Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / drivers / md / persistent-data / dm-btree-remove.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59         uint32_t value_size = le32_to_cpu(n->header.value_size);
60
61         if (shift < 0) {
62                 shift = -shift;
63                 BUG_ON(shift > nr_entries);
64                 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65                 memmove(key_ptr(n, 0),
66                         key_ptr(n, shift),
67                         (nr_entries - shift) * sizeof(__le64));
68                 memmove(value_ptr(n, 0),
69                         value_ptr(n, shift),
70                         (nr_entries - shift) * value_size);
71         } else {
72                 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73                 memmove(key_ptr(n, shift),
74                         key_ptr(n, 0),
75                         nr_entries * sizeof(__le64));
76                 memmove(value_ptr(n, shift),
77                         value_ptr(n, 0),
78                         nr_entries * value_size);
79         }
80 }
81
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85         uint32_t value_size = le32_to_cpu(left->header.value_size);
86         BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87
88         if (shift < 0) {
89                 shift = -shift;
90                 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91                 memcpy(key_ptr(left, nr_left),
92                        key_ptr(right, 0),
93                        shift * sizeof(__le64));
94                 memcpy(value_ptr(left, nr_left),
95                        value_ptr(right, 0),
96                        shift * value_size);
97         } else {
98                 BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99                 memcpy(key_ptr(right, 0),
100                        key_ptr(left, nr_left - shift),
101                        shift * sizeof(__le64));
102                 memcpy(value_ptr(right, 0),
103                        value_ptr(left, nr_left - shift),
104                        shift * value_size);
105         }
106 }
107
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113         unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114         unsigned nr_to_copy = nr_entries - (index + 1);
115         uint32_t value_size = le32_to_cpu(n->header.value_size);
116         BUG_ON(index >= nr_entries);
117
118         if (nr_to_copy) {
119                 memmove(key_ptr(n, index),
120                         key_ptr(n, index + 1),
121                         nr_to_copy * sizeof(__le64));
122
123                 memmove(value_ptr(n, index),
124                         value_ptr(n, index + 1),
125                         nr_to_copy * value_size);
126         }
127
128         n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133         return le32_to_cpu(n->header.max_entries) / 3;
134 }
135
136 struct child {
137         unsigned index;
138         struct dm_block *block;
139         struct btree_node *n;
140 };
141
142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143                       struct btree_node *parent,
144                       unsigned index, struct child *result)
145 {
146         int r, inc;
147         dm_block_t root;
148
149         result->index = index;
150         root = value64(parent, index);
151
152         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153                                &result->block, &inc);
154         if (r)
155                 return r;
156
157         result->n = dm_block_data(result->block);
158
159         if (inc)
160                 inc_children(info->tm, result->n, vt);
161
162         *((__le64 *) value_ptr(parent, index)) =
163                 cpu_to_le64(dm_block_location(result->block));
164
165         return 0;
166 }
167
168 static int exit_child(struct dm_btree_info *info, struct child *c)
169 {
170         return dm_tm_unlock(info->tm, c->block);
171 }
172
173 static void shift(struct btree_node *left, struct btree_node *right, int count)
174 {
175         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178         uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
179
180         BUG_ON(max_entries != r_max_entries);
181         BUG_ON(nr_left - count > max_entries);
182         BUG_ON(nr_right + count > max_entries);
183
184         if (!count)
185                 return;
186
187         if (count > 0) {
188                 node_shift(right, count);
189                 node_copy(left, right, count);
190         } else {
191                 node_copy(left, right, count);
192                 node_shift(right, count);
193         }
194
195         left->header.nr_entries = cpu_to_le32(nr_left - count);
196         right->header.nr_entries = cpu_to_le32(nr_right + count);
197 }
198
199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200                          struct child *l, struct child *r)
201 {
202         struct btree_node *left = l->n;
203         struct btree_node *right = r->n;
204         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206         unsigned threshold = 2 * merge_threshold(left) + 1;
207
208         if (nr_left + nr_right < threshold) {
209                 /*
210                  * Merge
211                  */
212                 node_copy(left, right, -nr_right);
213                 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
214                 delete_at(parent, r->index);
215
216                 /*
217                  * We need to decrement the right block, but not it's
218                  * children, since they're still referenced by left.
219                  */
220                 dm_tm_dec(info->tm, dm_block_location(r->block));
221         } else {
222                 /*
223                  * Rebalance.
224                  */
225                 unsigned target_left = (nr_left + nr_right) / 2;
226                 shift(left, right, nr_left - target_left);
227                 *key_ptr(parent, r->index) = right->keys[0];
228         }
229 }
230
231 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
232                       struct dm_btree_value_type *vt, unsigned left_index)
233 {
234         int r;
235         struct btree_node *parent;
236         struct child left, right;
237
238         parent = dm_block_data(shadow_current(s));
239
240         r = init_child(info, vt, parent, left_index, &left);
241         if (r)
242                 return r;
243
244         r = init_child(info, vt, parent, left_index + 1, &right);
245         if (r) {
246                 exit_child(info, &left);
247                 return r;
248         }
249
250         __rebalance2(info, parent, &left, &right);
251
252         r = exit_child(info, &left);
253         if (r) {
254                 exit_child(info, &right);
255                 return r;
256         }
257
258         return exit_child(info, &right);
259 }
260
261 /*
262  * We dump as many entries from center as possible into left, then the rest
263  * in right, then rebalance2.  This wastes some cpu, but I want something
264  * simple atm.
265  */
266 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
267                                struct child *l, struct child *c, struct child *r,
268                                struct btree_node *left, struct btree_node *center, struct btree_node *right,
269                                uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
270 {
271         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
272         unsigned shift = min(max_entries - nr_left, nr_center);
273
274         BUG_ON(nr_left + shift > max_entries);
275         node_copy(left, center, -shift);
276         left->header.nr_entries = cpu_to_le32(nr_left + shift);
277
278         if (shift != nr_center) {
279                 shift = nr_center - shift;
280                 BUG_ON((nr_right + shift) > max_entries);
281                 node_shift(right, shift);
282                 node_copy(center, right, shift);
283                 right->header.nr_entries = cpu_to_le32(nr_right + shift);
284         }
285         *key_ptr(parent, r->index) = right->keys[0];
286
287         delete_at(parent, c->index);
288         r->index--;
289
290         dm_tm_dec(info->tm, dm_block_location(c->block));
291         __rebalance2(info, parent, l, r);
292 }
293
294 /*
295  * Redistributes entries among 3 sibling nodes.
296  */
297 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
298                           struct child *l, struct child *c, struct child *r,
299                           struct btree_node *left, struct btree_node *center, struct btree_node *right,
300                           uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
301 {
302         int s;
303         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
304         unsigned target = (nr_left + nr_center + nr_right) / 3;
305         BUG_ON(target > max_entries);
306
307         if (nr_left < nr_right) {
308                 s = nr_left - target;
309
310                 if (s < 0 && nr_center < -s) {
311                         /* not enough in central node */
312                         shift(left, center, -nr_center);
313                         s += nr_center;
314                         shift(left, right, s);
315                         nr_right += s;
316                 } else
317                         shift(left, center, s);
318
319                 shift(center, right, target - nr_right);
320
321         } else {
322                 s = target - nr_right;
323                 if (s > 0 && nr_center < s) {
324                         /* not enough in central node */
325                         shift(center, right, nr_center);
326                         s -= nr_center;
327                         shift(left, right, s);
328                         nr_left -= s;
329                 } else
330                         shift(center, right, s);
331
332                 shift(left, center, nr_left - target);
333         }
334
335         *key_ptr(parent, c->index) = center->keys[0];
336         *key_ptr(parent, r->index) = right->keys[0];
337 }
338
339 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
340                          struct child *l, struct child *c, struct child *r)
341 {
342         struct btree_node *left = l->n;
343         struct btree_node *center = c->n;
344         struct btree_node *right = r->n;
345
346         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
347         uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
348         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
349
350         unsigned threshold = merge_threshold(left) * 4 + 1;
351
352         BUG_ON(left->header.max_entries != center->header.max_entries);
353         BUG_ON(center->header.max_entries != right->header.max_entries);
354
355         if ((nr_left + nr_center + nr_right) < threshold)
356                 delete_center_node(info, parent, l, c, r, left, center, right,
357                                    nr_left, nr_center, nr_right);
358         else
359                 redistribute3(info, parent, l, c, r, left, center, right,
360                               nr_left, nr_center, nr_right);
361 }
362
363 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
364                       struct dm_btree_value_type *vt, unsigned left_index)
365 {
366         int r;
367         struct btree_node *parent = dm_block_data(shadow_current(s));
368         struct child left, center, right;
369
370         /*
371          * FIXME: fill out an array?
372          */
373         r = init_child(info, vt, parent, left_index, &left);
374         if (r)
375                 return r;
376
377         r = init_child(info, vt, parent, left_index + 1, &center);
378         if (r) {
379                 exit_child(info, &left);
380                 return r;
381         }
382
383         r = init_child(info, vt, parent, left_index + 2, &right);
384         if (r) {
385                 exit_child(info, &left);
386                 exit_child(info, &center);
387                 return r;
388         }
389
390         __rebalance3(info, parent, &left, &center, &right);
391
392         r = exit_child(info, &left);
393         if (r) {
394                 exit_child(info, &center);
395                 exit_child(info, &right);
396                 return r;
397         }
398
399         r = exit_child(info, &center);
400         if (r) {
401                 exit_child(info, &right);
402                 return r;
403         }
404
405         r = exit_child(info, &right);
406         if (r)
407                 return r;
408
409         return 0;
410 }
411
412 static int get_nr_entries(struct dm_transaction_manager *tm,
413                           dm_block_t b, uint32_t *result)
414 {
415         int r;
416         struct dm_block *block;
417         struct btree_node *n;
418
419         r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
420         if (r)
421                 return r;
422
423         n = dm_block_data(block);
424         *result = le32_to_cpu(n->header.nr_entries);
425
426         return dm_tm_unlock(tm, block);
427 }
428
429 static int rebalance_children(struct shadow_spine *s,
430                               struct dm_btree_info *info,
431                               struct dm_btree_value_type *vt, uint64_t key)
432 {
433         int i, r, has_left_sibling, has_right_sibling;
434         uint32_t child_entries;
435         struct btree_node *n;
436
437         n = dm_block_data(shadow_current(s));
438
439         if (le32_to_cpu(n->header.nr_entries) == 1) {
440                 struct dm_block *child;
441                 dm_block_t b = value64(n, 0);
442
443                 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
444                 if (r)
445                         return r;
446
447                 memcpy(n, dm_block_data(child),
448                        dm_bm_block_size(dm_tm_get_bm(info->tm)));
449                 r = dm_tm_unlock(info->tm, child);
450                 if (r)
451                         return r;
452
453                 dm_tm_dec(info->tm, dm_block_location(child));
454                 return 0;
455         }
456
457         i = lower_bound(n, key);
458         if (i < 0)
459                 return -ENODATA;
460
461         r = get_nr_entries(info->tm, value64(n, i), &child_entries);
462         if (r)
463                 return r;
464
465         has_left_sibling = i > 0;
466         has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
467
468         if (!has_left_sibling)
469                 r = rebalance2(s, info, vt, i);
470
471         else if (!has_right_sibling)
472                 r = rebalance2(s, info, vt, i - 1);
473
474         else
475                 r = rebalance3(s, info, vt, i - 1);
476
477         return r;
478 }
479
480 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
481 {
482         int i = lower_bound(n, key);
483
484         if ((i < 0) ||
485             (i >= le32_to_cpu(n->header.nr_entries)) ||
486             (le64_to_cpu(n->keys[i]) != key))
487                 return -ENODATA;
488
489         *index = i;
490
491         return 0;
492 }
493
494 /*
495  * Prepares for removal from one level of the hierarchy.  The caller must
496  * call delete_at() to remove the entry at index.
497  */
498 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
499                       struct dm_btree_value_type *vt, dm_block_t root,
500                       uint64_t key, unsigned *index)
501 {
502         int i = *index, r;
503         struct btree_node *n;
504
505         for (;;) {
506                 r = shadow_step(s, root, vt);
507                 if (r < 0)
508                         break;
509
510                 /*
511                  * We have to patch up the parent node, ugly, but I don't
512                  * see a way to do this automatically as part of the spine
513                  * op.
514                  */
515                 if (shadow_has_parent(s)) {
516                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
517                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
518                                &location, sizeof(__le64));
519                 }
520
521                 n = dm_block_data(shadow_current(s));
522
523                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
524                         return do_leaf(n, key, index);
525
526                 r = rebalance_children(s, info, vt, key);
527                 if (r)
528                         break;
529
530                 n = dm_block_data(shadow_current(s));
531                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
532                         return do_leaf(n, key, index);
533
534                 i = lower_bound(n, key);
535
536                 /*
537                  * We know the key is present, or else
538                  * rebalance_children would have returned
539                  * -ENODATA
540                  */
541                 root = value64(n, i);
542         }
543
544         return r;
545 }
546
547 static struct dm_btree_value_type le64_type = {
548         .context = NULL,
549         .size = sizeof(__le64),
550         .inc = NULL,
551         .dec = NULL,
552         .equal = NULL
553 };
554
555 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
556                     uint64_t *keys, dm_block_t *new_root)
557 {
558         unsigned level, last_level = info->levels - 1;
559         int index = 0, r = 0;
560         struct shadow_spine spine;
561         struct btree_node *n;
562
563         init_shadow_spine(&spine, info);
564         for (level = 0; level < info->levels; level++) {
565                 r = remove_raw(&spine, info,
566                                (level == last_level ?
567                                 &info->value_type : &le64_type),
568                                root, keys[level], (unsigned *)&index);
569                 if (r < 0)
570                         break;
571
572                 n = dm_block_data(shadow_current(&spine));
573                 if (level != last_level) {
574                         root = value64(n, index);
575                         continue;
576                 }
577
578                 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
579
580                 if (info->value_type.dec)
581                         info->value_type.dec(info->value_type.context,
582                                              value_ptr(n, index));
583
584                 delete_at(n, index);
585         }
586
587         *new_root = shadow_root(&spine);
588         exit_shadow_spine(&spine);
589
590         return r;
591 }
592 EXPORT_SYMBOL_GPL(dm_btree_remove);
593
594 /*----------------------------------------------------------------*/
595
596 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
597                           struct dm_btree_value_type *vt, dm_block_t root,
598                           uint64_t key, int *index)
599 {
600         int i = *index, r;
601         struct btree_node *n;
602
603         for (;;) {
604                 r = shadow_step(s, root, vt);
605                 if (r < 0)
606                         break;
607
608                 /*
609                  * We have to patch up the parent node, ugly, but I don't
610                  * see a way to do this automatically as part of the spine
611                  * op.
612                  */
613                 if (shadow_has_parent(s)) {
614                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
615                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
616                                &location, sizeof(__le64));
617                 }
618
619                 n = dm_block_data(shadow_current(s));
620
621                 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
622                         *index = lower_bound(n, key);
623                         return 0;
624                 }
625
626                 r = rebalance_children(s, info, vt, key);
627                 if (r)
628                         break;
629
630                 n = dm_block_data(shadow_current(s));
631                 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
632                         *index = lower_bound(n, key);
633                         return 0;
634                 }
635
636                 i = lower_bound(n, key);
637
638                 /*
639                  * We know the key is present, or else
640                  * rebalance_children would have returned
641                  * -ENODATA
642                  */
643                 root = value64(n, i);
644         }
645
646         return r;
647 }
648
649 static int remove_one(struct dm_btree_info *info, dm_block_t root,
650                       uint64_t *keys, uint64_t end_key,
651                       dm_block_t *new_root, unsigned *nr_removed)
652 {
653         unsigned level, last_level = info->levels - 1;
654         int index = 0, r = 0;
655         struct shadow_spine spine;
656         struct btree_node *n;
657         uint64_t k;
658
659         init_shadow_spine(&spine, info);
660         for (level = 0; level < last_level; level++) {
661                 r = remove_raw(&spine, info, &le64_type,
662                                root, keys[level], (unsigned *) &index);
663                 if (r < 0)
664                         goto out;
665
666                 n = dm_block_data(shadow_current(&spine));
667                 root = value64(n, index);
668         }
669
670         r = remove_nearest(&spine, info, &info->value_type,
671                            root, keys[last_level], &index);
672         if (r < 0)
673                 goto out;
674
675         n = dm_block_data(shadow_current(&spine));
676
677         if (index < 0)
678                 index = 0;
679
680         if (index >= le32_to_cpu(n->header.nr_entries)) {
681                 r = -ENODATA;
682                 goto out;
683         }
684
685         k = le64_to_cpu(n->keys[index]);
686         if (k >= keys[last_level] && k < end_key) {
687                 if (info->value_type.dec)
688                         info->value_type.dec(info->value_type.context,
689                                              value_ptr(n, index));
690
691                 delete_at(n, index);
692
693         } else
694                 r = -ENODATA;
695
696 out:
697         *new_root = shadow_root(&spine);
698         exit_shadow_spine(&spine);
699
700         return r;
701 }
702
703 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
704                            uint64_t *first_key, uint64_t end_key,
705                            dm_block_t *new_root, unsigned *nr_removed)
706 {
707         int r;
708
709         *nr_removed = 0;
710         do {
711                 r = remove_one(info, root, first_key, end_key, &root, nr_removed);
712                 if (!r)
713                         (*nr_removed)++;
714         } while (!r);
715
716         *new_root = root;
717         return r == -ENODATA ? 0 : r;
718 }
719 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);