Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47
48 #include "t4vf_common.h"
49 #include "t4vf_defs.h"
50
51 #include "../cxgb4/t4_regs.h"
52 #include "../cxgb4/t4_msg.h"
53
54 /*
55  * Generic information about the driver.
56  */
57 #define DRV_VERSION "2.0.0-ko"
58 #define DRV_DESC "Chelsio T4/T5 Virtual Function (VF) Network Driver"
59
60 /*
61  * Module Parameters.
62  * ==================
63  */
64
65 /*
66  * Default ethtool "message level" for adapters.
67  */
68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71
72 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73
74 module_param(dflt_msg_enable, int, 0644);
75 MODULE_PARM_DESC(dflt_msg_enable,
76                  "default adapter ethtool message level bitmap");
77
78 /*
79  * The driver uses the best interrupt scheme available on a platform in the
80  * order MSI-X then MSI.  This parameter determines which of these schemes the
81  * driver may consider as follows:
82  *
83  *     msi = 2: choose from among MSI-X and MSI
84  *     msi = 1: only consider MSI interrupts
85  *
86  * Note that unlike the Physical Function driver, this Virtual Function driver
87  * does _not_ support legacy INTx interrupts (this limitation is mandated by
88  * the PCI-E SR-IOV standard).
89  */
90 #define MSI_MSIX        2
91 #define MSI_MSI         1
92 #define MSI_DEFAULT     MSI_MSIX
93
94 static int msi = MSI_DEFAULT;
95
96 module_param(msi, int, 0644);
97 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
98
99 /*
100  * Fundamental constants.
101  * ======================
102  */
103
104 enum {
105         MAX_TXQ_ENTRIES         = 16384,
106         MAX_RSPQ_ENTRIES        = 16384,
107         MAX_RX_BUFFERS          = 16384,
108
109         MIN_TXQ_ENTRIES         = 32,
110         MIN_RSPQ_ENTRIES        = 128,
111         MIN_FL_ENTRIES          = 16,
112
113         /*
114          * For purposes of manipulating the Free List size we need to
115          * recognize that Free Lists are actually Egress Queues (the host
116          * produces free buffers which the hardware consumes), Egress Queues
117          * indices are all in units of Egress Context Units bytes, and free
118          * list entries are 64-bit PCI DMA addresses.  And since the state of
119          * the Producer Index == the Consumer Index implies an EMPTY list, we
120          * always have at least one Egress Unit's worth of Free List entries
121          * unused.  See sge.c for more details ...
122          */
123         EQ_UNIT = SGE_EQ_IDXSIZE,
124         FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
125         MIN_FL_RESID = FL_PER_EQ_UNIT,
126 };
127
128 /*
129  * Global driver state.
130  * ====================
131  */
132
133 static struct dentry *cxgb4vf_debugfs_root;
134
135 /*
136  * OS "Callback" functions.
137  * ========================
138  */
139
140 /*
141  * The link status has changed on the indicated "port" (Virtual Interface).
142  */
143 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 {
145         struct net_device *dev = adapter->port[pidx];
146
147         /*
148          * If the port is disabled or the current recorded "link up"
149          * status matches the new status, just return.
150          */
151         if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
152                 return;
153
154         /*
155          * Tell the OS that the link status has changed and print a short
156          * informative message on the console about the event.
157          */
158         if (link_ok) {
159                 const char *s;
160                 const char *fc;
161                 const struct port_info *pi = netdev_priv(dev);
162
163                 netif_carrier_on(dev);
164
165                 switch (pi->link_cfg.speed) {
166                 case SPEED_10000:
167                         s = "10Gbps";
168                         break;
169
170                 case SPEED_1000:
171                         s = "1000Mbps";
172                         break;
173
174                 case SPEED_100:
175                         s = "100Mbps";
176                         break;
177
178                 default:
179                         s = "unknown";
180                         break;
181                 }
182
183                 switch (pi->link_cfg.fc) {
184                 case PAUSE_RX:
185                         fc = "RX";
186                         break;
187
188                 case PAUSE_TX:
189                         fc = "TX";
190                         break;
191
192                 case PAUSE_RX|PAUSE_TX:
193                         fc = "RX/TX";
194                         break;
195
196                 default:
197                         fc = "no";
198                         break;
199                 }
200
201                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
202         } else {
203                 netif_carrier_off(dev);
204                 netdev_info(dev, "link down\n");
205         }
206 }
207
208 /*
209  * Net device operations.
210  * ======================
211  */
212
213
214
215
216 /*
217  * Perform the MAC and PHY actions needed to enable a "port" (Virtual
218  * Interface).
219  */
220 static int link_start(struct net_device *dev)
221 {
222         int ret;
223         struct port_info *pi = netdev_priv(dev);
224
225         /*
226          * We do not set address filters and promiscuity here, the stack does
227          * that step explicitly. Enable vlan accel.
228          */
229         ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
230                               true);
231         if (ret == 0) {
232                 ret = t4vf_change_mac(pi->adapter, pi->viid,
233                                       pi->xact_addr_filt, dev->dev_addr, true);
234                 if (ret >= 0) {
235                         pi->xact_addr_filt = ret;
236                         ret = 0;
237                 }
238         }
239
240         /*
241          * We don't need to actually "start the link" itself since the
242          * firmware will do that for us when the first Virtual Interface
243          * is enabled on a port.
244          */
245         if (ret == 0)
246                 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
247         return ret;
248 }
249
250 /*
251  * Name the MSI-X interrupts.
252  */
253 static void name_msix_vecs(struct adapter *adapter)
254 {
255         int namelen = sizeof(adapter->msix_info[0].desc) - 1;
256         int pidx;
257
258         /*
259          * Firmware events.
260          */
261         snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
262                  "%s-FWeventq", adapter->name);
263         adapter->msix_info[MSIX_FW].desc[namelen] = 0;
264
265         /*
266          * Ethernet queues.
267          */
268         for_each_port(adapter, pidx) {
269                 struct net_device *dev = adapter->port[pidx];
270                 const struct port_info *pi = netdev_priv(dev);
271                 int qs, msi;
272
273                 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
274                         snprintf(adapter->msix_info[msi].desc, namelen,
275                                  "%s-%d", dev->name, qs);
276                         adapter->msix_info[msi].desc[namelen] = 0;
277                 }
278         }
279 }
280
281 /*
282  * Request all of our MSI-X resources.
283  */
284 static int request_msix_queue_irqs(struct adapter *adapter)
285 {
286         struct sge *s = &adapter->sge;
287         int rxq, msi, err;
288
289         /*
290          * Firmware events.
291          */
292         err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
293                           0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
294         if (err)
295                 return err;
296
297         /*
298          * Ethernet queues.
299          */
300         msi = MSIX_IQFLINT;
301         for_each_ethrxq(s, rxq) {
302                 err = request_irq(adapter->msix_info[msi].vec,
303                                   t4vf_sge_intr_msix, 0,
304                                   adapter->msix_info[msi].desc,
305                                   &s->ethrxq[rxq].rspq);
306                 if (err)
307                         goto err_free_irqs;
308                 msi++;
309         }
310         return 0;
311
312 err_free_irqs:
313         while (--rxq >= 0)
314                 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
315         free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
316         return err;
317 }
318
319 /*
320  * Free our MSI-X resources.
321  */
322 static void free_msix_queue_irqs(struct adapter *adapter)
323 {
324         struct sge *s = &adapter->sge;
325         int rxq, msi;
326
327         free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328         msi = MSIX_IQFLINT;
329         for_each_ethrxq(s, rxq)
330                 free_irq(adapter->msix_info[msi++].vec,
331                          &s->ethrxq[rxq].rspq);
332 }
333
334 /*
335  * Turn on NAPI and start up interrupts on a response queue.
336  */
337 static void qenable(struct sge_rspq *rspq)
338 {
339         napi_enable(&rspq->napi);
340
341         /*
342          * 0-increment the Going To Sleep register to start the timer and
343          * enable interrupts.
344          */
345         t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
346                      CIDXINC(0) |
347                      SEINTARM(rspq->intr_params) |
348                      INGRESSQID(rspq->cntxt_id));
349 }
350
351 /*
352  * Enable NAPI scheduling and interrupt generation for all Receive Queues.
353  */
354 static void enable_rx(struct adapter *adapter)
355 {
356         int rxq;
357         struct sge *s = &adapter->sge;
358
359         for_each_ethrxq(s, rxq)
360                 qenable(&s->ethrxq[rxq].rspq);
361         qenable(&s->fw_evtq);
362
363         /*
364          * The interrupt queue doesn't use NAPI so we do the 0-increment of
365          * its Going To Sleep register here to get it started.
366          */
367         if (adapter->flags & USING_MSI)
368                 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
369                              CIDXINC(0) |
370                              SEINTARM(s->intrq.intr_params) |
371                              INGRESSQID(s->intrq.cntxt_id));
372
373 }
374
375 /*
376  * Wait until all NAPI handlers are descheduled.
377  */
378 static void quiesce_rx(struct adapter *adapter)
379 {
380         struct sge *s = &adapter->sge;
381         int rxq;
382
383         for_each_ethrxq(s, rxq)
384                 napi_disable(&s->ethrxq[rxq].rspq.napi);
385         napi_disable(&s->fw_evtq.napi);
386 }
387
388 /*
389  * Response queue handler for the firmware event queue.
390  */
391 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
392                           const struct pkt_gl *gl)
393 {
394         /*
395          * Extract response opcode and get pointer to CPL message body.
396          */
397         struct adapter *adapter = rspq->adapter;
398         u8 opcode = ((const struct rss_header *)rsp)->opcode;
399         void *cpl = (void *)(rsp + 1);
400
401         switch (opcode) {
402         case CPL_FW6_MSG: {
403                 /*
404                  * We've received an asynchronous message from the firmware.
405                  */
406                 const struct cpl_fw6_msg *fw_msg = cpl;
407                 if (fw_msg->type == FW6_TYPE_CMD_RPL)
408                         t4vf_handle_fw_rpl(adapter, fw_msg->data);
409                 break;
410         }
411
412         case CPL_FW4_MSG: {
413                 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
414                  */
415                 const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
416                 opcode = G_CPL_OPCODE(ntohl(p->opcode_qid));
417                 if (opcode != CPL_SGE_EGR_UPDATE) {
418                         dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
419                                 , opcode);
420                         break;
421                 }
422                 cpl = (void *)p;
423                 /*FALLTHROUGH*/
424         }
425
426         case CPL_SGE_EGR_UPDATE: {
427                 /*
428                  * We've received an Egress Queue Status Update message.  We
429                  * get these, if the SGE is configured to send these when the
430                  * firmware passes certain points in processing our TX
431                  * Ethernet Queue or if we make an explicit request for one.
432                  * We use these updates to determine when we may need to
433                  * restart a TX Ethernet Queue which was stopped for lack of
434                  * free TX Queue Descriptors ...
435                  */
436                 const struct cpl_sge_egr_update *p = cpl;
437                 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
438                 struct sge *s = &adapter->sge;
439                 struct sge_txq *tq;
440                 struct sge_eth_txq *txq;
441                 unsigned int eq_idx;
442
443                 /*
444                  * Perform sanity checking on the Queue ID to make sure it
445                  * really refers to one of our TX Ethernet Egress Queues which
446                  * is active and matches the queue's ID.  None of these error
447                  * conditions should ever happen so we may want to either make
448                  * them fatal and/or conditionalized under DEBUG.
449                  */
450                 eq_idx = EQ_IDX(s, qid);
451                 if (unlikely(eq_idx >= MAX_EGRQ)) {
452                         dev_err(adapter->pdev_dev,
453                                 "Egress Update QID %d out of range\n", qid);
454                         break;
455                 }
456                 tq = s->egr_map[eq_idx];
457                 if (unlikely(tq == NULL)) {
458                         dev_err(adapter->pdev_dev,
459                                 "Egress Update QID %d TXQ=NULL\n", qid);
460                         break;
461                 }
462                 txq = container_of(tq, struct sge_eth_txq, q);
463                 if (unlikely(tq->abs_id != qid)) {
464                         dev_err(adapter->pdev_dev,
465                                 "Egress Update QID %d refers to TXQ %d\n",
466                                 qid, tq->abs_id);
467                         break;
468                 }
469
470                 /*
471                  * Restart a stopped TX Queue which has less than half of its
472                  * TX ring in use ...
473                  */
474                 txq->q.restarts++;
475                 netif_tx_wake_queue(txq->txq);
476                 break;
477         }
478
479         default:
480                 dev_err(adapter->pdev_dev,
481                         "unexpected CPL %#x on FW event queue\n", opcode);
482         }
483
484         return 0;
485 }
486
487 /*
488  * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
489  * to use and initializes them.  We support multiple "Queue Sets" per port if
490  * we have MSI-X, otherwise just one queue set per port.
491  */
492 static int setup_sge_queues(struct adapter *adapter)
493 {
494         struct sge *s = &adapter->sge;
495         int err, pidx, msix;
496
497         /*
498          * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
499          * state.
500          */
501         bitmap_zero(s->starving_fl, MAX_EGRQ);
502
503         /*
504          * If we're using MSI interrupt mode we need to set up a "forwarded
505          * interrupt" queue which we'll set up with our MSI vector.  The rest
506          * of the ingress queues will be set up to forward their interrupts to
507          * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
508          * the intrq's queue ID as the interrupt forwarding queue for the
509          * subsequent calls ...
510          */
511         if (adapter->flags & USING_MSI) {
512                 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
513                                          adapter->port[0], 0, NULL, NULL);
514                 if (err)
515                         goto err_free_queues;
516         }
517
518         /*
519          * Allocate our ingress queue for asynchronous firmware messages.
520          */
521         err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
522                                  MSIX_FW, NULL, fwevtq_handler);
523         if (err)
524                 goto err_free_queues;
525
526         /*
527          * Allocate each "port"'s initial Queue Sets.  These can be changed
528          * later on ... up to the point where any interface on the adapter is
529          * brought up at which point lots of things get nailed down
530          * permanently ...
531          */
532         msix = MSIX_IQFLINT;
533         for_each_port(adapter, pidx) {
534                 struct net_device *dev = adapter->port[pidx];
535                 struct port_info *pi = netdev_priv(dev);
536                 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
537                 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
538                 int qs;
539
540                 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
541                         err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
542                                                  dev, msix++,
543                                                  &rxq->fl, t4vf_ethrx_handler);
544                         if (err)
545                                 goto err_free_queues;
546
547                         err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
548                                              netdev_get_tx_queue(dev, qs),
549                                              s->fw_evtq.cntxt_id);
550                         if (err)
551                                 goto err_free_queues;
552
553                         rxq->rspq.idx = qs;
554                         memset(&rxq->stats, 0, sizeof(rxq->stats));
555                 }
556         }
557
558         /*
559          * Create the reverse mappings for the queues.
560          */
561         s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
562         s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
563         IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
564         for_each_port(adapter, pidx) {
565                 struct net_device *dev = adapter->port[pidx];
566                 struct port_info *pi = netdev_priv(dev);
567                 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
568                 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
569                 int qs;
570
571                 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
572                         IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
573                         EQ_MAP(s, txq->q.abs_id) = &txq->q;
574
575                         /*
576                          * The FW_IQ_CMD doesn't return the Absolute Queue IDs
577                          * for Free Lists but since all of the Egress Queues
578                          * (including Free Lists) have Relative Queue IDs
579                          * which are computed as Absolute - Base Queue ID, we
580                          * can synthesize the Absolute Queue IDs for the Free
581                          * Lists.  This is useful for debugging purposes when
582                          * we want to dump Queue Contexts via the PF Driver.
583                          */
584                         rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
585                         EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
586                 }
587         }
588         return 0;
589
590 err_free_queues:
591         t4vf_free_sge_resources(adapter);
592         return err;
593 }
594
595 /*
596  * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
597  * queues.  We configure the RSS CPU lookup table to distribute to the number
598  * of HW receive queues, and the response queue lookup table to narrow that
599  * down to the response queues actually configured for each "port" (Virtual
600  * Interface).  We always configure the RSS mapping for all ports since the
601  * mapping table has plenty of entries.
602  */
603 static int setup_rss(struct adapter *adapter)
604 {
605         int pidx;
606
607         for_each_port(adapter, pidx) {
608                 struct port_info *pi = adap2pinfo(adapter, pidx);
609                 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
610                 u16 rss[MAX_PORT_QSETS];
611                 int qs, err;
612
613                 for (qs = 0; qs < pi->nqsets; qs++)
614                         rss[qs] = rxq[qs].rspq.abs_id;
615
616                 err = t4vf_config_rss_range(adapter, pi->viid,
617                                             0, pi->rss_size, rss, pi->nqsets);
618                 if (err)
619                         return err;
620
621                 /*
622                  * Perform Global RSS Mode-specific initialization.
623                  */
624                 switch (adapter->params.rss.mode) {
625                 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
626                         /*
627                          * If Tunnel All Lookup isn't specified in the global
628                          * RSS Configuration, then we need to specify a
629                          * default Ingress Queue for any ingress packets which
630                          * aren't hashed.  We'll use our first ingress queue
631                          * ...
632                          */
633                         if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
634                                 union rss_vi_config config;
635                                 err = t4vf_read_rss_vi_config(adapter,
636                                                               pi->viid,
637                                                               &config);
638                                 if (err)
639                                         return err;
640                                 config.basicvirtual.defaultq =
641                                         rxq[0].rspq.abs_id;
642                                 err = t4vf_write_rss_vi_config(adapter,
643                                                                pi->viid,
644                                                                &config);
645                                 if (err)
646                                         return err;
647                         }
648                         break;
649                 }
650         }
651
652         return 0;
653 }
654
655 /*
656  * Bring the adapter up.  Called whenever we go from no "ports" open to having
657  * one open.  This function performs the actions necessary to make an adapter
658  * operational, such as completing the initialization of HW modules, and
659  * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
660  * this is called "cxgb_up" in the PF Driver.)
661  */
662 static int adapter_up(struct adapter *adapter)
663 {
664         int err;
665
666         /*
667          * If this is the first time we've been called, perform basic
668          * adapter setup.  Once we've done this, many of our adapter
669          * parameters can no longer be changed ...
670          */
671         if ((adapter->flags & FULL_INIT_DONE) == 0) {
672                 err = setup_sge_queues(adapter);
673                 if (err)
674                         return err;
675                 err = setup_rss(adapter);
676                 if (err) {
677                         t4vf_free_sge_resources(adapter);
678                         return err;
679                 }
680
681                 if (adapter->flags & USING_MSIX)
682                         name_msix_vecs(adapter);
683                 adapter->flags |= FULL_INIT_DONE;
684         }
685
686         /*
687          * Acquire our interrupt resources.  We only support MSI-X and MSI.
688          */
689         BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
690         if (adapter->flags & USING_MSIX)
691                 err = request_msix_queue_irqs(adapter);
692         else
693                 err = request_irq(adapter->pdev->irq,
694                                   t4vf_intr_handler(adapter), 0,
695                                   adapter->name, adapter);
696         if (err) {
697                 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
698                         err);
699                 return err;
700         }
701
702         /*
703          * Enable NAPI ingress processing and return success.
704          */
705         enable_rx(adapter);
706         t4vf_sge_start(adapter);
707         return 0;
708 }
709
710 /*
711  * Bring the adapter down.  Called whenever the last "port" (Virtual
712  * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
713  * Driver.)
714  */
715 static void adapter_down(struct adapter *adapter)
716 {
717         /*
718          * Free interrupt resources.
719          */
720         if (adapter->flags & USING_MSIX)
721                 free_msix_queue_irqs(adapter);
722         else
723                 free_irq(adapter->pdev->irq, adapter);
724
725         /*
726          * Wait for NAPI handlers to finish.
727          */
728         quiesce_rx(adapter);
729 }
730
731 /*
732  * Start up a net device.
733  */
734 static int cxgb4vf_open(struct net_device *dev)
735 {
736         int err;
737         struct port_info *pi = netdev_priv(dev);
738         struct adapter *adapter = pi->adapter;
739
740         /*
741          * If this is the first interface that we're opening on the "adapter",
742          * bring the "adapter" up now.
743          */
744         if (adapter->open_device_map == 0) {
745                 err = adapter_up(adapter);
746                 if (err)
747                         return err;
748         }
749
750         /*
751          * Note that this interface is up and start everything up ...
752          */
753         netif_set_real_num_tx_queues(dev, pi->nqsets);
754         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
755         if (err)
756                 goto err_unwind;
757         err = link_start(dev);
758         if (err)
759                 goto err_unwind;
760
761         netif_tx_start_all_queues(dev);
762         set_bit(pi->port_id, &adapter->open_device_map);
763         return 0;
764
765 err_unwind:
766         if (adapter->open_device_map == 0)
767                 adapter_down(adapter);
768         return err;
769 }
770
771 /*
772  * Shut down a net device.  This routine is called "cxgb_close" in the PF
773  * Driver ...
774  */
775 static int cxgb4vf_stop(struct net_device *dev)
776 {
777         struct port_info *pi = netdev_priv(dev);
778         struct adapter *adapter = pi->adapter;
779
780         netif_tx_stop_all_queues(dev);
781         netif_carrier_off(dev);
782         t4vf_enable_vi(adapter, pi->viid, false, false);
783         pi->link_cfg.link_ok = 0;
784
785         clear_bit(pi->port_id, &adapter->open_device_map);
786         if (adapter->open_device_map == 0)
787                 adapter_down(adapter);
788         return 0;
789 }
790
791 /*
792  * Translate our basic statistics into the standard "ifconfig" statistics.
793  */
794 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
795 {
796         struct t4vf_port_stats stats;
797         struct port_info *pi = netdev2pinfo(dev);
798         struct adapter *adapter = pi->adapter;
799         struct net_device_stats *ns = &dev->stats;
800         int err;
801
802         spin_lock(&adapter->stats_lock);
803         err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
804         spin_unlock(&adapter->stats_lock);
805
806         memset(ns, 0, sizeof(*ns));
807         if (err)
808                 return ns;
809
810         ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
811                         stats.tx_ucast_bytes + stats.tx_offload_bytes);
812         ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
813                           stats.tx_ucast_frames + stats.tx_offload_frames);
814         ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
815                         stats.rx_ucast_bytes);
816         ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
817                           stats.rx_ucast_frames);
818         ns->multicast = stats.rx_mcast_frames;
819         ns->tx_errors = stats.tx_drop_frames;
820         ns->rx_errors = stats.rx_err_frames;
821
822         return ns;
823 }
824
825 /*
826  * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
827  * at a specified offset within the list, into an array of addrss pointers and
828  * return the number collected.
829  */
830 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
831                                                         const u8 **addr,
832                                                         unsigned int offset,
833                                                         unsigned int maxaddrs)
834 {
835         unsigned int index = 0;
836         unsigned int naddr = 0;
837         const struct netdev_hw_addr *ha;
838
839         for_each_dev_addr(dev, ha)
840                 if (index++ >= offset) {
841                         addr[naddr++] = ha->addr;
842                         if (naddr >= maxaddrs)
843                                 break;
844                 }
845         return naddr;
846 }
847
848 /*
849  * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
850  * at a specified offset within the list, into an array of addrss pointers and
851  * return the number collected.
852  */
853 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
854                                                         const u8 **addr,
855                                                         unsigned int offset,
856                                                         unsigned int maxaddrs)
857 {
858         unsigned int index = 0;
859         unsigned int naddr = 0;
860         const struct netdev_hw_addr *ha;
861
862         netdev_for_each_mc_addr(ha, dev)
863                 if (index++ >= offset) {
864                         addr[naddr++] = ha->addr;
865                         if (naddr >= maxaddrs)
866                                 break;
867                 }
868         return naddr;
869 }
870
871 /*
872  * Configure the exact and hash address filters to handle a port's multicast
873  * and secondary unicast MAC addresses.
874  */
875 static int set_addr_filters(const struct net_device *dev, bool sleep)
876 {
877         u64 mhash = 0;
878         u64 uhash = 0;
879         bool free = true;
880         unsigned int offset, naddr;
881         const u8 *addr[7];
882         int ret;
883         const struct port_info *pi = netdev_priv(dev);
884
885         /* first do the secondary unicast addresses */
886         for (offset = 0; ; offset += naddr) {
887                 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
888                                                      ARRAY_SIZE(addr));
889                 if (naddr == 0)
890                         break;
891
892                 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
893                                           naddr, addr, NULL, &uhash, sleep);
894                 if (ret < 0)
895                         return ret;
896
897                 free = false;
898         }
899
900         /* next set up the multicast addresses */
901         for (offset = 0; ; offset += naddr) {
902                 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
903                                                      ARRAY_SIZE(addr));
904                 if (naddr == 0)
905                         break;
906
907                 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
908                                           naddr, addr, NULL, &mhash, sleep);
909                 if (ret < 0)
910                         return ret;
911                 free = false;
912         }
913
914         return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
915                                   uhash | mhash, sleep);
916 }
917
918 /*
919  * Set RX properties of a port, such as promiscruity, address filters, and MTU.
920  * If @mtu is -1 it is left unchanged.
921  */
922 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
923 {
924         int ret;
925         struct port_info *pi = netdev_priv(dev);
926
927         ret = set_addr_filters(dev, sleep_ok);
928         if (ret == 0)
929                 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
930                                       (dev->flags & IFF_PROMISC) != 0,
931                                       (dev->flags & IFF_ALLMULTI) != 0,
932                                       1, -1, sleep_ok);
933         return ret;
934 }
935
936 /*
937  * Set the current receive modes on the device.
938  */
939 static void cxgb4vf_set_rxmode(struct net_device *dev)
940 {
941         /* unfortunately we can't return errors to the stack */
942         set_rxmode(dev, -1, false);
943 }
944
945 /*
946  * Find the entry in the interrupt holdoff timer value array which comes
947  * closest to the specified interrupt holdoff value.
948  */
949 static int closest_timer(const struct sge *s, int us)
950 {
951         int i, timer_idx = 0, min_delta = INT_MAX;
952
953         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
954                 int delta = us - s->timer_val[i];
955                 if (delta < 0)
956                         delta = -delta;
957                 if (delta < min_delta) {
958                         min_delta = delta;
959                         timer_idx = i;
960                 }
961         }
962         return timer_idx;
963 }
964
965 static int closest_thres(const struct sge *s, int thres)
966 {
967         int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
968
969         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
970                 delta = thres - s->counter_val[i];
971                 if (delta < 0)
972                         delta = -delta;
973                 if (delta < min_delta) {
974                         min_delta = delta;
975                         pktcnt_idx = i;
976                 }
977         }
978         return pktcnt_idx;
979 }
980
981 /*
982  * Return a queue's interrupt hold-off time in us.  0 means no timer.
983  */
984 static unsigned int qtimer_val(const struct adapter *adapter,
985                                const struct sge_rspq *rspq)
986 {
987         unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
988
989         return timer_idx < SGE_NTIMERS
990                 ? adapter->sge.timer_val[timer_idx]
991                 : 0;
992 }
993
994 /**
995  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
996  *      @adapter: the adapter
997  *      @rspq: the RX response queue
998  *      @us: the hold-off time in us, or 0 to disable timer
999  *      @cnt: the hold-off packet count, or 0 to disable counter
1000  *
1001  *      Sets an RX response queue's interrupt hold-off time and packet count.
1002  *      At least one of the two needs to be enabled for the queue to generate
1003  *      interrupts.
1004  */
1005 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1006                                unsigned int us, unsigned int cnt)
1007 {
1008         unsigned int timer_idx;
1009
1010         /*
1011          * If both the interrupt holdoff timer and count are specified as
1012          * zero, default to a holdoff count of 1 ...
1013          */
1014         if ((us | cnt) == 0)
1015                 cnt = 1;
1016
1017         /*
1018          * If an interrupt holdoff count has been specified, then find the
1019          * closest configured holdoff count and use that.  If the response
1020          * queue has already been created, then update its queue context
1021          * parameters ...
1022          */
1023         if (cnt) {
1024                 int err;
1025                 u32 v, pktcnt_idx;
1026
1027                 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1028                 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1029                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1030                             FW_PARAMS_PARAM_X(
1031                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1032                             FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1033                         err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1034                         if (err)
1035                                 return err;
1036                 }
1037                 rspq->pktcnt_idx = pktcnt_idx;
1038         }
1039
1040         /*
1041          * Compute the closest holdoff timer index from the supplied holdoff
1042          * timer value.
1043          */
1044         timer_idx = (us == 0
1045                      ? SGE_TIMER_RSTRT_CNTR
1046                      : closest_timer(&adapter->sge, us));
1047
1048         /*
1049          * Update the response queue's interrupt coalescing parameters and
1050          * return success.
1051          */
1052         rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1053                              (cnt > 0 ? QINTR_CNT_EN : 0));
1054         return 0;
1055 }
1056
1057 /*
1058  * Return a version number to identify the type of adapter.  The scheme is:
1059  * - bits 0..9: chip version
1060  * - bits 10..15: chip revision
1061  */
1062 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1063 {
1064         /*
1065          * Chip version 4, revision 0x3f (cxgb4vf).
1066          */
1067         return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1068 }
1069
1070 /*
1071  * Execute the specified ioctl command.
1072  */
1073 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1074 {
1075         int ret = 0;
1076
1077         switch (cmd) {
1078             /*
1079              * The VF Driver doesn't have access to any of the other
1080              * common Ethernet device ioctl()'s (like reading/writing
1081              * PHY registers, etc.
1082              */
1083
1084         default:
1085                 ret = -EOPNOTSUPP;
1086                 break;
1087         }
1088         return ret;
1089 }
1090
1091 /*
1092  * Change the device's MTU.
1093  */
1094 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1095 {
1096         int ret;
1097         struct port_info *pi = netdev_priv(dev);
1098
1099         /* accommodate SACK */
1100         if (new_mtu < 81)
1101                 return -EINVAL;
1102
1103         ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1104                               -1, -1, -1, -1, true);
1105         if (!ret)
1106                 dev->mtu = new_mtu;
1107         return ret;
1108 }
1109
1110 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1111         netdev_features_t features)
1112 {
1113         /*
1114          * Since there is no support for separate rx/tx vlan accel
1115          * enable/disable make sure tx flag is always in same state as rx.
1116          */
1117         if (features & NETIF_F_HW_VLAN_CTAG_RX)
1118                 features |= NETIF_F_HW_VLAN_CTAG_TX;
1119         else
1120                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1121
1122         return features;
1123 }
1124
1125 static int cxgb4vf_set_features(struct net_device *dev,
1126         netdev_features_t features)
1127 {
1128         struct port_info *pi = netdev_priv(dev);
1129         netdev_features_t changed = dev->features ^ features;
1130
1131         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1132                 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1133                                 features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1134
1135         return 0;
1136 }
1137
1138 /*
1139  * Change the devices MAC address.
1140  */
1141 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1142 {
1143         int ret;
1144         struct sockaddr *addr = _addr;
1145         struct port_info *pi = netdev_priv(dev);
1146
1147         if (!is_valid_ether_addr(addr->sa_data))
1148                 return -EADDRNOTAVAIL;
1149
1150         ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1151                               addr->sa_data, true);
1152         if (ret < 0)
1153                 return ret;
1154
1155         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1156         pi->xact_addr_filt = ret;
1157         return 0;
1158 }
1159
1160 #ifdef CONFIG_NET_POLL_CONTROLLER
1161 /*
1162  * Poll all of our receive queues.  This is called outside of normal interrupt
1163  * context.
1164  */
1165 static void cxgb4vf_poll_controller(struct net_device *dev)
1166 {
1167         struct port_info *pi = netdev_priv(dev);
1168         struct adapter *adapter = pi->adapter;
1169
1170         if (adapter->flags & USING_MSIX) {
1171                 struct sge_eth_rxq *rxq;
1172                 int nqsets;
1173
1174                 rxq = &adapter->sge.ethrxq[pi->first_qset];
1175                 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1176                         t4vf_sge_intr_msix(0, &rxq->rspq);
1177                         rxq++;
1178                 }
1179         } else
1180                 t4vf_intr_handler(adapter)(0, adapter);
1181 }
1182 #endif
1183
1184 /*
1185  * Ethtool operations.
1186  * ===================
1187  *
1188  * Note that we don't support any ethtool operations which change the physical
1189  * state of the port to which we're linked.
1190  */
1191
1192 /*
1193  * Return current port link settings.
1194  */
1195 static int cxgb4vf_get_settings(struct net_device *dev,
1196                                 struct ethtool_cmd *cmd)
1197 {
1198         const struct port_info *pi = netdev_priv(dev);
1199
1200         cmd->supported = pi->link_cfg.supported;
1201         cmd->advertising = pi->link_cfg.advertising;
1202         ethtool_cmd_speed_set(cmd,
1203                               netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1204         cmd->duplex = DUPLEX_FULL;
1205
1206         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1207         cmd->phy_address = pi->port_id;
1208         cmd->transceiver = XCVR_EXTERNAL;
1209         cmd->autoneg = pi->link_cfg.autoneg;
1210         cmd->maxtxpkt = 0;
1211         cmd->maxrxpkt = 0;
1212         return 0;
1213 }
1214
1215 /*
1216  * Return our driver information.
1217  */
1218 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1219                                 struct ethtool_drvinfo *drvinfo)
1220 {
1221         struct adapter *adapter = netdev2adap(dev);
1222
1223         strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1224         strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1225         strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1226                 sizeof(drvinfo->bus_info));
1227         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1228                  "%u.%u.%u.%u, TP %u.%u.%u.%u",
1229                  FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1230                  FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1231                  FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1232                  FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1233                  FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1234                  FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1235                  FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1236                  FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1237 }
1238
1239 /*
1240  * Return current adapter message level.
1241  */
1242 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1243 {
1244         return netdev2adap(dev)->msg_enable;
1245 }
1246
1247 /*
1248  * Set current adapter message level.
1249  */
1250 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1251 {
1252         netdev2adap(dev)->msg_enable = msglevel;
1253 }
1254
1255 /*
1256  * Return the device's current Queue Set ring size parameters along with the
1257  * allowed maximum values.  Since ethtool doesn't understand the concept of
1258  * multi-queue devices, we just return the current values associated with the
1259  * first Queue Set.
1260  */
1261 static void cxgb4vf_get_ringparam(struct net_device *dev,
1262                                   struct ethtool_ringparam *rp)
1263 {
1264         const struct port_info *pi = netdev_priv(dev);
1265         const struct sge *s = &pi->adapter->sge;
1266
1267         rp->rx_max_pending = MAX_RX_BUFFERS;
1268         rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1269         rp->rx_jumbo_max_pending = 0;
1270         rp->tx_max_pending = MAX_TXQ_ENTRIES;
1271
1272         rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1273         rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1274         rp->rx_jumbo_pending = 0;
1275         rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1276 }
1277
1278 /*
1279  * Set the Queue Set ring size parameters for the device.  Again, since
1280  * ethtool doesn't allow for the concept of multiple queues per device, we'll
1281  * apply these new values across all of the Queue Sets associated with the
1282  * device -- after vetting them of course!
1283  */
1284 static int cxgb4vf_set_ringparam(struct net_device *dev,
1285                                  struct ethtool_ringparam *rp)
1286 {
1287         const struct port_info *pi = netdev_priv(dev);
1288         struct adapter *adapter = pi->adapter;
1289         struct sge *s = &adapter->sge;
1290         int qs;
1291
1292         if (rp->rx_pending > MAX_RX_BUFFERS ||
1293             rp->rx_jumbo_pending ||
1294             rp->tx_pending > MAX_TXQ_ENTRIES ||
1295             rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1296             rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1297             rp->rx_pending < MIN_FL_ENTRIES ||
1298             rp->tx_pending < MIN_TXQ_ENTRIES)
1299                 return -EINVAL;
1300
1301         if (adapter->flags & FULL_INIT_DONE)
1302                 return -EBUSY;
1303
1304         for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1305                 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1306                 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1307                 s->ethtxq[qs].q.size = rp->tx_pending;
1308         }
1309         return 0;
1310 }
1311
1312 /*
1313  * Return the interrupt holdoff timer and count for the first Queue Set on the
1314  * device.  Our extension ioctl() (the cxgbtool interface) allows the
1315  * interrupt holdoff timer to be read on all of the device's Queue Sets.
1316  */
1317 static int cxgb4vf_get_coalesce(struct net_device *dev,
1318                                 struct ethtool_coalesce *coalesce)
1319 {
1320         const struct port_info *pi = netdev_priv(dev);
1321         const struct adapter *adapter = pi->adapter;
1322         const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1323
1324         coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1325         coalesce->rx_max_coalesced_frames =
1326                 ((rspq->intr_params & QINTR_CNT_EN)
1327                  ? adapter->sge.counter_val[rspq->pktcnt_idx]
1328                  : 0);
1329         return 0;
1330 }
1331
1332 /*
1333  * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1334  * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1335  * the interrupt holdoff timer on any of the device's Queue Sets.
1336  */
1337 static int cxgb4vf_set_coalesce(struct net_device *dev,
1338                                 struct ethtool_coalesce *coalesce)
1339 {
1340         const struct port_info *pi = netdev_priv(dev);
1341         struct adapter *adapter = pi->adapter;
1342
1343         return set_rxq_intr_params(adapter,
1344                                    &adapter->sge.ethrxq[pi->first_qset].rspq,
1345                                    coalesce->rx_coalesce_usecs,
1346                                    coalesce->rx_max_coalesced_frames);
1347 }
1348
1349 /*
1350  * Report current port link pause parameter settings.
1351  */
1352 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1353                                    struct ethtool_pauseparam *pauseparam)
1354 {
1355         struct port_info *pi = netdev_priv(dev);
1356
1357         pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1358         pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1359         pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1360 }
1361
1362 /*
1363  * Identify the port by blinking the port's LED.
1364  */
1365 static int cxgb4vf_phys_id(struct net_device *dev,
1366                            enum ethtool_phys_id_state state)
1367 {
1368         unsigned int val;
1369         struct port_info *pi = netdev_priv(dev);
1370
1371         if (state == ETHTOOL_ID_ACTIVE)
1372                 val = 0xffff;
1373         else if (state == ETHTOOL_ID_INACTIVE)
1374                 val = 0;
1375         else
1376                 return -EINVAL;
1377
1378         return t4vf_identify_port(pi->adapter, pi->viid, val);
1379 }
1380
1381 /*
1382  * Port stats maintained per queue of the port.
1383  */
1384 struct queue_port_stats {
1385         u64 tso;
1386         u64 tx_csum;
1387         u64 rx_csum;
1388         u64 vlan_ex;
1389         u64 vlan_ins;
1390         u64 lro_pkts;
1391         u64 lro_merged;
1392 };
1393
1394 /*
1395  * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1396  * these need to match the order of statistics returned by
1397  * t4vf_get_port_stats().
1398  */
1399 static const char stats_strings[][ETH_GSTRING_LEN] = {
1400         /*
1401          * These must match the layout of the t4vf_port_stats structure.
1402          */
1403         "TxBroadcastBytes  ",
1404         "TxBroadcastFrames ",
1405         "TxMulticastBytes  ",
1406         "TxMulticastFrames ",
1407         "TxUnicastBytes    ",
1408         "TxUnicastFrames   ",
1409         "TxDroppedFrames   ",
1410         "TxOffloadBytes    ",
1411         "TxOffloadFrames   ",
1412         "RxBroadcastBytes  ",
1413         "RxBroadcastFrames ",
1414         "RxMulticastBytes  ",
1415         "RxMulticastFrames ",
1416         "RxUnicastBytes    ",
1417         "RxUnicastFrames   ",
1418         "RxErrorFrames     ",
1419
1420         /*
1421          * These are accumulated per-queue statistics and must match the
1422          * order of the fields in the queue_port_stats structure.
1423          */
1424         "TSO               ",
1425         "TxCsumOffload     ",
1426         "RxCsumGood        ",
1427         "VLANextractions   ",
1428         "VLANinsertions    ",
1429         "GROPackets        ",
1430         "GROMerged         ",
1431 };
1432
1433 /*
1434  * Return the number of statistics in the specified statistics set.
1435  */
1436 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1437 {
1438         switch (sset) {
1439         case ETH_SS_STATS:
1440                 return ARRAY_SIZE(stats_strings);
1441         default:
1442                 return -EOPNOTSUPP;
1443         }
1444         /*NOTREACHED*/
1445 }
1446
1447 /*
1448  * Return the strings for the specified statistics set.
1449  */
1450 static void cxgb4vf_get_strings(struct net_device *dev,
1451                                 u32 sset,
1452                                 u8 *data)
1453 {
1454         switch (sset) {
1455         case ETH_SS_STATS:
1456                 memcpy(data, stats_strings, sizeof(stats_strings));
1457                 break;
1458         }
1459 }
1460
1461 /*
1462  * Small utility routine to accumulate queue statistics across the queues of
1463  * a "port".
1464  */
1465 static void collect_sge_port_stats(const struct adapter *adapter,
1466                                    const struct port_info *pi,
1467                                    struct queue_port_stats *stats)
1468 {
1469         const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1470         const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1471         int qs;
1472
1473         memset(stats, 0, sizeof(*stats));
1474         for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1475                 stats->tso += txq->tso;
1476                 stats->tx_csum += txq->tx_cso;
1477                 stats->rx_csum += rxq->stats.rx_cso;
1478                 stats->vlan_ex += rxq->stats.vlan_ex;
1479                 stats->vlan_ins += txq->vlan_ins;
1480                 stats->lro_pkts += rxq->stats.lro_pkts;
1481                 stats->lro_merged += rxq->stats.lro_merged;
1482         }
1483 }
1484
1485 /*
1486  * Return the ETH_SS_STATS statistics set.
1487  */
1488 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1489                                       struct ethtool_stats *stats,
1490                                       u64 *data)
1491 {
1492         struct port_info *pi = netdev2pinfo(dev);
1493         struct adapter *adapter = pi->adapter;
1494         int err = t4vf_get_port_stats(adapter, pi->pidx,
1495                                       (struct t4vf_port_stats *)data);
1496         if (err)
1497                 memset(data, 0, sizeof(struct t4vf_port_stats));
1498
1499         data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1500         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1501 }
1502
1503 /*
1504  * Return the size of our register map.
1505  */
1506 static int cxgb4vf_get_regs_len(struct net_device *dev)
1507 {
1508         return T4VF_REGMAP_SIZE;
1509 }
1510
1511 /*
1512  * Dump a block of registers, start to end inclusive, into a buffer.
1513  */
1514 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1515                            unsigned int start, unsigned int end)
1516 {
1517         u32 *bp = regbuf + start - T4VF_REGMAP_START;
1518
1519         for ( ; start <= end; start += sizeof(u32)) {
1520                 /*
1521                  * Avoid reading the Mailbox Control register since that
1522                  * can trigger a Mailbox Ownership Arbitration cycle and
1523                  * interfere with communication with the firmware.
1524                  */
1525                 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1526                         *bp++ = 0xffff;
1527                 else
1528                         *bp++ = t4_read_reg(adapter, start);
1529         }
1530 }
1531
1532 /*
1533  * Copy our entire register map into the provided buffer.
1534  */
1535 static void cxgb4vf_get_regs(struct net_device *dev,
1536                              struct ethtool_regs *regs,
1537                              void *regbuf)
1538 {
1539         struct adapter *adapter = netdev2adap(dev);
1540
1541         regs->version = mk_adap_vers(adapter);
1542
1543         /*
1544          * Fill in register buffer with our register map.
1545          */
1546         memset(regbuf, 0, T4VF_REGMAP_SIZE);
1547
1548         reg_block_dump(adapter, regbuf,
1549                        T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1550                        T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1551         reg_block_dump(adapter, regbuf,
1552                        T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1553                        T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1554
1555         /* T5 adds new registers in the PL Register map.
1556          */
1557         reg_block_dump(adapter, regbuf,
1558                        T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1559                        T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1560                        ? A_PL_VF_WHOAMI : A_PL_VF_REVISION));
1561         reg_block_dump(adapter, regbuf,
1562                        T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1563                        T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1564
1565         reg_block_dump(adapter, regbuf,
1566                        T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1567                        T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1568 }
1569
1570 /*
1571  * Report current Wake On LAN settings.
1572  */
1573 static void cxgb4vf_get_wol(struct net_device *dev,
1574                             struct ethtool_wolinfo *wol)
1575 {
1576         wol->supported = 0;
1577         wol->wolopts = 0;
1578         memset(&wol->sopass, 0, sizeof(wol->sopass));
1579 }
1580
1581 /*
1582  * TCP Segmentation Offload flags which we support.
1583  */
1584 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1585
1586 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1587         .get_settings           = cxgb4vf_get_settings,
1588         .get_drvinfo            = cxgb4vf_get_drvinfo,
1589         .get_msglevel           = cxgb4vf_get_msglevel,
1590         .set_msglevel           = cxgb4vf_set_msglevel,
1591         .get_ringparam          = cxgb4vf_get_ringparam,
1592         .set_ringparam          = cxgb4vf_set_ringparam,
1593         .get_coalesce           = cxgb4vf_get_coalesce,
1594         .set_coalesce           = cxgb4vf_set_coalesce,
1595         .get_pauseparam         = cxgb4vf_get_pauseparam,
1596         .get_link               = ethtool_op_get_link,
1597         .get_strings            = cxgb4vf_get_strings,
1598         .set_phys_id            = cxgb4vf_phys_id,
1599         .get_sset_count         = cxgb4vf_get_sset_count,
1600         .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1601         .get_regs_len           = cxgb4vf_get_regs_len,
1602         .get_regs               = cxgb4vf_get_regs,
1603         .get_wol                = cxgb4vf_get_wol,
1604 };
1605
1606 /*
1607  * /sys/kernel/debug/cxgb4vf support code and data.
1608  * ================================================
1609  */
1610
1611 /*
1612  * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1613  */
1614 #define QPL     4
1615
1616 static int sge_qinfo_show(struct seq_file *seq, void *v)
1617 {
1618         struct adapter *adapter = seq->private;
1619         int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1620         int qs, r = (uintptr_t)v - 1;
1621
1622         if (r)
1623                 seq_putc(seq, '\n');
1624
1625         #define S3(fmt_spec, s, v) \
1626                 do {\
1627                         seq_printf(seq, "%-12s", s); \
1628                         for (qs = 0; qs < n; ++qs) \
1629                                 seq_printf(seq, " %16" fmt_spec, v); \
1630                         seq_putc(seq, '\n'); \
1631                 } while (0)
1632         #define S(s, v)         S3("s", s, v)
1633         #define T(s, v)         S3("u", s, txq[qs].v)
1634         #define R(s, v)         S3("u", s, rxq[qs].v)
1635
1636         if (r < eth_entries) {
1637                 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1638                 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1639                 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1640
1641                 S("QType:", "Ethernet");
1642                 S("Interface:",
1643                   (rxq[qs].rspq.netdev
1644                    ? rxq[qs].rspq.netdev->name
1645                    : "N/A"));
1646                 S3("d", "Port:",
1647                    (rxq[qs].rspq.netdev
1648                     ? ((struct port_info *)
1649                        netdev_priv(rxq[qs].rspq.netdev))->port_id
1650                     : -1));
1651                 T("TxQ ID:", q.abs_id);
1652                 T("TxQ size:", q.size);
1653                 T("TxQ inuse:", q.in_use);
1654                 T("TxQ PIdx:", q.pidx);
1655                 T("TxQ CIdx:", q.cidx);
1656                 R("RspQ ID:", rspq.abs_id);
1657                 R("RspQ size:", rspq.size);
1658                 R("RspQE size:", rspq.iqe_len);
1659                 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1660                 S3("u", "Intr pktcnt:",
1661                    adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1662                 R("RspQ CIdx:", rspq.cidx);
1663                 R("RspQ Gen:", rspq.gen);
1664                 R("FL ID:", fl.abs_id);
1665                 R("FL size:", fl.size - MIN_FL_RESID);
1666                 R("FL avail:", fl.avail);
1667                 R("FL PIdx:", fl.pidx);
1668                 R("FL CIdx:", fl.cidx);
1669                 return 0;
1670         }
1671
1672         r -= eth_entries;
1673         if (r == 0) {
1674                 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1675
1676                 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1677                 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1678                 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1679                            qtimer_val(adapter, evtq));
1680                 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1681                            adapter->sge.counter_val[evtq->pktcnt_idx]);
1682                 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1683                 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1684         } else if (r == 1) {
1685                 const struct sge_rspq *intrq = &adapter->sge.intrq;
1686
1687                 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1688                 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1689                 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1690                            qtimer_val(adapter, intrq));
1691                 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1692                            adapter->sge.counter_val[intrq->pktcnt_idx]);
1693                 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1694                 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1695         }
1696
1697         #undef R
1698         #undef T
1699         #undef S
1700         #undef S3
1701
1702         return 0;
1703 }
1704
1705 /*
1706  * Return the number of "entries" in our "file".  We group the multi-Queue
1707  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1708  *
1709  *     Ethernet RX/TX Queue Sets
1710  *     Firmware Event Queue
1711  *     Forwarded Interrupt Queue (if in MSI mode)
1712  */
1713 static int sge_queue_entries(const struct adapter *adapter)
1714 {
1715         return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1716                 ((adapter->flags & USING_MSI) != 0);
1717 }
1718
1719 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1720 {
1721         int entries = sge_queue_entries(seq->private);
1722
1723         return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1724 }
1725
1726 static void sge_queue_stop(struct seq_file *seq, void *v)
1727 {
1728 }
1729
1730 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1731 {
1732         int entries = sge_queue_entries(seq->private);
1733
1734         ++*pos;
1735         return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1736 }
1737
1738 static const struct seq_operations sge_qinfo_seq_ops = {
1739         .start = sge_queue_start,
1740         .next  = sge_queue_next,
1741         .stop  = sge_queue_stop,
1742         .show  = sge_qinfo_show
1743 };
1744
1745 static int sge_qinfo_open(struct inode *inode, struct file *file)
1746 {
1747         int res = seq_open(file, &sge_qinfo_seq_ops);
1748
1749         if (!res) {
1750                 struct seq_file *seq = file->private_data;
1751                 seq->private = inode->i_private;
1752         }
1753         return res;
1754 }
1755
1756 static const struct file_operations sge_qinfo_debugfs_fops = {
1757         .owner   = THIS_MODULE,
1758         .open    = sge_qinfo_open,
1759         .read    = seq_read,
1760         .llseek  = seq_lseek,
1761         .release = seq_release,
1762 };
1763
1764 /*
1765  * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
1766  */
1767 #define QPL     4
1768
1769 static int sge_qstats_show(struct seq_file *seq, void *v)
1770 {
1771         struct adapter *adapter = seq->private;
1772         int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1773         int qs, r = (uintptr_t)v - 1;
1774
1775         if (r)
1776                 seq_putc(seq, '\n');
1777
1778         #define S3(fmt, s, v) \
1779                 do { \
1780                         seq_printf(seq, "%-16s", s); \
1781                         for (qs = 0; qs < n; ++qs) \
1782                                 seq_printf(seq, " %8" fmt, v); \
1783                         seq_putc(seq, '\n'); \
1784                 } while (0)
1785         #define S(s, v)         S3("s", s, v)
1786
1787         #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
1788         #define T(s, v)         T3("lu", s, v)
1789
1790         #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
1791         #define R(s, v)         R3("lu", s, v)
1792
1793         if (r < eth_entries) {
1794                 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1795                 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1796                 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1797
1798                 S("QType:", "Ethernet");
1799                 S("Interface:",
1800                   (rxq[qs].rspq.netdev
1801                    ? rxq[qs].rspq.netdev->name
1802                    : "N/A"));
1803                 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1804                 R("RxPackets:", stats.pkts);
1805                 R("RxCSO:", stats.rx_cso);
1806                 R("VLANxtract:", stats.vlan_ex);
1807                 R("LROmerged:", stats.lro_merged);
1808                 R("LROpackets:", stats.lro_pkts);
1809                 R("RxDrops:", stats.rx_drops);
1810                 T("TSO:", tso);
1811                 T("TxCSO:", tx_cso);
1812                 T("VLANins:", vlan_ins);
1813                 T("TxQFull:", q.stops);
1814                 T("TxQRestarts:", q.restarts);
1815                 T("TxMapErr:", mapping_err);
1816                 R("FLAllocErr:", fl.alloc_failed);
1817                 R("FLLrgAlcErr:", fl.large_alloc_failed);
1818                 R("FLStarving:", fl.starving);
1819                 return 0;
1820         }
1821
1822         r -= eth_entries;
1823         if (r == 0) {
1824                 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1825
1826                 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1827                 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1828                            evtq->unhandled_irqs);
1829                 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1830                 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1831         } else if (r == 1) {
1832                 const struct sge_rspq *intrq = &adapter->sge.intrq;
1833
1834                 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1835                 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1836                            intrq->unhandled_irqs);
1837                 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1838                 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1839         }
1840
1841         #undef R
1842         #undef T
1843         #undef S
1844         #undef R3
1845         #undef T3
1846         #undef S3
1847
1848         return 0;
1849 }
1850
1851 /*
1852  * Return the number of "entries" in our "file".  We group the multi-Queue
1853  * sections with QPL Queue Sets per "entry".  The sections of the output are:
1854  *
1855  *     Ethernet RX/TX Queue Sets
1856  *     Firmware Event Queue
1857  *     Forwarded Interrupt Queue (if in MSI mode)
1858  */
1859 static int sge_qstats_entries(const struct adapter *adapter)
1860 {
1861         return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1862                 ((adapter->flags & USING_MSI) != 0);
1863 }
1864
1865 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1866 {
1867         int entries = sge_qstats_entries(seq->private);
1868
1869         return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1870 }
1871
1872 static void sge_qstats_stop(struct seq_file *seq, void *v)
1873 {
1874 }
1875
1876 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1877 {
1878         int entries = sge_qstats_entries(seq->private);
1879
1880         (*pos)++;
1881         return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1882 }
1883
1884 static const struct seq_operations sge_qstats_seq_ops = {
1885         .start = sge_qstats_start,
1886         .next  = sge_qstats_next,
1887         .stop  = sge_qstats_stop,
1888         .show  = sge_qstats_show
1889 };
1890
1891 static int sge_qstats_open(struct inode *inode, struct file *file)
1892 {
1893         int res = seq_open(file, &sge_qstats_seq_ops);
1894
1895         if (res == 0) {
1896                 struct seq_file *seq = file->private_data;
1897                 seq->private = inode->i_private;
1898         }
1899         return res;
1900 }
1901
1902 static const struct file_operations sge_qstats_proc_fops = {
1903         .owner   = THIS_MODULE,
1904         .open    = sge_qstats_open,
1905         .read    = seq_read,
1906         .llseek  = seq_lseek,
1907         .release = seq_release,
1908 };
1909
1910 /*
1911  * Show PCI-E SR-IOV Virtual Function Resource Limits.
1912  */
1913 static int resources_show(struct seq_file *seq, void *v)
1914 {
1915         struct adapter *adapter = seq->private;
1916         struct vf_resources *vfres = &adapter->params.vfres;
1917
1918         #define S(desc, fmt, var) \
1919                 seq_printf(seq, "%-60s " fmt "\n", \
1920                            desc " (" #var "):", vfres->var)
1921
1922         S("Virtual Interfaces", "%d", nvi);
1923         S("Egress Queues", "%d", neq);
1924         S("Ethernet Control", "%d", nethctrl);
1925         S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1926         S("Ingress Queues", "%d", niq);
1927         S("Traffic Class", "%d", tc);
1928         S("Port Access Rights Mask", "%#x", pmask);
1929         S("MAC Address Filters", "%d", nexactf);
1930         S("Firmware Command Read Capabilities", "%#x", r_caps);
1931         S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1932
1933         #undef S
1934
1935         return 0;
1936 }
1937
1938 static int resources_open(struct inode *inode, struct file *file)
1939 {
1940         return single_open(file, resources_show, inode->i_private);
1941 }
1942
1943 static const struct file_operations resources_proc_fops = {
1944         .owner   = THIS_MODULE,
1945         .open    = resources_open,
1946         .read    = seq_read,
1947         .llseek  = seq_lseek,
1948         .release = single_release,
1949 };
1950
1951 /*
1952  * Show Virtual Interfaces.
1953  */
1954 static int interfaces_show(struct seq_file *seq, void *v)
1955 {
1956         if (v == SEQ_START_TOKEN) {
1957                 seq_puts(seq, "Interface  Port   VIID\n");
1958         } else {
1959                 struct adapter *adapter = seq->private;
1960                 int pidx = (uintptr_t)v - 2;
1961                 struct net_device *dev = adapter->port[pidx];
1962                 struct port_info *pi = netdev_priv(dev);
1963
1964                 seq_printf(seq, "%9s  %4d  %#5x\n",
1965                            dev->name, pi->port_id, pi->viid);
1966         }
1967         return 0;
1968 }
1969
1970 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1971 {
1972         return pos <= adapter->params.nports
1973                 ? (void *)(uintptr_t)(pos + 1)
1974                 : NULL;
1975 }
1976
1977 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1978 {
1979         return *pos
1980                 ? interfaces_get_idx(seq->private, *pos)
1981                 : SEQ_START_TOKEN;
1982 }
1983
1984 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1985 {
1986         (*pos)++;
1987         return interfaces_get_idx(seq->private, *pos);
1988 }
1989
1990 static void interfaces_stop(struct seq_file *seq, void *v)
1991 {
1992 }
1993
1994 static const struct seq_operations interfaces_seq_ops = {
1995         .start = interfaces_start,
1996         .next  = interfaces_next,
1997         .stop  = interfaces_stop,
1998         .show  = interfaces_show
1999 };
2000
2001 static int interfaces_open(struct inode *inode, struct file *file)
2002 {
2003         int res = seq_open(file, &interfaces_seq_ops);
2004
2005         if (res == 0) {
2006                 struct seq_file *seq = file->private_data;
2007                 seq->private = inode->i_private;
2008         }
2009         return res;
2010 }
2011
2012 static const struct file_operations interfaces_proc_fops = {
2013         .owner   = THIS_MODULE,
2014         .open    = interfaces_open,
2015         .read    = seq_read,
2016         .llseek  = seq_lseek,
2017         .release = seq_release,
2018 };
2019
2020 /*
2021  * /sys/kernel/debugfs/cxgb4vf/ files list.
2022  */
2023 struct cxgb4vf_debugfs_entry {
2024         const char *name;               /* name of debugfs node */
2025         umode_t mode;                   /* file system mode */
2026         const struct file_operations *fops;
2027 };
2028
2029 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2030         { "sge_qinfo",  S_IRUGO, &sge_qinfo_debugfs_fops },
2031         { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2032         { "resources",  S_IRUGO, &resources_proc_fops },
2033         { "interfaces", S_IRUGO, &interfaces_proc_fops },
2034 };
2035
2036 /*
2037  * Module and device initialization and cleanup code.
2038  * ==================================================
2039  */
2040
2041 /*
2042  * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2043  * directory (debugfs_root) has already been set up.
2044  */
2045 static int setup_debugfs(struct adapter *adapter)
2046 {
2047         int i;
2048
2049         BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2050
2051         /*
2052          * Debugfs support is best effort.
2053          */
2054         for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2055                 (void)debugfs_create_file(debugfs_files[i].name,
2056                                   debugfs_files[i].mode,
2057                                   adapter->debugfs_root,
2058                                   (void *)adapter,
2059                                   debugfs_files[i].fops);
2060
2061         return 0;
2062 }
2063
2064 /*
2065  * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2066  * it to our caller to tear down the directory (debugfs_root).
2067  */
2068 static void cleanup_debugfs(struct adapter *adapter)
2069 {
2070         BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2071
2072         /*
2073          * Unlike our sister routine cleanup_proc(), we don't need to remove
2074          * individual entries because a call will be made to
2075          * debugfs_remove_recursive().  We just need to clean up any ancillary
2076          * persistent state.
2077          */
2078         /* nothing to do */
2079 }
2080
2081 /*
2082  * Perform early "adapter" initialization.  This is where we discover what
2083  * adapter parameters we're going to be using and initialize basic adapter
2084  * hardware support.
2085  */
2086 static int adap_init0(struct adapter *adapter)
2087 {
2088         struct vf_resources *vfres = &adapter->params.vfres;
2089         struct sge_params *sge_params = &adapter->params.sge;
2090         struct sge *s = &adapter->sge;
2091         unsigned int ethqsets;
2092         int err;
2093         u32 param, val = 0;
2094         unsigned int chipid;
2095
2096         /*
2097          * Wait for the device to become ready before proceeding ...
2098          */
2099         err = t4vf_wait_dev_ready(adapter);
2100         if (err) {
2101                 dev_err(adapter->pdev_dev, "device didn't become ready:"
2102                         " err=%d\n", err);
2103                 return err;
2104         }
2105
2106         /*
2107          * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2108          * 2.6.31 and later we can't call pci_reset_function() in order to
2109          * issue an FLR because of a self- deadlock on the device semaphore.
2110          * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2111          * cases where they're needed -- for instance, some versions of KVM
2112          * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2113          * use the firmware based reset in order to reset any per function
2114          * state.
2115          */
2116         err = t4vf_fw_reset(adapter);
2117         if (err < 0) {
2118                 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2119                 return err;
2120         }
2121
2122         adapter->params.chip = 0;
2123         switch (adapter->pdev->device >> 12) {
2124         case CHELSIO_T4:
2125                 adapter->params.chip = CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2126                 break;
2127         case CHELSIO_T5:
2128                 chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
2129                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2130                 break;
2131         }
2132
2133         /*
2134          * Grab basic operational parameters.  These will predominantly have
2135          * been set up by the Physical Function Driver or will be hard coded
2136          * into the adapter.  We just have to live with them ...  Note that
2137          * we _must_ get our VPD parameters before our SGE parameters because
2138          * we need to know the adapter's core clock from the VPD in order to
2139          * properly decode the SGE Timer Values.
2140          */
2141         err = t4vf_get_dev_params(adapter);
2142         if (err) {
2143                 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2144                         " device parameters: err=%d\n", err);
2145                 return err;
2146         }
2147         err = t4vf_get_vpd_params(adapter);
2148         if (err) {
2149                 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2150                         " VPD parameters: err=%d\n", err);
2151                 return err;
2152         }
2153         err = t4vf_get_sge_params(adapter);
2154         if (err) {
2155                 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2156                         " SGE parameters: err=%d\n", err);
2157                 return err;
2158         }
2159         err = t4vf_get_rss_glb_config(adapter);
2160         if (err) {
2161                 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2162                         " RSS parameters: err=%d\n", err);
2163                 return err;
2164         }
2165         if (adapter->params.rss.mode !=
2166             FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2167                 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2168                         " mode %d\n", adapter->params.rss.mode);
2169                 return -EINVAL;
2170         }
2171         err = t4vf_sge_init(adapter);
2172         if (err) {
2173                 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2174                         " err=%d\n", err);
2175                 return err;
2176         }
2177
2178         /* If we're running on newer firmware, let it know that we're
2179          * prepared to deal with encapsulated CPL messages.  Older
2180          * firmware won't understand this and we'll just get
2181          * unencapsulated messages ...
2182          */
2183         param = FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
2184                 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2185         val = 1;
2186         (void) t4vf_set_params(adapter, 1, &param, &val);
2187
2188         /*
2189          * Retrieve our RX interrupt holdoff timer values and counter
2190          * threshold values from the SGE parameters.
2191          */
2192         s->timer_val[0] = core_ticks_to_us(adapter,
2193                 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2194         s->timer_val[1] = core_ticks_to_us(adapter,
2195                 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2196         s->timer_val[2] = core_ticks_to_us(adapter,
2197                 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2198         s->timer_val[3] = core_ticks_to_us(adapter,
2199                 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2200         s->timer_val[4] = core_ticks_to_us(adapter,
2201                 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2202         s->timer_val[5] = core_ticks_to_us(adapter,
2203                 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2204
2205         s->counter_val[0] =
2206                 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2207         s->counter_val[1] =
2208                 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2209         s->counter_val[2] =
2210                 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2211         s->counter_val[3] =
2212                 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2213
2214         /*
2215          * Grab our Virtual Interface resource allocation, extract the
2216          * features that we're interested in and do a bit of sanity testing on
2217          * what we discover.
2218          */
2219         err = t4vf_get_vfres(adapter);
2220         if (err) {
2221                 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2222                         " resources: err=%d\n", err);
2223                 return err;
2224         }
2225
2226         /*
2227          * The number of "ports" which we support is equal to the number of
2228          * Virtual Interfaces with which we've been provisioned.
2229          */
2230         adapter->params.nports = vfres->nvi;
2231         if (adapter->params.nports > MAX_NPORTS) {
2232                 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2233                          " virtual interfaces\n", MAX_NPORTS,
2234                          adapter->params.nports);
2235                 adapter->params.nports = MAX_NPORTS;
2236         }
2237
2238         /*
2239          * We need to reserve a number of the ingress queues with Free List
2240          * and Interrupt capabilities for special interrupt purposes (like
2241          * asynchronous firmware messages, or forwarded interrupts if we're
2242          * using MSI).  The rest of the FL/Intr-capable ingress queues will be
2243          * matched up one-for-one with Ethernet/Control egress queues in order
2244          * to form "Queue Sets" which will be aportioned between the "ports".
2245          * For each Queue Set, we'll need the ability to allocate two Egress
2246          * Contexts -- one for the Ingress Queue Free List and one for the TX
2247          * Ethernet Queue.
2248          */
2249         ethqsets = vfres->niqflint - INGQ_EXTRAS;
2250         if (vfres->nethctrl != ethqsets) {
2251                 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2252                          " ingress/egress queues (%d/%d); using minimum for"
2253                          " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2254                 ethqsets = min(vfres->nethctrl, ethqsets);
2255         }
2256         if (vfres->neq < ethqsets*2) {
2257                 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2258                          " to support Queue Sets (%d); reducing allowed Queue"
2259                          " Sets\n", vfres->neq, ethqsets);
2260                 ethqsets = vfres->neq/2;
2261         }
2262         if (ethqsets > MAX_ETH_QSETS) {
2263                 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2264                          " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2265                 ethqsets = MAX_ETH_QSETS;
2266         }
2267         if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2268                 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2269                          " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2270         }
2271         adapter->sge.max_ethqsets = ethqsets;
2272
2273         /*
2274          * Check for various parameter sanity issues.  Most checks simply
2275          * result in us using fewer resources than our provissioning but we
2276          * do need at least  one "port" with which to work ...
2277          */
2278         if (adapter->sge.max_ethqsets < adapter->params.nports) {
2279                 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2280                          " virtual interfaces (too few Queue Sets)\n",
2281                          adapter->sge.max_ethqsets, adapter->params.nports);
2282                 adapter->params.nports = adapter->sge.max_ethqsets;
2283         }
2284         if (adapter->params.nports == 0) {
2285                 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2286                         "usable!\n");
2287                 return -EINVAL;
2288         }
2289         return 0;
2290 }
2291
2292 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2293                              u8 pkt_cnt_idx, unsigned int size,
2294                              unsigned int iqe_size)
2295 {
2296         rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2297                              (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2298         rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2299                             ? pkt_cnt_idx
2300                             : 0);
2301         rspq->iqe_len = iqe_size;
2302         rspq->size = size;
2303 }
2304
2305 /*
2306  * Perform default configuration of DMA queues depending on the number and
2307  * type of ports we found and the number of available CPUs.  Most settings can
2308  * be modified by the admin via ethtool and cxgbtool prior to the adapter
2309  * being brought up for the first time.
2310  */
2311 static void cfg_queues(struct adapter *adapter)
2312 {
2313         struct sge *s = &adapter->sge;
2314         int q10g, n10g, qidx, pidx, qs;
2315         size_t iqe_size;
2316
2317         /*
2318          * We should not be called till we know how many Queue Sets we can
2319          * support.  In particular, this means that we need to know what kind
2320          * of interrupts we'll be using ...
2321          */
2322         BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2323
2324         /*
2325          * Count the number of 10GbE Virtual Interfaces that we have.
2326          */
2327         n10g = 0;
2328         for_each_port(adapter, pidx)
2329                 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2330
2331         /*
2332          * We default to 1 queue per non-10G port and up to # of cores queues
2333          * per 10G port.
2334          */
2335         if (n10g == 0)
2336                 q10g = 0;
2337         else {
2338                 int n1g = (adapter->params.nports - n10g);
2339                 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2340                 if (q10g > num_online_cpus())
2341                         q10g = num_online_cpus();
2342         }
2343
2344         /*
2345          * Allocate the "Queue Sets" to the various Virtual Interfaces.
2346          * The layout will be established in setup_sge_queues() when the
2347          * adapter is brough up for the first time.
2348          */
2349         qidx = 0;
2350         for_each_port(adapter, pidx) {
2351                 struct port_info *pi = adap2pinfo(adapter, pidx);
2352
2353                 pi->first_qset = qidx;
2354                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2355                 qidx += pi->nqsets;
2356         }
2357         s->ethqsets = qidx;
2358
2359         /*
2360          * The Ingress Queue Entry Size for our various Response Queues needs
2361          * to be big enough to accommodate the largest message we can receive
2362          * from the chip/firmware; which is 64 bytes ...
2363          */
2364         iqe_size = 64;
2365
2366         /*
2367          * Set up default Queue Set parameters ...  Start off with the
2368          * shortest interrupt holdoff timer.
2369          */
2370         for (qs = 0; qs < s->max_ethqsets; qs++) {
2371                 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2372                 struct sge_eth_txq *txq = &s->ethtxq[qs];
2373
2374                 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2375                 rxq->fl.size = 72;
2376                 txq->q.size = 1024;
2377         }
2378
2379         /*
2380          * The firmware event queue is used for link state changes and
2381          * notifications of TX DMA completions.
2382          */
2383         init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2384
2385         /*
2386          * The forwarded interrupt queue is used when we're in MSI interrupt
2387          * mode.  In this mode all interrupts associated with RX queues will
2388          * be forwarded to a single queue which we'll associate with our MSI
2389          * interrupt vector.  The messages dropped in the forwarded interrupt
2390          * queue will indicate which ingress queue needs servicing ...  This
2391          * queue needs to be large enough to accommodate all of the ingress
2392          * queues which are forwarding their interrupt (+1 to prevent the PIDX
2393          * from equalling the CIDX if every ingress queue has an outstanding
2394          * interrupt).  The queue doesn't need to be any larger because no
2395          * ingress queue will ever have more than one outstanding interrupt at
2396          * any time ...
2397          */
2398         init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2399                   iqe_size);
2400 }
2401
2402 /*
2403  * Reduce the number of Ethernet queues across all ports to at most n.
2404  * n provides at least one queue per port.
2405  */
2406 static void reduce_ethqs(struct adapter *adapter, int n)
2407 {
2408         int i;
2409         struct port_info *pi;
2410
2411         /*
2412          * While we have too many active Ether Queue Sets, interate across the
2413          * "ports" and reduce their individual Queue Set allocations.
2414          */
2415         BUG_ON(n < adapter->params.nports);
2416         while (n < adapter->sge.ethqsets)
2417                 for_each_port(adapter, i) {
2418                         pi = adap2pinfo(adapter, i);
2419                         if (pi->nqsets > 1) {
2420                                 pi->nqsets--;
2421                                 adapter->sge.ethqsets--;
2422                                 if (adapter->sge.ethqsets <= n)
2423                                         break;
2424                         }
2425                 }
2426
2427         /*
2428          * Reassign the starting Queue Sets for each of the "ports" ...
2429          */
2430         n = 0;
2431         for_each_port(adapter, i) {
2432                 pi = adap2pinfo(adapter, i);
2433                 pi->first_qset = n;
2434                 n += pi->nqsets;
2435         }
2436 }
2437
2438 /*
2439  * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2440  * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2441  * need.  Minimally we need one for every Virtual Interface plus those needed
2442  * for our "extras".  Note that this process may lower the maximum number of
2443  * allowed Queue Sets ...
2444  */
2445 static int enable_msix(struct adapter *adapter)
2446 {
2447         int i, err, want, need;
2448         struct msix_entry entries[MSIX_ENTRIES];
2449         struct sge *s = &adapter->sge;
2450
2451         for (i = 0; i < MSIX_ENTRIES; ++i)
2452                 entries[i].entry = i;
2453
2454         /*
2455          * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2456          * plus those needed for our "extras" (for example, the firmware
2457          * message queue).  We _need_ at least one "Queue Set" per Virtual
2458          * Interface plus those needed for our "extras".  So now we get to see
2459          * if the song is right ...
2460          */
2461         want = s->max_ethqsets + MSIX_EXTRAS;
2462         need = adapter->params.nports + MSIX_EXTRAS;
2463         while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2464                 want = err;
2465
2466         if (err == 0) {
2467                 int nqsets = want - MSIX_EXTRAS;
2468                 if (nqsets < s->max_ethqsets) {
2469                         dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2470                                  " for %d Queue Sets\n", nqsets);
2471                         s->max_ethqsets = nqsets;
2472                         if (nqsets < s->ethqsets)
2473                                 reduce_ethqs(adapter, nqsets);
2474                 }
2475                 for (i = 0; i < want; ++i)
2476                         adapter->msix_info[i].vec = entries[i].vector;
2477         } else if (err > 0) {
2478                 pci_disable_msix(adapter->pdev);
2479                 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2480                          " not using MSI-X\n", err);
2481         }
2482         return err;
2483 }
2484
2485 static const struct net_device_ops cxgb4vf_netdev_ops   = {
2486         .ndo_open               = cxgb4vf_open,
2487         .ndo_stop               = cxgb4vf_stop,
2488         .ndo_start_xmit         = t4vf_eth_xmit,
2489         .ndo_get_stats          = cxgb4vf_get_stats,
2490         .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2491         .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2492         .ndo_validate_addr      = eth_validate_addr,
2493         .ndo_do_ioctl           = cxgb4vf_do_ioctl,
2494         .ndo_change_mtu         = cxgb4vf_change_mtu,
2495         .ndo_fix_features       = cxgb4vf_fix_features,
2496         .ndo_set_features       = cxgb4vf_set_features,
2497 #ifdef CONFIG_NET_POLL_CONTROLLER
2498         .ndo_poll_controller    = cxgb4vf_poll_controller,
2499 #endif
2500 };
2501
2502 /*
2503  * "Probe" a device: initialize a device and construct all kernel and driver
2504  * state needed to manage the device.  This routine is called "init_one" in
2505  * the PF Driver ...
2506  */
2507 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2508                              const struct pci_device_id *ent)
2509 {
2510         int pci_using_dac;
2511         int err, pidx;
2512         unsigned int pmask;
2513         struct adapter *adapter;
2514         struct port_info *pi;
2515         struct net_device *netdev;
2516
2517         /*
2518          * Print our driver banner the first time we're called to initialize a
2519          * device.
2520          */
2521         pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2522
2523         /*
2524          * Initialize generic PCI device state.
2525          */
2526         err = pci_enable_device(pdev);
2527         if (err) {
2528                 dev_err(&pdev->dev, "cannot enable PCI device\n");
2529                 return err;
2530         }
2531
2532         /*
2533          * Reserve PCI resources for the device.  If we can't get them some
2534          * other driver may have already claimed the device ...
2535          */
2536         err = pci_request_regions(pdev, KBUILD_MODNAME);
2537         if (err) {
2538                 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2539                 goto err_disable_device;
2540         }
2541
2542         /*
2543          * Set up our DMA mask: try for 64-bit address masking first and
2544          * fall back to 32-bit if we can't get 64 bits ...
2545          */
2546         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2547         if (err == 0) {
2548                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2549                 if (err) {
2550                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2551                                 " coherent allocations\n");
2552                         goto err_release_regions;
2553                 }
2554                 pci_using_dac = 1;
2555         } else {
2556                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2557                 if (err != 0) {
2558                         dev_err(&pdev->dev, "no usable DMA configuration\n");
2559                         goto err_release_regions;
2560                 }
2561                 pci_using_dac = 0;
2562         }
2563
2564         /*
2565          * Enable bus mastering for the device ...
2566          */
2567         pci_set_master(pdev);
2568
2569         /*
2570          * Allocate our adapter data structure and attach it to the device.
2571          */
2572         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2573         if (!adapter) {
2574                 err = -ENOMEM;
2575                 goto err_release_regions;
2576         }
2577         pci_set_drvdata(pdev, adapter);
2578         adapter->pdev = pdev;
2579         adapter->pdev_dev = &pdev->dev;
2580
2581         /*
2582          * Initialize SMP data synchronization resources.
2583          */
2584         spin_lock_init(&adapter->stats_lock);
2585
2586         /*
2587          * Map our I/O registers in BAR0.
2588          */
2589         adapter->regs = pci_ioremap_bar(pdev, 0);
2590         if (!adapter->regs) {
2591                 dev_err(&pdev->dev, "cannot map device registers\n");
2592                 err = -ENOMEM;
2593                 goto err_free_adapter;
2594         }
2595
2596         /*
2597          * Initialize adapter level features.
2598          */
2599         adapter->name = pci_name(pdev);
2600         adapter->msg_enable = dflt_msg_enable;
2601         err = adap_init0(adapter);
2602         if (err)
2603                 goto err_unmap_bar;
2604
2605         /*
2606          * Allocate our "adapter ports" and stitch everything together.
2607          */
2608         pmask = adapter->params.vfres.pmask;
2609         for_each_port(adapter, pidx) {
2610                 int port_id, viid;
2611
2612                 /*
2613                  * We simplistically allocate our virtual interfaces
2614                  * sequentially across the port numbers to which we have
2615                  * access rights.  This should be configurable in some manner
2616                  * ...
2617                  */
2618                 if (pmask == 0)
2619                         break;
2620                 port_id = ffs(pmask) - 1;
2621                 pmask &= ~(1 << port_id);
2622                 viid = t4vf_alloc_vi(adapter, port_id);
2623                 if (viid < 0) {
2624                         dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2625                                 " err=%d\n", port_id, viid);
2626                         err = viid;
2627                         goto err_free_dev;
2628                 }
2629
2630                 /*
2631                  * Allocate our network device and stitch things together.
2632                  */
2633                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2634                                            MAX_PORT_QSETS);
2635                 if (netdev == NULL) {
2636                         t4vf_free_vi(adapter, viid);
2637                         err = -ENOMEM;
2638                         goto err_free_dev;
2639                 }
2640                 adapter->port[pidx] = netdev;
2641                 SET_NETDEV_DEV(netdev, &pdev->dev);
2642                 pi = netdev_priv(netdev);
2643                 pi->adapter = adapter;
2644                 pi->pidx = pidx;
2645                 pi->port_id = port_id;
2646                 pi->viid = viid;
2647
2648                 /*
2649                  * Initialize the starting state of our "port" and register
2650                  * it.
2651                  */
2652                 pi->xact_addr_filt = -1;
2653                 netif_carrier_off(netdev);
2654                 netdev->irq = pdev->irq;
2655
2656                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2657                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2658                         NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2659                 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2660                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2661                         NETIF_F_HIGHDMA;
2662                 netdev->features = netdev->hw_features |
2663                                    NETIF_F_HW_VLAN_CTAG_TX;
2664                 if (pci_using_dac)
2665                         netdev->features |= NETIF_F_HIGHDMA;
2666
2667                 netdev->priv_flags |= IFF_UNICAST_FLT;
2668
2669                 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2670                 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2671
2672                 /*
2673                  * Initialize the hardware/software state for the port.
2674                  */
2675                 err = t4vf_port_init(adapter, pidx);
2676                 if (err) {
2677                         dev_err(&pdev->dev, "cannot initialize port %d\n",
2678                                 pidx);
2679                         goto err_free_dev;
2680                 }
2681         }
2682
2683         /*
2684          * The "card" is now ready to go.  If any errors occur during device
2685          * registration we do not fail the whole "card" but rather proceed
2686          * only with the ports we manage to register successfully.  However we
2687          * must register at least one net device.
2688          */
2689         for_each_port(adapter, pidx) {
2690                 netdev = adapter->port[pidx];
2691                 if (netdev == NULL)
2692                         continue;
2693
2694                 err = register_netdev(netdev);
2695                 if (err) {
2696                         dev_warn(&pdev->dev, "cannot register net device %s,"
2697                                  " skipping\n", netdev->name);
2698                         continue;
2699                 }
2700
2701                 set_bit(pidx, &adapter->registered_device_map);
2702         }
2703         if (adapter->registered_device_map == 0) {
2704                 dev_err(&pdev->dev, "could not register any net devices\n");
2705                 goto err_free_dev;
2706         }
2707
2708         /*
2709          * Set up our debugfs entries.
2710          */
2711         if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2712                 adapter->debugfs_root =
2713                         debugfs_create_dir(pci_name(pdev),
2714                                            cxgb4vf_debugfs_root);
2715                 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2716                         dev_warn(&pdev->dev, "could not create debugfs"
2717                                  " directory");
2718                 else
2719                         setup_debugfs(adapter);
2720         }
2721
2722         /*
2723          * See what interrupts we'll be using.  If we've been configured to
2724          * use MSI-X interrupts, try to enable them but fall back to using
2725          * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
2726          * get MSI interrupts we bail with the error.
2727          */
2728         if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2729                 adapter->flags |= USING_MSIX;
2730         else {
2731                 err = pci_enable_msi(pdev);
2732                 if (err) {
2733                         dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2734                                 " err=%d\n",
2735                                 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2736                         goto err_free_debugfs;
2737                 }
2738                 adapter->flags |= USING_MSI;
2739         }
2740
2741         /*
2742          * Now that we know how many "ports" we have and what their types are,
2743          * and how many Queue Sets we can support, we can configure our queue
2744          * resources.
2745          */
2746         cfg_queues(adapter);
2747
2748         /*
2749          * Print a short notice on the existence and configuration of the new
2750          * VF network device ...
2751          */
2752         for_each_port(adapter, pidx) {
2753                 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2754                          adapter->port[pidx]->name,
2755                          (adapter->flags & USING_MSIX) ? "MSI-X" :
2756                          (adapter->flags & USING_MSI)  ? "MSI" : "");
2757         }
2758
2759         /*
2760          * Return success!
2761          */
2762         return 0;
2763
2764         /*
2765          * Error recovery and exit code.  Unwind state that's been created
2766          * so far and return the error.
2767          */
2768
2769 err_free_debugfs:
2770         if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2771                 cleanup_debugfs(adapter);
2772                 debugfs_remove_recursive(adapter->debugfs_root);
2773         }
2774
2775 err_free_dev:
2776         for_each_port(adapter, pidx) {
2777                 netdev = adapter->port[pidx];
2778                 if (netdev == NULL)
2779                         continue;
2780                 pi = netdev_priv(netdev);
2781                 t4vf_free_vi(adapter, pi->viid);
2782                 if (test_bit(pidx, &adapter->registered_device_map))
2783                         unregister_netdev(netdev);
2784                 free_netdev(netdev);
2785         }
2786
2787 err_unmap_bar:
2788         iounmap(adapter->regs);
2789
2790 err_free_adapter:
2791         kfree(adapter);
2792
2793 err_release_regions:
2794         pci_release_regions(pdev);
2795         pci_clear_master(pdev);
2796
2797 err_disable_device:
2798         pci_disable_device(pdev);
2799
2800         return err;
2801 }
2802
2803 /*
2804  * "Remove" a device: tear down all kernel and driver state created in the
2805  * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
2806  * that this is called "remove_one" in the PF Driver.)
2807  */
2808 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
2809 {
2810         struct adapter *adapter = pci_get_drvdata(pdev);
2811
2812         /*
2813          * Tear down driver state associated with device.
2814          */
2815         if (adapter) {
2816                 int pidx;
2817
2818                 /*
2819                  * Stop all of our activity.  Unregister network port,
2820                  * disable interrupts, etc.
2821                  */
2822                 for_each_port(adapter, pidx)
2823                         if (test_bit(pidx, &adapter->registered_device_map))
2824                                 unregister_netdev(adapter->port[pidx]);
2825                 t4vf_sge_stop(adapter);
2826                 if (adapter->flags & USING_MSIX) {
2827                         pci_disable_msix(adapter->pdev);
2828                         adapter->flags &= ~USING_MSIX;
2829                 } else if (adapter->flags & USING_MSI) {
2830                         pci_disable_msi(adapter->pdev);
2831                         adapter->flags &= ~USING_MSI;
2832                 }
2833
2834                 /*
2835                  * Tear down our debugfs entries.
2836                  */
2837                 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2838                         cleanup_debugfs(adapter);
2839                         debugfs_remove_recursive(adapter->debugfs_root);
2840                 }
2841
2842                 /*
2843                  * Free all of the various resources which we've acquired ...
2844                  */
2845                 t4vf_free_sge_resources(adapter);
2846                 for_each_port(adapter, pidx) {
2847                         struct net_device *netdev = adapter->port[pidx];
2848                         struct port_info *pi;
2849
2850                         if (netdev == NULL)
2851                                 continue;
2852
2853                         pi = netdev_priv(netdev);
2854                         t4vf_free_vi(adapter, pi->viid);
2855                         free_netdev(netdev);
2856                 }
2857                 iounmap(adapter->regs);
2858                 kfree(adapter);
2859         }
2860
2861         /*
2862          * Disable the device and release its PCI resources.
2863          */
2864         pci_disable_device(pdev);
2865         pci_clear_master(pdev);
2866         pci_release_regions(pdev);
2867 }
2868
2869 /*
2870  * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2871  * delivery.
2872  */
2873 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2874 {
2875         struct adapter *adapter;
2876         int pidx;
2877
2878         adapter = pci_get_drvdata(pdev);
2879         if (!adapter)
2880                 return;
2881
2882         /*
2883          * Disable all Virtual Interfaces.  This will shut down the
2884          * delivery of all ingress packets into the chip for these
2885          * Virtual Interfaces.
2886          */
2887         for_each_port(adapter, pidx) {
2888                 struct net_device *netdev;
2889                 struct port_info *pi;
2890
2891                 if (!test_bit(pidx, &adapter->registered_device_map))
2892                         continue;
2893
2894                 netdev = adapter->port[pidx];
2895                 if (!netdev)
2896                         continue;
2897
2898                 pi = netdev_priv(netdev);
2899                 t4vf_enable_vi(adapter, pi->viid, false, false);
2900         }
2901
2902         /*
2903          * Free up all Queues which will prevent further DMA and
2904          * Interrupts allowing various internal pathways to drain.
2905          */
2906         t4vf_free_sge_resources(adapter);
2907 }
2908
2909 /*
2910  * PCI Device registration data structures.
2911  */
2912 #define CH_DEVICE(devid, idx) \
2913         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2914
2915 static DEFINE_PCI_DEVICE_TABLE(cxgb4vf_pci_tbl) = {
2916         CH_DEVICE(0xb000, 0),   /* PE10K FPGA */
2917         CH_DEVICE(0x4800, 0),   /* T440-dbg */
2918         CH_DEVICE(0x4801, 0),   /* T420-cr */
2919         CH_DEVICE(0x4802, 0),   /* T422-cr */
2920         CH_DEVICE(0x4803, 0),   /* T440-cr */
2921         CH_DEVICE(0x4804, 0),   /* T420-bch */
2922         CH_DEVICE(0x4805, 0),   /* T440-bch */
2923         CH_DEVICE(0x4806, 0),   /* T460-ch */
2924         CH_DEVICE(0x4807, 0),   /* T420-so */
2925         CH_DEVICE(0x4808, 0),   /* T420-cx */
2926         CH_DEVICE(0x4809, 0),   /* T420-bt */
2927         CH_DEVICE(0x480a, 0),   /* T404-bt */
2928         CH_DEVICE(0x480d, 0),   /* T480-cr */
2929         CH_DEVICE(0x480e, 0),   /* T440-lp-cr */
2930         CH_DEVICE(0x5800, 0),   /* T580-dbg */
2931         CH_DEVICE(0x5801, 0),   /* T520-cr */
2932         CH_DEVICE(0x5802, 0),   /* T522-cr */
2933         CH_DEVICE(0x5803, 0),   /* T540-cr */
2934         CH_DEVICE(0x5804, 0),   /* T520-bch */
2935         CH_DEVICE(0x5805, 0),   /* T540-bch */
2936         CH_DEVICE(0x5806, 0),   /* T540-ch */
2937         CH_DEVICE(0x5807, 0),   /* T520-so */
2938         CH_DEVICE(0x5808, 0),   /* T520-cx */
2939         CH_DEVICE(0x5809, 0),   /* T520-bt */
2940         CH_DEVICE(0x580a, 0),   /* T504-bt */
2941         CH_DEVICE(0x580b, 0),   /* T520-sr */
2942         CH_DEVICE(0x580c, 0),   /* T504-bt */
2943         CH_DEVICE(0x580d, 0),   /* T580-cr */
2944         CH_DEVICE(0x580e, 0),   /* T540-lp-cr */
2945         CH_DEVICE(0x580f, 0),   /* Amsterdam */
2946         CH_DEVICE(0x5810, 0),   /* T580-lp-cr */
2947         CH_DEVICE(0x5811, 0),   /* T520-lp-cr */
2948         CH_DEVICE(0x5812, 0),   /* T560-cr */
2949         CH_DEVICE(0x5813, 0),   /* T580-cr */
2950         { 0, }
2951 };
2952
2953 MODULE_DESCRIPTION(DRV_DESC);
2954 MODULE_AUTHOR("Chelsio Communications");
2955 MODULE_LICENSE("Dual BSD/GPL");
2956 MODULE_VERSION(DRV_VERSION);
2957 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2958
2959 static struct pci_driver cxgb4vf_driver = {
2960         .name           = KBUILD_MODNAME,
2961         .id_table       = cxgb4vf_pci_tbl,
2962         .probe          = cxgb4vf_pci_probe,
2963         .remove         = cxgb4vf_pci_remove,
2964         .shutdown       = cxgb4vf_pci_shutdown,
2965 };
2966
2967 /*
2968  * Initialize global driver state.
2969  */
2970 static int __init cxgb4vf_module_init(void)
2971 {
2972         int ret;
2973
2974         /*
2975          * Vet our module parameters.
2976          */
2977         if (msi != MSI_MSIX && msi != MSI_MSI) {
2978                 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
2979                         msi, MSI_MSIX, MSI_MSI);
2980                 return -EINVAL;
2981         }
2982
2983         /* Debugfs support is optional, just warn if this fails */
2984         cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2985         if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2986                 pr_warn("could not create debugfs entry, continuing\n");
2987
2988         ret = pci_register_driver(&cxgb4vf_driver);
2989         if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2990                 debugfs_remove(cxgb4vf_debugfs_root);
2991         return ret;
2992 }
2993
2994 /*
2995  * Tear down global driver state.
2996  */
2997 static void __exit cxgb4vf_module_exit(void)
2998 {
2999         pci_unregister_driver(&cxgb4vf_driver);
3000         debugfs_remove(cxgb4vf_debugfs_root);
3001 }
3002
3003 module_init(cxgb4vf_module_init);
3004 module_exit(cxgb4vf_module_exit);