill it)
1451          */
1452         if ((hw->mng_cookie.status &
1453              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456                                        adapter->mng_vlan_id);
1457         }
1458
1459         return 0;
1460 }
1461
1462 /**
1463  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464  * @adapter: address of board private structure
1465  * @start: address of beginning of memory
1466  * @len: length of memory
1467  **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469                                   unsigned long len)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472         unsigned long begin = (unsigned long)start;
1473         unsigned long end = begin + len;
1474
1475         /* First rev 82545 and 82546 need to not allow any memory
1476          * write location to cross 64k boundary due to errata 23
1477          */
1478         if (hw->mac_type == e1000_82545 ||
1479             hw->mac_type == e1000_ce4100 ||
1480             hw->mac_type == e1000_82546) {
1481                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482         }
1483
1484         return true;
1485 }
1486
1487 /**
1488  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489  * @adapter: board private structure
1490  * @txdr:    tx descriptor ring (for a specific queue) to setup
1491  *
1492  * Return 0 on success, negative on failure
1493  **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495                                     struct e1000_tx_ring *txdr)
1496 {
1497         struct pci_dev *pdev = adapter->pdev;
1498         int size;
1499
1500         size = sizeof(struct e1000_buffer) * txdr->count;
1501         txdr->buffer_info = vzalloc(size);
1502         if (!txdr->buffer_info)
1503                 return -ENOMEM;
1504
1505         /* round up to nearest 4K */
1506
1507         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508         txdr->size = ALIGN(txdr->size, 4096);
1509
1510         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511                                         GFP_KERNEL);
1512         if (!txdr->desc) {
1513 setup_tx_desc_die:
1514                 vfree(txdr->buffer_info);
1515                 return -ENOMEM;
1516         }
1517
1518         /* Fix for errata 23, can't cross 64kB boundary */
1519         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520                 void *olddesc = txdr->desc;
1521                 dma_addr_t olddma = txdr->dma;
1522                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523                       txdr->size, txdr->desc);
1524                 /* Try again, without freeing the previous */
1525                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526                                                 &txdr->dma, GFP_KERNEL);
1527                 /* Failed allocation, critical failure */
1528                 if (!txdr->desc) {
1529                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530                                           olddma);
1531                         goto setup_tx_desc_die;
1532                 }
1533
1534                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535                         /* give up */
1536                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537                                           txdr->dma);
1538                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539                                           olddma);
1540                         e_err(probe, "Unable to allocate aligned memory "
1541                               "for the transmit descriptor ring\n");
1542                         vfree(txdr->buffer_info);
1543                         return -ENOMEM;
1544                 } else {
1545                         /* Free old allocation, new allocation was successful */
1546                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                           olddma);
1548                 }
1549         }
1550         memset(txdr->desc, 0, txdr->size);
1551
1552         txdr->next_to_use = 0;
1553         txdr->next_to_clean = 0;
1554
1555         return 0;
1556 }
1557
1558 /**
1559  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560  *                                (Descriptors) for all queues
1561  * @adapter: board private structure
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567         int i, err = 0;
1568
1569         for (i = 0; i < adapter->num_tx_queues; i++) {
1570                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571                 if (err) {
1572                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573                         for (i-- ; i >= 0; i--)
1574                                 e1000_free_tx_resources(adapter,
1575                                                         &adapter->tx_ring[i]);
1576                         break;
1577                 }
1578         }
1579
1580         return err;
1581 }
1582
1583 /**
1584  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585  * @adapter: board private structure
1586  *
1587  * Configure the Tx unit of the MAC after a reset.
1588  **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591         u64 tdba;
1592         struct e1000_hw *hw = &adapter->hw;
1593         u32 tdlen, tctl, tipg;
1594         u32 ipgr1, ipgr2;
1595
1596         /* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598         switch (adapter->num_tx_queues) {
1599         case 1:
1600         default:
1601                 tdba = adapter->tx_ring[0].dma;
1602                 tdlen = adapter->tx_ring[0].count *
1603                         sizeof(struct e1000_tx_desc);
1604                 ew32(TDLEN, tdlen);
1605                 ew32(TDBAH, (tdba >> 32));
1606                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607                 ew32(TDT, 0);
1608                 ew32(TDH, 0);
1609                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610                                            E1000_TDH : E1000_82542_TDH);
1611                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612                                            E1000_TDT : E1000_82542_TDT);
1613                 break;
1614         }
1615
1616         /* Set the default values for the Tx Inter Packet Gap timer */
1617         if ((hw->media_type == e1000_media_type_fiber ||
1618              hw->media_type == e1000_media_type_internal_serdes))
1619                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620         else
1621                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623         switch (hw->mac_type) {
1624         case e1000_82542_rev2_0:
1625         case e1000_82542_rev2_1:
1626                 tipg = DEFAULT_82542_TIPG_IPGT;
1627                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629                 break;
1630         default:
1631                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633                 break;
1634         }
1635         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637         ew32(TIPG, tipg);
1638
1639         /* Set the Tx Interrupt Delay register */
1640
1641         ew32(TIDV, adapter->tx_int_delay);
1642         if (hw->mac_type >= e1000_82540)
1643                 ew32(TADV, adapter->tx_abs_int_delay);
1644
1645         /* Program the Transmit Control Register */
1646
1647         tctl = er32(TCTL);
1648         tctl &= ~E1000_TCTL_CT;
1649         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652         e1000_config_collision_dist(hw);
1653
1654         /* Setup Transmit Descriptor Settings for eop descriptor */
1655         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657         /* only set IDE if we are delaying interrupts using the timers */
1658         if (adapter->tx_int_delay)
1659                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661         if (hw->mac_type < e1000_82543)
1662                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663         else
1664                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666         /* Cache if we're 82544 running in PCI-X because we'll
1667          * need this to apply a workaround later in the send path.
1668          */
1669         if (hw->mac_type == e1000_82544 &&
1670             hw->bus_type == e1000_bus_type_pcix)
1671                 adapter->pcix_82544 = true;
1672
1673         ew32(TCTL, tctl);
1674
1675 }
1676
1677 /**
1678  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679  * @adapter: board private structure
1680  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681  *
1682  * Returns 0 on success, negative on failure
1683  **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685                                     struct e1000_rx_ring *rxdr)
1686 {
1687         struct pci_dev *pdev = adapter->pdev;
1688         int size, desc_len;
1689
1690         size = sizeof(struct e1000_buffer) * rxdr->count;
1691         rxdr->buffer_info = vzalloc(size);
1692         if (!rxdr->buffer_info)
1693                 return -ENOMEM;
1694
1695         desc_len = sizeof(struct e1000_rx_desc);
1696
1697         /* Round up to nearest 4K */
1698
1699         rxdr->size = rxdr->count * desc_len;
1700         rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703                                         GFP_KERNEL);
1704         if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706                 vfree(rxdr->buffer_info);
1707                 return -ENOMEM;
1708         }
1709
1710         /* Fix for errata 23, can't cross 64kB boundary */
1711         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712                 void *olddesc = rxdr->desc;
1713                 dma_addr_t olddma = rxdr->dma;
1714                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715                       rxdr->size, rxdr->desc);
1716                 /* Try again, without freeing the previous */
1717                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718                                                 &rxdr->dma, GFP_KERNEL);
1719                 /* Failed allocation, critical failure */
1720                 if (!rxdr->desc) {
1721                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722                                           olddma);
1723                         goto setup_rx_desc_die;
1724                 }
1725
1726                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727                         /* give up */
1728                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729                                           rxdr->dma);
1730                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731                                           olddma);
1732                         e_err(probe, "Unable to allocate aligned memory for "
1733                               "the Rx descriptor ring\n");
1734                         goto setup_rx_desc_die;
1735                 } else {
1736                         /* Free old allocation, new allocation was successful */
1737                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738                                           olddma);
1739                 }
1740         }
1741         memset(rxdr->desc, 0, rxdr->size);
1742
1743         rxdr->next_to_clean = 0;
1744         rxdr->next_to_use = 0;
1745         rxdr->rx_skb_top = NULL;
1746
1747         return 0;
1748 }
1749
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  *                                (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759         int i, err = 0;
1760
1761         for (i = 0; i < adapter->num_rx_queues; i++) {
1762                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763                 if (err) {
1764                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765                         for (i-- ; i >= 0; i--)
1766                                 e1000_free_rx_resources(adapter,
1767                                                         &adapter->rx_ring[i]);
1768                         break;
1769                 }
1770         }
1771
1772         return err;
1773 }
1774
1775 /**
1776  * e1000_setup_rctl - configure the receive control registers
1777  * @adapter: Board private structure
1778  **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781         struct e1000_hw *hw = &adapter->hw;
1782         u32 rctl;
1783
1784         rctl = er32(RCTL);
1785
1786         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789                 E1000_RCTL_RDMTS_HALF |
1790                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792         if (hw->tbi_compatibility_on == 1)
1793                 rctl |= E1000_RCTL_SBP;
1794         else
1795                 rctl &= ~E1000_RCTL_SBP;
1796
1797         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798                 rctl &= ~E1000_RCTL_LPE;
1799         else
1800                 rctl |= E1000_RCTL_LPE;
1801
1802         /* Setup buffer sizes */
1803         rctl &= ~E1000_RCTL_SZ_4096;
1804         rctl |= E1000_RCTL_BSEX;
1805         switch (adapter->rx_buffer_len) {
1806                 case E1000_RXBUFFER_2048:
1807                 default:
1808                         rctl |= E1000_RCTL_SZ_2048;
1809                         rctl &= ~E1000_RCTL_BSEX;
1810                         break;
1811                 case E1000_RXBUFFER_4096:
1812                         rctl |= E1000_RCTL_SZ_4096;
1813                         break;
1814                 case E1000_RXBUFFER_8192:
1815                         rctl |= E1000_RCTL_SZ_8192;
1816                         break;
1817                 case E1000_RXBUFFER_16384:
1818                         rctl |= E1000_RCTL_SZ_16384;
1819                         break;
1820         }
1821
1822         /* This is useful for sniffing bad packets. */
1823         if (adapter->netdev->features & NETIF_F_RXALL) {
1824                 /* UPE and MPE will be handled by normal PROMISC logic
1825                  * in e1000e_set_rx_mode
1826                  */
1827                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832                           E1000_RCTL_DPF | /* Allow filtered pause */
1833                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835                  * and that breaks VLANs.
1836                  */
1837         }
1838
1839         ew32(RCTL, rctl);
1840 }
1841
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850         u64 rdba;
1851         struct e1000_hw *hw = &adapter->hw;
1852         u32 rdlen, rctl, rxcsum;
1853
1854         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855                 rdlen = adapter->rx_ring[0].count *
1856                         sizeof(struct e1000_rx_desc);
1857                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859         } else {
1860                 rdlen = adapter->rx_ring[0].count *
1861                         sizeof(struct e1000_rx_desc);
1862                 adapter->clean_rx = e1000_clean_rx_irq;
1863                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864         }
1865
1866         /* disable receives while setting up the descriptors */
1867         rctl = er32(RCTL);
1868         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870         /* set the Receive Delay Timer Register */
1871         ew32(RDTR, adapter->rx_int_delay);
1872
1873         if (hw->mac_type >= e1000_82540) {
1874                 ew32(RADV, adapter->rx_abs_int_delay);
1875                 if (adapter->itr_setting != 0)
1876                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1877         }
1878
1879         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880          * the Base and Length of the Rx Descriptor Ring
1881          */
1882         switch (adapter->num_rx_queues) {
1883         case 1:
1884         default:
1885                 rdba = adapter->rx_ring[0].dma;
1886                 ew32(RDLEN, rdlen);
1887                 ew32(RDBAH, (rdba >> 32));
1888                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889                 ew32(RDT, 0);
1890                 ew32(RDH, 0);
1891                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892                                            E1000_RDH : E1000_82542_RDH);
1893                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894                                            E1000_RDT : E1000_82542_RDT);
1895                 break;
1896         }
1897
1898         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899         if (hw->mac_type >= e1000_82543) {
1900                 rxcsum = er32(RXCSUM);
1901                 if (adapter->rx_csum)
1902                         rxcsum |= E1000_RXCSUM_TUOFL;
1903                 else
1904                         /* don't need to clear IPPCSE as it defaults to 0 */
1905                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1906                 ew32(RXCSUM, rxcsum);
1907         }
1908
1909         /* Enable Receives */
1910         ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912
1913 /**
1914  * e1000_free_tx_resources - Free Tx Resources per Queue
1915  * @adapter: board private structure
1916  * @tx_ring: Tx descriptor ring for a specific queue
1917  *
1918  * Free all transmit software resources
1919  **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921                                     struct e1000_tx_ring *tx_ring)
1922 {
1923         struct pci_dev *pdev = adapter->pdev;
1924
1925         e1000_clean_tx_ring(adapter, tx_ring);
1926
1927         vfree(tx_ring->buffer_info);
1928         tx_ring->buffer_info = NULL;
1929
1930         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931                           tx_ring->dma);
1932
1933         tx_ring->desc = NULL;
1934 }
1935
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944         int i;
1945
1946         for (i = 0; i < adapter->num_tx_queues; i++)
1947                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951                                              struct e1000_buffer *buffer_info)
1952 {
1953         if (buffer_info->dma) {
1954                 if (buffer_info->mapped_as_page)
1955                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956                                        buffer_info->length, DMA_TO_DEVICE);
1957                 else
1958                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959                                          buffer_info->length,
1960                                          DMA_TO_DEVICE);
1961                 buffer_info->dma = 0;
1962         }
1963         if (buffer_info->skb) {
1964                 dev_kfree_skb_any(buffer_info->skb);
1965                 buffer_info->skb = NULL;
1966         }
1967         buffer_info->time_stamp = 0;
1968         /* buffer_info must be completely set up in the transmit path */
1969 }
1970
1971 /**
1972  * e1000_clean_tx_ring - Free Tx Buffers
1973  * @adapter: board private structure
1974  * @tx_ring: ring to be cleaned
1975  **/
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977                                 struct e1000_tx_ring *tx_ring)
1978 {
1979         struct e1000_hw *hw = &adapter->hw;
1980         struct e1000_buffer *buffer_info;
1981         unsigned long size;
1982         unsigned int i;
1983
1984         /* Free all the Tx ring sk_buffs */
1985
1986         for (i = 0; i < tx_ring->count; i++) {
1987                 buffer_info = &tx_ring->buffer_info[i];
1988                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989         }
1990
1991         netdev_reset_queue(adapter->netdev);
1992         size = sizeof(struct e1000_buffer) * tx_ring->count;
1993         memset(tx_ring->buffer_info, 0, size);
1994
1995         /* Zero out the descriptor ring */
1996
1997         memset(tx_ring->desc, 0, tx_ring->size);
1998
1999         tx_ring->next_to_use = 0;
2000         tx_ring->next_to_clean = 0;
2001         tx_ring->last_tx_tso = false;
2002
2003         writel(0, hw->hw_addr + tx_ring->tdh);
2004         writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006
2007 /**
2008  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009  * @adapter: board private structure
2010  **/
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013         int i;
2014
2015         for (i = 0; i < adapter->num_tx_queues; i++)
2016                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018
2019 /**
2020  * e1000_free_rx_resources - Free Rx Resources
2021  * @adapter: board private structure
2022  * @rx_ring: ring to clean the resources from
2023  *
2024  * Free all receive software resources
2025  **/
2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027                                     struct e1000_rx_ring *rx_ring)
2028 {
2029         struct pci_dev *pdev = adapter->pdev;
2030
2031         e1000_clean_rx_ring(adapter, rx_ring);
2032
2033         vfree(rx_ring->buffer_info);
2034         rx_ring->buffer_info = NULL;
2035
2036         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037                           rx_ring->dma);
2038
2039         rx_ring->desc = NULL;
2040 }
2041
2042 /**
2043  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044  * @adapter: board private structure
2045  *
2046  * Free all receive software resources
2047  **/
2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049 {
2050         int i;
2051
2052         for (i = 0; i < adapter->num_rx_queues; i++)
2053                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054 }
2055
2056 /**
2057  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058  * @adapter: board private structure
2059  * @rx_ring: ring to free buffers from
2060  **/
2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062                                 struct e1000_rx_ring *rx_ring)
2063 {
2064         struct e1000_hw *hw = &adapter->hw;
2065         struct e1000_buffer *buffer_info;
2066         struct pci_dev *pdev = adapter->pdev;
2067         unsigned long size;
2068         unsigned int i;
2069
2070         /* Free all the Rx ring sk_buffs */
2071         for (i = 0; i < rx_ring->count; i++) {
2072                 buffer_info = &rx_ring->buffer_info[i];
2073                 if (buffer_info->dma &&
2074                     adapter->clean_rx == e1000_clean_rx_irq) {
2075                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2076                                          buffer_info->length,
2077                                          DMA_FROM_DEVICE);
2078                 } else if (buffer_info->dma &&
2079                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2081                                        buffer_info->length,
2082                                        DMA_FROM_DEVICE);
2083                 }
2084
2085                 buffer_info->dma = 0;
2086                 if (buffer_info->page) {
2087                         put_page(buffer_info->page);
2088                         buffer_info->page = NULL;
2089                 }
2090                 if (buffer_info->skb) {
2091                         dev_kfree_skb(buffer_info->skb);
2092                         buffer_info->skb = NULL;
2093                 }
2094         }
2095
2096         /* there also may be some cached data from a chained receive */
2097         if (rx_ring->rx_skb_top) {
2098                 dev_kfree_skb(rx_ring->rx_skb_top);
2099                 rx_ring->rx_skb_top = NULL;
2100         }
2101
2102         size = sizeof(struct e1000_buffer) * rx_ring->count;
2103         memset(rx_ring->buffer_info, 0, size);
2104
2105         /* Zero out the descriptor ring */
2106         memset(rx_ring->desc, 0, rx_ring->size);
2107
2108         rx_ring->next_to_clean = 0;
2109         rx_ring->next_to_use = 0;
2110
2111         writel(0, hw->hw_addr + rx_ring->rdh);
2112         writel(0, hw->hw_addr + rx_ring->rdt);
2113 }
2114
2115 /**
2116  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117  * @adapter: board private structure
2118  **/
2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120 {
2121         int i;
2122
2123         for (i = 0; i < adapter->num_rx_queues; i++)
2124                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125 }
2126
2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128  * and memory write and invalidate disabled for certain operations
2129  */
2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131 {
2132         struct e1000_hw *hw = &adapter->hw;
2133         struct net_device *netdev = adapter->netdev;
2134         u32 rctl;
2135
2136         e1000_pci_clear_mwi(hw);
2137
2138         rctl = er32(RCTL);
2139         rctl |= E1000_RCTL_RST;
2140         ew32(RCTL, rctl);
2141         E1000_WRITE_FLUSH();
2142         mdelay(5);
2143
2144         if (netif_running(netdev))
2145                 e1000_clean_all_rx_rings(adapter);
2146 }
2147
2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149 {
2150         struct e1000_hw *hw = &adapter->hw;
2151         struct net_device *netdev = adapter->netdev;
2152         u32 rctl;
2153
2154         rctl = er32(RCTL);
2155         rctl &= ~E1000_RCTL_RST;
2156         ew32(RCTL, rctl);
2157         E1000_WRITE_FLUSH();
2158         mdelay(5);
2159
2160         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161                 e1000_pci_set_mwi(hw);
2162
2163         if (netif_running(netdev)) {
2164                 /* No need to loop, because 82542 supports only 1 queue */
2165                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166                 e1000_configure_rx(adapter);
2167                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168         }
2169 }
2170
2171 /**
2172  * e1000_set_mac - Change the Ethernet Address of the NIC
2173  * @netdev: network interface device structure
2174  * @p: pointer to an address structure
2175  *
2176  * Returns 0 on success, negative on failure
2177  **/
2178 static int e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180         struct e1000_adapter *adapter = netdev_priv(netdev);
2181         struct e1000_hw *hw = &adapter->hw;
2182         struct sockaddr *addr = p;
2183
2184         if (!is_valid_ether_addr(addr->sa_data))
2185                 return -EADDRNOTAVAIL;
2186
2187         /* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189         if (hw->mac_type == e1000_82542_rev2_0)
2190                 e1000_enter_82542_rst(adapter);
2191
2192         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195         e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197         if (hw->mac_type == e1000_82542_rev2_0)
2198                 e1000_leave_82542_rst(adapter);
2199
2200         return 0;
2201 }
2202
2203 /**
2204  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205  * @netdev: network interface device structure
2206  *
2207  * The set_rx_mode entry point is called whenever the unicast or multicast
2208  * address lists or the network interface flags are updated. This routine is
2209  * responsible for configuring the hardware for proper unicast, multicast,
2210  * promiscuous mode, and all-multi behavior.
2211  **/
2212 static void e1000_set_rx_mode(struct net_device *netdev)
2213 {
2214         struct e1000_adapter *adapter = netdev_priv(netdev);
2215         struct e1000_hw *hw = &adapter->hw;
2216         struct netdev_hw_addr *ha;
2217         bool use_uc = false;
2218         u32 rctl;
2219         u32 hash_value;
2220         int i, rar_entries = E1000_RAR_ENTRIES;
2221         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224         if (!mcarray)
2225                 return;
2226
2227         /* Check for Promiscuous and All Multicast modes */
2228
2229         rctl = er32(RCTL);
2230
2231         if (netdev->flags & IFF_PROMISC) {
2232                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233                 rctl &= ~E1000_RCTL_VFE;
2234         } else {
2235                 if (netdev->flags & IFF_ALLMULTI)
2236                         rctl |= E1000_RCTL_MPE;
2237                 else
2238                         rctl &= ~E1000_RCTL_MPE;
2239                 /* Enable VLAN filter if there is a VLAN */
2240                 if (e1000_vlan_used(adapter))
2241                         rctl |= E1000_RCTL_VFE;
2242         }
2243
2244         if (netdev_uc_count(netdev) > rar_entries - 1) {
2245                 rctl |= E1000_RCTL_UPE;
2246         } else if (!(netdev->flags & IFF_PROMISC)) {
2247                 rctl &= ~E1000_RCTL_UPE;
2248                 use_uc = true;
2249         }
2250
2251         ew32(RCTL, rctl);
2252
2253         /* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255         if (hw->mac_type == e1000_82542_rev2_0)
2256                 e1000_enter_82542_rst(adapter);
2257
2258         /* load the first 14 addresses into the exact filters 1-14. Unicast
2259          * addresses take precedence to avoid disabling unicast filtering
2260          * when possible.
2261          *
2262          * RAR 0 is used for the station MAC address
2263          * if there are not 14 addresses, go ahead and clear the filters
2264          */
2265         i = 1;
2266         if (use_uc)
2267                 netdev_for_each_uc_addr(ha, netdev) {
2268                         if (i == rar_entries)
2269                                 break;
2270                         e1000_rar_set(hw, ha->addr, i++);
2271                 }
2272
2273         netdev_for_each_mc_addr(ha, netdev) {
2274                 if (i == rar_entries) {
2275                         /* load any remaining addresses into the hash table */
2276                         u32 hash_reg, hash_bit, mta;
2277                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278                         hash_reg = (hash_value >> 5) & 0x7F;
2279                         hash_bit = hash_value & 0x1F;
2280                         mta = (1 << hash_bit);
2281                         mcarray[hash_reg] |= mta;
2282                 } else {
2283                         e1000_rar_set(hw, ha->addr, i++);
2284                 }
2285         }
2286
2287         for (; i < rar_entries; i++) {
2288                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289                 E1000_WRITE_FLUSH();
2290                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291                 E1000_WRITE_FLUSH();
2292         }
2293
2294         /* write the hash table completely, write from bottom to avoid
2295          * both stupid write combining chipsets, and flushing each write
2296          */
2297         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298                 /* If we are on an 82544 has an errata where writing odd
2299                  * offsets overwrites the previous even offset, but writing
2300                  * backwards over the range solves the issue by always
2301                  * writing the odd offset first
2302                  */
2303                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304         }
2305         E1000_WRITE_FLUSH();
2306
2307         if (hw->mac_type == e1000_82542_rev2_0)
2308                 e1000_leave_82542_rst(adapter);
2309
2310         kfree(mcarray);
2311 }
2312
2313 /**
2314  * e1000_update_phy_info_task - get phy info
2315  * @work: work struct contained inside adapter struct
2316  *
2317  * Need to wait a few seconds after link up to get diagnostic information from
2318  * the phy
2319  */
2320 static void e1000_update_phy_info_task(struct work_struct *work)
2321 {
2322         struct e1000_adapter *adapter = container_of(work,
2323                                                      struct e1000_adapter,
2324                                                      phy_info_task.work);
2325
2326         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327 }
2328
2329 /**
2330  * e1000_82547_tx_fifo_stall_task - task to complete work
2331  * @work: work struct contained inside adapter struct
2332  **/
2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334 {
2335         struct e1000_adapter *adapter = container_of(work,
2336                                                      struct e1000_adapter,
2337                                                      fifo_stall_task.work);
2338         struct e1000_hw *hw = &adapter->hw;
2339         struct net_device *netdev = adapter->netdev;
2340         u32 tctl;
2341
2342         if (atomic_read(&adapter->tx_fifo_stall)) {
2343                 if ((er32(TDT) == er32(TDH)) &&
2344                    (er32(TDFT) == er32(TDFH)) &&
2345                    (er32(TDFTS) == er32(TDFHS))) {
2346                         tctl = er32(TCTL);
2347                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348                         ew32(TDFT, adapter->tx_head_addr);
2349                         ew32(TDFH, adapter->tx_head_addr);
2350                         ew32(TDFTS, adapter->tx_head_addr);
2351                         ew32(TDFHS, adapter->tx_head_addr);
2352                         ew32(TCTL, tctl);
2353                         E1000_WRITE_FLUSH();
2354
2355                         adapter->tx_fifo_head = 0;
2356                         atomic_set(&adapter->tx_fifo_stall, 0);
2357                         netif_wake_queue(netdev);
2358                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360                 }
2361         }
2362 }
2363
2364 bool e1000_has_link(struct e1000_adapter *adapter)
2365 {
2366         struct e1000_hw *hw = &adapter->hw;
2367         bool link_active = false;
2368
2369         /* get_link_status is set on LSC (link status) interrupt or rx
2370          * sequence error interrupt (except on intel ce4100).
2371          * get_link_status will stay false until the
2372          * e1000_check_for_link establishes link for copper adapters
2373          * ONLY
2374          */
2375         switch (hw->media_type) {
2376         case e1000_media_type_copper:
2377                 if (hw->mac_type == e1000_ce4100)
2378                         hw->get_link_status = 1;
2379                 if (hw->get_link_status) {
2380                         e1000_check_for_link(hw);
2381                         link_active = !hw->get_link_status;
2382                 } else {
2383                         link_active = true;
2384                 }
2385                 break;
2386         case e1000_media_type_fiber:
2387                 e1000_check_for_link(hw);
2388                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389                 break;
2390         case e1000_media_type_internal_serdes:
2391                 e1000_check_for_link(hw);
2392                 link_active = hw->serdes_has_link;
2393                 break;
2394         default:
2395                 break;
2396         }
2397
2398         return link_active;
2399 }
2400
2401 /**
2402  * e1000_watchdog - work function
2403  * @work: work struct contained inside adapter struct
2404  **/
2405 static void e1000_watchdog(struct work_struct *work)
2406 {
2407         struct e1000_adapter *adapter = container_of(work,
2408                                                      struct e1000_adapter,
2409                                                      watchdog_task.work);
2410         struct e1000_hw *hw = &adapter->hw;
2411         struct net_device *netdev = adapter->netdev;
2412         struct e1000_tx_ring *txdr = adapter->tx_ring;
2413         u32 link, tctl;
2414
2415         link = e1000_has_link(adapter);
2416         if ((netif_carrier_ok(netdev)) && link)
2417                 goto link_up;
2418
2419         if (link) {
2420                 if (!netif_carrier_ok(netdev)) {
2421                         u32 ctrl;
2422                         bool txb2b = true;
2423                         /* update snapshot of PHY registers on LSC */
2424                         e1000_get_speed_and_duplex(hw,
2425                                                    &adapter->link_speed,
2426                                                    &adapter->link_duplex);
2427
2428                         ctrl = er32(CTRL);
2429                         pr_info("%s NIC Link is Up %d Mbps %s, "
2430                                 "Flow Control: %s\n",
2431                                 netdev->name,
2432                                 adapter->link_speed,
2433                                 adapter->link_duplex == FULL_DUPLEX ?
2434                                 "Full Duplex" : "Half Duplex",
2435                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440                         /* adjust timeout factor according to speed/duplex */
2441                         adapter->tx_timeout_factor = 1;
2442                         switch (adapter->link_speed) {
2443                         case SPEED_10:
2444                                 txb2b = false;
2445                                 adapter->tx_timeout_factor = 16;
2446                                 break;
2447                         case SPEED_100:
2448                                 txb2b = false;
2449                                 /* maybe add some timeout factor ? */
2450                                 break;
2451                         }
2452
2453                         /* enable transmits in the hardware */
2454                         tctl = er32(TCTL);
2455                         tctl |= E1000_TCTL_EN;
2456                         ew32(TCTL, tctl);
2457
2458                         netif_carrier_on(netdev);
2459                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2460                                 schedule_delayed_work(&adapter->phy_info_task,
2461                                                       2 * HZ);
2462                         adapter->smartspeed = 0;
2463                 }
2464         } else {
2465                 if (netif_carrier_ok(netdev)) {
2466                         adapter->link_speed = 0;
2467                         adapter->link_duplex = 0;
2468                         pr_info("%s NIC Link is Down\n",
2469                                 netdev->name);
2470                         netif_carrier_off(netdev);
2471
2472                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2473                                 schedule_delayed_work(&adapter->phy_info_task,
2474                                                       2 * HZ);
2475                 }
2476
2477                 e1000_smartspeed(adapter);
2478         }
2479
2480 link_up:
2481         e1000_update_stats(adapter);
2482
2483         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484         adapter->tpt_old = adapter->stats.tpt;
2485         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486         adapter->colc_old = adapter->stats.colc;
2487
2488         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489         adapter->gorcl_old = adapter->stats.gorcl;
2490         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491         adapter->gotcl_old = adapter->stats.gotcl;
2492
2493         e1000_update_adaptive(hw);
2494
2495         if (!netif_carrier_ok(netdev)) {
2496                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497                         /* We've lost link, so the controller stops DMA,
2498                          * but we've got queued Tx work that's never going
2499                          * to get done, so reset controller to flush Tx.
2500                          * (Do the reset outside of interrupt context).
2501                          */
2502                         adapter->tx_timeout_count++;
2503                         schedule_work(&adapter->reset_task);
2504                         /* exit immediately since reset is imminent */
2505                         return;
2506                 }
2507         }
2508
2509         /* Simple mode for Interrupt Throttle Rate (ITR) */
2510         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2512                  * Total asymmetrical Tx or Rx gets ITR=8000;
2513                  * everyone else is between 2000-8000.
2514                  */
2515                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517                             adapter->gotcl - adapter->gorcl :
2518                             adapter->gorcl - adapter->gotcl) / 10000;
2519                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521                 ew32(ITR, 1000000000 / (itr * 256));
2522         }
2523
2524         /* Cause software interrupt to ensure rx ring is cleaned */
2525         ew32(ICS, E1000_ICS_RXDMT0);
2526
2527         /* Force detection of hung controller every watchdog period */
2528         adapter->detect_tx_hung = true;
2529
2530         /* Reschedule the task */
2531         if (!test_bit(__E1000_DOWN, &adapter->flags))
2532                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533 }
2534
2535 enum latency_range {
2536         lowest_latency = 0,
2537         low_latency = 1,
2538         bulk_latency = 2,
2539         latency_invalid = 255
2540 };
2541
2542 /**
2543  * e1000_update_itr - update the dynamic ITR value based on statistics
2544  * @adapter: pointer to adapter
2545  * @itr_setting: current adapter->itr
2546  * @packets: the number of packets during this measurement interval
2547  * @bytes: the number of bytes during this measurement interval
2548  *
2549  *      Stores a new ITR value based on packets and byte
2550  *      counts during the last interrupt.  The advantage of per interrupt
2551  *      computation is faster updates and more accurate ITR for the current
2552  *      traffic pattern.  Constants in this function were computed
2553  *      based on theoretical maximum wire speed and thresholds were set based
2554  *      on testing data as well as attempting to minimize response time
2555  *      while increasing bulk throughput.
2556  *      this functionality is controlled by the InterruptThrottleRate module
2557  *      parameter (see e1000_param.c)
2558  **/
2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560                                      u16 itr_setting, int packets, int bytes)
2561 {
2562         unsigned int retval = itr_setting;
2563         struct e1000_hw *hw = &adapter->hw;
2564
2565         if (unlikely(hw->mac_type < e1000_82540))
2566                 goto update_itr_done;
2567
2568         if (packets == 0)
2569                 goto update_itr_done;
2570
2571         switch (itr_setting) {
2572         case lowest_latency:
2573                 /* jumbo frames get bulk treatment*/
2574                 if (bytes/packets > 8000)
2575                         retval = bulk_latency;
2576                 else if ((packets < 5) && (bytes > 512))
2577                         retval = low_latency;
2578                 break;
2579         case low_latency:  /* 50 usec aka 20000 ints/s */
2580                 if (bytes > 10000) {
2581                         /* jumbo frames need bulk latency setting */
2582                         if (bytes/packets > 8000)
2583                                 retval = bulk_latency;
2584                         else if ((packets < 10) || ((bytes/packets) > 1200))
2585                                 retval = bulk_latency;
2586                         else if ((packets > 35))
2587                                 retval = lowest_latency;
2588                 } else if (bytes/packets > 2000)
2589                         retval = bulk_latency;
2590                 else if (packets <= 2 && bytes < 512)
2591                         retval = lowest_latency;
2592                 break;
2593         case bulk_latency: /* 250 usec aka 4000 ints/s */
2594                 if (bytes > 25000) {
2595                         if (packets > 35)
2596                                 retval = low_latency;
2597                 } else if (bytes < 6000) {
2598                         retval = low_latency;
2599                 }
2600                 break;
2601         }
2602
2603 update_itr_done:
2604         return retval;
2605 }
2606
2607 static void e1000_set_itr(struct e1000_adapter *adapter)
2608 {
2609         struct e1000_hw *hw = &adapter->hw;
2610         u16 current_itr;
2611         u32 new_itr = adapter->itr;
2612
2613         if (unlikely(hw->mac_type < e1000_82540))
2614                 return;
2615
2616         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617         if (unlikely(adapter->link_speed != SPEED_1000)) {
2618                 current_itr = 0;
2619                 new_itr = 4000;
2620                 goto set_itr_now;
2621         }
2622
2623         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624                                            adapter->total_tx_packets,
2625                                            adapter->total_tx_bytes);
2626         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628                 adapter->tx_itr = low_latency;
2629
2630         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631                                            adapter->total_rx_packets,
2632                                            adapter->total_rx_bytes);
2633         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635                 adapter->rx_itr = low_latency;
2636
2637         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639         switch (current_itr) {
2640         /* counts and packets in update_itr are dependent on these numbers */
2641         case lowest_latency:
2642                 new_itr = 70000;
2643                 break;
2644         case low_latency:
2645                 new_itr = 20000; /* aka hwitr = ~200 */
2646                 break;
2647         case bulk_latency:
2648                 new_itr = 4000;
2649                 break;
2650         default:
2651                 break;
2652         }
2653
2654 set_itr_now:
2655         if (new_itr != adapter->itr) {
2656                 /* this attempts to bias the interrupt rate towards Bulk
2657                  * by adding intermediate steps when interrupt rate is
2658                  * increasing
2659                  */
2660                 new_itr = new_itr > adapter->itr ?
2661                           min(adapter->itr + (new_itr >> 2), new_itr) :
2662                           new_itr;
2663                 adapter->itr = new_itr;
2664                 ew32(ITR, 1000000000 / (new_itr * 256));
2665         }
2666 }
2667
2668 #define E1000_TX_FLAGS_CSUM             0x00000001
2669 #define E1000_TX_FLAGS_VLAN             0x00000002
2670 #define E1000_TX_FLAGS_TSO              0x00000004
2671 #define E1000_TX_FLAGS_IPV4             0x00000008
2672 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2673 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2674 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2675
2676 static int e1000_tso(struct e1000_adapter *adapter,
2677                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2678 {
2679         struct e1000_context_desc *context_desc;
2680         struct e1000_buffer *buffer_info;
2681         unsigned int i;
2682         u32 cmd_length = 0;
2683         u16 ipcse = 0, tucse, mss;
2684         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685         int err;
2686
2687         if (skb_is_gso(skb)) {
2688                 if (skb_header_cloned(skb)) {
2689                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2690                         if (err)
2691                                 return err;
2692                 }
2693
2694                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2695                 mss = skb_shinfo(skb)->gso_size;
2696                 if (skb->protocol == htons(ETH_P_IP)) {
2697                         struct iphdr *iph = ip_hdr(skb);
2698                         iph->tot_len = 0;
2699                         iph->check = 0;
2700                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2701                                                                  iph->daddr, 0,
2702                                                                  IPPROTO_TCP,
2703                                                                  0);
2704                         cmd_length = E1000_TXD_CMD_IP;
2705                         ipcse = skb_transport_offset(skb) - 1;
2706                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2707                         ipv6_hdr(skb)->payload_len = 0;
2708                         tcp_hdr(skb)->check =
2709                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2710                                                  &ipv6_hdr(skb)->daddr,
2711                                                  0, IPPROTO_TCP, 0);
2712                         ipcse = 0;
2713                 }
2714                 ipcss = skb_network_offset(skb);
2715                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2716                 tucss = skb_transport_offset(skb);
2717                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2718                 tucse = 0;
2719
2720                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2721                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2722
2723                 i = tx_ring->next_to_use;
2724                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2725                 buffer_info = &tx_ring->buffer_info[i];
2726
2727                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2728                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2729                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2730                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2731                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2732                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2733                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2734                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2735                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2736
2737                 buffer_info->time_stamp = jiffies;
2738                 buffer_info->next_to_watch = i;
2739
2740                 if (++i == tx_ring->count) i = 0;
2741                 tx_ring->next_to_use = i;
2742
2743                 return true;
2744         }
2745         return false;
2746 }
2747
2748 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2749                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2750 {
2751         struct e1000_context_desc *context_desc;
2752         struct e1000_buffer *buffer_info;
2753         unsigned int i;
2754         u8 css;
2755         u32 cmd_len = E1000_TXD_CMD_DEXT;
2756
2757         if (skb->ip_summed != CHECKSUM_PARTIAL)
2758                 return false;
2759
2760         switch (skb->protocol) {
2761         case cpu_to_be16(ETH_P_IP):
2762                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2763                         cmd_len |= E1000_TXD_CMD_TCP;
2764                 break;
2765         case cpu_to_be16(ETH_P_IPV6):
2766                 /* XXX not handling all IPV6 headers */
2767                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2768                         cmd_len |= E1000_TXD_CMD_TCP;
2769                 break;
2770         default:
2771                 if (unlikely(net_ratelimit()))
2772                         e_warn(drv, "checksum_partial proto=%x!\n",
2773                                skb->protocol);
2774                 break;
2775         }
2776
2777         css = skb_checksum_start_offset(skb);
2778
2779         i = tx_ring->next_to_use;
2780         buffer_info = &tx_ring->buffer_info[i];
2781         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2782
2783         context_desc->lower_setup.ip_config = 0;
2784         context_desc->upper_setup.tcp_fields.tucss = css;
2785         context_desc->upper_setup.tcp_fields.tucso =
2786                 css + skb->csum_offset;
2787         context_desc->upper_setup.tcp_fields.tucse = 0;
2788         context_desc->tcp_seg_setup.data = 0;
2789         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2790
2791         buffer_info->time_stamp = jiffies;
2792         buffer_info->next_to_watch = i;
2793
2794         if (unlikely(++i == tx_ring->count)) i = 0;
2795         tx_ring->next_to_use = i;
2796
2797         return true;
2798 }
2799
2800 #define E1000_MAX_TXD_PWR       12
2801 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2802
2803 static int e1000_tx_map(struct e1000_adapter *adapter,
2804                         struct e1000_tx_ring *tx_ring,
2805                         struct sk_buff *skb, unsigned int first,
2806                         unsigned int max_per_txd, unsigned int nr_frags,
2807                         unsigned int mss)
2808 {
2809         struct e1000_hw *hw = &adapter->hw;
2810         struct pci_dev *pdev = adapter->pdev;
2811         struct e1000_buffer *buffer_info;
2812         unsigned int len = skb_headlen(skb);
2813         unsigned int offset = 0, size, count = 0, i;
2814         unsigned int f, bytecount, segs;
2815
2816         i = tx_ring->next_to_use;
2817
2818         while (len) {
2819                 buffer_info = &tx_ring->buffer_info[i];
2820                 size = min(len, max_per_txd);
2821                 /* Workaround for Controller erratum --
2822                  * descriptor for non-tso packet in a linear SKB that follows a
2823                  * tso gets written back prematurely before the data is fully
2824                  * DMA'd to the controller
2825                  */
2826                 if (!skb->data_len && tx_ring->last_tx_tso &&
2827                     !skb_is_gso(skb)) {
2828                         tx_ring->last_tx_tso = false;
2829                         size -= 4;
2830                 }
2831
2832                 /* Workaround for premature desc write-backs
2833                  * in TSO mode.  Append 4-byte sentinel desc
2834                  */
2835                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2836                         size -= 4;
2837                 /* work-around for errata 10 and it applies
2838                  * to all controllers in PCI-X mode
2839                  * The fix is to make sure that the first descriptor of a
2840                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2841                  */
2842                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2843                                 (size > 2015) && count == 0))
2844                         size = 2015;
2845
2846                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2847                  * terminating buffers within evenly-aligned dwords.
2848                  */
2849                 if (unlikely(adapter->pcix_82544 &&
2850                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2851                    size > 4))
2852                         size -= 4;
2853
2854                 buffer_info->length = size;
2855                 /* set time_stamp *before* dma to help avoid a possible race */
2856                 buffer_info->time_stamp = jiffies;
2857                 buffer_info->mapped_as_page = false;
2858                 buffer_info->dma = dma_map_single(&pdev->dev,
2859                                                   skb->data + offset,
2860                                                   size, DMA_TO_DEVICE);
2861                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2862                         goto dma_error;
2863                 buffer_info->next_to_watch = i;
2864
2865                 len -= size;
2866                 offset += size;
2867                 count++;
2868                 if (len) {
2869                         i++;
2870                         if (unlikely(i == tx_ring->count))
2871                                 i = 0;
2872                 }
2873         }
2874
2875         for (f = 0; f < nr_frags; f++) {
2876                 const struct skb_frag_struct *frag;
2877
2878                 frag = &skb_shinfo(skb)->frags[f];
2879                 len = skb_frag_size(frag);
2880                 offset = 0;
2881
2882                 while (len) {
2883                         unsigned long bufend;
2884                         i++;
2885                         if (unlikely(i == tx_ring->count))
2886                                 i = 0;
2887
2888                         buffer_info = &tx_ring->buffer_info[i];
2889                         size = min(len, max_per_txd);
2890                         /* Workaround for premature desc write-backs
2891                          * in TSO mode.  Append 4-byte sentinel desc
2892                          */
2893                         if (unlikely(mss && f == (nr_frags-1) &&
2894                             size == len && size > 8))
2895                                 size -= 4;
2896                         /* Workaround for potential 82544 hang in PCI-X.
2897                          * Avoid terminating buffers within evenly-aligned
2898                          * dwords.
2899                          */
2900                         bufend = (unsigned long)
2901                                 page_to_phys(skb_frag_page(frag));
2902                         bufend += offset + size - 1;
2903                         if (unlikely(adapter->pcix_82544 &&
2904                                      !(bufend & 4) &&
2905                                      size > 4))
2906                                 size -= 4;
2907
2908                         buffer_info->length = size;
2909                         buffer_info->time_stamp = jiffies;
2910                         buffer_info->mapped_as_page = true;
2911                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2912                                                 offset, size, DMA_TO_DEVICE);
2913                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2914                                 goto dma_error;
2915                         buffer_info->next_to_watch = i;
2916
2917                         len -= size;
2918                         offset += size;
2919                         count++;
2920                 }
2921         }
2922
2923         segs = skb_shinfo(skb)->gso_segs ?: 1;
2924         /* multiply data chunks by size of headers */
2925         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2926
2927         tx_ring->buffer_info[i].skb = skb;
2928         tx_ring->buffer_info[i].segs = segs;
2929         tx_ring->buffer_info[i].bytecount = bytecount;
2930         tx_ring->buffer_info[first].next_to_watch = i;
2931
2932         return count;
2933
2934 dma_error:
2935         dev_err(&pdev->dev, "TX DMA map failed\n");
2936         buffer_info->dma = 0;
2937         if (count)
2938                 count--;
2939
2940         while (count--) {
2941                 if (i==0)
2942                         i += tx_ring->count;
2943                 i--;
2944                 buffer_info = &tx_ring->buffer_info[i];
2945                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2946         }
2947
2948         return 0;
2949 }
2950
2951 static void e1000_tx_queue(struct e1000_adapter *adapter,
2952                            struct e1000_tx_ring *tx_ring, int tx_flags,
2953                            int count)
2954 {
2955         struct e1000_hw *hw = &adapter->hw;
2956         struct e1000_tx_desc *tx_desc = NULL;
2957         struct e1000_buffer *buffer_info;
2958         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2959         unsigned int i;
2960
2961         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2962                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2963                              E1000_TXD_CMD_TSE;
2964                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2965
2966                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2967                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2968         }
2969
2970         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2971                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2972                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2973         }
2974
2975         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2976                 txd_lower |= E1000_TXD_CMD_VLE;
2977                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2978         }
2979
2980         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2981                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2982
2983         i = tx_ring->next_to_use;
2984
2985         while (count--) {
2986                 buffer_info = &tx_ring->buffer_info[i];
2987                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2988                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2989                 tx_desc->lower.data =
2990                         cpu_to_le32(txd_lower | buffer_info->length);
2991                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2992                 if (unlikely(++i == tx_ring->count)) i = 0;
2993         }
2994
2995         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2996
2997         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2998         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3000
3001         /* Force memory writes to complete before letting h/w
3002          * know there are new descriptors to fetch.  (Only
3003          * applicable for weak-ordered memory model archs,
3004          * such as IA-64).
3005          */
3006         wmb();
3007
3008         tx_ring->next_to_use = i;
3009         writel(i, hw->hw_addr + tx_ring->tdt);
3010         /* we need this if more than one processor can write to our tail
3011          * at a time, it synchronizes IO on IA64/Altix systems
3012          */
3013         mmiowb();
3014 }
3015
3016 /* 82547 workaround to avoid controller hang in half-duplex environment.
3017  * The workaround is to avoid queuing a large packet that would span
3018  * the internal Tx FIFO ring boundary by notifying the stack to resend
3019  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3020  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3021  * to the beginning of the Tx FIFO.
3022  */
3023
3024 #define E1000_FIFO_HDR                  0x10
3025 #define E1000_82547_PAD_LEN             0x3E0
3026
3027 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3028                                        struct sk_buff *skb)
3029 {
3030         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3031         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3032
3033         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3034
3035         if (adapter->link_duplex != HALF_DUPLEX)
3036                 goto no_fifo_stall_required;
3037
3038         if (atomic_read(&adapter->tx_fifo_stall))
3039                 return 1;
3040
3041         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3042                 atomic_set(&adapter->tx_fifo_stall, 1);
3043                 return 1;
3044         }
3045
3046 no_fifo_stall_required:
3047         adapter->tx_fifo_head += skb_fifo_len;
3048         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3049                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3050         return 0;
3051 }
3052
3053 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3054 {
3055         struct e1000_adapter *adapter = netdev_priv(netdev);
3056         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3057
3058         netif_stop_queue(netdev);
3059         /* Herbert's original patch had:
3060          *  smp_mb__after_netif_stop_queue();
3061          * but since that doesn't exist yet, just open code it.
3062          */
3063         smp_mb();
3064
3065         /* We need to check again in a case another CPU has just
3066          * made room available.
3067          */
3068         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3069                 return -EBUSY;
3070
3071         /* A reprieve! */
3072         netif_start_queue(netdev);
3073         ++adapter->restart_queue;
3074         return 0;
3075 }
3076
3077 static int e1000_maybe_stop_tx(struct net_device *netdev,
3078                                struct e1000_tx_ring *tx_ring, int size)
3079 {
3080         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3081                 return 0;
3082         return __e1000_maybe_stop_tx(netdev, size);
3083 }
3084
3085 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3086 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3087                                     struct net_device *netdev)
3088 {
3089         struct e1000_adapter *adapter = netdev_priv(netdev);
3090         struct e1000_hw *hw = &adapter->hw;
3091         struct e1000_tx_ring *tx_ring;
3092         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3093         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3094         unsigned int tx_flags = 0;
3095         unsigned int len = skb_headlen(skb);
3096         unsigned int nr_frags;
3097         unsigned int mss;
3098         int count = 0;
3099         int tso;
3100         unsigned int f;
3101
3102         /* This goes back to the question of how to logically map a Tx queue
3103          * to a flow.  Right now, performance is impacted slightly negatively
3104          * if using multiple Tx queues.  If the stack breaks away from a
3105          * single qdisc implementation, we can look at this again.
3106          */
3107         tx_ring = adapter->tx_ring;
3108
3109         if (unlikely(skb->len <= 0)) {
3110                 dev_kfree_skb_any(skb);
3111                 return NETDEV_TX_OK;
3112         }
3113
3114         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3115          * packets may get corrupted during padding by HW.
3116          * To WA this issue, pad all small packets manually.
3117          */
3118         if (skb->len < ETH_ZLEN) {
3119                 if (skb_pad(skb, ETH_ZLEN - skb->len))
3120                         return NETDEV_TX_OK;
3121                 skb->len = ETH_ZLEN;
3122                 skb_set_tail_pointer(skb, ETH_ZLEN);
3123         }
3124
3125         mss = skb_shinfo(skb)->gso_size;
3126         /* The controller does a simple calculation to
3127          * make sure there is enough room in the FIFO before
3128          * initiating the DMA for each buffer.  The calc is:
3129          * 4 = ceil(buffer len/mss).  To make sure we don't
3130          * overrun the FIFO, adjust the max buffer len if mss
3131          * drops.
3132          */
3133         if (mss) {
3134                 u8 hdr_len;
3135                 max_per_txd = min(mss << 2, max_per_txd);
3136                 max_txd_pwr = fls(max_per_txd) - 1;
3137
3138                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3139                 if (skb->data_len && hdr_len == len) {
3140                         switch (hw->mac_type) {
3141                                 unsigned int pull_size;
3142                         case e1000_82544:
3143                                 /* Make sure we have room to chop off 4 bytes,
3144                                  * and that the end alignment will work out to
3145                                  * this hardware's requirements
3146                                  * NOTE: this is a TSO only workaround
3147                                  * if end byte alignment not correct move us
3148                                  * into the next dword
3149                                  */
3150                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3151                                     & 4)
3152                                         break;
3153                                 /* fall through */
3154                                 pull_size = min((unsigned int)4, skb->data_len);
3155                                 if (!__pskb_pull_tail(skb, pull_size)) {
3156                                         e_err(drv, "__pskb_pull_tail "
3157                                               "failed.\n");
3158                                         dev_kfree_skb_any(skb);
3159                                         return NETDEV_TX_OK;
3160                                 }
3161                                 len = skb_headlen(skb);
3162                                 break;
3163                         default:
3164                                 /* do nothing */
3165                                 break;
3166                         }
3167                 }
3168         }
3169
3170         /* reserve a descriptor for the offload context */
3171         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3172                 count++;
3173         count++;
3174
3175         /* Controller Erratum workaround */
3176         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3177                 count++;
3178
3179         count += TXD_USE_COUNT(len, max_txd_pwr);
3180
3181         if (adapter->pcix_82544)
3182                 count++;
3183
3184         /* work-around for errata 10 and it applies to all controllers
3185          * in PCI-X mode, so add one more descriptor to the count
3186          */
3187         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3188                         (len > 2015)))
3189                 count++;
3190
3191         nr_frags = skb_shinfo(skb)->nr_frags;
3192         for (f = 0; f < nr_frags; f++)
3193                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3194                                        max_txd_pwr);
3195         if (adapter->pcix_82544)
3196                 count += nr_frags;
3197
3198         /* need: count + 2 desc gap to keep tail from touching
3199          * head, otherwise try next time
3200          */
3201         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3202                 return NETDEV_TX_BUSY;
3203
3204         if (unlikely((hw->mac_type == e1000_82547) &&
3205                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3206                 netif_stop_queue(netdev);
3207                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3208                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3209                 return NETDEV_TX_BUSY;
3210         }
3211
3212         if (vlan_tx_tag_present(skb)) {
3213                 tx_flags |= E1000_TX_FLAGS_VLAN;
3214                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3215         }
3216
3217         first = tx_ring->next_to_use;
3218
3219         tso = e1000_tso(adapter, tx_ring, skb);
3220         if (tso < 0) {
3221                 dev_kfree_skb_any(skb);
3222                 return NETDEV_TX_OK;
3223         }
3224
3225         if (likely(tso)) {
3226                 if (likely(hw->mac_type != e1000_82544))
3227                         tx_ring->last_tx_tso = true;
3228                 tx_flags |= E1000_TX_FLAGS_TSO;
3229         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3230                 tx_flags |= E1000_TX_FLAGS_CSUM;
3231
3232         if (likely(skb->protocol == htons(ETH_P_IP)))
3233                 tx_flags |= E1000_TX_FLAGS_IPV4;
3234
3235         if (unlikely(skb->no_fcs))
3236                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3237
3238         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3239                              nr_frags, mss);
3240
3241         if (count) {
3242                 netdev_sent_queue(netdev, skb->len);
3243                 skb_tx_timestamp(skb);
3244
3245                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3246                 /* Make sure there is space in the ring for the next send. */
3247                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3248
3249         } else {
3250                 dev_kfree_skb_any(skb);
3251                 tx_ring->buffer_info[first].time_stamp = 0;
3252                 tx_ring->next_to_use = first;
3253         }
3254
3255         return NETDEV_TX_OK;
3256 }
3257
3258 #define NUM_REGS 38 /* 1 based count */
3259 static void e1000_regdump(struct e1000_adapter *adapter)
3260 {
3261         struct e1000_hw *hw = &adapter->hw;
3262         u32 regs[NUM_REGS];
3263         u32 *regs_buff = regs;
3264         int i = 0;
3265
3266         static const char * const reg_name[] = {
3267                 "CTRL",  "STATUS",
3268                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3269                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3270                 "TIDV", "TXDCTL", "TADV", "TARC0",
3271                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3272                 "TXDCTL1", "TARC1",
3273                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3274                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3275                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3276         };
3277
3278         regs_buff[0]  = er32(CTRL);
3279         regs_buff[1]  = er32(STATUS);
3280
3281         regs_buff[2]  = er32(RCTL);
3282         regs_buff[3]  = er32(RDLEN);
3283         regs_buff[4]  = er32(RDH);
3284         regs_buff[5]  = er32(RDT);
3285         regs_buff[6]  = er32(RDTR);
3286
3287         regs_buff[7]  = er32(TCTL);
3288         regs_buff[8]  = er32(TDBAL);
3289         regs_buff[9]  = er32(TDBAH);
3290         regs_buff[10] = er32(TDLEN);
3291         regs_buff[11] = er32(TDH);
3292         regs_buff[12] = er32(TDT);
3293         regs_buff[13] = er32(TIDV);
3294         regs_buff[14] = er32(TXDCTL);
3295         regs_buff[15] = er32(TADV);
3296         regs_buff[16] = er32(TARC0);
3297
3298         regs_buff[17] = er32(TDBAL1);
3299         regs_buff[18] = er32(TDBAH1);
3300         regs_buff[19] = er32(TDLEN1);
3301         regs_buff[20] = er32(TDH1);
3302         regs_buff[21] = er32(TDT1);
3303         regs_buff[22] = er32(TXDCTL1);
3304         regs_buff[23] = er32(TARC1);
3305         regs_buff[24] = er32(CTRL_EXT);
3306         regs_buff[25] = er32(ERT);
3307         regs_buff[26] = er32(RDBAL0);
3308         regs_buff[27] = er32(RDBAH0);
3309         regs_buff[28] = er32(TDFH);
3310         regs_buff[29] = er32(TDFT);
3311         regs_buff[30] = er32(TDFHS);
3312         regs_buff[31] = er32(TDFTS);
3313         regs_buff[32] = er32(TDFPC);
3314         regs_buff[33] = er32(RDFH);
3315         regs_buff[34] = er32(RDFT);
3316         regs_buff[35] = er32(RDFHS);
3317         regs_buff[36] = er32(RDFTS);
3318         regs_buff[37] = er32(RDFPC);
3319
3320         pr_info("Register dump\n");
3321         for (i = 0; i < NUM_REGS; i++)
3322                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3323 }
3324
3325 /*
3326  * e1000_dump: Print registers, tx ring and rx ring
3327  */
3328 static void e1000_dump(struct e1000_adapter *adapter)
3329 {
3330         /* this code doesn't handle multiple rings */
3331         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3332         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3333         int i;
3334
3335         if (!netif_msg_hw(adapter))
3336                 return;
3337
3338         /* Print Registers */
3339         e1000_regdump(adapter);
3340
3341         /* transmit dump */
3342         pr_info("TX Desc ring0 dump\n");
3343
3344         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3345          *
3346          * Legacy Transmit Descriptor
3347          *   +--------------------------------------------------------------+
3348          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3349          *   +--------------------------------------------------------------+
3350          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3351          *   +--------------------------------------------------------------+
3352          *   63       48 47        36 35    32 31     24 23    16 15        0
3353          *
3354          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3355          *   63      48 47    40 39       32 31             16 15    8 7      0
3356          *   +----------------------------------------------------------------+
3357          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3358          *   +----------------------------------------------------------------+
3359          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3360          *   +----------------------------------------------------------------+
3361          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3362          *
3363          * Extended Data Descriptor (DTYP=0x1)
3364          *   +----------------------------------------------------------------+
3365          * 0 |                     Buffer Address [63:0]                      |
3366          *   +----------------------------------------------------------------+
3367          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3368          *   +----------------------------------------------------------------+
3369          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3370          */
3371         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3372         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3373
3374         if (!netif_msg_tx_done(adapter))
3375                 goto rx_ring_summary;
3376
3377         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3378                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3379                 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3380                 struct my_u { __le64 a; __le64 b; };
3381                 struct my_u *u = (struct my_u *)tx_desc;
3382                 const char *type;
3383
3384                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3385                         type = "NTC/U";
3386                 else if (i == tx_ring->next_to_use)
3387                         type = "NTU";
3388                 else if (i == tx_ring->next_to_clean)
3389                         type = "NTC";
3390                 else
3391                         type = "";
3392
3393                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3394                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3395                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3396                         (u64)buffer_info->dma, buffer_info->length,
3397                         buffer_info->next_to_watch,
3398                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3399         }
3400
3401 rx_ring_summary:
3402         /* receive dump */
3403         pr_info("\nRX Desc ring dump\n");
3404
3405         /* Legacy Receive Descriptor Format
3406          *
3407          * +-----------------------------------------------------+
3408          * |                Buffer Address [63:0]                |
3409          * +-----------------------------------------------------+
3410          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3411          * +-----------------------------------------------------+
3412          * 63       48 47    40 39      32 31         16 15      0
3413          */
3414         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3415
3416         if (!netif_msg_rx_status(adapter))
3417                 goto exit;
3418
3419         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3420                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3421                 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3422                 struct my_u { __le64 a; __le64 b; };
3423                 struct my_u *u = (struct my_u *)rx_desc;
3424                 const char *type;
3425
3426                 if (i == rx_ring->next_to_use)
3427                         type = "NTU";
3428                 else if (i == rx_ring->next_to_clean)
3429                         type = "NTC";
3430                 else
3431                         type = "";
3432
3433                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3434                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3435                         (u64)buffer_info->dma, buffer_info->skb, type);
3436         } /* for */
3437
3438         /* dump the descriptor caches */
3439         /* rx */
3440         pr_info("Rx descriptor cache in 64bit format\n");
3441         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3442                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3443                         i,
3444                         readl(adapter->hw.hw_addr + i+4),
3445                         readl(adapter->hw.hw_addr + i),
3446                         readl(adapter->hw.hw_addr + i+12),
3447                         readl(adapter->hw.hw_addr + i+8));
3448         }
3449         /* tx */
3450         pr_info("Tx descriptor cache in 64bit format\n");
3451         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3452                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3453                         i,
3454                         readl(adapter->hw.hw_addr + i+4),
3455                         readl(adapter->hw.hw_addr + i),
3456                         readl(adapter->hw.hw_addr + i+12),
3457                         readl(adapter->hw.hw_addr + i+8));
3458         }
3459 exit:
3460         return;
3461 }
3462
3463 /**
3464  * e1000_tx_timeout - Respond to a Tx Hang
3465  * @netdev: network interface device structure
3466  **/
3467 static void e1000_tx_timeout(struct net_device *netdev)
3468 {
3469         struct e1000_adapter *adapter = netdev_priv(netdev);
3470
3471         /* Do the reset outside of interrupt context */
3472         adapter->tx_timeout_count++;
3473         schedule_work(&adapter->reset_task);
3474 }
3475
3476 static void e1000_reset_task(struct work_struct *work)
3477 {
3478         struct e1000_adapter *adapter =
3479                 container_of(work, struct e1000_adapter, reset_task);
3480
3481         e_err(drv, "Reset adapter\n");
3482         e1000_reinit_locked(adapter);
3483 }
3484
3485 /**
3486  * e1000_get_stats - Get System Network Statistics
3487  * @netdev: network interface device structure
3488  *
3489  * Returns the address of the device statistics structure.
3490  * The statistics are actually updated from the watchdog.
3491  **/
3492 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3493 {
3494         /* only return the current stats */
3495         return &netdev->stats;
3496 }
3497
3498 /**
3499  * e1000_change_mtu - Change the Maximum Transfer Unit
3500  * @netdev: network interface device structure
3501  * @new_mtu: new value for maximum frame size
3502  *
3503  * Returns 0 on success, negative on failure
3504  **/
3505 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3506 {
3507         struct e1000_adapter *adapter = netdev_priv(netdev);
3508         struct e1000_hw *hw = &adapter->hw;
3509         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3510
3511         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3512             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3513                 e_err(probe, "Invalid MTU setting\n");
3514                 return -EINVAL;
3515         }
3516
3517         /* Adapter-specific max frame size limits. */
3518         switch (hw->mac_type) {
3519         case e1000_undefined ... e1000_82542_rev2_1:
3520                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3521                         e_err(probe, "Jumbo Frames not supported.\n");
3522                         return -EINVAL;
3523                 }
3524                 break;
3525         default:
3526                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3527                 break;
3528         }
3529
3530         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3531                 msleep(1);
3532         /* e1000_down has a dependency on max_frame_size */
3533         hw->max_frame_size = max_frame;
3534         if (netif_running(netdev))
3535                 e1000_down(adapter);
3536
3537         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3538          * means we reserve 2 more, this pushes us to allocate from the next
3539          * larger slab size.
3540          * i.e. RXBUFFER_2048 --> size-4096 slab
3541          * however with the new *_jumbo_rx* routines, jumbo receives will use
3542          * fragmented skbs
3543          */
3544
3545         if (max_frame <= E1000_RXBUFFER_2048)
3546                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3547         else
3548 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3549                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3550 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3551                 adapter->rx_buffer_len = PAGE_SIZE;
3552 #endif
3553
3554         /* adjust allocation if LPE protects us, and we aren't using SBP */
3555         if (!hw->tbi_compatibility_on &&
3556             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3557              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3558                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3559
3560         pr_info("%s changing MTU from %d to %d\n",
3561                 netdev->name, netdev->mtu, new_mtu);
3562         netdev->mtu = new_mtu;
3563
3564         if (netif_running(netdev))
3565                 e1000_up(adapter);
3566         else
3567                 e1000_reset(adapter);
3568
3569         clear_bit(__E1000_RESETTING, &adapter->flags);
3570
3571         return 0;
3572 }
3573
3574 /**
3575  * e1000_update_stats - Update the board statistics counters
3576  * @adapter: board private structure
3577  **/
3578 void e1000_update_stats(struct e1000_adapter *adapter)
3579 {
3580         struct net_device *netdev = adapter->netdev;
3581         struct e1000_hw *hw = &adapter->hw;
3582         struct pci_dev *pdev = adapter->pdev;
3583         unsigned long flags;
3584         u16 phy_tmp;
3585
3586 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3587
3588         /* Prevent stats update while adapter is being reset, or if the pci
3589          * connection is down.
3590          */
3591         if (adapter->link_speed == 0)
3592                 return;
3593         if (pci_channel_offline(pdev))
3594                 return;
3595
3596         spin_lock_irqsave(&adapter->stats_lock, flags);
3597
3598         /* these counters are modified from e1000_tbi_adjust_stats,
3599          * called from the interrupt context, so they must only
3600          * be written while holding adapter->stats_lock
3601          */
3602
3603         adapter->stats.crcerrs += er32(CRCERRS);
3604         adapter->stats.gprc += er32(GPRC);
3605         adapter->stats.gorcl += er32(GORCL);
3606         adapter->stats.gorch += er32(GORCH);
3607         adapter->stats.bprc += er32(BPRC);
3608         adapter->stats.mprc += er32(MPRC);
3609         adapter->stats.roc += er32(ROC);
3610
3611         adapter->stats.prc64 += er32(PRC64);
3612         adapter->stats.prc127 += er32(PRC127);
3613         adapter->stats.prc255 += er32(PRC255);
3614         adapter->stats.prc511 += er32(PRC511);
3615         adapter->stats.prc1023 += er32(PRC1023);
3616         adapter->stats.prc1522 += er32(PRC1522);
3617
3618         adapter->stats.symerrs += er32(SYMERRS);
3619         adapter->stats.mpc += er32(MPC);
3620         adapter->stats.scc += er32(SCC);
3621         adapter->stats.ecol += er32(ECOL);
3622         adapter->stats.mcc += er32(MCC);
3623         adapter->stats.latecol += er32(LATECOL);
3624         adapter->stats.dc += er32(DC);
3625         adapter->stats.sec += er32(SEC);
3626         adapter->stats.rlec += er32(RLEC);
3627         adapter->stats.xonrxc += er32(XONRXC);
3628         adapter->stats.xontxc += er32(XONTXC);
3629         adapter->stats.xoffrxc += er32(XOFFRXC);
3630         adapter->stats.xofftxc += er32(XOFFTXC);
3631         adapter->stats.fcruc += er32(FCRUC);
3632         adapter->stats.gptc += er32(GPTC);
3633         adapter->stats.gotcl += er32(GOTCL);
3634         adapter->stats.gotch += er32(GOTCH);
3635         adapter->stats.rnbc += er32(RNBC);
3636         adapter->stats.ruc += er32(RUC);
3637         adapter->stats.rfc += er32(RFC);
3638         adapter->stats.rjc += er32(RJC);
3639         adapter->stats.torl += er32(TORL);
3640         adapter->stats.torh += er32(TORH);
3641         adapter->stats.totl += er32(TOTL);
3642         adapter->stats.toth += er32(TOTH);
3643         adapter->stats.tpr += er32(TPR);
3644
3645         adapter->stats.ptc64 += er32(PTC64);
3646         adapter->stats.ptc127 += er32(PTC127);
3647         adapter->stats.ptc255 += er32(PTC255);
3648         adapter->stats.ptc511 += er32(PTC511);
3649         adapter->stats.ptc1023 += er32(PTC1023);
3650         adapter->stats.ptc1522 += er32(PTC1522);
3651
3652         adapter->stats.mptc += er32(MPTC);
3653         adapter->stats.bptc += er32(BPTC);
3654
3655         /* used for adaptive IFS */
3656
3657         hw->tx_packet_delta = er32(TPT);
3658         adapter->stats.tpt += hw->tx_packet_delta;
3659         hw->collision_delta = er32(COLC);
3660         adapter->stats.colc += hw->collision_delta;
3661
3662         if (hw->mac_type >= e1000_82543) {
3663                 adapter->stats.algnerrc += er32(ALGNERRC);
3664                 adapter->stats.rxerrc += er32(RXERRC);
3665                 adapter->stats.tncrs += er32(TNCRS);
3666                 adapter->stats.cexterr += er32(CEXTERR);
3667                 adapter->stats.tsctc += er32(TSCTC);
3668                 adapter->stats.tsctfc += er32(TSCTFC);
3669         }
3670
3671         /* Fill out the OS statistics structure */
3672         netdev->stats.multicast = adapter->stats.mprc;
3673         netdev->stats.collisions = adapter->stats.colc;
3674
3675         /* Rx Errors */
3676
3677         /* RLEC on some newer hardware can be incorrect so build
3678          * our own version based on RUC and ROC
3679          */
3680         netdev->stats.rx_errors = adapter->stats.rxerrc +
3681                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3682                 adapter->stats.ruc + adapter->stats.roc +
3683                 adapter->stats.cexterr;
3684         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3685         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3686         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3687         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3688         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3689
3690         /* Tx Errors */
3691         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3692         netdev->stats.tx_errors = adapter->stats.txerrc;
3693         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3694         netdev->stats.tx_window_errors = adapter->stats.latecol;
3695         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3696         if (hw->bad_tx_carr_stats_fd &&
3697             adapter->link_duplex == FULL_DUPLEX) {
3698                 netdev->stats.tx_carrier_errors = 0;
3699                 adapter->stats.tncrs = 0;
3700         }
3701
3702         /* Tx Dropped needs to be maintained elsewhere */
3703
3704         /* Phy Stats */
3705         if (hw->media_type == e1000_media_type_copper) {
3706                 if ((adapter->link_speed == SPEED_1000) &&
3707                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3708                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3709                         adapter->phy_stats.idle_errors += phy_tmp;
3710                 }
3711
3712                 if ((hw->mac_type <= e1000_82546) &&
3713                    (hw->phy_type == e1000_phy_m88) &&
3714                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3715                         adapter->phy_stats.receive_errors += phy_tmp;
3716         }
3717
3718         /* Management Stats */
3719         if (hw->has_smbus) {
3720                 adapter->stats.mgptc += er32(MGTPTC);
3721                 adapter->stats.mgprc += er32(MGTPRC);
3722                 adapter->stats.mgpdc += er32(MGTPDC);
3723         }
3724
3725         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3726 }
3727
3728 /**
3729  * e1000_intr - Interrupt Handler
3730  * @irq: interrupt number
3731  * @data: pointer to a network interface device structure
3732  **/
3733 static irqreturn_t e1000_intr(int irq, void *data)
3734 {
3735         struct net_device *netdev = data;
3736         struct e1000_adapter *adapter = netdev_priv(netdev);
3737         struct e1000_hw *hw = &adapter->hw;
3738         u32 icr = er32(ICR);
3739
3740         if (unlikely((!icr)))
3741                 return IRQ_NONE;  /* Not our interrupt */
3742
3743         /* we might have caused the interrupt, but the above
3744          * read cleared it, and just in case the driver is
3745          * down there is nothing to do so return handled
3746          */
3747         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3748                 return IRQ_HANDLED;
3749
3750         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3751                 hw->get_link_status = 1;
3752                 /* guard against interrupt when we're going down */
3753                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3754                         schedule_delayed_work(&adapter->watchdog_task, 1);
3755         }
3756
3757         /* disable interrupts, without the synchronize_irq bit */
3758         ew32(IMC, ~0);
3759         E1000_WRITE_FLUSH();
3760
3761         if (likely(napi_schedule_prep(&adapter->napi))) {
3762                 adapter->total_tx_bytes = 0;
3763                 adapter->total_tx_packets = 0;
3764                 adapter->total_rx_bytes = 0;
3765                 adapter->total_rx_packets = 0;
3766                 __napi_schedule(&adapter->napi);
3767         } else {
3768                 /* this really should not happen! if it does it is basically a
3769                  * bug, but not a hard error, so enable ints and continue
3770                  */
3771                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3772                         e1000_irq_enable(adapter);
3773         }
3774
3775         return IRQ_HANDLED;
3776 }
3777
3778 /**
3779  * e1000_clean - NAPI Rx polling callback
3780  * @adapter: board private structure
3781  **/
3782 static int e1000_clean(struct napi_struct *napi, int budget)
3783 {
3784         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3785                                                      napi);
3786         int tx_clean_complete = 0, work_done = 0;
3787
3788         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3789
3790         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3791
3792         if (!tx_clean_complete)
3793                 work_done = budget;
3794
3795         /* If budget not fully consumed, exit the polling mode */
3796         if (work_done < budget) {
3797                 if (likely(adapter->itr_setting & 3))
3798                         e1000_set_itr(adapter);
3799                 napi_complete(napi);
3800                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3801                         e1000_irq_enable(adapter);
3802         }
3803
3804         return work_done;
3805 }
3806
3807 /**
3808  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3809  * @adapter: board private structure
3810  **/
3811 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3812                                struct e1000_tx_ring *tx_ring)
3813 {
3814         struct e1000_hw *hw = &adapter->hw;
3815         struct net_device *netdev = adapter->netdev;
3816         struct e1000_tx_desc *tx_desc, *eop_desc;
3817         struct e1000_buffer *buffer_info;
3818         unsigned int i, eop;
3819         unsigned int count = 0;
3820         unsigned int total_tx_bytes=0, total_tx_packets=0;
3821         unsigned int bytes_compl = 0, pkts_compl = 0;
3822
3823         i = tx_ring->next_to_clean;
3824         eop = tx_ring->buffer_info[i].next_to_watch;
3825         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3826
3827         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3828                (count < tx_ring->count)) {
3829                 bool cleaned = false;
3830                 rmb();  /* read buffer_info after eop_desc */
3831                 for ( ; !cleaned; count++) {
3832                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3833                         buffer_info = &tx_ring->buffer_info[i];
3834                         cleaned = (i == eop);
3835
3836                         if (cleaned) {
3837                                 total_tx_packets += buffer_info->segs;
3838                                 total_tx_bytes += buffer_info->bytecount;
3839                                 if (buffer_info->skb) {
3840                                         bytes_compl += buffer_info->skb->len;
3841                                         pkts_compl++;
3842                                 }
3843
3844                         }
3845                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3846                         tx_desc->upper.data = 0;
3847
3848                         if (unlikely(++i == tx_ring->count)) i = 0;
3849                 }
3850
3851                 eop = tx_ring->buffer_info[i].next_to_watch;
3852                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3853         }
3854
3855         tx_ring->next_to_clean = i;
3856
3857         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3858
3859 #define TX_WAKE_THRESHOLD 32
3860         if (unlikely(count && netif_carrier_ok(netdev) &&
3861                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3862                 /* Make sure that anybody stopping the queue after this
3863                  * sees the new next_to_clean.
3864                  */
3865                 smp_mb();
3866
3867                 if (netif_queue_stopped(netdev) &&
3868                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3869                         netif_wake_queue(netdev);
3870                         ++adapter->restart_queue;
3871                 }
3872         }
3873
3874         if (adapter->detect_tx_hung) {
3875                 /* Detect a transmit hang in hardware, this serializes the
3876                  * check with the clearing of time_stamp and movement of i
3877                  */
3878                 adapter->detect_tx_hung = false;
3879                 if (tx_ring->buffer_info[eop].time_stamp &&
3880                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3881                                (adapter->tx_timeout_factor * HZ)) &&
3882                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3883
3884                         /* detected Tx unit hang */
3885                         e_err(drv, "Detected Tx Unit Hang\n"
3886                               "  Tx Queue             <%lu>\n"
3887                               "  TDH                  <%x>\n"
3888                               "  TDT                  <%x>\n"
3889                               "  next_to_use          <%x>\n"
3890                               "  next_to_clean        <%x>\n"
3891                               "buffer_info[next_to_clean]\n"
3892                               "  time_stamp           <%lx>\n"
3893                               "  next_to_watch        <%x>\n"
3894                               "  jiffies              <%lx>\n"
3895                               "  next_to_watch.status <%x>\n",
3896                                 (unsigned long)(tx_ring - adapter->tx_ring),
3897                                 readl(hw->hw_addr + tx_ring->tdh),
3898                                 readl(hw->hw_addr + tx_ring->tdt),
3899                                 tx_ring->next_to_use,
3900                                 tx_ring->next_to_clean,
3901                                 tx_ring->buffer_info[eop].time_stamp,
3902                                 eop,
3903                                 jiffies,
3904                                 eop_desc->upper.fields.status);
3905                         e1000_dump(adapter);
3906                         netif_stop_queue(netdev);
3907                 }
3908         }
3909         adapter->total_tx_bytes += total_tx_bytes;
3910         adapter->total_tx_packets += total_tx_packets;
3911         netdev->stats.tx_bytes += total_tx_bytes;
3912         netdev->stats.tx_packets += total_tx_packets;
3913         return count < tx_ring->count;
3914 }
3915
3916 /**
3917  * e1000_rx_checksum - Receive Checksum Offload for 82543
3918  * @adapter:     board private structure
3919  * @status_err:  receive descriptor status and error fields
3920  * @csum:        receive descriptor csum field
3921  * @sk_buff:     socket buffer with received data
3922  **/
3923 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3924                               u32 csum, struct sk_buff *skb)
3925 {
3926         struct e1000_hw *hw = &adapter->hw;
3927         u16 status = (u16)status_err;
3928         u8 errors = (u8)(status_err >> 24);
3929
3930         skb_checksum_none_assert(skb);
3931
3932         /* 82543 or newer only */
3933         if (unlikely(hw->mac_type < e1000_82543)) return;
3934         /* Ignore Checksum bit is set */
3935         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3936         /* TCP/UDP checksum error bit is set */
3937         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3938                 /* let the stack verify checksum errors */
3939                 adapter->hw_csum_err++;
3940                 return;
3941         }
3942         /* TCP/UDP Checksum has not been calculated */
3943         if (!(status & E1000_RXD_STAT_TCPCS))
3944                 return;
3945
3946         /* It must be a TCP or UDP packet with a valid checksum */
3947         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3948                 /* TCP checksum is good */
3949                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3950         }
3951         adapter->hw_csum_good++;
3952 }
3953
3954 /**
3955  * e1000_consume_page - helper function
3956  **/
3957 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3958                                u16 length)
3959 {
3960         bi->page = NULL;
3961         skb->len += length;
3962         skb->data_len += length;
3963         skb->truesize += PAGE_SIZE;
3964 }
3965
3966 /**
3967  * e1000_receive_skb - helper function to handle rx indications
3968  * @adapter: board private structure
3969  * @status: descriptor status field as written by hardware
3970  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3971  * @skb: pointer to sk_buff to be indicated to stack
3972  */
3973 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3974                               __le16 vlan, struct sk_buff *skb)
3975 {
3976         skb->protocol = eth_type_trans(skb, adapter->netdev);
3977
3978         if (status & E1000_RXD_STAT_VP) {
3979                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3980
3981                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3982         }
3983         napi_gro_receive(&adapter->napi, skb);
3984 }
3985
3986 /**
3987  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3988  * @adapter: board private structure
3989  * @rx_ring: ring to clean
3990  * @work_done: amount of napi work completed this call
3991  * @work_to_do: max amount of work allowed for this call to do
3992  *
3993  * the return value indicates whether actual cleaning was done, there
3994  * is no guarantee that everything was cleaned
3995  */
3996 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3997                                      struct e1000_rx_ring *rx_ring,
3998                                      int *work_done, int work_to_do)
3999 {
4000         struct e1000_hw *hw = &adapter->hw;
4001         struct net_device *netdev = adapter->netdev;
4002         struct pci_dev *pdev = adapter->pdev;
4003         struct e1000_rx_desc *rx_desc, *next_rxd;
4004         struct e1000_buffer *buffer_info, *next_buffer;
4005         unsigned long irq_flags;
4006         u32 length;
4007         unsigned int i;
4008         int cleaned_count = 0;
4009         bool cleaned = false;
4010         unsigned int total_rx_bytes=0, total_rx_packets=0;
4011
4012         i = rx_ring->next_to_clean;
4013         rx_desc = E1000_RX_DESC(*rx_ring, i);
4014         buffer_info = &rx_ring->buffer_info[i];
4015
4016         while (rx_desc->status & E1000_RXD_STAT_DD) {
4017                 struct sk_buff *skb;
4018                 u8 status;
4019
4020                 if (*work_done >= work_to_do)
4021                         break;
4022                 (*work_done)++;
4023                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4024
4025                 status = rx_desc->status;
4026                 skb = buffer_info->skb;
4027                 buffer_info->skb = NULL;
4028
4029                 if (++i == rx_ring->count) i = 0;
4030                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4031                 prefetch(next_rxd);
4032
4033                 next_buffer = &rx_ring->buffer_info[i];
4034
4035                 cleaned = true;
4036                 cleaned_count++;
4037                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4038                                buffer_info->length, DMA_FROM_DEVICE);
4039                 buffer_info->dma = 0;
4040
4041                 length = le16_to_cpu(rx_desc->length);
4042
4043                 /* errors is only valid for DD + EOP descriptors */
4044                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4045                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4046                         u8 *mapped;
4047                         u8 last_byte;
4048
4049                         mapped = page_address(buffer_info->page);
4050                         last_byte = *(mapped + length - 1);
4051                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4052                                        last_byte)) {
4053                                 spin_lock_irqsave(&adapter->stats_lock,
4054                                                   irq_flags);
4055                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4056                                                        length, mapped);
4057                                 spin_unlock_irqrestore(&adapter->stats_lock,
4058                                                        irq_flags);
4059                                 length--;
4060                         } else {
4061                                 if (netdev->features & NETIF_F_RXALL)
4062                                         goto process_skb;
4063                                 /* recycle both page and skb */
4064                                 buffer_info->skb = skb;
4065                                 /* an error means any chain goes out the window
4066                                  * too
4067                                  */
4068                                 if (rx_ring->rx_skb_top)
4069                                         dev_kfree_skb(rx_ring->rx_skb_top);
4070                                 rx_ring->rx_skb_top = NULL;
4071                                 goto next_desc;
4072                         }
4073                 }
4074
4075 #define rxtop rx_ring->rx_skb_top
4076 process_skb:
4077                 if (!(status & E1000_RXD_STAT_EOP)) {
4078                         /* this descriptor is only the beginning (or middle) */
4079                         if (!rxtop) {
4080                                 /* this is the beginning of a chain */
4081                                 rxtop = skb;
4082                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4083                                                    0, length);
4084                         } else {
4085                                 /* this is the middle of a chain */
4086                                 skb_fill_page_desc(rxtop,
4087                                     skb_shinfo(rxtop)->nr_frags,
4088                                     buffer_info->page, 0, length);
4089                                 /* re-use the skb, only consumed the page */
4090                                 buffer_info->skb = skb;
4091                         }
4092                         e1000_consume_page(buffer_info, rxtop, length);
4093                         goto next_desc;
4094                 } else {
4095                         if (rxtop) {
4096                                 /* end of the chain */
4097                                 skb_fill_page_desc(rxtop,
4098                                     skb_shinfo(rxtop)->nr_frags,
4099                                     buffer_info->page, 0, length);
4100                                 /* re-use the current skb, we only consumed the
4101                                  * page
4102                                  */
4103                                 buffer_info->skb = skb;
4104                                 skb = rxtop;
4105                                 rxtop = NULL;
4106                                 e1000_consume_page(buffer_info, skb, length);
4107                         } else {
4108                                 /* no chain, got EOP, this buf is the packet
4109                                  * copybreak to save the put_page/alloc_page
4110                                  */
4111                                 if (length <= copybreak &&
4112                                     skb_tailroom(skb) >= length) {
4113                                         u8 *vaddr;
4114                                         vaddr = kmap_atomic(buffer_info->page);
4115                                         memcpy(skb_tail_pointer(skb), vaddr,
4116                                                length);
4117                                         kunmap_atomic(vaddr);
4118                                         /* re-use the page, so don't erase
4119                                          * buffer_info->page
4120                                          */
4121                                         skb_put(skb, length);
4122                                 } else {
4123                                         skb_fill_page_desc(skb, 0,
4124                                                            buffer_info->page, 0,
4125                                                            length);
4126                                         e1000_consume_page(buffer_info, skb,
4127                                                            length);
4128                                 }
4129                         }
4130                 }
4131
4132                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4133                 e1000_rx_checksum(adapter,
4134                                   (u32)(status) |
4135                                   ((u32)(rx_desc->errors) << 24),
4136                                   le16_to_cpu(rx_desc->csum), skb);
4137
4138                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4139                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4140                         pskb_trim(skb, skb->len - 4);
4141                 total_rx_packets++;
4142
4143                 /* eth type trans needs skb->data to point to something */
4144                 if (!pskb_may_pull(skb, ETH_HLEN)) {
4145                         e_err(drv, "pskb_may_pull failed.\n");
4146                         dev_kfree_skb(skb);
4147                         goto next_desc;
4148                 }
4149
4150                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4151
4152 next_desc:
4153                 rx_desc->status = 0;
4154
4155                 /* return some buffers to hardware, one at a time is too slow */
4156                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4157                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4158                         cleaned_count = 0;
4159                 }
4160
4161                 /* use prefetched values */
4162                 rx_desc = next_rxd;
4163                 buffer_info = next_buffer;
4164         }
4165         rx_ring->next_to_clean = i;
4166
4167         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4168         if (cleaned_count)
4169                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4170
4171         adapter->total_rx_packets += total_rx_packets;
4172         adapter->total_rx_bytes += total_rx_bytes;
4173         netdev->stats.rx_bytes += total_rx_bytes;
4174         netdev->stats.rx_packets += total_rx_packets;
4175         return cleaned;
4176 }
4177
4178 /* this should improve performance for small packets with large amounts
4179  * of reassembly being done in the stack
4180  */
4181 static void e1000_check_copybreak(struct net_device *netdev,
4182                                  struct e1000_buffer *buffer_info,
4183                                  u32 length, struct sk_buff **skb)
4184 {
4185         struct sk_buff *new_skb;
4186
4187         if (length > copybreak)
4188                 return;
4189
4190         new_skb = netdev_alloc_skb_ip_align(netdev, length);
4191         if (!new_skb)
4192                 return;
4193
4194         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4195                                        (*skb)->data - NET_IP_ALIGN,
4196                                        length + NET_IP_ALIGN);
4197         /* save the skb in buffer_info as good */
4198         buffer_info->skb = *skb;
4199         *skb = new_skb;
4200 }
4201
4202 /**
4203  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4204  * @adapter: board private structure
4205  * @rx_ring: ring to clean
4206  * @work_done: amount of napi work completed this call
4207  * @work_to_do: max amount of work allowed for this call to do
4208  */
4209 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4210                                struct e1000_rx_ring *rx_ring,
4211                                int *work_done, int work_to_do)
4212 {
4213         struct e1000_hw *hw = &adapter->hw;
4214         struct net_device *netdev = adapter->netdev;
4215         struct pci_dev *pdev = adapter->pdev;
4216         struct e1000_rx_desc *rx_desc, *next_rxd;
4217         struct e1000_buffer *buffer_info, *next_buffer;
4218         unsigned long flags;
4219         u32 length;
4220         unsigned int i;
4221         int cleaned_count = 0;
4222         bool cleaned = false;
4223         unsigned int total_rx_bytes=0, total_rx_packets=0;
4224
4225         i = rx_ring->next_to_clean;
4226         rx_desc = E1000_RX_DESC(*rx_ring, i);
4227         buffer_info = &rx_ring->buffer_info[i];
4228
4229         while (rx_desc->status & E1000_RXD_STAT_DD) {
4230                 struct sk_buff *skb;
4231                 u8 status;
4232
4233                 if (*work_done >= work_to_do)
4234                         break;
4235                 (*work_done)++;
4236                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4237
4238                 status = rx_desc->status;
4239                 skb = buffer_info->skb;
4240                 buffer_info->skb = NULL;
4241
4242                 prefetch(skb->data - NET_IP_ALIGN);
4243
4244                 if (++i == rx_ring->count) i = 0;
4245                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4246                 prefetch(next_rxd);
4247
4248                 next_buffer = &rx_ring->buffer_info[i];
4249
4250                 cleaned = true;
4251                 cleaned_count++;
4252                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4253                                  buffer_info->length, DMA_FROM_DEVICE);
4254                 buffer_info->dma = 0;
4255
4256                 length = le16_to_cpu(rx_desc->length);
4257                 /* !EOP means multiple descriptors were used to store a single
4258                  * packet, if thats the case we need to toss it.  In fact, we
4259                  * to toss every packet with the EOP bit clear and the next
4260                  * frame that _does_ have the EOP bit set, as it is by
4261                  * definition only a frame fragment
4262                  */
4263                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4264                         adapter->discarding = true;
4265
4266                 if (adapter->discarding) {
4267                         /* All receives must fit into a single buffer */
4268                         e_dbg("Receive packet consumed multiple buffers\n");
4269                         /* recycle */
4270                         buffer_info->skb = skb;
4271                         if (status & E1000_RXD_STAT_EOP)
4272                                 adapter->discarding = false;
4273                         goto next_desc;
4274                 }
4275
4276                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4277                         u8 last_byte = *(skb->data + length - 1);
4278                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4279                                        last_byte)) {
4280                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4281                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4282                                                        length, skb->data);
4283                                 spin_unlock_irqrestore(&adapter->stats_lock,
4284                                                        flags);
4285                                 length--;
4286                         } else {
4287                                 if (netdev->features & NETIF_F_RXALL)
4288                                         goto process_skb;
4289                                 /* recycle */
4290                                 buffer_info->skb = skb;
4291                                 goto next_desc;
4292                         }
4293                 }
4294
4295 process_skb:
4296                 total_rx_bytes += (length - 4); /* don't count FCS */
4297                 total_rx_packets++;
4298
4299                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4300                         /* adjust length to remove Ethernet CRC, this must be
4301                          * done after the TBI_ACCEPT workaround above
4302                          */
4303                         length -= 4;
4304
4305                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4306
4307                 skb_put(skb, length);
4308
4309                 /* Receive Checksum Offload */
4310                 e1000_rx_checksum(adapter,
4311                                   (u32)(status) |
4312                                   ((u32)(rx_desc->errors) << 24),
4313                                   le16_to_cpu(rx_desc->csum), skb);
4314
4315                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4316
4317 next_desc:
4318                 rx_desc->status = 0;
4319
4320                 /* return some buffers to hardware, one at a time is too slow */
4321                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323                         cleaned_count = 0;
4324                 }
4325
4326                 /* use prefetched values */
4327                 rx_desc = next_rxd;
4328                 buffer_info = next_buffer;
4329         }
4330         rx_ring->next_to_clean = i;
4331
4332         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333         if (cleaned_count)
4334                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335
4336         adapter->total_rx_packets += total_rx_packets;
4337         adapter->total_rx_bytes += total_rx_bytes;
4338         netdev->stats.rx_bytes += total_rx_bytes;
4339         netdev->stats.rx_packets += total_rx_packets;
4340         return cleaned;
4341 }
4342
4343 /**
4344  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4345  * @adapter: address of board private structure
4346  * @rx_ring: pointer to receive ring structure
4347  * @cleaned_count: number of buffers to allocate this pass
4348  **/
4349 static void
4350 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4351                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4352 {
4353         struct net_device *netdev = adapter->netdev;
4354         struct pci_dev *pdev = adapter->pdev;
4355         struct e1000_rx_desc *rx_desc;
4356         struct e1000_buffer *buffer_info;
4357         struct sk_buff *skb;
4358         unsigned int i;
4359         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4360
4361         i = rx_ring->next_to_use;
4362         buffer_info = &rx_ring->buffer_info[i];
4363
4364         while (cleaned_count--) {
4365                 skb = buffer_info->skb;
4366                 if (skb) {
4367                         skb_trim(skb, 0);
4368                         goto check_page;
4369                 }
4370
4371                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4372                 if (unlikely(!skb)) {
4373                         /* Better luck next round */
4374                         adapter->alloc_rx_buff_failed++;
4375                         break;
4376                 }
4377
4378                 buffer_info->skb = skb;
4379                 buffer_info->length = adapter->rx_buffer_len;
4380 check_page:
4381                 /* allocate a new page if necessary */
4382                 if (!buffer_info->page) {
4383                         buffer_info->page = alloc_page(GFP_ATOMIC);
4384                         if (unlikely(!buffer_info->page)) {
4385                                 adapter->alloc_rx_buff_failed++;
4386                                 break;
4387                         }
4388                 }
4389
4390                 if (!buffer_info->dma) {
4391                         buffer_info->dma = dma_map_page(&pdev->dev,
4392                                                         buffer_info->page, 0,
4393                                                         buffer_info->length,
4394                                                         DMA_FROM_DEVICE);
4395                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4396                                 put_page(buffer_info->page);
4397                                 dev_kfree_skb(skb);
4398                                 buffer_info->page = NULL;
4399                                 buffer_info->skb = NULL;
4400                                 buffer_info->dma = 0;
4401                                 adapter->alloc_rx_buff_failed++;
4402                                 break; /* while !buffer_info->skb */
4403                         }
4404                 }
4405
4406                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4407                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4408
4409                 if (unlikely(++i == rx_ring->count))
4410                         i = 0;
4411                 buffer_info = &rx_ring->buffer_info[i];
4412         }
4413
4414         if (likely(rx_ring->next_to_use != i)) {
4415                 rx_ring->next_to_use = i;
4416                 if (unlikely(i-- == 0))
4417                         i = (rx_ring->count - 1);
4418
4419                 /* Force memory writes to complete before letting h/w
4420                  * know there are new descriptors to fetch.  (Only
4421                  * applicable for weak-ordered memory model archs,
4422                  * such as IA-64).
4423                  */
4424                 wmb();
4425                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4426         }
4427 }
4428
4429 /**
4430  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4431  * @adapter: address of board private structure
4432  **/
4433 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4434                                    struct e1000_rx_ring *rx_ring,
4435                                    int cleaned_count)
4436 {
4437         struct e1000_hw *hw = &adapter->hw;
4438         struct net_device *netdev = adapter->netdev;
4439         struct pci_dev *pdev = adapter->pdev;
4440         struct e1000_rx_desc *rx_desc;
4441         struct e1000_buffer *buffer_info;
4442         struct sk_buff *skb;
4443         unsigned int i;
4444         unsigned int bufsz = adapter->rx_buffer_len;
4445
4446         i = rx_ring->next_to_use;
4447         buffer_info = &rx_ring->buffer_info[i];
4448
4449         while (cleaned_count--) {
4450                 skb = buffer_info->skb;
4451                 if (skb) {
4452                         skb_trim(skb, 0);
4453                         goto map_skb;
4454                 }
4455
4456                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4457                 if (unlikely(!skb)) {
4458                         /* Better luck next round */
4459                         adapter->alloc_rx_buff_failed++;
4460                         break;
4461                 }
4462
4463                 /* Fix for errata 23, can't cross 64kB boundary */
4464                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4465                         struct sk_buff *oldskb = skb;
4466                         e_err(rx_err, "skb align check failed: %u bytes at "
4467                               "%p\n", bufsz, skb->data);
4468                         /* Try again, without freeing the previous */
4469                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4470                         /* Failed allocation, critical failure */
4471                         if (!skb) {
4472                                 dev_kfree_skb(oldskb);
4473                                 adapter->alloc_rx_buff_failed++;
4474                                 break;
4475                         }
4476
4477                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4478                                 /* give up */
4479                                 dev_kfree_skb(skb);
4480                                 dev_kfree_skb(oldskb);
4481                                 adapter->alloc_rx_buff_failed++;
4482                                 break; /* while !buffer_info->skb */
4483                         }
4484
4485                         /* Use new allocation */
4486                         dev_kfree_skb(oldskb);
4487                 }
4488                 buffer_info->skb = skb;
4489                 buffer_info->length = adapter->rx_buffer_len;
4490 map_skb:
4491                 buffer_info->dma = dma_map_single(&pdev->dev,
4492                                                   skb->data,
4493                                                   buffer_info->length,
4494                                                   DMA_FROM_DEVICE);
4495                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4496                         dev_kfree_skb(skb);
4497                         buffer_info->skb = NULL;
4498                         buffer_info->dma = 0;
4499                         adapter->alloc_rx_buff_failed++;
4500                         break; /* while !buffer_info->skb */
4501                 }
4502
4503                 /* XXX if it was allocated cleanly it will never map to a
4504                  * boundary crossing
4505                  */
4506
4507                 /* Fix for errata 23, can't cross 64kB boundary */
4508                 if (!e1000_check_64k_bound(adapter,
4509                                         (void *)(unsigned long)buffer_info->dma,
4510                                         adapter->rx_buffer_len)) {
4511                         e_err(rx_err, "dma align check failed: %u bytes at "
4512                               "%p\n", adapter->rx_buffer_len,
4513                               (void *)(unsigned long)buffer_info->dma);
4514                         dev_kfree_skb(skb);
4515                         buffer_info->skb = NULL;
4516
4517                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4518                                          adapter->rx_buffer_len,
4519                                          DMA_FROM_DEVICE);
4520                         buffer_info->dma = 0;
4521
4522                         adapter->alloc_rx_buff_failed++;
4523                         break; /* while !buffer_info->skb */
4524                 }
4525                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4526                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4527
4528                 if (unlikely(++i == rx_ring->count))
4529                         i = 0;
4530                 buffer_info = &rx_ring->buffer_info[i];
4531         }
4532
4533         if (likely(rx_ring->next_to_use != i)) {
4534                 rx_ring->next_to_use = i;
4535                 if (unlikely(i-- == 0))
4536                         i = (rx_ring->count - 1);
4537
4538                 /* Force memory writes to complete before letting h/w
4539                  * know there are new descriptors to fetch.  (Only
4540                  * applicable for weak-ordered memory model archs,
4541                  * such as IA-64).
4542                  */
4543                 wmb();
4544                 writel(i, hw->hw_addr + rx_ring->rdt);
4545         }
4546 }
4547
4548 /**
4549  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4550  * @adapter:
4551  **/
4552 static void e1000_smartspeed(struct e1000_adapter *adapter)
4553 {
4554         struct e1000_hw *hw = &adapter->hw;
4555         u16 phy_status;
4556         u16 phy_ctrl;
4557
4558         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4559            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4560                 return;
4561
4562         if (adapter->smartspeed == 0) {
4563                 /* If Master/Slave config fault is asserted twice,
4564                  * we assume back-to-back
4565                  */
4566                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4567                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4568                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4569                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4570                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4571                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4572                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4573                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4574                                             phy_ctrl);
4575                         adapter->smartspeed++;
4576                         if (!e1000_phy_setup_autoneg(hw) &&
4577                            !e1000_read_phy_reg(hw, PHY_CTRL,
4578                                                &phy_ctrl)) {
4579                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4580                                              MII_CR_RESTART_AUTO_NEG);
4581                                 e1000_write_phy_reg(hw, PHY_CTRL,
4582                                                     phy_ctrl);
4583                         }
4584                 }
4585                 return;
4586         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4587                 /* If still no link, perhaps using 2/3 pair cable */
4588                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4589                 phy_ctrl |= CR_1000T_MS_ENABLE;
4590                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4591                 if (!e1000_phy_setup_autoneg(hw) &&
4592                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4593                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4594                                      MII_CR_RESTART_AUTO_NEG);
4595                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4596                 }
4597         }
4598         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4599         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4600                 adapter->smartspeed = 0;
4601 }
4602
4603 /**
4604  * e1000_ioctl -
4605  * @netdev:
4606  * @ifreq:
4607  * @cmd:
4608  **/
4609 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4610 {
4611         switch (cmd) {
4612         case SIOCGMIIPHY:
4613         case SIOCGMIIREG:
4614         case SIOCSMIIREG:
4615                 return e1000_mii_ioctl(netdev, ifr, cmd);
4616         default:
4617                 return -EOPNOTSUPP;
4618         }
4619 }
4620
4621 /**
4622  * e1000_mii_ioctl -
4623  * @netdev:
4624  * @ifreq:
4625  * @cmd:
4626  **/
4627 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4628                            int cmd)
4629 {
4630         struct e1000_adapter *adapter = netdev_priv(netdev);
4631         struct e1000_hw *hw = &adapter->hw;
4632         struct mii_ioctl_data *data = if_mii(ifr);
4633         int retval;
4634         u16 mii_reg;
4635         unsigned long flags;
4636
4637         if (hw->media_type != e1000_media_type_copper)
4638                 return -EOPNOTSUPP;
4639
4640         switch (cmd) {
4641         case SIOCGMIIPHY:
4642                 data->phy_id = hw->phy_addr;
4643                 break;
4644         case SIOCGMIIREG:
4645                 spin_lock_irqsave(&adapter->stats_lock, flags);
4646                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4647                                    &data->val_out)) {
4648                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4649                         return -EIO;
4650                 }
4651                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4652                 break;
4653         case SIOCSMIIREG:
4654                 if (data->reg_num & ~(0x1F))
4655                         return -EFAULT;
4656                 mii_reg = data->val_in;
4657                 spin_lock_irqsave(&adapter->stats_lock, flags);
4658                 if (e1000_write_phy_reg(hw, data->reg_num,
4659                                         mii_reg)) {
4660                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4661                         return -EIO;
4662                 }
4663                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4664                 if (hw->media_type == e1000_media_type_copper) {
4665                         switch (data->reg_num) {
4666                         case PHY_CTRL:
4667                                 if (mii_reg & MII_CR_POWER_DOWN)
4668                                         break;
4669                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4670                                         hw->autoneg = 1;
4671                                         hw->autoneg_advertised = 0x2F;
4672                                 } else {
4673                                         u32 speed;
4674                                         if (mii_reg & 0x40)
4675                                                 speed = SPEED_1000;
4676                                         else if (mii_reg & 0x2000)
4677                                                 speed = SPEED_100;
4678                                         else
4679                                                 speed = SPEED_10;
4680                                         retval = e1000_set_spd_dplx(
4681                                                 adapter, speed,
4682                                                 ((mii_reg & 0x100)
4683                                                  ? DUPLEX_FULL :
4684                                                  DUPLEX_HALF));
4685                                         if (retval)
4686                                                 return retval;
4687                                 }
4688                                 if (netif_running(adapter->netdev))
4689                                         e1000_reinit_locked(adapter);
4690                                 else
4691                                         e1000_reset(adapter);
4692                                 break;
4693                         case M88E1000_PHY_SPEC_CTRL:
4694                         case M88E1000_EXT_PHY_SPEC_CTRL:
4695                                 if (e1000_phy_reset(hw))
4696                                         return -EIO;
4697                                 break;
4698                         }
4699                 } else {
4700                         switch (data->reg_num) {
4701                         case PHY_CTRL:
4702                                 if (mii_reg & MII_CR_POWER_DOWN)
4703                                         break;
4704                                 if (netif_running(adapter->netdev))
4705                                         e1000_reinit_locked(adapter);
4706                                 else
4707                                         e1000_reset(adapter);
4708                                 break;
4709                         }
4710                 }
4711                 break;
4712         default:
4713                 return -EOPNOTSUPP;
4714         }
4715         return E1000_SUCCESS;
4716 }
4717
4718 void e1000_pci_set_mwi(struct e1000_hw *hw)
4719 {
4720         struct e1000_adapter *adapter = hw->back;
4721         int ret_val = pci_set_mwi(adapter->pdev);
4722
4723         if (ret_val)
4724                 e_err(probe, "Error in setting MWI\n");
4725 }
4726
4727 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4728 {
4729         struct e1000_adapter *adapter = hw->back;
4730
4731         pci_clear_mwi(adapter->pdev);
4732 }
4733
4734 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4735 {
4736         struct e1000_adapter *adapter = hw->back;
4737         return pcix_get_mmrbc(adapter->pdev);
4738 }
4739
4740 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4741 {
4742         struct e1000_adapter *adapter = hw->back;
4743         pcix_set_mmrbc(adapter->pdev, mmrbc);
4744 }
4745
4746 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4747 {
4748         outl(value, port);
4749 }
4750
4751 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4752 {
4753         u16 vid;
4754
4755         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4756                 return true;
4757         return false;
4758 }
4759
4760 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4761                               netdev_features_t features)
4762 {
4763         struct e1000_hw *hw = &adapter->hw;
4764         u32 ctrl;
4765
4766         ctrl = er32(CTRL);
4767         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4768                 /* enable VLAN tag insert/strip */
4769                 ctrl |= E1000_CTRL_VME;
4770         } else {
4771                 /* disable VLAN tag insert/strip */
4772                 ctrl &= ~E1000_CTRL_VME;
4773         }
4774         ew32(CTRL, ctrl);
4775 }
4776 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4777                                      bool filter_on)
4778 {
4779         struct e1000_hw *hw = &adapter->hw;
4780         u32 rctl;
4781
4782         if (!test_bit(__E1000_DOWN, &adapter->flags))
4783                 e1000_irq_disable(adapter);
4784
4785         __e1000_vlan_mode(adapter, adapter->netdev->features);
4786         if (filter_on) {
4787                 /* enable VLAN receive filtering */
4788                 rctl = er32(RCTL);
4789                 rctl &= ~E1000_RCTL_CFIEN;
4790                 if (!(adapter->netdev->flags & IFF_PROMISC))
4791                         rctl |= E1000_RCTL_VFE;
4792                 ew32(RCTL, rctl);
4793                 e1000_update_mng_vlan(adapter);
4794         } else {
4795                 /* disable VLAN receive filtering */
4796                 rctl = er32(RCTL);
4797                 rctl &= ~E1000_RCTL_VFE;
4798                 ew32(RCTL, rctl);
4799         }
4800
4801         if (!test_bit(__E1000_DOWN, &adapter->flags))
4802                 e1000_irq_enable(adapter);
4803 }
4804
4805 static void e1000_vlan_mode(struct net_device *netdev,
4806                             netdev_features_t features)
4807 {
4808         struct e1000_adapter *adapter = netdev_priv(netdev);
4809
4810         if (!test_bit(__E1000_DOWN, &adapter->flags))
4811                 e1000_irq_disable(adapter);
4812
4813         __e1000_vlan_mode(adapter, features);
4814
4815         if (!test_bit(__E1000_DOWN, &adapter->flags))
4816                 e1000_irq_enable(adapter);
4817 }
4818
4819 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4820                                  __be16 proto, u16 vid)
4821 {
4822         struct e1000_adapter *adapter = netdev_priv(netdev);
4823         struct e1000_hw *hw = &adapter->hw;
4824         u32 vfta, index;
4825
4826         if ((hw->mng_cookie.status &
4827              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4828             (vid == adapter->mng_vlan_id))
4829                 return 0;
4830
4831         if (!e1000_vlan_used(adapter))
4832                 e1000_vlan_filter_on_off(adapter, true);
4833
4834         /* add VID to filter table */
4835         index = (vid >> 5) & 0x7F;
4836         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4837         vfta |= (1 << (vid & 0x1F));
4838         e1000_write_vfta(hw, index, vfta);
4839
4840         set_bit(vid, adapter->active_vlans);
4841
4842         return 0;
4843 }
4844
4845 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4846                                   __be16 proto, u16 vid)
4847 {
4848         struct e1000_adapter *adapter = netdev_priv(netdev);
4849         struct e1000_hw *hw = &adapter->hw;
4850         u32 vfta, index;
4851
4852         if (!test_bit(__E1000_DOWN, &adapter->flags))
4853                 e1000_irq_disable(adapter);
4854         if (!test_bit(__E1000_DOWN, &adapter->flags))
4855                 e1000_irq_enable(adapter);
4856
4857         /* remove VID from filter table */
4858         index = (vid >> 5) & 0x7F;
4859         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4860         vfta &= ~(1 << (vid & 0x1F));
4861         e1000_write_vfta(hw, index, vfta);
4862
4863         clear_bit(vid, adapter->active_vlans);
4864
4865         if (!e1000_vlan_used(adapter))
4866                 e1000_vlan_filter_on_off(adapter, false);
4867
4868         return 0;
4869 }
4870
4871 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4872 {
4873         u16 vid;
4874
4875         if (!e1000_vlan_used(adapter))
4876                 return;
4877
4878         e1000_vlan_filter_on_off(adapter, true);
4879         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4880                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4881 }
4882
4883 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4884 {
4885         struct e1000_hw *hw = &adapter->hw;
4886
4887         hw->autoneg = 0;
4888
4889         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4890          * for the switch() below to work
4891          */
4892         if ((spd & 1) || (dplx & ~1))
4893                 goto err_inval;
4894
4895         /* Fiber NICs only allow 1000 gbps Full duplex */
4896         if ((hw->media_type == e1000_media_type_fiber) &&
4897             spd != SPEED_1000 &&
4898             dplx != DUPLEX_FULL)
4899                 goto err_inval;
4900
4901         switch (spd + dplx) {
4902         case SPEED_10 + DUPLEX_HALF:
4903                 hw->forced_speed_duplex = e1000_10_half;
4904                 break;
4905         case SPEED_10 + DUPLEX_FULL:
4906                 hw->forced_speed_duplex = e1000_10_full;
4907                 break;
4908         case SPEED_100 + DUPLEX_HALF:
4909                 hw->forced_speed_duplex = e1000_100_half;
4910                 break;
4911         case SPEED_100 + DUPLEX_FULL:
4912                 hw->forced_speed_duplex = e1000_100_full;
4913                 break;
4914         case SPEED_1000 + DUPLEX_FULL:
4915                 hw->autoneg = 1;
4916                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4917                 break;
4918         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4919         default:
4920                 goto err_inval;
4921         }
4922
4923         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4924         hw->mdix = AUTO_ALL_MODES;
4925
4926         return 0;
4927
4928 err_inval:
4929         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4930         return -EINVAL;
4931 }
4932
4933 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4934 {
4935         struct net_device *netdev = pci_get_drvdata(pdev);
4936         struct e1000_adapter *adapter = netdev_priv(netdev);
4937         struct e1000_hw *hw = &adapter->hw;
4938         u32 ctrl, ctrl_ext, rctl, status;
4939         u32 wufc = adapter->wol;
4940 #ifdef CONFIG_PM
4941         int retval = 0;
4942 #endif
4943
4944         netif_device_detach(netdev);
4945
4946         if (netif_running(netdev)) {
4947                 int count = E1000_CHECK_RESET_COUNT;
4948
4949                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4950                         usleep_range(10000, 20000);
4951
4952                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4953                 e1000_down(adapter);
4954         }
4955
4956 #ifdef CONFIG_PM
4957         retval = pci_save_state(pdev);
4958         if (retval)
4959                 return retval;
4960 #endif
4961
4962         status = er32(STATUS);
4963         if (status & E1000_STATUS_LU)
4964                 wufc &= ~E1000_WUFC_LNKC;
4965
4966         if (wufc) {
4967                 e1000_setup_rctl(adapter);
4968                 e1000_set_rx_mode(netdev);
4969
4970                 rctl = er32(RCTL);
4971
4972                 /* turn on all-multi mode if wake on multicast is enabled */
4973                 if (wufc & E1000_WUFC_MC)
4974                         rctl |= E1000_RCTL_MPE;
4975
4976                 /* enable receives in the hardware */
4977                 ew32(RCTL, rctl | E1000_RCTL_EN);
4978
4979                 if (hw->mac_type >= e1000_82540) {
4980                         ctrl = er32(CTRL);
4981                         /* advertise wake from D3Cold */
4982                         #define E1000_CTRL_ADVD3WUC 0x00100000
4983                         /* phy power management enable */
4984                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4985                         ctrl |= E1000_CTRL_ADVD3WUC |
4986                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4987                         ew32(CTRL, ctrl);
4988                 }
4989
4990                 if (hw->media_type == e1000_media_type_fiber ||
4991                     hw->media_type == e1000_media_type_internal_serdes) {
4992                         /* keep the laser running in D3 */
4993                         ctrl_ext = er32(CTRL_EXT);
4994                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4995                         ew32(CTRL_EXT, ctrl_ext);
4996                 }
4997
4998                 ew32(WUC, E1000_WUC_PME_EN);
4999                 ew32(WUFC, wufc);
5000         } else {
5001                 ew32(WUC, 0);
5002                 ew32(WUFC, 0);
5003         }
5004
5005         e1000_release_manageability(adapter);
5006
5007         *enable_wake = !!wufc;
5008
5009         /* make sure adapter isn't asleep if manageability is enabled */
5010         if (adapter->en_mng_pt)
5011                 *enable_wake = true;
5012
5013         if (netif_running(netdev))
5014                 e1000_free_irq(adapter);
5015
5016         pci_disable_device(pdev);
5017
5018         return 0;
5019 }
5020
5021 #ifdef CONFIG_PM
5022 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5023 {
5024         int retval;
5025         bool wake;
5026
5027         retval = __e1000_shutdown(pdev, &wake);
5028         if (retval)
5029                 return retval;
5030
5031         if (wake) {
5032                 pci_prepare_to_sleep(pdev);
5033         } else {
5034                 pci_wake_from_d3(pdev, false);
5035                 pci_set_power_state(pdev, PCI_D3hot);
5036         }
5037
5038         return 0;
5039 }
5040
5041 static int e1000_resume(struct pci_dev *pdev)
5042 {
5043         struct net_device *netdev = pci_get_drvdata(pdev);
5044         struct e1000_adapter *adapter = netdev_priv(netdev);
5045         struct e1000_hw *hw = &adapter->hw;
5046         u32 err;
5047
5048         pci_set_power_state(pdev, PCI_D0);
5049         pci_restore_state(pdev);
5050         pci_save_state(pdev);
5051
5052         if (adapter->need_ioport)
5053                 err = pci_enable_device(pdev);
5054         else
5055                 err = pci_enable_device_mem(pdev);
5056         if (err) {
5057                 pr_err("Cannot enable PCI device from suspend\n");
5058                 return err;
5059         }
5060         pci_set_master(pdev);
5061
5062         pci_enable_wake(pdev, PCI_D3hot, 0);
5063         pci_enable_wake(pdev, PCI_D3cold, 0);
5064
5065         if (netif_running(netdev)) {
5066                 err = e1000_request_irq(adapter);
5067                 if (err)
5068                         return err;
5069         }
5070
5071         e1000_power_up_phy(adapter);
5072         e1000_reset(adapter);
5073         ew32(WUS, ~0);
5074
5075         e1000_init_manageability(adapter);
5076
5077         if (netif_running(netdev))
5078                 e1000_up(adapter);
5079
5080         netif_device_attach(netdev);
5081
5082         return 0;
5083 }
5084 #endif
5085
5086 static void e1000_shutdown(struct pci_dev *pdev)
5087 {
5088         bool wake;
5089
5090         __e1000_shutdown(pdev, &wake);
5091
5092         if (system_state == SYSTEM_POWER_OFF) {
5093                 pci_wake_from_d3(pdev, wake);
5094                 pci_set_power_state(pdev, PCI_D3hot);
5095         }
5096 }
5097
5098 #ifdef CONFIG_NET_POLL_CONTROLLER
5099 /* Polling 'interrupt' - used by things like netconsole to send skbs
5100  * without having to re-enable interrupts. It's not called while
5101  * the interrupt routine is executing.
5102  */
5103 static void e1000_netpoll(struct net_device *netdev)
5104 {
5105         struct e1000_adapter *adapter = netdev_priv(netdev);
5106
5107         disable_irq(adapter->pdev->irq);
5108         e1000_intr(adapter->pdev->irq, netdev);
5109         enable_irq(adapter->pdev->irq);
5110 }
5111 #endif
5112
5113 /**
5114  * e1000_io_error_detected - called when PCI error is detected
5115  * @pdev: Pointer to PCI device
5116  * @state: The current pci connection state
5117  *
5118  * This function is called after a PCI bus error affecting
5119  * this device has been detected.
5120  */
5121 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5122                                                 pci_channel_state_t state)
5123 {
5124         struct net_device *netdev = pci_get_drvdata(pdev);
5125         struct e1000_adapter *adapter = netdev_priv(netdev);
5126
5127         netif_device_detach(netdev);
5128
5129         if (state == pci_channel_io_perm_failure)
5130                 return PCI_ERS_RESULT_DISCONNECT;
5131
5132         if (netif_running(netdev))
5133                 e1000_down(adapter);
5134         pci_disable_device(pdev);
5135
5136         /* Request a slot slot reset. */
5137         return PCI_ERS_RESULT_NEED_RESET;
5138 }
5139
5140 /**
5141  * e1000_io_slot_reset - called after the pci bus has been reset.
5142  * @pdev: Pointer to PCI device
5143  *
5144  * Restart the card from scratch, as if from a cold-boot. Implementation
5145  * resembles the first-half of the e1000_resume routine.
5146  */
5147 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5148 {
5149         struct net_device *netdev = pci_get_drvdata(pdev);
5150         struct e1000_adapter *adapter = netdev_priv(netdev);
5151         struct e1000_hw *hw = &adapter->hw;
5152         int err;
5153
5154         if (adapter->need_ioport)
5155                 err = pci_enable_device(pdev);
5156         else
5157                 err = pci_enable_device_mem(pdev);
5158         if (err) {
5159                 pr_err("Cannot re-enable PCI device after reset.\n");
5160                 return PCI_ERS_RESULT_DISCONNECT;
5161         }
5162         pci_set_master(pdev);
5163
5164         pci_enable_wake(pdev, PCI_D3hot, 0);
5165         pci_enable_wake(pdev, PCI_D3cold, 0);
5166
5167         e1000_reset(adapter);
5168         ew32(WUS, ~0);
5169
5170         return PCI_ERS_RESULT_RECOVERED;
5171 }
5172
5173 /**
5174  * e1000_io_resume - called when traffic can start flowing again.
5175  * @pdev: Pointer to PCI device
5176  *
5177  * This callback is called when the error recovery driver tells us that
5178  * its OK to resume normal operation. Implementation resembles the
5179  * second-half of the e1000_resume routine.
5180  */
5181 static void e1000_io_resume(struct pci_dev *pdev)
5182 {
5183         struct net_device *netdev = pci_get_drvdata(pdev);
5184         struct e1000_adapter *adapter = netdev_priv(netdev);
5185
5186         e1000_init_manageability(adapter);
5187
5188         if (netif_running(netdev)) {
5189                 if (e1000_up(adapter)) {
5190                         pr_info("can't bring device back up after reset\n");
5191                         return;
5192                 }
5193         }
5194
5195         netif_device_attach(netdev);
5196 }
5197
5198 /* e1000_main.c */