af96e24ec3280ff9c29a7b7f13fde6fc4ba43e52
[linux-drm-fsl-dcu.git] / drivers / md / persistent-data / dm-array.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-array.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "array"
15
16 /*----------------------------------------------------------------*/
17
18 /*
19  * The array is implemented as a fully populated btree, which points to
20  * blocks that contain the packed values.  This is more space efficient
21  * than just using a btree since we don't store 1 key per value.
22  */
23 struct array_block {
24         __le32 csum;
25         __le32 max_entries;
26         __le32 nr_entries;
27         __le32 value_size;
28         __le64 blocknr; /* Block this node is supposed to live in. */
29 } __packed;
30
31 /*----------------------------------------------------------------*/
32
33 /*
34  * Validator methods.  As usual we calculate a checksum, and also write the
35  * block location into the header (paranoia about ssds remapping areas by
36  * mistake).
37  */
38 #define CSUM_XOR 595846735
39
40 static void array_block_prepare_for_write(struct dm_block_validator *v,
41                                           struct dm_block *b,
42                                           size_t size_of_block)
43 {
44         struct array_block *bh_le = dm_block_data(b);
45
46         bh_le->blocknr = cpu_to_le64(dm_block_location(b));
47         bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
48                                                  size_of_block - sizeof(__le32),
49                                                  CSUM_XOR));
50 }
51
52 static int array_block_check(struct dm_block_validator *v,
53                              struct dm_block *b,
54                              size_t size_of_block)
55 {
56         struct array_block *bh_le = dm_block_data(b);
57         __le32 csum_disk;
58
59         if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
60                 DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
61                             (unsigned long long) le64_to_cpu(bh_le->blocknr),
62                             (unsigned long long) dm_block_location(b));
63                 return -ENOTBLK;
64         }
65
66         csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
67                                                size_of_block - sizeof(__le32),
68                                                CSUM_XOR));
69         if (csum_disk != bh_le->csum) {
70                 DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
71                             (unsigned) le32_to_cpu(csum_disk),
72                             (unsigned) le32_to_cpu(bh_le->csum));
73                 return -EILSEQ;
74         }
75
76         return 0;
77 }
78
79 static struct dm_block_validator array_validator = {
80         .name = "array",
81         .prepare_for_write = array_block_prepare_for_write,
82         .check = array_block_check
83 };
84
85 /*----------------------------------------------------------------*/
86
87 /*
88  * Functions for manipulating the array blocks.
89  */
90
91 /*
92  * Returns a pointer to a value within an array block.
93  *
94  * index - The index into _this_ specific block.
95  */
96 static void *element_at(struct dm_array_info *info, struct array_block *ab,
97                         unsigned index)
98 {
99         unsigned char *entry = (unsigned char *) (ab + 1);
100
101         entry += index * info->value_type.size;
102
103         return entry;
104 }
105
106 /*
107  * Utility function that calls one of the value_type methods on every value
108  * in an array block.
109  */
110 static void on_entries(struct dm_array_info *info, struct array_block *ab,
111                        void (*fn)(void *, const void *))
112 {
113         unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
114
115         for (i = 0; i < nr_entries; i++)
116                 fn(info->value_type.context, element_at(info, ab, i));
117 }
118
119 /*
120  * Increment every value in an array block.
121  */
122 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
123 {
124         struct dm_btree_value_type *vt = &info->value_type;
125
126         if (vt->inc)
127                 on_entries(info, ab, vt->inc);
128 }
129
130 /*
131  * Decrement every value in an array block.
132  */
133 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
134 {
135         struct dm_btree_value_type *vt = &info->value_type;
136
137         if (vt->dec)
138                 on_entries(info, ab, vt->dec);
139 }
140
141 /*
142  * Each array block can hold this many values.
143  */
144 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
145 {
146         return (size_of_block - sizeof(struct array_block)) / value_size;
147 }
148
149 /*
150  * Allocate a new array block.  The caller will need to unlock block.
151  */
152 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
153                         uint32_t max_entries,
154                         struct dm_block **block, struct array_block **ab)
155 {
156         int r;
157
158         r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
159         if (r)
160                 return r;
161
162         (*ab) = dm_block_data(*block);
163         (*ab)->max_entries = cpu_to_le32(max_entries);
164         (*ab)->nr_entries = cpu_to_le32(0);
165         (*ab)->value_size = cpu_to_le32(info->value_type.size);
166
167         return 0;
168 }
169
170 /*
171  * Pad an array block out with a particular value.  Every instance will
172  * cause an increment of the value_type.  new_nr must always be more than
173  * the current number of entries.
174  */
175 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
176                         const void *value, unsigned new_nr)
177 {
178         unsigned i;
179         uint32_t nr_entries;
180         struct dm_btree_value_type *vt = &info->value_type;
181
182         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
183         BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
184
185         nr_entries = le32_to_cpu(ab->nr_entries);
186         for (i = nr_entries; i < new_nr; i++) {
187                 if (vt->inc)
188                         vt->inc(vt->context, value);
189                 memcpy(element_at(info, ab, i), value, vt->size);
190         }
191         ab->nr_entries = cpu_to_le32(new_nr);
192 }
193
194 /*
195  * Remove some entries from the back of an array block.  Every value
196  * removed will be decremented.  new_nr must be <= the current number of
197  * entries.
198  */
199 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
200                         unsigned new_nr)
201 {
202         unsigned i;
203         uint32_t nr_entries;
204         struct dm_btree_value_type *vt = &info->value_type;
205
206         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
207         BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
208
209         nr_entries = le32_to_cpu(ab->nr_entries);
210         for (i = nr_entries; i > new_nr; i--)
211                 if (vt->dec)
212                         vt->dec(vt->context, element_at(info, ab, i - 1));
213         ab->nr_entries = cpu_to_le32(new_nr);
214 }
215
216 /*
217  * Read locks a block, and coerces it to an array block.  The caller must
218  * unlock 'block' when finished.
219  */
220 static int get_ablock(struct dm_array_info *info, dm_block_t b,
221                       struct dm_block **block, struct array_block **ab)
222 {
223         int r;
224
225         r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
226         if (r)
227                 return r;
228
229         *ab = dm_block_data(*block);
230         return 0;
231 }
232
233 /*
234  * Unlocks an array block.
235  */
236 static int unlock_ablock(struct dm_array_info *info, struct dm_block *block)
237 {
238         return dm_tm_unlock(info->btree_info.tm, block);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 /*
244  * Btree manipulation.
245  */
246
247 /*
248  * Looks up an array block in the btree, and then read locks it.
249  *
250  * index is the index of the index of the array_block, (ie. the array index
251  * / max_entries).
252  */
253 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
254                          unsigned index, struct dm_block **block,
255                          struct array_block **ab)
256 {
257         int r;
258         uint64_t key = index;
259         __le64 block_le;
260
261         r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
262         if (r)
263                 return r;
264
265         return get_ablock(info, le64_to_cpu(block_le), block, ab);
266 }
267
268 /*
269  * Insert an array block into the btree.  The block is _not_ unlocked.
270  */
271 static int insert_ablock(struct dm_array_info *info, uint64_t index,
272                          struct dm_block *block, dm_block_t *root)
273 {
274         __le64 block_le = cpu_to_le64(dm_block_location(block));
275
276         __dm_bless_for_disk(block_le);
277         return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
278 }
279
280 /*
281  * Looks up an array block in the btree.  Then shadows it, and updates the
282  * btree to point to this new shadow.  'root' is an input/output parameter
283  * for both the current root block, and the new one.
284  */
285 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
286                          unsigned index, struct dm_block **block,
287                          struct array_block **ab)
288 {
289         int r, inc;
290         uint64_t key = index;
291         dm_block_t b;
292         __le64 block_le;
293
294         /*
295          * lookup
296          */
297         r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
298         if (r)
299                 return r;
300         b = le64_to_cpu(block_le);
301
302         /*
303          * shadow
304          */
305         r = dm_tm_shadow_block(info->btree_info.tm, b,
306                                &array_validator, block, &inc);
307         if (r)
308                 return r;
309
310         *ab = dm_block_data(*block);
311         if (inc)
312                 inc_ablock_entries(info, *ab);
313
314         /*
315          * Reinsert.
316          *
317          * The shadow op will often be a noop.  Only insert if it really
318          * copied data.
319          */
320         if (dm_block_location(*block) != b)
321                 r = insert_ablock(info, index, *block, root);
322
323         return r;
324 }
325
326 /*
327  * Allocate an new array block, and fill it with some values.
328  */
329 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
330                              uint32_t max_entries,
331                              unsigned block_index, uint32_t nr,
332                              const void *value, dm_block_t *root)
333 {
334         int r;
335         struct dm_block *block;
336         struct array_block *ab;
337
338         r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
339         if (r)
340                 return r;
341
342         fill_ablock(info, ab, value, nr);
343         r = insert_ablock(info, block_index, block, root);
344         unlock_ablock(info, block);
345
346         return r;
347 }
348
349 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
350                                unsigned begin_block, unsigned end_block,
351                                unsigned max_entries, const void *value,
352                                dm_block_t *root)
353 {
354         int r = 0;
355
356         for (; !r && begin_block != end_block; begin_block++)
357                 r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
358
359         return r;
360 }
361
362 /*
363  * There are a bunch of functions involved with resizing an array.  This
364  * structure holds information that commonly needed by them.  Purely here
365  * to reduce parameter count.
366  */
367 struct resize {
368         /*
369          * Describes the array.
370          */
371         struct dm_array_info *info;
372
373         /*
374          * The current root of the array.  This gets updated.
375          */
376         dm_block_t root;
377
378         /*
379          * Metadata block size.  Used to calculate the nr entries in an
380          * array block.
381          */
382         size_t size_of_block;
383
384         /*
385          * Maximum nr entries in an array block.
386          */
387         unsigned max_entries;
388
389         /*
390          * nr of completely full blocks in the array.
391          *
392          * 'old' refers to before the resize, 'new' after.
393          */
394         unsigned old_nr_full_blocks, new_nr_full_blocks;
395
396         /*
397          * Number of entries in the final block.  0 iff only full blocks in
398          * the array.
399          */
400         unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
401
402         /*
403          * The default value used when growing the array.
404          */
405         const void *value;
406 };
407
408 /*
409  * Removes a consecutive set of array blocks from the btree.  The values
410  * in block are decremented as a side effect of the btree remove.
411  *
412  * begin_index - the index of the first array block to remove.
413  * end_index - the one-past-the-end value.  ie. this block is not removed.
414  */
415 static int drop_blocks(struct resize *resize, unsigned begin_index,
416                        unsigned end_index)
417 {
418         int r;
419
420         while (begin_index != end_index) {
421                 uint64_t key = begin_index++;
422                 r = dm_btree_remove(&resize->info->btree_info, resize->root,
423                                     &key, &resize->root);
424                 if (r)
425                         return r;
426         }
427
428         return 0;
429 }
430
431 /*
432  * Calculates how many blocks are needed for the array.
433  */
434 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
435                                        unsigned nr_entries_in_last_block)
436 {
437         return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
438 }
439
440 /*
441  * Shrink an array.
442  */
443 static int shrink(struct resize *resize)
444 {
445         int r;
446         unsigned begin, end;
447         struct dm_block *block;
448         struct array_block *ab;
449
450         /*
451          * Lose some blocks from the back?
452          */
453         if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
454                 begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
455                                                resize->new_nr_entries_in_last_block);
456                 end = total_nr_blocks_needed(resize->old_nr_full_blocks,
457                                              resize->old_nr_entries_in_last_block);
458
459                 r = drop_blocks(resize, begin, end);
460                 if (r)
461                         return r;
462         }
463
464         /*
465          * Trim the new tail block
466          */
467         if (resize->new_nr_entries_in_last_block) {
468                 r = shadow_ablock(resize->info, &resize->root,
469                                   resize->new_nr_full_blocks, &block, &ab);
470                 if (r)
471                         return r;
472
473                 trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
474                 unlock_ablock(resize->info, block);
475         }
476
477         return 0;
478 }
479
480 /*
481  * Grow an array.
482  */
483 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
484 {
485         int r;
486         struct dm_block *block;
487         struct array_block *ab;
488
489         r = shadow_ablock(resize->info, &resize->root,
490                           resize->old_nr_full_blocks, &block, &ab);
491         if (r)
492                 return r;
493
494         fill_ablock(resize->info, ab, resize->value, new_nr_entries);
495         unlock_ablock(resize->info, block);
496
497         return r;
498 }
499
500 static int grow_add_tail_block(struct resize *resize)
501 {
502         return insert_new_ablock(resize->info, resize->size_of_block,
503                                  resize->max_entries,
504                                  resize->new_nr_full_blocks,
505                                  resize->new_nr_entries_in_last_block,
506                                  resize->value, &resize->root);
507 }
508
509 static int grow_needs_more_blocks(struct resize *resize)
510 {
511         int r;
512         unsigned old_nr_blocks = resize->old_nr_full_blocks;
513
514         if (resize->old_nr_entries_in_last_block > 0) {
515                 old_nr_blocks++;
516
517                 r = grow_extend_tail_block(resize, resize->max_entries);
518                 if (r)
519                         return r;
520         }
521
522         r = insert_full_ablocks(resize->info, resize->size_of_block,
523                                 old_nr_blocks,
524                                 resize->new_nr_full_blocks,
525                                 resize->max_entries, resize->value,
526                                 &resize->root);
527         if (r)
528                 return r;
529
530         if (resize->new_nr_entries_in_last_block)
531                 r = grow_add_tail_block(resize);
532
533         return r;
534 }
535
536 static int grow(struct resize *resize)
537 {
538         if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
539                 return grow_needs_more_blocks(resize);
540
541         else if (resize->old_nr_entries_in_last_block)
542                 return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
543
544         else
545                 return grow_add_tail_block(resize);
546 }
547
548 /*----------------------------------------------------------------*/
549
550 /*
551  * These are the value_type functions for the btree elements, which point
552  * to array blocks.
553  */
554 static void block_inc(void *context, const void *value)
555 {
556         __le64 block_le;
557         struct dm_array_info *info = context;
558
559         memcpy(&block_le, value, sizeof(block_le));
560         dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
561 }
562
563 static void block_dec(void *context, const void *value)
564 {
565         int r;
566         uint64_t b;
567         __le64 block_le;
568         uint32_t ref_count;
569         struct dm_block *block;
570         struct array_block *ab;
571         struct dm_array_info *info = context;
572
573         memcpy(&block_le, value, sizeof(block_le));
574         b = le64_to_cpu(block_le);
575
576         r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
577         if (r) {
578                 DMERR_LIMIT("couldn't get reference count for block %llu",
579                             (unsigned long long) b);
580                 return;
581         }
582
583         if (ref_count == 1) {
584                 /*
585                  * We're about to drop the last reference to this ablock.
586                  * So we need to decrement the ref count of the contents.
587                  */
588                 r = get_ablock(info, b, &block, &ab);
589                 if (r) {
590                         DMERR_LIMIT("couldn't get array block %llu",
591                                     (unsigned long long) b);
592                         return;
593                 }
594
595                 dec_ablock_entries(info, ab);
596                 unlock_ablock(info, block);
597         }
598
599         dm_tm_dec(info->btree_info.tm, b);
600 }
601
602 static int block_equal(void *context, const void *value1, const void *value2)
603 {
604         return !memcmp(value1, value2, sizeof(__le64));
605 }
606
607 /*----------------------------------------------------------------*/
608
609 void dm_array_info_init(struct dm_array_info *info,
610                         struct dm_transaction_manager *tm,
611                         struct dm_btree_value_type *vt)
612 {
613         struct dm_btree_value_type *bvt = &info->btree_info.value_type;
614
615         memcpy(&info->value_type, vt, sizeof(info->value_type));
616         info->btree_info.tm = tm;
617         info->btree_info.levels = 1;
618
619         bvt->context = info;
620         bvt->size = sizeof(__le64);
621         bvt->inc = block_inc;
622         bvt->dec = block_dec;
623         bvt->equal = block_equal;
624 }
625 EXPORT_SYMBOL_GPL(dm_array_info_init);
626
627 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
628 {
629         return dm_btree_empty(&info->btree_info, root);
630 }
631 EXPORT_SYMBOL_GPL(dm_array_empty);
632
633 static int array_resize(struct dm_array_info *info, dm_block_t root,
634                         uint32_t old_size, uint32_t new_size,
635                         const void *value, dm_block_t *new_root)
636 {
637         int r;
638         struct resize resize;
639
640         if (old_size == new_size)
641                 return 0;
642
643         resize.info = info;
644         resize.root = root;
645         resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
646         resize.max_entries = calc_max_entries(info->value_type.size,
647                                               resize.size_of_block);
648
649         resize.old_nr_full_blocks = old_size / resize.max_entries;
650         resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
651         resize.new_nr_full_blocks = new_size / resize.max_entries;
652         resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
653         resize.value = value;
654
655         r = ((new_size > old_size) ? grow : shrink)(&resize);
656         if (r)
657                 return r;
658
659         *new_root = resize.root;
660         return 0;
661 }
662
663 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
664                     uint32_t old_size, uint32_t new_size,
665                     const void *value, dm_block_t *new_root)
666                     __dm_written_to_disk(value)
667 {
668         int r = array_resize(info, root, old_size, new_size, value, new_root);
669         __dm_unbless_for_disk(value);
670         return r;
671 }
672 EXPORT_SYMBOL_GPL(dm_array_resize);
673
674 int dm_array_del(struct dm_array_info *info, dm_block_t root)
675 {
676         return dm_btree_del(&info->btree_info, root);
677 }
678 EXPORT_SYMBOL_GPL(dm_array_del);
679
680 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
681                        uint32_t index, void *value_le)
682 {
683         int r;
684         struct dm_block *block;
685         struct array_block *ab;
686         size_t size_of_block;
687         unsigned entry, max_entries;
688
689         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
690         max_entries = calc_max_entries(info->value_type.size, size_of_block);
691
692         r = lookup_ablock(info, root, index / max_entries, &block, &ab);
693         if (r)
694                 return r;
695
696         entry = index % max_entries;
697         if (entry >= le32_to_cpu(ab->nr_entries))
698                 r = -ENODATA;
699         else
700                 memcpy(value_le, element_at(info, ab, entry),
701                        info->value_type.size);
702
703         unlock_ablock(info, block);
704         return r;
705 }
706 EXPORT_SYMBOL_GPL(dm_array_get_value);
707
708 static int array_set_value(struct dm_array_info *info, dm_block_t root,
709                            uint32_t index, const void *value, dm_block_t *new_root)
710 {
711         int r;
712         struct dm_block *block;
713         struct array_block *ab;
714         size_t size_of_block;
715         unsigned max_entries;
716         unsigned entry;
717         void *old_value;
718         struct dm_btree_value_type *vt = &info->value_type;
719
720         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
721         max_entries = calc_max_entries(info->value_type.size, size_of_block);
722
723         r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
724         if (r)
725                 return r;
726         *new_root = root;
727
728         entry = index % max_entries;
729         if (entry >= le32_to_cpu(ab->nr_entries)) {
730                 r = -ENODATA;
731                 goto out;
732         }
733
734         old_value = element_at(info, ab, entry);
735         if (vt->dec &&
736             (!vt->equal || !vt->equal(vt->context, old_value, value))) {
737                 vt->dec(vt->context, old_value);
738                 if (vt->inc)
739                         vt->inc(vt->context, value);
740         }
741
742         memcpy(old_value, value, info->value_type.size);
743
744 out:
745         unlock_ablock(info, block);
746         return r;
747 }
748
749 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
750                  uint32_t index, const void *value, dm_block_t *new_root)
751                  __dm_written_to_disk(value)
752 {
753         int r;
754
755         r = array_set_value(info, root, index, value, new_root);
756         __dm_unbless_for_disk(value);
757         return r;
758 }
759 EXPORT_SYMBOL_GPL(dm_array_set_value);
760
761 struct walk_info {
762         struct dm_array_info *info;
763         int (*fn)(void *context, uint64_t key, void *leaf);
764         void *context;
765 };
766
767 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
768 {
769         struct walk_info *wi = context;
770
771         int r;
772         unsigned i;
773         __le64 block_le;
774         unsigned nr_entries, max_entries;
775         struct dm_block *block;
776         struct array_block *ab;
777
778         memcpy(&block_le, leaf, sizeof(block_le));
779         r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
780         if (r)
781                 return r;
782
783         max_entries = le32_to_cpu(ab->max_entries);
784         nr_entries = le32_to_cpu(ab->nr_entries);
785         for (i = 0; i < nr_entries; i++) {
786                 r = wi->fn(wi->context, keys[0] * max_entries + i,
787                            element_at(wi->info, ab, i));
788
789                 if (r)
790                         break;
791         }
792
793         unlock_ablock(wi->info, block);
794         return r;
795 }
796
797 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
798                   int (*fn)(void *, uint64_t key, void *leaf),
799                   void *context)
800 {
801         struct walk_info wi;
802
803         wi.info = info;
804         wi.fn = fn;
805         wi.context = context;
806
807         return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
808 }
809 EXPORT_SYMBOL_GPL(dm_array_walk);
810
811 /*----------------------------------------------------------------*/