Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99                  " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108                                 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125         u32 xmac_addr;
126         u32 xmac_val;
127         u32 emac_addr;
128         u32 emac_val;
129         u32 umac_addr;
130         u32 umac_val;
131         u32 bmac_addr;
132         u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136         BCM57710 = 0,
137         BCM57711,
138         BCM57711E,
139         BCM57712,
140         BCM57712_MF,
141         BCM57712_VF,
142         BCM57800,
143         BCM57800_MF,
144         BCM57800_VF,
145         BCM57810,
146         BCM57810_MF,
147         BCM57810_VF,
148         BCM57840_4_10,
149         BCM57840_2_20,
150         BCM57840_MF,
151         BCM57840_VF,
152         BCM57811,
153         BCM57811_MF,
154         BCM57840_O,
155         BCM57840_MFO,
156         BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161         char *name;
162 } board_info[] = {
163         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272         { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286                                        u32 addr, dma_addr_t mapping)
287 {
288         REG_WR(bp,  addr, U64_LO(mapping));
289         REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293                                   dma_addr_t mapping, u16 abs_fid)
294 {
295         u32 addr = XSEM_REG_FAST_MEMORY +
296                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298         __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302                                   u16 pf_id)
303 {
304         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305                 pf_id);
306         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307                 pf_id);
308         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309                 pf_id);
310         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311                 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315                                  u8 enable)
316 {
317         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318                 enable);
319         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320                 enable);
321         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322                 enable);
323         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324                 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328                                  struct event_ring_data *eq_data,
329                                 u16 pfid)
330 {
331         size_t size = sizeof(struct event_ring_data);
332
333         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339                                  u16 pfid)
340 {
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342         REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353                                PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358         u32 val;
359
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364
365         return val;
366 }
367
368 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE        "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375                           struct dmae_command *dmae, int msglvl)
376 {
377         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378         int i;
379
380         switch (dmae->opcode & DMAE_COMMAND_DST) {
381         case DMAE_CMD_DST_PCI:
382                 if (src_type == DMAE_CMD_SRC_PCI)
383                         DP(msglvl, "DMAE: opcode 0x%08x\n"
384                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
386                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388                            dmae->comp_addr_hi, dmae->comp_addr_lo,
389                            dmae->comp_val);
390                 else
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_lo >> 2,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 break;
399         case DMAE_CMD_DST_GRC:
400                 if (src_type == DMAE_CMD_SRC_PCI)
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405                            dmae->len, dmae->dst_addr_lo >> 2,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 else
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%08x], len [%d*4], dst [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_lo >> 2,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 break;
417         default:
418                 if (src_type == DMAE_CMD_SRC_PCI)
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         }
434
435         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437                    i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443         u32 cmd_offset;
444         int i;
445
446         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449         }
450         REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456                            DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461         return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465                              bool with_comp, u8 comp_type)
466 {
467         u32 opcode = 0;
468
469         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470                    (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484         if (with_comp)
485                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486         return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490                                       struct dmae_command *dmae,
491                                       u8 src_type, u8 dst_type)
492 {
493         memset(dmae, 0, sizeof(struct dmae_command));
494
495         /* set the opcode */
496         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497                                          true, DMAE_COMP_PCI);
498
499         /* fill in the completion parameters */
500         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502         dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
507                                u32 *comp)
508 {
509         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510         int rc = 0;
511
512         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515          * as long as this code is called both from syscall context and
516          * from ndo_set_rx_mode() flow that may be called from BH.
517          */
518         spin_lock_bh(&bp->dmae_lock);
519
520         /* reset completion */
521         *comp = 0;
522
523         /* post the command on the channel used for initializations */
524         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526         /* wait for completion */
527         udelay(5);
528         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530                 if (!cnt ||
531                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533                         BNX2X_ERR("DMAE timeout!\n");
534                         rc = DMAE_TIMEOUT;
535                         goto unlock;
536                 }
537                 cnt--;
538                 udelay(50);
539         }
540         if (*comp & DMAE_PCI_ERR_FLAG) {
541                 BNX2X_ERR("DMAE PCI error!\n");
542                 rc = DMAE_PCI_ERROR;
543         }
544
545 unlock:
546         spin_unlock_bh(&bp->dmae_lock);
547         return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551                       u32 len32)
552 {
553         int rc;
554         struct dmae_command dmae;
555
556         if (!bp->dmae_ready) {
557                 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559                 if (CHIP_IS_E1(bp))
560                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561                 else
562                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
563                 return;
564         }
565
566         /* set opcode and fixed command fields */
567         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569         /* fill in addresses and len */
570         dmae.src_addr_lo = U64_LO(dma_addr);
571         dmae.src_addr_hi = U64_HI(dma_addr);
572         dmae.dst_addr_lo = dst_addr >> 2;
573         dmae.dst_addr_hi = 0;
574         dmae.len = len32;
575
576         /* issue the command and wait for completion */
577         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
578         if (rc) {
579                 BNX2X_ERR("DMAE returned failure %d\n", rc);
580 #ifdef BNX2X_STOP_ON_ERROR
581                 bnx2x_panic();
582 #endif
583         }
584 }
585
586 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
587 {
588         int rc;
589         struct dmae_command dmae;
590
591         if (!bp->dmae_ready) {
592                 u32 *data = bnx2x_sp(bp, wb_data[0]);
593                 int i;
594
595                 if (CHIP_IS_E1(bp))
596                         for (i = 0; i < len32; i++)
597                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
598                 else
599                         for (i = 0; i < len32; i++)
600                                 data[i] = REG_RD(bp, src_addr + i*4);
601
602                 return;
603         }
604
605         /* set opcode and fixed command fields */
606         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
607
608         /* fill in addresses and len */
609         dmae.src_addr_lo = src_addr >> 2;
610         dmae.src_addr_hi = 0;
611         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
612         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
613         dmae.len = len32;
614
615         /* issue the command and wait for completion */
616         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
617         if (rc) {
618                 BNX2X_ERR("DMAE returned failure %d\n", rc);
619 #ifdef BNX2X_STOP_ON_ERROR
620                 bnx2x_panic();
621 #endif
622         }
623 }
624
625 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
626                                       u32 addr, u32 len)
627 {
628         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
629         int offset = 0;
630
631         while (len > dmae_wr_max) {
632                 bnx2x_write_dmae(bp, phys_addr + offset,
633                                  addr + offset, dmae_wr_max);
634                 offset += dmae_wr_max * 4;
635                 len -= dmae_wr_max;
636         }
637
638         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
639 }
640
641 static int bnx2x_mc_assert(struct bnx2x *bp)
642 {
643         char last_idx;
644         int i, rc = 0;
645         u32 row0, row1, row2, row3;
646
647         /* XSTORM */
648         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
649                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
650         if (last_idx)
651                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
652
653         /* print the asserts */
654         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
655
656                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657                               XSTORM_ASSERT_LIST_OFFSET(i));
658                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
660                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
661                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
662                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
663                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
664
665                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
666                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
667                                   i, row3, row2, row1, row0);
668                         rc++;
669                 } else {
670                         break;
671                 }
672         }
673
674         /* TSTORM */
675         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
676                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
677         if (last_idx)
678                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
679
680         /* print the asserts */
681         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
682
683                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684                               TSTORM_ASSERT_LIST_OFFSET(i));
685                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
687                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
688                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
689                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
690                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
691
692                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
693                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
694                                   i, row3, row2, row1, row0);
695                         rc++;
696                 } else {
697                         break;
698                 }
699         }
700
701         /* CSTORM */
702         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
703                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
704         if (last_idx)
705                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
706
707         /* print the asserts */
708         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
709
710                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711                               CSTORM_ASSERT_LIST_OFFSET(i));
712                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
714                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
715                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
716                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
717                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
718
719                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
720                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
721                                   i, row3, row2, row1, row0);
722                         rc++;
723                 } else {
724                         break;
725                 }
726         }
727
728         /* USTORM */
729         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
730                            USTORM_ASSERT_LIST_INDEX_OFFSET);
731         if (last_idx)
732                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
733
734         /* print the asserts */
735         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
736
737                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
738                               USTORM_ASSERT_LIST_OFFSET(i));
739                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
740                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
741                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
742                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
743                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
744                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
745
746                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
747                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
748                                   i, row3, row2, row1, row0);
749                         rc++;
750                 } else {
751                         break;
752                 }
753         }
754
755         return rc;
756 }
757
758 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
759 #define SCRATCH_BUFFER_SIZE(bp) \
760         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
761
762 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
763 {
764         u32 addr, val;
765         u32 mark, offset;
766         __be32 data[9];
767         int word;
768         u32 trace_shmem_base;
769         if (BP_NOMCP(bp)) {
770                 BNX2X_ERR("NO MCP - can not dump\n");
771                 return;
772         }
773         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
774                 (bp->common.bc_ver & 0xff0000) >> 16,
775                 (bp->common.bc_ver & 0xff00) >> 8,
776                 (bp->common.bc_ver & 0xff));
777
778         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
779         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
780                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
781
782         if (BP_PATH(bp) == 0)
783                 trace_shmem_base = bp->common.shmem_base;
784         else
785                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
786
787         /* sanity */
788         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
789             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
790                                 SCRATCH_BUFFER_SIZE(bp)) {
791                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
792                           trace_shmem_base);
793                 return;
794         }
795
796         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
797
798         /* validate TRCB signature */
799         mark = REG_RD(bp, addr);
800         if (mark != MFW_TRACE_SIGNATURE) {
801                 BNX2X_ERR("Trace buffer signature is missing.");
802                 return ;
803         }
804
805         /* read cyclic buffer pointer */
806         addr += 4;
807         mark = REG_RD(bp, addr);
808         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
809         if (mark >= trace_shmem_base || mark < addr + 4) {
810                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
811                 return;
812         }
813         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
814
815         printk("%s", lvl);
816
817         /* dump buffer after the mark */
818         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
819                 for (word = 0; word < 8; word++)
820                         data[word] = htonl(REG_RD(bp, offset + 4*word));
821                 data[8] = 0x0;
822                 pr_cont("%s", (char *)data);
823         }
824
825         /* dump buffer before the mark */
826         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
827                 for (word = 0; word < 8; word++)
828                         data[word] = htonl(REG_RD(bp, offset + 4*word));
829                 data[8] = 0x0;
830                 pr_cont("%s", (char *)data);
831         }
832         printk("%s" "end of fw dump\n", lvl);
833 }
834
835 static void bnx2x_fw_dump(struct bnx2x *bp)
836 {
837         bnx2x_fw_dump_lvl(bp, KERN_ERR);
838 }
839
840 static void bnx2x_hc_int_disable(struct bnx2x *bp)
841 {
842         int port = BP_PORT(bp);
843         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
844         u32 val = REG_RD(bp, addr);
845
846         /* in E1 we must use only PCI configuration space to disable
847          * MSI/MSIX capability
848          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
849          */
850         if (CHIP_IS_E1(bp)) {
851                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
852                  * Use mask register to prevent from HC sending interrupts
853                  * after we exit the function
854                  */
855                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
856
857                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
858                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
859                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
860         } else
861                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
863                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
864                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
865
866         DP(NETIF_MSG_IFDOWN,
867            "write %x to HC %d (addr 0x%x)\n",
868            val, port, addr);
869
870         /* flush all outstanding writes */
871         mmiowb();
872
873         REG_WR(bp, addr, val);
874         if (REG_RD(bp, addr) != val)
875                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
876 }
877
878 static void bnx2x_igu_int_disable(struct bnx2x *bp)
879 {
880         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
881
882         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
883                  IGU_PF_CONF_INT_LINE_EN |
884                  IGU_PF_CONF_ATTN_BIT_EN);
885
886         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
887
888         /* flush all outstanding writes */
889         mmiowb();
890
891         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
892         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
893                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
894 }
895
896 static void bnx2x_int_disable(struct bnx2x *bp)
897 {
898         if (bp->common.int_block == INT_BLOCK_HC)
899                 bnx2x_hc_int_disable(bp);
900         else
901                 bnx2x_igu_int_disable(bp);
902 }
903
904 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
905 {
906         int i;
907         u16 j;
908         struct hc_sp_status_block_data sp_sb_data;
909         int func = BP_FUNC(bp);
910 #ifdef BNX2X_STOP_ON_ERROR
911         u16 start = 0, end = 0;
912         u8 cos;
913 #endif
914         if (disable_int)
915                 bnx2x_int_disable(bp);
916
917         bp->stats_state = STATS_STATE_DISABLED;
918         bp->eth_stats.unrecoverable_error++;
919         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
920
921         BNX2X_ERR("begin crash dump -----------------\n");
922
923         /* Indices */
924         /* Common */
925         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
926                   bp->def_idx, bp->def_att_idx, bp->attn_state,
927                   bp->spq_prod_idx, bp->stats_counter);
928         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
929                   bp->def_status_blk->atten_status_block.attn_bits,
930                   bp->def_status_blk->atten_status_block.attn_bits_ack,
931                   bp->def_status_blk->atten_status_block.status_block_id,
932                   bp->def_status_blk->atten_status_block.attn_bits_index);
933         BNX2X_ERR("     def (");
934         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
935                 pr_cont("0x%x%s",
936                         bp->def_status_blk->sp_sb.index_values[i],
937                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
938
939         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
940                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
941                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
942                         i*sizeof(u32));
943
944         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
945                sp_sb_data.igu_sb_id,
946                sp_sb_data.igu_seg_id,
947                sp_sb_data.p_func.pf_id,
948                sp_sb_data.p_func.vnic_id,
949                sp_sb_data.p_func.vf_id,
950                sp_sb_data.p_func.vf_valid,
951                sp_sb_data.state);
952
953         for_each_eth_queue(bp, i) {
954                 struct bnx2x_fastpath *fp = &bp->fp[i];
955                 int loop;
956                 struct hc_status_block_data_e2 sb_data_e2;
957                 struct hc_status_block_data_e1x sb_data_e1x;
958                 struct hc_status_block_sm  *hc_sm_p =
959                         CHIP_IS_E1x(bp) ?
960                         sb_data_e1x.common.state_machine :
961                         sb_data_e2.common.state_machine;
962                 struct hc_index_data *hc_index_p =
963                         CHIP_IS_E1x(bp) ?
964                         sb_data_e1x.index_data :
965                         sb_data_e2.index_data;
966                 u8 data_size, cos;
967                 u32 *sb_data_p;
968                 struct bnx2x_fp_txdata txdata;
969
970                 /* Rx */
971                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
972                           i, fp->rx_bd_prod, fp->rx_bd_cons,
973                           fp->rx_comp_prod,
974                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
975                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
976                           fp->rx_sge_prod, fp->last_max_sge,
977                           le16_to_cpu(fp->fp_hc_idx));
978
979                 /* Tx */
980                 for_each_cos_in_tx_queue(fp, cos)
981                 {
982                         txdata = *fp->txdata_ptr[cos];
983                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
984                                   i, txdata.tx_pkt_prod,
985                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
986                                   txdata.tx_bd_cons,
987                                   le16_to_cpu(*txdata.tx_cons_sb));
988                 }
989
990                 loop = CHIP_IS_E1x(bp) ?
991                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
992
993                 /* host sb data */
994
995                 if (IS_FCOE_FP(fp))
996                         continue;
997
998                 BNX2X_ERR("     run indexes (");
999                 for (j = 0; j < HC_SB_MAX_SM; j++)
1000                         pr_cont("0x%x%s",
1001                                fp->sb_running_index[j],
1002                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1003
1004                 BNX2X_ERR("     indexes (");
1005                 for (j = 0; j < loop; j++)
1006                         pr_cont("0x%x%s",
1007                                fp->sb_index_values[j],
1008                                (j == loop - 1) ? ")" : " ");
1009                 /* fw sb data */
1010                 data_size = CHIP_IS_E1x(bp) ?
1011                         sizeof(struct hc_status_block_data_e1x) :
1012                         sizeof(struct hc_status_block_data_e2);
1013                 data_size /= sizeof(u32);
1014                 sb_data_p = CHIP_IS_E1x(bp) ?
1015                         (u32 *)&sb_data_e1x :
1016                         (u32 *)&sb_data_e2;
1017                 /* copy sb data in here */
1018                 for (j = 0; j < data_size; j++)
1019                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1020                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1021                                 j * sizeof(u32));
1022
1023                 if (!CHIP_IS_E1x(bp)) {
1024                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1025                                 sb_data_e2.common.p_func.pf_id,
1026                                 sb_data_e2.common.p_func.vf_id,
1027                                 sb_data_e2.common.p_func.vf_valid,
1028                                 sb_data_e2.common.p_func.vnic_id,
1029                                 sb_data_e2.common.same_igu_sb_1b,
1030                                 sb_data_e2.common.state);
1031                 } else {
1032                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1033                                 sb_data_e1x.common.p_func.pf_id,
1034                                 sb_data_e1x.common.p_func.vf_id,
1035                                 sb_data_e1x.common.p_func.vf_valid,
1036                                 sb_data_e1x.common.p_func.vnic_id,
1037                                 sb_data_e1x.common.same_igu_sb_1b,
1038                                 sb_data_e1x.common.state);
1039                 }
1040
1041                 /* SB_SMs data */
1042                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1043                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1044                                 j, hc_sm_p[j].__flags,
1045                                 hc_sm_p[j].igu_sb_id,
1046                                 hc_sm_p[j].igu_seg_id,
1047                                 hc_sm_p[j].time_to_expire,
1048                                 hc_sm_p[j].timer_value);
1049                 }
1050
1051                 /* Indices data */
1052                 for (j = 0; j < loop; j++) {
1053                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1054                                hc_index_p[j].flags,
1055                                hc_index_p[j].timeout);
1056                 }
1057         }
1058
1059 #ifdef BNX2X_STOP_ON_ERROR
1060
1061         /* event queue */
1062         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1063         for (i = 0; i < NUM_EQ_DESC; i++) {
1064                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1065
1066                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1067                           i, bp->eq_ring[i].message.opcode,
1068                           bp->eq_ring[i].message.error);
1069                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1070         }
1071
1072         /* Rings */
1073         /* Rx */
1074         for_each_valid_rx_queue(bp, i) {
1075                 struct bnx2x_fastpath *fp = &bp->fp[i];
1076
1077                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1078                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1079                 for (j = start; j != end; j = RX_BD(j + 1)) {
1080                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1081                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1082
1083                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1084                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1085                 }
1086
1087                 start = RX_SGE(fp->rx_sge_prod);
1088                 end = RX_SGE(fp->last_max_sge);
1089                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1090                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1091                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1092
1093                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1094                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1095                 }
1096
1097                 start = RCQ_BD(fp->rx_comp_cons - 10);
1098                 end = RCQ_BD(fp->rx_comp_cons + 503);
1099                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1100                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1101
1102                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1103                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1104                 }
1105         }
1106
1107         /* Tx */
1108         for_each_valid_tx_queue(bp, i) {
1109                 struct bnx2x_fastpath *fp = &bp->fp[i];
1110                 for_each_cos_in_tx_queue(fp, cos) {
1111                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1112
1113                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1114                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1115                         for (j = start; j != end; j = TX_BD(j + 1)) {
1116                                 struct sw_tx_bd *sw_bd =
1117                                         &txdata->tx_buf_ring[j];
1118
1119                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1120                                           i, cos, j, sw_bd->skb,
1121                                           sw_bd->first_bd);
1122                         }
1123
1124                         start = TX_BD(txdata->tx_bd_cons - 10);
1125                         end = TX_BD(txdata->tx_bd_cons + 254);
1126                         for (j = start; j != end; j = TX_BD(j + 1)) {
1127                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1128
1129                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1130                                           i, cos, j, tx_bd[0], tx_bd[1],
1131                                           tx_bd[2], tx_bd[3]);
1132                         }
1133                 }
1134         }
1135 #endif
1136         bnx2x_fw_dump(bp);
1137         bnx2x_mc_assert(bp);
1138         BNX2X_ERR("end crash dump -----------------\n");
1139 }
1140
1141 /*
1142  * FLR Support for E2
1143  *
1144  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1145  * initialization.
1146  */
1147 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1148 #define FLR_WAIT_INTERVAL       50      /* usec */
1149 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1150
1151 struct pbf_pN_buf_regs {
1152         int pN;
1153         u32 init_crd;
1154         u32 crd;
1155         u32 crd_freed;
1156 };
1157
1158 struct pbf_pN_cmd_regs {
1159         int pN;
1160         u32 lines_occup;
1161         u32 lines_freed;
1162 };
1163
1164 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1165                                      struct pbf_pN_buf_regs *regs,
1166                                      u32 poll_count)
1167 {
1168         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1169         u32 cur_cnt = poll_count;
1170
1171         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1172         crd = crd_start = REG_RD(bp, regs->crd);
1173         init_crd = REG_RD(bp, regs->init_crd);
1174
1175         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1176         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1177         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1178
1179         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1180                (init_crd - crd_start))) {
1181                 if (cur_cnt--) {
1182                         udelay(FLR_WAIT_INTERVAL);
1183                         crd = REG_RD(bp, regs->crd);
1184                         crd_freed = REG_RD(bp, regs->crd_freed);
1185                 } else {
1186                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1187                            regs->pN);
1188                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1189                            regs->pN, crd);
1190                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1191                            regs->pN, crd_freed);
1192                         break;
1193                 }
1194         }
1195         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1196            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1197 }
1198
1199 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1200                                      struct pbf_pN_cmd_regs *regs,
1201                                      u32 poll_count)
1202 {
1203         u32 occup, to_free, freed, freed_start;
1204         u32 cur_cnt = poll_count;
1205
1206         occup = to_free = REG_RD(bp, regs->lines_occup);
1207         freed = freed_start = REG_RD(bp, regs->lines_freed);
1208
1209         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1210         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1211
1212         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1213                 if (cur_cnt--) {
1214                         udelay(FLR_WAIT_INTERVAL);
1215                         occup = REG_RD(bp, regs->lines_occup);
1216                         freed = REG_RD(bp, regs->lines_freed);
1217                 } else {
1218                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1219                            regs->pN);
1220                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1221                            regs->pN, occup);
1222                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1223                            regs->pN, freed);
1224                         break;
1225                 }
1226         }
1227         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1228            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1229 }
1230
1231 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1232                                     u32 expected, u32 poll_count)
1233 {
1234         u32 cur_cnt = poll_count;
1235         u32 val;
1236
1237         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1238                 udelay(FLR_WAIT_INTERVAL);
1239
1240         return val;
1241 }
1242
1243 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1244                                     char *msg, u32 poll_cnt)
1245 {
1246         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1247         if (val != 0) {
1248                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1249                 return 1;
1250         }
1251         return 0;
1252 }
1253
1254 /* Common routines with VF FLR cleanup */
1255 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1256 {
1257         /* adjust polling timeout */
1258         if (CHIP_REV_IS_EMUL(bp))
1259                 return FLR_POLL_CNT * 2000;
1260
1261         if (CHIP_REV_IS_FPGA(bp))
1262                 return FLR_POLL_CNT * 120;
1263
1264         return FLR_POLL_CNT;
1265 }
1266
1267 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1268 {
1269         struct pbf_pN_cmd_regs cmd_regs[] = {
1270                 {0, (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_TQ_OCCUPANCY_Q0 :
1272                         PBF_REG_P0_TQ_OCCUPANCY,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1275                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1276                 {1, (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_TQ_OCCUPANCY_Q1 :
1278                         PBF_REG_P1_TQ_OCCUPANCY,
1279                     (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1281                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1282                 {4, (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1284                         PBF_REG_P4_TQ_OCCUPANCY,
1285                     (CHIP_IS_E3B0(bp)) ?
1286                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1287                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1288         };
1289
1290         struct pbf_pN_buf_regs buf_regs[] = {
1291                 {0, (CHIP_IS_E3B0(bp)) ?
1292                         PBF_REG_INIT_CRD_Q0 :
1293                         PBF_REG_P0_INIT_CRD ,
1294                     (CHIP_IS_E3B0(bp)) ?
1295                         PBF_REG_CREDIT_Q0 :
1296                         PBF_REG_P0_CREDIT,
1297                     (CHIP_IS_E3B0(bp)) ?
1298                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1299                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1300                 {1, (CHIP_IS_E3B0(bp)) ?
1301                         PBF_REG_INIT_CRD_Q1 :
1302                         PBF_REG_P1_INIT_CRD,
1303                     (CHIP_IS_E3B0(bp)) ?
1304                         PBF_REG_CREDIT_Q1 :
1305                         PBF_REG_P1_CREDIT,
1306                     (CHIP_IS_E3B0(bp)) ?
1307                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1308                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1309                 {4, (CHIP_IS_E3B0(bp)) ?
1310                         PBF_REG_INIT_CRD_LB_Q :
1311                         PBF_REG_P4_INIT_CRD,
1312                     (CHIP_IS_E3B0(bp)) ?
1313                         PBF_REG_CREDIT_LB_Q :
1314                         PBF_REG_P4_CREDIT,
1315                     (CHIP_IS_E3B0(bp)) ?
1316                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1317                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1318         };
1319
1320         int i;
1321
1322         /* Verify the command queues are flushed P0, P1, P4 */
1323         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1324                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1325
1326         /* Verify the transmission buffers are flushed P0, P1, P4 */
1327         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1328                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1329 }
1330
1331 #define OP_GEN_PARAM(param) \
1332         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1333
1334 #define OP_GEN_TYPE(type) \
1335         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1336
1337 #define OP_GEN_AGG_VECT(index) \
1338         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1339
1340 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1341 {
1342         u32 op_gen_command = 0;
1343         u32 comp_addr = BAR_CSTRORM_INTMEM +
1344                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1345         int ret = 0;
1346
1347         if (REG_RD(bp, comp_addr)) {
1348                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1349                 return 1;
1350         }
1351
1352         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1353         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1354         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1355         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1356
1357         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1358         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1359
1360         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1361                 BNX2X_ERR("FW final cleanup did not succeed\n");
1362                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1363                    (REG_RD(bp, comp_addr)));
1364                 bnx2x_panic();
1365                 return 1;
1366         }
1367         /* Zero completion for next FLR */
1368         REG_WR(bp, comp_addr, 0);
1369
1370         return ret;
1371 }
1372
1373 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1374 {
1375         u16 status;
1376
1377         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1378         return status & PCI_EXP_DEVSTA_TRPND;
1379 }
1380
1381 /* PF FLR specific routines
1382 */
1383 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1384 {
1385         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1386         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1388                         "CFC PF usage counter timed out",
1389                         poll_cnt))
1390                 return 1;
1391
1392         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1393         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394                         DORQ_REG_PF_USAGE_CNT,
1395                         "DQ PF usage counter timed out",
1396                         poll_cnt))
1397                 return 1;
1398
1399         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1400         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1402                         "QM PF usage counter timed out",
1403                         poll_cnt))
1404                 return 1;
1405
1406         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1407         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1409                         "Timers VNIC usage counter timed out",
1410                         poll_cnt))
1411                 return 1;
1412         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1413                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1414                         "Timers NUM_SCANS usage counter timed out",
1415                         poll_cnt))
1416                 return 1;
1417
1418         /* Wait DMAE PF usage counter to zero */
1419         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1421                         "DMAE command register timed out",
1422                         poll_cnt))
1423                 return 1;
1424
1425         return 0;
1426 }
1427
1428 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1429 {
1430         u32 val;
1431
1432         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1433         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1434
1435         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1436         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1437
1438         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1439         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1440
1441         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1442         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1443
1444         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1445         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1446
1447         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1448         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1449
1450         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1451         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1452
1453         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1454         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1455            val);
1456 }
1457
1458 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1459 {
1460         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1461
1462         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1463
1464         /* Re-enable PF target read access */
1465         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1466
1467         /* Poll HW usage counters */
1468         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1469         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1470                 return -EBUSY;
1471
1472         /* Zero the igu 'trailing edge' and 'leading edge' */
1473
1474         /* Send the FW cleanup command */
1475         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1476                 return -EBUSY;
1477
1478         /* ATC cleanup */
1479
1480         /* Verify TX hw is flushed */
1481         bnx2x_tx_hw_flushed(bp, poll_cnt);
1482
1483         /* Wait 100ms (not adjusted according to platform) */
1484         msleep(100);
1485
1486         /* Verify no pending pci transactions */
1487         if (bnx2x_is_pcie_pending(bp->pdev))
1488                 BNX2X_ERR("PCIE Transactions still pending\n");
1489
1490         /* Debug */
1491         bnx2x_hw_enable_status(bp);
1492
1493         /*
1494          * Master enable - Due to WB DMAE writes performed before this
1495          * register is re-initialized as part of the regular function init
1496          */
1497         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1498
1499         return 0;
1500 }
1501
1502 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1503 {
1504         int port = BP_PORT(bp);
1505         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1506         u32 val = REG_RD(bp, addr);
1507         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1508         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1509         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1510
1511         if (msix) {
1512                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1514                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1515                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1516                 if (single_msix)
1517                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1518         } else if (msi) {
1519                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1520                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1521                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523         } else {
1524                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1525                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1526                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1527                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1528
1529                 if (!CHIP_IS_E1(bp)) {
1530                         DP(NETIF_MSG_IFUP,
1531                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1532
1533                         REG_WR(bp, addr, val);
1534
1535                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1536                 }
1537         }
1538
1539         if (CHIP_IS_E1(bp))
1540                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1541
1542         DP(NETIF_MSG_IFUP,
1543            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1544            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1545
1546         REG_WR(bp, addr, val);
1547         /*
1548          * Ensure that HC_CONFIG is written before leading/trailing edge config
1549          */
1550         mmiowb();
1551         barrier();
1552
1553         if (!CHIP_IS_E1(bp)) {
1554                 /* init leading/trailing edge */
1555                 if (IS_MF(bp)) {
1556                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1557                         if (bp->port.pmf)
1558                                 /* enable nig and gpio3 attention */
1559                                 val |= 0x1100;
1560                 } else
1561                         val = 0xffff;
1562
1563                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1564                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1565         }
1566
1567         /* Make sure that interrupts are indeed enabled from here on */
1568         mmiowb();
1569 }
1570
1571 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1572 {
1573         u32 val;
1574         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1575         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1576         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1577
1578         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1579
1580         if (msix) {
1581                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1582                          IGU_PF_CONF_SINGLE_ISR_EN);
1583                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1584                         IGU_PF_CONF_ATTN_BIT_EN);
1585
1586                 if (single_msix)
1587                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1588         } else if (msi) {
1589                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1590                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591                         IGU_PF_CONF_ATTN_BIT_EN |
1592                         IGU_PF_CONF_SINGLE_ISR_EN);
1593         } else {
1594                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1595                 val |= (IGU_PF_CONF_INT_LINE_EN |
1596                         IGU_PF_CONF_ATTN_BIT_EN |
1597                         IGU_PF_CONF_SINGLE_ISR_EN);
1598         }
1599
1600         /* Clean previous status - need to configure igu prior to ack*/
1601         if ((!msix) || single_msix) {
1602                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1603                 bnx2x_ack_int(bp);
1604         }
1605
1606         val |= IGU_PF_CONF_FUNC_EN;
1607
1608         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1609            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1610
1611         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1612
1613         if (val & IGU_PF_CONF_INT_LINE_EN)
1614                 pci_intx(bp->pdev, true);
1615
1616         barrier();
1617
1618         /* init leading/trailing edge */
1619         if (IS_MF(bp)) {
1620                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1621                 if (bp->port.pmf)
1622                         /* enable nig and gpio3 attention */
1623                         val |= 0x1100;
1624         } else
1625                 val = 0xffff;
1626
1627         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1628         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1629
1630         /* Make sure that interrupts are indeed enabled from here on */
1631         mmiowb();
1632 }
1633
1634 void bnx2x_int_enable(struct bnx2x *bp)
1635 {
1636         if (bp->common.int_block == INT_BLOCK_HC)
1637                 bnx2x_hc_int_enable(bp);
1638         else
1639                 bnx2x_igu_int_enable(bp);
1640 }
1641
1642 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1643 {
1644         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1645         int i, offset;
1646
1647         if (disable_hw)
1648                 /* prevent the HW from sending interrupts */
1649                 bnx2x_int_disable(bp);
1650
1651         /* make sure all ISRs are done */
1652         if (msix) {
1653                 synchronize_irq(bp->msix_table[0].vector);
1654                 offset = 1;
1655                 if (CNIC_SUPPORT(bp))
1656                         offset++;
1657                 for_each_eth_queue(bp, i)
1658                         synchronize_irq(bp->msix_table[offset++].vector);
1659         } else
1660                 synchronize_irq(bp->pdev->irq);
1661
1662         /* make sure sp_task is not running */
1663         cancel_delayed_work(&bp->sp_task);
1664         cancel_delayed_work(&bp->period_task);
1665         flush_workqueue(bnx2x_wq);
1666 }
1667
1668 /* fast path */
1669
1670 /*
1671  * General service functions
1672  */
1673
1674 /* Return true if succeeded to acquire the lock */
1675 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1676 {
1677         u32 lock_status;
1678         u32 resource_bit = (1 << resource);
1679         int func = BP_FUNC(bp);
1680         u32 hw_lock_control_reg;
1681
1682         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1683            "Trying to take a lock on resource %d\n", resource);
1684
1685         /* Validating that the resource is within range */
1686         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1687                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1688                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1689                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1690                 return false;
1691         }
1692
1693         if (func <= 5)
1694                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1695         else
1696                 hw_lock_control_reg =
1697                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1698
1699         /* Try to acquire the lock */
1700         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1701         lock_status = REG_RD(bp, hw_lock_control_reg);
1702         if (lock_status & resource_bit)
1703                 return true;
1704
1705         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1706            "Failed to get a lock on resource %d\n", resource);
1707         return false;
1708 }
1709
1710 /**
1711  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1712  *
1713  * @bp: driver handle
1714  *
1715  * Returns the recovery leader resource id according to the engine this function
1716  * belongs to. Currently only only 2 engines is supported.
1717  */
1718 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1719 {
1720         if (BP_PATH(bp))
1721                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1722         else
1723                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1724 }
1725
1726 /**
1727  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1728  *
1729  * @bp: driver handle
1730  *
1731  * Tries to acquire a leader lock for current engine.
1732  */
1733 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1734 {
1735         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1736 }
1737
1738 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1739
1740 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1741 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1742 {
1743         /* Set the interrupt occurred bit for the sp-task to recognize it
1744          * must ack the interrupt and transition according to the IGU
1745          * state machine.
1746          */
1747         atomic_set(&bp->interrupt_occurred, 1);
1748
1749         /* The sp_task must execute only after this bit
1750          * is set, otherwise we will get out of sync and miss all
1751          * further interrupts. Hence, the barrier.
1752          */
1753         smp_wmb();
1754
1755         /* schedule sp_task to workqueue */
1756         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1757 }
1758
1759 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1760 {
1761         struct bnx2x *bp = fp->bp;
1762         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1763         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1764         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1765         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1766
1767         DP(BNX2X_MSG_SP,
1768            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1769            fp->index, cid, command, bp->state,
1770            rr_cqe->ramrod_cqe.ramrod_type);
1771
1772         /* If cid is within VF range, replace the slowpath object with the
1773          * one corresponding to this VF
1774          */
1775         if (cid >= BNX2X_FIRST_VF_CID  &&
1776             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1777                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1778
1779         switch (command) {
1780         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1781                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1782                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1783                 break;
1784
1785         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1786                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1787                 drv_cmd = BNX2X_Q_CMD_SETUP;
1788                 break;
1789
1790         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1791                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1792                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1793                 break;
1794
1795         case (RAMROD_CMD_ID_ETH_HALT):
1796                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1797                 drv_cmd = BNX2X_Q_CMD_HALT;
1798                 break;
1799
1800         case (RAMROD_CMD_ID_ETH_TERMINATE):
1801                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1802                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1803                 break;
1804
1805         case (RAMROD_CMD_ID_ETH_EMPTY):
1806                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1807                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1808                 break;
1809
1810         default:
1811                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1812                           command, fp->index);
1813                 return;
1814         }
1815
1816         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1817             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1818                 /* q_obj->complete_cmd() failure means that this was
1819                  * an unexpected completion.
1820                  *
1821                  * In this case we don't want to increase the bp->spq_left
1822                  * because apparently we haven't sent this command the first
1823                  * place.
1824                  */
1825 #ifdef BNX2X_STOP_ON_ERROR
1826                 bnx2x_panic();
1827 #else
1828                 return;
1829 #endif
1830         /* SRIOV: reschedule any 'in_progress' operations */
1831         bnx2x_iov_sp_event(bp, cid, true);
1832
1833         smp_mb__before_atomic_inc();
1834         atomic_inc(&bp->cq_spq_left);
1835         /* push the change in bp->spq_left and towards the memory */
1836         smp_mb__after_atomic_inc();
1837
1838         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1839
1840         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1841             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1842                 /* if Q update ramrod is completed for last Q in AFEX vif set
1843                  * flow, then ACK MCP at the end
1844                  *
1845                  * mark pending ACK to MCP bit.
1846                  * prevent case that both bits are cleared.
1847                  * At the end of load/unload driver checks that
1848                  * sp_state is cleared, and this order prevents
1849                  * races
1850                  */
1851                 smp_mb__before_clear_bit();
1852                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1853                 wmb();
1854                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1855                 smp_mb__after_clear_bit();
1856
1857                 /* schedule the sp task as mcp ack is required */
1858                 bnx2x_schedule_sp_task(bp);
1859         }
1860
1861         return;
1862 }
1863
1864 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1865 {
1866         struct bnx2x *bp = netdev_priv(dev_instance);
1867         u16 status = bnx2x_ack_int(bp);
1868         u16 mask;
1869         int i;
1870         u8 cos;
1871
1872         /* Return here if interrupt is shared and it's not for us */
1873         if (unlikely(status == 0)) {
1874                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1875                 return IRQ_NONE;
1876         }
1877         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1878
1879 #ifdef BNX2X_STOP_ON_ERROR
1880         if (unlikely(bp->panic))
1881                 return IRQ_HANDLED;
1882 #endif
1883
1884         for_each_eth_queue(bp, i) {
1885                 struct bnx2x_fastpath *fp = &bp->fp[i];
1886
1887                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1888                 if (status & mask) {
1889                         /* Handle Rx or Tx according to SB id */
1890                         for_each_cos_in_tx_queue(fp, cos)
1891                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1892                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1893                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1894                         status &= ~mask;
1895                 }
1896         }
1897
1898         if (CNIC_SUPPORT(bp)) {
1899                 mask = 0x2;
1900                 if (status & (mask | 0x1)) {
1901                         struct cnic_ops *c_ops = NULL;
1902
1903                         rcu_read_lock();
1904                         c_ops = rcu_dereference(bp->cnic_ops);
1905                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1906                                       CNIC_DRV_STATE_HANDLES_IRQ))
1907                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1908                         rcu_read_unlock();
1909
1910                         status &= ~mask;
1911                 }
1912         }
1913
1914         if (unlikely(status & 0x1)) {
1915
1916                 /* schedule sp task to perform default status block work, ack
1917                  * attentions and enable interrupts.
1918                  */
1919                 bnx2x_schedule_sp_task(bp);
1920
1921                 status &= ~0x1;
1922                 if (!status)
1923                         return IRQ_HANDLED;
1924         }
1925
1926         if (unlikely(status))
1927                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1928                    status);
1929
1930         return IRQ_HANDLED;
1931 }
1932
1933 /* Link */
1934
1935 /*
1936  * General service functions
1937  */
1938
1939 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1940 {
1941         u32 lock_status;
1942         u32 resource_bit = (1 << resource);
1943         int func = BP_FUNC(bp);
1944         u32 hw_lock_control_reg;
1945         int cnt;
1946
1947         /* Validating that the resource is within range */
1948         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1949                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1950                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1951                 return -EINVAL;
1952         }
1953
1954         if (func <= 5) {
1955                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1956         } else {
1957                 hw_lock_control_reg =
1958                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1959         }
1960
1961         /* Validating that the resource is not already taken */
1962         lock_status = REG_RD(bp, hw_lock_control_reg);
1963         if (lock_status & resource_bit) {
1964                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1965                    lock_status, resource_bit);
1966                 return -EEXIST;
1967         }
1968
1969         /* Try for 5 second every 5ms */
1970         for (cnt = 0; cnt < 1000; cnt++) {
1971                 /* Try to acquire the lock */
1972                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1973                 lock_status = REG_RD(bp, hw_lock_control_reg);
1974                 if (lock_status & resource_bit)
1975                         return 0;
1976
1977                 usleep_range(5000, 10000);
1978         }
1979         BNX2X_ERR("Timeout\n");
1980         return -EAGAIN;
1981 }
1982
1983 int bnx2x_release_leader_lock(struct bnx2x *bp)
1984 {
1985         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1986 }
1987
1988 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1989 {
1990         u32 lock_status;
1991         u32 resource_bit = (1 << resource);
1992         int func = BP_FUNC(bp);
1993         u32 hw_lock_control_reg;
1994
1995         /* Validating that the resource is within range */
1996         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1997                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1998                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1999                 return -EINVAL;
2000         }
2001
2002         if (func <= 5) {
2003                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2004         } else {
2005                 hw_lock_control_reg =
2006                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2007         }
2008
2009         /* Validating that the resource is currently taken */
2010         lock_status = REG_RD(bp, hw_lock_control_reg);
2011         if (!(lock_status & resource_bit)) {
2012                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2013                           lock_status, resource_bit);
2014                 return -EFAULT;
2015         }
2016
2017         REG_WR(bp, hw_lock_control_reg, resource_bit);
2018         return 0;
2019 }
2020
2021 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2022 {
2023         /* The GPIO should be swapped if swap register is set and active */
2024         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2025                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2026         int gpio_shift = gpio_num +
2027                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2028         u32 gpio_mask = (1 << gpio_shift);
2029         u32 gpio_reg;
2030         int value;
2031
2032         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2033                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2034                 return -EINVAL;
2035         }
2036
2037         /* read GPIO value */
2038         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2039
2040         /* get the requested pin value */
2041         if ((gpio_reg & gpio_mask) == gpio_mask)
2042                 value = 1;
2043         else
2044                 value = 0;
2045
2046         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2047
2048         return value;
2049 }
2050
2051 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2052 {
2053         /* The GPIO should be swapped if swap register is set and active */
2054         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2055                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2056         int gpio_shift = gpio_num +
2057                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2058         u32 gpio_mask = (1 << gpio_shift);
2059         u32 gpio_reg;
2060
2061         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2062                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2063                 return -EINVAL;
2064         }
2065
2066         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2067         /* read GPIO and mask except the float bits */
2068         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2069
2070         switch (mode) {
2071         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2072                 DP(NETIF_MSG_LINK,
2073                    "Set GPIO %d (shift %d) -> output low\n",
2074                    gpio_num, gpio_shift);
2075                 /* clear FLOAT and set CLR */
2076                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2077                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2078                 break;
2079
2080         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2081                 DP(NETIF_MSG_LINK,
2082                    "Set GPIO %d (shift %d) -> output high\n",
2083                    gpio_num, gpio_shift);
2084                 /* clear FLOAT and set SET */
2085                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2086                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2087                 break;
2088
2089         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2090                 DP(NETIF_MSG_LINK,
2091                    "Set GPIO %d (shift %d) -> input\n",
2092                    gpio_num, gpio_shift);
2093                 /* set FLOAT */
2094                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2095                 break;
2096
2097         default:
2098                 break;
2099         }
2100
2101         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2102         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2103
2104         return 0;
2105 }
2106
2107 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2108 {
2109         u32 gpio_reg = 0;
2110         int rc = 0;
2111
2112         /* Any port swapping should be handled by caller. */
2113
2114         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2115         /* read GPIO and mask except the float bits */
2116         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2117         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2118         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2119         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2120
2121         switch (mode) {
2122         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2123                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2124                 /* set CLR */
2125                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2126                 break;
2127
2128         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2129                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2130                 /* set SET */
2131                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2132                 break;
2133
2134         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2135                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2136                 /* set FLOAT */
2137                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2138                 break;
2139
2140         default:
2141                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2142                 rc = -EINVAL;
2143                 break;
2144         }
2145
2146         if (rc == 0)
2147                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2148
2149         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150
2151         return rc;
2152 }
2153
2154 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2155 {
2156         /* The GPIO should be swapped if swap register is set and active */
2157         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2158                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2159         int gpio_shift = gpio_num +
2160                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2161         u32 gpio_mask = (1 << gpio_shift);
2162         u32 gpio_reg;
2163
2164         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2165                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2166                 return -EINVAL;
2167         }
2168
2169         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2170         /* read GPIO int */
2171         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2172
2173         switch (mode) {
2174         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2175                 DP(NETIF_MSG_LINK,
2176                    "Clear GPIO INT %d (shift %d) -> output low\n",
2177                    gpio_num, gpio_shift);
2178                 /* clear SET and set CLR */
2179                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2180                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2181                 break;
2182
2183         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2184                 DP(NETIF_MSG_LINK,
2185                    "Set GPIO INT %d (shift %d) -> output high\n",
2186                    gpio_num, gpio_shift);
2187                 /* clear CLR and set SET */
2188                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2189                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2190                 break;
2191
2192         default:
2193                 break;
2194         }
2195
2196         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2197         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198
2199         return 0;
2200 }
2201
2202 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2203 {
2204         u32 spio_reg;
2205
2206         /* Only 2 SPIOs are configurable */
2207         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2208                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2209                 return -EINVAL;
2210         }
2211
2212         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2213         /* read SPIO and mask except the float bits */
2214         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2215
2216         switch (mode) {
2217         case MISC_SPIO_OUTPUT_LOW:
2218                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2219                 /* clear FLOAT and set CLR */
2220                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2221                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2222                 break;
2223
2224         case MISC_SPIO_OUTPUT_HIGH:
2225                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2226                 /* clear FLOAT and set SET */
2227                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2229                 break;
2230
2231         case MISC_SPIO_INPUT_HI_Z:
2232                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2233                 /* set FLOAT */
2234                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2235                 break;
2236
2237         default:
2238                 break;
2239         }
2240
2241         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2242         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2243
2244         return 0;
2245 }
2246
2247 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2248 {
2249         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2250         switch (bp->link_vars.ieee_fc &
2251                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2252         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2253                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2254                                                    ADVERTISED_Pause);
2255                 break;
2256
2257         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2258                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2259                                                   ADVERTISED_Pause);
2260                 break;
2261
2262         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2263                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2264                 break;
2265
2266         default:
2267                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2268                                                    ADVERTISED_Pause);
2269                 break;
2270         }
2271 }
2272
2273 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2274 {
2275         /* Initialize link parameters structure variables
2276          * It is recommended to turn off RX FC for jumbo frames
2277          *  for better performance
2278          */
2279         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2280                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2281         else
2282                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2283 }
2284
2285 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2286 {
2287         u32 pause_enabled = 0;
2288
2289         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2290                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2291                         pause_enabled = 1;
2292
2293                 REG_WR(bp, BAR_USTRORM_INTMEM +
2294                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2295                        pause_enabled);
2296         }
2297
2298         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2299            pause_enabled ? "enabled" : "disabled");
2300 }
2301
2302 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2303 {
2304         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2305         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2306
2307         if (!BP_NOMCP(bp)) {
2308                 bnx2x_set_requested_fc(bp);
2309                 bnx2x_acquire_phy_lock(bp);
2310
2311                 if (load_mode == LOAD_DIAG) {
2312                         struct link_params *lp = &bp->link_params;
2313                         lp->loopback_mode = LOOPBACK_XGXS;
2314                         /* do PHY loopback at 10G speed, if possible */
2315                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2316                                 if (lp->speed_cap_mask[cfx_idx] &
2317                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2318                                         lp->req_line_speed[cfx_idx] =
2319                                         SPEED_10000;
2320                                 else
2321                                         lp->req_line_speed[cfx_idx] =
2322                                         SPEED_1000;
2323                         }
2324                 }
2325
2326                 if (load_mode == LOAD_LOOPBACK_EXT) {
2327                         struct link_params *lp = &bp->link_params;
2328                         lp->loopback_mode = LOOPBACK_EXT;
2329                 }
2330
2331                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2332
2333                 bnx2x_release_phy_lock(bp);
2334
2335                 bnx2x_init_dropless_fc(bp);
2336
2337                 bnx2x_calc_fc_adv(bp);
2338
2339                 if (bp->link_vars.link_up) {
2340                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2341                         bnx2x_link_report(bp);
2342                 }
2343                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2344                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2345                 return rc;
2346         }
2347         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2348         return -EINVAL;
2349 }
2350
2351 void bnx2x_link_set(struct bnx2x *bp)
2352 {
2353         if (!BP_NOMCP(bp)) {
2354                 bnx2x_acquire_phy_lock(bp);
2355                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2356                 bnx2x_release_phy_lock(bp);
2357
2358                 bnx2x_init_dropless_fc(bp);
2359
2360                 bnx2x_calc_fc_adv(bp);
2361         } else
2362                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2363 }
2364
2365 static void bnx2x__link_reset(struct bnx2x *bp)
2366 {
2367         if (!BP_NOMCP(bp)) {
2368                 bnx2x_acquire_phy_lock(bp);
2369                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2370                 bnx2x_release_phy_lock(bp);
2371         } else
2372                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2373 }
2374
2375 void bnx2x_force_link_reset(struct bnx2x *bp)
2376 {
2377         bnx2x_acquire_phy_lock(bp);
2378         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2379         bnx2x_release_phy_lock(bp);
2380 }
2381
2382 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2383 {
2384         u8 rc = 0;
2385
2386         if (!BP_NOMCP(bp)) {
2387                 bnx2x_acquire_phy_lock(bp);
2388                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2389                                      is_serdes);
2390                 bnx2x_release_phy_lock(bp);
2391         } else
2392                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2393
2394         return rc;
2395 }
2396
2397 /* Calculates the sum of vn_min_rates.
2398    It's needed for further normalizing of the min_rates.
2399    Returns:
2400      sum of vn_min_rates.
2401        or
2402      0 - if all the min_rates are 0.
2403      In the later case fairness algorithm should be deactivated.
2404      If not all min_rates are zero then those that are zeroes will be set to 1.
2405  */
2406 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2407                                       struct cmng_init_input *input)
2408 {
2409         int all_zero = 1;
2410         int vn;
2411
2412         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2413                 u32 vn_cfg = bp->mf_config[vn];
2414                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2415                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2416
2417                 /* Skip hidden vns */
2418                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2419                         vn_min_rate = 0;
2420                 /* If min rate is zero - set it to 1 */
2421                 else if (!vn_min_rate)
2422                         vn_min_rate = DEF_MIN_RATE;
2423                 else
2424                         all_zero = 0;
2425
2426                 input->vnic_min_rate[vn] = vn_min_rate;
2427         }
2428
2429         /* if ETS or all min rates are zeros - disable fairness */
2430         if (BNX2X_IS_ETS_ENABLED(bp)) {
2431                 input->flags.cmng_enables &=
2432                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2433                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2434         } else if (all_zero) {
2435                 input->flags.cmng_enables &=
2436                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2437                 DP(NETIF_MSG_IFUP,
2438                    "All MIN values are zeroes fairness will be disabled\n");
2439         } else
2440                 input->flags.cmng_enables |=
2441                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2442 }
2443
2444 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2445                                     struct cmng_init_input *input)
2446 {
2447         u16 vn_max_rate;
2448         u32 vn_cfg = bp->mf_config[vn];
2449
2450         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2451                 vn_max_rate = 0;
2452         else {
2453                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2454
2455                 if (IS_MF_SI(bp)) {
2456                         /* maxCfg in percents of linkspeed */
2457                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2458                 } else /* SD modes */
2459                         /* maxCfg is absolute in 100Mb units */
2460                         vn_max_rate = maxCfg * 100;
2461         }
2462
2463         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2464
2465         input->vnic_max_rate[vn] = vn_max_rate;
2466 }
2467
2468 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2469 {
2470         if (CHIP_REV_IS_SLOW(bp))
2471                 return CMNG_FNS_NONE;
2472         if (IS_MF(bp))
2473                 return CMNG_FNS_MINMAX;
2474
2475         return CMNG_FNS_NONE;
2476 }
2477
2478 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2479 {
2480         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2481
2482         if (BP_NOMCP(bp))
2483                 return; /* what should be the default value in this case */
2484
2485         /* For 2 port configuration the absolute function number formula
2486          * is:
2487          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2488          *
2489          *      and there are 4 functions per port
2490          *
2491          * For 4 port configuration it is
2492          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2493          *
2494          *      and there are 2 functions per port
2495          */
2496         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2497                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2498
2499                 if (func >= E1H_FUNC_MAX)
2500                         break;
2501
2502                 bp->mf_config[vn] =
2503                         MF_CFG_RD(bp, func_mf_config[func].config);
2504         }
2505         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2506                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2507                 bp->flags |= MF_FUNC_DIS;
2508         } else {
2509                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2510                 bp->flags &= ~MF_FUNC_DIS;
2511         }
2512 }
2513
2514 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2515 {
2516         struct cmng_init_input input;
2517         memset(&input, 0, sizeof(struct cmng_init_input));
2518
2519         input.port_rate = bp->link_vars.line_speed;
2520
2521         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2522                 int vn;
2523
2524                 /* read mf conf from shmem */
2525                 if (read_cfg)
2526                         bnx2x_read_mf_cfg(bp);
2527
2528                 /* vn_weight_sum and enable fairness if not 0 */
2529                 bnx2x_calc_vn_min(bp, &input);
2530
2531                 /* calculate and set min-max rate for each vn */
2532                 if (bp->port.pmf)
2533                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2534                                 bnx2x_calc_vn_max(bp, vn, &input);
2535
2536                 /* always enable rate shaping and fairness */
2537                 input.flags.cmng_enables |=
2538                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2539
2540                 bnx2x_init_cmng(&input, &bp->cmng);
2541                 return;
2542         }
2543
2544         /* rate shaping and fairness are disabled */
2545         DP(NETIF_MSG_IFUP,
2546            "rate shaping and fairness are disabled\n");
2547 }
2548
2549 static void storm_memset_cmng(struct bnx2x *bp,
2550                               struct cmng_init *cmng,
2551                               u8 port)
2552 {
2553         int vn;
2554         size_t size = sizeof(struct cmng_struct_per_port);
2555
2556         u32 addr = BAR_XSTRORM_INTMEM +
2557                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2558
2559         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2560
2561         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2562                 int func = func_by_vn(bp, vn);
2563
2564                 addr = BAR_XSTRORM_INTMEM +
2565                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2566                 size = sizeof(struct rate_shaping_vars_per_vn);
2567                 __storm_memset_struct(bp, addr, size,
2568                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2569
2570                 addr = BAR_XSTRORM_INTMEM +
2571                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2572                 size = sizeof(struct fairness_vars_per_vn);
2573                 __storm_memset_struct(bp, addr, size,
2574                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2575         }
2576 }
2577
2578 /* init cmng mode in HW according to local configuration */
2579 void bnx2x_set_local_cmng(struct bnx2x *bp)
2580 {
2581         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2582
2583         if (cmng_fns != CMNG_FNS_NONE) {
2584                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2585                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2586         } else {
2587                 /* rate shaping and fairness are disabled */
2588                 DP(NETIF_MSG_IFUP,
2589                    "single function mode without fairness\n");
2590         }
2591 }
2592
2593 /* This function is called upon link interrupt */
2594 static void bnx2x_link_attn(struct bnx2x *bp)
2595 {
2596         /* Make sure that we are synced with the current statistics */
2597         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2598
2599         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2600
2601         bnx2x_init_dropless_fc(bp);
2602
2603         if (bp->link_vars.link_up) {
2604
2605                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2606                         struct host_port_stats *pstats;
2607
2608                         pstats = bnx2x_sp(bp, port_stats);
2609                         /* reset old mac stats */
2610                         memset(&(pstats->mac_stx[0]), 0,
2611                                sizeof(struct mac_stx));
2612                 }
2613                 if (bp->state == BNX2X_STATE_OPEN)
2614                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2615         }
2616
2617         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2618                 bnx2x_set_local_cmng(bp);
2619
2620         __bnx2x_link_report(bp);
2621
2622         if (IS_MF(bp))
2623                 bnx2x_link_sync_notify(bp);
2624 }
2625
2626 void bnx2x__link_status_update(struct bnx2x *bp)
2627 {
2628         if (bp->state != BNX2X_STATE_OPEN)
2629                 return;
2630
2631         /* read updated dcb configuration */
2632         if (IS_PF(bp)) {
2633                 bnx2x_dcbx_pmf_update(bp);
2634                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2635                 if (bp->link_vars.link_up)
2636                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2637                 else
2638                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2639                         /* indicate link status */
2640                 bnx2x_link_report(bp);
2641
2642         } else { /* VF */
2643                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2644                                           SUPPORTED_10baseT_Full |
2645                                           SUPPORTED_100baseT_Half |
2646                                           SUPPORTED_100baseT_Full |
2647                                           SUPPORTED_1000baseT_Full |
2648                                           SUPPORTED_2500baseX_Full |
2649                                           SUPPORTED_10000baseT_Full |
2650                                           SUPPORTED_TP |
2651                                           SUPPORTED_FIBRE |
2652                                           SUPPORTED_Autoneg |
2653                                           SUPPORTED_Pause |
2654                                           SUPPORTED_Asym_Pause);
2655                 bp->port.advertising[0] = bp->port.supported[0];
2656
2657                 bp->link_params.bp = bp;
2658                 bp->link_params.port = BP_PORT(bp);
2659                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2660                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2661                 bp->link_params.req_line_speed[0] = SPEED_10000;
2662                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2663                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2664                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2665                 bp->link_vars.line_speed = SPEED_10000;
2666                 bp->link_vars.link_status =
2667                         (LINK_STATUS_LINK_UP |
2668                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2669                 bp->link_vars.link_up = 1;
2670                 bp->link_vars.duplex = DUPLEX_FULL;
2671                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2672                 __bnx2x_link_report(bp);
2673                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2674         }
2675 }
2676
2677 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2678                                   u16 vlan_val, u8 allowed_prio)
2679 {
2680         struct bnx2x_func_state_params func_params = {NULL};
2681         struct bnx2x_func_afex_update_params *f_update_params =
2682                 &func_params.params.afex_update;
2683
2684         func_params.f_obj = &bp->func_obj;
2685         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2686
2687         /* no need to wait for RAMROD completion, so don't
2688          * set RAMROD_COMP_WAIT flag
2689          */
2690
2691         f_update_params->vif_id = vifid;
2692         f_update_params->afex_default_vlan = vlan_val;
2693         f_update_params->allowed_priorities = allowed_prio;
2694
2695         /* if ramrod can not be sent, response to MCP immediately */
2696         if (bnx2x_func_state_change(bp, &func_params) < 0)
2697                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2698
2699         return 0;
2700 }
2701
2702 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2703                                           u16 vif_index, u8 func_bit_map)
2704 {
2705         struct bnx2x_func_state_params func_params = {NULL};
2706         struct bnx2x_func_afex_viflists_params *update_params =
2707                 &func_params.params.afex_viflists;
2708         int rc;
2709         u32 drv_msg_code;
2710
2711         /* validate only LIST_SET and LIST_GET are received from switch */
2712         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2713                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2714                           cmd_type);
2715
2716         func_params.f_obj = &bp->func_obj;
2717         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2718
2719         /* set parameters according to cmd_type */
2720         update_params->afex_vif_list_command = cmd_type;
2721         update_params->vif_list_index = vif_index;
2722         update_params->func_bit_map =
2723                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2724         update_params->func_to_clear = 0;
2725         drv_msg_code =
2726                 (cmd_type == VIF_LIST_RULE_GET) ?
2727                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2728                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2729
2730         /* if ramrod can not be sent, respond to MCP immediately for
2731          * SET and GET requests (other are not triggered from MCP)
2732          */
2733         rc = bnx2x_func_state_change(bp, &func_params);
2734         if (rc < 0)
2735                 bnx2x_fw_command(bp, drv_msg_code, 0);
2736
2737         return 0;
2738 }
2739
2740 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2741 {
2742         struct afex_stats afex_stats;
2743         u32 func = BP_ABS_FUNC(bp);
2744         u32 mf_config;
2745         u16 vlan_val;
2746         u32 vlan_prio;
2747         u16 vif_id;
2748         u8 allowed_prio;
2749         u8 vlan_mode;
2750         u32 addr_to_write, vifid, addrs, stats_type, i;
2751
2752         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2753                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2754                 DP(BNX2X_MSG_MCP,
2755                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2756                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2757         }
2758
2759         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2760                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2762                 DP(BNX2X_MSG_MCP,
2763                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2764                    vifid, addrs);
2765                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2766                                                addrs);
2767         }
2768
2769         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2770                 addr_to_write = SHMEM2_RD(bp,
2771                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2772                 stats_type = SHMEM2_RD(bp,
2773                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2774
2775                 DP(BNX2X_MSG_MCP,
2776                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2777                    addr_to_write);
2778
2779                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2780
2781                 /* write response to scratchpad, for MCP */
2782                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2783                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2784                                *(((u32 *)(&afex_stats))+i));
2785
2786                 /* send ack message to MCP */
2787                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2788         }
2789
2790         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2791                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2792                 bp->mf_config[BP_VN(bp)] = mf_config;
2793                 DP(BNX2X_MSG_MCP,
2794                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2795                    mf_config);
2796
2797                 /* if VIF_SET is "enabled" */
2798                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2799                         /* set rate limit directly to internal RAM */
2800                         struct cmng_init_input cmng_input;
2801                         struct rate_shaping_vars_per_vn m_rs_vn;
2802                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2803                         u32 addr = BAR_XSTRORM_INTMEM +
2804                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2805
2806                         bp->mf_config[BP_VN(bp)] = mf_config;
2807
2808                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2809                         m_rs_vn.vn_counter.rate =
2810                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2811                         m_rs_vn.vn_counter.quota =
2812                                 (m_rs_vn.vn_counter.rate *
2813                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2814
2815                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2816
2817                         /* read relevant values from mf_cfg struct in shmem */
2818                         vif_id =
2819                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2820                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2821                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2822                         vlan_val =
2823                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2824                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2825                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2826                         vlan_prio = (mf_config &
2827                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2828                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2829                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2830                         vlan_mode =
2831                                 (MF_CFG_RD(bp,
2832                                            func_mf_config[func].afex_config) &
2833                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2834                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2835                         allowed_prio =
2836                                 (MF_CFG_RD(bp,
2837                                            func_mf_config[func].afex_config) &
2838                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2839                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2840
2841                         /* send ramrod to FW, return in case of failure */
2842                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2843                                                    allowed_prio))
2844                                 return;
2845
2846                         bp->afex_def_vlan_tag = vlan_val;
2847                         bp->afex_vlan_mode = vlan_mode;
2848                 } else {
2849                         /* notify link down because BP->flags is disabled */
2850                         bnx2x_link_report(bp);
2851
2852                         /* send INVALID VIF ramrod to FW */
2853                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2854
2855                         /* Reset the default afex VLAN */
2856                         bp->afex_def_vlan_tag = -1;
2857                 }
2858         }
2859 }
2860
2861 static void bnx2x_pmf_update(struct bnx2x *bp)
2862 {
2863         int port = BP_PORT(bp);
2864         u32 val;
2865
2866         bp->port.pmf = 1;
2867         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2868
2869         /*
2870          * We need the mb() to ensure the ordering between the writing to
2871          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2872          */
2873         smp_mb();
2874
2875         /* queue a periodic task */
2876         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2877
2878         bnx2x_dcbx_pmf_update(bp);
2879
2880         /* enable nig attention */
2881         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2882         if (bp->common.int_block == INT_BLOCK_HC) {
2883                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2884                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2885         } else if (!CHIP_IS_E1x(bp)) {
2886                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2887                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2888         }
2889
2890         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2891 }
2892
2893 /* end of Link */
2894
2895 /* slow path */
2896
2897 /*
2898  * General service functions
2899  */
2900
2901 /* send the MCP a request, block until there is a reply */
2902 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2903 {
2904         int mb_idx = BP_FW_MB_IDX(bp);
2905         u32 seq;
2906         u32 rc = 0;
2907         u32 cnt = 1;
2908         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2909
2910         mutex_lock(&bp->fw_mb_mutex);
2911         seq = ++bp->fw_seq;
2912         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2913         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2914
2915         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2916                         (command | seq), param);
2917
2918         do {
2919                 /* let the FW do it's magic ... */
2920                 msleep(delay);
2921
2922                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2923
2924                 /* Give the FW up to 5 second (500*10ms) */
2925         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2926
2927         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2928            cnt*delay, rc, seq);
2929
2930         /* is this a reply to our command? */
2931         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2932                 rc &= FW_MSG_CODE_MASK;
2933         else {
2934                 /* FW BUG! */
2935                 BNX2X_ERR("FW failed to respond!\n");
2936                 bnx2x_fw_dump(bp);
2937                 rc = 0;
2938         }
2939         mutex_unlock(&bp->fw_mb_mutex);
2940
2941         return rc;
2942 }
2943
2944 static void storm_memset_func_cfg(struct bnx2x *bp,
2945                                  struct tstorm_eth_function_common_config *tcfg,
2946                                  u16 abs_fid)
2947 {
2948         size_t size = sizeof(struct tstorm_eth_function_common_config);
2949
2950         u32 addr = BAR_TSTRORM_INTMEM +
2951                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2952
2953         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2954 }
2955
2956 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2957 {
2958         if (CHIP_IS_E1x(bp)) {
2959                 struct tstorm_eth_function_common_config tcfg = {0};
2960
2961                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2962         }
2963
2964         /* Enable the function in the FW */
2965         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2966         storm_memset_func_en(bp, p->func_id, 1);
2967
2968         /* spq */
2969         if (p->func_flgs & FUNC_FLG_SPQ) {
2970                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2971                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2972                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2973         }
2974 }
2975
2976 /**
2977  * bnx2x_get_common_flags - Return common flags
2978  *
2979  * @bp          device handle
2980  * @fp          queue handle
2981  * @zero_stats  TRUE if statistics zeroing is needed
2982  *
2983  * Return the flags that are common for the Tx-only and not normal connections.
2984  */
2985 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2986                                             struct bnx2x_fastpath *fp,
2987                                             bool zero_stats)
2988 {
2989         unsigned long flags = 0;
2990
2991         /* PF driver will always initialize the Queue to an ACTIVE state */
2992         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2993
2994         /* tx only connections collect statistics (on the same index as the
2995          * parent connection). The statistics are zeroed when the parent
2996          * connection is initialized.
2997          */
2998
2999         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3000         if (zero_stats)
3001                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3002
3003         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3004         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3005
3006 #ifdef BNX2X_STOP_ON_ERROR
3007         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3008 #endif
3009
3010         return flags;
3011 }
3012
3013 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3014                                        struct bnx2x_fastpath *fp,
3015                                        bool leading)
3016 {
3017         unsigned long flags = 0;
3018
3019         /* calculate other queue flags */
3020         if (IS_MF_SD(bp))
3021                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3022
3023         if (IS_FCOE_FP(fp)) {
3024                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3025                 /* For FCoE - force usage of default priority (for afex) */
3026                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3027         }
3028
3029         if (!fp->disable_tpa) {
3030                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3031                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3032                 if (fp->mode == TPA_MODE_GRO)
3033                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3034         }
3035
3036         if (leading) {
3037                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3038                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3039         }
3040
3041         /* Always set HW VLAN stripping */
3042         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3043
3044         /* configure silent vlan removal */
3045         if (IS_MF_AFEX(bp))
3046                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3047
3048         return flags | bnx2x_get_common_flags(bp, fp, true);
3049 }
3050
3051 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3052         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3053         u8 cos)
3054 {
3055         gen_init->stat_id = bnx2x_stats_id(fp);
3056         gen_init->spcl_id = fp->cl_id;
3057
3058         /* Always use mini-jumbo MTU for FCoE L2 ring */
3059         if (IS_FCOE_FP(fp))
3060                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3061         else
3062                 gen_init->mtu = bp->dev->mtu;
3063
3064         gen_init->cos = cos;
3065 }
3066
3067 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3068         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3069         struct bnx2x_rxq_setup_params *rxq_init)
3070 {
3071         u8 max_sge = 0;
3072         u16 sge_sz = 0;
3073         u16 tpa_agg_size = 0;
3074
3075         if (!fp->disable_tpa) {
3076                 pause->sge_th_lo = SGE_TH_LO(bp);
3077                 pause->sge_th_hi = SGE_TH_HI(bp);
3078
3079                 /* validate SGE ring has enough to cross high threshold */
3080                 WARN_ON(bp->dropless_fc &&
3081                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3082                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3083
3084                 tpa_agg_size = TPA_AGG_SIZE;
3085                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3086                         SGE_PAGE_SHIFT;
3087                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3088                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3089                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3090         }
3091
3092         /* pause - not for e1 */
3093         if (!CHIP_IS_E1(bp)) {
3094                 pause->bd_th_lo = BD_TH_LO(bp);
3095                 pause->bd_th_hi = BD_TH_HI(bp);
3096
3097                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3098                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3099                 /*
3100                  * validate that rings have enough entries to cross
3101                  * high thresholds
3102                  */
3103                 WARN_ON(bp->dropless_fc &&
3104                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3105                                 bp->rx_ring_size);
3106                 WARN_ON(bp->dropless_fc &&
3107                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3108                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3109
3110                 pause->pri_map = 1;
3111         }
3112
3113         /* rxq setup */
3114         rxq_init->dscr_map = fp->rx_desc_mapping;
3115         rxq_init->sge_map = fp->rx_sge_mapping;
3116         rxq_init->rcq_map = fp->rx_comp_mapping;
3117         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3118
3119         /* This should be a maximum number of data bytes that may be
3120          * placed on the BD (not including paddings).
3121          */
3122         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3123                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3124
3125         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3126         rxq_init->tpa_agg_sz = tpa_agg_size;
3127         rxq_init->sge_buf_sz = sge_sz;
3128         rxq_init->max_sges_pkt = max_sge;
3129         rxq_init->rss_engine_id = BP_FUNC(bp);
3130         rxq_init->mcast_engine_id = BP_FUNC(bp);
3131
3132         /* Maximum number or simultaneous TPA aggregation for this Queue.
3133          *
3134          * For PF Clients it should be the maximum available number.
3135          * VF driver(s) may want to define it to a smaller value.
3136          */
3137         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3138
3139         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3140         rxq_init->fw_sb_id = fp->fw_sb_id;
3141
3142         if (IS_FCOE_FP(fp))
3143                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3144         else
3145                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3146         /* configure silent vlan removal
3147          * if multi function mode is afex, then mask default vlan
3148          */
3149         if (IS_MF_AFEX(bp)) {
3150                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3151                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3152         }
3153 }
3154
3155 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3156         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3157         u8 cos)
3158 {
3159         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3160         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3161         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3162         txq_init->fw_sb_id = fp->fw_sb_id;
3163
3164         /*
3165          * set the tss leading client id for TX classification ==
3166          * leading RSS client id
3167          */
3168         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3169
3170         if (IS_FCOE_FP(fp)) {
3171                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3172                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3173         }
3174 }
3175
3176 static void bnx2x_pf_init(struct bnx2x *bp)
3177 {
3178         struct bnx2x_func_init_params func_init = {0};
3179         struct event_ring_data eq_data = { {0} };
3180         u16 flags;
3181
3182         if (!CHIP_IS_E1x(bp)) {
3183                 /* reset IGU PF statistics: MSIX + ATTN */
3184                 /* PF */
3185                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3186                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3187                            (CHIP_MODE_IS_4_PORT(bp) ?
3188                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3189                 /* ATTN */
3190                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3191                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3192                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3193                            (CHIP_MODE_IS_4_PORT(bp) ?
3194                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3195         }
3196
3197         /* function setup flags */
3198         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3199
3200         /* This flag is relevant for E1x only.
3201          * E2 doesn't have a TPA configuration in a function level.
3202          */
3203         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3204
3205         func_init.func_flgs = flags;
3206         func_init.pf_id = BP_FUNC(bp);
3207         func_init.func_id = BP_FUNC(bp);
3208         func_init.spq_map = bp->spq_mapping;
3209         func_init.spq_prod = bp->spq_prod_idx;
3210
3211         bnx2x_func_init(bp, &func_init);
3212
3213         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3214
3215         /*
3216          * Congestion management values depend on the link rate
3217          * There is no active link so initial link rate is set to 10 Gbps.
3218          * When the link comes up The congestion management values are
3219          * re-calculated according to the actual link rate.
3220          */
3221         bp->link_vars.line_speed = SPEED_10000;
3222         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3223
3224         /* Only the PMF sets the HW */
3225         if (bp->port.pmf)
3226                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3227
3228         /* init Event Queue - PCI bus guarantees correct endianity*/
3229         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3230         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3231         eq_data.producer = bp->eq_prod;
3232         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3233         eq_data.sb_id = DEF_SB_ID;
3234         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3235 }
3236
3237 static void bnx2x_e1h_disable(struct bnx2x *bp)
3238 {
3239         int port = BP_PORT(bp);
3240
3241         bnx2x_tx_disable(bp);
3242
3243         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3244 }
3245
3246 static void bnx2x_e1h_enable(struct bnx2x *bp)
3247 {
3248         int port = BP_PORT(bp);
3249
3250         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3251
3252         /* Tx queue should be only re-enabled */
3253         netif_tx_wake_all_queues(bp->dev);
3254
3255         /*
3256          * Should not call netif_carrier_on since it will be called if the link
3257          * is up when checking for link state
3258          */
3259 }
3260
3261 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3262
3263 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3264 {
3265         struct eth_stats_info *ether_stat =
3266                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3267         struct bnx2x_vlan_mac_obj *mac_obj =
3268                 &bp->sp_objs->mac_obj;
3269         int i;
3270
3271         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3272                 ETH_STAT_INFO_VERSION_LEN);
3273
3274         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3275          * mac_local field in ether_stat struct. The base address is offset by 2
3276          * bytes to account for the field being 8 bytes but a mac address is
3277          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3278          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3279          * allocated by the ether_stat struct, so the macs will land in their
3280          * proper positions.
3281          */
3282         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3283                 memset(ether_stat->mac_local + i, 0,
3284                        sizeof(ether_stat->mac_local[0]));
3285         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3286                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3287                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3288                                 ETH_ALEN);
3289         ether_stat->mtu_size = bp->dev->mtu;
3290         if (bp->dev->features & NETIF_F_RXCSUM)
3291                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3292         if (bp->dev->features & NETIF_F_TSO)
3293                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3294         ether_stat->feature_flags |= bp->common.boot_mode;
3295
3296         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3297
3298         ether_stat->txq_size = bp->tx_ring_size;
3299         ether_stat->rxq_size = bp->rx_ring_size;
3300 }
3301
3302 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3303 {
3304         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3305         struct fcoe_stats_info *fcoe_stat =
3306                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3307
3308         if (!CNIC_LOADED(bp))
3309                 return;
3310
3311         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3312
3313         fcoe_stat->qos_priority =
3314                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3315
3316         /* insert FCoE stats from ramrod response */
3317         if (!NO_FCOE(bp)) {
3318                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3319                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3320                         tstorm_queue_statistics;
3321
3322                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3323                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3324                         xstorm_queue_statistics;
3325
3326                 struct fcoe_statistics_params *fw_fcoe_stat =
3327                         &bp->fw_stats_data->fcoe;
3328
3329                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3330                           fcoe_stat->rx_bytes_lo,
3331                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3332
3333                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3334                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3335                           fcoe_stat->rx_bytes_lo,
3336                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3337
3338                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3339                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3340                           fcoe_stat->rx_bytes_lo,
3341                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3342
3343                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3344                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3345                           fcoe_stat->rx_bytes_lo,
3346                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3347
3348                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3349                           fcoe_stat->rx_frames_lo,
3350                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3351
3352                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3353                           fcoe_stat->rx_frames_lo,
3354                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3355
3356                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3357                           fcoe_stat->rx_frames_lo,
3358                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3359
3360                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3361                           fcoe_stat->rx_frames_lo,
3362                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3363
3364                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3365                           fcoe_stat->tx_bytes_lo,
3366                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3367
3368                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3369                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3370                           fcoe_stat->tx_bytes_lo,
3371                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3372
3373                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3374                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3375                           fcoe_stat->tx_bytes_lo,
3376                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3377
3378                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3379                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3380                           fcoe_stat->tx_bytes_lo,
3381                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3382
3383                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3384                           fcoe_stat->tx_frames_lo,
3385                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3386
3387                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3388                           fcoe_stat->tx_frames_lo,
3389                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3390
3391                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3392                           fcoe_stat->tx_frames_lo,
3393                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3394
3395                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3396                           fcoe_stat->tx_frames_lo,
3397                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3398         }
3399
3400         /* ask L5 driver to add data to the struct */
3401         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3402 }
3403
3404 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3405 {
3406         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3407         struct iscsi_stats_info *iscsi_stat =
3408                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3409
3410         if (!CNIC_LOADED(bp))
3411                 return;
3412
3413         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3414                ETH_ALEN);
3415
3416         iscsi_stat->qos_priority =
3417                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3418
3419         /* ask L5 driver to add data to the struct */
3420         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3421 }
3422
3423 /* called due to MCP event (on pmf):
3424  *      reread new bandwidth configuration
3425  *      configure FW
3426  *      notify others function about the change
3427  */
3428 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3429 {
3430         if (bp->link_vars.link_up) {
3431                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3432                 bnx2x_link_sync_notify(bp);
3433         }
3434         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3435 }
3436
3437 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3438 {
3439         bnx2x_config_mf_bw(bp);
3440         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3441 }
3442
3443 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3444 {
3445         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3446         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3447 }
3448
3449 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3450 {
3451         enum drv_info_opcode op_code;
3452         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3453
3454         /* if drv_info version supported by MFW doesn't match - send NACK */
3455         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3456                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3457                 return;
3458         }
3459
3460         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3461                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3462
3463         memset(&bp->slowpath->drv_info_to_mcp, 0,
3464                sizeof(union drv_info_to_mcp));
3465
3466         switch (op_code) {
3467         case ETH_STATS_OPCODE:
3468                 bnx2x_drv_info_ether_stat(bp);
3469                 break;
3470         case FCOE_STATS_OPCODE:
3471                 bnx2x_drv_info_fcoe_stat(bp);
3472                 break;
3473         case ISCSI_STATS_OPCODE:
3474                 bnx2x_drv_info_iscsi_stat(bp);
3475                 break;
3476         default:
3477                 /* if op code isn't supported - send NACK */
3478                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3479                 return;
3480         }
3481
3482         /* if we got drv_info attn from MFW then these fields are defined in
3483          * shmem2 for sure
3484          */
3485         SHMEM2_WR(bp, drv_info_host_addr_lo,
3486                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3487         SHMEM2_WR(bp, drv_info_host_addr_hi,
3488                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3489
3490         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3491 }
3492
3493 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3494 {
3495         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3496
3497         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3498
3499                 /*
3500                  * This is the only place besides the function initialization
3501                  * where the bp->flags can change so it is done without any
3502                  * locks
3503                  */
3504                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3505                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3506                         bp->flags |= MF_FUNC_DIS;
3507
3508                         bnx2x_e1h_disable(bp);
3509                 } else {
3510                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3511                         bp->flags &= ~MF_FUNC_DIS;
3512
3513                         bnx2x_e1h_enable(bp);
3514                 }
3515                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3516         }
3517         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3518                 bnx2x_config_mf_bw(bp);
3519                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3520         }
3521
3522         /* Report results to MCP */
3523         if (dcc_event)
3524                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3525         else
3526                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3527 }
3528
3529 /* must be called under the spq lock */
3530 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3531 {
3532         struct eth_spe *next_spe = bp->spq_prod_bd;
3533
3534         if (bp->spq_prod_bd == bp->spq_last_bd) {
3535                 bp->spq_prod_bd = bp->spq;
3536                 bp->spq_prod_idx = 0;
3537                 DP(BNX2X_MSG_SP, "end of spq\n");
3538         } else {
3539                 bp->spq_prod_bd++;
3540                 bp->spq_prod_idx++;
3541         }
3542         return next_spe;
3543 }
3544
3545 /* must be called under the spq lock */
3546 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3547 {
3548         int func = BP_FUNC(bp);
3549
3550         /*
3551          * Make sure that BD data is updated before writing the producer:
3552          * BD data is written to the memory, the producer is read from the
3553          * memory, thus we need a full memory barrier to ensure the ordering.
3554          */
3555         mb();
3556
3557         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3558                  bp->spq_prod_idx);
3559         mmiowb();
3560 }
3561
3562 /**
3563  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3564  *
3565  * @cmd:        command to check
3566  * @cmd_type:   command type
3567  */
3568 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3569 {
3570         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3571             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3572             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3573             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3574             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3575             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3576             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3577                 return true;
3578         else
3579                 return false;
3580 }
3581
3582 /**
3583  * bnx2x_sp_post - place a single command on an SP ring
3584  *
3585  * @bp:         driver handle
3586  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3587  * @cid:        SW CID the command is related to
3588  * @data_hi:    command private data address (high 32 bits)
3589  * @data_lo:    command private data address (low 32 bits)
3590  * @cmd_type:   command type (e.g. NONE, ETH)
3591  *
3592  * SP data is handled as if it's always an address pair, thus data fields are
3593  * not swapped to little endian in upper functions. Instead this function swaps
3594  * data as if it's two u32 fields.
3595  */
3596 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3597                   u32 data_hi, u32 data_lo, int cmd_type)
3598 {
3599         struct eth_spe *spe;
3600         u16 type;
3601         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3602
3603 #ifdef BNX2X_STOP_ON_ERROR
3604         if (unlikely(bp->panic)) {
3605                 BNX2X_ERR("Can't post SP when there is panic\n");
3606                 return -EIO;
3607         }
3608 #endif
3609
3610         spin_lock_bh(&bp->spq_lock);
3611
3612         if (common) {
3613                 if (!atomic_read(&bp->eq_spq_left)) {
3614                         BNX2X_ERR("BUG! EQ ring full!\n");
3615                         spin_unlock_bh(&bp->spq_lock);
3616                         bnx2x_panic();
3617                         return -EBUSY;
3618                 }
3619         } else if (!atomic_read(&bp->cq_spq_left)) {
3620                         BNX2X_ERR("BUG! SPQ ring full!\n");
3621                         spin_unlock_bh(&bp->spq_lock);
3622                         bnx2x_panic();
3623                         return -EBUSY;
3624         }
3625
3626         spe = bnx2x_sp_get_next(bp);
3627
3628         /* CID needs port number to be encoded int it */
3629         spe->hdr.conn_and_cmd_data =
3630                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3631                                     HW_CID(bp, cid));
3632
3633         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3634
3635         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3636                  SPE_HDR_FUNCTION_ID);
3637
3638         spe->hdr.type = cpu_to_le16(type);
3639
3640         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3641         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3642
3643         /*
3644          * It's ok if the actual decrement is issued towards the memory
3645          * somewhere between the spin_lock and spin_unlock. Thus no
3646          * more explicit memory barrier is needed.
3647          */
3648         if (common)
3649                 atomic_dec(&bp->eq_spq_left);
3650         else
3651                 atomic_dec(&bp->cq_spq_left);
3652
3653         DP(BNX2X_MSG_SP,
3654            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3655            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3656            (u32)(U64_LO(bp->spq_mapping) +
3657            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3658            HW_CID(bp, cid), data_hi, data_lo, type,
3659            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3660
3661         bnx2x_sp_prod_update(bp);
3662         spin_unlock_bh(&bp->spq_lock);
3663         return 0;
3664 }
3665
3666 /* acquire split MCP access lock register */
3667 static int bnx2x_acquire_alr(struct bnx2x *bp)
3668 {
3669         u32 j, val;
3670         int rc = 0;
3671
3672         might_sleep();
3673         for (j = 0; j < 1000; j++) {
3674                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3675                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3676                 if (val & MCPR_ACCESS_LOCK_LOCK)
3677                         break;
3678
3679                 usleep_range(5000, 10000);
3680         }
3681         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3682                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3683                 rc = -EBUSY;
3684         }
3685
3686         return rc;
3687 }
3688
3689 /* release split MCP access lock register */
3690 static void bnx2x_release_alr(struct bnx2x *bp)
3691 {
3692         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3693 }
3694
3695 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3696 #define BNX2X_DEF_SB_IDX        0x0002
3697
3698 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3699 {
3700         struct host_sp_status_block *def_sb = bp->def_status_blk;
3701         u16 rc = 0;
3702
3703         barrier(); /* status block is written to by the chip */
3704         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3705                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3706                 rc |= BNX2X_DEF_SB_ATT_IDX;
3707         }
3708
3709         if (bp->def_idx != def_sb->sp_sb.running_index) {
3710                 bp->def_idx = def_sb->sp_sb.running_index;
3711                 rc |= BNX2X_DEF_SB_IDX;
3712         }
3713
3714         /* Do not reorder: indices reading should complete before handling */
3715         barrier();
3716         return rc;
3717 }
3718
3719 /*
3720  * slow path service functions
3721  */
3722
3723 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3724 {
3725         int port = BP_PORT(bp);
3726         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3727                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3728         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3729                                        NIG_REG_MASK_INTERRUPT_PORT0;
3730         u32 aeu_mask;
3731         u32 nig_mask = 0;
3732         u32 reg_addr;
3733
3734         if (bp->attn_state & asserted)
3735                 BNX2X_ERR("IGU ERROR\n");
3736
3737         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3738         aeu_mask = REG_RD(bp, aeu_addr);
3739
3740         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3741            aeu_mask, asserted);
3742         aeu_mask &= ~(asserted & 0x3ff);
3743         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3744
3745         REG_WR(bp, aeu_addr, aeu_mask);
3746         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3747
3748         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3749         bp->attn_state |= asserted;
3750         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3751
3752         if (asserted & ATTN_HARD_WIRED_MASK) {
3753                 if (asserted & ATTN_NIG_FOR_FUNC) {
3754
3755                         bnx2x_acquire_phy_lock(bp);
3756
3757                         /* save nig interrupt mask */
3758                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3759
3760                         /* If nig_mask is not set, no need to call the update
3761                          * function.
3762                          */
3763                         if (nig_mask) {
3764                                 REG_WR(bp, nig_int_mask_addr, 0);
3765
3766                                 bnx2x_link_attn(bp);
3767                         }
3768
3769                         /* handle unicore attn? */
3770                 }
3771                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3772                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3773
3774                 if (asserted & GPIO_2_FUNC)
3775                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3776
3777                 if (asserted & GPIO_3_FUNC)
3778                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3779
3780                 if (asserted & GPIO_4_FUNC)
3781                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3782
3783                 if (port == 0) {
3784                         if (asserted & ATTN_GENERAL_ATTN_1) {
3785                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3786                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3787                         }
3788                         if (asserted & ATTN_GENERAL_ATTN_2) {
3789                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3790                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3791                         }
3792                         if (asserted & ATTN_GENERAL_ATTN_3) {
3793                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3794                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3795                         }
3796                 } else {
3797                         if (asserted & ATTN_GENERAL_ATTN_4) {
3798                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3799                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3800                         }
3801                         if (asserted & ATTN_GENERAL_ATTN_5) {
3802                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3803                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3804                         }
3805                         if (asserted & ATTN_GENERAL_ATTN_6) {
3806                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3807                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3808                         }
3809                 }
3810
3811         } /* if hardwired */
3812
3813         if (bp->common.int_block == INT_BLOCK_HC)
3814                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3815                             COMMAND_REG_ATTN_BITS_SET);
3816         else
3817                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3818
3819         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3820            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3821         REG_WR(bp, reg_addr, asserted);
3822
3823         /* now set back the mask */
3824         if (asserted & ATTN_NIG_FOR_FUNC) {
3825                 /* Verify that IGU ack through BAR was written before restoring
3826                  * NIG mask. This loop should exit after 2-3 iterations max.
3827                  */
3828                 if (bp->common.int_block != INT_BLOCK_HC) {
3829                         u32 cnt = 0, igu_acked;
3830                         do {
3831                                 igu_acked = REG_RD(bp,
3832                                                    IGU_REG_ATTENTION_ACK_BITS);
3833                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3834                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3835                         if (!igu_acked)
3836                                 DP(NETIF_MSG_HW,
3837                                    "Failed to verify IGU ack on time\n");
3838                         barrier();
3839                 }
3840                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3841                 bnx2x_release_phy_lock(bp);
3842         }
3843 }
3844
3845 static void bnx2x_fan_failure(struct bnx2x *bp)
3846 {
3847         int port = BP_PORT(bp);
3848         u32 ext_phy_config;
3849         /* mark the failure */
3850         ext_phy_config =
3851                 SHMEM_RD(bp,
3852                          dev_info.port_hw_config[port].external_phy_config);
3853
3854         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3855         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3856         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3857                  ext_phy_config);
3858
3859         /* log the failure */
3860         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3861                             "Please contact OEM Support for assistance\n");
3862
3863         /* Schedule device reset (unload)
3864          * This is due to some boards consuming sufficient power when driver is
3865          * up to overheat if fan fails.
3866          */
3867         smp_mb__before_clear_bit();
3868         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3869         smp_mb__after_clear_bit();
3870         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3871 }
3872
3873 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3874 {
3875         int port = BP_PORT(bp);
3876         int reg_offset;
3877         u32 val;
3878
3879         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3880                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3881
3882         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3883
3884                 val = REG_RD(bp, reg_offset);
3885                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3886                 REG_WR(bp, reg_offset, val);
3887
3888                 BNX2X_ERR("SPIO5 hw attention\n");
3889
3890                 /* Fan failure attention */
3891                 bnx2x_hw_reset_phy(&bp->link_params);
3892                 bnx2x_fan_failure(bp);
3893         }
3894
3895         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3896                 bnx2x_acquire_phy_lock(bp);
3897                 bnx2x_handle_module_detect_int(&bp->link_params);
3898                 bnx2x_release_phy_lock(bp);
3899         }
3900
3901         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3902
3903                 val = REG_RD(bp, reg_offset);
3904                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3905                 REG_WR(bp, reg_offset, val);
3906
3907                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3908                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3909                 bnx2x_panic();
3910         }
3911 }
3912
3913 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3914 {
3915         u32 val;
3916
3917         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3918
3919                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3920                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3921                 /* DORQ discard attention */
3922                 if (val & 0x2)
3923                         BNX2X_ERR("FATAL error from DORQ\n");
3924         }
3925
3926         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3927
3928                 int port = BP_PORT(bp);
3929                 int reg_offset;
3930
3931                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3932                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3933
3934                 val = REG_RD(bp, reg_offset);
3935                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3936                 REG_WR(bp, reg_offset, val);
3937
3938                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3939                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3940                 bnx2x_panic();
3941         }
3942 }
3943
3944 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3945 {
3946         u32 val;
3947
3948         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3949
3950                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3951                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3952                 /* CFC error attention */
3953                 if (val & 0x2)
3954                         BNX2X_ERR("FATAL error from CFC\n");
3955         }
3956
3957         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3958                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3959                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3960                 /* RQ_USDMDP_FIFO_OVERFLOW */
3961                 if (val & 0x18000)
3962                         BNX2X_ERR("FATAL error from PXP\n");
3963
3964                 if (!CHIP_IS_E1x(bp)) {
3965                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3966                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3967                 }
3968         }
3969
3970         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3971
3972                 int port = BP_PORT(bp);
3973                 int reg_offset;
3974
3975                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3976                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3977
3978                 val = REG_RD(bp, reg_offset);
3979                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3980                 REG_WR(bp, reg_offset, val);
3981
3982                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3983                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3984                 bnx2x_panic();
3985         }
3986 }
3987
3988 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3989 {
3990         u32 val;
3991
3992         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3993
3994                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3995                         int func = BP_FUNC(bp);
3996
3997                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3998                         bnx2x_read_mf_cfg(bp);
3999                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4000                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4001                         val = SHMEM_RD(bp,
4002                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4003                         if (val & DRV_STATUS_DCC_EVENT_MASK)
4004                                 bnx2x_dcc_event(bp,
4005                                             (val & DRV_STATUS_DCC_EVENT_MASK));
4006
4007                         if (val & DRV_STATUS_SET_MF_BW)
4008                                 bnx2x_set_mf_bw(bp);
4009
4010                         if (val & DRV_STATUS_DRV_INFO_REQ)
4011                                 bnx2x_handle_drv_info_req(bp);
4012
4013                         if (val & DRV_STATUS_VF_DISABLED)
4014                                 bnx2x_vf_handle_flr_event(bp);
4015
4016                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4017                                 bnx2x_pmf_update(bp);
4018
4019                         if (bp->port.pmf &&
4020                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4021                                 bp->dcbx_enabled > 0)
4022                                 /* start dcbx state machine */
4023                                 bnx2x_dcbx_set_params(bp,
4024                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4025                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4026                                 bnx2x_handle_afex_cmd(bp,
4027                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4028                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4029                                 bnx2x_handle_eee_event(bp);
4030                         if (bp->link_vars.periodic_flags &
4031                             PERIODIC_FLAGS_LINK_EVENT) {
4032                                 /*  sync with link */
4033                                 bnx2x_acquire_phy_lock(bp);
4034                                 bp->link_vars.periodic_flags &=
4035                                         ~PERIODIC_FLAGS_LINK_EVENT;
4036                                 bnx2x_release_phy_lock(bp);
4037                                 if (IS_MF(bp))
4038                                         bnx2x_link_sync_notify(bp);
4039                                 bnx2x_link_report(bp);
4040                         }
4041                         /* Always call it here: bnx2x_link_report() will
4042                          * prevent the link indication duplication.
4043                          */
4044                         bnx2x__link_status_update(bp);
4045                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4046
4047                         BNX2X_ERR("MC assert!\n");
4048                         bnx2x_mc_assert(bp);
4049                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4050                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4051                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4052                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4053                         bnx2x_panic();
4054
4055                 } else if (attn & BNX2X_MCP_ASSERT) {
4056
4057                         BNX2X_ERR("MCP assert!\n");
4058                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4059                         bnx2x_fw_dump(bp);
4060
4061                 } else
4062                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4063         }
4064
4065         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4066                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4067                 if (attn & BNX2X_GRC_TIMEOUT) {
4068                         val = CHIP_IS_E1(bp) ? 0 :
4069                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4070                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4071                 }
4072                 if (attn & BNX2X_GRC_RSV) {
4073                         val = CHIP_IS_E1(bp) ? 0 :
4074                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4075                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4076                 }
4077                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4078         }
4079 }
4080
4081 /*
4082  * Bits map:
4083  * 0-7   - Engine0 load counter.
4084  * 8-15  - Engine1 load counter.
4085  * 16    - Engine0 RESET_IN_PROGRESS bit.
4086  * 17    - Engine1 RESET_IN_PROGRESS bit.
4087  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4088  *         on the engine
4089  * 19    - Engine1 ONE_IS_LOADED.
4090  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4091  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4092  *         just the one belonging to its engine).
4093  *
4094  */
4095 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4096
4097 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4098 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4099 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4100 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4101 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4102 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4103 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4104
4105 /*
4106  * Set the GLOBAL_RESET bit.
4107  *
4108  * Should be run under rtnl lock
4109  */
4110 void bnx2x_set_reset_global(struct bnx2x *bp)
4111 {
4112         u32 val;
4113         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4114         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4115         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4116         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4117 }
4118
4119 /*
4120  * Clear the GLOBAL_RESET bit.
4121  *
4122  * Should be run under rtnl lock
4123  */
4124 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4125 {
4126         u32 val;
4127         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4129         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4130         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131 }
4132
4133 /*
4134  * Checks the GLOBAL_RESET bit.
4135  *
4136  * should be run under rtnl lock
4137  */
4138 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4139 {
4140         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4141
4142         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4143         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4144 }
4145
4146 /*
4147  * Clear RESET_IN_PROGRESS bit for the current engine.
4148  *
4149  * Should be run under rtnl lock
4150  */
4151 static void bnx2x_set_reset_done(struct bnx2x *bp)
4152 {
4153         u32 val;
4154         u32 bit = BP_PATH(bp) ?
4155                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4156         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4157         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4158
4159         /* Clear the bit */
4160         val &= ~bit;
4161         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4162
4163         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4164 }
4165
4166 /*
4167  * Set RESET_IN_PROGRESS for the current engine.
4168  *
4169  * should be run under rtnl lock
4170  */
4171 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4172 {
4173         u32 val;
4174         u32 bit = BP_PATH(bp) ?
4175                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4176         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4177         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4178
4179         /* Set the bit */
4180         val |= bit;
4181         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4182         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4183 }
4184
4185 /*
4186  * Checks the RESET_IN_PROGRESS bit for the given engine.
4187  * should be run under rtnl lock
4188  */
4189 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4190 {
4191         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4192         u32 bit = engine ?
4193                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4194
4195         /* return false if bit is set */
4196         return (val & bit) ? false : true;
4197 }
4198
4199 /*
4200  * set pf load for the current pf.
4201  *
4202  * should be run under rtnl lock
4203  */
4204 void bnx2x_set_pf_load(struct bnx2x *bp)
4205 {
4206         u32 val1, val;
4207         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4208                              BNX2X_PATH0_LOAD_CNT_MASK;
4209         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4210                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4211
4212         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4213         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4214
4215         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4216
4217         /* get the current counter value */
4218         val1 = (val & mask) >> shift;
4219
4220         /* set bit of that PF */
4221         val1 |= (1 << bp->pf_num);
4222
4223         /* clear the old value */
4224         val &= ~mask;
4225
4226         /* set the new one */
4227         val |= ((val1 << shift) & mask);
4228
4229         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4230         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4231 }
4232
4233 /**
4234  * bnx2x_clear_pf_load - clear pf load mark
4235  *
4236  * @bp:         driver handle
4237  *
4238  * Should be run under rtnl lock.
4239  * Decrements the load counter for the current engine. Returns
4240  * whether other functions are still loaded
4241  */
4242 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4243 {
4244         u32 val1, val;
4245         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4246                              BNX2X_PATH0_LOAD_CNT_MASK;
4247         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4248                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4249
4250         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4251         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4252         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4253
4254         /* get the current counter value */
4255         val1 = (val & mask) >> shift;
4256
4257         /* clear bit of that PF */
4258         val1 &= ~(1 << bp->pf_num);
4259
4260         /* clear the old value */
4261         val &= ~mask;
4262
4263         /* set the new one */
4264         val |= ((val1 << shift) & mask);
4265
4266         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4267         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4268         return val1 != 0;
4269 }
4270
4271 /*
4272  * Read the load status for the current engine.
4273  *
4274  * should be run under rtnl lock
4275  */
4276 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4277 {
4278         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4279                              BNX2X_PATH0_LOAD_CNT_MASK);
4280         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4281                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4282         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4283
4284         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4285
4286         val = (val & mask) >> shift;
4287
4288         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4289            engine, val);
4290
4291         return val != 0;
4292 }
4293
4294 static void _print_parity(struct bnx2x *bp, u32 reg)
4295 {
4296         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4297 }
4298
4299 static void _print_next_block(int idx, const char *blk)
4300 {
4301         pr_cont("%s%s", idx ? ", " : "", blk);
4302 }
4303
4304 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4305                                             int *par_num, bool print)
4306 {
4307         u32 cur_bit;
4308         bool res;
4309         int i;
4310
4311         res = false;
4312
4313         for (i = 0; sig; i++) {
4314                 cur_bit = (0x1UL << i);
4315                 if (sig & cur_bit) {
4316                         res |= true; /* Each bit is real error! */
4317
4318                         if (print) {
4319                                 switch (cur_bit) {
4320                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4321                                         _print_next_block((*par_num)++, "BRB");
4322                                         _print_parity(bp,
4323                                                       BRB1_REG_BRB1_PRTY_STS);
4324                                         break;
4325                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4326                                         _print_next_block((*par_num)++,
4327                                                           "PARSER");
4328                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4329                                         break;
4330                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4331                                         _print_next_block((*par_num)++, "TSDM");
4332                                         _print_parity(bp,
4333                                                       TSDM_REG_TSDM_PRTY_STS);
4334                                         break;
4335                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4336                                         _print_next_block((*par_num)++,
4337                                                           "SEARCHER");
4338                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4339                                         break;
4340                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4341                                         _print_next_block((*par_num)++, "TCM");
4342                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4343                                         break;
4344                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4345                                         _print_next_block((*par_num)++,
4346                                                           "TSEMI");
4347                                         _print_parity(bp,
4348                                                       TSEM_REG_TSEM_PRTY_STS_0);
4349                                         _print_parity(bp,
4350                                                       TSEM_REG_TSEM_PRTY_STS_1);
4351                                         break;
4352                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4353                                         _print_next_block((*par_num)++, "XPB");
4354                                         _print_parity(bp, GRCBASE_XPB +
4355                                                           PB_REG_PB_PRTY_STS);
4356                                         break;
4357                                 }
4358                         }
4359
4360                         /* Clear the bit */
4361                         sig &= ~cur_bit;
4362                 }
4363         }
4364
4365         return res;
4366 }
4367
4368 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4369                                             int *par_num, bool *global,
4370                                             bool print)
4371 {
4372         u32 cur_bit;
4373         bool res;
4374         int i;
4375
4376         res = false;
4377
4378         for (i = 0; sig; i++) {
4379                 cur_bit = (0x1UL << i);
4380                 if (sig & cur_bit) {
4381                         res |= true; /* Each bit is real error! */
4382                         switch (cur_bit) {
4383                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4384                                 if (print) {
4385                                         _print_next_block((*par_num)++, "PBF");
4386                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4387                                 }
4388                                 break;
4389                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4390                                 if (print) {
4391                                         _print_next_block((*par_num)++, "QM");
4392                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4393                                 }
4394                                 break;
4395                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4396                                 if (print) {
4397                                         _print_next_block((*par_num)++, "TM");
4398                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4399                                 }
4400                                 break;
4401                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4402                                 if (print) {
4403                                         _print_next_block((*par_num)++, "XSDM");
4404                                         _print_parity(bp,
4405                                                       XSDM_REG_XSDM_PRTY_STS);
4406                                 }
4407                                 break;
4408                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4409                                 if (print) {
4410                                         _print_next_block((*par_num)++, "XCM");
4411                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4412                                 }
4413                                 break;
4414                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4415                                 if (print) {
4416                                         _print_next_block((*par_num)++,
4417                                                           "XSEMI");
4418                                         _print_parity(bp,
4419                                                       XSEM_REG_XSEM_PRTY_STS_0);
4420                                         _print_parity(bp,
4421                                                       XSEM_REG_XSEM_PRTY_STS_1);
4422                                 }
4423                                 break;
4424                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4425                                 if (print) {
4426                                         _print_next_block((*par_num)++,
4427                                                           "DOORBELLQ");
4428                                         _print_parity(bp,
4429                                                       DORQ_REG_DORQ_PRTY_STS);
4430                                 }
4431                                 break;
4432                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4433                                 if (print) {
4434                                         _print_next_block((*par_num)++, "NIG");
4435                                         if (CHIP_IS_E1x(bp)) {
4436                                                 _print_parity(bp,
4437                                                         NIG_REG_NIG_PRTY_STS);
4438                                         } else {
4439                                                 _print_parity(bp,
4440                                                         NIG_REG_NIG_PRTY_STS_0);
4441                                                 _print_parity(bp,
4442                                                         NIG_REG_NIG_PRTY_STS_1);
4443                                         }
4444                                 }
4445                                 break;
4446                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4447                                 if (print)
4448                                         _print_next_block((*par_num)++,
4449                                                           "VAUX PCI CORE");
4450                                 *global = true;
4451                                 break;
4452                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4453                                 if (print) {
4454                                         _print_next_block((*par_num)++,
4455                                                           "DEBUG");
4456                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4457                                 }
4458                                 break;
4459                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4460                                 if (print) {
4461                                         _print_next_block((*par_num)++, "USDM");
4462                                         _print_parity(bp,
4463                                                       USDM_REG_USDM_PRTY_STS);
4464                                 }
4465                                 break;
4466                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4467                                 if (print) {
4468                                         _print_next_block((*par_num)++, "UCM");
4469                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4470                                 }
4471                                 break;
4472                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4473                                 if (print) {
4474                                         _print_next_block((*par_num)++,
4475                                                           "USEMI");
4476                                         _print_parity(bp,
4477                                                       USEM_REG_USEM_PRTY_STS_0);
4478                                         _print_parity(bp,
4479                                                       USEM_REG_USEM_PRTY_STS_1);
4480                                 }
4481                                 break;
4482                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4483                                 if (print) {
4484                                         _print_next_block((*par_num)++, "UPB");
4485                                         _print_parity(bp, GRCBASE_UPB +
4486                                                           PB_REG_PB_PRTY_STS);
4487                                 }
4488                                 break;
4489                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4490                                 if (print) {
4491                                         _print_next_block((*par_num)++, "CSDM");
4492                                         _print_parity(bp,
4493                                                       CSDM_REG_CSDM_PRTY_STS);
4494                                 }
4495                                 break;
4496                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4497                                 if (print) {
4498                                         _print_next_block((*par_num)++, "CCM");
4499                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4500                                 }
4501                                 break;
4502                         }
4503
4504                         /* Clear the bit */
4505                         sig &= ~cur_bit;
4506                 }
4507         }
4508
4509         return res;
4510 }
4511
4512 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4513                                             int *par_num, bool print)
4514 {
4515         u32 cur_bit;
4516         bool res;
4517         int i;
4518
4519         res = false;
4520
4521         for (i = 0; sig; i++) {
4522                 cur_bit = (0x1UL << i);
4523                 if (sig & cur_bit) {
4524                         res |= true; /* Each bit is real error! */
4525                         if (print) {
4526                                 switch (cur_bit) {
4527                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4528                                         _print_next_block((*par_num)++,
4529                                                           "CSEMI");
4530                                         _print_parity(bp,
4531                                                       CSEM_REG_CSEM_PRTY_STS_0);
4532                                         _print_parity(bp,
4533                                                       CSEM_REG_CSEM_PRTY_STS_1);
4534                                         break;
4535                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4536                                         _print_next_block((*par_num)++, "PXP");
4537                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4538                                         _print_parity(bp,
4539                                                       PXP2_REG_PXP2_PRTY_STS_0);
4540                                         _print_parity(bp,
4541                                                       PXP2_REG_PXP2_PRTY_STS_1);
4542                                         break;
4543                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4544                                         _print_next_block((*par_num)++,
4545                                                           "PXPPCICLOCKCLIENT");
4546                                         break;
4547                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4548                                         _print_next_block((*par_num)++, "CFC");
4549                                         _print_parity(bp,
4550                                                       CFC_REG_CFC_PRTY_STS);
4551                                         break;
4552                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4553                                         _print_next_block((*par_num)++, "CDU");
4554                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4555                                         break;
4556                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4557                                         _print_next_block((*par_num)++, "DMAE");
4558                                         _print_parity(bp,
4559                                                       DMAE_REG_DMAE_PRTY_STS);
4560                                         break;
4561                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4562                                         _print_next_block((*par_num)++, "IGU");
4563                                         if (CHIP_IS_E1x(bp))
4564                                                 _print_parity(bp,
4565                                                         HC_REG_HC_PRTY_STS);
4566                                         else
4567                                                 _print_parity(bp,
4568                                                         IGU_REG_IGU_PRTY_STS);
4569                                         break;
4570                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4571                                         _print_next_block((*par_num)++, "MISC");
4572                                         _print_parity(bp,
4573                                                       MISC_REG_MISC_PRTY_STS);
4574                                         break;
4575                                 }
4576                         }
4577
4578                         /* Clear the bit */
4579                         sig &= ~cur_bit;
4580                 }
4581         }
4582
4583         return res;
4584 }
4585
4586 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4587                                             int *par_num, bool *global,
4588                                             bool print)
4589 {
4590         bool res = false;
4591         u32 cur_bit;
4592         int i;
4593
4594         for (i = 0; sig; i++) {
4595                 cur_bit = (0x1UL << i);
4596                 if (sig & cur_bit) {
4597                         switch (cur_bit) {
4598                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4599                                 if (print)
4600                                         _print_next_block((*par_num)++,
4601                                                           "MCP ROM");
4602                                 *global = true;
4603                                 res |= true;
4604                                 break;
4605                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4606                                 if (print)
4607                                         _print_next_block((*par_num)++,
4608                                                           "MCP UMP RX");
4609                                 *global = true;
4610                                 res |= true;
4611                                 break;
4612                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4613                                 if (print)
4614                                         _print_next_block((*par_num)++,
4615                                                           "MCP UMP TX");
4616                                 *global = true;
4617                                 res |= true;
4618                                 break;
4619                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4620                                 if (print)
4621                                         _print_next_block((*par_num)++,
4622                                                           "MCP SCPAD");
4623                                 /* clear latched SCPAD PATIRY from MCP */
4624                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4625                                        1UL << 10);
4626                                 break;
4627                         }
4628
4629                         /* Clear the bit */
4630                         sig &= ~cur_bit;
4631                 }
4632         }
4633
4634         return res;
4635 }
4636
4637 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4638                                             int *par_num, bool print)
4639 {
4640         u32 cur_bit;
4641         bool res;
4642         int i;
4643
4644         res = false;
4645
4646         for (i = 0; sig; i++) {
4647                 cur_bit = (0x1UL << i);
4648                 if (sig & cur_bit) {
4649                         res |= true; /* Each bit is real error! */
4650                         if (print) {
4651                                 switch (cur_bit) {
4652                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4653                                         _print_next_block((*par_num)++,
4654                                                           "PGLUE_B");
4655                                         _print_parity(bp,
4656                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4657                                         break;
4658                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4659                                         _print_next_block((*par_num)++, "ATC");
4660                                         _print_parity(bp,
4661                                                       ATC_REG_ATC_PRTY_STS);
4662                                         break;
4663                                 }
4664                         }
4665                         /* Clear the bit */
4666                         sig &= ~cur_bit;
4667                 }
4668         }
4669
4670         return res;
4671 }
4672
4673 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4674                               u32 *sig)
4675 {
4676         bool res = false;
4677
4678         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4679             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4680             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4681             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4682             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4683                 int par_num = 0;
4684                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4685                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4686                           sig[0] & HW_PRTY_ASSERT_SET_0,
4687                           sig[1] & HW_PRTY_ASSERT_SET_1,
4688                           sig[2] & HW_PRTY_ASSERT_SET_2,
4689                           sig[3] & HW_PRTY_ASSERT_SET_3,
4690                           sig[4] & HW_PRTY_ASSERT_SET_4);
4691                 if (print)
4692                         netdev_err(bp->dev,
4693                                    "Parity errors detected in blocks: ");
4694                 res |= bnx2x_check_blocks_with_parity0(bp,
4695                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4696                 res |= bnx2x_check_blocks_with_parity1(bp,
4697                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4698                 res |= bnx2x_check_blocks_with_parity2(bp,
4699                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4700                 res |= bnx2x_check_blocks_with_parity3(bp,
4701                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4702                 res |= bnx2x_check_blocks_with_parity4(bp,
4703                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4704
4705                 if (print)
4706                         pr_cont("\n");
4707         }
4708
4709         return res;
4710 }
4711
4712 /**
4713  * bnx2x_chk_parity_attn - checks for parity attentions.
4714  *
4715  * @bp:         driver handle
4716  * @global:     true if there was a global attention
4717  * @print:      show parity attention in syslog
4718  */
4719 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4720 {
4721         struct attn_route attn = { {0} };
4722         int port = BP_PORT(bp);
4723
4724         attn.sig[0] = REG_RD(bp,
4725                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4726                              port*4);
4727         attn.sig[1] = REG_RD(bp,
4728                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4729                              port*4);
4730         attn.sig[2] = REG_RD(bp,
4731                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4732                              port*4);
4733         attn.sig[3] = REG_RD(bp,
4734                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4735                              port*4);
4736         /* Since MCP attentions can't be disabled inside the block, we need to
4737          * read AEU registers to see whether they're currently disabled
4738          */
4739         attn.sig[3] &= ((REG_RD(bp,
4740                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4741                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4742                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4743                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4744
4745         if (!CHIP_IS_E1x(bp))
4746                 attn.sig[4] = REG_RD(bp,
4747                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4748                                      port*4);
4749
4750         return bnx2x_parity_attn(bp, global, print, attn.sig);
4751 }
4752
4753 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4754 {
4755         u32 val;
4756         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4757
4758                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4759                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4760                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4761                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4762                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4763                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4764                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4765                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4766                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4767                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4768                 if (val &
4769                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4770                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4771                 if (val &
4772                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4773                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4774                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4775                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4776                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4777                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4778                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4779                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4780         }
4781         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4782                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4783                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4784                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4785                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4786                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4787                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4788                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4789                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4790                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4791                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4792                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4793                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4794                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4795                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4796         }
4797
4798         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4799                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4800                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4801                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4802                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4803         }
4804 }
4805
4806 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4807 {
4808         struct attn_route attn, *group_mask;
4809         int port = BP_PORT(bp);
4810         int index;
4811         u32 reg_addr;
4812         u32 val;
4813         u32 aeu_mask;
4814         bool global = false;
4815
4816         /* need to take HW lock because MCP or other port might also
4817            try to handle this event */
4818         bnx2x_acquire_alr(bp);
4819
4820         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4821 #ifndef BNX2X_STOP_ON_ERROR
4822                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4823                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4824                 /* Disable HW interrupts */
4825                 bnx2x_int_disable(bp);
4826                 /* In case of parity errors don't handle attentions so that
4827                  * other function would "see" parity errors.
4828                  */
4829 #else
4830                 bnx2x_panic();
4831 #endif
4832                 bnx2x_release_alr(bp);
4833                 return;
4834         }
4835
4836         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4837         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4838         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4839         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4840         if (!CHIP_IS_E1x(bp))
4841                 attn.sig[4] =
4842                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4843         else
4844                 attn.sig[4] = 0;
4845
4846         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4847            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4848
4849         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4850                 if (deasserted & (1 << index)) {
4851                         group_mask = &bp->attn_group[index];
4852
4853                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4854                            index,
4855                            group_mask->sig[0], group_mask->sig[1],
4856                            group_mask->sig[2], group_mask->sig[3],
4857                            group_mask->sig[4]);
4858
4859                         bnx2x_attn_int_deasserted4(bp,
4860                                         attn.sig[4] & group_mask->sig[4]);
4861                         bnx2x_attn_int_deasserted3(bp,
4862                                         attn.sig[3] & group_mask->sig[3]);
4863                         bnx2x_attn_int_deasserted1(bp,
4864                                         attn.sig[1] & group_mask->sig[1]);
4865                         bnx2x_attn_int_deasserted2(bp,
4866                                         attn.sig[2] & group_mask->sig[2]);
4867                         bnx2x_attn_int_deasserted0(bp,
4868                                         attn.sig[0] & group_mask->sig[0]);
4869                 }
4870         }
4871
4872         bnx2x_release_alr(bp);
4873
4874         if (bp->common.int_block == INT_BLOCK_HC)
4875                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4876                             COMMAND_REG_ATTN_BITS_CLR);
4877         else
4878                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4879
4880         val = ~deasserted;
4881         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4882            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4883         REG_WR(bp, reg_addr, val);
4884
4885         if (~bp->attn_state & deasserted)
4886                 BNX2X_ERR("IGU ERROR\n");
4887
4888         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4889                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4890
4891         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4892         aeu_mask = REG_RD(bp, reg_addr);
4893
4894         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4895            aeu_mask, deasserted);
4896         aeu_mask |= (deasserted & 0x3ff);
4897         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4898
4899         REG_WR(bp, reg_addr, aeu_mask);
4900         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4901
4902         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4903         bp->attn_state &= ~deasserted;
4904         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4905 }
4906
4907 static void bnx2x_attn_int(struct bnx2x *bp)
4908 {
4909         /* read local copy of bits */
4910         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4911                                                                 attn_bits);
4912         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4913                                                                 attn_bits_ack);
4914         u32 attn_state = bp->attn_state;
4915
4916         /* look for changed bits */
4917         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4918         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4919
4920         DP(NETIF_MSG_HW,
4921            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4922            attn_bits, attn_ack, asserted, deasserted);
4923
4924         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4925                 BNX2X_ERR("BAD attention state\n");
4926
4927         /* handle bits that were raised */
4928         if (asserted)
4929                 bnx2x_attn_int_asserted(bp, asserted);
4930
4931         if (deasserted)
4932                 bnx2x_attn_int_deasserted(bp, deasserted);
4933 }
4934
4935 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4936                       u16 index, u8 op, u8 update)
4937 {
4938         u32 igu_addr = bp->igu_base_addr;
4939         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4940         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4941                              igu_addr);
4942 }
4943
4944 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4945 {
4946         /* No memory barriers */
4947         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4948         mmiowb(); /* keep prod updates ordered */
4949 }
4950
4951 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4952                                       union event_ring_elem *elem)
4953 {
4954         u8 err = elem->message.error;
4955
4956         if (!bp->cnic_eth_dev.starting_cid  ||
4957             (cid < bp->cnic_eth_dev.starting_cid &&
4958             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4959                 return 1;
4960
4961         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4962
4963         if (unlikely(err)) {
4964
4965                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4966                           cid);
4967                 bnx2x_panic_dump(bp, false);
4968         }
4969         bnx2x_cnic_cfc_comp(bp, cid, err);
4970         return 0;
4971 }
4972
4973 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4974 {
4975         struct bnx2x_mcast_ramrod_params rparam;
4976         int rc;
4977
4978         memset(&rparam, 0, sizeof(rparam));
4979
4980         rparam.mcast_obj = &bp->mcast_obj;
4981
4982         netif_addr_lock_bh(bp->dev);
4983
4984         /* Clear pending state for the last command */
4985         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4986
4987         /* If there are pending mcast commands - send them */
4988         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4989                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4990                 if (rc < 0)
4991                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4992                                   rc);
4993         }
4994
4995         netif_addr_unlock_bh(bp->dev);
4996 }
4997
4998 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4999                                             union event_ring_elem *elem)
5000 {
5001         unsigned long ramrod_flags = 0;
5002         int rc = 0;
5003         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5004         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5005
5006         /* Always push next commands out, don't wait here */
5007         __set_bit(RAMROD_CONT, &ramrod_flags);
5008
5009         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5010                             >> BNX2X_SWCID_SHIFT) {
5011         case BNX2X_FILTER_MAC_PENDING:
5012                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5013                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5014                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5015                 else
5016                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5017
5018                 break;
5019         case BNX2X_FILTER_MCAST_PENDING:
5020                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5021                 /* This is only relevant for 57710 where multicast MACs are
5022                  * configured as unicast MACs using the same ramrod.
5023                  */
5024                 bnx2x_handle_mcast_eqe(bp);
5025                 return;
5026         default:
5027                 BNX2X_ERR("Unsupported classification command: %d\n",
5028                           elem->message.data.eth_event.echo);
5029                 return;
5030         }
5031
5032         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5033
5034         if (rc < 0)
5035                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5036         else if (rc > 0)
5037                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5038 }
5039
5040 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5041
5042 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5043 {
5044         netif_addr_lock_bh(bp->dev);
5045
5046         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5047
5048         /* Send rx_mode command again if was requested */
5049         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5050                 bnx2x_set_storm_rx_mode(bp);
5051         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5052                                     &bp->sp_state))
5053                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5054         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5055                                     &bp->sp_state))
5056                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5057
5058         netif_addr_unlock_bh(bp->dev);
5059 }
5060
5061 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5062                                               union event_ring_elem *elem)
5063 {
5064         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5065                 DP(BNX2X_MSG_SP,
5066                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5067                    elem->message.data.vif_list_event.func_bit_map);
5068                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5069                         elem->message.data.vif_list_event.func_bit_map);
5070         } else if (elem->message.data.vif_list_event.echo ==
5071                    VIF_LIST_RULE_SET) {
5072                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5073                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5074         }
5075 }
5076
5077 /* called with rtnl_lock */
5078 static void bnx2x_after_function_update(struct bnx2x *bp)
5079 {
5080         int q, rc;
5081         struct bnx2x_fastpath *fp;
5082         struct bnx2x_queue_state_params queue_params = {NULL};
5083         struct bnx2x_queue_update_params *q_update_params =
5084                 &queue_params.params.update;
5085
5086         /* Send Q update command with afex vlan removal values for all Qs */
5087         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5088
5089         /* set silent vlan removal values according to vlan mode */
5090         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5091                   &q_update_params->update_flags);
5092         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5093                   &q_update_params->update_flags);
5094         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5095
5096         /* in access mode mark mask and value are 0 to strip all vlans */
5097         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5098                 q_update_params->silent_removal_value = 0;
5099                 q_update_params->silent_removal_mask = 0;
5100         } else {
5101                 q_update_params->silent_removal_value =
5102                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5103                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5104         }
5105
5106         for_each_eth_queue(bp, q) {
5107                 /* Set the appropriate Queue object */
5108                 fp = &bp->fp[q];
5109                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5110
5111                 /* send the ramrod */
5112                 rc = bnx2x_queue_state_change(bp, &queue_params);
5113                 if (rc < 0)
5114                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5115                                   q);
5116         }
5117
5118         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5119                 fp = &bp->fp[FCOE_IDX(bp)];
5120                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5121
5122                 /* clear pending completion bit */
5123                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5124
5125                 /* mark latest Q bit */
5126                 smp_mb__before_clear_bit();
5127                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5128                 smp_mb__after_clear_bit();
5129
5130                 /* send Q update ramrod for FCoE Q */
5131                 rc = bnx2x_queue_state_change(bp, &queue_params);
5132                 if (rc < 0)
5133                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5134                                   q);
5135         } else {
5136                 /* If no FCoE ring - ACK MCP now */
5137                 bnx2x_link_report(bp);
5138                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5139         }
5140 }
5141
5142 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5143         struct bnx2x *bp, u32 cid)
5144 {
5145         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5146
5147         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5148                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5149         else
5150                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5151 }
5152
5153 static void bnx2x_eq_int(struct bnx2x *bp)
5154 {
5155         u16 hw_cons, sw_cons, sw_prod;
5156         union event_ring_elem *elem;
5157         u8 echo;
5158         u32 cid;
5159         u8 opcode;
5160         int rc, spqe_cnt = 0;
5161         struct bnx2x_queue_sp_obj *q_obj;
5162         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5163         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5164
5165         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5166
5167         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5168          * when we get the next-page we need to adjust so the loop
5169          * condition below will be met. The next element is the size of a
5170          * regular element and hence incrementing by 1
5171          */
5172         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5173                 hw_cons++;
5174
5175         /* This function may never run in parallel with itself for a
5176          * specific bp, thus there is no need in "paired" read memory
5177          * barrier here.
5178          */
5179         sw_cons = bp->eq_cons;
5180         sw_prod = bp->eq_prod;
5181
5182         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5183                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5184
5185         for (; sw_cons != hw_cons;
5186               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5187
5188                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5189
5190                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5191                 if (!rc) {
5192                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5193                            rc);
5194                         goto next_spqe;
5195                 }
5196
5197                 /* elem CID originates from FW; actually LE */
5198                 cid = SW_CID((__force __le32)
5199                              elem->message.data.cfc_del_event.cid);
5200                 opcode = elem->message.opcode;
5201
5202                 /* handle eq element */
5203                 switch (opcode) {
5204                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5205                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5206                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5207                         continue;
5208
5209                 case EVENT_RING_OPCODE_STAT_QUERY:
5210                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5211                            "got statistics comp event %d\n",
5212                            bp->stats_comp++);
5213                         /* nothing to do with stats comp */
5214                         goto next_spqe;
5215
5216                 case EVENT_RING_OPCODE_CFC_DEL:
5217                         /* handle according to cid range */
5218                         /*
5219                          * we may want to verify here that the bp state is
5220                          * HALTING
5221                          */
5222                         DP(BNX2X_MSG_SP,
5223                            "got delete ramrod for MULTI[%d]\n", cid);
5224
5225                         if (CNIC_LOADED(bp) &&
5226                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5227                                 goto next_spqe;
5228
5229                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5230
5231                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5232                                 break;
5233
5234                         goto next_spqe;
5235
5236                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5237                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5238                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5239                         if (f_obj->complete_cmd(bp, f_obj,
5240                                                 BNX2X_F_CMD_TX_STOP))
5241                                 break;
5242                         goto next_spqe;
5243
5244                 case EVENT_RING_OPCODE_START_TRAFFIC:
5245                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5246                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5247                         if (f_obj->complete_cmd(bp, f_obj,
5248                                                 BNX2X_F_CMD_TX_START))
5249                                 break;
5250                         goto next_spqe;
5251
5252                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5253                         echo = elem->message.data.function_update_event.echo;
5254                         if (echo == SWITCH_UPDATE) {
5255                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5256                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5257                                 if (f_obj->complete_cmd(
5258                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5259                                         break;
5260
5261                         } else {
5262                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5263                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5264                                 f_obj->complete_cmd(bp, f_obj,
5265                                                     BNX2X_F_CMD_AFEX_UPDATE);
5266
5267                                 /* We will perform the Queues update from
5268                                  * sp_rtnl task as all Queue SP operations
5269                                  * should run under rtnl_lock.
5270                                  */
5271                                 smp_mb__before_clear_bit();
5272                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5273                                         &bp->sp_rtnl_state);
5274                                 smp_mb__after_clear_bit();
5275
5276                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5277                         }
5278
5279                         goto next_spqe;
5280
5281                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5282                         f_obj->complete_cmd(bp, f_obj,
5283                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5284                         bnx2x_after_afex_vif_lists(bp, elem);
5285                         goto next_spqe;
5286                 case EVENT_RING_OPCODE_FUNCTION_START:
5287                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5288                            "got FUNC_START ramrod\n");
5289                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5290                                 break;
5291
5292                         goto next_spqe;
5293
5294                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5295                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5296                            "got FUNC_STOP ramrod\n");
5297                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5298                                 break;
5299
5300                         goto next_spqe;
5301                 }
5302
5303                 switch (opcode | bp->state) {
5304                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5305                       BNX2X_STATE_OPEN):
5306                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5307                       BNX2X_STATE_OPENING_WAIT4_PORT):
5308                         cid = elem->message.data.eth_event.echo &
5309                                 BNX2X_SWCID_MASK;
5310                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5311                            cid);
5312                         rss_raw->clear_pending(rss_raw);
5313                         break;
5314
5315                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5316                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5317                 case (EVENT_RING_OPCODE_SET_MAC |
5318                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5319                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5320                       BNX2X_STATE_OPEN):
5321                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5322                       BNX2X_STATE_DIAG):
5323                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5324                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5325                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5326                         bnx2x_handle_classification_eqe(bp, elem);
5327                         break;
5328
5329                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5330                       BNX2X_STATE_OPEN):
5331                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5332                       BNX2X_STATE_DIAG):
5333                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5334                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5335                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5336                         bnx2x_handle_mcast_eqe(bp);
5337                         break;
5338
5339                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5340                       BNX2X_STATE_OPEN):
5341                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5342                       BNX2X_STATE_DIAG):
5343                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5344                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5345                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5346                         bnx2x_handle_rx_mode_eqe(bp);
5347                         break;
5348                 default:
5349                         /* unknown event log error and continue */
5350                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5351                                   elem->message.opcode, bp->state);
5352                 }
5353 next_spqe:
5354                 spqe_cnt++;
5355         } /* for */
5356
5357         smp_mb__before_atomic_inc();
5358         atomic_add(spqe_cnt, &bp->eq_spq_left);
5359
5360         bp->eq_cons = sw_cons;
5361         bp->eq_prod = sw_prod;
5362         /* Make sure that above mem writes were issued towards the memory */
5363         smp_wmb();
5364
5365         /* update producer */
5366         bnx2x_update_eq_prod(bp, bp->eq_prod);
5367 }
5368
5369 static void bnx2x_sp_task(struct work_struct *work)
5370 {
5371         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5372
5373         DP(BNX2X_MSG_SP, "sp task invoked\n");
5374
5375         /* make sure the atomic interrupt_occurred has been written */
5376         smp_rmb();
5377         if (atomic_read(&bp->interrupt_occurred)) {
5378
5379                 /* what work needs to be performed? */
5380                 u16 status = bnx2x_update_dsb_idx(bp);
5381
5382                 DP(BNX2X_MSG_SP, "status %x\n", status);
5383                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5384                 atomic_set(&bp->interrupt_occurred, 0);
5385
5386                 /* HW attentions */
5387                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5388                         bnx2x_attn_int(bp);
5389                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5390                 }
5391
5392                 /* SP events: STAT_QUERY and others */
5393                 if (status & BNX2X_DEF_SB_IDX) {
5394                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5395
5396                 if (FCOE_INIT(bp) &&
5397                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5398                                 /* Prevent local bottom-halves from running as
5399                                  * we are going to change the local NAPI list.
5400                                  */
5401                                 local_bh_disable();
5402                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5403                                 local_bh_enable();
5404                         }
5405
5406                         /* Handle EQ completions */
5407                         bnx2x_eq_int(bp);
5408                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5409                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5410
5411                         status &= ~BNX2X_DEF_SB_IDX;
5412                 }
5413
5414                 /* if status is non zero then perhaps something went wrong */
5415                 if (unlikely(status))
5416                         DP(BNX2X_MSG_SP,
5417                            "got an unknown interrupt! (status 0x%x)\n", status);
5418
5419                 /* ack status block only if something was actually handled */
5420                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5421                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5422         }
5423
5424         /* must be called after the EQ processing (since eq leads to sriov
5425          * ramrod completion flows).
5426          * This flow may have been scheduled by the arrival of a ramrod
5427          * completion, or by the sriov code rescheduling itself.
5428          */
5429         bnx2x_iov_sp_task(bp);
5430
5431         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5432         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5433                                &bp->sp_state)) {
5434                 bnx2x_link_report(bp);
5435                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5436         }
5437 }
5438
5439 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5440 {
5441         struct net_device *dev = dev_instance;
5442         struct bnx2x *bp = netdev_priv(dev);
5443
5444         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5445                      IGU_INT_DISABLE, 0);
5446
5447 #ifdef BNX2X_STOP_ON_ERROR
5448         if (unlikely(bp->panic))
5449                 return IRQ_HANDLED;
5450 #endif
5451
5452         if (CNIC_LOADED(bp)) {
5453                 struct cnic_ops *c_ops;
5454
5455                 rcu_read_lock();
5456                 c_ops = rcu_dereference(bp->cnic_ops);
5457                 if (c_ops)
5458                         c_ops->cnic_handler(bp->cnic_data, NULL);
5459                 rcu_read_unlock();
5460         }
5461
5462         /* schedule sp task to perform default status block work, ack
5463          * attentions and enable interrupts.
5464          */
5465         bnx2x_schedule_sp_task(bp);
5466
5467         return IRQ_HANDLED;
5468 }
5469
5470 /* end of slow path */
5471
5472 void bnx2x_drv_pulse(struct bnx2x *bp)
5473 {
5474         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5475                  bp->fw_drv_pulse_wr_seq);
5476 }
5477
5478 static void bnx2x_timer(unsigned long data)
5479 {
5480         struct bnx2x *bp = (struct bnx2x *) data;
5481
5482         if (!netif_running(bp->dev))
5483                 return;
5484
5485         if (IS_PF(bp) &&
5486             !BP_NOMCP(bp)) {
5487                 int mb_idx = BP_FW_MB_IDX(bp);
5488                 u16 drv_pulse;
5489                 u16 mcp_pulse;
5490
5491                 ++bp->fw_drv_pulse_wr_seq;
5492                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5493                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5494                 bnx2x_drv_pulse(bp);
5495
5496                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5497                              MCP_PULSE_SEQ_MASK);
5498                 /* The delta between driver pulse and mcp response
5499                  * should not get too big. If the MFW is more than 5 pulses
5500                  * behind, we should worry about it enough to generate an error
5501                  * log.
5502                  */
5503                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5504                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5505                                   drv_pulse, mcp_pulse);
5506         }
5507
5508         if (bp->state == BNX2X_STATE_OPEN)
5509                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5510
5511         /* sample pf vf bulletin board for new posts from pf */
5512         if (IS_VF(bp))
5513                 bnx2x_timer_sriov(bp);
5514
5515         mod_timer(&bp->timer, jiffies + bp->current_interval);
5516 }
5517
5518 /* end of Statistics */
5519
5520 /* nic init */
5521
5522 /*
5523  * nic init service functions
5524  */
5525
5526 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5527 {
5528         u32 i;
5529         if (!(len%4) && !(addr%4))
5530                 for (i = 0; i < len; i += 4)
5531                         REG_WR(bp, addr + i, fill);
5532         else
5533                 for (i = 0; i < len; i++)
5534                         REG_WR8(bp, addr + i, fill);
5535 }
5536
5537 /* helper: writes FP SP data to FW - data_size in dwords */
5538 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5539                                 int fw_sb_id,
5540                                 u32 *sb_data_p,
5541                                 u32 data_size)
5542 {
5543         int index;
5544         for (index = 0; index < data_size; index++)
5545                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5546                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5547                         sizeof(u32)*index,
5548                         *(sb_data_p + index));
5549 }
5550
5551 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5552 {
5553         u32 *sb_data_p;
5554         u32 data_size = 0;
5555         struct hc_status_block_data_e2 sb_data_e2;
5556         struct hc_status_block_data_e1x sb_data_e1x;
5557
5558         /* disable the function first */
5559         if (!CHIP_IS_E1x(bp)) {
5560                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5561                 sb_data_e2.common.state = SB_DISABLED;
5562                 sb_data_e2.common.p_func.vf_valid = false;
5563                 sb_data_p = (u32 *)&sb_data_e2;
5564                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5565         } else {
5566                 memset(&sb_data_e1x, 0,
5567                        sizeof(struct hc_status_block_data_e1x));
5568                 sb_data_e1x.common.state = SB_DISABLED;
5569                 sb_data_e1x.common.p_func.vf_valid = false;
5570                 sb_data_p = (u32 *)&sb_data_e1x;
5571                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5572         }
5573         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5574
5575         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5576                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5577                         CSTORM_STATUS_BLOCK_SIZE);
5578         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5579                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5580                         CSTORM_SYNC_BLOCK_SIZE);
5581 }
5582
5583 /* helper:  writes SP SB data to FW */
5584 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5585                 struct hc_sp_status_block_data *sp_sb_data)
5586 {
5587         int func = BP_FUNC(bp);
5588         int i;
5589         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5590                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5591                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5592                         i*sizeof(u32),
5593                         *((u32 *)sp_sb_data + i));
5594 }
5595
5596 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5597 {
5598         int func = BP_FUNC(bp);
5599         struct hc_sp_status_block_data sp_sb_data;
5600         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5601
5602         sp_sb_data.state = SB_DISABLED;
5603         sp_sb_data.p_func.vf_valid = false;
5604
5605         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5606
5607         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5608                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5609                         CSTORM_SP_STATUS_BLOCK_SIZE);
5610         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5611                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5612                         CSTORM_SP_SYNC_BLOCK_SIZE);
5613 }
5614
5615 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5616                                            int igu_sb_id, int igu_seg_id)
5617 {
5618         hc_sm->igu_sb_id = igu_sb_id;
5619         hc_sm->igu_seg_id = igu_seg_id;
5620         hc_sm->timer_value = 0xFF;
5621         hc_sm->time_to_expire = 0xFFFFFFFF;
5622 }
5623
5624 /* allocates state machine ids. */
5625 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5626 {
5627         /* zero out state machine indices */
5628         /* rx indices */
5629         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5630
5631         /* tx indices */
5632         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5633         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5634         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5635         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5636
5637         /* map indices */
5638         /* rx indices */
5639         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5640                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5641
5642         /* tx indices */
5643         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5644                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5645         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5646                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5647         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5648                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5649         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5650                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5651 }
5652
5653 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5654                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5655 {
5656         int igu_seg_id;
5657
5658         struct hc_status_block_data_e2 sb_data_e2;
5659         struct hc_status_block_data_e1x sb_data_e1x;
5660         struct hc_status_block_sm  *hc_sm_p;
5661         int data_size;
5662         u32 *sb_data_p;
5663
5664         if (CHIP_INT_MODE_IS_BC(bp))
5665                 igu_seg_id = HC_SEG_ACCESS_NORM;
5666         else
5667                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5668
5669         bnx2x_zero_fp_sb(bp, fw_sb_id);
5670
5671         if (!CHIP_IS_E1x(bp)) {
5672                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5673                 sb_data_e2.common.state = SB_ENABLED;
5674                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5675                 sb_data_e2.common.p_func.vf_id = vfid;
5676                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5677                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5678                 sb_data_e2.common.same_igu_sb_1b = true;
5679                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5680                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5681                 hc_sm_p = sb_data_e2.common.state_machine;
5682                 sb_data_p = (u32 *)&sb_data_e2;
5683                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5684                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5685         } else {
5686                 memset(&sb_data_e1x, 0,
5687                        sizeof(struct hc_status_block_data_e1x));
5688                 sb_data_e1x.common.state = SB_ENABLED;
5689                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5690                 sb_data_e1x.common.p_func.vf_id = 0xff;
5691                 sb_data_e1x.common.p_func.vf_valid = false;
5692                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5693                 sb_data_e1x.common.same_igu_sb_1b = true;
5694                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5695                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5696                 hc_sm_p = sb_data_e1x.common.state_machine;
5697                 sb_data_p = (u32 *)&sb_data_e1x;
5698                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5699                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5700         }
5701
5702         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5703                                        igu_sb_id, igu_seg_id);
5704         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5705                                        igu_sb_id, igu_seg_id);
5706
5707         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5708
5709         /* write indices to HW - PCI guarantees endianity of regpairs */
5710         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5711 }
5712
5713 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5714                                      u16 tx_usec, u16 rx_usec)
5715 {
5716         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5717                                     false, rx_usec);
5718         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5719                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5720                                        tx_usec);
5721         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5722                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5723                                        tx_usec);
5724         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5725                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5726                                        tx_usec);
5727 }
5728
5729 static void bnx2x_init_def_sb(struct bnx2x *bp)
5730 {
5731         struct host_sp_status_block *def_sb = bp->def_status_blk;
5732         dma_addr_t mapping = bp->def_status_blk_mapping;
5733         int igu_sp_sb_index;
5734         int igu_seg_id;
5735         int port = BP_PORT(bp);
5736         int func = BP_FUNC(bp);
5737         int reg_offset, reg_offset_en5;
5738         u64 section;
5739         int index;
5740         struct hc_sp_status_block_data sp_sb_data;
5741         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5742
5743         if (CHIP_INT_MODE_IS_BC(bp)) {
5744                 igu_sp_sb_index = DEF_SB_IGU_ID;
5745                 igu_seg_id = HC_SEG_ACCESS_DEF;
5746         } else {
5747                 igu_sp_sb_index = bp->igu_dsb_id;
5748                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5749         }
5750
5751         /* ATTN */
5752         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5753                                             atten_status_block);
5754         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5755
5756         bp->attn_state = 0;
5757
5758         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5759                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5760         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5761                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5762         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5763                 int sindex;
5764                 /* take care of sig[0]..sig[4] */
5765                 for (sindex = 0; sindex < 4; sindex++)
5766                         bp->attn_group[index].sig[sindex] =
5767                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5768
5769                 if (!CHIP_IS_E1x(bp))
5770                         /*
5771                          * enable5 is separate from the rest of the registers,
5772                          * and therefore the address skip is 4
5773                          * and not 16 between the different groups
5774                          */
5775                         bp->attn_group[index].sig[4] = REG_RD(bp,
5776                                         reg_offset_en5 + 0x4*index);
5777                 else
5778                         bp->attn_group[index].sig[4] = 0;
5779         }
5780
5781         if (bp->common.int_block == INT_BLOCK_HC) {
5782                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5783                                      HC_REG_ATTN_MSG0_ADDR_L);
5784
5785                 REG_WR(bp, reg_offset, U64_LO(section));
5786                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5787         } else if (!CHIP_IS_E1x(bp)) {
5788                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5789                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5790         }
5791
5792         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5793                                             sp_sb);
5794
5795         bnx2x_zero_sp_sb(bp);
5796
5797         /* PCI guarantees endianity of regpairs */
5798         sp_sb_data.state                = SB_ENABLED;
5799         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5800         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5801         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5802         sp_sb_data.igu_seg_id           = igu_seg_id;
5803         sp_sb_data.p_func.pf_id         = func;
5804         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5805         sp_sb_data.p_func.vf_id         = 0xff;
5806
5807         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5808
5809         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5810 }
5811
5812 void bnx2x_update_coalesce(struct bnx2x *bp)
5813 {
5814         int i;
5815
5816         for_each_eth_queue(bp, i)
5817                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5818                                          bp->tx_ticks, bp->rx_ticks);
5819 }
5820
5821 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5822 {
5823         spin_lock_init(&bp->spq_lock);
5824         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5825
5826         bp->spq_prod_idx = 0;
5827         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5828         bp->spq_prod_bd = bp->spq;
5829         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5830 }
5831
5832 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5833 {
5834         int i;
5835         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5836                 union event_ring_elem *elem =
5837                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5838
5839                 elem->next_page.addr.hi =
5840                         cpu_to_le32(U64_HI(bp->eq_mapping +
5841                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5842                 elem->next_page.addr.lo =
5843                         cpu_to_le32(U64_LO(bp->eq_mapping +
5844                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5845         }
5846         bp->eq_cons = 0;
5847         bp->eq_prod = NUM_EQ_DESC;
5848         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5849         /* we want a warning message before it gets wrought... */
5850         atomic_set(&bp->eq_spq_left,
5851                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5852 }
5853
5854 /* called with netif_addr_lock_bh() */
5855 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5856                         unsigned long rx_mode_flags,
5857                         unsigned long rx_accept_flags,
5858                         unsigned long tx_accept_flags,
5859                         unsigned long ramrod_flags)
5860 {
5861         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5862         int rc;
5863
5864         memset(&ramrod_param, 0, sizeof(ramrod_param));
5865
5866         /* Prepare ramrod parameters */
5867         ramrod_param.cid = 0;
5868         ramrod_param.cl_id = cl_id;
5869         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5870         ramrod_param.func_id = BP_FUNC(bp);
5871
5872         ramrod_param.pstate = &bp->sp_state;
5873         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5874
5875         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5876         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5877
5878         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5879
5880         ramrod_param.ramrod_flags = ramrod_flags;
5881         ramrod_param.rx_mode_flags = rx_mode_flags;
5882
5883         ramrod_param.rx_accept_flags = rx_accept_flags;
5884         ramrod_param.tx_accept_flags = tx_accept_flags;
5885
5886         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5887         if (rc < 0) {
5888                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5889                 return rc;
5890         }
5891
5892         return 0;
5893 }
5894
5895 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5896                                    unsigned long *rx_accept_flags,
5897                                    unsigned long *tx_accept_flags)
5898 {
5899         /* Clear the flags first */
5900         *rx_accept_flags = 0;
5901         *tx_accept_flags = 0;
5902
5903         switch (rx_mode) {
5904         case BNX2X_RX_MODE_NONE:
5905                 /*
5906                  * 'drop all' supersedes any accept flags that may have been
5907                  * passed to the function.
5908                  */
5909                 break;
5910         case BNX2X_RX_MODE_NORMAL:
5911                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5912                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5913                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5914
5915                 /* internal switching mode */
5916                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5917                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5918                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5919
5920                 break;
5921         case BNX2X_RX_MODE_ALLMULTI:
5922                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5923                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5924                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5925
5926                 /* internal switching mode */
5927                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5928                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5929                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5930
5931                 break;
5932         case BNX2X_RX_MODE_PROMISC:
5933                 /* According to definition of SI mode, iface in promisc mode
5934                  * should receive matched and unmatched (in resolution of port)
5935                  * unicast packets.
5936                  */
5937                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5938                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5939                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5940                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5941
5942                 /* internal switching mode */
5943                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5944                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5945
5946                 if (IS_MF_SI(bp))
5947                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5948                 else
5949                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5950
5951                 break;
5952         default:
5953                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5954                 return -EINVAL;
5955         }
5956
5957         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5958         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5959                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5960                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5961         }
5962
5963         return 0;
5964 }
5965
5966 /* called with netif_addr_lock_bh() */
5967 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5968 {
5969         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5970         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5971         int rc;
5972
5973         if (!NO_FCOE(bp))
5974                 /* Configure rx_mode of FCoE Queue */
5975                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5976
5977         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5978                                      &tx_accept_flags);
5979         if (rc)
5980                 return rc;
5981
5982         __set_bit(RAMROD_RX, &ramrod_flags);
5983         __set_bit(RAMROD_TX, &ramrod_flags);
5984
5985         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5986                                    rx_accept_flags, tx_accept_flags,
5987                                    ramrod_flags);
5988 }
5989
5990 static void bnx2x_init_internal_common(struct bnx2x *bp)
5991 {
5992         int i;
5993
5994         if (IS_MF_SI(bp))
5995                 /*
5996                  * In switch independent mode, the TSTORM needs to accept
5997                  * packets that failed classification, since approximate match
5998                  * mac addresses aren't written to NIG LLH
5999                  */
6000                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6001                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6002         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6003                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6004                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6005
6006         /* Zero this manually as its initialization is
6007            currently missing in the initTool */
6008         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6009                 REG_WR(bp, BAR_USTRORM_INTMEM +
6010                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6011         if (!CHIP_IS_E1x(bp)) {
6012                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6013                         CHIP_INT_MODE_IS_BC(bp) ?
6014                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6015         }
6016 }
6017
6018 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6019 {
6020         switch (load_code) {
6021         case FW_MSG_CODE_DRV_LOAD_COMMON:
6022         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6023                 bnx2x_init_internal_common(bp);
6024                 /* no break */
6025
6026         case FW_MSG_CODE_DRV_LOAD_PORT:
6027                 /* nothing to do */
6028                 /* no break */
6029
6030         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6031                 /* internal memory per function is
6032                    initialized inside bnx2x_pf_init */
6033                 break;
6034
6035         default:
6036                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6037                 break;
6038         }
6039 }
6040
6041 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6042 {
6043         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6044 }
6045
6046 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6047 {
6048         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6049 }
6050
6051 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6052 {
6053         if (CHIP_IS_E1x(fp->bp))
6054                 return BP_L_ID(fp->bp) + fp->index;
6055         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6056                 return bnx2x_fp_igu_sb_id(fp);
6057 }
6058
6059 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6060 {
6061         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6062         u8 cos;
6063         unsigned long q_type = 0;
6064         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6065         fp->rx_queue = fp_idx;
6066         fp->cid = fp_idx;
6067         fp->cl_id = bnx2x_fp_cl_id(fp);
6068         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6069         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6070         /* qZone id equals to FW (per path) client id */
6071         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6072
6073         /* init shortcut */
6074         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6075
6076         /* Setup SB indices */
6077         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6078
6079         /* Configure Queue State object */
6080         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6081         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6082
6083         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6084
6085         /* init tx data */
6086         for_each_cos_in_tx_queue(fp, cos) {
6087                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6088                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6089                                   FP_COS_TO_TXQ(fp, cos, bp),
6090                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6091                 cids[cos] = fp->txdata_ptr[cos]->cid;
6092         }
6093
6094         /* nothing more for vf to do here */
6095         if (IS_VF(bp))
6096                 return;
6097
6098         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6099                       fp->fw_sb_id, fp->igu_sb_id);
6100         bnx2x_update_fpsb_idx(fp);
6101         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6102                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6103                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6104
6105         /**
6106          * Configure classification DBs: Always enable Tx switching
6107          */
6108         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6109
6110         DP(NETIF_MSG_IFUP,
6111            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6112            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6113            fp->igu_sb_id);
6114 }
6115
6116 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6117 {
6118         int i;
6119
6120         for (i = 1; i <= NUM_TX_RINGS; i++) {
6121                 struct eth_tx_next_bd *tx_next_bd =
6122                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6123
6124                 tx_next_bd->addr_hi =
6125                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6126                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6127                 tx_next_bd->addr_lo =
6128                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6129                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6130         }
6131
6132         *txdata->tx_cons_sb = cpu_to_le16(0);
6133
6134         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6135         txdata->tx_db.data.zero_fill1 = 0;
6136         txdata->tx_db.data.prod = 0;
6137
6138         txdata->tx_pkt_prod = 0;
6139         txdata->tx_pkt_cons = 0;
6140         txdata->tx_bd_prod = 0;
6141         txdata->tx_bd_cons = 0;
6142         txdata->tx_pkt = 0;
6143 }
6144
6145 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6146 {
6147         int i;
6148
6149         for_each_tx_queue_cnic(bp, i)
6150                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6151 }
6152
6153 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6154 {
6155         int i;
6156         u8 cos;
6157
6158         for_each_eth_queue(bp, i)
6159                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6160                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6161 }
6162
6163 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6164 {
6165         if (!NO_FCOE(bp))
6166                 bnx2x_init_fcoe_fp(bp);
6167
6168         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6169                       BNX2X_VF_ID_INVALID, false,
6170                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6171
6172         /* ensure status block indices were read */
6173         rmb();
6174         bnx2x_init_rx_rings_cnic(bp);
6175         bnx2x_init_tx_rings_cnic(bp);
6176
6177         /* flush all */
6178         mb();
6179         mmiowb();
6180 }
6181
6182 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6183 {
6184         int i;
6185
6186         /* Setup NIC internals and enable interrupts */
6187         for_each_eth_queue(bp, i)
6188                 bnx2x_init_eth_fp(bp, i);
6189
6190         /* ensure status block indices were read */
6191         rmb();
6192         bnx2x_init_rx_rings(bp);
6193         bnx2x_init_tx_rings(bp);
6194
6195         if (IS_PF(bp)) {
6196                 /* Initialize MOD_ABS interrupts */
6197                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6198                                        bp->common.shmem_base,
6199                                        bp->common.shmem2_base, BP_PORT(bp));
6200
6201                 /* initialize the default status block and sp ring */
6202                 bnx2x_init_def_sb(bp);
6203                 bnx2x_update_dsb_idx(bp);
6204                 bnx2x_init_sp_ring(bp);
6205         } else {
6206                 bnx2x_memset_stats(bp);
6207         }
6208 }
6209
6210 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6211 {
6212         bnx2x_init_eq_ring(bp);
6213         bnx2x_init_internal(bp, load_code);
6214         bnx2x_pf_init(bp);
6215         bnx2x_stats_init(bp);
6216
6217         /* flush all before enabling interrupts */
6218         mb();
6219         mmiowb();
6220
6221         bnx2x_int_enable(bp);
6222
6223         /* Check for SPIO5 */
6224         bnx2x_attn_int_deasserted0(bp,
6225                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6226                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6227 }
6228
6229 /* gzip service functions */
6230 static int bnx2x_gunzip_init(struct bnx2x *bp)
6231 {
6232         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6233                                             &bp->gunzip_mapping, GFP_KERNEL);
6234         if (bp->gunzip_buf  == NULL)
6235                 goto gunzip_nomem1;
6236
6237         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6238         if (bp->strm  == NULL)
6239                 goto gunzip_nomem2;
6240
6241         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6242         if (bp->strm->workspace == NULL)
6243                 goto gunzip_nomem3;
6244
6245         return 0;
6246
6247 gunzip_nomem3:
6248         kfree(bp->strm);
6249         bp->strm = NULL;
6250
6251 gunzip_nomem2:
6252         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6253                           bp->gunzip_mapping);
6254         bp->gunzip_buf = NULL;
6255
6256 gunzip_nomem1:
6257         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6258         return -ENOMEM;
6259 }
6260
6261 static void bnx2x_gunzip_end(struct bnx2x *bp)
6262 {
6263         if (bp->strm) {
6264                 vfree(bp->strm->workspace);
6265                 kfree(bp->strm);
6266                 bp->strm = NULL;
6267         }
6268
6269         if (bp->gunzip_buf) {
6270                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6271                                   bp->gunzip_mapping);
6272                 bp->gunzip_buf = NULL;
6273         }
6274 }
6275
6276 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6277 {
6278         int n, rc;
6279
6280         /* check gzip header */
6281         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6282                 BNX2X_ERR("Bad gzip header\n");
6283                 return -EINVAL;
6284         }
6285
6286         n = 10;
6287
6288 #define FNAME                           0x8
6289
6290         if (zbuf[3] & FNAME)
6291                 while ((zbuf[n++] != 0) && (n < len));
6292
6293         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6294         bp->strm->avail_in = len - n;
6295         bp->strm->next_out = bp->gunzip_buf;
6296         bp->strm->avail_out = FW_BUF_SIZE;
6297
6298         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6299         if (rc != Z_OK)
6300                 return rc;
6301
6302         rc = zlib_inflate(bp->strm, Z_FINISH);
6303         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6304                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6305                            bp->strm->msg);
6306
6307         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6308         if (bp->gunzip_outlen & 0x3)
6309                 netdev_err(bp->dev,
6310                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6311                                 bp->gunzip_outlen);
6312         bp->gunzip_outlen >>= 2;
6313
6314         zlib_inflateEnd(bp->strm);
6315
6316         if (rc == Z_STREAM_END)
6317                 return 0;
6318
6319         return rc;
6320 }
6321
6322 /* nic load/unload */
6323
6324 /*
6325  * General service functions
6326  */
6327
6328 /* send a NIG loopback debug packet */
6329 static void bnx2x_lb_pckt(struct bnx2x *bp)
6330 {
6331         u32 wb_write[3];
6332
6333         /* Ethernet source and destination addresses */
6334         wb_write[0] = 0x55555555;
6335         wb_write[1] = 0x55555555;
6336         wb_write[2] = 0x20;             /* SOP */
6337         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6338
6339         /* NON-IP protocol */
6340         wb_write[0] = 0x09000000;
6341         wb_write[1] = 0x55555555;
6342         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6343         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6344 }
6345
6346 /* some of the internal memories
6347  * are not directly readable from the driver
6348  * to test them we send debug packets
6349  */
6350 static int bnx2x_int_mem_test(struct bnx2x *bp)
6351 {
6352         int factor;
6353         int count, i;
6354         u32 val = 0;
6355
6356         if (CHIP_REV_IS_FPGA(bp))
6357                 factor = 120;
6358         else if (CHIP_REV_IS_EMUL(bp))
6359                 factor = 200;
6360         else
6361                 factor = 1;
6362
6363         /* Disable inputs of parser neighbor blocks */
6364         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6365         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6366         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6367         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6368
6369         /*  Write 0 to parser credits for CFC search request */
6370         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6371
6372         /* send Ethernet packet */
6373         bnx2x_lb_pckt(bp);
6374
6375         /* TODO do i reset NIG statistic? */
6376         /* Wait until NIG register shows 1 packet of size 0x10 */
6377         count = 1000 * factor;
6378         while (count) {
6379
6380                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6381                 val = *bnx2x_sp(bp, wb_data[0]);
6382                 if (val == 0x10)
6383                         break;
6384
6385                 usleep_range(10000, 20000);
6386                 count--;
6387         }
6388         if (val != 0x10) {
6389                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6390                 return -1;
6391         }
6392
6393         /* Wait until PRS register shows 1 packet */
6394         count = 1000 * factor;
6395         while (count) {
6396                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6397                 if (val == 1)
6398                         break;
6399
6400                 usleep_range(10000, 20000);
6401                 count--;
6402         }
6403         if (val != 0x1) {
6404                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6405                 return -2;
6406         }
6407
6408         /* Reset and init BRB, PRS */
6409         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6410         msleep(50);
6411         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6412         msleep(50);
6413         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6414         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6415
6416         DP(NETIF_MSG_HW, "part2\n");
6417
6418         /* Disable inputs of parser neighbor blocks */
6419         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6420         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6421         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6422         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6423
6424         /* Write 0 to parser credits for CFC search request */
6425         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6426
6427         /* send 10 Ethernet packets */
6428         for (i = 0; i < 10; i++)
6429                 bnx2x_lb_pckt(bp);
6430
6431         /* Wait until NIG register shows 10 + 1
6432            packets of size 11*0x10 = 0xb0 */
6433         count = 1000 * factor;
6434         while (count) {
6435
6436                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6437                 val = *bnx2x_sp(bp, wb_data[0]);
6438                 if (val == 0xb0)
6439                         break;
6440
6441                 usleep_range(10000, 20000);
6442                 count--;
6443         }
6444         if (val != 0xb0) {
6445                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6446                 return -3;
6447         }
6448
6449         /* Wait until PRS register shows 2 packets */
6450         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6451         if (val != 2)
6452                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6453
6454         /* Write 1 to parser credits for CFC search request */
6455         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6456
6457         /* Wait until PRS register shows 3 packets */
6458         msleep(10 * factor);
6459         /* Wait until NIG register shows 1 packet of size 0x10 */
6460         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6461         if (val != 3)
6462                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6463
6464         /* clear NIG EOP FIFO */
6465         for (i = 0; i < 11; i++)
6466                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6467         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6468         if (val != 1) {
6469                 BNX2X_ERR("clear of NIG failed\n");
6470                 return -4;
6471         }
6472
6473         /* Reset and init BRB, PRS, NIG */
6474         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6475         msleep(50);
6476         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6477         msleep(50);
6478         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6479         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6480         if (!CNIC_SUPPORT(bp))
6481                 /* set NIC mode */
6482                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6483
6484         /* Enable inputs of parser neighbor blocks */
6485         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6486         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6487         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6488         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6489
6490         DP(NETIF_MSG_HW, "done\n");
6491
6492         return 0; /* OK */
6493 }
6494
6495 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6496 {
6497         u32 val;
6498
6499         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6500         if (!CHIP_IS_E1x(bp))
6501                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6502         else
6503                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6504         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6505         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6506         /*
6507          * mask read length error interrupts in brb for parser
6508          * (parsing unit and 'checksum and crc' unit)
6509          * these errors are legal (PU reads fixed length and CAC can cause
6510          * read length error on truncated packets)
6511          */
6512         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6513         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6514         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6515         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6516         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6517         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6518 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6519 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6520         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6521         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6522         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6523 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6524 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6525         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6526         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6527         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6528         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6529 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6530 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6531
6532         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6533                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6534                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6535         if (!CHIP_IS_E1x(bp))
6536                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6537                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6538         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6539
6540         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6541         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6542         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6543 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6544
6545         if (!CHIP_IS_E1x(bp))
6546                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6547                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6548
6549         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6550         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6551 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6552         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6553 }
6554
6555 static void bnx2x_reset_common(struct bnx2x *bp)
6556 {
6557         u32 val = 0x1400;
6558
6559         /* reset_common */
6560         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6561                0xd3ffff7f);
6562
6563         if (CHIP_IS_E3(bp)) {
6564                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6565                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6566         }
6567
6568         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6569 }
6570
6571 static void bnx2x_setup_dmae(struct bnx2x *bp)
6572 {
6573         bp->dmae_ready = 0;
6574         spin_lock_init(&bp->dmae_lock);
6575 }
6576
6577 static void bnx2x_init_pxp(struct bnx2x *bp)
6578 {
6579         u16 devctl;
6580         int r_order, w_order;
6581
6582         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6583         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6584         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6585         if (bp->mrrs == -1)
6586                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6587         else {
6588                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6589                 r_order = bp->mrrs;
6590         }
6591
6592         bnx2x_init_pxp_arb(bp, r_order, w_order);
6593 }
6594
6595 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6596 {
6597         int is_required;
6598         u32 val;
6599         int port;
6600
6601         if (BP_NOMCP(bp))
6602                 return;
6603
6604         is_required = 0;
6605         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6606               SHARED_HW_CFG_FAN_FAILURE_MASK;
6607
6608         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6609                 is_required = 1;
6610
6611         /*
6612          * The fan failure mechanism is usually related to the PHY type since
6613          * the power consumption of the board is affected by the PHY. Currently,
6614          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6615          */
6616         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6617                 for (port = PORT_0; port < PORT_MAX; port++) {
6618                         is_required |=
6619                                 bnx2x_fan_failure_det_req(
6620                                         bp,
6621                                         bp->common.shmem_base,
6622                                         bp->common.shmem2_base,
6623                                         port);
6624                 }
6625
6626         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6627
6628         if (is_required == 0)
6629                 return;
6630
6631         /* Fan failure is indicated by SPIO 5 */
6632         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6633
6634         /* set to active low mode */
6635         val = REG_RD(bp, MISC_REG_SPIO_INT);
6636         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6637         REG_WR(bp, MISC_REG_SPIO_INT, val);
6638
6639         /* enable interrupt to signal the IGU */
6640         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6641         val |= MISC_SPIO_SPIO5;
6642         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6643 }
6644
6645 void bnx2x_pf_disable(struct bnx2x *bp)
6646 {
6647         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6648         val &= ~IGU_PF_CONF_FUNC_EN;
6649
6650         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6651         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6652         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6653 }
6654
6655 static void bnx2x__common_init_phy(struct bnx2x *bp)
6656 {
6657         u32 shmem_base[2], shmem2_base[2];
6658         /* Avoid common init in case MFW supports LFA */
6659         if (SHMEM2_RD(bp, size) >
6660             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6661                 return;
6662         shmem_base[0] =  bp->common.shmem_base;
6663         shmem2_base[0] = bp->common.shmem2_base;
6664         if (!CHIP_IS_E1x(bp)) {
6665                 shmem_base[1] =
6666                         SHMEM2_RD(bp, other_shmem_base_addr);
6667                 shmem2_base[1] =
6668                         SHMEM2_RD(bp, other_shmem2_base_addr);
6669         }
6670         bnx2x_acquire_phy_lock(bp);
6671         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6672                               bp->common.chip_id);
6673         bnx2x_release_phy_lock(bp);
6674 }
6675
6676 /**
6677  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6678  *
6679  * @bp:         driver handle
6680  */
6681 static int bnx2x_init_hw_common(struct bnx2x *bp)
6682 {
6683         u32 val;
6684
6685         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6686
6687         /*
6688          * take the RESET lock to protect undi_unload flow from accessing
6689          * registers while we're resetting the chip
6690          */
6691         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6692
6693         bnx2x_reset_common(bp);
6694         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6695
6696         val = 0xfffc;
6697         if (CHIP_IS_E3(bp)) {
6698                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6699                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6700         }
6701         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6702
6703         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6704
6705         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6706
6707         if (!CHIP_IS_E1x(bp)) {
6708                 u8 abs_func_id;
6709
6710                 /**
6711                  * 4-port mode or 2-port mode we need to turn of master-enable
6712                  * for everyone, after that, turn it back on for self.
6713                  * so, we disregard multi-function or not, and always disable
6714                  * for all functions on the given path, this means 0,2,4,6 for
6715                  * path 0 and 1,3,5,7 for path 1
6716                  */
6717                 for (abs_func_id = BP_PATH(bp);
6718                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6719                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6720                                 REG_WR(bp,
6721                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6722                                     1);
6723                                 continue;
6724                         }
6725
6726                         bnx2x_pretend_func(bp, abs_func_id);
6727                         /* clear pf enable */
6728                         bnx2x_pf_disable(bp);
6729                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6730                 }
6731         }
6732
6733         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6734         if (CHIP_IS_E1(bp)) {
6735                 /* enable HW interrupt from PXP on USDM overflow
6736                    bit 16 on INT_MASK_0 */
6737                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6738         }
6739
6740         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6741         bnx2x_init_pxp(bp);
6742
6743 #ifdef __BIG_ENDIAN
6744         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6745         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6746         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6747         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6748         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6749         /* make sure this value is 0 */
6750         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6751
6752 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6753         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6754         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6755         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6756         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6757 #endif
6758
6759         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6760
6761         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6762                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6763
6764         /* let the HW do it's magic ... */
6765         msleep(100);
6766         /* finish PXP init */
6767         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6768         if (val != 1) {
6769                 BNX2X_ERR("PXP2 CFG failed\n");
6770                 return -EBUSY;
6771         }
6772         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6773         if (val != 1) {
6774                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6775                 return -EBUSY;
6776         }
6777
6778         /* Timers bug workaround E2 only. We need to set the entire ILT to
6779          * have entries with value "0" and valid bit on.
6780          * This needs to be done by the first PF that is loaded in a path
6781          * (i.e. common phase)
6782          */
6783         if (!CHIP_IS_E1x(bp)) {
6784 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6785  * (i.e. vnic3) to start even if it is marked as "scan-off".
6786  * This occurs when a different function (func2,3) is being marked
6787  * as "scan-off". Real-life scenario for example: if a driver is being
6788  * load-unloaded while func6,7 are down. This will cause the timer to access
6789  * the ilt, translate to a logical address and send a request to read/write.
6790  * Since the ilt for the function that is down is not valid, this will cause
6791  * a translation error which is unrecoverable.
6792  * The Workaround is intended to make sure that when this happens nothing fatal
6793  * will occur. The workaround:
6794  *      1.  First PF driver which loads on a path will:
6795  *              a.  After taking the chip out of reset, by using pretend,
6796  *                  it will write "0" to the following registers of
6797  *                  the other vnics.
6798  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6799  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6800  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6801  *                  And for itself it will write '1' to
6802  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6803  *                  dmae-operations (writing to pram for example.)
6804  *                  note: can be done for only function 6,7 but cleaner this
6805  *                        way.
6806  *              b.  Write zero+valid to the entire ILT.
6807  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6808  *                  VNIC3 (of that port). The range allocated will be the
6809  *                  entire ILT. This is needed to prevent  ILT range error.
6810  *      2.  Any PF driver load flow:
6811  *              a.  ILT update with the physical addresses of the allocated
6812  *                  logical pages.
6813  *              b.  Wait 20msec. - note that this timeout is needed to make
6814  *                  sure there are no requests in one of the PXP internal
6815  *                  queues with "old" ILT addresses.
6816  *              c.  PF enable in the PGLC.
6817  *              d.  Clear the was_error of the PF in the PGLC. (could have
6818  *                  occurred while driver was down)
6819  *              e.  PF enable in the CFC (WEAK + STRONG)
6820  *              f.  Timers scan enable
6821  *      3.  PF driver unload flow:
6822  *              a.  Clear the Timers scan_en.
6823  *              b.  Polling for scan_on=0 for that PF.
6824  *              c.  Clear the PF enable bit in the PXP.
6825  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6826  *              e.  Write zero+valid to all ILT entries (The valid bit must
6827  *                  stay set)
6828  *              f.  If this is VNIC 3 of a port then also init
6829  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6830  *                  to the last entry in the ILT.
6831  *
6832  *      Notes:
6833  *      Currently the PF error in the PGLC is non recoverable.
6834  *      In the future the there will be a recovery routine for this error.
6835  *      Currently attention is masked.
6836  *      Having an MCP lock on the load/unload process does not guarantee that
6837  *      there is no Timer disable during Func6/7 enable. This is because the
6838  *      Timers scan is currently being cleared by the MCP on FLR.
6839  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6840  *      there is error before clearing it. But the flow above is simpler and
6841  *      more general.
6842  *      All ILT entries are written by zero+valid and not just PF6/7
6843  *      ILT entries since in the future the ILT entries allocation for
6844  *      PF-s might be dynamic.
6845  */
6846                 struct ilt_client_info ilt_cli;
6847                 struct bnx2x_ilt ilt;
6848                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6849                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6850
6851                 /* initialize dummy TM client */
6852                 ilt_cli.start = 0;
6853                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6854                 ilt_cli.client_num = ILT_CLIENT_TM;
6855
6856                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6857                  * Step 2: set the timers first/last ilt entry to point
6858                  * to the entire range to prevent ILT range error for 3rd/4th
6859                  * vnic (this code assumes existence of the vnic)
6860                  *
6861                  * both steps performed by call to bnx2x_ilt_client_init_op()
6862                  * with dummy TM client
6863                  *
6864                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6865                  * and his brother are split registers
6866                  */
6867                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6868                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6869                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6870
6871                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6872                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6873                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6874         }
6875
6876         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6877         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6878
6879         if (!CHIP_IS_E1x(bp)) {
6880                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6881                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6882                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6883
6884                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6885
6886                 /* let the HW do it's magic ... */
6887                 do {
6888                         msleep(200);
6889                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6890                 } while (factor-- && (val != 1));
6891
6892                 if (val != 1) {
6893                         BNX2X_ERR("ATC_INIT failed\n");
6894                         return -EBUSY;
6895                 }
6896         }
6897
6898         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6899
6900         bnx2x_iov_init_dmae(bp);
6901
6902         /* clean the DMAE memory */
6903         bp->dmae_ready = 1;
6904         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6905
6906         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6907
6908         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6909
6910         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6911
6912         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6913
6914         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6915         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6916         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6917         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6918
6919         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6920
6921         /* QM queues pointers table */
6922         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6923
6924         /* soft reset pulse */
6925         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6926         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6927
6928         if (CNIC_SUPPORT(bp))
6929                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6930
6931         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6932
6933         if (!CHIP_REV_IS_SLOW(bp))
6934                 /* enable hw interrupt from doorbell Q */
6935                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6936
6937         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6938
6939         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6940         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6941
6942         if (!CHIP_IS_E1(bp))
6943                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6944
6945         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6946                 if (IS_MF_AFEX(bp)) {
6947                         /* configure that VNTag and VLAN headers must be
6948                          * received in afex mode
6949                          */
6950                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6951                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6952                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6953                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6954                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6955                 } else {
6956                         /* Bit-map indicating which L2 hdrs may appear
6957                          * after the basic Ethernet header
6958                          */
6959                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6960                                bp->path_has_ovlan ? 7 : 6);
6961                 }
6962         }
6963
6964         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6965         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6966         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6967         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6968
6969         if (!CHIP_IS_E1x(bp)) {
6970                 /* reset VFC memories */
6971                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6972                            VFC_MEMORIES_RST_REG_CAM_RST |
6973                            VFC_MEMORIES_RST_REG_RAM_RST);
6974                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6975                            VFC_MEMORIES_RST_REG_CAM_RST |
6976                            VFC_MEMORIES_RST_REG_RAM_RST);
6977
6978                 msleep(20);
6979         }
6980
6981         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6982         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6983         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6984         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6985
6986         /* sync semi rtc */
6987         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6988                0x80000000);
6989         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6990                0x80000000);
6991
6992         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6993         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6994         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6995
6996         if (!CHIP_IS_E1x(bp)) {
6997                 if (IS_MF_AFEX(bp)) {
6998                         /* configure that VNTag and VLAN headers must be
6999                          * sent in afex mode
7000                          */
7001                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7002                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7003                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7004                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7005                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7006                 } else {
7007                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7008                                bp->path_has_ovlan ? 7 : 6);
7009                 }
7010         }
7011
7012         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7013
7014         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7015
7016         if (CNIC_SUPPORT(bp)) {
7017                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7018                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7019                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7020                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7021                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7022                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7023                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7024                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7025                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7026                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7027         }
7028         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7029
7030         if (sizeof(union cdu_context) != 1024)
7031                 /* we currently assume that a context is 1024 bytes */
7032                 dev_alert(&bp->pdev->dev,
7033                           "please adjust the size of cdu_context(%ld)\n",
7034                           (long)sizeof(union cdu_context));
7035
7036         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7037         val = (4 << 24) + (0 << 12) + 1024;
7038         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7039
7040         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7041         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7042         /* enable context validation interrupt from CFC */
7043         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7044
7045         /* set the thresholds to prevent CFC/CDU race */
7046         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7047
7048         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7049
7050         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7051                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7052
7053         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7054         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7055
7056         /* Reset PCIE errors for debug */
7057         REG_WR(bp, 0x2814, 0xffffffff);
7058         REG_WR(bp, 0x3820, 0xffffffff);
7059
7060         if (!CHIP_IS_E1x(bp)) {
7061                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7062                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7063                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7064                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7065                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7066                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7067                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7068                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7069                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7070                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7071                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7072         }
7073
7074         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7075         if (!CHIP_IS_E1(bp)) {
7076                 /* in E3 this done in per-port section */
7077                 if (!CHIP_IS_E3(bp))
7078                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7079         }
7080         if (CHIP_IS_E1H(bp))
7081                 /* not applicable for E2 (and above ...) */
7082                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7083
7084         if (CHIP_REV_IS_SLOW(bp))
7085                 msleep(200);
7086
7087         /* finish CFC init */
7088         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7089         if (val != 1) {
7090                 BNX2X_ERR("CFC LL_INIT failed\n");
7091                 return -EBUSY;
7092         }
7093         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7094         if (val != 1) {
7095                 BNX2X_ERR("CFC AC_INIT failed\n");
7096                 return -EBUSY;
7097         }
7098         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7099         if (val != 1) {
7100                 BNX2X_ERR("CFC CAM_INIT failed\n");
7101                 return -EBUSY;
7102         }
7103         REG_WR(bp, CFC_REG_DEBUG0, 0);
7104
7105         if (CHIP_IS_E1(bp)) {
7106                 /* read NIG statistic
7107                    to see if this is our first up since powerup */
7108                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7109                 val = *bnx2x_sp(bp, wb_data[0]);
7110
7111                 /* do internal memory self test */
7112                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7113                         BNX2X_ERR("internal mem self test failed\n");
7114                         return -EBUSY;
7115                 }
7116         }
7117
7118         bnx2x_setup_fan_failure_detection(bp);
7119
7120         /* clear PXP2 attentions */
7121         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7122
7123         bnx2x_enable_blocks_attention(bp);
7124         bnx2x_enable_blocks_parity(bp);
7125
7126         if (!BP_NOMCP(bp)) {
7127                 if (CHIP_IS_E1x(bp))
7128                         bnx2x__common_init_phy(bp);
7129         } else
7130                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7131
7132         return 0;
7133 }
7134
7135 /**
7136  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7137  *
7138  * @bp:         driver handle
7139  */
7140 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7141 {
7142         int rc = bnx2x_init_hw_common(bp);
7143
7144         if (rc)
7145                 return rc;
7146
7147         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7148         if (!BP_NOMCP(bp))
7149                 bnx2x__common_init_phy(bp);
7150
7151         return 0;
7152 }
7153
7154 static int bnx2x_init_hw_port(struct bnx2x *bp)
7155 {
7156         int port = BP_PORT(bp);
7157         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7158         u32 low, high;
7159         u32 val, reg;
7160
7161         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7162
7163         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7164
7165         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7166         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7167         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7168
7169         /* Timers bug workaround: disables the pf_master bit in pglue at
7170          * common phase, we need to enable it here before any dmae access are
7171          * attempted. Therefore we manually added the enable-master to the
7172          * port phase (it also happens in the function phase)
7173          */
7174         if (!CHIP_IS_E1x(bp))
7175                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7176
7177         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7178         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7179         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7180         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7181
7182         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7183         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7184         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7185         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7186
7187         /* QM cid (connection) count */
7188         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7189
7190         if (CNIC_SUPPORT(bp)) {
7191                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7192                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7193                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7194         }
7195
7196         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7197
7198         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7199
7200         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7201
7202                 if (IS_MF(bp))
7203                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7204                 else if (bp->dev->mtu > 4096) {
7205                         if (bp->flags & ONE_PORT_FLAG)
7206                                 low = 160;
7207                         else {
7208                                 val = bp->dev->mtu;
7209                                 /* (24*1024 + val*4)/256 */
7210                                 low = 96 + (val/64) +
7211                                                 ((val % 64) ? 1 : 0);
7212                         }
7213                 } else
7214                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7215                 high = low + 56;        /* 14*1024/256 */
7216                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7217                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7218         }
7219
7220         if (CHIP_MODE_IS_4_PORT(bp))
7221                 REG_WR(bp, (BP_PORT(bp) ?
7222                             BRB1_REG_MAC_GUARANTIED_1 :
7223                             BRB1_REG_MAC_GUARANTIED_0), 40);
7224
7225         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7226         if (CHIP_IS_E3B0(bp)) {
7227                 if (IS_MF_AFEX(bp)) {
7228                         /* configure headers for AFEX mode */
7229                         REG_WR(bp, BP_PORT(bp) ?
7230                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7231                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7232                         REG_WR(bp, BP_PORT(bp) ?
7233                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7234                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7235                         REG_WR(bp, BP_PORT(bp) ?
7236                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7237                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7238                 } else {
7239                         /* Ovlan exists only if we are in multi-function +
7240                          * switch-dependent mode, in switch-independent there
7241                          * is no ovlan headers
7242                          */
7243                         REG_WR(bp, BP_PORT(bp) ?
7244                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7245                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7246                                (bp->path_has_ovlan ? 7 : 6));
7247                 }
7248         }
7249
7250         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7251         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7252         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7253         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7254
7255         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7256         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7257         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7258         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7259
7260         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7261         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7262
7263         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7264
7265         if (CHIP_IS_E1x(bp)) {
7266                 /* configure PBF to work without PAUSE mtu 9000 */
7267                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7268
7269                 /* update threshold */
7270                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7271                 /* update init credit */
7272                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7273
7274                 /* probe changes */
7275                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7276                 udelay(50);
7277                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7278         }
7279
7280         if (CNIC_SUPPORT(bp))
7281                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7282
7283         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7284         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7285
7286         if (CHIP_IS_E1(bp)) {
7287                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7288                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7289         }
7290         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7291
7292         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7293
7294         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7295         /* init aeu_mask_attn_func_0/1:
7296          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7297          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7298          *             bits 4-7 are used for "per vn group attention" */
7299         val = IS_MF(bp) ? 0xF7 : 0x7;
7300         /* Enable DCBX attention for all but E1 */
7301         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7302         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7303
7304         /* SCPAD_PARITY should NOT trigger close the gates */
7305         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7306         REG_WR(bp, reg,
7307                REG_RD(bp, reg) &
7308                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7309
7310         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7311         REG_WR(bp, reg,
7312                REG_RD(bp, reg) &
7313                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7314
7315         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7316
7317         if (!CHIP_IS_E1x(bp)) {
7318                 /* Bit-map indicating which L2 hdrs may appear after the
7319                  * basic Ethernet header
7320                  */
7321                 if (IS_MF_AFEX(bp))
7322                         REG_WR(bp, BP_PORT(bp) ?
7323                                NIG_REG_P1_HDRS_AFTER_BASIC :
7324                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7325                 else
7326                         REG_WR(bp, BP_PORT(bp) ?
7327                                NIG_REG_P1_HDRS_AFTER_BASIC :
7328                                NIG_REG_P0_HDRS_AFTER_BASIC,
7329                                IS_MF_SD(bp) ? 7 : 6);
7330
7331                 if (CHIP_IS_E3(bp))
7332                         REG_WR(bp, BP_PORT(bp) ?
7333                                    NIG_REG_LLH1_MF_MODE :
7334                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7335         }
7336         if (!CHIP_IS_E3(bp))
7337                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7338
7339         if (!CHIP_IS_E1(bp)) {
7340                 /* 0x2 disable mf_ov, 0x1 enable */
7341                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7342                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7343
7344                 if (!CHIP_IS_E1x(bp)) {
7345                         val = 0;
7346                         switch (bp->mf_mode) {
7347                         case MULTI_FUNCTION_SD:
7348                                 val = 1;
7349                                 break;
7350                         case MULTI_FUNCTION_SI:
7351                         case MULTI_FUNCTION_AFEX:
7352                                 val = 2;
7353                                 break;
7354                         }
7355
7356                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7357                                                   NIG_REG_LLH0_CLS_TYPE), val);
7358                 }
7359                 {
7360                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7361                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7362                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7363                 }
7364         }
7365
7366         /* If SPIO5 is set to generate interrupts, enable it for this port */
7367         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7368         if (val & MISC_SPIO_SPIO5) {
7369                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7370                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7371                 val = REG_RD(bp, reg_addr);
7372                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7373                 REG_WR(bp, reg_addr, val);
7374         }
7375
7376         return 0;
7377 }
7378
7379 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7380 {
7381         int reg;
7382         u32 wb_write[2];
7383
7384         if (CHIP_IS_E1(bp))
7385                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7386         else
7387                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7388
7389         wb_write[0] = ONCHIP_ADDR1(addr);
7390         wb_write[1] = ONCHIP_ADDR2(addr);
7391         REG_WR_DMAE(bp, reg, wb_write, 2);
7392 }
7393
7394 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7395 {
7396         u32 data, ctl, cnt = 100;
7397         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7398         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7399         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7400         u32 sb_bit =  1 << (idu_sb_id%32);
7401         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7402         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7403
7404         /* Not supported in BC mode */
7405         if (CHIP_INT_MODE_IS_BC(bp))
7406                 return;
7407
7408         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7409                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7410                 IGU_REGULAR_CLEANUP_SET                         |
7411                 IGU_REGULAR_BCLEANUP;
7412
7413         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7414               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7415               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7416
7417         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7418                          data, igu_addr_data);
7419         REG_WR(bp, igu_addr_data, data);
7420         mmiowb();
7421         barrier();
7422         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7423                           ctl, igu_addr_ctl);
7424         REG_WR(bp, igu_addr_ctl, ctl);
7425         mmiowb();
7426         barrier();
7427
7428         /* wait for clean up to finish */
7429         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7430                 msleep(20);
7431
7432         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7433                 DP(NETIF_MSG_HW,
7434                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7435                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7436         }
7437 }
7438
7439 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7440 {
7441         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7442 }
7443
7444 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7445 {
7446         u32 i, base = FUNC_ILT_BASE(func);
7447         for (i = base; i < base + ILT_PER_FUNC; i++)
7448                 bnx2x_ilt_wr(bp, i, 0);
7449 }
7450
7451 static void bnx2x_init_searcher(struct bnx2x *bp)
7452 {
7453         int port = BP_PORT(bp);
7454         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7455         /* T1 hash bits value determines the T1 number of entries */
7456         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7457 }
7458
7459 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7460 {
7461         int rc;
7462         struct bnx2x_func_state_params func_params = {NULL};
7463         struct bnx2x_func_switch_update_params *switch_update_params =
7464                 &func_params.params.switch_update;
7465
7466         /* Prepare parameters for function state transitions */
7467         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7468         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7469
7470         func_params.f_obj = &bp->func_obj;
7471         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7472
7473         /* Function parameters */
7474         switch_update_params->suspend = suspend;
7475
7476         rc = bnx2x_func_state_change(bp, &func_params);
7477
7478         return rc;
7479 }
7480
7481 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7482 {
7483         int rc, i, port = BP_PORT(bp);
7484         int vlan_en = 0, mac_en[NUM_MACS];
7485
7486         /* Close input from network */
7487         if (bp->mf_mode == SINGLE_FUNCTION) {
7488                 bnx2x_set_rx_filter(&bp->link_params, 0);
7489         } else {
7490                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7491                                    NIG_REG_LLH0_FUNC_EN);
7492                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7493                           NIG_REG_LLH0_FUNC_EN, 0);
7494                 for (i = 0; i < NUM_MACS; i++) {
7495                         mac_en[i] = REG_RD(bp, port ?
7496                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7497                                               4 * i) :
7498                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7499                                               4 * i));
7500                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7501                                               4 * i) :
7502                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7503                 }
7504         }
7505
7506         /* Close BMC to host */
7507         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7508                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7509
7510         /* Suspend Tx switching to the PF. Completion of this ramrod
7511          * further guarantees that all the packets of that PF / child
7512          * VFs in BRB were processed by the Parser, so it is safe to
7513          * change the NIC_MODE register.
7514          */
7515         rc = bnx2x_func_switch_update(bp, 1);
7516         if (rc) {
7517                 BNX2X_ERR("Can't suspend tx-switching!\n");
7518                 return rc;
7519         }
7520
7521         /* Change NIC_MODE register */
7522         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7523
7524         /* Open input from network */
7525         if (bp->mf_mode == SINGLE_FUNCTION) {
7526                 bnx2x_set_rx_filter(&bp->link_params, 1);
7527         } else {
7528                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7529                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7530                 for (i = 0; i < NUM_MACS; i++) {
7531                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7532                                               4 * i) :
7533                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7534                                   mac_en[i]);
7535                 }
7536         }
7537
7538         /* Enable BMC to host */
7539         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7540                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7541
7542         /* Resume Tx switching to the PF */
7543         rc = bnx2x_func_switch_update(bp, 0);
7544         if (rc) {
7545                 BNX2X_ERR("Can't resume tx-switching!\n");
7546                 return rc;
7547         }
7548
7549         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7550         return 0;
7551 }
7552
7553 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7554 {
7555         int rc;
7556
7557         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7558
7559         if (CONFIGURE_NIC_MODE(bp)) {
7560                 /* Configure searcher as part of function hw init */
7561                 bnx2x_init_searcher(bp);
7562
7563                 /* Reset NIC mode */
7564                 rc = bnx2x_reset_nic_mode(bp);
7565                 if (rc)
7566                         BNX2X_ERR("Can't change NIC mode!\n");
7567                 return rc;
7568         }
7569
7570         return 0;
7571 }
7572
7573 static int bnx2x_init_hw_func(struct bnx2x *bp)
7574 {
7575         int port = BP_PORT(bp);
7576         int func = BP_FUNC(bp);
7577         int init_phase = PHASE_PF0 + func;
7578         struct bnx2x_ilt *ilt = BP_ILT(bp);
7579         u16 cdu_ilt_start;
7580         u32 addr, val;
7581         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7582         int i, main_mem_width, rc;
7583
7584         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7585
7586         /* FLR cleanup - hmmm */
7587         if (!CHIP_IS_E1x(bp)) {
7588                 rc = bnx2x_pf_flr_clnup(bp);
7589                 if (rc) {
7590                         bnx2x_fw_dump(bp);
7591                         return rc;
7592                 }
7593         }
7594
7595         /* set MSI reconfigure capability */
7596         if (bp->common.int_block == INT_BLOCK_HC) {
7597                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7598                 val = REG_RD(bp, addr);
7599                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7600                 REG_WR(bp, addr, val);
7601         }
7602
7603         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7604         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7605
7606         ilt = BP_ILT(bp);
7607         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7608
7609         if (IS_SRIOV(bp))
7610                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7611         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7612
7613         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7614          * those of the VFs, so start line should be reset
7615          */
7616         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7617         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7618                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7619                 ilt->lines[cdu_ilt_start + i].page_mapping =
7620                         bp->context[i].cxt_mapping;
7621                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7622         }
7623
7624         bnx2x_ilt_init_op(bp, INITOP_SET);
7625
7626         if (!CONFIGURE_NIC_MODE(bp)) {
7627                 bnx2x_init_searcher(bp);
7628                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7629                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7630         } else {
7631                 /* Set NIC mode */
7632                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7633                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7634         }
7635
7636         if (!CHIP_IS_E1x(bp)) {
7637                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7638
7639                 /* Turn on a single ISR mode in IGU if driver is going to use
7640                  * INT#x or MSI
7641                  */
7642                 if (!(bp->flags & USING_MSIX_FLAG))
7643                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7644                 /*
7645                  * Timers workaround bug: function init part.
7646                  * Need to wait 20msec after initializing ILT,
7647                  * needed to make sure there are no requests in
7648                  * one of the PXP internal queues with "old" ILT addresses
7649                  */
7650                 msleep(20);
7651                 /*
7652                  * Master enable - Due to WB DMAE writes performed before this
7653                  * register is re-initialized as part of the regular function
7654                  * init
7655                  */
7656                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7657                 /* Enable the function in IGU */
7658                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7659         }
7660
7661         bp->dmae_ready = 1;
7662
7663         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7664
7665         if (!CHIP_IS_E1x(bp))
7666                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7667
7668         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7669         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7670         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7671         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7672         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7673         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7674         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7675         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7676         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7677         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7678         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7679         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7680         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7681
7682         if (!CHIP_IS_E1x(bp))
7683                 REG_WR(bp, QM_REG_PF_EN, 1);
7684
7685         if (!CHIP_IS_E1x(bp)) {
7686                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7687                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7688                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7689                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7690         }
7691         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7692
7693         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7694         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7695         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7696
7697         bnx2x_iov_init_dq(bp);
7698
7699         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7700         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7701         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7702         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7703         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7704         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7705         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7706         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7707         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7708         if (!CHIP_IS_E1x(bp))
7709                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7710
7711         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7712
7713         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7714
7715         if (!CHIP_IS_E1x(bp))
7716                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7717
7718         if (IS_MF(bp)) {
7719                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7720                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7721         }
7722
7723         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7724
7725         /* HC init per function */
7726         if (bp->common.int_block == INT_BLOCK_HC) {
7727                 if (CHIP_IS_E1H(bp)) {
7728                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7729
7730                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7731                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7732                 }
7733                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7734
7735         } else {
7736                 int num_segs, sb_idx, prod_offset;
7737
7738                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7739
7740                 if (!CHIP_IS_E1x(bp)) {
7741                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7742                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7743                 }
7744
7745                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7746
7747                 if (!CHIP_IS_E1x(bp)) {
7748                         int dsb_idx = 0;
7749                         /**
7750                          * Producer memory:
7751                          * E2 mode: address 0-135 match to the mapping memory;
7752                          * 136 - PF0 default prod; 137 - PF1 default prod;
7753                          * 138 - PF2 default prod; 139 - PF3 default prod;
7754                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7755                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7756                          * 144-147 reserved.
7757                          *
7758                          * E1.5 mode - In backward compatible mode;
7759                          * for non default SB; each even line in the memory
7760                          * holds the U producer and each odd line hold
7761                          * the C producer. The first 128 producers are for
7762                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7763                          * producers are for the DSB for each PF.
7764                          * Each PF has five segments: (the order inside each
7765                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7766                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7767                          * 144-147 attn prods;
7768                          */
7769                         /* non-default-status-blocks */
7770                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7771                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7772                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7773                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7774                                         num_segs;
7775
7776                                 for (i = 0; i < num_segs; i++) {
7777                                         addr = IGU_REG_PROD_CONS_MEMORY +
7778                                                         (prod_offset + i) * 4;
7779                                         REG_WR(bp, addr, 0);
7780                                 }
7781                                 /* send consumer update with value 0 */
7782                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7783                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7784                                 bnx2x_igu_clear_sb(bp,
7785                                                    bp->igu_base_sb + sb_idx);
7786                         }
7787
7788                         /* default-status-blocks */
7789                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7790                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7791
7792                         if (CHIP_MODE_IS_4_PORT(bp))
7793                                 dsb_idx = BP_FUNC(bp);
7794                         else
7795                                 dsb_idx = BP_VN(bp);
7796
7797                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7798                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7799                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7800
7801                         /*
7802                          * igu prods come in chunks of E1HVN_MAX (4) -
7803                          * does not matters what is the current chip mode
7804                          */
7805                         for (i = 0; i < (num_segs * E1HVN_MAX);
7806                              i += E1HVN_MAX) {
7807                                 addr = IGU_REG_PROD_CONS_MEMORY +
7808                                                         (prod_offset + i)*4;
7809                                 REG_WR(bp, addr, 0);
7810                         }
7811                         /* send consumer update with 0 */
7812                         if (CHIP_INT_MODE_IS_BC(bp)) {
7813                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7814                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7815                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7816                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7817                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7818                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7819                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7820                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7821                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7822                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7823                         } else {
7824                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7825                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7826                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7827                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7828                         }
7829                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7830
7831                         /* !!! These should become driver const once
7832                            rf-tool supports split-68 const */
7833                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7834                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7835                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7836                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7837                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7838                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7839                 }
7840         }
7841
7842         /* Reset PCIE errors for debug */
7843         REG_WR(bp, 0x2114, 0xffffffff);
7844         REG_WR(bp, 0x2120, 0xffffffff);
7845
7846         if (CHIP_IS_E1x(bp)) {
7847                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7848                 main_mem_base = HC_REG_MAIN_MEMORY +
7849                                 BP_PORT(bp) * (main_mem_size * 4);
7850                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7851                 main_mem_width = 8;
7852
7853                 val = REG_RD(bp, main_mem_prty_clr);
7854                 if (val)
7855                         DP(NETIF_MSG_HW,
7856                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7857                            val);
7858
7859                 /* Clear "false" parity errors in MSI-X table */
7860                 for (i = main_mem_base;
7861                      i < main_mem_base + main_mem_size * 4;
7862                      i += main_mem_width) {
7863                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7864                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7865                                          i, main_mem_width / 4);
7866                 }
7867                 /* Clear HC parity attention */
7868                 REG_RD(bp, main_mem_prty_clr);
7869         }
7870
7871 #ifdef BNX2X_STOP_ON_ERROR
7872         /* Enable STORMs SP logging */
7873         REG_WR8(bp, BAR_USTRORM_INTMEM +
7874                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7875         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7876                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7877         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7878                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7879         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7880                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7881 #endif
7882
7883         bnx2x_phy_probe(&bp->link_params);
7884
7885         return 0;
7886 }
7887
7888 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7889 {
7890         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7891
7892         if (!CHIP_IS_E1x(bp))
7893                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7894                                sizeof(struct host_hc_status_block_e2));
7895         else
7896                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7897                                sizeof(struct host_hc_status_block_e1x));
7898
7899         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7900 }
7901
7902 void bnx2x_free_mem(struct bnx2x *bp)
7903 {
7904         int i;
7905
7906         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7907                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7908
7909         if (IS_VF(bp))
7910                 return;
7911
7912         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7913                        sizeof(struct host_sp_status_block));
7914
7915         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7916                        sizeof(struct bnx2x_slowpath));
7917
7918         for (i = 0; i < L2_ILT_LINES(bp); i++)
7919                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7920                                bp->context[i].size);
7921         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7922
7923         BNX2X_FREE(bp->ilt->lines);
7924
7925         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7926
7927         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7928                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7929
7930         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7931
7932         bnx2x_iov_free_mem(bp);
7933 }
7934
7935 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7936 {
7937         if (!CHIP_IS_E1x(bp))
7938                 /* size = the status block + ramrod buffers */
7939                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7940                                 sizeof(struct host_hc_status_block_e2));
7941         else
7942                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7943                                 &bp->cnic_sb_mapping,
7944                                 sizeof(struct
7945                                        host_hc_status_block_e1x));
7946
7947         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7948                 /* allocate searcher T2 table, as it wasn't allocated before */
7949                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7950
7951         /* write address to which L5 should insert its values */
7952         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7953                 &bp->slowpath->drv_info_to_mcp;
7954
7955         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7956                 goto alloc_mem_err;
7957
7958         return 0;
7959
7960 alloc_mem_err:
7961         bnx2x_free_mem_cnic(bp);
7962         BNX2X_ERR("Can't allocate memory\n");
7963         return -ENOMEM;
7964 }
7965
7966 int bnx2x_alloc_mem(struct bnx2x *bp)
7967 {
7968         int i, allocated, context_size;
7969
7970         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7971                 /* allocate searcher T2 table */
7972                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7973
7974         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7975                         sizeof(struct host_sp_status_block));
7976
7977         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7978                         sizeof(struct bnx2x_slowpath));
7979
7980         /* Allocate memory for CDU context:
7981          * This memory is allocated separately and not in the generic ILT
7982          * functions because CDU differs in few aspects:
7983          * 1. There are multiple entities allocating memory for context -
7984          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7985          * its own ILT lines.
7986          * 2. Since CDU page-size is not a single 4KB page (which is the case
7987          * for the other ILT clients), to be efficient we want to support
7988          * allocation of sub-page-size in the last entry.
7989          * 3. Context pointers are used by the driver to pass to FW / update
7990          * the context (for the other ILT clients the pointers are used just to
7991          * free the memory during unload).
7992          */
7993         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7994
7995         for (i = 0, allocated = 0; allocated < context_size; i++) {
7996                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7997                                           (context_size - allocated));
7998                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7999                                 &bp->context[i].cxt_mapping,
8000                                 bp->context[i].size);
8001                 allocated += bp->context[i].size;
8002         }
8003         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8004
8005         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8006                 goto alloc_mem_err;
8007
8008         if (bnx2x_iov_alloc_mem(bp))
8009                 goto alloc_mem_err;
8010
8011         /* Slow path ring */
8012         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8013
8014         /* EQ */
8015         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8016                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
8017
8018         return 0;
8019
8020 alloc_mem_err:
8021         bnx2x_free_mem(bp);
8022         BNX2X_ERR("Can't allocate memory\n");
8023         return -ENOMEM;
8024 }
8025
8026 /*
8027  * Init service functions
8028  */
8029
8030 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8031                       struct bnx2x_vlan_mac_obj *obj, bool set,
8032                       int mac_type, unsigned long *ramrod_flags)
8033 {
8034         int rc;
8035         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8036
8037         memset(&ramrod_param, 0, sizeof(ramrod_param));
8038
8039         /* Fill general parameters */
8040         ramrod_param.vlan_mac_obj = obj;
8041         ramrod_param.ramrod_flags = *ramrod_flags;
8042
8043         /* Fill a user request section if needed */
8044         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8045                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8046
8047                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8048
8049                 /* Set the command: ADD or DEL */
8050                 if (set)
8051                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8052                 else
8053                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8054         }
8055
8056         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8057
8058         if (rc == -EEXIST) {
8059                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8060                 /* do not treat adding same MAC as error */
8061                 rc = 0;
8062         } else if (rc < 0)
8063                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8064
8065         return rc;
8066 }
8067
8068 int bnx2x_del_all_macs(struct bnx2x *bp,
8069                        struct bnx2x_vlan_mac_obj *mac_obj,
8070                        int mac_type, bool wait_for_comp)
8071 {
8072         int rc;
8073         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8074
8075         /* Wait for completion of requested */
8076         if (wait_for_comp)
8077                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8078
8079         /* Set the mac type of addresses we want to clear */
8080         __set_bit(mac_type, &vlan_mac_flags);
8081
8082         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8083         if (rc < 0)
8084                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8085
8086         return rc;
8087 }
8088
8089 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8090 {
8091         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8092             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8093                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8094                    "Ignoring Zero MAC for STORAGE SD mode\n");
8095                 return 0;
8096         }
8097
8098         if (IS_PF(bp)) {
8099                 unsigned long ramrod_flags = 0;
8100
8101                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8102                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8103                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8104                                          &bp->sp_objs->mac_obj, set,
8105                                          BNX2X_ETH_MAC, &ramrod_flags);
8106         } else { /* vf */
8107                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8108                                              bp->fp->index, true);
8109         }
8110 }
8111
8112 int bnx2x_setup_leading(struct bnx2x *bp)
8113 {
8114         if (IS_PF(bp))
8115                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8116         else /* VF */
8117                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8118 }
8119
8120 /**
8121  * bnx2x_set_int_mode - configure interrupt mode
8122  *
8123  * @bp:         driver handle
8124  *
8125  * In case of MSI-X it will also try to enable MSI-X.
8126  */
8127 int bnx2x_set_int_mode(struct bnx2x *bp)
8128 {
8129         int rc = 0;
8130
8131         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8132                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8133                 return -EINVAL;
8134         }
8135
8136         switch (int_mode) {
8137         case BNX2X_INT_MODE_MSIX:
8138                 /* attempt to enable msix */
8139                 rc = bnx2x_enable_msix(bp);
8140
8141                 /* msix attained */
8142                 if (!rc)
8143                         return 0;
8144
8145                 /* vfs use only msix */
8146                 if (rc && IS_VF(bp))
8147                         return rc;
8148
8149                 /* failed to enable multiple MSI-X */
8150                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8151                                bp->num_queues,
8152                                1 + bp->num_cnic_queues);
8153
8154                 /* falling through... */
8155         case BNX2X_INT_MODE_MSI:
8156                 bnx2x_enable_msi(bp);
8157
8158                 /* falling through... */
8159         case BNX2X_INT_MODE_INTX:
8160                 bp->num_ethernet_queues = 1;
8161                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8162                 BNX2X_DEV_INFO("set number of queues to 1\n");
8163                 break;
8164         default:
8165                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8166                 return -EINVAL;
8167         }
8168         return 0;
8169 }
8170
8171 /* must be called prior to any HW initializations */
8172 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8173 {
8174         if (IS_SRIOV(bp))
8175                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8176         return L2_ILT_LINES(bp);
8177 }
8178
8179 void bnx2x_ilt_set_info(struct bnx2x *bp)
8180 {
8181         struct ilt_client_info *ilt_client;
8182         struct bnx2x_ilt *ilt = BP_ILT(bp);
8183         u16 line = 0;
8184
8185         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8186         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8187
8188         /* CDU */
8189         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8190         ilt_client->client_num = ILT_CLIENT_CDU;
8191         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8192         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8193         ilt_client->start = line;
8194         line += bnx2x_cid_ilt_lines(bp);
8195
8196         if (CNIC_SUPPORT(bp))
8197                 line += CNIC_ILT_LINES;
8198         ilt_client->end = line - 1;
8199
8200         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8201            ilt_client->start,
8202            ilt_client->end,
8203            ilt_client->page_size,
8204            ilt_client->flags,
8205            ilog2(ilt_client->page_size >> 12));
8206
8207         /* QM */
8208         if (QM_INIT(bp->qm_cid_count)) {
8209                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8210                 ilt_client->client_num = ILT_CLIENT_QM;
8211                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8212                 ilt_client->flags = 0;
8213                 ilt_client->start = line;
8214
8215                 /* 4 bytes for each cid */
8216                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8217                                                          QM_ILT_PAGE_SZ);
8218
8219                 ilt_client->end = line - 1;
8220
8221                 DP(NETIF_MSG_IFUP,
8222                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8223                    ilt_client->start,
8224                    ilt_client->end,
8225                    ilt_client->page_size,
8226                    ilt_client->flags,
8227                    ilog2(ilt_client->page_size >> 12));
8228         }
8229
8230         if (CNIC_SUPPORT(bp)) {
8231                 /* SRC */
8232                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8233                 ilt_client->client_num = ILT_CLIENT_SRC;
8234                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8235                 ilt_client->flags = 0;
8236                 ilt_client->start = line;
8237                 line += SRC_ILT_LINES;
8238                 ilt_client->end = line - 1;
8239
8240                 DP(NETIF_MSG_IFUP,
8241                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8242                    ilt_client->start,
8243                    ilt_client->end,
8244                    ilt_client->page_size,
8245                    ilt_client->flags,
8246                    ilog2(ilt_client->page_size >> 12));
8247
8248                 /* TM */
8249                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8250                 ilt_client->client_num = ILT_CLIENT_TM;
8251                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8252                 ilt_client->flags = 0;
8253                 ilt_client->start = line;
8254                 line += TM_ILT_LINES;
8255                 ilt_client->end = line - 1;
8256
8257                 DP(NETIF_MSG_IFUP,
8258                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8259                    ilt_client->start,
8260                    ilt_client->end,
8261                    ilt_client->page_size,
8262                    ilt_client->flags,
8263                    ilog2(ilt_client->page_size >> 12));
8264         }
8265
8266         BUG_ON(line > ILT_MAX_LINES);
8267 }
8268
8269 /**
8270  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8271  *
8272  * @bp:                 driver handle
8273  * @fp:                 pointer to fastpath
8274  * @init_params:        pointer to parameters structure
8275  *
8276  * parameters configured:
8277  *      - HC configuration
8278  *      - Queue's CDU context
8279  */
8280 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8281         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8282 {
8283         u8 cos;
8284         int cxt_index, cxt_offset;
8285
8286         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8287         if (!IS_FCOE_FP(fp)) {
8288                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8289                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8290
8291                 /* If HC is supported, enable host coalescing in the transition
8292                  * to INIT state.
8293                  */
8294                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8295                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8296
8297                 /* HC rate */
8298                 init_params->rx.hc_rate = bp->rx_ticks ?
8299                         (1000000 / bp->rx_ticks) : 0;
8300                 init_params->tx.hc_rate = bp->tx_ticks ?
8301                         (1000000 / bp->tx_ticks) : 0;
8302
8303                 /* FW SB ID */
8304                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8305                         fp->fw_sb_id;
8306
8307                 /*
8308                  * CQ index among the SB indices: FCoE clients uses the default
8309                  * SB, therefore it's different.
8310                  */
8311                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8312                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8313         }
8314
8315         /* set maximum number of COSs supported by this queue */
8316         init_params->max_cos = fp->max_cos;
8317
8318         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8319             fp->index, init_params->max_cos);
8320
8321         /* set the context pointers queue object */
8322         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8323                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8324                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8325                                 ILT_PAGE_CIDS);
8326                 init_params->cxts[cos] =
8327                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8328         }
8329 }
8330
8331 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8332                         struct bnx2x_queue_state_params *q_params,
8333                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8334                         int tx_index, bool leading)
8335 {
8336         memset(tx_only_params, 0, sizeof(*tx_only_params));
8337
8338         /* Set the command */
8339         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8340
8341         /* Set tx-only QUEUE flags: don't zero statistics */
8342         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8343
8344         /* choose the index of the cid to send the slow path on */
8345         tx_only_params->cid_index = tx_index;
8346
8347         /* Set general TX_ONLY_SETUP parameters */
8348         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8349
8350         /* Set Tx TX_ONLY_SETUP parameters */
8351         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8352
8353         DP(NETIF_MSG_IFUP,
8354            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8355            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8356            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8357            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8358
8359         /* send the ramrod */
8360         return bnx2x_queue_state_change(bp, q_params);
8361 }
8362
8363 /**
8364  * bnx2x_setup_queue - setup queue
8365  *
8366  * @bp:         driver handle
8367  * @fp:         pointer to fastpath
8368  * @leading:    is leading
8369  *
8370  * This function performs 2 steps in a Queue state machine
8371  *      actually: 1) RESET->INIT 2) INIT->SETUP
8372  */
8373
8374 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8375                        bool leading)
8376 {
8377         struct bnx2x_queue_state_params q_params = {NULL};
8378         struct bnx2x_queue_setup_params *setup_params =
8379                                                 &q_params.params.setup;
8380         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8381                                                 &q_params.params.tx_only;
8382         int rc;
8383         u8 tx_index;
8384
8385         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8386
8387         /* reset IGU state skip FCoE L2 queue */
8388         if (!IS_FCOE_FP(fp))
8389                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8390                              IGU_INT_ENABLE, 0);
8391
8392         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8393         /* We want to wait for completion in this context */
8394         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8395
8396         /* Prepare the INIT parameters */
8397         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8398
8399         /* Set the command */
8400         q_params.cmd = BNX2X_Q_CMD_INIT;
8401
8402         /* Change the state to INIT */
8403         rc = bnx2x_queue_state_change(bp, &q_params);
8404         if (rc) {
8405                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8406                 return rc;
8407         }
8408
8409         DP(NETIF_MSG_IFUP, "init complete\n");
8410
8411         /* Now move the Queue to the SETUP state... */
8412         memset(setup_params, 0, sizeof(*setup_params));
8413
8414         /* Set QUEUE flags */
8415         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8416
8417         /* Set general SETUP parameters */
8418         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8419                                 FIRST_TX_COS_INDEX);
8420
8421         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8422                             &setup_params->rxq_params);
8423
8424         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8425                            FIRST_TX_COS_INDEX);
8426
8427         /* Set the command */
8428         q_params.cmd = BNX2X_Q_CMD_SETUP;
8429
8430         if (IS_FCOE_FP(fp))
8431                 bp->fcoe_init = true;
8432
8433         /* Change the state to SETUP */
8434         rc = bnx2x_queue_state_change(bp, &q_params);
8435         if (rc) {
8436                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8437                 return rc;
8438         }
8439
8440         /* loop through the relevant tx-only indices */
8441         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8442               tx_index < fp->max_cos;
8443               tx_index++) {
8444
8445                 /* prepare and send tx-only ramrod*/
8446                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8447                                           tx_only_params, tx_index, leading);
8448                 if (rc) {
8449                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8450                                   fp->index, tx_index);
8451                         return rc;
8452                 }
8453         }
8454
8455         return rc;
8456 }
8457
8458 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8459 {
8460         struct bnx2x_fastpath *fp = &bp->fp[index];
8461         struct bnx2x_fp_txdata *txdata;
8462         struct bnx2x_queue_state_params q_params = {NULL};
8463         int rc, tx_index;
8464
8465         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8466
8467         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8468         /* We want to wait for completion in this context */
8469         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8470
8471         /* close tx-only connections */
8472         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8473              tx_index < fp->max_cos;
8474              tx_index++){
8475
8476                 /* ascertain this is a normal queue*/
8477                 txdata = fp->txdata_ptr[tx_index];
8478
8479                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8480                                                         txdata->txq_index);
8481
8482                 /* send halt terminate on tx-only connection */
8483                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8484                 memset(&q_params.params.terminate, 0,
8485                        sizeof(q_params.params.terminate));
8486                 q_params.params.terminate.cid_index = tx_index;
8487
8488                 rc = bnx2x_queue_state_change(bp, &q_params);
8489                 if (rc)
8490                         return rc;
8491
8492                 /* send halt terminate on tx-only connection */
8493                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8494                 memset(&q_params.params.cfc_del, 0,
8495                        sizeof(q_params.params.cfc_del));
8496                 q_params.params.cfc_del.cid_index = tx_index;
8497                 rc = bnx2x_queue_state_change(bp, &q_params);
8498                 if (rc)
8499                         return rc;
8500         }
8501         /* Stop the primary connection: */
8502         /* ...halt the connection */
8503         q_params.cmd = BNX2X_Q_CMD_HALT;
8504         rc = bnx2x_queue_state_change(bp, &q_params);
8505         if (rc)
8506                 return rc;
8507
8508         /* ...terminate the connection */
8509         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8510         memset(&q_params.params.terminate, 0,
8511                sizeof(q_params.params.terminate));
8512         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8513         rc = bnx2x_queue_state_change(bp, &q_params);
8514         if (rc)
8515                 return rc;
8516         /* ...delete cfc entry */
8517         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8518         memset(&q_params.params.cfc_del, 0,
8519                sizeof(q_params.params.cfc_del));
8520         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8521         return bnx2x_queue_state_change(bp, &q_params);
8522 }
8523
8524 static void bnx2x_reset_func(struct bnx2x *bp)
8525 {
8526         int port = BP_PORT(bp);
8527         int func = BP_FUNC(bp);
8528         int i;
8529
8530         /* Disable the function in the FW */
8531         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8532         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8533         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8534         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8535
8536         /* FP SBs */
8537         for_each_eth_queue(bp, i) {
8538                 struct bnx2x_fastpath *fp = &bp->fp[i];
8539                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8540                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8541                            SB_DISABLED);
8542         }
8543
8544         if (CNIC_LOADED(bp))
8545                 /* CNIC SB */
8546                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8547                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8548                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8549
8550         /* SP SB */
8551         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8552                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8553                 SB_DISABLED);
8554
8555         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8556                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8557                        0);
8558
8559         /* Configure IGU */
8560         if (bp->common.int_block == INT_BLOCK_HC) {
8561                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8562                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8563         } else {
8564                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8565                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8566         }
8567
8568         if (CNIC_LOADED(bp)) {
8569                 /* Disable Timer scan */
8570                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8571                 /*
8572                  * Wait for at least 10ms and up to 2 second for the timers
8573                  * scan to complete
8574                  */
8575                 for (i = 0; i < 200; i++) {
8576                         usleep_range(10000, 20000);
8577                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8578                                 break;
8579                 }
8580         }
8581         /* Clear ILT */
8582         bnx2x_clear_func_ilt(bp, func);
8583
8584         /* Timers workaround bug for E2: if this is vnic-3,
8585          * we need to set the entire ilt range for this timers.
8586          */
8587         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8588                 struct ilt_client_info ilt_cli;
8589                 /* use dummy TM client */
8590                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8591                 ilt_cli.start = 0;
8592                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8593                 ilt_cli.client_num = ILT_CLIENT_TM;
8594
8595                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8596         }
8597
8598         /* this assumes that reset_port() called before reset_func()*/
8599         if (!CHIP_IS_E1x(bp))
8600                 bnx2x_pf_disable(bp);
8601
8602         bp->dmae_ready = 0;
8603 }
8604
8605 static void bnx2x_reset_port(struct bnx2x *bp)
8606 {
8607         int port = BP_PORT(bp);
8608         u32 val;
8609
8610         /* Reset physical Link */
8611         bnx2x__link_reset(bp);
8612
8613         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8614
8615         /* Do not rcv packets to BRB */
8616         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8617         /* Do not direct rcv packets that are not for MCP to the BRB */
8618         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8619                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8620
8621         /* Configure AEU */
8622         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8623
8624         msleep(100);
8625         /* Check for BRB port occupancy */
8626         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8627         if (val)
8628                 DP(NETIF_MSG_IFDOWN,
8629                    "BRB1 is not empty  %d blocks are occupied\n", val);
8630
8631         /* TODO: Close Doorbell port? */
8632 }
8633
8634 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8635 {
8636         struct bnx2x_func_state_params func_params = {NULL};
8637
8638         /* Prepare parameters for function state transitions */
8639         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8640
8641         func_params.f_obj = &bp->func_obj;
8642         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8643
8644         func_params.params.hw_init.load_phase = load_code;
8645
8646         return bnx2x_func_state_change(bp, &func_params);
8647 }
8648
8649 static int bnx2x_func_stop(struct bnx2x *bp)
8650 {
8651         struct bnx2x_func_state_params func_params = {NULL};
8652         int rc;
8653
8654         /* Prepare parameters for function state transitions */
8655         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8656         func_params.f_obj = &bp->func_obj;
8657         func_params.cmd = BNX2X_F_CMD_STOP;
8658
8659         /*
8660          * Try to stop the function the 'good way'. If fails (in case
8661          * of a parity error during bnx2x_chip_cleanup()) and we are
8662          * not in a debug mode, perform a state transaction in order to
8663          * enable further HW_RESET transaction.
8664          */
8665         rc = bnx2x_func_state_change(bp, &func_params);
8666         if (rc) {
8667 #ifdef BNX2X_STOP_ON_ERROR
8668                 return rc;
8669 #else
8670                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8671                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8672                 return bnx2x_func_state_change(bp, &func_params);
8673 #endif
8674         }
8675
8676         return 0;
8677 }
8678
8679 /**
8680  * bnx2x_send_unload_req - request unload mode from the MCP.
8681  *
8682  * @bp:                 driver handle
8683  * @unload_mode:        requested function's unload mode
8684  *
8685  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8686  */
8687 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8688 {
8689         u32 reset_code = 0;
8690         int port = BP_PORT(bp);
8691
8692         /* Select the UNLOAD request mode */
8693         if (unload_mode == UNLOAD_NORMAL)
8694                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8695
8696         else if (bp->flags & NO_WOL_FLAG)
8697                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8698
8699         else if (bp->wol) {
8700                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8701                 u8 *mac_addr = bp->dev->dev_addr;
8702                 struct pci_dev *pdev = bp->pdev;
8703                 u32 val;
8704                 u16 pmc;
8705
8706                 /* The mac address is written to entries 1-4 to
8707                  * preserve entry 0 which is used by the PMF
8708                  */
8709                 u8 entry = (BP_VN(bp) + 1)*8;
8710
8711                 val = (mac_addr[0] << 8) | mac_addr[1];
8712                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8713
8714                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8715                       (mac_addr[4] << 8) | mac_addr[5];
8716                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8717
8718                 /* Enable the PME and clear the status */
8719                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8720                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8721                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8722
8723                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8724
8725         } else
8726                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8727
8728         /* Send the request to the MCP */
8729         if (!BP_NOMCP(bp))
8730                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8731         else {
8732                 int path = BP_PATH(bp);
8733
8734                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8735                    path, load_count[path][0], load_count[path][1],
8736                    load_count[path][2]);
8737                 load_count[path][0]--;
8738                 load_count[path][1 + port]--;
8739                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8740                    path, load_count[path][0], load_count[path][1],
8741                    load_count[path][2]);
8742                 if (load_count[path][0] == 0)
8743                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8744                 else if (load_count[path][1 + port] == 0)
8745                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8746                 else
8747                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8748         }
8749
8750         return reset_code;
8751 }
8752
8753 /**
8754  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8755  *
8756  * @bp:         driver handle
8757  * @keep_link:          true iff link should be kept up
8758  */
8759 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8760 {
8761         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8762
8763         /* Report UNLOAD_DONE to MCP */
8764         if (!BP_NOMCP(bp))
8765                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8766 }
8767
8768 static int bnx2x_func_wait_started(struct bnx2x *bp)
8769 {
8770         int tout = 50;
8771         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8772
8773         if (!bp->port.pmf)
8774                 return 0;
8775
8776         /*
8777          * (assumption: No Attention from MCP at this stage)
8778          * PMF probably in the middle of TX disable/enable transaction
8779          * 1. Sync IRS for default SB
8780          * 2. Sync SP queue - this guarantees us that attention handling started
8781          * 3. Wait, that TX disable/enable transaction completes
8782          *
8783          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8784          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8785          * received completion for the transaction the state is TX_STOPPED.
8786          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8787          * transaction.
8788          */
8789
8790         /* make sure default SB ISR is done */
8791         if (msix)
8792                 synchronize_irq(bp->msix_table[0].vector);
8793         else
8794                 synchronize_irq(bp->pdev->irq);
8795
8796         flush_workqueue(bnx2x_wq);
8797
8798         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8799                                 BNX2X_F_STATE_STARTED && tout--)
8800                 msleep(20);
8801
8802         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8803                                                 BNX2X_F_STATE_STARTED) {
8804 #ifdef BNX2X_STOP_ON_ERROR
8805                 BNX2X_ERR("Wrong function state\n");
8806                 return -EBUSY;
8807 #else
8808                 /*
8809                  * Failed to complete the transaction in a "good way"
8810                  * Force both transactions with CLR bit
8811                  */
8812                 struct bnx2x_func_state_params func_params = {NULL};
8813
8814                 DP(NETIF_MSG_IFDOWN,
8815                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8816
8817                 func_params.f_obj = &bp->func_obj;
8818                 __set_bit(RAMROD_DRV_CLR_ONLY,
8819                                         &func_params.ramrod_flags);
8820
8821                 /* STARTED-->TX_ST0PPED */
8822                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8823                 bnx2x_func_state_change(bp, &func_params);
8824
8825                 /* TX_ST0PPED-->STARTED */
8826                 func_params.cmd = BNX2X_F_CMD_TX_START;
8827                 return bnx2x_func_state_change(bp, &func_params);
8828 #endif
8829         }
8830
8831         return 0;
8832 }
8833
8834 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8835 {
8836         int port = BP_PORT(bp);
8837         int i, rc = 0;
8838         u8 cos;
8839         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8840         u32 reset_code;
8841
8842         /* Wait until tx fastpath tasks complete */
8843         for_each_tx_queue(bp, i) {
8844                 struct bnx2x_fastpath *fp = &bp->fp[i];
8845
8846                 for_each_cos_in_tx_queue(fp, cos)
8847                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8848 #ifdef BNX2X_STOP_ON_ERROR
8849                 if (rc)
8850                         return;
8851 #endif
8852         }
8853
8854         /* Give HW time to discard old tx messages */
8855         usleep_range(1000, 2000);
8856
8857         /* Clean all ETH MACs */
8858         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8859                                 false);
8860         if (rc < 0)
8861                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8862
8863         /* Clean up UC list  */
8864         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8865                                 true);
8866         if (rc < 0)
8867                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8868                           rc);
8869
8870         /* Disable LLH */
8871         if (!CHIP_IS_E1(bp))
8872                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8873
8874         /* Set "drop all" (stop Rx).
8875          * We need to take a netif_addr_lock() here in order to prevent
8876          * a race between the completion code and this code.
8877          */
8878         netif_addr_lock_bh(bp->dev);
8879         /* Schedule the rx_mode command */
8880         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8881                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8882         else
8883                 bnx2x_set_storm_rx_mode(bp);
8884
8885         /* Cleanup multicast configuration */
8886         rparam.mcast_obj = &bp->mcast_obj;
8887         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8888         if (rc < 0)
8889                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8890
8891         netif_addr_unlock_bh(bp->dev);
8892
8893         bnx2x_iov_chip_cleanup(bp);
8894
8895         /*
8896          * Send the UNLOAD_REQUEST to the MCP. This will return if
8897          * this function should perform FUNC, PORT or COMMON HW
8898          * reset.
8899          */
8900         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8901
8902         /*
8903          * (assumption: No Attention from MCP at this stage)
8904          * PMF probably in the middle of TX disable/enable transaction
8905          */
8906         rc = bnx2x_func_wait_started(bp);
8907         if (rc) {
8908                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8909 #ifdef BNX2X_STOP_ON_ERROR
8910                 return;
8911 #endif
8912         }
8913
8914         /* Close multi and leading connections
8915          * Completions for ramrods are collected in a synchronous way
8916          */
8917         for_each_eth_queue(bp, i)
8918                 if (bnx2x_stop_queue(bp, i))
8919 #ifdef BNX2X_STOP_ON_ERROR
8920                         return;
8921 #else
8922                         goto unload_error;
8923 #endif
8924
8925         if (CNIC_LOADED(bp)) {
8926                 for_each_cnic_queue(bp, i)
8927                         if (bnx2x_stop_queue(bp, i))
8928 #ifdef BNX2X_STOP_ON_ERROR
8929                                 return;
8930 #else
8931                                 goto unload_error;
8932 #endif
8933         }
8934
8935         /* If SP settings didn't get completed so far - something
8936          * very wrong has happen.
8937          */
8938         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8939                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8940
8941 #ifndef BNX2X_STOP_ON_ERROR
8942 unload_error:
8943 #endif
8944         rc = bnx2x_func_stop(bp);
8945         if (rc) {
8946                 BNX2X_ERR("Function stop failed!\n");
8947 #ifdef BNX2X_STOP_ON_ERROR
8948                 return;
8949 #endif
8950         }
8951
8952         /* Disable HW interrupts, NAPI */
8953         bnx2x_netif_stop(bp, 1);
8954         /* Delete all NAPI objects */
8955         bnx2x_del_all_napi(bp);
8956         if (CNIC_LOADED(bp))
8957                 bnx2x_del_all_napi_cnic(bp);
8958
8959         /* Release IRQs */
8960         bnx2x_free_irq(bp);
8961
8962         /* Reset the chip */
8963         rc = bnx2x_reset_hw(bp, reset_code);
8964         if (rc)
8965                 BNX2X_ERR("HW_RESET failed\n");
8966
8967         /* Report UNLOAD_DONE to MCP */
8968         bnx2x_send_unload_done(bp, keep_link);
8969 }
8970
8971 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8972 {
8973         u32 val;
8974
8975         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8976
8977         if (CHIP_IS_E1(bp)) {
8978                 int port = BP_PORT(bp);
8979                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8980                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8981
8982                 val = REG_RD(bp, addr);
8983                 val &= ~(0x300);
8984                 REG_WR(bp, addr, val);
8985         } else {
8986                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8987                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8988                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8989                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8990         }
8991 }
8992
8993 /* Close gates #2, #3 and #4: */
8994 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8995 {
8996         u32 val;
8997
8998         /* Gates #2 and #4a are closed/opened for "not E1" only */
8999         if (!CHIP_IS_E1(bp)) {
9000                 /* #4 */
9001                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9002                 /* #2 */
9003                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9004         }
9005
9006         /* #3 */
9007         if (CHIP_IS_E1x(bp)) {
9008                 /* Prevent interrupts from HC on both ports */
9009                 val = REG_RD(bp, HC_REG_CONFIG_1);
9010                 REG_WR(bp, HC_REG_CONFIG_1,
9011                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9012                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9013
9014                 val = REG_RD(bp, HC_REG_CONFIG_0);
9015                 REG_WR(bp, HC_REG_CONFIG_0,
9016                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9017                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9018         } else {
9019                 /* Prevent incoming interrupts in IGU */
9020                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9021
9022                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9023                        (!close) ?
9024                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9025                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9026         }
9027
9028         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9029                 close ? "closing" : "opening");
9030         mmiowb();
9031 }
9032
9033 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9034
9035 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9036 {
9037         /* Do some magic... */
9038         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9039         *magic_val = val & SHARED_MF_CLP_MAGIC;
9040         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9041 }
9042
9043 /**
9044  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9045  *
9046  * @bp:         driver handle
9047  * @magic_val:  old value of the `magic' bit.
9048  */
9049 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9050 {
9051         /* Restore the `magic' bit value... */
9052         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9053         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9054                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9055 }
9056
9057 /**
9058  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9059  *
9060  * @bp:         driver handle
9061  * @magic_val:  old value of 'magic' bit.
9062  *
9063  * Takes care of CLP configurations.
9064  */
9065 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9066 {
9067         u32 shmem;
9068         u32 validity_offset;
9069
9070         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9071
9072         /* Set `magic' bit in order to save MF config */
9073         if (!CHIP_IS_E1(bp))
9074                 bnx2x_clp_reset_prep(bp, magic_val);
9075
9076         /* Get shmem offset */
9077         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9078         validity_offset =
9079                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9080
9081         /* Clear validity map flags */
9082         if (shmem > 0)
9083                 REG_WR(bp, shmem + validity_offset, 0);
9084 }
9085
9086 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9087 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9088
9089 /**
9090  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9091  *
9092  * @bp: driver handle
9093  */
9094 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9095 {
9096         /* special handling for emulation and FPGA,
9097            wait 10 times longer */
9098         if (CHIP_REV_IS_SLOW(bp))
9099                 msleep(MCP_ONE_TIMEOUT*10);
9100         else
9101                 msleep(MCP_ONE_TIMEOUT);
9102 }
9103
9104 /*
9105  * initializes bp->common.shmem_base and waits for validity signature to appear
9106  */
9107 static int bnx2x_init_shmem(struct bnx2x *bp)
9108 {
9109         int cnt = 0;
9110         u32 val = 0;
9111
9112         do {
9113                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9114                 if (bp->common.shmem_base) {
9115                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9116                         if (val & SHR_MEM_VALIDITY_MB)
9117                                 return 0;
9118                 }
9119
9120                 bnx2x_mcp_wait_one(bp);
9121
9122         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9123
9124         BNX2X_ERR("BAD MCP validity signature\n");
9125
9126         return -ENODEV;
9127 }
9128
9129 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9130 {
9131         int rc = bnx2x_init_shmem(bp);
9132
9133         /* Restore the `magic' bit value */
9134         if (!CHIP_IS_E1(bp))
9135                 bnx2x_clp_reset_done(bp, magic_val);
9136
9137         return rc;
9138 }
9139
9140 static void bnx2x_pxp_prep(struct bnx2x *bp)
9141 {
9142         if (!CHIP_IS_E1(bp)) {
9143                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9144                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9145                 mmiowb();
9146         }
9147 }
9148
9149 /*
9150  * Reset the whole chip except for:
9151  *      - PCIE core
9152  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9153  *              one reset bit)
9154  *      - IGU
9155  *      - MISC (including AEU)
9156  *      - GRC
9157  *      - RBCN, RBCP
9158  */
9159 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9160 {
9161         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9162         u32 global_bits2, stay_reset2;
9163
9164         /*
9165          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9166          * (per chip) blocks.
9167          */
9168         global_bits2 =
9169                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9170                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9171
9172         /* Don't reset the following blocks.
9173          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9174          *            reset, as in 4 port device they might still be owned
9175          *            by the MCP (there is only one leader per path).
9176          */
9177         not_reset_mask1 =
9178                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9179                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9180                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9181
9182         not_reset_mask2 =
9183                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9184                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9185                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9186                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9187                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9188                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9189                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9190                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9191                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9192                 MISC_REGISTERS_RESET_REG_2_PGLC |
9193                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9194                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9195                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9196                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9197                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9198                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9199
9200         /*
9201          * Keep the following blocks in reset:
9202          *  - all xxMACs are handled by the bnx2x_link code.
9203          */
9204         stay_reset2 =
9205                 MISC_REGISTERS_RESET_REG_2_XMAC |
9206                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9207
9208         /* Full reset masks according to the chip */
9209         reset_mask1 = 0xffffffff;
9210
9211         if (CHIP_IS_E1(bp))
9212                 reset_mask2 = 0xffff;
9213         else if (CHIP_IS_E1H(bp))
9214                 reset_mask2 = 0x1ffff;
9215         else if (CHIP_IS_E2(bp))
9216                 reset_mask2 = 0xfffff;
9217         else /* CHIP_IS_E3 */
9218                 reset_mask2 = 0x3ffffff;
9219
9220         /* Don't reset global blocks unless we need to */
9221         if (!global)
9222                 reset_mask2 &= ~global_bits2;
9223
9224         /*
9225          * In case of attention in the QM, we need to reset PXP
9226          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9227          * because otherwise QM reset would release 'close the gates' shortly
9228          * before resetting the PXP, then the PSWRQ would send a write
9229          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9230          * read the payload data from PSWWR, but PSWWR would not
9231          * respond. The write queue in PGLUE would stuck, dmae commands
9232          * would not return. Therefore it's important to reset the second
9233          * reset register (containing the
9234          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9235          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9236          * bit).
9237          */
9238         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9239                reset_mask2 & (~not_reset_mask2));
9240
9241         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9242                reset_mask1 & (~not_reset_mask1));
9243
9244         barrier();
9245         mmiowb();
9246
9247         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9248                reset_mask2 & (~stay_reset2));
9249
9250         barrier();
9251         mmiowb();
9252
9253         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9254         mmiowb();
9255 }
9256
9257 /**
9258  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9259  * It should get cleared in no more than 1s.
9260  *
9261  * @bp: driver handle
9262  *
9263  * It should get cleared in no more than 1s. Returns 0 if
9264  * pending writes bit gets cleared.
9265  */
9266 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9267 {
9268         u32 cnt = 1000;
9269         u32 pend_bits = 0;
9270
9271         do {
9272                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9273
9274                 if (pend_bits == 0)
9275                         break;
9276
9277                 usleep_range(1000, 2000);
9278         } while (cnt-- > 0);
9279
9280         if (cnt <= 0) {
9281                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9282                           pend_bits);
9283                 return -EBUSY;
9284         }
9285
9286         return 0;
9287 }
9288
9289 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9290 {
9291         int cnt = 1000;
9292         u32 val = 0;
9293         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9294         u32 tags_63_32 = 0;
9295
9296         /* Empty the Tetris buffer, wait for 1s */
9297         do {
9298                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9299                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9300                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9301                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9302                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9303                 if (CHIP_IS_E3(bp))
9304                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9305
9306                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9307                     ((port_is_idle_0 & 0x1) == 0x1) &&
9308                     ((port_is_idle_1 & 0x1) == 0x1) &&
9309                     (pgl_exp_rom2 == 0xffffffff) &&
9310                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9311                         break;
9312                 usleep_range(1000, 2000);
9313         } while (cnt-- > 0);
9314
9315         if (cnt <= 0) {
9316                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9317                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9318                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9319                           pgl_exp_rom2);
9320                 return -EAGAIN;
9321         }
9322
9323         barrier();
9324
9325         /* Close gates #2, #3 and #4 */
9326         bnx2x_set_234_gates(bp, true);
9327
9328         /* Poll for IGU VQs for 57712 and newer chips */
9329         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9330                 return -EAGAIN;
9331
9332         /* TBD: Indicate that "process kill" is in progress to MCP */
9333
9334         /* Clear "unprepared" bit */
9335         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9336         barrier();
9337
9338         /* Make sure all is written to the chip before the reset */
9339         mmiowb();
9340
9341         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9342          * PSWHST, GRC and PSWRD Tetris buffer.
9343          */
9344         usleep_range(1000, 2000);
9345
9346         /* Prepare to chip reset: */
9347         /* MCP */
9348         if (global)
9349                 bnx2x_reset_mcp_prep(bp, &val);
9350
9351         /* PXP */
9352         bnx2x_pxp_prep(bp);
9353         barrier();
9354
9355         /* reset the chip */
9356         bnx2x_process_kill_chip_reset(bp, global);
9357         barrier();
9358
9359         /* clear errors in PGB */
9360         if (!CHIP_IS_E1x(bp))
9361                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9362
9363         /* Recover after reset: */
9364         /* MCP */
9365         if (global && bnx2x_reset_mcp_comp(bp, val))
9366                 return -EAGAIN;
9367
9368         /* TBD: Add resetting the NO_MCP mode DB here */
9369
9370         /* Open the gates #2, #3 and #4 */
9371         bnx2x_set_234_gates(bp, false);
9372
9373         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9374          * reset state, re-enable attentions. */
9375
9376         return 0;
9377 }
9378
9379 static int bnx2x_leader_reset(struct bnx2x *bp)
9380 {
9381         int rc = 0;
9382         bool global = bnx2x_reset_is_global(bp);
9383         u32 load_code;
9384
9385         /* if not going to reset MCP - load "fake" driver to reset HW while
9386          * driver is owner of the HW
9387          */
9388         if (!global && !BP_NOMCP(bp)) {
9389                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9390                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9391                 if (!load_code) {
9392                         BNX2X_ERR("MCP response failure, aborting\n");
9393                         rc = -EAGAIN;
9394                         goto exit_leader_reset;
9395                 }
9396                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9397                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9398                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9399                         rc = -EAGAIN;
9400                         goto exit_leader_reset2;
9401                 }
9402                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9403                 if (!load_code) {
9404                         BNX2X_ERR("MCP response failure, aborting\n");
9405                         rc = -EAGAIN;
9406                         goto exit_leader_reset2;
9407                 }
9408         }
9409
9410         /* Try to recover after the failure */
9411         if (bnx2x_process_kill(bp, global)) {
9412                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9413                           BP_PATH(bp));
9414                 rc = -EAGAIN;
9415                 goto exit_leader_reset2;
9416         }
9417
9418         /*
9419          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9420          * state.
9421          */
9422         bnx2x_set_reset_done(bp);
9423         if (global)
9424                 bnx2x_clear_reset_global(bp);
9425
9426 exit_leader_reset2:
9427         /* unload "fake driver" if it was loaded */
9428         if (!global && !BP_NOMCP(bp)) {
9429                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9430                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9431         }
9432 exit_leader_reset:
9433         bp->is_leader = 0;
9434         bnx2x_release_leader_lock(bp);
9435         smp_mb();
9436         return rc;
9437 }
9438
9439 static void bnx2x_recovery_failed(struct bnx2x *bp)
9440 {
9441         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9442
9443         /* Disconnect this device */
9444         netif_device_detach(bp->dev);
9445
9446         /*
9447          * Block ifup for all function on this engine until "process kill"
9448          * or power cycle.
9449          */
9450         bnx2x_set_reset_in_progress(bp);
9451
9452         /* Shut down the power */
9453         bnx2x_set_power_state(bp, PCI_D3hot);
9454
9455         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9456
9457         smp_mb();
9458 }
9459
9460 /*
9461  * Assumption: runs under rtnl lock. This together with the fact
9462  * that it's called only from bnx2x_sp_rtnl() ensure that it
9463  * will never be called when netif_running(bp->dev) is false.
9464  */
9465 static void bnx2x_parity_recover(struct bnx2x *bp)
9466 {
9467         bool global = false;
9468         u32 error_recovered, error_unrecovered;
9469         bool is_parity;
9470
9471         DP(NETIF_MSG_HW, "Handling parity\n");
9472         while (1) {
9473                 switch (bp->recovery_state) {
9474                 case BNX2X_RECOVERY_INIT:
9475                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9476                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9477                         WARN_ON(!is_parity);
9478
9479                         /* Try to get a LEADER_LOCK HW lock */
9480                         if (bnx2x_trylock_leader_lock(bp)) {
9481                                 bnx2x_set_reset_in_progress(bp);
9482                                 /*
9483                                  * Check if there is a global attention and if
9484                                  * there was a global attention, set the global
9485                                  * reset bit.
9486                                  */
9487
9488                                 if (global)
9489                                         bnx2x_set_reset_global(bp);
9490
9491                                 bp->is_leader = 1;
9492                         }
9493
9494                         /* Stop the driver */
9495                         /* If interface has been removed - break */
9496                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9497                                 return;
9498
9499                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9500
9501                         /* Ensure "is_leader", MCP command sequence and
9502                          * "recovery_state" update values are seen on other
9503                          * CPUs.
9504                          */
9505                         smp_mb();
9506                         break;
9507
9508                 case BNX2X_RECOVERY_WAIT:
9509                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9510                         if (bp->is_leader) {
9511                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9512                                 bool other_load_status =
9513                                         bnx2x_get_load_status(bp, other_engine);
9514                                 bool load_status =
9515                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9516                                 global = bnx2x_reset_is_global(bp);
9517
9518                                 /*
9519                                  * In case of a parity in a global block, let
9520                                  * the first leader that performs a
9521                                  * leader_reset() reset the global blocks in
9522                                  * order to clear global attentions. Otherwise
9523                                  * the gates will remain closed for that
9524                                  * engine.
9525                                  */
9526                                 if (load_status ||
9527                                     (global && other_load_status)) {
9528                                         /* Wait until all other functions get
9529                                          * down.
9530                                          */
9531                                         schedule_delayed_work(&bp->sp_rtnl_task,
9532                                                                 HZ/10);
9533                                         return;
9534                                 } else {
9535                                         /* If all other functions got down -
9536                                          * try to bring the chip back to
9537                                          * normal. In any case it's an exit
9538                                          * point for a leader.
9539                                          */
9540                                         if (bnx2x_leader_reset(bp)) {
9541                                                 bnx2x_recovery_failed(bp);
9542                                                 return;
9543                                         }
9544
9545                                         /* If we are here, means that the
9546                                          * leader has succeeded and doesn't
9547                                          * want to be a leader any more. Try
9548                                          * to continue as a none-leader.
9549                                          */
9550                                         break;
9551                                 }
9552                         } else { /* non-leader */
9553                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9554                                         /* Try to get a LEADER_LOCK HW lock as
9555                                          * long as a former leader may have
9556                                          * been unloaded by the user or
9557                                          * released a leadership by another
9558                                          * reason.
9559                                          */
9560                                         if (bnx2x_trylock_leader_lock(bp)) {
9561                                                 /* I'm a leader now! Restart a
9562                                                  * switch case.
9563                                                  */
9564                                                 bp->is_leader = 1;
9565                                                 break;
9566                                         }
9567
9568                                         schedule_delayed_work(&bp->sp_rtnl_task,
9569                                                                 HZ/10);
9570                                         return;
9571
9572                                 } else {
9573                                         /*
9574                                          * If there was a global attention, wait
9575                                          * for it to be cleared.
9576                                          */
9577                                         if (bnx2x_reset_is_global(bp)) {
9578                                                 schedule_delayed_work(
9579                                                         &bp->sp_rtnl_task,
9580                                                         HZ/10);
9581                                                 return;
9582                                         }
9583
9584                                         error_recovered =
9585                                           bp->eth_stats.recoverable_error;
9586                                         error_unrecovered =
9587                                           bp->eth_stats.unrecoverable_error;
9588                                         bp->recovery_state =
9589                                                 BNX2X_RECOVERY_NIC_LOADING;
9590                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9591                                                 error_unrecovered++;
9592                                                 netdev_err(bp->dev,
9593                                                            "Recovery failed. Power cycle needed\n");
9594                                                 /* Disconnect this device */
9595                                                 netif_device_detach(bp->dev);
9596                                                 /* Shut down the power */
9597                                                 bnx2x_set_power_state(
9598                                                         bp, PCI_D3hot);
9599                                                 smp_mb();
9600                                         } else {
9601                                                 bp->recovery_state =
9602                                                         BNX2X_RECOVERY_DONE;
9603                                                 error_recovered++;
9604                                                 smp_mb();
9605                                         }
9606                                         bp->eth_stats.recoverable_error =
9607                                                 error_recovered;
9608                                         bp->eth_stats.unrecoverable_error =
9609                                                 error_unrecovered;
9610
9611                                         return;
9612                                 }
9613                         }
9614                 default:
9615                         return;
9616                 }
9617         }
9618 }
9619
9620 static int bnx2x_close(struct net_device *dev);
9621
9622 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9623  * scheduled on a general queue in order to prevent a dead lock.
9624  */
9625 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9626 {
9627         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9628
9629         rtnl_lock();
9630
9631         if (!netif_running(bp->dev)) {
9632                 rtnl_unlock();
9633                 return;
9634         }
9635
9636         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9637 #ifdef BNX2X_STOP_ON_ERROR
9638                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9639                           "you will need to reboot when done\n");
9640                 goto sp_rtnl_not_reset;
9641 #endif
9642                 /*
9643                  * Clear all pending SP commands as we are going to reset the
9644                  * function anyway.
9645                  */
9646                 bp->sp_rtnl_state = 0;
9647                 smp_mb();
9648
9649                 bnx2x_parity_recover(bp);
9650
9651                 rtnl_unlock();
9652                 return;
9653         }
9654
9655         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9656 #ifdef BNX2X_STOP_ON_ERROR
9657                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9658                           "you will need to reboot when done\n");
9659                 goto sp_rtnl_not_reset;
9660 #endif
9661
9662                 /*
9663                  * Clear all pending SP commands as we are going to reset the
9664                  * function anyway.
9665                  */
9666                 bp->sp_rtnl_state = 0;
9667                 smp_mb();
9668
9669                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9670                 bnx2x_nic_load(bp, LOAD_NORMAL);
9671
9672                 rtnl_unlock();
9673                 return;
9674         }
9675 #ifdef BNX2X_STOP_ON_ERROR
9676 sp_rtnl_not_reset:
9677 #endif
9678         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9679                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9680         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9681                 bnx2x_after_function_update(bp);
9682         /*
9683          * in case of fan failure we need to reset id if the "stop on error"
9684          * debug flag is set, since we trying to prevent permanent overheating
9685          * damage
9686          */
9687         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9688                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9689                 netif_device_detach(bp->dev);
9690                 bnx2x_close(bp->dev);
9691                 rtnl_unlock();
9692                 return;
9693         }
9694
9695         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9696                 DP(BNX2X_MSG_SP,
9697                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9698                 bnx2x_vfpf_set_mcast(bp->dev);
9699         }
9700         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9701                                &bp->sp_rtnl_state)){
9702                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9703                         bnx2x_tx_disable(bp);
9704                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9705                 }
9706         }
9707
9708         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9709                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9710                 bnx2x_set_rx_mode_inner(bp);
9711         }
9712
9713         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9714                                &bp->sp_rtnl_state))
9715                 bnx2x_pf_set_vfs_vlan(bp);
9716
9717         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9718                 bnx2x_dcbx_stop_hw_tx(bp);
9719                 bnx2x_dcbx_resume_hw_tx(bp);
9720         }
9721
9722         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9723          * can be called from other contexts as well)
9724          */
9725         rtnl_unlock();
9726
9727         /* enable SR-IOV if applicable */
9728         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9729                                                &bp->sp_rtnl_state)) {
9730                 bnx2x_disable_sriov(bp);
9731                 bnx2x_enable_sriov(bp);
9732         }
9733 }
9734
9735 static void bnx2x_period_task(struct work_struct *work)
9736 {
9737         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9738
9739         if (!netif_running(bp->dev))
9740                 goto period_task_exit;
9741
9742         if (CHIP_REV_IS_SLOW(bp)) {
9743                 BNX2X_ERR("period task called on emulation, ignoring\n");
9744                 goto period_task_exit;
9745         }
9746
9747         bnx2x_acquire_phy_lock(bp);
9748         /*
9749          * The barrier is needed to ensure the ordering between the writing to
9750          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9751          * the reading here.
9752          */
9753         smp_mb();
9754         if (bp->port.pmf) {
9755                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9756
9757                 /* Re-queue task in 1 sec */
9758                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9759         }
9760
9761         bnx2x_release_phy_lock(bp);
9762 period_task_exit:
9763         return;
9764 }
9765
9766 /*
9767  * Init service functions
9768  */
9769
9770 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9771 {
9772         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9773         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9774         return base + (BP_ABS_FUNC(bp)) * stride;
9775 }
9776
9777 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9778                                         struct bnx2x_mac_vals *vals)
9779 {
9780         u32 val, base_addr, offset, mask, reset_reg;
9781         bool mac_stopped = false;
9782         u8 port = BP_PORT(bp);
9783
9784         /* reset addresses as they also mark which values were changed */
9785         vals->bmac_addr = 0;
9786         vals->umac_addr = 0;
9787         vals->xmac_addr = 0;
9788         vals->emac_addr = 0;
9789
9790         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9791
9792         if (!CHIP_IS_E3(bp)) {
9793                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9794                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9795                 if ((mask & reset_reg) && val) {
9796                         u32 wb_data[2];
9797                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9798                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9799                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9800                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9801                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9802
9803                         /*
9804                          * use rd/wr since we cannot use dmae. This is safe
9805                          * since MCP won't access the bus due to the request
9806                          * to unload, and no function on the path can be
9807                          * loaded at this time.
9808                          */
9809                         wb_data[0] = REG_RD(bp, base_addr + offset);
9810                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9811                         vals->bmac_addr = base_addr + offset;
9812                         vals->bmac_val[0] = wb_data[0];
9813                         vals->bmac_val[1] = wb_data[1];
9814                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9815                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9816                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9817                 }
9818                 BNX2X_DEV_INFO("Disable emac Rx\n");
9819                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9820                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9821                 REG_WR(bp, vals->emac_addr, 0);
9822                 mac_stopped = true;
9823         } else {
9824                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9825                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9826                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9827                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9828                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9829                                val & ~(1 << 1));
9830                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9831                                val | (1 << 1));
9832                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9833                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9834                         REG_WR(bp, vals->xmac_addr, 0);
9835                         mac_stopped = true;
9836                 }
9837                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9838                 if (mask & reset_reg) {
9839                         BNX2X_DEV_INFO("Disable umac Rx\n");
9840                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9841                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9842                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9843                         REG_WR(bp, vals->umac_addr, 0);
9844                         mac_stopped = true;
9845                 }
9846         }
9847
9848         if (mac_stopped)
9849                 msleep(20);
9850 }
9851
9852 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9853 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9854 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9855 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9856
9857 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9858 {
9859         u16 rcq, bd;
9860         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9861
9862         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9863         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9864
9865         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9866         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9867
9868         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9869                        port, bd, rcq);
9870 }
9871
9872 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9873 {
9874         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9875                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9876         if (!rc) {
9877                 BNX2X_ERR("MCP response failure, aborting\n");
9878                 return -EBUSY;
9879         }
9880
9881         return 0;
9882 }
9883
9884 static struct bnx2x_prev_path_list *
9885                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9886 {
9887         struct bnx2x_prev_path_list *tmp_list;
9888
9889         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9890                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9891                     bp->pdev->bus->number == tmp_list->bus &&
9892                     BP_PATH(bp) == tmp_list->path)
9893                         return tmp_list;
9894
9895         return NULL;
9896 }
9897
9898 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9899 {
9900         struct bnx2x_prev_path_list *tmp_list;
9901         int rc;
9902
9903         rc = down_interruptible(&bnx2x_prev_sem);
9904         if (rc) {
9905                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9906                 return rc;
9907         }
9908
9909         tmp_list = bnx2x_prev_path_get_entry(bp);
9910         if (tmp_list) {
9911                 tmp_list->aer = 1;
9912                 rc = 0;
9913         } else {
9914                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9915                           BP_PATH(bp));
9916         }
9917
9918         up(&bnx2x_prev_sem);
9919
9920         return rc;
9921 }
9922
9923 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9924 {
9925         struct bnx2x_prev_path_list *tmp_list;
9926         bool rc = false;
9927
9928         if (down_trylock(&bnx2x_prev_sem))
9929                 return false;
9930
9931         tmp_list = bnx2x_prev_path_get_entry(bp);
9932         if (tmp_list) {
9933                 if (tmp_list->aer) {
9934                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9935                            BP_PATH(bp));
9936                 } else {
9937                         rc = true;
9938                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9939                                        BP_PATH(bp));
9940                 }
9941         }
9942
9943         up(&bnx2x_prev_sem);
9944
9945         return rc;
9946 }
9947
9948 bool bnx2x_port_after_undi(struct bnx2x *bp)
9949 {
9950         struct bnx2x_prev_path_list *entry;
9951         bool val;
9952
9953         down(&bnx2x_prev_sem);
9954
9955         entry = bnx2x_prev_path_get_entry(bp);
9956         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9957
9958         up(&bnx2x_prev_sem);
9959
9960         return val;
9961 }
9962
9963 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9964 {
9965         struct bnx2x_prev_path_list *tmp_list;
9966         int rc;
9967
9968         rc = down_interruptible(&bnx2x_prev_sem);
9969         if (rc) {
9970                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9971                 return rc;
9972         }
9973
9974         /* Check whether the entry for this path already exists */
9975         tmp_list = bnx2x_prev_path_get_entry(bp);
9976         if (tmp_list) {
9977                 if (!tmp_list->aer) {
9978                         BNX2X_ERR("Re-Marking the path.\n");
9979                 } else {
9980                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9981                            BP_PATH(bp));
9982                         tmp_list->aer = 0;
9983                 }
9984                 up(&bnx2x_prev_sem);
9985                 return 0;
9986         }
9987         up(&bnx2x_prev_sem);
9988
9989         /* Create an entry for this path and add it */
9990         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9991         if (!tmp_list) {
9992                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9993                 return -ENOMEM;
9994         }
9995
9996         tmp_list->bus = bp->pdev->bus->number;
9997         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9998         tmp_list->path = BP_PATH(bp);
9999         tmp_list->aer = 0;
10000         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10001
10002         rc = down_interruptible(&bnx2x_prev_sem);
10003         if (rc) {
10004                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10005                 kfree(tmp_list);
10006         } else {
10007                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10008                    BP_PATH(bp));
10009                 list_add(&tmp_list->list, &bnx2x_prev_list);
10010                 up(&bnx2x_prev_sem);
10011         }
10012
10013         return rc;
10014 }
10015
10016 static int bnx2x_do_flr(struct bnx2x *bp)
10017 {
10018         struct pci_dev *dev = bp->pdev;
10019
10020         if (CHIP_IS_E1x(bp)) {
10021                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10022                 return -EINVAL;
10023         }
10024
10025         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10026         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10027                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10028                           bp->common.bc_ver);
10029                 return -EINVAL;
10030         }
10031
10032         if (!pci_wait_for_pending_transaction(dev))
10033                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10034
10035         BNX2X_DEV_INFO("Initiating FLR\n");
10036         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10037
10038         return 0;
10039 }
10040
10041 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10042 {
10043         int rc;
10044
10045         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10046
10047         /* Test if previous unload process was already finished for this path */
10048         if (bnx2x_prev_is_path_marked(bp))
10049                 return bnx2x_prev_mcp_done(bp);
10050
10051         BNX2X_DEV_INFO("Path is unmarked\n");
10052
10053         /* If function has FLR capabilities, and existing FW version matches
10054          * the one required, then FLR will be sufficient to clean any residue
10055          * left by previous driver
10056          */
10057         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10058
10059         if (!rc) {
10060                 /* fw version is good */
10061                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10062                 rc = bnx2x_do_flr(bp);
10063         }
10064
10065         if (!rc) {
10066                 /* FLR was performed */
10067                 BNX2X_DEV_INFO("FLR successful\n");
10068                 return 0;
10069         }
10070
10071         BNX2X_DEV_INFO("Could not FLR\n");
10072
10073         /* Close the MCP request, return failure*/
10074         rc = bnx2x_prev_mcp_done(bp);
10075         if (!rc)
10076                 rc = BNX2X_PREV_WAIT_NEEDED;
10077
10078         return rc;
10079 }
10080
10081 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10082 {
10083         u32 reset_reg, tmp_reg = 0, rc;
10084         bool prev_undi = false;
10085         struct bnx2x_mac_vals mac_vals;
10086
10087         /* It is possible a previous function received 'common' answer,
10088          * but hasn't loaded yet, therefore creating a scenario of
10089          * multiple functions receiving 'common' on the same path.
10090          */
10091         BNX2X_DEV_INFO("Common unload Flow\n");
10092
10093         memset(&mac_vals, 0, sizeof(mac_vals));
10094
10095         if (bnx2x_prev_is_path_marked(bp))
10096                 return bnx2x_prev_mcp_done(bp);
10097
10098         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10099
10100         /* Reset should be performed after BRB is emptied */
10101         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10102                 u32 timer_count = 1000;
10103
10104                 /* Close the MAC Rx to prevent BRB from filling up */
10105                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10106
10107                 /* close LLH filters towards the BRB */
10108                 bnx2x_set_rx_filter(&bp->link_params, 0);
10109
10110                 /* Check if the UNDI driver was previously loaded
10111                  * UNDI driver initializes CID offset for normal bell to 0x7
10112                  */
10113                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10114                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10115                         if (tmp_reg == 0x7) {
10116                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10117                                 prev_undi = true;
10118                                 /* clear the UNDI indication */
10119                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10120                                 /* clear possible idle check errors */
10121                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10122                         }
10123                 }
10124                 if (!CHIP_IS_E1x(bp))
10125                         /* block FW from writing to host */
10126                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10127
10128                 /* wait until BRB is empty */
10129                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10130                 while (timer_count) {
10131                         u32 prev_brb = tmp_reg;
10132
10133                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10134                         if (!tmp_reg)
10135                                 break;
10136
10137                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10138
10139                         /* reset timer as long as BRB actually gets emptied */
10140                         if (prev_brb > tmp_reg)
10141                                 timer_count = 1000;
10142                         else
10143                                 timer_count--;
10144
10145                         /* If UNDI resides in memory, manually increment it */
10146                         if (prev_undi)
10147                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10148
10149                         udelay(10);
10150                 }
10151
10152                 if (!timer_count)
10153                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10154         }
10155
10156         /* No packets are in the pipeline, path is ready for reset */
10157         bnx2x_reset_common(bp);
10158
10159         if (mac_vals.xmac_addr)
10160                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10161         if (mac_vals.umac_addr)
10162                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10163         if (mac_vals.emac_addr)
10164                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10165         if (mac_vals.bmac_addr) {
10166                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10167                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10168         }
10169
10170         rc = bnx2x_prev_mark_path(bp, prev_undi);
10171         if (rc) {
10172                 bnx2x_prev_mcp_done(bp);
10173                 return rc;
10174         }
10175
10176         return bnx2x_prev_mcp_done(bp);
10177 }
10178
10179 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10180  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10181  * the addresses of the transaction, resulting in was-error bit set in the pci
10182  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10183  * to clear the interrupt which detected this from the pglueb and the was done
10184  * bit
10185  */
10186 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10187 {
10188         if (!CHIP_IS_E1x(bp)) {
10189                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10190                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10191                         DP(BNX2X_MSG_SP,
10192                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10193                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10194                                1 << BP_FUNC(bp));
10195                 }
10196         }
10197 }
10198
10199 static int bnx2x_prev_unload(struct bnx2x *bp)
10200 {
10201         int time_counter = 10;
10202         u32 rc, fw, hw_lock_reg, hw_lock_val;
10203         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10204
10205         /* clear hw from errors which may have resulted from an interrupted
10206          * dmae transaction.
10207          */
10208         bnx2x_prev_interrupted_dmae(bp);
10209
10210         /* Release previously held locks */
10211         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10212                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10213                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10214
10215         hw_lock_val = REG_RD(bp, hw_lock_reg);
10216         if (hw_lock_val) {
10217                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10218                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10219                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10220                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10221                 }
10222
10223                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10224                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10225         } else
10226                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10227
10228         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10229                 BNX2X_DEV_INFO("Release previously held alr\n");
10230                 bnx2x_release_alr(bp);
10231         }
10232
10233         do {
10234                 int aer = 0;
10235                 /* Lock MCP using an unload request */
10236                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10237                 if (!fw) {
10238                         BNX2X_ERR("MCP response failure, aborting\n");
10239                         rc = -EBUSY;
10240                         break;
10241                 }
10242
10243                 rc = down_interruptible(&bnx2x_prev_sem);
10244                 if (rc) {
10245                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10246                                   rc);
10247                 } else {
10248                         /* If Path is marked by EEH, ignore unload status */
10249                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10250                                  bnx2x_prev_path_get_entry(bp)->aer);
10251                         up(&bnx2x_prev_sem);
10252                 }
10253
10254                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10255                         rc = bnx2x_prev_unload_common(bp);
10256                         break;
10257                 }
10258
10259                 /* non-common reply from MCP might require looping */
10260                 rc = bnx2x_prev_unload_uncommon(bp);
10261                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10262                         break;
10263
10264                 msleep(20);
10265         } while (--time_counter);
10266
10267         if (!time_counter || rc) {
10268                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10269                 rc = -EBUSY;
10270         }
10271
10272         /* Mark function if its port was used to boot from SAN */
10273         if (bnx2x_port_after_undi(bp))
10274                 bp->link_params.feature_config_flags |=
10275                         FEATURE_CONFIG_BOOT_FROM_SAN;
10276
10277         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10278
10279         return rc;
10280 }
10281
10282 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10283 {
10284         u32 val, val2, val3, val4, id, boot_mode;
10285         u16 pmc;
10286
10287         /* Get the chip revision id and number. */
10288         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10289         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10290         id = ((val & 0xffff) << 16);
10291         val = REG_RD(bp, MISC_REG_CHIP_REV);
10292         id |= ((val & 0xf) << 12);
10293
10294         /* Metal is read from PCI regs, but we can't access >=0x400 from
10295          * the configuration space (so we need to reg_rd)
10296          */
10297         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10298         id |= (((val >> 24) & 0xf) << 4);
10299         val = REG_RD(bp, MISC_REG_BOND_ID);
10300         id |= (val & 0xf);
10301         bp->common.chip_id = id;
10302
10303         /* force 57811 according to MISC register */
10304         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10305                 if (CHIP_IS_57810(bp))
10306                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10307                                 (bp->common.chip_id & 0x0000FFFF);
10308                 else if (CHIP_IS_57810_MF(bp))
10309                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10310                                 (bp->common.chip_id & 0x0000FFFF);
10311                 bp->common.chip_id |= 0x1;
10312         }
10313
10314         /* Set doorbell size */
10315         bp->db_size = (1 << BNX2X_DB_SHIFT);
10316
10317         if (!CHIP_IS_E1x(bp)) {
10318                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10319                 if ((val & 1) == 0)
10320                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10321                 else
10322                         val = (val >> 1) & 1;
10323                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10324                                                        "2_PORT_MODE");
10325                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10326                                                  CHIP_2_PORT_MODE;
10327
10328                 if (CHIP_MODE_IS_4_PORT(bp))
10329                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10330                 else
10331                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10332         } else {
10333                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10334                 bp->pfid = bp->pf_num;                  /* 0..7 */
10335         }
10336
10337         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10338
10339         bp->link_params.chip_id = bp->common.chip_id;
10340         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10341
10342         val = (REG_RD(bp, 0x2874) & 0x55);
10343         if ((bp->common.chip_id & 0x1) ||
10344             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10345                 bp->flags |= ONE_PORT_FLAG;
10346                 BNX2X_DEV_INFO("single port device\n");
10347         }
10348
10349         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10350         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10351                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10352         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10353                        bp->common.flash_size, bp->common.flash_size);
10354
10355         bnx2x_init_shmem(bp);
10356
10357         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10358                                         MISC_REG_GENERIC_CR_1 :
10359                                         MISC_REG_GENERIC_CR_0));
10360
10361         bp->link_params.shmem_base = bp->common.shmem_base;
10362         bp->link_params.shmem2_base = bp->common.shmem2_base;
10363         if (SHMEM2_RD(bp, size) >
10364             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10365                 bp->link_params.lfa_base =
10366                 REG_RD(bp, bp->common.shmem2_base +
10367                        (u32)offsetof(struct shmem2_region,
10368                                      lfa_host_addr[BP_PORT(bp)]));
10369         else
10370                 bp->link_params.lfa_base = 0;
10371         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10372                        bp->common.shmem_base, bp->common.shmem2_base);
10373
10374         if (!bp->common.shmem_base) {
10375                 BNX2X_DEV_INFO("MCP not active\n");
10376                 bp->flags |= NO_MCP_FLAG;
10377                 return;
10378         }
10379
10380         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10381         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10382
10383         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10384                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10385                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10386
10387         bp->link_params.feature_config_flags = 0;
10388         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10389         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10390                 bp->link_params.feature_config_flags |=
10391                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10392         else
10393                 bp->link_params.feature_config_flags &=
10394                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10395
10396         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10397         bp->common.bc_ver = val;
10398         BNX2X_DEV_INFO("bc_ver %X\n", val);
10399         if (val < BNX2X_BC_VER) {
10400                 /* for now only warn
10401                  * later we might need to enforce this */
10402                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10403                           BNX2X_BC_VER, val);
10404         }
10405         bp->link_params.feature_config_flags |=
10406                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10407                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10408
10409         bp->link_params.feature_config_flags |=
10410                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10411                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10412         bp->link_params.feature_config_flags |=
10413                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10414                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10415         bp->link_params.feature_config_flags |=
10416                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10417                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10418
10419         bp->link_params.feature_config_flags |=
10420                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10421                 FEATURE_CONFIG_MT_SUPPORT : 0;
10422
10423         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10424                         BC_SUPPORTS_PFC_STATS : 0;
10425
10426         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10427                         BC_SUPPORTS_FCOE_FEATURES : 0;
10428
10429         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10430                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10431
10432         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10433                         BC_SUPPORTS_RMMOD_CMD : 0;
10434
10435         boot_mode = SHMEM_RD(bp,
10436                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10437                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10438         switch (boot_mode) {
10439         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10440                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10441                 break;
10442         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10443                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10444                 break;
10445         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10446                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10447                 break;
10448         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10449                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10450                 break;
10451         }
10452
10453         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10454         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10455
10456         BNX2X_DEV_INFO("%sWoL capable\n",
10457                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10458
10459         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10460         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10461         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10462         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10463
10464         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10465                  val, val2, val3, val4);
10466 }
10467
10468 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10469 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10470
10471 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10472 {
10473         int pfid = BP_FUNC(bp);
10474         int igu_sb_id;
10475         u32 val;
10476         u8 fid, igu_sb_cnt = 0;
10477
10478         bp->igu_base_sb = 0xff;
10479         if (CHIP_INT_MODE_IS_BC(bp)) {
10480                 int vn = BP_VN(bp);
10481                 igu_sb_cnt = bp->igu_sb_cnt;
10482                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10483                         FP_SB_MAX_E1x;
10484
10485                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10486                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10487
10488                 return 0;
10489         }
10490
10491         /* IGU in normal mode - read CAM */
10492         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10493              igu_sb_id++) {
10494                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10495                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10496                         continue;
10497                 fid = IGU_FID(val);
10498                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10499                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10500                                 continue;
10501                         if (IGU_VEC(val) == 0)
10502                                 /* default status block */
10503                                 bp->igu_dsb_id = igu_sb_id;
10504                         else {
10505                                 if (bp->igu_base_sb == 0xff)
10506                                         bp->igu_base_sb = igu_sb_id;
10507                                 igu_sb_cnt++;
10508                         }
10509                 }
10510         }
10511
10512 #ifdef CONFIG_PCI_MSI
10513         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10514          * optional that number of CAM entries will not be equal to the value
10515          * advertised in PCI.
10516          * Driver should use the minimal value of both as the actual status
10517          * block count
10518          */
10519         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10520 #endif
10521
10522         if (igu_sb_cnt == 0) {
10523                 BNX2X_ERR("CAM configuration error\n");
10524                 return -EINVAL;
10525         }
10526
10527         return 0;
10528 }
10529
10530 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10531 {
10532         int cfg_size = 0, idx, port = BP_PORT(bp);
10533
10534         /* Aggregation of supported attributes of all external phys */
10535         bp->port.supported[0] = 0;
10536         bp->port.supported[1] = 0;
10537         switch (bp->link_params.num_phys) {
10538         case 1:
10539                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10540                 cfg_size = 1;
10541                 break;
10542         case 2:
10543                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10544                 cfg_size = 1;
10545                 break;
10546         case 3:
10547                 if (bp->link_params.multi_phy_config &
10548                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10549                         bp->port.supported[1] =
10550                                 bp->link_params.phy[EXT_PHY1].supported;
10551                         bp->port.supported[0] =
10552                                 bp->link_params.phy[EXT_PHY2].supported;
10553                 } else {
10554                         bp->port.supported[0] =
10555                                 bp->link_params.phy[EXT_PHY1].supported;
10556                         bp->port.supported[1] =
10557                                 bp->link_params.phy[EXT_PHY2].supported;
10558                 }
10559                 cfg_size = 2;
10560                 break;
10561         }
10562
10563         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10564                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10565                            SHMEM_RD(bp,
10566                            dev_info.port_hw_config[port].external_phy_config),
10567                            SHMEM_RD(bp,
10568                            dev_info.port_hw_config[port].external_phy_config2));
10569                         return;
10570         }
10571
10572         if (CHIP_IS_E3(bp))
10573                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10574         else {
10575                 switch (switch_cfg) {
10576                 case SWITCH_CFG_1G:
10577                         bp->port.phy_addr = REG_RD(
10578                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10579                         break;
10580                 case SWITCH_CFG_10G:
10581                         bp->port.phy_addr = REG_RD(
10582                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10583                         break;
10584                 default:
10585                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10586                                   bp->port.link_config[0]);
10587                         return;
10588                 }
10589         }
10590         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10591         /* mask what we support according to speed_cap_mask per configuration */
10592         for (idx = 0; idx < cfg_size; idx++) {
10593                 if (!(bp->link_params.speed_cap_mask[idx] &
10594                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10595                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10596
10597                 if (!(bp->link_params.speed_cap_mask[idx] &
10598                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10599                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10600
10601                 if (!(bp->link_params.speed_cap_mask[idx] &
10602                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10603                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10604
10605                 if (!(bp->link_params.speed_cap_mask[idx] &
10606                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10607                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10608
10609                 if (!(bp->link_params.speed_cap_mask[idx] &
10610                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10611                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10612                                                      SUPPORTED_1000baseT_Full);
10613
10614                 if (!(bp->link_params.speed_cap_mask[idx] &
10615                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10616                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10617
10618                 if (!(bp->link_params.speed_cap_mask[idx] &
10619                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10620                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10621
10622                 if (!(bp->link_params.speed_cap_mask[idx] &
10623                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10624                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10625         }
10626
10627         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10628                        bp->port.supported[1]);
10629 }
10630
10631 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10632 {
10633         u32 link_config, idx, cfg_size = 0;
10634         bp->port.advertising[0] = 0;
10635         bp->port.advertising[1] = 0;
10636         switch (bp->link_params.num_phys) {
10637         case 1:
10638         case 2:
10639                 cfg_size = 1;
10640                 break;
10641         case 3:
10642                 cfg_size = 2;
10643                 break;
10644         }
10645         for (idx = 0; idx < cfg_size; idx++) {
10646                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10647                 link_config = bp->port.link_config[idx];
10648                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10649                 case PORT_FEATURE_LINK_SPEED_AUTO:
10650                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10651                                 bp->link_params.req_line_speed[idx] =
10652                                         SPEED_AUTO_NEG;
10653                                 bp->port.advertising[idx] |=
10654                                         bp->port.supported[idx];
10655                                 if (bp->link_params.phy[EXT_PHY1].type ==
10656                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10657                                         bp->port.advertising[idx] |=
10658                                         (SUPPORTED_100baseT_Half |
10659                                          SUPPORTED_100baseT_Full);
10660                         } else {
10661                                 /* force 10G, no AN */
10662                                 bp->link_params.req_line_speed[idx] =
10663                                         SPEED_10000;
10664                                 bp->port.advertising[idx] |=
10665                                         (ADVERTISED_10000baseT_Full |
10666                                          ADVERTISED_FIBRE);
10667                                 continue;
10668                         }
10669                         break;
10670
10671                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10672                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10673                                 bp->link_params.req_line_speed[idx] =
10674                                         SPEED_10;
10675                                 bp->port.advertising[idx] |=
10676                                         (ADVERTISED_10baseT_Full |
10677                                          ADVERTISED_TP);
10678                         } else {
10679                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10680                                             link_config,
10681                                     bp->link_params.speed_cap_mask[idx]);
10682                                 return;
10683                         }
10684                         break;
10685
10686                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10687                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10688                                 bp->link_params.req_line_speed[idx] =
10689                                         SPEED_10;
10690                                 bp->link_params.req_duplex[idx] =
10691                                         DUPLEX_HALF;
10692                                 bp->port.advertising[idx] |=
10693                                         (ADVERTISED_10baseT_Half |
10694                                          ADVERTISED_TP);
10695                         } else {
10696                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10697                                             link_config,
10698                                           bp->link_params.speed_cap_mask[idx]);
10699                                 return;
10700                         }
10701                         break;
10702
10703                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10704                         if (bp->port.supported[idx] &
10705                             SUPPORTED_100baseT_Full) {
10706                                 bp->link_params.req_line_speed[idx] =
10707                                         SPEED_100;
10708                                 bp->port.advertising[idx] |=
10709                                         (ADVERTISED_100baseT_Full |
10710                                          ADVERTISED_TP);
10711                         } else {
10712                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10713                                             link_config,
10714                                           bp->link_params.speed_cap_mask[idx]);
10715                                 return;
10716                         }
10717                         break;
10718
10719                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10720                         if (bp->port.supported[idx] &
10721                             SUPPORTED_100baseT_Half) {
10722                                 bp->link_params.req_line_speed[idx] =
10723                                                                 SPEED_100;
10724                                 bp->link_params.req_duplex[idx] =
10725                                                                 DUPLEX_HALF;
10726                                 bp->port.advertising[idx] |=
10727                                         (ADVERTISED_100baseT_Half |
10728                                          ADVERTISED_TP);
10729                         } else {
10730                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10731                                     link_config,
10732                                     bp->link_params.speed_cap_mask[idx]);
10733                                 return;
10734                         }
10735                         break;
10736
10737                 case PORT_FEATURE_LINK_SPEED_1G:
10738                         if (bp->port.supported[idx] &
10739                             SUPPORTED_1000baseT_Full) {
10740                                 bp->link_params.req_line_speed[idx] =
10741                                         SPEED_1000;
10742                                 bp->port.advertising[idx] |=
10743                                         (ADVERTISED_1000baseT_Full |
10744                                          ADVERTISED_TP);
10745                         } else {
10746                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10747                                     link_config,
10748                                     bp->link_params.speed_cap_mask[idx]);
10749                                 return;
10750                         }
10751                         break;
10752
10753                 case PORT_FEATURE_LINK_SPEED_2_5G:
10754                         if (bp->port.supported[idx] &
10755                             SUPPORTED_2500baseX_Full) {
10756                                 bp->link_params.req_line_speed[idx] =
10757                                         SPEED_2500;
10758                                 bp->port.advertising[idx] |=
10759                                         (ADVERTISED_2500baseX_Full |
10760                                                 ADVERTISED_TP);
10761                         } else {
10762                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10763                                     link_config,
10764                                     bp->link_params.speed_cap_mask[idx]);
10765                                 return;
10766                         }
10767                         break;
10768
10769                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10770                         if (bp->port.supported[idx] &
10771                             SUPPORTED_10000baseT_Full) {
10772                                 bp->link_params.req_line_speed[idx] =
10773                                         SPEED_10000;
10774                                 bp->port.advertising[idx] |=
10775                                         (ADVERTISED_10000baseT_Full |
10776                                                 ADVERTISED_FIBRE);
10777                         } else {
10778                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10779                                     link_config,
10780                                     bp->link_params.speed_cap_mask[idx]);
10781                                 return;
10782                         }
10783                         break;
10784                 case PORT_FEATURE_LINK_SPEED_20G:
10785                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10786
10787                         break;
10788                 default:
10789                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10790                                   link_config);
10791                                 bp->link_params.req_line_speed[idx] =
10792                                                         SPEED_AUTO_NEG;
10793                                 bp->port.advertising[idx] =
10794                                                 bp->port.supported[idx];
10795                         break;
10796                 }
10797
10798                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10799                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10800                 if (bp->link_params.req_flow_ctrl[idx] ==
10801                     BNX2X_FLOW_CTRL_AUTO) {
10802                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10803                                 bp->link_params.req_flow_ctrl[idx] =
10804                                                         BNX2X_FLOW_CTRL_NONE;
10805                         else
10806                                 bnx2x_set_requested_fc(bp);
10807                 }
10808
10809                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10810                                bp->link_params.req_line_speed[idx],
10811                                bp->link_params.req_duplex[idx],
10812                                bp->link_params.req_flow_ctrl[idx],
10813                                bp->port.advertising[idx]);
10814         }
10815 }
10816
10817 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10818 {
10819         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10820         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10821         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10822         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10823 }
10824
10825 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10826 {
10827         int port = BP_PORT(bp);
10828         u32 config;
10829         u32 ext_phy_type, ext_phy_config, eee_mode;
10830
10831         bp->link_params.bp = bp;
10832         bp->link_params.port = port;
10833
10834         bp->link_params.lane_config =
10835                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10836
10837         bp->link_params.speed_cap_mask[0] =
10838                 SHMEM_RD(bp,
10839                          dev_info.port_hw_config[port].speed_capability_mask) &
10840                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10841         bp->link_params.speed_cap_mask[1] =
10842                 SHMEM_RD(bp,
10843                          dev_info.port_hw_config[port].speed_capability_mask2) &
10844                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10845         bp->port.link_config[0] =
10846                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10847
10848         bp->port.link_config[1] =
10849                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10850
10851         bp->link_params.multi_phy_config =
10852                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10853         /* If the device is capable of WoL, set the default state according
10854          * to the HW
10855          */
10856         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10857         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10858                    (config & PORT_FEATURE_WOL_ENABLED));
10859
10860         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10861             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10862                 bp->flags |= NO_ISCSI_FLAG;
10863         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10864             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10865                 bp->flags |= NO_FCOE_FLAG;
10866
10867         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10868                        bp->link_params.lane_config,
10869                        bp->link_params.speed_cap_mask[0],
10870                        bp->port.link_config[0]);
10871
10872         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10873                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10874         bnx2x_phy_probe(&bp->link_params);
10875         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10876
10877         bnx2x_link_settings_requested(bp);
10878
10879         /*
10880          * If connected directly, work with the internal PHY, otherwise, work
10881          * with the external PHY
10882          */
10883         ext_phy_config =
10884                 SHMEM_RD(bp,
10885                          dev_info.port_hw_config[port].external_phy_config);
10886         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10887         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10888                 bp->mdio.prtad = bp->port.phy_addr;
10889
10890         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10891                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10892                 bp->mdio.prtad =
10893                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10894
10895         /* Configure link feature according to nvram value */
10896         eee_mode = (((SHMEM_RD(bp, dev_info.
10897                       port_feature_config[port].eee_power_mode)) &
10898                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10899                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10900         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10901                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10902                                            EEE_MODE_ENABLE_LPI |
10903                                            EEE_MODE_OUTPUT_TIME;
10904         } else {
10905                 bp->link_params.eee_mode = 0;
10906         }
10907 }
10908
10909 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10910 {
10911         u32 no_flags = NO_ISCSI_FLAG;
10912         int port = BP_PORT(bp);
10913         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10914                                 drv_lic_key[port].max_iscsi_conn);
10915
10916         if (!CNIC_SUPPORT(bp)) {
10917                 bp->flags |= no_flags;
10918                 return;
10919         }
10920
10921         /* Get the number of maximum allowed iSCSI connections */
10922         bp->cnic_eth_dev.max_iscsi_conn =
10923                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10924                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10925
10926         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10927                        bp->cnic_eth_dev.max_iscsi_conn);
10928
10929         /*
10930          * If maximum allowed number of connections is zero -
10931          * disable the feature.
10932          */
10933         if (!bp->cnic_eth_dev.max_iscsi_conn)
10934                 bp->flags |= no_flags;
10935 }
10936
10937 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10938 {
10939         /* Port info */
10940         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10941                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10942         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10943                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10944
10945         /* Node info */
10946         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10947                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10948         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10949                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10950 }
10951
10952 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10953 {
10954         u8 count = 0;
10955
10956         if (IS_MF(bp)) {
10957                 u8 fid;
10958
10959                 /* iterate over absolute function ids for this path: */
10960                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10961                         if (IS_MF_SD(bp)) {
10962                                 u32 cfg = MF_CFG_RD(bp,
10963                                                     func_mf_config[fid].config);
10964
10965                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10966                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10967                                             FUNC_MF_CFG_PROTOCOL_FCOE))
10968                                         count++;
10969                         } else {
10970                                 u32 cfg = MF_CFG_RD(bp,
10971                                                     func_ext_config[fid].
10972                                                                       func_cfg);
10973
10974                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10975                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10976                                         count++;
10977                         }
10978                 }
10979         } else { /* SF */
10980                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10981
10982                 for (port = 0; port < port_cnt; port++) {
10983                         u32 lic = SHMEM_RD(bp,
10984                                            drv_lic_key[port].max_fcoe_conn) ^
10985                                   FW_ENCODE_32BIT_PATTERN;
10986                         if (lic)
10987                                 count++;
10988                 }
10989         }
10990
10991         return count;
10992 }
10993
10994 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10995 {
10996         int port = BP_PORT(bp);
10997         int func = BP_ABS_FUNC(bp);
10998         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10999                                 drv_lic_key[port].max_fcoe_conn);
11000         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11001
11002         if (!CNIC_SUPPORT(bp)) {
11003                 bp->flags |= NO_FCOE_FLAG;
11004                 return;
11005         }
11006
11007         /* Get the number of maximum allowed FCoE connections */
11008         bp->cnic_eth_dev.max_fcoe_conn =
11009                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11010                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11011
11012         /* Calculate the number of maximum allowed FCoE tasks */
11013         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11014
11015         /* check if FCoE resources must be shared between different functions */
11016         if (num_fcoe_func)
11017                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11018
11019         /* Read the WWN: */
11020         if (!IS_MF(bp)) {
11021                 /* Port info */
11022                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11023                         SHMEM_RD(bp,
11024                                  dev_info.port_hw_config[port].
11025                                  fcoe_wwn_port_name_upper);
11026                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11027                         SHMEM_RD(bp,
11028                                  dev_info.port_hw_config[port].
11029                                  fcoe_wwn_port_name_lower);
11030
11031                 /* Node info */
11032                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11033                         SHMEM_RD(bp,
11034                                  dev_info.port_hw_config[port].
11035                                  fcoe_wwn_node_name_upper);
11036                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11037                         SHMEM_RD(bp,
11038                                  dev_info.port_hw_config[port].
11039                                  fcoe_wwn_node_name_lower);
11040         } else if (!IS_MF_SD(bp)) {
11041                 /*
11042                  * Read the WWN info only if the FCoE feature is enabled for
11043                  * this function.
11044                  */
11045                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11046                         bnx2x_get_ext_wwn_info(bp, func);
11047
11048         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11049                 bnx2x_get_ext_wwn_info(bp, func);
11050         }
11051
11052         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11053
11054         /*
11055          * If maximum allowed number of connections is zero -
11056          * disable the feature.
11057          */
11058         if (!bp->cnic_eth_dev.max_fcoe_conn)
11059                 bp->flags |= NO_FCOE_FLAG;
11060 }
11061
11062 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11063 {
11064         /*
11065          * iSCSI may be dynamically disabled but reading
11066          * info here we will decrease memory usage by driver
11067          * if the feature is disabled for good
11068          */
11069         bnx2x_get_iscsi_info(bp);
11070         bnx2x_get_fcoe_info(bp);
11071 }
11072
11073 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11074 {
11075         u32 val, val2;
11076         int func = BP_ABS_FUNC(bp);
11077         int port = BP_PORT(bp);
11078         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11079         u8 *fip_mac = bp->fip_mac;
11080
11081         if (IS_MF(bp)) {
11082                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11083                  * FCoE MAC then the appropriate feature should be disabled.
11084                  * In non SD mode features configuration comes from struct
11085                  * func_ext_config.
11086                  */
11087                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11088                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11089                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11090                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11091                                                  iscsi_mac_addr_upper);
11092                                 val = MF_CFG_RD(bp, func_ext_config[func].
11093                                                 iscsi_mac_addr_lower);
11094                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11095                                 BNX2X_DEV_INFO
11096                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11097                         } else {
11098                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11099                         }
11100
11101                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11102                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11103                                                  fcoe_mac_addr_upper);
11104                                 val = MF_CFG_RD(bp, func_ext_config[func].
11105                                                 fcoe_mac_addr_lower);
11106                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11107                                 BNX2X_DEV_INFO
11108                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11109                         } else {
11110                                 bp->flags |= NO_FCOE_FLAG;
11111                         }
11112
11113                         bp->mf_ext_config = cfg;
11114
11115                 } else { /* SD MODE */
11116                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11117                                 /* use primary mac as iscsi mac */
11118                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11119
11120                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11121                                 BNX2X_DEV_INFO
11122                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11123                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11124                                 /* use primary mac as fip mac */
11125                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11126                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11127                                 BNX2X_DEV_INFO
11128                                         ("Read FIP MAC: %pM\n", fip_mac);
11129                         }
11130                 }
11131
11132                 /* If this is a storage-only interface, use SAN mac as
11133                  * primary MAC. Notice that for SD this is already the case,
11134                  * as the SAN mac was copied from the primary MAC.
11135                  */
11136                 if (IS_MF_FCOE_AFEX(bp))
11137                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11138         } else {
11139                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11140                                 iscsi_mac_upper);
11141                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11142                                iscsi_mac_lower);
11143                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11144
11145                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11146                                 fcoe_fip_mac_upper);
11147                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11148                                fcoe_fip_mac_lower);
11149                 bnx2x_set_mac_buf(fip_mac, val, val2);
11150         }
11151
11152         /* Disable iSCSI OOO if MAC configuration is invalid. */
11153         if (!is_valid_ether_addr(iscsi_mac)) {
11154                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11155                 memset(iscsi_mac, 0, ETH_ALEN);
11156         }
11157
11158         /* Disable FCoE if MAC configuration is invalid. */
11159         if (!is_valid_ether_addr(fip_mac)) {
11160                 bp->flags |= NO_FCOE_FLAG;
11161                 memset(bp->fip_mac, 0, ETH_ALEN);
11162         }
11163 }
11164
11165 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11166 {
11167         u32 val, val2;
11168         int func = BP_ABS_FUNC(bp);
11169         int port = BP_PORT(bp);
11170
11171         /* Zero primary MAC configuration */
11172         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11173
11174         if (BP_NOMCP(bp)) {
11175                 BNX2X_ERROR("warning: random MAC workaround active\n");
11176                 eth_hw_addr_random(bp->dev);
11177         } else if (IS_MF(bp)) {
11178                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11179                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11180                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11181                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11182                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11183
11184                 if (CNIC_SUPPORT(bp))
11185                         bnx2x_get_cnic_mac_hwinfo(bp);
11186         } else {
11187                 /* in SF read MACs from port configuration */
11188                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11189                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11190                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11191
11192                 if (CNIC_SUPPORT(bp))
11193                         bnx2x_get_cnic_mac_hwinfo(bp);
11194         }
11195
11196         if (!BP_NOMCP(bp)) {
11197                 /* Read physical port identifier from shmem */
11198                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11199                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11200                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11201                 bp->flags |= HAS_PHYS_PORT_ID;
11202         }
11203
11204         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11205
11206         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11207                 dev_err(&bp->pdev->dev,
11208                         "bad Ethernet MAC address configuration: %pM\n"
11209                         "change it manually before bringing up the appropriate network interface\n",
11210                         bp->dev->dev_addr);
11211 }
11212
11213 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11214 {
11215         int tmp;
11216         u32 cfg;
11217
11218         if (IS_VF(bp))
11219                 return 0;
11220
11221         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11222                 /* Take function: tmp = func */
11223                 tmp = BP_ABS_FUNC(bp);
11224                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11225                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11226         } else {
11227                 /* Take port: tmp = port */
11228                 tmp = BP_PORT(bp);
11229                 cfg = SHMEM_RD(bp,
11230                                dev_info.port_hw_config[tmp].generic_features);
11231                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11232         }
11233         return cfg;
11234 }
11235
11236 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11237 {
11238         int /*abs*/func = BP_ABS_FUNC(bp);
11239         int vn;
11240         u32 val = 0;
11241         int rc = 0;
11242
11243         bnx2x_get_common_hwinfo(bp);
11244
11245         /*
11246          * initialize IGU parameters
11247          */
11248         if (CHIP_IS_E1x(bp)) {
11249                 bp->common.int_block = INT_BLOCK_HC;
11250
11251                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11252                 bp->igu_base_sb = 0;
11253         } else {
11254                 bp->common.int_block = INT_BLOCK_IGU;
11255
11256                 /* do not allow device reset during IGU info processing */
11257                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11258
11259                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11260
11261                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11262                         int tout = 5000;
11263
11264                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11265
11266                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11267                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11268                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11269
11270                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11271                                 tout--;
11272                                 usleep_range(1000, 2000);
11273                         }
11274
11275                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11276                                 dev_err(&bp->pdev->dev,
11277                                         "FORCING Normal Mode failed!!!\n");
11278                                 bnx2x_release_hw_lock(bp,
11279                                                       HW_LOCK_RESOURCE_RESET);
11280                                 return -EPERM;
11281                         }
11282                 }
11283
11284                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11285                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11286                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11287                 } else
11288                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11289
11290                 rc = bnx2x_get_igu_cam_info(bp);
11291                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11292                 if (rc)
11293                         return rc;
11294         }
11295
11296         /*
11297          * set base FW non-default (fast path) status block id, this value is
11298          * used to initialize the fw_sb_id saved on the fp/queue structure to
11299          * determine the id used by the FW.
11300          */
11301         if (CHIP_IS_E1x(bp))
11302                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11303         else /*
11304               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11305               * the same queue are indicated on the same IGU SB). So we prefer
11306               * FW and IGU SBs to be the same value.
11307               */
11308                 bp->base_fw_ndsb = bp->igu_base_sb;
11309
11310         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11311                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11312                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11313
11314         /*
11315          * Initialize MF configuration
11316          */
11317
11318         bp->mf_ov = 0;
11319         bp->mf_mode = 0;
11320         vn = BP_VN(bp);
11321
11322         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11323                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11324                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11325                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11326
11327                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11328                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11329                 else
11330                         bp->common.mf_cfg_base = bp->common.shmem_base +
11331                                 offsetof(struct shmem_region, func_mb) +
11332                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11333                 /*
11334                  * get mf configuration:
11335                  * 1. Existence of MF configuration
11336                  * 2. MAC address must be legal (check only upper bytes)
11337                  *    for  Switch-Independent mode;
11338                  *    OVLAN must be legal for Switch-Dependent mode
11339                  * 3. SF_MODE configures specific MF mode
11340                  */
11341                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11342                         /* get mf configuration */
11343                         val = SHMEM_RD(bp,
11344                                        dev_info.shared_feature_config.config);
11345                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11346
11347                         switch (val) {
11348                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11349                                 val = MF_CFG_RD(bp, func_mf_config[func].
11350                                                 mac_upper);
11351                                 /* check for legal mac (upper bytes)*/
11352                                 if (val != 0xffff) {
11353                                         bp->mf_mode = MULTI_FUNCTION_SI;
11354                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11355                                                    func_mf_config[func].config);
11356                                 } else
11357                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11358                                 break;
11359                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11360                                 if ((!CHIP_IS_E1x(bp)) &&
11361                                     (MF_CFG_RD(bp, func_mf_config[func].
11362                                                mac_upper) != 0xffff) &&
11363                                     (SHMEM2_HAS(bp,
11364                                                 afex_driver_support))) {
11365                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11366                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11367                                                 func_mf_config[func].config);
11368                                 } else {
11369                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11370                                 }
11371                                 break;
11372                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11373                                 /* get OV configuration */
11374                                 val = MF_CFG_RD(bp,
11375                                         func_mf_config[FUNC_0].e1hov_tag);
11376                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11377
11378                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11379                                         bp->mf_mode = MULTI_FUNCTION_SD;
11380                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11381                                                 func_mf_config[func].config);
11382                                 } else
11383                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11384                                 break;
11385                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11386                                 bp->mf_config[vn] = 0;
11387                                 break;
11388                         default:
11389                                 /* Unknown configuration: reset mf_config */
11390                                 bp->mf_config[vn] = 0;
11391                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11392                         }
11393                 }
11394
11395                 BNX2X_DEV_INFO("%s function mode\n",
11396                                IS_MF(bp) ? "multi" : "single");
11397
11398                 switch (bp->mf_mode) {
11399                 case MULTI_FUNCTION_SD:
11400                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11401                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11402                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11403                                 bp->mf_ov = val;
11404                                 bp->path_has_ovlan = true;
11405
11406                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11407                                                func, bp->mf_ov, bp->mf_ov);
11408                         } else {
11409                                 dev_err(&bp->pdev->dev,
11410                                         "No valid MF OV for func %d, aborting\n",
11411                                         func);
11412                                 return -EPERM;
11413                         }
11414                         break;
11415                 case MULTI_FUNCTION_AFEX:
11416                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11417                         break;
11418                 case MULTI_FUNCTION_SI:
11419                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11420                                        func);
11421                         break;
11422                 default:
11423                         if (vn) {
11424                                 dev_err(&bp->pdev->dev,
11425                                         "VN %d is in a single function mode, aborting\n",
11426                                         vn);
11427                                 return -EPERM;
11428                         }
11429                         break;
11430                 }
11431
11432                 /* check if other port on the path needs ovlan:
11433                  * Since MF configuration is shared between ports
11434                  * Possible mixed modes are only
11435                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11436                  */
11437                 if (CHIP_MODE_IS_4_PORT(bp) &&
11438                     !bp->path_has_ovlan &&
11439                     !IS_MF(bp) &&
11440                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11441                         u8 other_port = !BP_PORT(bp);
11442                         u8 other_func = BP_PATH(bp) + 2*other_port;
11443                         val = MF_CFG_RD(bp,
11444                                         func_mf_config[other_func].e1hov_tag);
11445                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11446                                 bp->path_has_ovlan = true;
11447                 }
11448         }
11449
11450         /* adjust igu_sb_cnt to MF for E1x */
11451         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11452                 bp->igu_sb_cnt /= E1HVN_MAX;
11453
11454         /* port info */
11455         bnx2x_get_port_hwinfo(bp);
11456
11457         /* Get MAC addresses */
11458         bnx2x_get_mac_hwinfo(bp);
11459
11460         bnx2x_get_cnic_info(bp);
11461
11462         return rc;
11463 }
11464
11465 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11466 {
11467         int cnt, i, block_end, rodi;
11468         char vpd_start[BNX2X_VPD_LEN+1];
11469         char str_id_reg[VENDOR_ID_LEN+1];
11470         char str_id_cap[VENDOR_ID_LEN+1];
11471         char *vpd_data;
11472         char *vpd_extended_data = NULL;
11473         u8 len;
11474
11475         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11476         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11477
11478         if (cnt < BNX2X_VPD_LEN)
11479                 goto out_not_found;
11480
11481         /* VPD RO tag should be first tag after identifier string, hence
11482          * we should be able to find it in first BNX2X_VPD_LEN chars
11483          */
11484         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11485                              PCI_VPD_LRDT_RO_DATA);
11486         if (i < 0)
11487                 goto out_not_found;
11488
11489         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11490                     pci_vpd_lrdt_size(&vpd_start[i]);
11491
11492         i += PCI_VPD_LRDT_TAG_SIZE;
11493
11494         if (block_end > BNX2X_VPD_LEN) {
11495                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11496                 if (vpd_extended_data  == NULL)
11497                         goto out_not_found;
11498
11499                 /* read rest of vpd image into vpd_extended_data */
11500                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11501                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11502                                    block_end - BNX2X_VPD_LEN,
11503                                    vpd_extended_data + BNX2X_VPD_LEN);
11504                 if (cnt < (block_end - BNX2X_VPD_LEN))
11505                         goto out_not_found;
11506                 vpd_data = vpd_extended_data;
11507         } else
11508                 vpd_data = vpd_start;
11509
11510         /* now vpd_data holds full vpd content in both cases */
11511
11512         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11513                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11514         if (rodi < 0)
11515                 goto out_not_found;
11516
11517         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11518
11519         if (len != VENDOR_ID_LEN)
11520                 goto out_not_found;
11521
11522         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11523
11524         /* vendor specific info */
11525         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11526         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11527         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11528             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11529
11530                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11531                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11532                 if (rodi >= 0) {
11533                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11534
11535                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11536
11537                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11538                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11539                                 bp->fw_ver[len] = ' ';
11540                         }
11541                 }
11542                 kfree(vpd_extended_data);
11543                 return;
11544         }
11545 out_not_found:
11546         kfree(vpd_extended_data);
11547         return;
11548 }
11549
11550 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11551 {
11552         u32 flags = 0;
11553
11554         if (CHIP_REV_IS_FPGA(bp))
11555                 SET_FLAGS(flags, MODE_FPGA);
11556         else if (CHIP_REV_IS_EMUL(bp))
11557                 SET_FLAGS(flags, MODE_EMUL);
11558         else
11559                 SET_FLAGS(flags, MODE_ASIC);
11560
11561         if (CHIP_MODE_IS_4_PORT(bp))
11562                 SET_FLAGS(flags, MODE_PORT4);
11563         else
11564                 SET_FLAGS(flags, MODE_PORT2);
11565
11566         if (CHIP_IS_E2(bp))
11567                 SET_FLAGS(flags, MODE_E2);
11568         else if (CHIP_IS_E3(bp)) {
11569                 SET_FLAGS(flags, MODE_E3);
11570                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11571                         SET_FLAGS(flags, MODE_E3_A0);
11572                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11573                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11574         }
11575
11576         if (IS_MF(bp)) {
11577                 SET_FLAGS(flags, MODE_MF);
11578                 switch (bp->mf_mode) {
11579                 case MULTI_FUNCTION_SD:
11580                         SET_FLAGS(flags, MODE_MF_SD);
11581                         break;
11582                 case MULTI_FUNCTION_SI:
11583                         SET_FLAGS(flags, MODE_MF_SI);
11584                         break;
11585                 case MULTI_FUNCTION_AFEX:
11586                         SET_FLAGS(flags, MODE_MF_AFEX);
11587                         break;
11588                 }
11589         } else
11590                 SET_FLAGS(flags, MODE_SF);
11591
11592 #if defined(__LITTLE_ENDIAN)
11593         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11594 #else /*(__BIG_ENDIAN)*/
11595         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11596 #endif
11597         INIT_MODE_FLAGS(bp) = flags;
11598 }
11599
11600 static int bnx2x_init_bp(struct bnx2x *bp)
11601 {
11602         int func;
11603         int rc;
11604
11605         mutex_init(&bp->port.phy_mutex);
11606         mutex_init(&bp->fw_mb_mutex);
11607         spin_lock_init(&bp->stats_lock);
11608         sema_init(&bp->stats_sema, 1);
11609
11610         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11611         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11612         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11613         if (IS_PF(bp)) {
11614                 rc = bnx2x_get_hwinfo(bp);
11615                 if (rc)
11616                         return rc;
11617         } else {
11618                 eth_zero_addr(bp->dev->dev_addr);
11619         }
11620
11621         bnx2x_set_modes_bitmap(bp);
11622
11623         rc = bnx2x_alloc_mem_bp(bp);
11624         if (rc)
11625                 return rc;
11626
11627         bnx2x_read_fwinfo(bp);
11628
11629         func = BP_FUNC(bp);
11630
11631         /* need to reset chip if undi was active */
11632         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11633                 /* init fw_seq */
11634                 bp->fw_seq =
11635                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11636                                                         DRV_MSG_SEQ_NUMBER_MASK;
11637                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11638
11639                 bnx2x_prev_unload(bp);
11640         }
11641
11642         if (CHIP_REV_IS_FPGA(bp))
11643                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11644
11645         if (BP_NOMCP(bp) && (func == 0))
11646                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11647
11648         bp->disable_tpa = disable_tpa;
11649         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11650
11651         /* Set TPA flags */
11652         if (bp->disable_tpa) {
11653                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11654                 bp->dev->features &= ~NETIF_F_LRO;
11655         } else {
11656                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11657                 bp->dev->features |= NETIF_F_LRO;
11658         }
11659
11660         if (CHIP_IS_E1(bp))
11661                 bp->dropless_fc = 0;
11662         else
11663                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11664
11665         bp->mrrs = mrrs;
11666
11667         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11668         if (IS_VF(bp))
11669                 bp->rx_ring_size = MAX_RX_AVAIL;
11670
11671         /* make sure that the numbers are in the right granularity */
11672         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11673         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11674
11675         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11676
11677         init_timer(&bp->timer);
11678         bp->timer.expires = jiffies + bp->current_interval;
11679         bp->timer.data = (unsigned long) bp;
11680         bp->timer.function = bnx2x_timer;
11681
11682         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11683             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11684             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11685             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11686                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11687                 bnx2x_dcbx_init_params(bp);
11688         } else {
11689                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11690         }
11691
11692         if (CHIP_IS_E1x(bp))
11693                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11694         else
11695                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11696
11697         /* multiple tx priority */
11698         if (IS_VF(bp))
11699                 bp->max_cos = 1;
11700         else if (CHIP_IS_E1x(bp))
11701                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11702         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11703                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11704         else if (CHIP_IS_E3B0(bp))
11705                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11706         else
11707                 BNX2X_ERR("unknown chip %x revision %x\n",
11708                           CHIP_NUM(bp), CHIP_REV(bp));
11709         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11710
11711         /* We need at least one default status block for slow-path events,
11712          * second status block for the L2 queue, and a third status block for
11713          * CNIC if supported.
11714          */
11715         if (IS_VF(bp))
11716                 bp->min_msix_vec_cnt = 1;
11717         else if (CNIC_SUPPORT(bp))
11718                 bp->min_msix_vec_cnt = 3;
11719         else /* PF w/o cnic */
11720                 bp->min_msix_vec_cnt = 2;
11721         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11722
11723         bp->dump_preset_idx = 1;
11724
11725         return rc;
11726 }
11727
11728 /****************************************************************************
11729 * General service functions
11730 ****************************************************************************/
11731
11732 /*
11733  * net_device service functions
11734  */
11735
11736 /* called with rtnl_lock */
11737 static int bnx2x_open(struct net_device *dev)
11738 {
11739         struct bnx2x *bp = netdev_priv(dev);
11740         int rc;
11741
11742         bp->stats_init = true;
11743
11744         netif_carrier_off(dev);
11745
11746         bnx2x_set_power_state(bp, PCI_D0);
11747
11748         /* If parity had happen during the unload, then attentions
11749          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11750          * want the first function loaded on the current engine to
11751          * complete the recovery.
11752          * Parity recovery is only relevant for PF driver.
11753          */
11754         if (IS_PF(bp)) {
11755                 int other_engine = BP_PATH(bp) ? 0 : 1;
11756                 bool other_load_status, load_status;
11757                 bool global = false;
11758
11759                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11760                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11761                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11762                     bnx2x_chk_parity_attn(bp, &global, true)) {
11763                         do {
11764                                 /* If there are attentions and they are in a
11765                                  * global blocks, set the GLOBAL_RESET bit
11766                                  * regardless whether it will be this function
11767                                  * that will complete the recovery or not.
11768                                  */
11769                                 if (global)
11770                                         bnx2x_set_reset_global(bp);
11771
11772                                 /* Only the first function on the current
11773                                  * engine should try to recover in open. In case
11774                                  * of attentions in global blocks only the first
11775                                  * in the chip should try to recover.
11776                                  */
11777                                 if ((!load_status &&
11778                                      (!global || !other_load_status)) &&
11779                                       bnx2x_trylock_leader_lock(bp) &&
11780                                       !bnx2x_leader_reset(bp)) {
11781                                         netdev_info(bp->dev,
11782                                                     "Recovered in open\n");
11783                                         break;
11784                                 }
11785
11786                                 /* recovery has failed... */
11787                                 bnx2x_set_power_state(bp, PCI_D3hot);
11788                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11789
11790                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11791                                           "If you still see this message after a few retries then power cycle is required.\n");
11792
11793                                 return -EAGAIN;
11794                         } while (0);
11795                 }
11796         }
11797
11798         bp->recovery_state = BNX2X_RECOVERY_DONE;
11799         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11800         if (rc)
11801                 return rc;
11802         return 0;
11803 }
11804
11805 /* called with rtnl_lock */
11806 static int bnx2x_close(struct net_device *dev)
11807 {
11808         struct bnx2x *bp = netdev_priv(dev);
11809
11810         /* Unload the driver, release IRQs */
11811         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11812
11813         return 0;
11814 }
11815
11816 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11817                                       struct bnx2x_mcast_ramrod_params *p)
11818 {
11819         int mc_count = netdev_mc_count(bp->dev);
11820         struct bnx2x_mcast_list_elem *mc_mac =
11821                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11822         struct netdev_hw_addr *ha;
11823
11824         if (!mc_mac)
11825                 return -ENOMEM;
11826
11827         INIT_LIST_HEAD(&p->mcast_list);
11828
11829         netdev_for_each_mc_addr(ha, bp->dev) {
11830                 mc_mac->mac = bnx2x_mc_addr(ha);
11831                 list_add_tail(&mc_mac->link, &p->mcast_list);
11832                 mc_mac++;
11833         }
11834
11835         p->mcast_list_len = mc_count;
11836
11837         return 0;
11838 }
11839
11840 static void bnx2x_free_mcast_macs_list(
11841         struct bnx2x_mcast_ramrod_params *p)
11842 {
11843         struct bnx2x_mcast_list_elem *mc_mac =
11844                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11845                                  link);
11846
11847         WARN_ON(!mc_mac);
11848         kfree(mc_mac);
11849 }
11850
11851 /**
11852  * bnx2x_set_uc_list - configure a new unicast MACs list.
11853  *
11854  * @bp: driver handle
11855  *
11856  * We will use zero (0) as a MAC type for these MACs.
11857  */
11858 static int bnx2x_set_uc_list(struct bnx2x *bp)
11859 {
11860         int rc;
11861         struct net_device *dev = bp->dev;
11862         struct netdev_hw_addr *ha;
11863         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11864         unsigned long ramrod_flags = 0;
11865
11866         /* First schedule a cleanup up of old configuration */
11867         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11868         if (rc < 0) {
11869                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11870                 return rc;
11871         }
11872
11873         netdev_for_each_uc_addr(ha, dev) {
11874                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11875                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11876                 if (rc == -EEXIST) {
11877                         DP(BNX2X_MSG_SP,
11878                            "Failed to schedule ADD operations: %d\n", rc);
11879                         /* do not treat adding same MAC as error */
11880                         rc = 0;
11881
11882                 } else if (rc < 0) {
11883
11884                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11885                                   rc);
11886                         return rc;
11887                 }
11888         }
11889
11890         /* Execute the pending commands */
11891         __set_bit(RAMROD_CONT, &ramrod_flags);
11892         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11893                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11894 }
11895
11896 static int bnx2x_set_mc_list(struct bnx2x *bp)
11897 {
11898         struct net_device *dev = bp->dev;
11899         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11900         int rc = 0;
11901
11902         rparam.mcast_obj = &bp->mcast_obj;
11903
11904         /* first, clear all configured multicast MACs */
11905         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11906         if (rc < 0) {
11907                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11908                 return rc;
11909         }
11910
11911         /* then, configure a new MACs list */
11912         if (netdev_mc_count(dev)) {
11913                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11914                 if (rc) {
11915                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11916                                   rc);
11917                         return rc;
11918                 }
11919
11920                 /* Now add the new MACs */
11921                 rc = bnx2x_config_mcast(bp, &rparam,
11922                                         BNX2X_MCAST_CMD_ADD);
11923                 if (rc < 0)
11924                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11925                                   rc);
11926
11927                 bnx2x_free_mcast_macs_list(&rparam);
11928         }
11929
11930         return rc;
11931 }
11932
11933 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11934 void bnx2x_set_rx_mode(struct net_device *dev)
11935 {
11936         struct bnx2x *bp = netdev_priv(dev);
11937
11938         if (bp->state != BNX2X_STATE_OPEN) {
11939                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11940                 return;
11941         } else {
11942                 /* Schedule an SP task to handle rest of change */
11943                 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11944                 smp_mb__before_clear_bit();
11945                 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11946                 smp_mb__after_clear_bit();
11947                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11948         }
11949 }
11950
11951 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11952 {
11953         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11954
11955         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11956
11957         netif_addr_lock_bh(bp->dev);
11958
11959         if (bp->dev->flags & IFF_PROMISC) {
11960                 rx_mode = BNX2X_RX_MODE_PROMISC;
11961         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
11962                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11963                     CHIP_IS_E1(bp))) {
11964                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11965         } else {
11966                 if (IS_PF(bp)) {
11967                         /* some multicasts */
11968                         if (bnx2x_set_mc_list(bp) < 0)
11969                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11970
11971                         /* release bh lock, as bnx2x_set_uc_list might sleep */
11972                         netif_addr_unlock_bh(bp->dev);
11973                         if (bnx2x_set_uc_list(bp) < 0)
11974                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11975                         netif_addr_lock_bh(bp->dev);
11976                 } else {
11977                         /* configuring mcast to a vf involves sleeping (when we
11978                          * wait for the pf's response).
11979                          */
11980                         smp_mb__before_clear_bit();
11981                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11982                                 &bp->sp_rtnl_state);
11983                         smp_mb__after_clear_bit();
11984                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11985                 }
11986         }
11987
11988         bp->rx_mode = rx_mode;
11989         /* handle ISCSI SD mode */
11990         if (IS_MF_ISCSI_SD(bp))
11991                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11992
11993         /* Schedule the rx_mode command */
11994         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11995                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11996                 netif_addr_unlock_bh(bp->dev);
11997                 return;
11998         }
11999
12000         if (IS_PF(bp)) {
12001                 bnx2x_set_storm_rx_mode(bp);
12002                 netif_addr_unlock_bh(bp->dev);
12003         } else {
12004                 /* VF will need to request the PF to make this change, and so
12005                  * the VF needs to release the bottom-half lock prior to the
12006                  * request (as it will likely require sleep on the VF side)
12007                  */
12008                 netif_addr_unlock_bh(bp->dev);
12009                 bnx2x_vfpf_storm_rx_mode(bp);
12010         }
12011 }
12012
12013 /* called with rtnl_lock */
12014 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12015                            int devad, u16 addr)
12016 {
12017         struct bnx2x *bp = netdev_priv(netdev);
12018         u16 value;
12019         int rc;
12020
12021         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12022            prtad, devad, addr);
12023
12024         /* The HW expects different devad if CL22 is used */
12025         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12026
12027         bnx2x_acquire_phy_lock(bp);
12028         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12029         bnx2x_release_phy_lock(bp);
12030         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12031
12032         if (!rc)
12033                 rc = value;
12034         return rc;
12035 }
12036
12037 /* called with rtnl_lock */
12038 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12039                             u16 addr, u16 value)
12040 {
12041         struct bnx2x *bp = netdev_priv(netdev);
12042         int rc;
12043
12044         DP(NETIF_MSG_LINK,
12045            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12046            prtad, devad, addr, value);
12047
12048         /* The HW expects different devad if CL22 is used */
12049         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12050
12051         bnx2x_acquire_phy_lock(bp);
12052         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12053         bnx2x_release_phy_lock(bp);
12054         return rc;
12055 }
12056
12057 /* called with rtnl_lock */
12058 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12059 {
12060         struct bnx2x *bp = netdev_priv(dev);
12061         struct mii_ioctl_data *mdio = if_mii(ifr);
12062
12063         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12064            mdio->phy_id, mdio->reg_num, mdio->val_in);
12065
12066         if (!netif_running(dev))
12067                 return -EAGAIN;
12068
12069         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12070 }
12071
12072 #ifdef CONFIG_NET_POLL_CONTROLLER
12073 static void poll_bnx2x(struct net_device *dev)
12074 {
12075         struct bnx2x *bp = netdev_priv(dev);
12076         int i;
12077
12078         for_each_eth_queue(bp, i) {
12079                 struct bnx2x_fastpath *fp = &bp->fp[i];
12080                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12081         }
12082 }
12083 #endif
12084
12085 static int bnx2x_validate_addr(struct net_device *dev)
12086 {
12087         struct bnx2x *bp = netdev_priv(dev);
12088
12089         /* query the bulletin board for mac address configured by the PF */
12090         if (IS_VF(bp))
12091                 bnx2x_sample_bulletin(bp);
12092
12093         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12094                 BNX2X_ERR("Non-valid Ethernet address\n");
12095                 return -EADDRNOTAVAIL;
12096         }
12097         return 0;
12098 }
12099
12100 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12101                                   struct netdev_phys_port_id *ppid)
12102 {
12103         struct bnx2x *bp = netdev_priv(netdev);
12104
12105         if (!(bp->flags & HAS_PHYS_PORT_ID))
12106                 return -EOPNOTSUPP;
12107
12108         ppid->id_len = sizeof(bp->phys_port_id);
12109         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12110
12111         return 0;
12112 }
12113
12114 static const struct net_device_ops bnx2x_netdev_ops = {
12115         .ndo_open               = bnx2x_open,
12116         .ndo_stop               = bnx2x_close,
12117         .ndo_start_xmit         = bnx2x_start_xmit,
12118         .ndo_select_queue       = bnx2x_select_queue,
12119         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12120         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12121         .ndo_validate_addr      = bnx2x_validate_addr,
12122         .ndo_do_ioctl           = bnx2x_ioctl,
12123         .ndo_change_mtu         = bnx2x_change_mtu,
12124         .ndo_fix_features       = bnx2x_fix_features,
12125         .ndo_set_features       = bnx2x_set_features,
12126         .ndo_tx_timeout         = bnx2x_tx_timeout,
12127 #ifdef CONFIG_NET_POLL_CONTROLLER
12128         .ndo_poll_controller    = poll_bnx2x,
12129 #endif
12130         .ndo_setup_tc           = bnx2x_setup_tc,
12131 #ifdef CONFIG_BNX2X_SRIOV
12132         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12133         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12134         .ndo_get_vf_config      = bnx2x_get_vf_config,
12135 #endif
12136 #ifdef NETDEV_FCOE_WWNN
12137         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12138 #endif
12139
12140 #ifdef CONFIG_NET_RX_BUSY_POLL
12141         .ndo_busy_poll          = bnx2x_low_latency_recv,
12142 #endif
12143         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12144 };
12145
12146 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12147 {
12148         struct device *dev = &bp->pdev->dev;
12149
12150         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12151             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12152                 dev_err(dev, "System does not support DMA, aborting\n");
12153                 return -EIO;
12154         }
12155
12156         return 0;
12157 }
12158
12159 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12160                           struct net_device *dev, unsigned long board_type)
12161 {
12162         int rc;
12163         u32 pci_cfg_dword;
12164         bool chip_is_e1x = (board_type == BCM57710 ||
12165                             board_type == BCM57711 ||
12166                             board_type == BCM57711E);
12167
12168         SET_NETDEV_DEV(dev, &pdev->dev);
12169
12170         bp->dev = dev;
12171         bp->pdev = pdev;
12172
12173         rc = pci_enable_device(pdev);
12174         if (rc) {
12175                 dev_err(&bp->pdev->dev,
12176                         "Cannot enable PCI device, aborting\n");
12177                 goto err_out;
12178         }
12179
12180         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12181                 dev_err(&bp->pdev->dev,
12182                         "Cannot find PCI device base address, aborting\n");
12183                 rc = -ENODEV;
12184                 goto err_out_disable;
12185         }
12186
12187         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12188                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12189                 rc = -ENODEV;
12190                 goto err_out_disable;
12191         }
12192
12193         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12194         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12195             PCICFG_REVESION_ID_ERROR_VAL) {
12196                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12197                 rc = -ENODEV;
12198                 goto err_out_disable;
12199         }
12200
12201         if (atomic_read(&pdev->enable_cnt) == 1) {
12202                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12203                 if (rc) {
12204                         dev_err(&bp->pdev->dev,
12205                                 "Cannot obtain PCI resources, aborting\n");
12206                         goto err_out_disable;
12207                 }
12208
12209                 pci_set_master(pdev);
12210                 pci_save_state(pdev);
12211         }
12212
12213         if (IS_PF(bp)) {
12214                 if (!pdev->pm_cap) {
12215                         dev_err(&bp->pdev->dev,
12216                                 "Cannot find power management capability, aborting\n");
12217                         rc = -EIO;
12218                         goto err_out_release;
12219                 }
12220         }
12221
12222         if (!pci_is_pcie(pdev)) {
12223                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12224                 rc = -EIO;
12225                 goto err_out_release;
12226         }
12227
12228         rc = bnx2x_set_coherency_mask(bp);
12229         if (rc)
12230                 goto err_out_release;
12231
12232         dev->mem_start = pci_resource_start(pdev, 0);
12233         dev->base_addr = dev->mem_start;
12234         dev->mem_end = pci_resource_end(pdev, 0);
12235
12236         dev->irq = pdev->irq;
12237
12238         bp->regview = pci_ioremap_bar(pdev, 0);
12239         if (!bp->regview) {
12240                 dev_err(&bp->pdev->dev,
12241                         "Cannot map register space, aborting\n");
12242                 rc = -ENOMEM;
12243                 goto err_out_release;
12244         }
12245
12246         /* In E1/E1H use pci device function given by kernel.
12247          * In E2/E3 read physical function from ME register since these chips
12248          * support Physical Device Assignment where kernel BDF maybe arbitrary
12249          * (depending on hypervisor).
12250          */
12251         if (chip_is_e1x) {
12252                 bp->pf_num = PCI_FUNC(pdev->devfn);
12253         } else {
12254                 /* chip is E2/3*/
12255                 pci_read_config_dword(bp->pdev,
12256                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12257                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12258                                   ME_REG_ABS_PF_NUM_SHIFT);
12259         }
12260         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12261
12262         /* clean indirect addresses */
12263         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12264                                PCICFG_VENDOR_ID_OFFSET);
12265         /*
12266          * Clean the following indirect addresses for all functions since it
12267          * is not used by the driver.
12268          */
12269         if (IS_PF(bp)) {
12270                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12271                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12272                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12273                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12274
12275                 if (chip_is_e1x) {
12276                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12277                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12278                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12279                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12280                 }
12281
12282                 /* Enable internal target-read (in case we are probed after PF
12283                  * FLR). Must be done prior to any BAR read access. Only for
12284                  * 57712 and up
12285                  */
12286                 if (!chip_is_e1x)
12287                         REG_WR(bp,
12288                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12289         }
12290
12291         dev->watchdog_timeo = TX_TIMEOUT;
12292
12293         dev->netdev_ops = &bnx2x_netdev_ops;
12294         bnx2x_set_ethtool_ops(bp, dev);
12295
12296         dev->priv_flags |= IFF_UNICAST_FLT;
12297
12298         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12299                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12300                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12301                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12302         if (!CHIP_IS_E1x(bp)) {
12303                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12304                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12305                 dev->hw_enc_features =
12306                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12307                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12308                         NETIF_F_GSO_IPIP |
12309                         NETIF_F_GSO_SIT |
12310                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12311         }
12312
12313         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12314                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12315
12316         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12317         dev->features |= NETIF_F_HIGHDMA;
12318
12319         /* Add Loopback capability to the device */
12320         dev->hw_features |= NETIF_F_LOOPBACK;
12321
12322 #ifdef BCM_DCBNL
12323         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12324 #endif
12325
12326         /* get_port_hwinfo() will set prtad and mmds properly */
12327         bp->mdio.prtad = MDIO_PRTAD_NONE;
12328         bp->mdio.mmds = 0;
12329         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12330         bp->mdio.dev = dev;
12331         bp->mdio.mdio_read = bnx2x_mdio_read;
12332         bp->mdio.mdio_write = bnx2x_mdio_write;
12333
12334         return 0;
12335
12336 err_out_release:
12337         if (atomic_read(&pdev->enable_cnt) == 1)
12338                 pci_release_regions(pdev);
12339
12340 err_out_disable:
12341         pci_disable_device(pdev);
12342
12343 err_out:
12344         return rc;
12345 }
12346
12347 static int bnx2x_check_firmware(struct bnx2x *bp)
12348 {
12349         const struct firmware *firmware = bp->firmware;
12350         struct bnx2x_fw_file_hdr *fw_hdr;
12351         struct bnx2x_fw_file_section *sections;
12352         u32 offset, len, num_ops;
12353         __be16 *ops_offsets;
12354         int i;
12355         const u8 *fw_ver;
12356
12357         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12358                 BNX2X_ERR("Wrong FW size\n");
12359                 return -EINVAL;
12360         }
12361
12362         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12363         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12364
12365         /* Make sure none of the offsets and sizes make us read beyond
12366          * the end of the firmware data */
12367         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12368                 offset = be32_to_cpu(sections[i].offset);
12369                 len = be32_to_cpu(sections[i].len);
12370                 if (offset + len > firmware->size) {
12371                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12372                         return -EINVAL;
12373                 }
12374         }
12375
12376         /* Likewise for the init_ops offsets */
12377         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12378         ops_offsets = (__force __be16 *)(firmware->data + offset);
12379         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12380
12381         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12382                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12383                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12384                         return -EINVAL;
12385                 }
12386         }
12387
12388         /* Check FW version */
12389         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12390         fw_ver = firmware->data + offset;
12391         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12392             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12393             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12394             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12395                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12396                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12397                        BCM_5710_FW_MAJOR_VERSION,
12398                        BCM_5710_FW_MINOR_VERSION,
12399                        BCM_5710_FW_REVISION_VERSION,
12400                        BCM_5710_FW_ENGINEERING_VERSION);
12401                 return -EINVAL;
12402         }
12403
12404         return 0;
12405 }
12406
12407 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12408 {
12409         const __be32 *source = (const __be32 *)_source;
12410         u32 *target = (u32 *)_target;
12411         u32 i;
12412
12413         for (i = 0; i < n/4; i++)
12414                 target[i] = be32_to_cpu(source[i]);
12415 }
12416
12417 /*
12418    Ops array is stored in the following format:
12419    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12420  */
12421 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12422 {
12423         const __be32 *source = (const __be32 *)_source;
12424         struct raw_op *target = (struct raw_op *)_target;
12425         u32 i, j, tmp;
12426
12427         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12428                 tmp = be32_to_cpu(source[j]);
12429                 target[i].op = (tmp >> 24) & 0xff;
12430                 target[i].offset = tmp & 0xffffff;
12431                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12432         }
12433 }
12434
12435 /* IRO array is stored in the following format:
12436  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12437  */
12438 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12439 {
12440         const __be32 *source = (const __be32 *)_source;
12441         struct iro *target = (struct iro *)_target;
12442         u32 i, j, tmp;
12443
12444         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12445                 target[i].base = be32_to_cpu(source[j]);
12446                 j++;
12447                 tmp = be32_to_cpu(source[j]);
12448                 target[i].m1 = (tmp >> 16) & 0xffff;
12449                 target[i].m2 = tmp & 0xffff;
12450                 j++;
12451                 tmp = be32_to_cpu(source[j]);
12452                 target[i].m3 = (tmp >> 16) & 0xffff;
12453                 target[i].size = tmp & 0xffff;
12454                 j++;
12455         }
12456 }
12457
12458 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12459 {
12460         const __be16 *source = (const __be16 *)_source;
12461         u16 *target = (u16 *)_target;
12462         u32 i;
12463
12464         for (i = 0; i < n/2; i++)
12465                 target[i] = be16_to_cpu(source[i]);
12466 }
12467
12468 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12469 do {                                                                    \
12470         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12471         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12472         if (!bp->arr)                                                   \
12473                 goto lbl;                                               \
12474         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12475              (u8 *)bp->arr, len);                                       \
12476 } while (0)
12477
12478 static int bnx2x_init_firmware(struct bnx2x *bp)
12479 {
12480         const char *fw_file_name;
12481         struct bnx2x_fw_file_hdr *fw_hdr;
12482         int rc;
12483
12484         if (bp->firmware)
12485                 return 0;
12486
12487         if (CHIP_IS_E1(bp))
12488                 fw_file_name = FW_FILE_NAME_E1;
12489         else if (CHIP_IS_E1H(bp))
12490                 fw_file_name = FW_FILE_NAME_E1H;
12491         else if (!CHIP_IS_E1x(bp))
12492                 fw_file_name = FW_FILE_NAME_E2;
12493         else {
12494                 BNX2X_ERR("Unsupported chip revision\n");
12495                 return -EINVAL;
12496         }
12497         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12498
12499         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12500         if (rc) {
12501                 BNX2X_ERR("Can't load firmware file %s\n",
12502                           fw_file_name);
12503                 goto request_firmware_exit;
12504         }
12505
12506         rc = bnx2x_check_firmware(bp);
12507         if (rc) {
12508                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12509                 goto request_firmware_exit;
12510         }
12511
12512         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12513
12514         /* Initialize the pointers to the init arrays */
12515         /* Blob */
12516         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12517
12518         /* Opcodes */
12519         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12520
12521         /* Offsets */
12522         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12523                             be16_to_cpu_n);
12524
12525         /* STORMs firmware */
12526         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12527                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12528         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12529                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12530         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12531                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12532         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12533                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12534         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12535                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12536         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12537                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12538         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12539                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12540         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12541                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12542         /* IRO */
12543         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12544
12545         return 0;
12546
12547 iro_alloc_err:
12548         kfree(bp->init_ops_offsets);
12549 init_offsets_alloc_err:
12550         kfree(bp->init_ops);
12551 init_ops_alloc_err:
12552         kfree(bp->init_data);
12553 request_firmware_exit:
12554         release_firmware(bp->firmware);
12555         bp->firmware = NULL;
12556
12557         return rc;
12558 }
12559
12560 static void bnx2x_release_firmware(struct bnx2x *bp)
12561 {
12562         kfree(bp->init_ops_offsets);
12563         kfree(bp->init_ops);
12564         kfree(bp->init_data);
12565         release_firmware(bp->firmware);
12566         bp->firmware = NULL;
12567 }
12568
12569 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12570         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12571         .init_hw_cmn      = bnx2x_init_hw_common,
12572         .init_hw_port     = bnx2x_init_hw_port,
12573         .init_hw_func     = bnx2x_init_hw_func,
12574
12575         .reset_hw_cmn     = bnx2x_reset_common,
12576         .reset_hw_port    = bnx2x_reset_port,
12577         .reset_hw_func    = bnx2x_reset_func,
12578
12579         .gunzip_init      = bnx2x_gunzip_init,
12580         .gunzip_end       = bnx2x_gunzip_end,
12581
12582         .init_fw          = bnx2x_init_firmware,
12583         .release_fw       = bnx2x_release_firmware,
12584 };
12585
12586 void bnx2x__init_func_obj(struct bnx2x *bp)
12587 {
12588         /* Prepare DMAE related driver resources */
12589         bnx2x_setup_dmae(bp);
12590
12591         bnx2x_init_func_obj(bp, &bp->func_obj,
12592                             bnx2x_sp(bp, func_rdata),
12593                             bnx2x_sp_mapping(bp, func_rdata),
12594                             bnx2x_sp(bp, func_afex_rdata),
12595                             bnx2x_sp_mapping(bp, func_afex_rdata),
12596                             &bnx2x_func_sp_drv);
12597 }
12598
12599 /* must be called after sriov-enable */
12600 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12601 {
12602         int cid_count = BNX2X_L2_MAX_CID(bp);
12603
12604         if (IS_SRIOV(bp))
12605                 cid_count += BNX2X_VF_CIDS;
12606
12607         if (CNIC_SUPPORT(bp))
12608                 cid_count += CNIC_CID_MAX;
12609
12610         return roundup(cid_count, QM_CID_ROUND);
12611 }
12612
12613 /**
12614  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12615  *
12616  * @dev:        pci device
12617  *
12618  */
12619 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12620 {
12621         int index;
12622         u16 control = 0;
12623
12624         /*
12625          * If MSI-X is not supported - return number of SBs needed to support
12626          * one fast path queue: one FP queue + SB for CNIC
12627          */
12628         if (!pdev->msix_cap) {
12629                 dev_info(&pdev->dev, "no msix capability found\n");
12630                 return 1 + cnic_cnt;
12631         }
12632         dev_info(&pdev->dev, "msix capability found\n");
12633
12634         /*
12635          * The value in the PCI configuration space is the index of the last
12636          * entry, namely one less than the actual size of the table, which is
12637          * exactly what we want to return from this function: number of all SBs
12638          * without the default SB.
12639          * For VFs there is no default SB, then we return (index+1).
12640          */
12641         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12642
12643         index = control & PCI_MSIX_FLAGS_QSIZE;
12644
12645         return index;
12646 }
12647
12648 static int set_max_cos_est(int chip_id)
12649 {
12650         switch (chip_id) {
12651         case BCM57710:
12652         case BCM57711:
12653         case BCM57711E:
12654                 return BNX2X_MULTI_TX_COS_E1X;
12655         case BCM57712:
12656         case BCM57712_MF:
12657                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12658         case BCM57800:
12659         case BCM57800_MF:
12660         case BCM57810:
12661         case BCM57810_MF:
12662         case BCM57840_4_10:
12663         case BCM57840_2_20:
12664         case BCM57840_O:
12665         case BCM57840_MFO:
12666         case BCM57840_MF:
12667         case BCM57811:
12668         case BCM57811_MF:
12669                 return BNX2X_MULTI_TX_COS_E3B0;
12670         case BCM57712_VF:
12671         case BCM57800_VF:
12672         case BCM57810_VF:
12673         case BCM57840_VF:
12674         case BCM57811_VF:
12675                 return 1;
12676         default:
12677                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12678                 return -ENODEV;
12679         }
12680 }
12681
12682 static int set_is_vf(int chip_id)
12683 {
12684         switch (chip_id) {
12685         case BCM57712_VF:
12686         case BCM57800_VF:
12687         case BCM57810_VF:
12688         case BCM57840_VF:
12689         case BCM57811_VF:
12690                 return true;
12691         default:
12692                 return false;
12693         }
12694 }
12695
12696 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12697
12698 static int bnx2x_init_one(struct pci_dev *pdev,
12699                                     const struct pci_device_id *ent)
12700 {
12701         struct net_device *dev = NULL;
12702         struct bnx2x *bp;
12703         enum pcie_link_width pcie_width;
12704         enum pci_bus_speed pcie_speed;
12705         int rc, max_non_def_sbs;
12706         int rx_count, tx_count, rss_count, doorbell_size;
12707         int max_cos_est;
12708         bool is_vf;
12709         int cnic_cnt;
12710
12711         /* An estimated maximum supported CoS number according to the chip
12712          * version.
12713          * We will try to roughly estimate the maximum number of CoSes this chip
12714          * may support in order to minimize the memory allocated for Tx
12715          * netdev_queue's. This number will be accurately calculated during the
12716          * initialization of bp->max_cos based on the chip versions AND chip
12717          * revision in the bnx2x_init_bp().
12718          */
12719         max_cos_est = set_max_cos_est(ent->driver_data);
12720         if (max_cos_est < 0)
12721                 return max_cos_est;
12722         is_vf = set_is_vf(ent->driver_data);
12723         cnic_cnt = is_vf ? 0 : 1;
12724
12725         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12726
12727         /* add another SB for VF as it has no default SB */
12728         max_non_def_sbs += is_vf ? 1 : 0;
12729
12730         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12731         rss_count = max_non_def_sbs - cnic_cnt;
12732
12733         if (rss_count < 1)
12734                 return -EINVAL;
12735
12736         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12737         rx_count = rss_count + cnic_cnt;
12738
12739         /* Maximum number of netdev Tx queues:
12740          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12741          */
12742         tx_count = rss_count * max_cos_est + cnic_cnt;
12743
12744         /* dev zeroed in init_etherdev */
12745         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12746         if (!dev)
12747                 return -ENOMEM;
12748
12749         bp = netdev_priv(dev);
12750
12751         bp->flags = 0;
12752         if (is_vf)
12753                 bp->flags |= IS_VF_FLAG;
12754
12755         bp->igu_sb_cnt = max_non_def_sbs;
12756         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12757         bp->msg_enable = debug;
12758         bp->cnic_support = cnic_cnt;
12759         bp->cnic_probe = bnx2x_cnic_probe;
12760
12761         pci_set_drvdata(pdev, dev);
12762
12763         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12764         if (rc < 0) {
12765                 free_netdev(dev);
12766                 return rc;
12767         }
12768
12769         BNX2X_DEV_INFO("This is a %s function\n",
12770                        IS_PF(bp) ? "physical" : "virtual");
12771         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12772         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12773         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12774                        tx_count, rx_count);
12775
12776         rc = bnx2x_init_bp(bp);
12777         if (rc)
12778                 goto init_one_exit;
12779
12780         /* Map doorbells here as we need the real value of bp->max_cos which
12781          * is initialized in bnx2x_init_bp() to determine the number of
12782          * l2 connections.
12783          */
12784         if (IS_VF(bp)) {
12785                 bp->doorbells = bnx2x_vf_doorbells(bp);
12786                 rc = bnx2x_vf_pci_alloc(bp);
12787                 if (rc)
12788                         goto init_one_exit;
12789         } else {
12790                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12791                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12792                         dev_err(&bp->pdev->dev,
12793                                 "Cannot map doorbells, bar size too small, aborting\n");
12794                         rc = -ENOMEM;
12795                         goto init_one_exit;
12796                 }
12797                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12798                                                 doorbell_size);
12799         }
12800         if (!bp->doorbells) {
12801                 dev_err(&bp->pdev->dev,
12802                         "Cannot map doorbell space, aborting\n");
12803                 rc = -ENOMEM;
12804                 goto init_one_exit;
12805         }
12806
12807         if (IS_VF(bp)) {
12808                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12809                 if (rc)
12810                         goto init_one_exit;
12811         }
12812
12813         /* Enable SRIOV if capability found in configuration space */
12814         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12815         if (rc)
12816                 goto init_one_exit;
12817
12818         /* calc qm_cid_count */
12819         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12820         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12821
12822         /* disable FCOE L2 queue for E1x*/
12823         if (CHIP_IS_E1x(bp))
12824                 bp->flags |= NO_FCOE_FLAG;
12825
12826         /* Set bp->num_queues for MSI-X mode*/
12827         bnx2x_set_num_queues(bp);
12828
12829         /* Configure interrupt mode: try to enable MSI-X/MSI if
12830          * needed.
12831          */
12832         rc = bnx2x_set_int_mode(bp);
12833         if (rc) {
12834                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12835                 goto init_one_exit;
12836         }
12837         BNX2X_DEV_INFO("set interrupts successfully\n");
12838
12839         /* register the net device */
12840         rc = register_netdev(dev);
12841         if (rc) {
12842                 dev_err(&pdev->dev, "Cannot register net device\n");
12843                 goto init_one_exit;
12844         }
12845         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12846
12847         if (!NO_FCOE(bp)) {
12848                 /* Add storage MAC address */
12849                 rtnl_lock();
12850                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12851                 rtnl_unlock();
12852         }
12853         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12854             pcie_speed == PCI_SPEED_UNKNOWN ||
12855             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12856                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12857         else
12858                 BNX2X_DEV_INFO(
12859                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12860                        board_info[ent->driver_data].name,
12861                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12862                        pcie_width,
12863                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
12864                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
12865                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
12866                        "Unknown",
12867                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
12868
12869         return 0;
12870
12871 init_one_exit:
12872         if (bp->regview)
12873                 iounmap(bp->regview);
12874
12875         if (IS_PF(bp) && bp->doorbells)
12876                 iounmap(bp->doorbells);
12877
12878         free_netdev(dev);
12879
12880         if (atomic_read(&pdev->enable_cnt) == 1)
12881                 pci_release_regions(pdev);
12882
12883         pci_disable_device(pdev);
12884
12885         return rc;
12886 }
12887
12888 static void __bnx2x_remove(struct pci_dev *pdev,
12889                            struct net_device *dev,
12890                            struct bnx2x *bp,
12891                            bool remove_netdev)
12892 {
12893         /* Delete storage MAC address */
12894         if (!NO_FCOE(bp)) {
12895                 rtnl_lock();
12896                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12897                 rtnl_unlock();
12898         }
12899
12900 #ifdef BCM_DCBNL
12901         /* Delete app tlvs from dcbnl */
12902         bnx2x_dcbnl_update_applist(bp, true);
12903 #endif
12904
12905         if (IS_PF(bp) &&
12906             !BP_NOMCP(bp) &&
12907             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12908                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12909
12910         /* Close the interface - either directly or implicitly */
12911         if (remove_netdev) {
12912                 unregister_netdev(dev);
12913         } else {
12914                 rtnl_lock();
12915                 dev_close(dev);
12916                 rtnl_unlock();
12917         }
12918
12919         bnx2x_iov_remove_one(bp);
12920
12921         /* Power on: we can't let PCI layer write to us while we are in D3 */
12922         if (IS_PF(bp))
12923                 bnx2x_set_power_state(bp, PCI_D0);
12924
12925         /* Disable MSI/MSI-X */
12926         bnx2x_disable_msi(bp);
12927
12928         /* Power off */
12929         if (IS_PF(bp))
12930                 bnx2x_set_power_state(bp, PCI_D3hot);
12931
12932         /* Make sure RESET task is not scheduled before continuing */
12933         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12934
12935         /* send message via vfpf channel to release the resources of this vf */
12936         if (IS_VF(bp))
12937                 bnx2x_vfpf_release(bp);
12938
12939         /* Assumes no further PCIe PM changes will occur */
12940         if (system_state == SYSTEM_POWER_OFF) {
12941                 pci_wake_from_d3(pdev, bp->wol);
12942                 pci_set_power_state(pdev, PCI_D3hot);
12943         }
12944
12945         if (bp->regview)
12946                 iounmap(bp->regview);
12947
12948         /* for vf doorbells are part of the regview and were unmapped along with
12949          * it. FW is only loaded by PF.
12950          */
12951         if (IS_PF(bp)) {
12952                 if (bp->doorbells)
12953                         iounmap(bp->doorbells);
12954
12955                 bnx2x_release_firmware(bp);
12956         }
12957         bnx2x_free_mem_bp(bp);
12958
12959         if (remove_netdev)
12960                 free_netdev(dev);
12961
12962         if (atomic_read(&pdev->enable_cnt) == 1)
12963                 pci_release_regions(pdev);
12964
12965         pci_disable_device(pdev);
12966 }
12967
12968 static void bnx2x_remove_one(struct pci_dev *pdev)
12969 {
12970         struct net_device *dev = pci_get_drvdata(pdev);
12971         struct bnx2x *bp;
12972
12973         if (!dev) {
12974                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12975                 return;
12976         }
12977         bp = netdev_priv(dev);
12978
12979         __bnx2x_remove(pdev, dev, bp, true);
12980 }
12981
12982 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12983 {
12984         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12985
12986         bp->rx_mode = BNX2X_RX_MODE_NONE;
12987
12988         if (CNIC_LOADED(bp))
12989                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12990
12991         /* Stop Tx */
12992         bnx2x_tx_disable(bp);
12993         /* Delete all NAPI objects */
12994         bnx2x_del_all_napi(bp);
12995         if (CNIC_LOADED(bp))
12996                 bnx2x_del_all_napi_cnic(bp);
12997         netdev_reset_tc(bp->dev);
12998
12999         del_timer_sync(&bp->timer);
13000         cancel_delayed_work(&bp->sp_task);
13001         cancel_delayed_work(&bp->period_task);
13002
13003         spin_lock_bh(&bp->stats_lock);
13004         bp->stats_state = STATS_STATE_DISABLED;
13005         spin_unlock_bh(&bp->stats_lock);
13006
13007         bnx2x_save_statistics(bp);
13008
13009         netif_carrier_off(bp->dev);
13010
13011         return 0;
13012 }
13013
13014 /**
13015  * bnx2x_io_error_detected - called when PCI error is detected
13016  * @pdev: Pointer to PCI device
13017  * @state: The current pci connection state
13018  *
13019  * This function is called after a PCI bus error affecting
13020  * this device has been detected.
13021  */
13022 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13023                                                 pci_channel_state_t state)
13024 {
13025         struct net_device *dev = pci_get_drvdata(pdev);
13026         struct bnx2x *bp = netdev_priv(dev);
13027
13028         rtnl_lock();
13029
13030         BNX2X_ERR("IO error detected\n");
13031
13032         netif_device_detach(dev);
13033
13034         if (state == pci_channel_io_perm_failure) {
13035                 rtnl_unlock();
13036                 return PCI_ERS_RESULT_DISCONNECT;
13037         }
13038
13039         if (netif_running(dev))
13040                 bnx2x_eeh_nic_unload(bp);
13041
13042         bnx2x_prev_path_mark_eeh(bp);
13043
13044         pci_disable_device(pdev);
13045
13046         rtnl_unlock();
13047
13048         /* Request a slot reset */
13049         return PCI_ERS_RESULT_NEED_RESET;
13050 }
13051
13052 /**
13053  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13054  * @pdev: Pointer to PCI device
13055  *
13056  * Restart the card from scratch, as if from a cold-boot.
13057  */
13058 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13059 {
13060         struct net_device *dev = pci_get_drvdata(pdev);
13061         struct bnx2x *bp = netdev_priv(dev);
13062         int i;
13063
13064         rtnl_lock();
13065         BNX2X_ERR("IO slot reset initializing...\n");
13066         if (pci_enable_device(pdev)) {
13067                 dev_err(&pdev->dev,
13068                         "Cannot re-enable PCI device after reset\n");
13069                 rtnl_unlock();
13070                 return PCI_ERS_RESULT_DISCONNECT;
13071         }
13072
13073         pci_set_master(pdev);
13074         pci_restore_state(pdev);
13075         pci_save_state(pdev);
13076
13077         if (netif_running(dev))
13078                 bnx2x_set_power_state(bp, PCI_D0);
13079
13080         if (netif_running(dev)) {
13081                 BNX2X_ERR("IO slot reset --> driver unload\n");
13082
13083                 /* MCP should have been reset; Need to wait for validity */
13084                 bnx2x_init_shmem(bp);
13085
13086                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13087                         u32 v;
13088
13089                         v = SHMEM2_RD(bp,
13090                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13091                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13092                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13093                 }
13094                 bnx2x_drain_tx_queues(bp);
13095                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13096                 bnx2x_netif_stop(bp, 1);
13097                 bnx2x_free_irq(bp);
13098
13099                 /* Report UNLOAD_DONE to MCP */
13100                 bnx2x_send_unload_done(bp, true);
13101
13102                 bp->sp_state = 0;
13103                 bp->port.pmf = 0;
13104
13105                 bnx2x_prev_unload(bp);
13106
13107                 /* We should have reseted the engine, so It's fair to
13108                  * assume the FW will no longer write to the bnx2x driver.
13109                  */
13110                 bnx2x_squeeze_objects(bp);
13111                 bnx2x_free_skbs(bp);
13112                 for_each_rx_queue(bp, i)
13113                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13114                 bnx2x_free_fp_mem(bp);
13115                 bnx2x_free_mem(bp);
13116
13117                 bp->state = BNX2X_STATE_CLOSED;
13118         }
13119
13120         rtnl_unlock();
13121
13122         return PCI_ERS_RESULT_RECOVERED;
13123 }
13124
13125 /**
13126  * bnx2x_io_resume - called when traffic can start flowing again
13127  * @pdev: Pointer to PCI device
13128  *
13129  * This callback is called when the error recovery driver tells us that
13130  * its OK to resume normal operation.
13131  */
13132 static void bnx2x_io_resume(struct pci_dev *pdev)
13133 {
13134         struct net_device *dev = pci_get_drvdata(pdev);
13135         struct bnx2x *bp = netdev_priv(dev);
13136
13137         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13138                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13139                 return;
13140         }
13141
13142         rtnl_lock();
13143
13144         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13145                                                         DRV_MSG_SEQ_NUMBER_MASK;
13146
13147         if (netif_running(dev))
13148                 bnx2x_nic_load(bp, LOAD_NORMAL);
13149
13150         netif_device_attach(dev);
13151
13152         rtnl_unlock();
13153 }
13154
13155 static const struct pci_error_handlers bnx2x_err_handler = {
13156         .error_detected = bnx2x_io_error_detected,
13157         .slot_reset     = bnx2x_io_slot_reset,
13158         .resume         = bnx2x_io_resume,
13159 };
13160
13161 static void bnx2x_shutdown(struct pci_dev *pdev)
13162 {
13163         struct net_device *dev = pci_get_drvdata(pdev);
13164         struct bnx2x *bp;
13165
13166         if (!dev)
13167                 return;
13168
13169         bp = netdev_priv(dev);
13170         if (!bp)
13171                 return;
13172
13173         rtnl_lock();
13174         netif_device_detach(dev);
13175         rtnl_unlock();
13176
13177         /* Don't remove the netdevice, as there are scenarios which will cause
13178          * the kernel to hang, e.g., when trying to remove bnx2i while the
13179          * rootfs is mounted from SAN.
13180          */
13181         __bnx2x_remove(pdev, dev, bp, false);
13182 }
13183
13184 static struct pci_driver bnx2x_pci_driver = {
13185         .name        = DRV_MODULE_NAME,
13186         .id_table    = bnx2x_pci_tbl,
13187         .probe       = bnx2x_init_one,
13188         .remove      = bnx2x_remove_one,
13189         .suspend     = bnx2x_suspend,
13190         .resume      = bnx2x_resume,
13191         .err_handler = &bnx2x_err_handler,
13192 #ifdef CONFIG_BNX2X_SRIOV
13193         .sriov_configure = bnx2x_sriov_configure,
13194 #endif
13195         .shutdown    = bnx2x_shutdown,
13196 };
13197
13198 static int __init bnx2x_init(void)
13199 {
13200         int ret;
13201
13202         pr_info("%s", version);
13203
13204         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13205         if (bnx2x_wq == NULL) {
13206                 pr_err("Cannot create workqueue\n");
13207                 return -ENOMEM;
13208         }
13209
13210         ret = pci_register_driver(&bnx2x_pci_driver);
13211         if (ret) {
13212                 pr_err("Cannot register driver\n");
13213                 destroy_workqueue(bnx2x_wq);
13214         }
13215         return ret;
13216 }
13217
13218 static void __exit bnx2x_cleanup(void)
13219 {
13220         struct list_head *pos, *q;
13221
13222         pci_unregister_driver(&bnx2x_pci_driver);
13223
13224         destroy_workqueue(bnx2x_wq);
13225
13226         /* Free globally allocated resources */
13227         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13228                 struct bnx2x_prev_path_list *tmp =
13229                         list_entry(pos, struct bnx2x_prev_path_list, list);
13230                 list_del(pos);
13231                 kfree(tmp);
13232         }
13233 }
13234
13235 void bnx2x_notify_link_changed(struct bnx2x *bp)
13236 {
13237         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13238 }
13239
13240 module_init(bnx2x_init);
13241 module_exit(bnx2x_cleanup);
13242
13243 /**
13244  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13245  *
13246  * @bp:         driver handle
13247  * @set:        set or clear the CAM entry
13248  *
13249  * This function will wait until the ramrod completion returns.
13250  * Return 0 if success, -ENODEV if ramrod doesn't return.
13251  */
13252 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13253 {
13254         unsigned long ramrod_flags = 0;
13255
13256         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13257         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13258                                  &bp->iscsi_l2_mac_obj, true,
13259                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13260 }
13261
13262 /* count denotes the number of new completions we have seen */
13263 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13264 {
13265         struct eth_spe *spe;
13266         int cxt_index, cxt_offset;
13267
13268 #ifdef BNX2X_STOP_ON_ERROR
13269         if (unlikely(bp->panic))
13270                 return;
13271 #endif
13272
13273         spin_lock_bh(&bp->spq_lock);
13274         BUG_ON(bp->cnic_spq_pending < count);
13275         bp->cnic_spq_pending -= count;
13276
13277         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13278                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13279                                 & SPE_HDR_CONN_TYPE) >>
13280                                 SPE_HDR_CONN_TYPE_SHIFT;
13281                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13282                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13283
13284                 /* Set validation for iSCSI L2 client before sending SETUP
13285                  *  ramrod
13286                  */
13287                 if (type == ETH_CONNECTION_TYPE) {
13288                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13289                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13290                                         ILT_PAGE_CIDS;
13291                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13292                                         (cxt_index * ILT_PAGE_CIDS);
13293                                 bnx2x_set_ctx_validation(bp,
13294                                         &bp->context[cxt_index].
13295                                                          vcxt[cxt_offset].eth,
13296                                         BNX2X_ISCSI_ETH_CID(bp));
13297                         }
13298                 }
13299
13300                 /*
13301                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13302                  * and in the air. We also check that number of outstanding
13303                  * COMMON ramrods is not more than the EQ and SPQ can
13304                  * accommodate.
13305                  */
13306                 if (type == ETH_CONNECTION_TYPE) {
13307                         if (!atomic_read(&bp->cq_spq_left))
13308                                 break;
13309                         else
13310                                 atomic_dec(&bp->cq_spq_left);
13311                 } else if (type == NONE_CONNECTION_TYPE) {
13312                         if (!atomic_read(&bp->eq_spq_left))
13313                                 break;
13314                         else
13315                                 atomic_dec(&bp->eq_spq_left);
13316                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13317                            (type == FCOE_CONNECTION_TYPE)) {
13318                         if (bp->cnic_spq_pending >=
13319                             bp->cnic_eth_dev.max_kwqe_pending)
13320                                 break;
13321                         else
13322                                 bp->cnic_spq_pending++;
13323                 } else {
13324                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13325                         bnx2x_panic();
13326                         break;
13327                 }
13328
13329                 spe = bnx2x_sp_get_next(bp);
13330                 *spe = *bp->cnic_kwq_cons;
13331
13332                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13333                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13334
13335                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13336                         bp->cnic_kwq_cons = bp->cnic_kwq;
13337                 else
13338                         bp->cnic_kwq_cons++;
13339         }
13340         bnx2x_sp_prod_update(bp);
13341         spin_unlock_bh(&bp->spq_lock);
13342 }
13343
13344 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13345                                struct kwqe_16 *kwqes[], u32 count)
13346 {
13347         struct bnx2x *bp = netdev_priv(dev);
13348         int i;
13349
13350 #ifdef BNX2X_STOP_ON_ERROR
13351         if (unlikely(bp->panic)) {
13352                 BNX2X_ERR("Can't post to SP queue while panic\n");
13353                 return -EIO;
13354         }
13355 #endif
13356
13357         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13358             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13359                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13360                 return -EAGAIN;
13361         }
13362
13363         spin_lock_bh(&bp->spq_lock);
13364
13365         for (i = 0; i < count; i++) {
13366                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13367
13368                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13369                         break;
13370
13371                 *bp->cnic_kwq_prod = *spe;
13372
13373                 bp->cnic_kwq_pending++;
13374
13375                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13376                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13377                    spe->data.update_data_addr.hi,
13378                    spe->data.update_data_addr.lo,
13379                    bp->cnic_kwq_pending);
13380
13381                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13382                         bp->cnic_kwq_prod = bp->cnic_kwq;
13383                 else
13384                         bp->cnic_kwq_prod++;
13385         }
13386
13387         spin_unlock_bh(&bp->spq_lock);
13388
13389         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13390                 bnx2x_cnic_sp_post(bp, 0);
13391
13392         return i;
13393 }
13394
13395 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13396 {
13397         struct cnic_ops *c_ops;
13398         int rc = 0;
13399
13400         mutex_lock(&bp->cnic_mutex);
13401         c_ops = rcu_dereference_protected(bp->cnic_ops,
13402                                           lockdep_is_held(&bp->cnic_mutex));
13403         if (c_ops)
13404                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13405         mutex_unlock(&bp->cnic_mutex);
13406
13407         return rc;
13408 }
13409
13410 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13411 {
13412         struct cnic_ops *c_ops;
13413         int rc = 0;
13414
13415         rcu_read_lock();
13416         c_ops = rcu_dereference(bp->cnic_ops);
13417         if (c_ops)
13418                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13419         rcu_read_unlock();
13420
13421         return rc;
13422 }
13423
13424 /*
13425  * for commands that have no data
13426  */
13427 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13428 {
13429         struct cnic_ctl_info ctl = {0};
13430
13431         ctl.cmd = cmd;
13432
13433         return bnx2x_cnic_ctl_send(bp, &ctl);
13434 }
13435
13436 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13437 {
13438         struct cnic_ctl_info ctl = {0};
13439
13440         /* first we tell CNIC and only then we count this as a completion */
13441         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13442         ctl.data.comp.cid = cid;
13443         ctl.data.comp.error = err;
13444
13445         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13446         bnx2x_cnic_sp_post(bp, 0);
13447 }
13448
13449 /* Called with netif_addr_lock_bh() taken.
13450  * Sets an rx_mode config for an iSCSI ETH client.
13451  * Doesn't block.
13452  * Completion should be checked outside.
13453  */
13454 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13455 {
13456         unsigned long accept_flags = 0, ramrod_flags = 0;
13457         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13458         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13459
13460         if (start) {
13461                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13462                  * because it's the only way for UIO Queue to accept
13463                  * multicasts (in non-promiscuous mode only one Queue per
13464                  * function will receive multicast packets (leading in our
13465                  * case).
13466                  */
13467                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13468                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13469                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13470                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13471
13472                 /* Clear STOP_PENDING bit if START is requested */
13473                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13474
13475                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13476         } else
13477                 /* Clear START_PENDING bit if STOP is requested */
13478                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13479
13480         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13481                 set_bit(sched_state, &bp->sp_state);
13482         else {
13483                 __set_bit(RAMROD_RX, &ramrod_flags);
13484                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13485                                     ramrod_flags);
13486         }
13487 }
13488
13489 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13490 {
13491         struct bnx2x *bp = netdev_priv(dev);
13492         int rc = 0;
13493
13494         switch (ctl->cmd) {
13495         case DRV_CTL_CTXTBL_WR_CMD: {
13496                 u32 index = ctl->data.io.offset;
13497                 dma_addr_t addr = ctl->data.io.dma_addr;
13498
13499                 bnx2x_ilt_wr(bp, index, addr);
13500                 break;
13501         }
13502
13503         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13504                 int count = ctl->data.credit.credit_count;
13505
13506                 bnx2x_cnic_sp_post(bp, count);
13507                 break;
13508         }
13509
13510         /* rtnl_lock is held.  */
13511         case DRV_CTL_START_L2_CMD: {
13512                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13513                 unsigned long sp_bits = 0;
13514
13515                 /* Configure the iSCSI classification object */
13516                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13517                                    cp->iscsi_l2_client_id,
13518                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13519                                    bnx2x_sp(bp, mac_rdata),
13520                                    bnx2x_sp_mapping(bp, mac_rdata),
13521                                    BNX2X_FILTER_MAC_PENDING,
13522                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13523                                    &bp->macs_pool);
13524
13525                 /* Set iSCSI MAC address */
13526                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13527                 if (rc)
13528                         break;
13529
13530                 mmiowb();
13531                 barrier();
13532
13533                 /* Start accepting on iSCSI L2 ring */
13534
13535                 netif_addr_lock_bh(dev);
13536                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13537                 netif_addr_unlock_bh(dev);
13538
13539                 /* bits to wait on */
13540                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13541                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13542
13543                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13544                         BNX2X_ERR("rx_mode completion timed out!\n");
13545
13546                 break;
13547         }
13548
13549         /* rtnl_lock is held.  */
13550         case DRV_CTL_STOP_L2_CMD: {
13551                 unsigned long sp_bits = 0;
13552
13553                 /* Stop accepting on iSCSI L2 ring */
13554                 netif_addr_lock_bh(dev);
13555                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13556                 netif_addr_unlock_bh(dev);
13557
13558                 /* bits to wait on */
13559                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13560                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13561
13562                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13563                         BNX2X_ERR("rx_mode completion timed out!\n");
13564
13565                 mmiowb();
13566                 barrier();
13567
13568                 /* Unset iSCSI L2 MAC */
13569                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13570                                         BNX2X_ISCSI_ETH_MAC, true);
13571                 break;
13572         }
13573         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13574                 int count = ctl->data.credit.credit_count;
13575
13576                 smp_mb__before_atomic_inc();
13577                 atomic_add(count, &bp->cq_spq_left);
13578                 smp_mb__after_atomic_inc();
13579                 break;
13580         }
13581         case DRV_CTL_ULP_REGISTER_CMD: {
13582                 int ulp_type = ctl->data.register_data.ulp_type;
13583
13584                 if (CHIP_IS_E3(bp)) {
13585                         int idx = BP_FW_MB_IDX(bp);
13586                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13587                         int path = BP_PATH(bp);
13588                         int port = BP_PORT(bp);
13589                         int i;
13590                         u32 scratch_offset;
13591                         u32 *host_addr;
13592
13593                         /* first write capability to shmem2 */
13594                         if (ulp_type == CNIC_ULP_ISCSI)
13595                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13596                         else if (ulp_type == CNIC_ULP_FCOE)
13597                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13598                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13599
13600                         if ((ulp_type != CNIC_ULP_FCOE) ||
13601                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13602                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13603                                 break;
13604
13605                         /* if reached here - should write fcoe capabilities */
13606                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13607                         if (!scratch_offset)
13608                                 break;
13609                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13610                                                    fcoe_features[path][port]);
13611                         host_addr = (u32 *) &(ctl->data.register_data.
13612                                               fcoe_features);
13613                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13614                              i += 4)
13615                                 REG_WR(bp, scratch_offset + i,
13616                                        *(host_addr + i/4));
13617                 }
13618                 break;
13619         }
13620
13621         case DRV_CTL_ULP_UNREGISTER_CMD: {
13622                 int ulp_type = ctl->data.ulp_type;
13623
13624                 if (CHIP_IS_E3(bp)) {
13625                         int idx = BP_FW_MB_IDX(bp);
13626                         u32 cap;
13627
13628                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13629                         if (ulp_type == CNIC_ULP_ISCSI)
13630                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13631                         else if (ulp_type == CNIC_ULP_FCOE)
13632                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13633                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13634                 }
13635                 break;
13636         }
13637
13638         default:
13639                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13640                 rc = -EINVAL;
13641         }
13642
13643         return rc;
13644 }
13645
13646 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13647 {
13648         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13649
13650         if (bp->flags & USING_MSIX_FLAG) {
13651                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13652                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13653                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13654         } else {
13655                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13656                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13657         }
13658         if (!CHIP_IS_E1x(bp))
13659                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13660         else
13661                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13662
13663         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13664         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13665         cp->irq_arr[1].status_blk = bp->def_status_blk;
13666         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13667         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13668
13669         cp->num_irq = 2;
13670 }
13671
13672 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13673 {
13674         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13675
13676         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13677                              bnx2x_cid_ilt_lines(bp);
13678         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13679         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13680         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13681
13682         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13683            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13684            cp->iscsi_l2_cid);
13685
13686         if (NO_ISCSI_OOO(bp))
13687                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13688 }
13689
13690 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13691                                void *data)
13692 {
13693         struct bnx2x *bp = netdev_priv(dev);
13694         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13695         int rc;
13696
13697         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13698
13699         if (ops == NULL) {
13700                 BNX2X_ERR("NULL ops received\n");
13701                 return -EINVAL;
13702         }
13703
13704         if (!CNIC_SUPPORT(bp)) {
13705                 BNX2X_ERR("Can't register CNIC when not supported\n");
13706                 return -EOPNOTSUPP;
13707         }
13708
13709         if (!CNIC_LOADED(bp)) {
13710                 rc = bnx2x_load_cnic(bp);
13711                 if (rc) {
13712                         BNX2X_ERR("CNIC-related load failed\n");
13713                         return rc;
13714                 }
13715         }
13716
13717         bp->cnic_enabled = true;
13718
13719         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13720         if (!bp->cnic_kwq)
13721                 return -ENOMEM;
13722
13723         bp->cnic_kwq_cons = bp->cnic_kwq;
13724         bp->cnic_kwq_prod = bp->cnic_kwq;
13725         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13726
13727         bp->cnic_spq_pending = 0;
13728         bp->cnic_kwq_pending = 0;
13729
13730         bp->cnic_data = data;
13731
13732         cp->num_irq = 0;
13733         cp->drv_state |= CNIC_DRV_STATE_REGD;
13734         cp->iro_arr = bp->iro_arr;
13735
13736         bnx2x_setup_cnic_irq_info(bp);
13737
13738         rcu_assign_pointer(bp->cnic_ops, ops);
13739
13740         return 0;
13741 }
13742
13743 static int bnx2x_unregister_cnic(struct net_device *dev)
13744 {
13745         struct bnx2x *bp = netdev_priv(dev);
13746         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13747
13748         mutex_lock(&bp->cnic_mutex);
13749         cp->drv_state = 0;
13750         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13751         mutex_unlock(&bp->cnic_mutex);
13752         synchronize_rcu();
13753         bp->cnic_enabled = false;
13754         kfree(bp->cnic_kwq);
13755         bp->cnic_kwq = NULL;
13756
13757         return 0;
13758 }
13759
13760 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13761 {
13762         struct bnx2x *bp = netdev_priv(dev);
13763         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13764
13765         /* If both iSCSI and FCoE are disabled - return NULL in
13766          * order to indicate CNIC that it should not try to work
13767          * with this device.
13768          */
13769         if (NO_ISCSI(bp) && NO_FCOE(bp))
13770                 return NULL;
13771
13772         cp->drv_owner = THIS_MODULE;
13773         cp->chip_id = CHIP_ID(bp);
13774         cp->pdev = bp->pdev;
13775         cp->io_base = bp->regview;
13776         cp->io_base2 = bp->doorbells;
13777         cp->max_kwqe_pending = 8;
13778         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13779         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13780                              bnx2x_cid_ilt_lines(bp);
13781         cp->ctx_tbl_len = CNIC_ILT_LINES;
13782         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13783         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13784         cp->drv_ctl = bnx2x_drv_ctl;
13785         cp->drv_register_cnic = bnx2x_register_cnic;
13786         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13787         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13788         cp->iscsi_l2_client_id =
13789                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13790         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13791
13792         if (NO_ISCSI_OOO(bp))
13793                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13794
13795         if (NO_ISCSI(bp))
13796                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13797
13798         if (NO_FCOE(bp))
13799                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13800
13801         BNX2X_DEV_INFO(
13802                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13803            cp->ctx_blk_size,
13804            cp->ctx_tbl_offset,
13805            cp->ctx_tbl_len,
13806            cp->starting_cid);
13807         return cp;
13808 }
13809
13810 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13811 {
13812         struct bnx2x *bp = fp->bp;
13813         u32 offset = BAR_USTRORM_INTMEM;
13814
13815         if (IS_VF(bp))
13816                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13817         else if (!CHIP_IS_E1x(bp))
13818                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13819         else
13820                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13821
13822         return offset;
13823 }
13824
13825 /* called only on E1H or E2.
13826  * When pretending to be PF, the pretend value is the function number 0...7
13827  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13828  * combination
13829  */
13830 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13831 {
13832         u32 pretend_reg;
13833
13834         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13835                 return -1;
13836
13837         /* get my own pretend register */
13838         pretend_reg = bnx2x_get_pretend_reg(bp);
13839         REG_WR(bp, pretend_reg, pretend_func_val);
13840         REG_RD(bp, pretend_reg);
13841         return 0;
13842 }