Merge remote-tracking branches 'asoc/fix/atmel', 'asoc/fix/fsl', 'asoc/fix/tegra...
[linux-drm-fsl-dcu.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200         atomic_inc(&md_event_count);
201         wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210         atomic_inc(&md_event_count);
211         wake_up(&md_event_waiters);
212 }
213
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)                                     \
230                                                                         \
231         for (({ spin_lock(&all_mddevs_lock);                            \
232                 _tmp = all_mddevs.next;                                 \
233                 _mddev = NULL;});                                       \
234              ({ if (_tmp != &all_mddevs)                                \
235                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236                 spin_unlock(&all_mddevs_lock);                          \
237                 if (_mddev) mddev_put(_mddev);                          \
238                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
239                 _tmp != &all_mddevs;});                                 \
240              ({ spin_lock(&all_mddevs_lock);                            \
241                 _tmp = _tmp->next;})                                    \
242                 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254         const int rw = bio_data_dir(bio);
255         struct mddev *mddev = q->queuedata;
256         int cpu;
257         unsigned int sectors;
258
259         if (mddev == NULL || mddev->pers == NULL
260             || !mddev->ready) {
261                 bio_io_error(bio);
262                 return;
263         }
264         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266                 return;
267         }
268         smp_rmb(); /* Ensure implications of  'active' are visible */
269         rcu_read_lock();
270         if (mddev->suspended) {
271                 DEFINE_WAIT(__wait);
272                 for (;;) {
273                         prepare_to_wait(&mddev->sb_wait, &__wait,
274                                         TASK_UNINTERRUPTIBLE);
275                         if (!mddev->suspended)
276                                 break;
277                         rcu_read_unlock();
278                         schedule();
279                         rcu_read_lock();
280                 }
281                 finish_wait(&mddev->sb_wait, &__wait);
282         }
283         atomic_inc(&mddev->active_io);
284         rcu_read_unlock();
285
286         /*
287          * save the sectors now since our bio can
288          * go away inside make_request
289          */
290         sectors = bio_sectors(bio);
291         mddev->pers->make_request(mddev, bio);
292
293         cpu = part_stat_lock();
294         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296         part_stat_unlock();
297
298         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299                 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310         BUG_ON(mddev->suspended);
311         mddev->suspended = 1;
312         synchronize_rcu();
313         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314         mddev->pers->quiesce(mddev, 1);
315
316         del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322         mddev->suspended = 0;
323         wake_up(&mddev->sb_wait);
324         mddev->pers->quiesce(mddev, 0);
325
326         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327         md_wakeup_thread(mddev->thread);
328         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334         return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339  * Generic flush handling for md
340  */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344         struct md_rdev *rdev = bio->bi_private;
345         struct mddev *mddev = rdev->mddev;
346
347         rdev_dec_pending(rdev, mddev);
348
349         if (atomic_dec_and_test(&mddev->flush_pending)) {
350                 /* The pre-request flush has finished */
351                 queue_work(md_wq, &mddev->flush_work);
352         }
353         bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361         struct md_rdev *rdev;
362
363         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364         atomic_set(&mddev->flush_pending, 1);
365         rcu_read_lock();
366         rdev_for_each_rcu(rdev, mddev)
367                 if (rdev->raid_disk >= 0 &&
368                     !test_bit(Faulty, &rdev->flags)) {
369                         /* Take two references, one is dropped
370                          * when request finishes, one after
371                          * we reclaim rcu_read_lock
372                          */
373                         struct bio *bi;
374                         atomic_inc(&rdev->nr_pending);
375                         atomic_inc(&rdev->nr_pending);
376                         rcu_read_unlock();
377                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378                         bi->bi_end_io = md_end_flush;
379                         bi->bi_private = rdev;
380                         bi->bi_bdev = rdev->bdev;
381                         atomic_inc(&mddev->flush_pending);
382                         submit_bio(WRITE_FLUSH, bi);
383                         rcu_read_lock();
384                         rdev_dec_pending(rdev, mddev);
385                 }
386         rcu_read_unlock();
387         if (atomic_dec_and_test(&mddev->flush_pending))
388                 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394         struct bio *bio = mddev->flush_bio;
395
396         if (bio->bi_size == 0)
397                 /* an empty barrier - all done */
398                 bio_endio(bio, 0);
399         else {
400                 bio->bi_rw &= ~REQ_FLUSH;
401                 mddev->pers->make_request(mddev, bio);
402         }
403
404         mddev->flush_bio = NULL;
405         wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410         spin_lock_irq(&mddev->write_lock);
411         wait_event_lock_irq(mddev->sb_wait,
412                             !mddev->flush_bio,
413                             mddev->write_lock);
414         mddev->flush_bio = bio;
415         spin_unlock_irq(&mddev->write_lock);
416
417         INIT_WORK(&mddev->flush_work, submit_flushes);
418         queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424         struct mddev *mddev = cb->data;
425         md_wakeup_thread(mddev->thread);
426         kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432         atomic_inc(&mddev->active);
433         return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440         struct bio_set *bs = NULL;
441
442         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443                 return;
444         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445             mddev->ctime == 0 && !mddev->hold_active) {
446                 /* Array is not configured at all, and not held active,
447                  * so destroy it */
448                 list_del_init(&mddev->all_mddevs);
449                 bs = mddev->bio_set;
450                 mddev->bio_set = NULL;
451                 if (mddev->gendisk) {
452                         /* We did a probe so need to clean up.  Call
453                          * queue_work inside the spinlock so that
454                          * flush_workqueue() after mddev_find will
455                          * succeed in waiting for the work to be done.
456                          */
457                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458                         queue_work(md_misc_wq, &mddev->del_work);
459                 } else
460                         kfree(mddev);
461         }
462         spin_unlock(&all_mddevs_lock);
463         if (bs)
464                 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469         mutex_init(&mddev->open_mutex);
470         mutex_init(&mddev->reconfig_mutex);
471         mutex_init(&mddev->bitmap_info.mutex);
472         INIT_LIST_HEAD(&mddev->disks);
473         INIT_LIST_HEAD(&mddev->all_mddevs);
474         init_timer(&mddev->safemode_timer);
475         atomic_set(&mddev->active, 1);
476         atomic_set(&mddev->openers, 0);
477         atomic_set(&mddev->active_io, 0);
478         spin_lock_init(&mddev->write_lock);
479         atomic_set(&mddev->flush_pending, 0);
480         init_waitqueue_head(&mddev->sb_wait);
481         init_waitqueue_head(&mddev->recovery_wait);
482         mddev->reshape_position = MaxSector;
483         mddev->reshape_backwards = 0;
484         mddev->last_sync_action = "none";
485         mddev->resync_min = 0;
486         mddev->resync_max = MaxSector;
487         mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493         struct mddev *mddev, *new = NULL;
494
495         if (unit && MAJOR(unit) != MD_MAJOR)
496                 unit &= ~((1<<MdpMinorShift)-1);
497
498  retry:
499         spin_lock(&all_mddevs_lock);
500
501         if (unit) {
502                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503                         if (mddev->unit == unit) {
504                                 mddev_get(mddev);
505                                 spin_unlock(&all_mddevs_lock);
506                                 kfree(new);
507                                 return mddev;
508                         }
509
510                 if (new) {
511                         list_add(&new->all_mddevs, &all_mddevs);
512                         spin_unlock(&all_mddevs_lock);
513                         new->hold_active = UNTIL_IOCTL;
514                         return new;
515                 }
516         } else if (new) {
517                 /* find an unused unit number */
518                 static int next_minor = 512;
519                 int start = next_minor;
520                 int is_free = 0;
521                 int dev = 0;
522                 while (!is_free) {
523                         dev = MKDEV(MD_MAJOR, next_minor);
524                         next_minor++;
525                         if (next_minor > MINORMASK)
526                                 next_minor = 0;
527                         if (next_minor == start) {
528                                 /* Oh dear, all in use. */
529                                 spin_unlock(&all_mddevs_lock);
530                                 kfree(new);
531                                 return NULL;
532                         }
533                                 
534                         is_free = 1;
535                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536                                 if (mddev->unit == dev) {
537                                         is_free = 0;
538                                         break;
539                                 }
540                 }
541                 new->unit = dev;
542                 new->md_minor = MINOR(dev);
543                 new->hold_active = UNTIL_STOP;
544                 list_add(&new->all_mddevs, &all_mddevs);
545                 spin_unlock(&all_mddevs_lock);
546                 return new;
547         }
548         spin_unlock(&all_mddevs_lock);
549
550         new = kzalloc(sizeof(*new), GFP_KERNEL);
551         if (!new)
552                 return NULL;
553
554         new->unit = unit;
555         if (MAJOR(unit) == MD_MAJOR)
556                 new->md_minor = MINOR(unit);
557         else
558                 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560         mddev_init(new);
561
562         goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567         return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571  * failure due to interrupts is not acceptable.
572  */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575         mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580         return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585         return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592         if (mddev->to_remove) {
593                 /* These cannot be removed under reconfig_mutex as
594                  * an access to the files will try to take reconfig_mutex
595                  * while holding the file unremovable, which leads to
596                  * a deadlock.
597                  * So hold set sysfs_active while the remove in happeing,
598                  * and anything else which might set ->to_remove or my
599                  * otherwise change the sysfs namespace will fail with
600                  * -EBUSY if sysfs_active is still set.
601                  * We set sysfs_active under reconfig_mutex and elsewhere
602                  * test it under the same mutex to ensure its correct value
603                  * is seen.
604                  */
605                 struct attribute_group *to_remove = mddev->to_remove;
606                 mddev->to_remove = NULL;
607                 mddev->sysfs_active = 1;
608                 mutex_unlock(&mddev->reconfig_mutex);
609
610                 if (mddev->kobj.sd) {
611                         if (to_remove != &md_redundancy_group)
612                                 sysfs_remove_group(&mddev->kobj, to_remove);
613                         if (mddev->pers == NULL ||
614                             mddev->pers->sync_request == NULL) {
615                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616                                 if (mddev->sysfs_action)
617                                         sysfs_put(mddev->sysfs_action);
618                                 mddev->sysfs_action = NULL;
619                         }
620                 }
621                 mddev->sysfs_active = 0;
622         } else
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625         /* As we've dropped the mutex we need a spinlock to
626          * make sure the thread doesn't disappear
627          */
628         spin_lock(&pers_lock);
629         md_wakeup_thread(mddev->thread);
630         spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646         struct md_rdev *rdev;
647
648         rdev_for_each_rcu(rdev, mddev)
649                 if (rdev->desc_nr == nr)
650                         return rdev;
651
652         return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657         struct md_rdev *rdev;
658
659         rdev_for_each(rdev, mddev)
660                 if (rdev->bdev->bd_dev == dev)
661                         return rdev;
662
663         return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each_rcu(rdev, mddev)
671                 if (rdev->bdev->bd_dev == dev)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679         struct md_personality *pers;
680         list_for_each_entry(pers, &pers_list, list) {
681                 if (level != LEVEL_NONE && pers->level == level)
682                         return pers;
683                 if (strcmp(pers->name, clevel)==0)
684                         return pers;
685         }
686         return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693         return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698         if (rdev->sb_page)
699                 MD_BUG();
700
701         rdev->sb_page = alloc_page(GFP_KERNEL);
702         if (!rdev->sb_page) {
703                 printk(KERN_ALERT "md: out of memory.\n");
704                 return -ENOMEM;
705         }
706
707         return 0;
708 }
709
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712         if (rdev->sb_page) {
713                 put_page(rdev->sb_page);
714                 rdev->sb_loaded = 0;
715                 rdev->sb_page = NULL;
716                 rdev->sb_start = 0;
717                 rdev->sectors = 0;
718         }
719         if (rdev->bb_page) {
720                 put_page(rdev->bb_page);
721                 rdev->bb_page = NULL;
722         }
723         kfree(rdev->badblocks.page);
724         rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727
728 static void super_written(struct bio *bio, int error)
729 {
730         struct md_rdev *rdev = bio->bi_private;
731         struct mddev *mddev = rdev->mddev;
732
733         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734                 printk("md: super_written gets error=%d, uptodate=%d\n",
735                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737                 md_error(mddev, rdev);
738         }
739
740         if (atomic_dec_and_test(&mddev->pending_writes))
741                 wake_up(&mddev->sb_wait);
742         bio_put(bio);
743 }
744
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746                    sector_t sector, int size, struct page *page)
747 {
748         /* write first size bytes of page to sector of rdev
749          * Increment mddev->pending_writes before returning
750          * and decrement it on completion, waking up sb_wait
751          * if zero is reached.
752          * If an error occurred, call md_error
753          */
754         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755
756         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757         bio->bi_sector = sector;
758         bio_add_page(bio, page, size, 0);
759         bio->bi_private = rdev;
760         bio->bi_end_io = super_written;
761
762         atomic_inc(&mddev->pending_writes);
763         submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765
766 void md_super_wait(struct mddev *mddev)
767 {
768         /* wait for all superblock writes that were scheduled to complete */
769         DEFINE_WAIT(wq);
770         for(;;) {
771                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772                 if (atomic_read(&mddev->pending_writes)==0)
773                         break;
774                 schedule();
775         }
776         finish_wait(&mddev->sb_wait, &wq);
777 }
778
779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
780                  struct page *page, int rw, bool metadata_op)
781 {
782         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
783         int ret;
784
785         rw |= REQ_SYNC;
786
787         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
788                 rdev->meta_bdev : rdev->bdev;
789         if (metadata_op)
790                 bio->bi_sector = sector + rdev->sb_start;
791         else if (rdev->mddev->reshape_position != MaxSector &&
792                  (rdev->mddev->reshape_backwards ==
793                   (sector >= rdev->mddev->reshape_position)))
794                 bio->bi_sector = sector + rdev->new_data_offset;
795         else
796                 bio->bi_sector = sector + rdev->data_offset;
797         bio_add_page(bio, page, size, 0);
798         submit_bio_wait(rw, bio);
799
800         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
801         bio_put(bio);
802         return ret;
803 }
804 EXPORT_SYMBOL_GPL(sync_page_io);
805
806 static int read_disk_sb(struct md_rdev * rdev, int size)
807 {
808         char b[BDEVNAME_SIZE];
809         if (!rdev->sb_page) {
810                 MD_BUG();
811                 return -EINVAL;
812         }
813         if (rdev->sb_loaded)
814                 return 0;
815
816
817         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
818                 goto fail;
819         rdev->sb_loaded = 1;
820         return 0;
821
822 fail:
823         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
824                 bdevname(rdev->bdev,b));
825         return -EINVAL;
826 }
827
828 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
829 {
830         return  sb1->set_uuid0 == sb2->set_uuid0 &&
831                 sb1->set_uuid1 == sb2->set_uuid1 &&
832                 sb1->set_uuid2 == sb2->set_uuid2 &&
833                 sb1->set_uuid3 == sb2->set_uuid3;
834 }
835
836 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
837 {
838         int ret;
839         mdp_super_t *tmp1, *tmp2;
840
841         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
842         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
843
844         if (!tmp1 || !tmp2) {
845                 ret = 0;
846                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
847                 goto abort;
848         }
849
850         *tmp1 = *sb1;
851         *tmp2 = *sb2;
852
853         /*
854          * nr_disks is not constant
855          */
856         tmp1->nr_disks = 0;
857         tmp2->nr_disks = 0;
858
859         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
860 abort:
861         kfree(tmp1);
862         kfree(tmp2);
863         return ret;
864 }
865
866
867 static u32 md_csum_fold(u32 csum)
868 {
869         csum = (csum & 0xffff) + (csum >> 16);
870         return (csum & 0xffff) + (csum >> 16);
871 }
872
873 static unsigned int calc_sb_csum(mdp_super_t * sb)
874 {
875         u64 newcsum = 0;
876         u32 *sb32 = (u32*)sb;
877         int i;
878         unsigned int disk_csum, csum;
879
880         disk_csum = sb->sb_csum;
881         sb->sb_csum = 0;
882
883         for (i = 0; i < MD_SB_BYTES/4 ; i++)
884                 newcsum += sb32[i];
885         csum = (newcsum & 0xffffffff) + (newcsum>>32);
886
887
888 #ifdef CONFIG_ALPHA
889         /* This used to use csum_partial, which was wrong for several
890          * reasons including that different results are returned on
891          * different architectures.  It isn't critical that we get exactly
892          * the same return value as before (we always csum_fold before
893          * testing, and that removes any differences).  However as we
894          * know that csum_partial always returned a 16bit value on
895          * alphas, do a fold to maximise conformity to previous behaviour.
896          */
897         sb->sb_csum = md_csum_fold(disk_csum);
898 #else
899         sb->sb_csum = disk_csum;
900 #endif
901         return csum;
902 }
903
904
905 /*
906  * Handle superblock details.
907  * We want to be able to handle multiple superblock formats
908  * so we have a common interface to them all, and an array of
909  * different handlers.
910  * We rely on user-space to write the initial superblock, and support
911  * reading and updating of superblocks.
912  * Interface methods are:
913  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
914  *      loads and validates a superblock on dev.
915  *      if refdev != NULL, compare superblocks on both devices
916  *    Return:
917  *      0 - dev has a superblock that is compatible with refdev
918  *      1 - dev has a superblock that is compatible and newer than refdev
919  *          so dev should be used as the refdev in future
920  *     -EINVAL superblock incompatible or invalid
921  *     -othererror e.g. -EIO
922  *
923  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
924  *      Verify that dev is acceptable into mddev.
925  *       The first time, mddev->raid_disks will be 0, and data from
926  *       dev should be merged in.  Subsequent calls check that dev
927  *       is new enough.  Return 0 or -EINVAL
928  *
929  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
930  *     Update the superblock for rdev with data in mddev
931  *     This does not write to disc.
932  *
933  */
934
935 struct super_type  {
936         char                *name;
937         struct module       *owner;
938         int                 (*load_super)(struct md_rdev *rdev,
939                                           struct md_rdev *refdev,
940                                           int minor_version);
941         int                 (*validate_super)(struct mddev *mddev,
942                                               struct md_rdev *rdev);
943         void                (*sync_super)(struct mddev *mddev,
944                                           struct md_rdev *rdev);
945         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
946                                                 sector_t num_sectors);
947         int                 (*allow_new_offset)(struct md_rdev *rdev,
948                                                 unsigned long long new_offset);
949 };
950
951 /*
952  * Check that the given mddev has no bitmap.
953  *
954  * This function is called from the run method of all personalities that do not
955  * support bitmaps. It prints an error message and returns non-zero if mddev
956  * has a bitmap. Otherwise, it returns 0.
957  *
958  */
959 int md_check_no_bitmap(struct mddev *mddev)
960 {
961         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962                 return 0;
963         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964                 mdname(mddev), mddev->pers->name);
965         return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968
969 /*
970  * load_super for 0.90.0 
971  */
972 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
973 {
974         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975         mdp_super_t *sb;
976         int ret;
977
978         /*
979          * Calculate the position of the superblock (512byte sectors),
980          * it's at the end of the disk.
981          *
982          * It also happens to be a multiple of 4Kb.
983          */
984         rdev->sb_start = calc_dev_sboffset(rdev);
985
986         ret = read_disk_sb(rdev, MD_SB_BYTES);
987         if (ret) return ret;
988
989         ret = -EINVAL;
990
991         bdevname(rdev->bdev, b);
992         sb = page_address(rdev->sb_page);
993
994         if (sb->md_magic != MD_SB_MAGIC) {
995                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996                        b);
997                 goto abort;
998         }
999
1000         if (sb->major_version != 0 ||
1001             sb->minor_version < 90 ||
1002             sb->minor_version > 91) {
1003                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004                         sb->major_version, sb->minor_version,
1005                         b);
1006                 goto abort;
1007         }
1008
1009         if (sb->raid_disks <= 0)
1010                 goto abort;
1011
1012         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014                         b);
1015                 goto abort;
1016         }
1017
1018         rdev->preferred_minor = sb->md_minor;
1019         rdev->data_offset = 0;
1020         rdev->new_data_offset = 0;
1021         rdev->sb_size = MD_SB_BYTES;
1022         rdev->badblocks.shift = -1;
1023
1024         if (sb->level == LEVEL_MULTIPATH)
1025                 rdev->desc_nr = -1;
1026         else
1027                 rdev->desc_nr = sb->this_disk.number;
1028
1029         if (!refdev) {
1030                 ret = 1;
1031         } else {
1032                 __u64 ev1, ev2;
1033                 mdp_super_t *refsb = page_address(refdev->sb_page);
1034                 if (!uuid_equal(refsb, sb)) {
1035                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1036                                 b, bdevname(refdev->bdev,b2));
1037                         goto abort;
1038                 }
1039                 if (!sb_equal(refsb, sb)) {
1040                         printk(KERN_WARNING "md: %s has same UUID"
1041                                " but different superblock to %s\n",
1042                                b, bdevname(refdev->bdev, b2));
1043                         goto abort;
1044                 }
1045                 ev1 = md_event(sb);
1046                 ev2 = md_event(refsb);
1047                 if (ev1 > ev2)
1048                         ret = 1;
1049                 else 
1050                         ret = 0;
1051         }
1052         rdev->sectors = rdev->sb_start;
1053         /* Limit to 4TB as metadata cannot record more than that.
1054          * (not needed for Linear and RAID0 as metadata doesn't
1055          * record this size)
1056          */
1057         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1058                 rdev->sectors = (2ULL << 32) - 2;
1059
1060         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1061                 /* "this cannot possibly happen" ... */
1062                 ret = -EINVAL;
1063
1064  abort:
1065         return ret;
1066 }
1067
1068 /*
1069  * validate_super for 0.90.0
1070  */
1071 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1072 {
1073         mdp_disk_t *desc;
1074         mdp_super_t *sb = page_address(rdev->sb_page);
1075         __u64 ev1 = md_event(sb);
1076
1077         rdev->raid_disk = -1;
1078         clear_bit(Faulty, &rdev->flags);
1079         clear_bit(In_sync, &rdev->flags);
1080         clear_bit(WriteMostly, &rdev->flags);
1081
1082         if (mddev->raid_disks == 0) {
1083                 mddev->major_version = 0;
1084                 mddev->minor_version = sb->minor_version;
1085                 mddev->patch_version = sb->patch_version;
1086                 mddev->external = 0;
1087                 mddev->chunk_sectors = sb->chunk_size >> 9;
1088                 mddev->ctime = sb->ctime;
1089                 mddev->utime = sb->utime;
1090                 mddev->level = sb->level;
1091                 mddev->clevel[0] = 0;
1092                 mddev->layout = sb->layout;
1093                 mddev->raid_disks = sb->raid_disks;
1094                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1095                 mddev->events = ev1;
1096                 mddev->bitmap_info.offset = 0;
1097                 mddev->bitmap_info.space = 0;
1098                 /* bitmap can use 60 K after the 4K superblocks */
1099                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1100                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1101                 mddev->reshape_backwards = 0;
1102
1103                 if (mddev->minor_version >= 91) {
1104                         mddev->reshape_position = sb->reshape_position;
1105                         mddev->delta_disks = sb->delta_disks;
1106                         mddev->new_level = sb->new_level;
1107                         mddev->new_layout = sb->new_layout;
1108                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1109                         if (mddev->delta_disks < 0)
1110                                 mddev->reshape_backwards = 1;
1111                 } else {
1112                         mddev->reshape_position = MaxSector;
1113                         mddev->delta_disks = 0;
1114                         mddev->new_level = mddev->level;
1115                         mddev->new_layout = mddev->layout;
1116                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1117                 }
1118
1119                 if (sb->state & (1<<MD_SB_CLEAN))
1120                         mddev->recovery_cp = MaxSector;
1121                 else {
1122                         if (sb->events_hi == sb->cp_events_hi && 
1123                                 sb->events_lo == sb->cp_events_lo) {
1124                                 mddev->recovery_cp = sb->recovery_cp;
1125                         } else
1126                                 mddev->recovery_cp = 0;
1127                 }
1128
1129                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1130                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1131                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1132                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1133
1134                 mddev->max_disks = MD_SB_DISKS;
1135
1136                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1137                     mddev->bitmap_info.file == NULL) {
1138                         mddev->bitmap_info.offset =
1139                                 mddev->bitmap_info.default_offset;
1140                         mddev->bitmap_info.space =
1141                                 mddev->bitmap_info.default_space;
1142                 }
1143
1144         } else if (mddev->pers == NULL) {
1145                 /* Insist on good event counter while assembling, except
1146                  * for spares (which don't need an event count) */
1147                 ++ev1;
1148                 if (sb->disks[rdev->desc_nr].state & (
1149                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1150                         if (ev1 < mddev->events) 
1151                                 return -EINVAL;
1152         } else if (mddev->bitmap) {
1153                 /* if adding to array with a bitmap, then we can accept an
1154                  * older device ... but not too old.
1155                  */
1156                 if (ev1 < mddev->bitmap->events_cleared)
1157                         return 0;
1158         } else {
1159                 if (ev1 < mddev->events)
1160                         /* just a hot-add of a new device, leave raid_disk at -1 */
1161                         return 0;
1162         }
1163
1164         if (mddev->level != LEVEL_MULTIPATH) {
1165                 desc = sb->disks + rdev->desc_nr;
1166
1167                 if (desc->state & (1<<MD_DISK_FAULTY))
1168                         set_bit(Faulty, &rdev->flags);
1169                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1170                             desc->raid_disk < mddev->raid_disks */) {
1171                         set_bit(In_sync, &rdev->flags);
1172                         rdev->raid_disk = desc->raid_disk;
1173                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1174                         /* active but not in sync implies recovery up to
1175                          * reshape position.  We don't know exactly where
1176                          * that is, so set to zero for now */
1177                         if (mddev->minor_version >= 91) {
1178                                 rdev->recovery_offset = 0;
1179                                 rdev->raid_disk = desc->raid_disk;
1180                         }
1181                 }
1182                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1183                         set_bit(WriteMostly, &rdev->flags);
1184         } else /* MULTIPATH are always insync */
1185                 set_bit(In_sync, &rdev->flags);
1186         return 0;
1187 }
1188
1189 /*
1190  * sync_super for 0.90.0
1191  */
1192 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1193 {
1194         mdp_super_t *sb;
1195         struct md_rdev *rdev2;
1196         int next_spare = mddev->raid_disks;
1197
1198
1199         /* make rdev->sb match mddev data..
1200          *
1201          * 1/ zero out disks
1202          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1203          * 3/ any empty disks < next_spare become removed
1204          *
1205          * disks[0] gets initialised to REMOVED because
1206          * we cannot be sure from other fields if it has
1207          * been initialised or not.
1208          */
1209         int i;
1210         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1211
1212         rdev->sb_size = MD_SB_BYTES;
1213
1214         sb = page_address(rdev->sb_page);
1215
1216         memset(sb, 0, sizeof(*sb));
1217
1218         sb->md_magic = MD_SB_MAGIC;
1219         sb->major_version = mddev->major_version;
1220         sb->patch_version = mddev->patch_version;
1221         sb->gvalid_words  = 0; /* ignored */
1222         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1223         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1224         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1225         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1226
1227         sb->ctime = mddev->ctime;
1228         sb->level = mddev->level;
1229         sb->size = mddev->dev_sectors / 2;
1230         sb->raid_disks = mddev->raid_disks;
1231         sb->md_minor = mddev->md_minor;
1232         sb->not_persistent = 0;
1233         sb->utime = mddev->utime;
1234         sb->state = 0;
1235         sb->events_hi = (mddev->events>>32);
1236         sb->events_lo = (u32)mddev->events;
1237
1238         if (mddev->reshape_position == MaxSector)
1239                 sb->minor_version = 90;
1240         else {
1241                 sb->minor_version = 91;
1242                 sb->reshape_position = mddev->reshape_position;
1243                 sb->new_level = mddev->new_level;
1244                 sb->delta_disks = mddev->delta_disks;
1245                 sb->new_layout = mddev->new_layout;
1246                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1247         }
1248         mddev->minor_version = sb->minor_version;
1249         if (mddev->in_sync)
1250         {
1251                 sb->recovery_cp = mddev->recovery_cp;
1252                 sb->cp_events_hi = (mddev->events>>32);
1253                 sb->cp_events_lo = (u32)mddev->events;
1254                 if (mddev->recovery_cp == MaxSector)
1255                         sb->state = (1<< MD_SB_CLEAN);
1256         } else
1257                 sb->recovery_cp = 0;
1258
1259         sb->layout = mddev->layout;
1260         sb->chunk_size = mddev->chunk_sectors << 9;
1261
1262         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1263                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1264
1265         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1266         rdev_for_each(rdev2, mddev) {
1267                 mdp_disk_t *d;
1268                 int desc_nr;
1269                 int is_active = test_bit(In_sync, &rdev2->flags);
1270
1271                 if (rdev2->raid_disk >= 0 &&
1272                     sb->minor_version >= 91)
1273                         /* we have nowhere to store the recovery_offset,
1274                          * but if it is not below the reshape_position,
1275                          * we can piggy-back on that.
1276                          */
1277                         is_active = 1;
1278                 if (rdev2->raid_disk < 0 ||
1279                     test_bit(Faulty, &rdev2->flags))
1280                         is_active = 0;
1281                 if (is_active)
1282                         desc_nr = rdev2->raid_disk;
1283                 else
1284                         desc_nr = next_spare++;
1285                 rdev2->desc_nr = desc_nr;
1286                 d = &sb->disks[rdev2->desc_nr];
1287                 nr_disks++;
1288                 d->number = rdev2->desc_nr;
1289                 d->major = MAJOR(rdev2->bdev->bd_dev);
1290                 d->minor = MINOR(rdev2->bdev->bd_dev);
1291                 if (is_active)
1292                         d->raid_disk = rdev2->raid_disk;
1293                 else
1294                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1295                 if (test_bit(Faulty, &rdev2->flags))
1296                         d->state = (1<<MD_DISK_FAULTY);
1297                 else if (is_active) {
1298                         d->state = (1<<MD_DISK_ACTIVE);
1299                         if (test_bit(In_sync, &rdev2->flags))
1300                                 d->state |= (1<<MD_DISK_SYNC);
1301                         active++;
1302                         working++;
1303                 } else {
1304                         d->state = 0;
1305                         spare++;
1306                         working++;
1307                 }
1308                 if (test_bit(WriteMostly, &rdev2->flags))
1309                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1310         }
1311         /* now set the "removed" and "faulty" bits on any missing devices */
1312         for (i=0 ; i < mddev->raid_disks ; i++) {
1313                 mdp_disk_t *d = &sb->disks[i];
1314                 if (d->state == 0 && d->number == 0) {
1315                         d->number = i;
1316                         d->raid_disk = i;
1317                         d->state = (1<<MD_DISK_REMOVED);
1318                         d->state |= (1<<MD_DISK_FAULTY);
1319                         failed++;
1320                 }
1321         }
1322         sb->nr_disks = nr_disks;
1323         sb->active_disks = active;
1324         sb->working_disks = working;
1325         sb->failed_disks = failed;
1326         sb->spare_disks = spare;
1327
1328         sb->this_disk = sb->disks[rdev->desc_nr];
1329         sb->sb_csum = calc_sb_csum(sb);
1330 }
1331
1332 /*
1333  * rdev_size_change for 0.90.0
1334  */
1335 static unsigned long long
1336 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1337 {
1338         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1339                 return 0; /* component must fit device */
1340         if (rdev->mddev->bitmap_info.offset)
1341                 return 0; /* can't move bitmap */
1342         rdev->sb_start = calc_dev_sboffset(rdev);
1343         if (!num_sectors || num_sectors > rdev->sb_start)
1344                 num_sectors = rdev->sb_start;
1345         /* Limit to 4TB as metadata cannot record more than that.
1346          * 4TB == 2^32 KB, or 2*2^32 sectors.
1347          */
1348         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1349                 num_sectors = (2ULL << 32) - 2;
1350         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1351                        rdev->sb_page);
1352         md_super_wait(rdev->mddev);
1353         return num_sectors;
1354 }
1355
1356 static int
1357 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1358 {
1359         /* non-zero offset changes not possible with v0.90 */
1360         return new_offset == 0;
1361 }
1362
1363 /*
1364  * version 1 superblock
1365  */
1366
1367 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1368 {
1369         __le32 disk_csum;
1370         u32 csum;
1371         unsigned long long newcsum;
1372         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1373         __le32 *isuper = (__le32*)sb;
1374
1375         disk_csum = sb->sb_csum;
1376         sb->sb_csum = 0;
1377         newcsum = 0;
1378         for (; size >= 4; size -= 4)
1379                 newcsum += le32_to_cpu(*isuper++);
1380
1381         if (size == 2)
1382                 newcsum += le16_to_cpu(*(__le16*) isuper);
1383
1384         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1385         sb->sb_csum = disk_csum;
1386         return cpu_to_le32(csum);
1387 }
1388
1389 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1390                             int acknowledged);
1391 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1392 {
1393         struct mdp_superblock_1 *sb;
1394         int ret;
1395         sector_t sb_start;
1396         sector_t sectors;
1397         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1398         int bmask;
1399
1400         /*
1401          * Calculate the position of the superblock in 512byte sectors.
1402          * It is always aligned to a 4K boundary and
1403          * depeding on minor_version, it can be:
1404          * 0: At least 8K, but less than 12K, from end of device
1405          * 1: At start of device
1406          * 2: 4K from start of device.
1407          */
1408         switch(minor_version) {
1409         case 0:
1410                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1411                 sb_start -= 8*2;
1412                 sb_start &= ~(sector_t)(4*2-1);
1413                 break;
1414         case 1:
1415                 sb_start = 0;
1416                 break;
1417         case 2:
1418                 sb_start = 8;
1419                 break;
1420         default:
1421                 return -EINVAL;
1422         }
1423         rdev->sb_start = sb_start;
1424
1425         /* superblock is rarely larger than 1K, but it can be larger,
1426          * and it is safe to read 4k, so we do that
1427          */
1428         ret = read_disk_sb(rdev, 4096);
1429         if (ret) return ret;
1430
1431
1432         sb = page_address(rdev->sb_page);
1433
1434         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1435             sb->major_version != cpu_to_le32(1) ||
1436             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1437             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1438             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1439                 return -EINVAL;
1440
1441         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1442                 printk("md: invalid superblock checksum on %s\n",
1443                         bdevname(rdev->bdev,b));
1444                 return -EINVAL;
1445         }
1446         if (le64_to_cpu(sb->data_size) < 10) {
1447                 printk("md: data_size too small on %s\n",
1448                        bdevname(rdev->bdev,b));
1449                 return -EINVAL;
1450         }
1451         if (sb->pad0 ||
1452             sb->pad3[0] ||
1453             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1454                 /* Some padding is non-zero, might be a new feature */
1455                 return -EINVAL;
1456
1457         rdev->preferred_minor = 0xffff;
1458         rdev->data_offset = le64_to_cpu(sb->data_offset);
1459         rdev->new_data_offset = rdev->data_offset;
1460         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1461             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1462                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1463         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1464
1465         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1466         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1467         if (rdev->sb_size & bmask)
1468                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1469
1470         if (minor_version
1471             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1472                 return -EINVAL;
1473         if (minor_version
1474             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1475                 return -EINVAL;
1476
1477         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1478                 rdev->desc_nr = -1;
1479         else
1480                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1481
1482         if (!rdev->bb_page) {
1483                 rdev->bb_page = alloc_page(GFP_KERNEL);
1484                 if (!rdev->bb_page)
1485                         return -ENOMEM;
1486         }
1487         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1488             rdev->badblocks.count == 0) {
1489                 /* need to load the bad block list.
1490                  * Currently we limit it to one page.
1491                  */
1492                 s32 offset;
1493                 sector_t bb_sector;
1494                 u64 *bbp;
1495                 int i;
1496                 int sectors = le16_to_cpu(sb->bblog_size);
1497                 if (sectors > (PAGE_SIZE / 512))
1498                         return -EINVAL;
1499                 offset = le32_to_cpu(sb->bblog_offset);
1500                 if (offset == 0)
1501                         return -EINVAL;
1502                 bb_sector = (long long)offset;
1503                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1504                                   rdev->bb_page, READ, true))
1505                         return -EIO;
1506                 bbp = (u64 *)page_address(rdev->bb_page);
1507                 rdev->badblocks.shift = sb->bblog_shift;
1508                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1509                         u64 bb = le64_to_cpu(*bbp);
1510                         int count = bb & (0x3ff);
1511                         u64 sector = bb >> 10;
1512                         sector <<= sb->bblog_shift;
1513                         count <<= sb->bblog_shift;
1514                         if (bb + 1 == 0)
1515                                 break;
1516                         if (md_set_badblocks(&rdev->badblocks,
1517                                              sector, count, 1) == 0)
1518                                 return -EINVAL;
1519                 }
1520         } else if (sb->bblog_offset != 0)
1521                 rdev->badblocks.shift = 0;
1522
1523         if (!refdev) {
1524                 ret = 1;
1525         } else {
1526                 __u64 ev1, ev2;
1527                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1528
1529                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1530                     sb->level != refsb->level ||
1531                     sb->layout != refsb->layout ||
1532                     sb->chunksize != refsb->chunksize) {
1533                         printk(KERN_WARNING "md: %s has strangely different"
1534                                 " superblock to %s\n",
1535                                 bdevname(rdev->bdev,b),
1536                                 bdevname(refdev->bdev,b2));
1537                         return -EINVAL;
1538                 }
1539                 ev1 = le64_to_cpu(sb->events);
1540                 ev2 = le64_to_cpu(refsb->events);
1541
1542                 if (ev1 > ev2)
1543                         ret = 1;
1544                 else
1545                         ret = 0;
1546         }
1547         if (minor_version) {
1548                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1549                 sectors -= rdev->data_offset;
1550         } else
1551                 sectors = rdev->sb_start;
1552         if (sectors < le64_to_cpu(sb->data_size))
1553                 return -EINVAL;
1554         rdev->sectors = le64_to_cpu(sb->data_size);
1555         return ret;
1556 }
1557
1558 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1559 {
1560         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1561         __u64 ev1 = le64_to_cpu(sb->events);
1562
1563         rdev->raid_disk = -1;
1564         clear_bit(Faulty, &rdev->flags);
1565         clear_bit(In_sync, &rdev->flags);
1566         clear_bit(WriteMostly, &rdev->flags);
1567
1568         if (mddev->raid_disks == 0) {
1569                 mddev->major_version = 1;
1570                 mddev->patch_version = 0;
1571                 mddev->external = 0;
1572                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1573                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1574                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1575                 mddev->level = le32_to_cpu(sb->level);
1576                 mddev->clevel[0] = 0;
1577                 mddev->layout = le32_to_cpu(sb->layout);
1578                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1579                 mddev->dev_sectors = le64_to_cpu(sb->size);
1580                 mddev->events = ev1;
1581                 mddev->bitmap_info.offset = 0;
1582                 mddev->bitmap_info.space = 0;
1583                 /* Default location for bitmap is 1K after superblock
1584                  * using 3K - total of 4K
1585                  */
1586                 mddev->bitmap_info.default_offset = 1024 >> 9;
1587                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1588                 mddev->reshape_backwards = 0;
1589
1590                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1591                 memcpy(mddev->uuid, sb->set_uuid, 16);
1592
1593                 mddev->max_disks =  (4096-256)/2;
1594
1595                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1596                     mddev->bitmap_info.file == NULL) {
1597                         mddev->bitmap_info.offset =
1598                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1599                         /* Metadata doesn't record how much space is available.
1600                          * For 1.0, we assume we can use up to the superblock
1601                          * if before, else to 4K beyond superblock.
1602                          * For others, assume no change is possible.
1603                          */
1604                         if (mddev->minor_version > 0)
1605                                 mddev->bitmap_info.space = 0;
1606                         else if (mddev->bitmap_info.offset > 0)
1607                                 mddev->bitmap_info.space =
1608                                         8 - mddev->bitmap_info.offset;
1609                         else
1610                                 mddev->bitmap_info.space =
1611                                         -mddev->bitmap_info.offset;
1612                 }
1613
1614                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1615                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1616                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1617                         mddev->new_level = le32_to_cpu(sb->new_level);
1618                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1619                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1620                         if (mddev->delta_disks < 0 ||
1621                             (mddev->delta_disks == 0 &&
1622                              (le32_to_cpu(sb->feature_map)
1623                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1624                                 mddev->reshape_backwards = 1;
1625                 } else {
1626                         mddev->reshape_position = MaxSector;
1627                         mddev->delta_disks = 0;
1628                         mddev->new_level = mddev->level;
1629                         mddev->new_layout = mddev->layout;
1630                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1631                 }
1632
1633         } else if (mddev->pers == NULL) {
1634                 /* Insist of good event counter while assembling, except for
1635                  * spares (which don't need an event count) */
1636                 ++ev1;
1637                 if (rdev->desc_nr >= 0 &&
1638                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1639                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1640                         if (ev1 < mddev->events)
1641                                 return -EINVAL;
1642         } else if (mddev->bitmap) {
1643                 /* If adding to array with a bitmap, then we can accept an
1644                  * older device, but not too old.
1645                  */
1646                 if (ev1 < mddev->bitmap->events_cleared)
1647                         return 0;
1648         } else {
1649                 if (ev1 < mddev->events)
1650                         /* just a hot-add of a new device, leave raid_disk at -1 */
1651                         return 0;
1652         }
1653         if (mddev->level != LEVEL_MULTIPATH) {
1654                 int role;
1655                 if (rdev->desc_nr < 0 ||
1656                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1657                         role = 0xffff;
1658                         rdev->desc_nr = -1;
1659                 } else
1660                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1661                 switch(role) {
1662                 case 0xffff: /* spare */
1663                         break;
1664                 case 0xfffe: /* faulty */
1665                         set_bit(Faulty, &rdev->flags);
1666                         break;
1667                 default:
1668                         if ((le32_to_cpu(sb->feature_map) &
1669                              MD_FEATURE_RECOVERY_OFFSET))
1670                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1671                         else
1672                                 set_bit(In_sync, &rdev->flags);
1673                         rdev->raid_disk = role;
1674                         break;
1675                 }
1676                 if (sb->devflags & WriteMostly1)
1677                         set_bit(WriteMostly, &rdev->flags);
1678                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1679                         set_bit(Replacement, &rdev->flags);
1680         } else /* MULTIPATH are always insync */
1681                 set_bit(In_sync, &rdev->flags);
1682
1683         return 0;
1684 }
1685
1686 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1687 {
1688         struct mdp_superblock_1 *sb;
1689         struct md_rdev *rdev2;
1690         int max_dev, i;
1691         /* make rdev->sb match mddev and rdev data. */
1692
1693         sb = page_address(rdev->sb_page);
1694
1695         sb->feature_map = 0;
1696         sb->pad0 = 0;
1697         sb->recovery_offset = cpu_to_le64(0);
1698         memset(sb->pad3, 0, sizeof(sb->pad3));
1699
1700         sb->utime = cpu_to_le64((__u64)mddev->utime);
1701         sb->events = cpu_to_le64(mddev->events);
1702         if (mddev->in_sync)
1703                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1704         else
1705                 sb->resync_offset = cpu_to_le64(0);
1706
1707         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1708
1709         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1710         sb->size = cpu_to_le64(mddev->dev_sectors);
1711         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1712         sb->level = cpu_to_le32(mddev->level);
1713         sb->layout = cpu_to_le32(mddev->layout);
1714
1715         if (test_bit(WriteMostly, &rdev->flags))
1716                 sb->devflags |= WriteMostly1;
1717         else
1718                 sb->devflags &= ~WriteMostly1;
1719         sb->data_offset = cpu_to_le64(rdev->data_offset);
1720         sb->data_size = cpu_to_le64(rdev->sectors);
1721
1722         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1723                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1724                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1725         }
1726
1727         if (rdev->raid_disk >= 0 &&
1728             !test_bit(In_sync, &rdev->flags)) {
1729                 sb->feature_map |=
1730                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1731                 sb->recovery_offset =
1732                         cpu_to_le64(rdev->recovery_offset);
1733         }
1734         if (test_bit(Replacement, &rdev->flags))
1735                 sb->feature_map |=
1736                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1737
1738         if (mddev->reshape_position != MaxSector) {
1739                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1740                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1741                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1742                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1743                 sb->new_level = cpu_to_le32(mddev->new_level);
1744                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1745                 if (mddev->delta_disks == 0 &&
1746                     mddev->reshape_backwards)
1747                         sb->feature_map
1748                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1749                 if (rdev->new_data_offset != rdev->data_offset) {
1750                         sb->feature_map
1751                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1752                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1753                                                              - rdev->data_offset));
1754                 }
1755         }
1756
1757         if (rdev->badblocks.count == 0)
1758                 /* Nothing to do for bad blocks*/ ;
1759         else if (sb->bblog_offset == 0)
1760                 /* Cannot record bad blocks on this device */
1761                 md_error(mddev, rdev);
1762         else {
1763                 struct badblocks *bb = &rdev->badblocks;
1764                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1765                 u64 *p = bb->page;
1766                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1767                 if (bb->changed) {
1768                         unsigned seq;
1769
1770 retry:
1771                         seq = read_seqbegin(&bb->lock);
1772
1773                         memset(bbp, 0xff, PAGE_SIZE);
1774
1775                         for (i = 0 ; i < bb->count ; i++) {
1776                                 u64 internal_bb = p[i];
1777                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1778                                                 | BB_LEN(internal_bb));
1779                                 bbp[i] = cpu_to_le64(store_bb);
1780                         }
1781                         bb->changed = 0;
1782                         if (read_seqretry(&bb->lock, seq))
1783                                 goto retry;
1784
1785                         bb->sector = (rdev->sb_start +
1786                                       (int)le32_to_cpu(sb->bblog_offset));
1787                         bb->size = le16_to_cpu(sb->bblog_size);
1788                 }
1789         }
1790
1791         max_dev = 0;
1792         rdev_for_each(rdev2, mddev)
1793                 if (rdev2->desc_nr+1 > max_dev)
1794                         max_dev = rdev2->desc_nr+1;
1795
1796         if (max_dev > le32_to_cpu(sb->max_dev)) {
1797                 int bmask;
1798                 sb->max_dev = cpu_to_le32(max_dev);
1799                 rdev->sb_size = max_dev * 2 + 256;
1800                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1801                 if (rdev->sb_size & bmask)
1802                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1803         } else
1804                 max_dev = le32_to_cpu(sb->max_dev);
1805
1806         for (i=0; i<max_dev;i++)
1807                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1808         
1809         rdev_for_each(rdev2, mddev) {
1810                 i = rdev2->desc_nr;
1811                 if (test_bit(Faulty, &rdev2->flags))
1812                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1813                 else if (test_bit(In_sync, &rdev2->flags))
1814                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1815                 else if (rdev2->raid_disk >= 0)
1816                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1817                 else
1818                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1819         }
1820
1821         sb->sb_csum = calc_sb_1_csum(sb);
1822 }
1823
1824 static unsigned long long
1825 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1826 {
1827         struct mdp_superblock_1 *sb;
1828         sector_t max_sectors;
1829         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1830                 return 0; /* component must fit device */
1831         if (rdev->data_offset != rdev->new_data_offset)
1832                 return 0; /* too confusing */
1833         if (rdev->sb_start < rdev->data_offset) {
1834                 /* minor versions 1 and 2; superblock before data */
1835                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1836                 max_sectors -= rdev->data_offset;
1837                 if (!num_sectors || num_sectors > max_sectors)
1838                         num_sectors = max_sectors;
1839         } else if (rdev->mddev->bitmap_info.offset) {
1840                 /* minor version 0 with bitmap we can't move */
1841                 return 0;
1842         } else {
1843                 /* minor version 0; superblock after data */
1844                 sector_t sb_start;
1845                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1846                 sb_start &= ~(sector_t)(4*2 - 1);
1847                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1848                 if (!num_sectors || num_sectors > max_sectors)
1849                         num_sectors = max_sectors;
1850                 rdev->sb_start = sb_start;
1851         }
1852         sb = page_address(rdev->sb_page);
1853         sb->data_size = cpu_to_le64(num_sectors);
1854         sb->super_offset = rdev->sb_start;
1855         sb->sb_csum = calc_sb_1_csum(sb);
1856         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1857                        rdev->sb_page);
1858         md_super_wait(rdev->mddev);
1859         return num_sectors;
1860
1861 }
1862
1863 static int
1864 super_1_allow_new_offset(struct md_rdev *rdev,
1865                          unsigned long long new_offset)
1866 {
1867         /* All necessary checks on new >= old have been done */
1868         struct bitmap *bitmap;
1869         if (new_offset >= rdev->data_offset)
1870                 return 1;
1871
1872         /* with 1.0 metadata, there is no metadata to tread on
1873          * so we can always move back */
1874         if (rdev->mddev->minor_version == 0)
1875                 return 1;
1876
1877         /* otherwise we must be sure not to step on
1878          * any metadata, so stay:
1879          * 36K beyond start of superblock
1880          * beyond end of badblocks
1881          * beyond write-intent bitmap
1882          */
1883         if (rdev->sb_start + (32+4)*2 > new_offset)
1884                 return 0;
1885         bitmap = rdev->mddev->bitmap;
1886         if (bitmap && !rdev->mddev->bitmap_info.file &&
1887             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1888             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1889                 return 0;
1890         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1891                 return 0;
1892
1893         return 1;
1894 }
1895
1896 static struct super_type super_types[] = {
1897         [0] = {
1898                 .name   = "0.90.0",
1899                 .owner  = THIS_MODULE,
1900                 .load_super         = super_90_load,
1901                 .validate_super     = super_90_validate,
1902                 .sync_super         = super_90_sync,
1903                 .rdev_size_change   = super_90_rdev_size_change,
1904                 .allow_new_offset   = super_90_allow_new_offset,
1905         },
1906         [1] = {
1907                 .name   = "md-1",
1908                 .owner  = THIS_MODULE,
1909                 .load_super         = super_1_load,
1910                 .validate_super     = super_1_validate,
1911                 .sync_super         = super_1_sync,
1912                 .rdev_size_change   = super_1_rdev_size_change,
1913                 .allow_new_offset   = super_1_allow_new_offset,
1914         },
1915 };
1916
1917 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1918 {
1919         if (mddev->sync_super) {
1920                 mddev->sync_super(mddev, rdev);
1921                 return;
1922         }
1923
1924         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1925
1926         super_types[mddev->major_version].sync_super(mddev, rdev);
1927 }
1928
1929 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1930 {
1931         struct md_rdev *rdev, *rdev2;
1932
1933         rcu_read_lock();
1934         rdev_for_each_rcu(rdev, mddev1)
1935                 rdev_for_each_rcu(rdev2, mddev2)
1936                         if (rdev->bdev->bd_contains ==
1937                             rdev2->bdev->bd_contains) {
1938                                 rcu_read_unlock();
1939                                 return 1;
1940                         }
1941         rcu_read_unlock();
1942         return 0;
1943 }
1944
1945 static LIST_HEAD(pending_raid_disks);
1946
1947 /*
1948  * Try to register data integrity profile for an mddev
1949  *
1950  * This is called when an array is started and after a disk has been kicked
1951  * from the array. It only succeeds if all working and active component devices
1952  * are integrity capable with matching profiles.
1953  */
1954 int md_integrity_register(struct mddev *mddev)
1955 {
1956         struct md_rdev *rdev, *reference = NULL;
1957
1958         if (list_empty(&mddev->disks))
1959                 return 0; /* nothing to do */
1960         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1961                 return 0; /* shouldn't register, or already is */
1962         rdev_for_each(rdev, mddev) {
1963                 /* skip spares and non-functional disks */
1964                 if (test_bit(Faulty, &rdev->flags))
1965                         continue;
1966                 if (rdev->raid_disk < 0)
1967                         continue;
1968                 if (!reference) {
1969                         /* Use the first rdev as the reference */
1970                         reference = rdev;
1971                         continue;
1972                 }
1973                 /* does this rdev's profile match the reference profile? */
1974                 if (blk_integrity_compare(reference->bdev->bd_disk,
1975                                 rdev->bdev->bd_disk) < 0)
1976                         return -EINVAL;
1977         }
1978         if (!reference || !bdev_get_integrity(reference->bdev))
1979                 return 0;
1980         /*
1981          * All component devices are integrity capable and have matching
1982          * profiles, register the common profile for the md device.
1983          */
1984         if (blk_integrity_register(mddev->gendisk,
1985                         bdev_get_integrity(reference->bdev)) != 0) {
1986                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1987                         mdname(mddev));
1988                 return -EINVAL;
1989         }
1990         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1991         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1992                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1993                        mdname(mddev));
1994                 return -EINVAL;
1995         }
1996         return 0;
1997 }
1998 EXPORT_SYMBOL(md_integrity_register);
1999
2000 /* Disable data integrity if non-capable/non-matching disk is being added */
2001 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2002 {
2003         struct blk_integrity *bi_rdev;
2004         struct blk_integrity *bi_mddev;
2005
2006         if (!mddev->gendisk)
2007                 return;
2008
2009         bi_rdev = bdev_get_integrity(rdev->bdev);
2010         bi_mddev = blk_get_integrity(mddev->gendisk);
2011
2012         if (!bi_mddev) /* nothing to do */
2013                 return;
2014         if (rdev->raid_disk < 0) /* skip spares */
2015                 return;
2016         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2017                                              rdev->bdev->bd_disk) >= 0)
2018                 return;
2019         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2020         blk_integrity_unregister(mddev->gendisk);
2021 }
2022 EXPORT_SYMBOL(md_integrity_add_rdev);
2023
2024 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2025 {
2026         char b[BDEVNAME_SIZE];
2027         struct kobject *ko;
2028         char *s;
2029         int err;
2030
2031         if (rdev->mddev) {
2032                 MD_BUG();
2033                 return -EINVAL;
2034         }
2035
2036         /* prevent duplicates */
2037         if (find_rdev(mddev, rdev->bdev->bd_dev))
2038                 return -EEXIST;
2039
2040         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2041         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2042                         rdev->sectors < mddev->dev_sectors)) {
2043                 if (mddev->pers) {
2044                         /* Cannot change size, so fail
2045                          * If mddev->level <= 0, then we don't care
2046                          * about aligning sizes (e.g. linear)
2047                          */
2048                         if (mddev->level > 0)
2049                                 return -ENOSPC;
2050                 } else
2051                         mddev->dev_sectors = rdev->sectors;
2052         }
2053
2054         /* Verify rdev->desc_nr is unique.
2055          * If it is -1, assign a free number, else
2056          * check number is not in use
2057          */
2058         if (rdev->desc_nr < 0) {
2059                 int choice = 0;
2060                 if (mddev->pers) choice = mddev->raid_disks;
2061                 while (find_rdev_nr(mddev, choice))
2062                         choice++;
2063                 rdev->desc_nr = choice;
2064         } else {
2065                 if (find_rdev_nr(mddev, rdev->desc_nr))
2066                         return -EBUSY;
2067         }
2068         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2069                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2070                        mdname(mddev), mddev->max_disks);
2071                 return -EBUSY;
2072         }
2073         bdevname(rdev->bdev,b);
2074         while ( (s=strchr(b, '/')) != NULL)
2075                 *s = '!';
2076
2077         rdev->mddev = mddev;
2078         printk(KERN_INFO "md: bind<%s>\n", b);
2079
2080         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2081                 goto fail;
2082
2083         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2084         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2085                 /* failure here is OK */;
2086         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2087
2088         list_add_rcu(&rdev->same_set, &mddev->disks);
2089         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2090
2091         /* May as well allow recovery to be retried once */
2092         mddev->recovery_disabled++;
2093
2094         return 0;
2095
2096  fail:
2097         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2098                b, mdname(mddev));
2099         return err;
2100 }
2101
2102 static void md_delayed_delete(struct work_struct *ws)
2103 {
2104         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2105         kobject_del(&rdev->kobj);
2106         kobject_put(&rdev->kobj);
2107 }
2108
2109 static void unbind_rdev_from_array(struct md_rdev * rdev)
2110 {
2111         char b[BDEVNAME_SIZE];
2112         if (!rdev->mddev) {
2113                 MD_BUG();
2114                 return;
2115         }
2116         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2117         list_del_rcu(&rdev->same_set);
2118         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2119         rdev->mddev = NULL;
2120         sysfs_remove_link(&rdev->kobj, "block");
2121         sysfs_put(rdev->sysfs_state);
2122         rdev->sysfs_state = NULL;
2123         rdev->badblocks.count = 0;
2124         /* We need to delay this, otherwise we can deadlock when
2125          * writing to 'remove' to "dev/state".  We also need
2126          * to delay it due to rcu usage.
2127          */
2128         synchronize_rcu();
2129         INIT_WORK(&rdev->del_work, md_delayed_delete);
2130         kobject_get(&rdev->kobj);
2131         queue_work(md_misc_wq, &rdev->del_work);
2132 }
2133
2134 /*
2135  * prevent the device from being mounted, repartitioned or
2136  * otherwise reused by a RAID array (or any other kernel
2137  * subsystem), by bd_claiming the device.
2138  */
2139 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2140 {
2141         int err = 0;
2142         struct block_device *bdev;
2143         char b[BDEVNAME_SIZE];
2144
2145         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2146                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2147         if (IS_ERR(bdev)) {
2148                 printk(KERN_ERR "md: could not open %s.\n",
2149                         __bdevname(dev, b));
2150                 return PTR_ERR(bdev);
2151         }
2152         rdev->bdev = bdev;
2153         return err;
2154 }
2155
2156 static void unlock_rdev(struct md_rdev *rdev)
2157 {
2158         struct block_device *bdev = rdev->bdev;
2159         rdev->bdev = NULL;
2160         if (!bdev)
2161                 MD_BUG();
2162         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2163 }
2164
2165 void md_autodetect_dev(dev_t dev);
2166
2167 static void export_rdev(struct md_rdev * rdev)
2168 {
2169         char b[BDEVNAME_SIZE];
2170         printk(KERN_INFO "md: export_rdev(%s)\n",
2171                 bdevname(rdev->bdev,b));
2172         if (rdev->mddev)
2173                 MD_BUG();
2174         md_rdev_clear(rdev);
2175 #ifndef MODULE
2176         if (test_bit(AutoDetected, &rdev->flags))
2177                 md_autodetect_dev(rdev->bdev->bd_dev);
2178 #endif
2179         unlock_rdev(rdev);
2180         kobject_put(&rdev->kobj);
2181 }
2182
2183 static void kick_rdev_from_array(struct md_rdev * rdev)
2184 {
2185         unbind_rdev_from_array(rdev);
2186         export_rdev(rdev);
2187 }
2188
2189 static void export_array(struct mddev *mddev)
2190 {
2191         struct md_rdev *rdev, *tmp;
2192
2193         rdev_for_each_safe(rdev, tmp, mddev) {
2194                 if (!rdev->mddev) {
2195                         MD_BUG();
2196                         continue;
2197                 }
2198                 kick_rdev_from_array(rdev);
2199         }
2200         if (!list_empty(&mddev->disks))
2201                 MD_BUG();
2202         mddev->raid_disks = 0;
2203         mddev->major_version = 0;
2204 }
2205
2206 static void print_desc(mdp_disk_t *desc)
2207 {
2208         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2209                 desc->major,desc->minor,desc->raid_disk,desc->state);
2210 }
2211
2212 static void print_sb_90(mdp_super_t *sb)
2213 {
2214         int i;
2215
2216         printk(KERN_INFO 
2217                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2218                 sb->major_version, sb->minor_version, sb->patch_version,
2219                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2220                 sb->ctime);
2221         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2222                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2223                 sb->md_minor, sb->layout, sb->chunk_size);
2224         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2225                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2226                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2227                 sb->failed_disks, sb->spare_disks,
2228                 sb->sb_csum, (unsigned long)sb->events_lo);
2229
2230         printk(KERN_INFO);
2231         for (i = 0; i < MD_SB_DISKS; i++) {
2232                 mdp_disk_t *desc;
2233
2234                 desc = sb->disks + i;
2235                 if (desc->number || desc->major || desc->minor ||
2236                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2237                         printk("     D %2d: ", i);
2238                         print_desc(desc);
2239                 }
2240         }
2241         printk(KERN_INFO "md:     THIS: ");
2242         print_desc(&sb->this_disk);
2243 }
2244
2245 static void print_sb_1(struct mdp_superblock_1 *sb)
2246 {
2247         __u8 *uuid;
2248
2249         uuid = sb->set_uuid;
2250         printk(KERN_INFO
2251                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2252                "md:    Name: \"%s\" CT:%llu\n",
2253                 le32_to_cpu(sb->major_version),
2254                 le32_to_cpu(sb->feature_map),
2255                 uuid,
2256                 sb->set_name,
2257                 (unsigned long long)le64_to_cpu(sb->ctime)
2258                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2259
2260         uuid = sb->device_uuid;
2261         printk(KERN_INFO
2262                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2263                         " RO:%llu\n"
2264                "md:     Dev:%08x UUID: %pU\n"
2265                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2266                "md:         (MaxDev:%u) \n",
2267                 le32_to_cpu(sb->level),
2268                 (unsigned long long)le64_to_cpu(sb->size),
2269                 le32_to_cpu(sb->raid_disks),
2270                 le32_to_cpu(sb->layout),
2271                 le32_to_cpu(sb->chunksize),
2272                 (unsigned long long)le64_to_cpu(sb->data_offset),
2273                 (unsigned long long)le64_to_cpu(sb->data_size),
2274                 (unsigned long long)le64_to_cpu(sb->super_offset),
2275                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2276                 le32_to_cpu(sb->dev_number),
2277                 uuid,
2278                 sb->devflags,
2279                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2280                 (unsigned long long)le64_to_cpu(sb->events),
2281                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2282                 le32_to_cpu(sb->sb_csum),
2283                 le32_to_cpu(sb->max_dev)
2284                 );
2285 }
2286
2287 static void print_rdev(struct md_rdev *rdev, int major_version)
2288 {
2289         char b[BDEVNAME_SIZE];
2290         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2291                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2292                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2293                 rdev->desc_nr);
2294         if (rdev->sb_loaded) {
2295                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2296                 switch (major_version) {
2297                 case 0:
2298                         print_sb_90(page_address(rdev->sb_page));
2299                         break;
2300                 case 1:
2301                         print_sb_1(page_address(rdev->sb_page));
2302                         break;
2303                 }
2304         } else
2305                 printk(KERN_INFO "md: no rdev superblock!\n");
2306 }
2307
2308 static void md_print_devices(void)
2309 {
2310         struct list_head *tmp;
2311         struct md_rdev *rdev;
2312         struct mddev *mddev;
2313         char b[BDEVNAME_SIZE];
2314
2315         printk("\n");
2316         printk("md:     **********************************\n");
2317         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2318         printk("md:     **********************************\n");
2319         for_each_mddev(mddev, tmp) {
2320
2321                 if (mddev->bitmap)
2322                         bitmap_print_sb(mddev->bitmap);
2323                 else
2324                         printk("%s: ", mdname(mddev));
2325                 rdev_for_each(rdev, mddev)
2326                         printk("<%s>", bdevname(rdev->bdev,b));
2327                 printk("\n");
2328
2329                 rdev_for_each(rdev, mddev)
2330                         print_rdev(rdev, mddev->major_version);
2331         }
2332         printk("md:     **********************************\n");
2333         printk("\n");
2334 }
2335
2336
2337 static void sync_sbs(struct mddev * mddev, int nospares)
2338 {
2339         /* Update each superblock (in-memory image), but
2340          * if we are allowed to, skip spares which already
2341          * have the right event counter, or have one earlier
2342          * (which would mean they aren't being marked as dirty
2343          * with the rest of the array)
2344          */
2345         struct md_rdev *rdev;
2346         rdev_for_each(rdev, mddev) {
2347                 if (rdev->sb_events == mddev->events ||
2348                     (nospares &&
2349                      rdev->raid_disk < 0 &&
2350                      rdev->sb_events+1 == mddev->events)) {
2351                         /* Don't update this superblock */
2352                         rdev->sb_loaded = 2;
2353                 } else {
2354                         sync_super(mddev, rdev);
2355                         rdev->sb_loaded = 1;
2356                 }
2357         }
2358 }
2359
2360 static void md_update_sb(struct mddev * mddev, int force_change)
2361 {
2362         struct md_rdev *rdev;
2363         int sync_req;
2364         int nospares = 0;
2365         int any_badblocks_changed = 0;
2366
2367         if (mddev->ro) {
2368                 if (force_change)
2369                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2370                 return;
2371         }
2372 repeat:
2373         /* First make sure individual recovery_offsets are correct */
2374         rdev_for_each(rdev, mddev) {
2375                 if (rdev->raid_disk >= 0 &&
2376                     mddev->delta_disks >= 0 &&
2377                     !test_bit(In_sync, &rdev->flags) &&
2378                     mddev->curr_resync_completed > rdev->recovery_offset)
2379                                 rdev->recovery_offset = mddev->curr_resync_completed;
2380
2381         }       
2382         if (!mddev->persistent) {
2383                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2384                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2385                 if (!mddev->external) {
2386                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2387                         rdev_for_each(rdev, mddev) {
2388                                 if (rdev->badblocks.changed) {
2389                                         rdev->badblocks.changed = 0;
2390                                         md_ack_all_badblocks(&rdev->badblocks);
2391                                         md_error(mddev, rdev);
2392                                 }
2393                                 clear_bit(Blocked, &rdev->flags);
2394                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2395                                 wake_up(&rdev->blocked_wait);
2396                         }
2397                 }
2398                 wake_up(&mddev->sb_wait);
2399                 return;
2400         }
2401
2402         spin_lock_irq(&mddev->write_lock);
2403
2404         mddev->utime = get_seconds();
2405
2406         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2407                 force_change = 1;
2408         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2409                 /* just a clean<-> dirty transition, possibly leave spares alone,
2410                  * though if events isn't the right even/odd, we will have to do
2411                  * spares after all
2412                  */
2413                 nospares = 1;
2414         if (force_change)
2415                 nospares = 0;
2416         if (mddev->degraded)
2417                 /* If the array is degraded, then skipping spares is both
2418                  * dangerous and fairly pointless.
2419                  * Dangerous because a device that was removed from the array
2420                  * might have a event_count that still looks up-to-date,
2421                  * so it can be re-added without a resync.
2422                  * Pointless because if there are any spares to skip,
2423                  * then a recovery will happen and soon that array won't
2424                  * be degraded any more and the spare can go back to sleep then.
2425                  */
2426                 nospares = 0;
2427
2428         sync_req = mddev->in_sync;
2429
2430         /* If this is just a dirty<->clean transition, and the array is clean
2431          * and 'events' is odd, we can roll back to the previous clean state */
2432         if (nospares
2433             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2434             && mddev->can_decrease_events
2435             && mddev->events != 1) {
2436                 mddev->events--;
2437                 mddev->can_decrease_events = 0;
2438         } else {
2439                 /* otherwise we have to go forward and ... */
2440                 mddev->events ++;
2441                 mddev->can_decrease_events = nospares;
2442         }
2443
2444         if (!mddev->events) {
2445                 /*
2446                  * oops, this 64-bit counter should never wrap.
2447                  * Either we are in around ~1 trillion A.C., assuming
2448                  * 1 reboot per second, or we have a bug:
2449                  */
2450                 MD_BUG();
2451                 mddev->events --;
2452         }
2453
2454         rdev_for_each(rdev, mddev) {
2455                 if (rdev->badblocks.changed)
2456                         any_badblocks_changed++;
2457                 if (test_bit(Faulty, &rdev->flags))
2458                         set_bit(FaultRecorded, &rdev->flags);
2459         }
2460
2461         sync_sbs(mddev, nospares);
2462         spin_unlock_irq(&mddev->write_lock);
2463
2464         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2465                  mdname(mddev), mddev->in_sync);
2466
2467         bitmap_update_sb(mddev->bitmap);
2468         rdev_for_each(rdev, mddev) {
2469                 char b[BDEVNAME_SIZE];
2470
2471                 if (rdev->sb_loaded != 1)
2472                         continue; /* no noise on spare devices */
2473
2474                 if (!test_bit(Faulty, &rdev->flags) &&
2475                     rdev->saved_raid_disk == -1) {
2476                         md_super_write(mddev,rdev,
2477                                        rdev->sb_start, rdev->sb_size,
2478                                        rdev->sb_page);
2479                         pr_debug("md: (write) %s's sb offset: %llu\n",
2480                                  bdevname(rdev->bdev, b),
2481                                  (unsigned long long)rdev->sb_start);
2482                         rdev->sb_events = mddev->events;
2483                         if (rdev->badblocks.size) {
2484                                 md_super_write(mddev, rdev,
2485                                                rdev->badblocks.sector,
2486                                                rdev->badblocks.size << 9,
2487                                                rdev->bb_page);
2488                                 rdev->badblocks.size = 0;
2489                         }
2490
2491                 } else if (test_bit(Faulty, &rdev->flags))
2492                         pr_debug("md: %s (skipping faulty)\n",
2493                                  bdevname(rdev->bdev, b));
2494                 else
2495                         pr_debug("(skipping incremental s/r ");
2496
2497                 if (mddev->level == LEVEL_MULTIPATH)
2498                         /* only need to write one superblock... */
2499                         break;
2500         }
2501         md_super_wait(mddev);
2502         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2503
2504         spin_lock_irq(&mddev->write_lock);
2505         if (mddev->in_sync != sync_req ||
2506             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2507                 /* have to write it out again */
2508                 spin_unlock_irq(&mddev->write_lock);
2509                 goto repeat;
2510         }
2511         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2512         spin_unlock_irq(&mddev->write_lock);
2513         wake_up(&mddev->sb_wait);
2514         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2515                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2516
2517         rdev_for_each(rdev, mddev) {
2518                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2519                         clear_bit(Blocked, &rdev->flags);
2520
2521                 if (any_badblocks_changed)
2522                         md_ack_all_badblocks(&rdev->badblocks);
2523                 clear_bit(BlockedBadBlocks, &rdev->flags);
2524                 wake_up(&rdev->blocked_wait);
2525         }
2526 }
2527
2528 /* words written to sysfs files may, or may not, be \n terminated.
2529  * We want to accept with case. For this we use cmd_match.
2530  */
2531 static int cmd_match(const char *cmd, const char *str)
2532 {
2533         /* See if cmd, written into a sysfs file, matches
2534          * str.  They must either be the same, or cmd can
2535          * have a trailing newline
2536          */
2537         while (*cmd && *str && *cmd == *str) {
2538                 cmd++;
2539                 str++;
2540         }
2541         if (*cmd == '\n')
2542                 cmd++;
2543         if (*str || *cmd)
2544                 return 0;
2545         return 1;
2546 }
2547
2548 struct rdev_sysfs_entry {
2549         struct attribute attr;
2550         ssize_t (*show)(struct md_rdev *, char *);
2551         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2552 };
2553
2554 static ssize_t
2555 state_show(struct md_rdev *rdev, char *page)
2556 {
2557         char *sep = "";
2558         size_t len = 0;
2559
2560         if (test_bit(Faulty, &rdev->flags) ||
2561             rdev->badblocks.unacked_exist) {
2562                 len+= sprintf(page+len, "%sfaulty",sep);
2563                 sep = ",";
2564         }
2565         if (test_bit(In_sync, &rdev->flags)) {
2566                 len += sprintf(page+len, "%sin_sync",sep);
2567                 sep = ",";
2568         }
2569         if (test_bit(WriteMostly, &rdev->flags)) {
2570                 len += sprintf(page+len, "%swrite_mostly",sep);
2571                 sep = ",";
2572         }
2573         if (test_bit(Blocked, &rdev->flags) ||
2574             (rdev->badblocks.unacked_exist
2575              && !test_bit(Faulty, &rdev->flags))) {
2576                 len += sprintf(page+len, "%sblocked", sep);
2577                 sep = ",";
2578         }
2579         if (!test_bit(Faulty, &rdev->flags) &&
2580             !test_bit(In_sync, &rdev->flags)) {
2581                 len += sprintf(page+len, "%sspare", sep);
2582                 sep = ",";
2583         }
2584         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2585                 len += sprintf(page+len, "%swrite_error", sep);
2586                 sep = ",";
2587         }
2588         if (test_bit(WantReplacement, &rdev->flags)) {
2589                 len += sprintf(page+len, "%swant_replacement", sep);
2590                 sep = ",";
2591         }
2592         if (test_bit(Replacement, &rdev->flags)) {
2593                 len += sprintf(page+len, "%sreplacement", sep);
2594                 sep = ",";
2595         }
2596
2597         return len+sprintf(page+len, "\n");
2598 }
2599
2600 static ssize_t
2601 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2602 {
2603         /* can write
2604          *  faulty  - simulates an error
2605          *  remove  - disconnects the device
2606          *  writemostly - sets write_mostly
2607          *  -writemostly - clears write_mostly
2608          *  blocked - sets the Blocked flags
2609          *  -blocked - clears the Blocked and possibly simulates an error
2610          *  insync - sets Insync providing device isn't active
2611          *  write_error - sets WriteErrorSeen
2612          *  -write_error - clears WriteErrorSeen
2613          */
2614         int err = -EINVAL;
2615         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2616                 md_error(rdev->mddev, rdev);
2617                 if (test_bit(Faulty, &rdev->flags))
2618                         err = 0;
2619                 else
2620                         err = -EBUSY;
2621         } else if (cmd_match(buf, "remove")) {
2622                 if (rdev->raid_disk >= 0)
2623                         err = -EBUSY;
2624                 else {
2625                         struct mddev *mddev = rdev->mddev;
2626                         kick_rdev_from_array(rdev);
2627                         if (mddev->pers)
2628                                 md_update_sb(mddev, 1);
2629                         md_new_event(mddev);
2630                         err = 0;
2631                 }
2632         } else if (cmd_match(buf, "writemostly")) {
2633                 set_bit(WriteMostly, &rdev->flags);
2634                 err = 0;
2635         } else if (cmd_match(buf, "-writemostly")) {
2636                 clear_bit(WriteMostly, &rdev->flags);
2637                 err = 0;
2638         } else if (cmd_match(buf, "blocked")) {
2639                 set_bit(Blocked, &rdev->flags);
2640                 err = 0;
2641         } else if (cmd_match(buf, "-blocked")) {
2642                 if (!test_bit(Faulty, &rdev->flags) &&
2643                     rdev->badblocks.unacked_exist) {
2644                         /* metadata handler doesn't understand badblocks,
2645                          * so we need to fail the device
2646                          */
2647                         md_error(rdev->mddev, rdev);
2648                 }
2649                 clear_bit(Blocked, &rdev->flags);
2650                 clear_bit(BlockedBadBlocks, &rdev->flags);
2651                 wake_up(&rdev->blocked_wait);
2652                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2653                 md_wakeup_thread(rdev->mddev->thread);
2654
2655                 err = 0;
2656         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2657                 set_bit(In_sync, &rdev->flags);
2658                 err = 0;
2659         } else if (cmd_match(buf, "write_error")) {
2660                 set_bit(WriteErrorSeen, &rdev->flags);
2661                 err = 0;
2662         } else if (cmd_match(buf, "-write_error")) {
2663                 clear_bit(WriteErrorSeen, &rdev->flags);
2664                 err = 0;
2665         } else if (cmd_match(buf, "want_replacement")) {
2666                 /* Any non-spare device that is not a replacement can
2667                  * become want_replacement at any time, but we then need to
2668                  * check if recovery is needed.
2669                  */
2670                 if (rdev->raid_disk >= 0 &&
2671                     !test_bit(Replacement, &rdev->flags))
2672                         set_bit(WantReplacement, &rdev->flags);
2673                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2674                 md_wakeup_thread(rdev->mddev->thread);
2675                 err = 0;
2676         } else if (cmd_match(buf, "-want_replacement")) {
2677                 /* Clearing 'want_replacement' is always allowed.
2678                  * Once replacements starts it is too late though.
2679                  */
2680                 err = 0;
2681                 clear_bit(WantReplacement, &rdev->flags);
2682         } else if (cmd_match(buf, "replacement")) {
2683                 /* Can only set a device as a replacement when array has not
2684                  * yet been started.  Once running, replacement is automatic
2685                  * from spares, or by assigning 'slot'.
2686                  */
2687                 if (rdev->mddev->pers)
2688                         err = -EBUSY;
2689                 else {
2690                         set_bit(Replacement, &rdev->flags);
2691                         err = 0;
2692                 }
2693         } else if (cmd_match(buf, "-replacement")) {
2694                 /* Similarly, can only clear Replacement before start */
2695                 if (rdev->mddev->pers)
2696                         err = -EBUSY;
2697                 else {
2698                         clear_bit(Replacement, &rdev->flags);
2699                         err = 0;
2700                 }
2701         }
2702         if (!err)
2703                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2704         return err ? err : len;
2705 }
2706 static struct rdev_sysfs_entry rdev_state =
2707 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2708
2709 static ssize_t
2710 errors_show(struct md_rdev *rdev, char *page)
2711 {
2712         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2713 }
2714
2715 static ssize_t
2716 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2717 {
2718         char *e;
2719         unsigned long n = simple_strtoul(buf, &e, 10);
2720         if (*buf && (*e == 0 || *e == '\n')) {
2721                 atomic_set(&rdev->corrected_errors, n);
2722                 return len;
2723         }
2724         return -EINVAL;
2725 }
2726 static struct rdev_sysfs_entry rdev_errors =
2727 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2728
2729 static ssize_t
2730 slot_show(struct md_rdev *rdev, char *page)
2731 {
2732         if (rdev->raid_disk < 0)
2733                 return sprintf(page, "none\n");
2734         else
2735                 return sprintf(page, "%d\n", rdev->raid_disk);
2736 }
2737
2738 static ssize_t
2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741         char *e;
2742         int err;
2743         int slot = simple_strtoul(buf, &e, 10);
2744         if (strncmp(buf, "none", 4)==0)
2745                 slot = -1;
2746         else if (e==buf || (*e && *e!= '\n'))
2747                 return -EINVAL;
2748         if (rdev->mddev->pers && slot == -1) {
2749                 /* Setting 'slot' on an active array requires also
2750                  * updating the 'rd%d' link, and communicating
2751                  * with the personality with ->hot_*_disk.
2752                  * For now we only support removing
2753                  * failed/spare devices.  This normally happens automatically,
2754                  * but not when the metadata is externally managed.
2755                  */
2756                 if (rdev->raid_disk == -1)
2757                         return -EEXIST;
2758                 /* personality does all needed checks */
2759                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2760                         return -EINVAL;
2761                 clear_bit(Blocked, &rdev->flags);
2762                 remove_and_add_spares(rdev->mddev, rdev);
2763                 if (rdev->raid_disk >= 0)
2764                         return -EBUSY;
2765                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2766                 md_wakeup_thread(rdev->mddev->thread);
2767         } else if (rdev->mddev->pers) {
2768                 /* Activating a spare .. or possibly reactivating
2769                  * if we ever get bitmaps working here.
2770                  */
2771
2772                 if (rdev->raid_disk != -1)
2773                         return -EBUSY;
2774
2775                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2776                         return -EBUSY;
2777
2778                 if (rdev->mddev->pers->hot_add_disk == NULL)
2779                         return -EINVAL;
2780
2781                 if (slot >= rdev->mddev->raid_disks &&
2782                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2783                         return -ENOSPC;
2784
2785                 rdev->raid_disk = slot;
2786                 if (test_bit(In_sync, &rdev->flags))
2787                         rdev->saved_raid_disk = slot;
2788                 else
2789                         rdev->saved_raid_disk = -1;
2790                 clear_bit(In_sync, &rdev->flags);
2791                 err = rdev->mddev->pers->
2792                         hot_add_disk(rdev->mddev, rdev);
2793                 if (err) {
2794                         rdev->raid_disk = -1;
2795                         return err;
2796                 } else
2797                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2798                 if (sysfs_link_rdev(rdev->mddev, rdev))
2799                         /* failure here is OK */;
2800                 /* don't wakeup anyone, leave that to userspace. */
2801         } else {
2802                 if (slot >= rdev->mddev->raid_disks &&
2803                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804                         return -ENOSPC;
2805                 rdev->raid_disk = slot;
2806                 /* assume it is working */
2807                 clear_bit(Faulty, &rdev->flags);
2808                 clear_bit(WriteMostly, &rdev->flags);
2809                 set_bit(In_sync, &rdev->flags);
2810                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2811         }
2812         return len;
2813 }
2814
2815
2816 static struct rdev_sysfs_entry rdev_slot =
2817 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2818
2819 static ssize_t
2820 offset_show(struct md_rdev *rdev, char *page)
2821 {
2822         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2823 }
2824
2825 static ssize_t
2826 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2827 {
2828         unsigned long long offset;
2829         if (kstrtoull(buf, 10, &offset) < 0)
2830                 return -EINVAL;
2831         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2832                 return -EBUSY;
2833         if (rdev->sectors && rdev->mddev->external)
2834                 /* Must set offset before size, so overlap checks
2835                  * can be sane */
2836                 return -EBUSY;
2837         rdev->data_offset = offset;
2838         rdev->new_data_offset = offset;
2839         return len;
2840 }
2841
2842 static struct rdev_sysfs_entry rdev_offset =
2843 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2844
2845 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2846 {
2847         return sprintf(page, "%llu\n",
2848                        (unsigned long long)rdev->new_data_offset);
2849 }
2850
2851 static ssize_t new_offset_store(struct md_rdev *rdev,
2852                                 const char *buf, size_t len)
2853 {
2854         unsigned long long new_offset;
2855         struct mddev *mddev = rdev->mddev;
2856
2857         if (kstrtoull(buf, 10, &new_offset) < 0)
2858                 return -EINVAL;
2859
2860         if (mddev->sync_thread)
2861                 return -EBUSY;
2862         if (new_offset == rdev->data_offset)
2863                 /* reset is always permitted */
2864                 ;
2865         else if (new_offset > rdev->data_offset) {
2866                 /* must not push array size beyond rdev_sectors */
2867                 if (new_offset - rdev->data_offset
2868                     + mddev->dev_sectors > rdev->sectors)
2869                                 return -E2BIG;
2870         }
2871         /* Metadata worries about other space details. */
2872
2873         /* decreasing the offset is inconsistent with a backwards
2874          * reshape.
2875          */
2876         if (new_offset < rdev->data_offset &&
2877             mddev->reshape_backwards)
2878                 return -EINVAL;
2879         /* Increasing offset is inconsistent with forwards
2880          * reshape.  reshape_direction should be set to
2881          * 'backwards' first.
2882          */
2883         if (new_offset > rdev->data_offset &&
2884             !mddev->reshape_backwards)
2885                 return -EINVAL;
2886
2887         if (mddev->pers && mddev->persistent &&
2888             !super_types[mddev->major_version]
2889             .allow_new_offset(rdev, new_offset))
2890                 return -E2BIG;
2891         rdev->new_data_offset = new_offset;
2892         if (new_offset > rdev->data_offset)
2893                 mddev->reshape_backwards = 1;
2894         else if (new_offset < rdev->data_offset)
2895                 mddev->reshape_backwards = 0;
2896
2897         return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910         /* check if two start/length pairs overlap */
2911         if (s1+l1 <= s2)
2912                 return 0;
2913         if (s2+l2 <= s1)
2914                 return 0;
2915         return 1;
2916 }
2917
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920         unsigned long long blocks;
2921         sector_t new;
2922
2923         if (kstrtoull(buf, 10, &blocks) < 0)
2924                 return -EINVAL;
2925
2926         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927                 return -EINVAL; /* sector conversion overflow */
2928
2929         new = blocks * 2;
2930         if (new != blocks * 2)
2931                 return -EINVAL; /* unsigned long long to sector_t overflow */
2932
2933         *sectors = new;
2934         return 0;
2935 }
2936
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940         struct mddev *my_mddev = rdev->mddev;
2941         sector_t oldsectors = rdev->sectors;
2942         sector_t sectors;
2943
2944         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2945                 return -EINVAL;
2946         if (rdev->data_offset != rdev->new_data_offset)
2947                 return -EINVAL; /* too confusing */
2948         if (my_mddev->pers && rdev->raid_disk >= 0) {
2949                 if (my_mddev->persistent) {
2950                         sectors = super_types[my_mddev->major_version].
2951                                 rdev_size_change(rdev, sectors);
2952                         if (!sectors)
2953                                 return -EBUSY;
2954                 } else if (!sectors)
2955                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2956                                 rdev->data_offset;
2957                 if (!my_mddev->pers->resize)
2958                         /* Cannot change size for RAID0 or Linear etc */
2959                         return -EINVAL;
2960         }
2961         if (sectors < my_mddev->dev_sectors)
2962                 return -EINVAL; /* component must fit device */
2963
2964         rdev->sectors = sectors;
2965         if (sectors > oldsectors && my_mddev->external) {
2966                 /* need to check that all other rdevs with the same ->bdev
2967                  * do not overlap.  We need to unlock the mddev to avoid
2968                  * a deadlock.  We have already changed rdev->sectors, and if
2969                  * we have to change it back, we will have the lock again.
2970                  */
2971                 struct mddev *mddev;
2972                 int overlap = 0;
2973                 struct list_head *tmp;
2974
2975                 mddev_unlock(my_mddev);
2976                 for_each_mddev(mddev, tmp) {
2977                         struct md_rdev *rdev2;
2978
2979                         mddev_lock_nointr(mddev);
2980                         rdev_for_each(rdev2, mddev)
2981                                 if (rdev->bdev == rdev2->bdev &&
2982                                     rdev != rdev2 &&
2983                                     overlaps(rdev->data_offset, rdev->sectors,
2984                                              rdev2->data_offset,
2985                                              rdev2->sectors)) {
2986                                         overlap = 1;
2987                                         break;
2988                                 }
2989                         mddev_unlock(mddev);
2990                         if (overlap) {
2991                                 mddev_put(mddev);
2992                                 break;
2993                         }
2994                 }
2995                 mddev_lock_nointr(my_mddev);
2996                 if (overlap) {
2997                         /* Someone else could have slipped in a size
2998                          * change here, but doing so is just silly.
2999                          * We put oldsectors back because we *know* it is
3000                          * safe, and trust userspace not to race with
3001                          * itself
3002                          */
3003                         rdev->sectors = oldsectors;
3004                         return -EBUSY;
3005                 }
3006         }
3007         return len;
3008 }
3009
3010 static struct rdev_sysfs_entry rdev_size =
3011 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3012
3013
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016         unsigned long long recovery_start = rdev->recovery_offset;
3017
3018         if (test_bit(In_sync, &rdev->flags) ||
3019             recovery_start == MaxSector)
3020                 return sprintf(page, "none\n");
3021
3022         return sprintf(page, "%llu\n", recovery_start);
3023 }
3024
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027         unsigned long long recovery_start;
3028
3029         if (cmd_match(buf, "none"))
3030                 recovery_start = MaxSector;
3031         else if (kstrtoull(buf, 10, &recovery_start))
3032                 return -EINVAL;
3033
3034         if (rdev->mddev->pers &&
3035             rdev->raid_disk >= 0)
3036                 return -EBUSY;
3037
3038         rdev->recovery_offset = recovery_start;
3039         if (recovery_start == MaxSector)
3040                 set_bit(In_sync, &rdev->flags);
3041         else
3042                 clear_bit(In_sync, &rdev->flags);
3043         return len;
3044 }
3045
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048
3049
3050 static ssize_t
3051 badblocks_show(struct badblocks *bb, char *page, int unack);
3052 static ssize_t
3053 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3054
3055 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3056 {
3057         return badblocks_show(&rdev->badblocks, page, 0);
3058 }
3059 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3060 {
3061         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3062         /* Maybe that ack was all we needed */
3063         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3064                 wake_up(&rdev->blocked_wait);
3065         return rv;
3066 }
3067 static struct rdev_sysfs_entry rdev_bad_blocks =
3068 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3069
3070
3071 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3072 {
3073         return badblocks_show(&rdev->badblocks, page, 1);
3074 }
3075 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3076 {
3077         return badblocks_store(&rdev->badblocks, page, len, 1);
3078 }
3079 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3080 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3081
3082 static struct attribute *rdev_default_attrs[] = {
3083         &rdev_state.attr,
3084         &rdev_errors.attr,
3085         &rdev_slot.attr,
3086         &rdev_offset.attr,
3087         &rdev_new_offset.attr,
3088         &rdev_size.attr,
3089         &rdev_recovery_start.attr,
3090         &rdev_bad_blocks.attr,
3091         &rdev_unack_bad_blocks.attr,
3092         NULL,
3093 };
3094 static ssize_t
3095 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3096 {
3097         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3098         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3099         struct mddev *mddev = rdev->mddev;
3100         ssize_t rv;
3101
3102         if (!entry->show)
3103                 return -EIO;
3104
3105         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3106         if (!rv) {
3107                 if (rdev->mddev == NULL)
3108                         rv = -EBUSY;
3109                 else
3110                         rv = entry->show(rdev, page);
3111                 mddev_unlock(mddev);
3112         }
3113         return rv;
3114 }
3115
3116 static ssize_t
3117 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3118               const char *page, size_t length)
3119 {
3120         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3121         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3122         ssize_t rv;
3123         struct mddev *mddev = rdev->mddev;
3124
3125         if (!entry->store)
3126                 return -EIO;
3127         if (!capable(CAP_SYS_ADMIN))
3128                 return -EACCES;
3129         rv = mddev ? mddev_lock(mddev): -EBUSY;
3130         if (!rv) {
3131                 if (rdev->mddev == NULL)
3132                         rv = -EBUSY;
3133                 else
3134                         rv = entry->store(rdev, page, length);
3135                 mddev_unlock(mddev);
3136         }
3137         return rv;
3138 }
3139
3140 static void rdev_free(struct kobject *ko)
3141 {
3142         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3143         kfree(rdev);
3144 }
3145 static const struct sysfs_ops rdev_sysfs_ops = {
3146         .show           = rdev_attr_show,
3147         .store          = rdev_attr_store,
3148 };
3149 static struct kobj_type rdev_ktype = {
3150         .release        = rdev_free,
3151         .sysfs_ops      = &rdev_sysfs_ops,
3152         .default_attrs  = rdev_default_attrs,
3153 };
3154
3155 int md_rdev_init(struct md_rdev *rdev)
3156 {
3157         rdev->desc_nr = -1;
3158         rdev->saved_raid_disk = -1;
3159         rdev->raid_disk = -1;
3160         rdev->flags = 0;
3161         rdev->data_offset = 0;
3162         rdev->new_data_offset = 0;
3163         rdev->sb_events = 0;
3164         rdev->last_read_error.tv_sec  = 0;
3165         rdev->last_read_error.tv_nsec = 0;
3166         rdev->sb_loaded = 0;
3167         rdev->bb_page = NULL;
3168         atomic_set(&rdev->nr_pending, 0);
3169         atomic_set(&rdev->read_errors, 0);
3170         atomic_set(&rdev->corrected_errors, 0);
3171
3172         INIT_LIST_HEAD(&rdev->same_set);
3173         init_waitqueue_head(&rdev->blocked_wait);
3174
3175         /* Add space to store bad block list.
3176          * This reserves the space even on arrays where it cannot
3177          * be used - I wonder if that matters
3178          */
3179         rdev->badblocks.count = 0;
3180         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3181         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3182         seqlock_init(&rdev->badblocks.lock);
3183         if (rdev->badblocks.page == NULL)
3184                 return -ENOMEM;
3185
3186         return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(md_rdev_init);
3189 /*
3190  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3191  *
3192  * mark the device faulty if:
3193  *
3194  *   - the device is nonexistent (zero size)
3195  *   - the device has no valid superblock
3196  *
3197  * a faulty rdev _never_ has rdev->sb set.
3198  */
3199 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3200 {
3201         char b[BDEVNAME_SIZE];
3202         int err;
3203         struct md_rdev *rdev;
3204         sector_t size;
3205
3206         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3207         if (!rdev) {
3208                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3209                 return ERR_PTR(-ENOMEM);
3210         }
3211
3212         err = md_rdev_init(rdev);
3213         if (err)
3214                 goto abort_free;
3215         err = alloc_disk_sb(rdev);
3216         if (err)
3217                 goto abort_free;
3218
3219         err = lock_rdev(rdev, newdev, super_format == -2);
3220         if (err)
3221                 goto abort_free;
3222
3223         kobject_init(&rdev->kobj, &rdev_ktype);
3224
3225         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3226         if (!size) {
3227                 printk(KERN_WARNING 
3228                         "md: %s has zero or unknown size, marking faulty!\n",
3229                         bdevname(rdev->bdev,b));
3230                 err = -EINVAL;
3231                 goto abort_free;
3232         }
3233
3234         if (super_format >= 0) {
3235                 err = super_types[super_format].
3236                         load_super(rdev, NULL, super_minor);
3237                 if (err == -EINVAL) {
3238                         printk(KERN_WARNING
3239                                 "md: %s does not have a valid v%d.%d "
3240                                "superblock, not importing!\n",
3241                                 bdevname(rdev->bdev,b),
3242                                super_format, super_minor);
3243                         goto abort_free;
3244                 }
3245                 if (err < 0) {
3246                         printk(KERN_WARNING 
3247                                 "md: could not read %s's sb, not importing!\n",
3248                                 bdevname(rdev->bdev,b));
3249                         goto abort_free;
3250                 }
3251         }
3252
3253         return rdev;
3254
3255 abort_free:
3256         if (rdev->bdev)
3257                 unlock_rdev(rdev);
3258         md_rdev_clear(rdev);
3259         kfree(rdev);
3260         return ERR_PTR(err);
3261 }
3262
3263 /*
3264  * Check a full RAID array for plausibility
3265  */
3266
3267
3268 static void analyze_sbs(struct mddev * mddev)
3269 {
3270         int i;
3271         struct md_rdev *rdev, *freshest, *tmp;
3272         char b[BDEVNAME_SIZE];
3273
3274         freshest = NULL;
3275         rdev_for_each_safe(rdev, tmp, mddev)
3276                 switch (super_types[mddev->major_version].
3277                         load_super(rdev, freshest, mddev->minor_version)) {
3278                 case 1:
3279                         freshest = rdev;
3280                         break;
3281                 case 0:
3282                         break;
3283                 default:
3284                         printk( KERN_ERR \
3285                                 "md: fatal superblock inconsistency in %s"
3286                                 " -- removing from array\n", 
3287                                 bdevname(rdev->bdev,b));
3288                         kick_rdev_from_array(rdev);
3289                 }
3290
3291
3292         super_types[mddev->major_version].
3293                 validate_super(mddev, freshest);
3294
3295         i = 0;
3296         rdev_for_each_safe(rdev, tmp, mddev) {
3297                 if (mddev->max_disks &&
3298                     (rdev->desc_nr >= mddev->max_disks ||
3299                      i > mddev->max_disks)) {
3300                         printk(KERN_WARNING
3301                                "md: %s: %s: only %d devices permitted\n",
3302                                mdname(mddev), bdevname(rdev->bdev, b),
3303                                mddev->max_disks);
3304                         kick_rdev_from_array(rdev);
3305                         continue;
3306                 }
3307                 if (rdev != freshest)
3308                         if (super_types[mddev->major_version].
3309                             validate_super(mddev, rdev)) {
3310                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3311                                         " from array!\n",
3312                                         bdevname(rdev->bdev,b));
3313                                 kick_rdev_from_array(rdev);
3314                                 continue;
3315                         }
3316                 if (mddev->level == LEVEL_MULTIPATH) {
3317                         rdev->desc_nr = i++;
3318                         rdev->raid_disk = rdev->desc_nr;
3319                         set_bit(In_sync, &rdev->flags);
3320                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3321                         rdev->raid_disk = -1;
3322                         clear_bit(In_sync, &rdev->flags);
3323                 }
3324         }
3325 }
3326
3327 /* Read a fixed-point number.
3328  * Numbers in sysfs attributes should be in "standard" units where
3329  * possible, so time should be in seconds.
3330  * However we internally use a a much smaller unit such as 
3331  * milliseconds or jiffies.
3332  * This function takes a decimal number with a possible fractional
3333  * component, and produces an integer which is the result of
3334  * multiplying that number by 10^'scale'.
3335  * all without any floating-point arithmetic.
3336  */
3337 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3338 {
3339         unsigned long result = 0;
3340         long decimals = -1;
3341         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3342                 if (*cp == '.')
3343                         decimals = 0;
3344                 else if (decimals < scale) {
3345                         unsigned int value;
3346                         value = *cp - '0';
3347                         result = result * 10 + value;
3348                         if (decimals >= 0)
3349                                 decimals++;
3350                 }
3351                 cp++;
3352         }
3353         if (*cp == '\n')
3354                 cp++;
3355         if (*cp)
3356                 return -EINVAL;
3357         if (decimals < 0)
3358                 decimals = 0;
3359         while (decimals < scale) {
3360                 result *= 10;
3361                 decimals ++;
3362         }
3363         *res = result;
3364         return 0;
3365 }
3366
3367
3368 static void md_safemode_timeout(unsigned long data);
3369
3370 static ssize_t
3371 safe_delay_show(struct mddev *mddev, char *page)
3372 {
3373         int msec = (mddev->safemode_delay*1000)/HZ;
3374         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3375 }
3376 static ssize_t
3377 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3378 {
3379         unsigned long msec;
3380
3381         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3382                 return -EINVAL;
3383         if (msec == 0)
3384                 mddev->safemode_delay = 0;
3385         else {
3386                 unsigned long old_delay = mddev->safemode_delay;
3387                 mddev->safemode_delay = (msec*HZ)/1000;
3388                 if (mddev->safemode_delay == 0)
3389                         mddev->safemode_delay = 1;
3390                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3391                         md_safemode_timeout((unsigned long)mddev);
3392         }
3393         return len;
3394 }
3395 static struct md_sysfs_entry md_safe_delay =
3396 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3397
3398 static ssize_t
3399 level_show(struct mddev *mddev, char *page)
3400 {
3401         struct md_personality *p = mddev->pers;
3402         if (p)
3403                 return sprintf(page, "%s\n", p->name);
3404         else if (mddev->clevel[0])
3405                 return sprintf(page, "%s\n", mddev->clevel);
3406         else if (mddev->level != LEVEL_NONE)
3407                 return sprintf(page, "%d\n", mddev->level);
3408         else
3409                 return 0;
3410 }
3411
3412 static ssize_t
3413 level_store(struct mddev *mddev, const char *buf, size_t len)
3414 {
3415         char clevel[16];
3416         ssize_t rv = len;
3417         struct md_personality *pers;
3418         long level;
3419         void *priv;
3420         struct md_rdev *rdev;
3421
3422         if (mddev->pers == NULL) {
3423                 if (len == 0)
3424                         return 0;
3425                 if (len >= sizeof(mddev->clevel))
3426                         return -ENOSPC;
3427                 strncpy(mddev->clevel, buf, len);
3428                 if (mddev->clevel[len-1] == '\n')
3429                         len--;
3430                 mddev->clevel[len] = 0;
3431                 mddev->level = LEVEL_NONE;
3432                 return rv;
3433         }
3434
3435         /* request to change the personality.  Need to ensure:
3436          *  - array is not engaged in resync/recovery/reshape
3437          *  - old personality can be suspended
3438          *  - new personality will access other array.
3439          */
3440
3441         if (mddev->sync_thread ||
3442             mddev->reshape_position != MaxSector ||
3443             mddev->sysfs_active)
3444                 return -EBUSY;
3445
3446         if (!mddev->pers->quiesce) {
3447                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3448                        mdname(mddev), mddev->pers->name);
3449                 return -EINVAL;
3450         }
3451
3452         /* Now find the new personality */
3453         if (len == 0 || len >= sizeof(clevel))
3454                 return -EINVAL;
3455         strncpy(clevel, buf, len);
3456         if (clevel[len-1] == '\n')
3457                 len--;
3458         clevel[len] = 0;
3459         if (kstrtol(clevel, 10, &level))
3460                 level = LEVEL_NONE;
3461
3462         if (request_module("md-%s", clevel) != 0)
3463                 request_module("md-level-%s", clevel);
3464         spin_lock(&pers_lock);
3465         pers = find_pers(level, clevel);
3466         if (!pers || !try_module_get(pers->owner)) {
3467                 spin_unlock(&pers_lock);
3468                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3469                 return -EINVAL;
3470         }
3471         spin_unlock(&pers_lock);
3472
3473         if (pers == mddev->pers) {
3474                 /* Nothing to do! */
3475                 module_put(pers->owner);
3476                 return rv;
3477         }
3478         if (!pers->takeover) {
3479                 module_put(pers->owner);
3480                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3481                        mdname(mddev), clevel);
3482                 return -EINVAL;
3483         }
3484
3485         rdev_for_each(rdev, mddev)
3486                 rdev->new_raid_disk = rdev->raid_disk;
3487
3488         /* ->takeover must set new_* and/or delta_disks
3489          * if it succeeds, and may set them when it fails.
3490          */
3491         priv = pers->takeover(mddev);
3492         if (IS_ERR(priv)) {
3493                 mddev->new_level = mddev->level;
3494                 mddev->new_layout = mddev->layout;
3495                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3496                 mddev->raid_disks -= mddev->delta_disks;
3497                 mddev->delta_disks = 0;
3498                 mddev->reshape_backwards = 0;
3499                 module_put(pers->owner);
3500                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3501                        mdname(mddev), clevel);
3502                 return PTR_ERR(priv);
3503         }
3504
3505         /* Looks like we have a winner */
3506         mddev_suspend(mddev);
3507         mddev->pers->stop(mddev);
3508         
3509         if (mddev->pers->sync_request == NULL &&
3510             pers->sync_request != NULL) {
3511                 /* need to add the md_redundancy_group */
3512                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3513                         printk(KERN_WARNING
3514                                "md: cannot register extra attributes for %s\n",
3515                                mdname(mddev));
3516                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3517         }               
3518         if (mddev->pers->sync_request != NULL &&
3519             pers->sync_request == NULL) {
3520                 /* need to remove the md_redundancy_group */
3521                 if (mddev->to_remove == NULL)
3522                         mddev->to_remove = &md_redundancy_group;
3523         }
3524
3525         if (mddev->pers->sync_request == NULL &&
3526             mddev->external) {
3527                 /* We are converting from a no-redundancy array
3528                  * to a redundancy array and metadata is managed
3529                  * externally so we need to be sure that writes
3530                  * won't block due to a need to transition
3531                  *      clean->dirty
3532                  * until external management is started.
3533                  */
3534                 mddev->in_sync = 0;
3535                 mddev->safemode_delay = 0;
3536                 mddev->safemode = 0;
3537         }
3538
3539         rdev_for_each(rdev, mddev) {
3540                 if (rdev->raid_disk < 0)
3541                         continue;
3542                 if (rdev->new_raid_disk >= mddev->raid_disks)
3543                         rdev->new_raid_disk = -1;
3544                 if (rdev->new_raid_disk == rdev->raid_disk)
3545                         continue;
3546                 sysfs_unlink_rdev(mddev, rdev);
3547         }
3548         rdev_for_each(rdev, mddev) {
3549                 if (rdev->raid_disk < 0)
3550                         continue;
3551                 if (rdev->new_raid_disk == rdev->raid_disk)
3552                         continue;
3553                 rdev->raid_disk = rdev->new_raid_disk;
3554                 if (rdev->raid_disk < 0)
3555                         clear_bit(In_sync, &rdev->flags);
3556                 else {
3557                         if (sysfs_link_rdev(mddev, rdev))
3558                                 printk(KERN_WARNING "md: cannot register rd%d"
3559                                        " for %s after level change\n",
3560                                        rdev->raid_disk, mdname(mddev));
3561                 }
3562         }
3563
3564         module_put(mddev->pers->owner);
3565         mddev->pers = pers;
3566         mddev->private = priv;
3567         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3568         mddev->level = mddev->new_level;
3569         mddev->layout = mddev->new_layout;
3570         mddev->chunk_sectors = mddev->new_chunk_sectors;
3571         mddev->delta_disks = 0;
3572         mddev->reshape_backwards = 0;
3573         mddev->degraded = 0;
3574         if (mddev->pers->sync_request == NULL) {
3575                 /* this is now an array without redundancy, so
3576                  * it must always be in_sync
3577                  */
3578                 mddev->in_sync = 1;
3579                 del_timer_sync(&mddev->safemode_timer);
3580         }
3581         blk_set_stacking_limits(&mddev->queue->limits);
3582         pers->run(mddev);
3583         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3584         mddev_resume(mddev);
3585         sysfs_notify(&mddev->kobj, NULL, "level");
3586         md_new_event(mddev);
3587         return rv;
3588 }
3589
3590 static struct md_sysfs_entry md_level =
3591 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3592
3593
3594 static ssize_t
3595 layout_show(struct mddev *mddev, char *page)
3596 {
3597         /* just a number, not meaningful for all levels */
3598         if (mddev->reshape_position != MaxSector &&
3599             mddev->layout != mddev->new_layout)
3600                 return sprintf(page, "%d (%d)\n",
3601                                mddev->new_layout, mddev->layout);
3602         return sprintf(page, "%d\n", mddev->layout);
3603 }
3604
3605 static ssize_t
3606 layout_store(struct mddev *mddev, const char *buf, size_t len)
3607 {
3608         char *e;
3609         unsigned long n = simple_strtoul(buf, &e, 10);
3610
3611         if (!*buf || (*e && *e != '\n'))
3612                 return -EINVAL;
3613
3614         if (mddev->pers) {
3615                 int err;
3616                 if (mddev->pers->check_reshape == NULL)
3617                         return -EBUSY;
3618                 mddev->new_layout = n;
3619                 err = mddev->pers->check_reshape(mddev);
3620                 if (err) {
3621                         mddev->new_layout = mddev->layout;
3622                         return err;
3623                 }
3624         } else {
3625                 mddev->new_layout = n;
3626                 if (mddev->reshape_position == MaxSector)
3627                         mddev->layout = n;
3628         }
3629         return len;
3630 }
3631 static struct md_sysfs_entry md_layout =
3632 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3633
3634
3635 static ssize_t
3636 raid_disks_show(struct mddev *mddev, char *page)
3637 {
3638         if (mddev->raid_disks == 0)
3639                 return 0;
3640         if (mddev->reshape_position != MaxSector &&
3641             mddev->delta_disks != 0)
3642                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3643                                mddev->raid_disks - mddev->delta_disks);
3644         return sprintf(page, "%d\n", mddev->raid_disks);
3645 }
3646
3647 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3648
3649 static ssize_t
3650 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3651 {
3652         char *e;
3653         int rv = 0;
3654         unsigned long n = simple_strtoul(buf, &e, 10);
3655
3656         if (!*buf || (*e && *e != '\n'))
3657                 return -EINVAL;
3658
3659         if (mddev->pers)
3660                 rv = update_raid_disks(mddev, n);
3661         else if (mddev->reshape_position != MaxSector) {
3662                 struct md_rdev *rdev;
3663                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3664
3665                 rdev_for_each(rdev, mddev) {
3666                         if (olddisks < n &&
3667                             rdev->data_offset < rdev->new_data_offset)
3668                                 return -EINVAL;
3669                         if (olddisks > n &&
3670                             rdev->data_offset > rdev->new_data_offset)
3671                                 return -EINVAL;
3672                 }
3673                 mddev->delta_disks = n - olddisks;
3674                 mddev->raid_disks = n;
3675                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3676         } else
3677                 mddev->raid_disks = n;
3678         return rv ? rv : len;
3679 }
3680 static struct md_sysfs_entry md_raid_disks =
3681 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3682
3683 static ssize_t
3684 chunk_size_show(struct mddev *mddev, char *page)
3685 {
3686         if (mddev->reshape_position != MaxSector &&
3687             mddev->chunk_sectors != mddev->new_chunk_sectors)
3688                 return sprintf(page, "%d (%d)\n",
3689                                mddev->new_chunk_sectors << 9,
3690                                mddev->chunk_sectors << 9);
3691         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3692 }
3693
3694 static ssize_t
3695 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3696 {
3697         char *e;
3698         unsigned long n = simple_strtoul(buf, &e, 10);
3699
3700         if (!*buf || (*e && *e != '\n'))
3701                 return -EINVAL;
3702
3703         if (mddev->pers) {
3704                 int err;
3705                 if (mddev->pers->check_reshape == NULL)
3706                         return -EBUSY;
3707                 mddev->new_chunk_sectors = n >> 9;
3708                 err = mddev->pers->check_reshape(mddev);
3709                 if (err) {
3710                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3711                         return err;
3712                 }
3713         } else {
3714                 mddev->new_chunk_sectors = n >> 9;
3715                 if (mddev->reshape_position == MaxSector)
3716                         mddev->chunk_sectors = n >> 9;
3717         }
3718         return len;
3719 }
3720 static struct md_sysfs_entry md_chunk_size =
3721 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3722
3723 static ssize_t
3724 resync_start_show(struct mddev *mddev, char *page)
3725 {
3726         if (mddev->recovery_cp == MaxSector)
3727                 return sprintf(page, "none\n");
3728         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3729 }
3730
3731 static ssize_t
3732 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3733 {
3734         char *e;
3735         unsigned long long n = simple_strtoull(buf, &e, 10);
3736
3737         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3738                 return -EBUSY;
3739         if (cmd_match(buf, "none"))
3740                 n = MaxSector;
3741         else if (!*buf || (*e && *e != '\n'))
3742                 return -EINVAL;
3743
3744         mddev->recovery_cp = n;
3745         if (mddev->pers)
3746                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3747         return len;
3748 }
3749 static struct md_sysfs_entry md_resync_start =
3750 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3751
3752 /*
3753  * The array state can be:
3754  *
3755  * clear
3756  *     No devices, no size, no level
3757  *     Equivalent to STOP_ARRAY ioctl
3758  * inactive
3759  *     May have some settings, but array is not active
3760  *        all IO results in error
3761  *     When written, doesn't tear down array, but just stops it
3762  * suspended (not supported yet)
3763  *     All IO requests will block. The array can be reconfigured.
3764  *     Writing this, if accepted, will block until array is quiescent
3765  * readonly
3766  *     no resync can happen.  no superblocks get written.
3767  *     write requests fail
3768  * read-auto
3769  *     like readonly, but behaves like 'clean' on a write request.
3770  *
3771  * clean - no pending writes, but otherwise active.
3772  *     When written to inactive array, starts without resync
3773  *     If a write request arrives then
3774  *       if metadata is known, mark 'dirty' and switch to 'active'.
3775  *       if not known, block and switch to write-pending
3776  *     If written to an active array that has pending writes, then fails.
3777  * active
3778  *     fully active: IO and resync can be happening.
3779  *     When written to inactive array, starts with resync
3780  *
3781  * write-pending
3782  *     clean, but writes are blocked waiting for 'active' to be written.
3783  *
3784  * active-idle
3785  *     like active, but no writes have been seen for a while (100msec).
3786  *
3787  */
3788 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3789                    write_pending, active_idle, bad_word};
3790 static char *array_states[] = {
3791         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3792         "write-pending", "active-idle", NULL };
3793
3794 static int match_word(const char *word, char **list)
3795 {
3796         int n;
3797         for (n=0; list[n]; n++)
3798                 if (cmd_match(word, list[n]))
3799                         break;
3800         return n;
3801 }
3802
3803 static ssize_t
3804 array_state_show(struct mddev *mddev, char *page)
3805 {
3806         enum array_state st = inactive;
3807
3808         if (mddev->pers)
3809                 switch(mddev->ro) {
3810                 case 1:
3811                         st = readonly;
3812                         break;
3813                 case 2:
3814                         st = read_auto;
3815                         break;
3816                 case 0:
3817                         if (mddev->in_sync)
3818                                 st = clean;
3819                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3820                                 st = write_pending;
3821                         else if (mddev->safemode)
3822                                 st = active_idle;
3823                         else
3824                                 st = active;
3825                 }
3826         else {
3827                 if (list_empty(&mddev->disks) &&
3828                     mddev->raid_disks == 0 &&
3829                     mddev->dev_sectors == 0)
3830                         st = clear;
3831                 else
3832                         st = inactive;
3833         }
3834         return sprintf(page, "%s\n", array_states[st]);
3835 }
3836
3837 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3838 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3839 static int do_md_run(struct mddev * mddev);
3840 static int restart_array(struct mddev *mddev);
3841
3842 static ssize_t
3843 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3844 {
3845         int err = -EINVAL;
3846         enum array_state st = match_word(buf, array_states);
3847         switch(st) {
3848         case bad_word:
3849                 break;
3850         case clear:
3851                 /* stopping an active array */
3852                 err = do_md_stop(mddev, 0, NULL);
3853                 break;
3854         case inactive:
3855                 /* stopping an active array */
3856                 if (mddev->pers)
3857                         err = do_md_stop(mddev, 2, NULL);
3858                 else
3859                         err = 0; /* already inactive */
3860                 break;
3861         case suspended:
3862                 break; /* not supported yet */
3863         case readonly:
3864                 if (mddev->pers)
3865                         err = md_set_readonly(mddev, NULL);
3866                 else {
3867                         mddev->ro = 1;
3868                         set_disk_ro(mddev->gendisk, 1);
3869                         err = do_md_run(mddev);
3870                 }
3871                 break;
3872         case read_auto:
3873                 if (mddev->pers) {
3874                         if (mddev->ro == 0)
3875                                 err = md_set_readonly(mddev, NULL);
3876                         else if (mddev->ro == 1)
3877                                 err = restart_array(mddev);
3878                         if (err == 0) {
3879                                 mddev->ro = 2;
3880                                 set_disk_ro(mddev->gendisk, 0);
3881                         }
3882                 } else {
3883                         mddev->ro = 2;
3884                         err = do_md_run(mddev);
3885                 }
3886                 break;
3887         case clean:
3888                 if (mddev->pers) {
3889                         restart_array(mddev);
3890                         spin_lock_irq(&mddev->write_lock);
3891                         if (atomic_read(&mddev->writes_pending) == 0) {
3892                                 if (mddev->in_sync == 0) {
3893                                         mddev->in_sync = 1;
3894                                         if (mddev->safemode == 1)
3895                                                 mddev->safemode = 0;
3896                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3897                                 }
3898                                 err = 0;
3899                         } else
3900                                 err = -EBUSY;
3901                         spin_unlock_irq(&mddev->write_lock);
3902                 } else
3903                         err = -EINVAL;
3904                 break;
3905         case active:
3906                 if (mddev->pers) {
3907                         restart_array(mddev);
3908                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3909                         wake_up(&mddev->sb_wait);
3910                         err = 0;
3911                 } else {
3912                         mddev->ro = 0;
3913                         set_disk_ro(mddev->gendisk, 0);
3914                         err = do_md_run(mddev);
3915                 }
3916                 break;
3917         case write_pending:
3918         case active_idle:
3919                 /* these cannot be set */
3920                 break;
3921         }
3922         if (err)
3923                 return err;
3924         else {
3925                 if (mddev->hold_active == UNTIL_IOCTL)
3926                         mddev->hold_active = 0;
3927                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3928                 return len;
3929         }
3930 }
3931 static struct md_sysfs_entry md_array_state =
3932 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3933
3934 static ssize_t
3935 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3936         return sprintf(page, "%d\n",
3937                        atomic_read(&mddev->max_corr_read_errors));
3938 }
3939
3940 static ssize_t
3941 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3942 {
3943         char *e;
3944         unsigned long n = simple_strtoul(buf, &e, 10);
3945
3946         if (*buf && (*e == 0 || *e == '\n')) {
3947                 atomic_set(&mddev->max_corr_read_errors, n);
3948                 return len;
3949         }
3950         return -EINVAL;
3951 }
3952
3953 static struct md_sysfs_entry max_corr_read_errors =
3954 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3955         max_corrected_read_errors_store);
3956
3957 static ssize_t
3958 null_show(struct mddev *mddev, char *page)
3959 {
3960         return -EINVAL;
3961 }
3962
3963 static ssize_t
3964 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3965 {
3966         /* buf must be %d:%d\n? giving major and minor numbers */
3967         /* The new device is added to the array.
3968          * If the array has a persistent superblock, we read the
3969          * superblock to initialise info and check validity.
3970          * Otherwise, only checking done is that in bind_rdev_to_array,
3971          * which mainly checks size.
3972          */
3973         char *e;
3974         int major = simple_strtoul(buf, &e, 10);
3975         int minor;
3976         dev_t dev;
3977         struct md_rdev *rdev;
3978         int err;
3979
3980         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3981                 return -EINVAL;
3982         minor = simple_strtoul(e+1, &e, 10);
3983         if (*e && *e != '\n')
3984                 return -EINVAL;
3985         dev = MKDEV(major, minor);
3986         if (major != MAJOR(dev) ||
3987             minor != MINOR(dev))
3988                 return -EOVERFLOW;
3989
3990
3991         if (mddev->persistent) {
3992                 rdev = md_import_device(dev, mddev->major_version,
3993                                         mddev->minor_version);
3994                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3995                         struct md_rdev *rdev0
3996                                 = list_entry(mddev->disks.next,
3997                                              struct md_rdev, same_set);
3998                         err = super_types[mddev->major_version]
3999                                 .load_super(rdev, rdev0, mddev->minor_version);
4000                         if (err < 0)
4001                                 goto out;
4002                 }
4003         } else if (mddev->external)
4004                 rdev = md_import_device(dev, -2, -1);
4005         else
4006                 rdev = md_import_device(dev, -1, -1);
4007
4008         if (IS_ERR(rdev))
4009                 return PTR_ERR(rdev);
4010         err = bind_rdev_to_array(rdev, mddev);
4011  out:
4012         if (err)
4013                 export_rdev(rdev);
4014         return err ? err : len;
4015 }
4016
4017 static struct md_sysfs_entry md_new_device =
4018 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4019
4020 static ssize_t
4021 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4022 {
4023         char *end;
4024         unsigned long chunk, end_chunk;
4025
4026         if (!mddev->bitmap)
4027                 goto out;
4028         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4029         while (*buf) {
4030                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4031                 if (buf == end) break;
4032                 if (*end == '-') { /* range */
4033                         buf = end + 1;
4034                         end_chunk = simple_strtoul(buf, &end, 0);
4035                         if (buf == end) break;
4036                 }
4037                 if (*end && !isspace(*end)) break;
4038                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4039                 buf = skip_spaces(end);
4040         }
4041         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4042 out:
4043         return len;
4044 }
4045
4046 static struct md_sysfs_entry md_bitmap =
4047 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4048
4049 static ssize_t
4050 size_show(struct mddev *mddev, char *page)
4051 {
4052         return sprintf(page, "%llu\n",
4053                 (unsigned long long)mddev->dev_sectors / 2);
4054 }
4055
4056 static int update_size(struct mddev *mddev, sector_t num_sectors);
4057
4058 static ssize_t
4059 size_store(struct mddev *mddev, const char *buf, size_t len)
4060 {
4061         /* If array is inactive, we can reduce the component size, but
4062          * not increase it (except from 0).
4063          * If array is active, we can try an on-line resize
4064          */
4065         sector_t sectors;
4066         int err = strict_blocks_to_sectors(buf, &sectors);
4067
4068         if (err < 0)
4069                 return err;
4070         if (mddev->pers) {
4071                 err = update_size(mddev, sectors);
4072                 md_update_sb(mddev, 1);
4073         } else {
4074                 if (mddev->dev_sectors == 0 ||
4075                     mddev->dev_sectors > sectors)
4076                         mddev->dev_sectors = sectors;
4077                 else
4078                         err = -ENOSPC;
4079         }
4080         return err ? err : len;
4081 }
4082
4083 static struct md_sysfs_entry md_size =
4084 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4085
4086
4087 /* Metadata version.
4088  * This is one of
4089  *   'none' for arrays with no metadata (good luck...)
4090  *   'external' for arrays with externally managed metadata,
4091  * or N.M for internally known formats
4092  */
4093 static ssize_t
4094 metadata_show(struct mddev *mddev, char *page)
4095 {
4096         if (mddev->persistent)
4097                 return sprintf(page, "%d.%d\n",
4098                                mddev->major_version, mddev->minor_version);
4099         else if (mddev->external)
4100                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4101         else
4102                 return sprintf(page, "none\n");
4103 }
4104
4105 static ssize_t
4106 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4107 {
4108         int major, minor;
4109         char *e;
4110         /* Changing the details of 'external' metadata is
4111          * always permitted.  Otherwise there must be
4112          * no devices attached to the array.
4113          */
4114         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4115                 ;
4116         else if (!list_empty(&mddev->disks))
4117                 return -EBUSY;
4118
4119         if (cmd_match(buf, "none")) {
4120                 mddev->persistent = 0;
4121                 mddev->external = 0;
4122                 mddev->major_version = 0;
4123                 mddev->minor_version = 90;
4124                 return len;
4125         }
4126         if (strncmp(buf, "external:", 9) == 0) {
4127                 size_t namelen = len-9;
4128                 if (namelen >= sizeof(mddev->metadata_type))
4129                         namelen = sizeof(mddev->metadata_type)-1;
4130                 strncpy(mddev->metadata_type, buf+9, namelen);
4131                 mddev->metadata_type[namelen] = 0;
4132                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4133                         mddev->metadata_type[--namelen] = 0;
4134                 mddev->persistent = 0;
4135                 mddev->external = 1;
4136                 mddev->major_version = 0;
4137                 mddev->minor_version = 90;
4138                 return len;
4139         }
4140         major = simple_strtoul(buf, &e, 10);
4141         if (e==buf || *e != '.')
4142                 return -EINVAL;
4143         buf = e+1;
4144         minor = simple_strtoul(buf, &e, 10);
4145         if (e==buf || (*e && *e != '\n') )
4146                 return -EINVAL;
4147         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4148                 return -ENOENT;
4149         mddev->major_version = major;
4150         mddev->minor_version = minor;
4151         mddev->persistent = 1;
4152         mddev->external = 0;
4153         return len;
4154 }
4155
4156 static struct md_sysfs_entry md_metadata =
4157 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4158
4159 static ssize_t
4160 action_show(struct mddev *mddev, char *page)
4161 {
4162         char *type = "idle";
4163         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4164                 type = "frozen";
4165         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4166             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4167                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4168                         type = "reshape";
4169                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4170                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4171                                 type = "resync";
4172                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4173                                 type = "check";
4174                         else
4175                                 type = "repair";
4176                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4177                         type = "recover";
4178         }
4179         return sprintf(page, "%s\n", type);
4180 }
4181
4182 static ssize_t
4183 action_store(struct mddev *mddev, const char *page, size_t len)
4184 {
4185         if (!mddev->pers || !mddev->pers->sync_request)
4186                 return -EINVAL;
4187
4188         if (cmd_match(page, "frozen"))
4189                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4190         else
4191                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4192
4193         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4194                 if (mddev->sync_thread) {
4195                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4196                         md_reap_sync_thread(mddev);
4197                 }
4198         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4199                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4200                 return -EBUSY;
4201         else if (cmd_match(page, "resync"))
4202                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4203         else if (cmd_match(page, "recover")) {
4204                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4205                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4206         } else if (cmd_match(page, "reshape")) {
4207                 int err;
4208                 if (mddev->pers->start_reshape == NULL)
4209                         return -EINVAL;
4210                 err = mddev->pers->start_reshape(mddev);
4211                 if (err)
4212                         return err;
4213                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4214         } else {
4215                 if (cmd_match(page, "check"))
4216                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4217                 else if (!cmd_match(page, "repair"))
4218                         return -EINVAL;
4219                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4220                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4221         }
4222         if (mddev->ro == 2) {
4223                 /* A write to sync_action is enough to justify
4224                  * canceling read-auto mode
4225                  */
4226                 mddev->ro = 0;
4227                 md_wakeup_thread(mddev->sync_thread);
4228         }
4229         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4230         md_wakeup_thread(mddev->thread);
4231         sysfs_notify_dirent_safe(mddev->sysfs_action);
4232         return len;
4233 }
4234
4235 static struct md_sysfs_entry md_scan_mode =
4236 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4237
4238 static ssize_t
4239 last_sync_action_show(struct mddev *mddev, char *page)
4240 {
4241         return sprintf(page, "%s\n", mddev->last_sync_action);
4242 }
4243
4244 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4245
4246 static ssize_t
4247 mismatch_cnt_show(struct mddev *mddev, char *page)
4248 {
4249         return sprintf(page, "%llu\n",
4250                        (unsigned long long)
4251                        atomic64_read(&mddev->resync_mismatches));
4252 }
4253
4254 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4255
4256 static ssize_t
4257 sync_min_show(struct mddev *mddev, char *page)
4258 {
4259         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4260                        mddev->sync_speed_min ? "local": "system");
4261 }
4262
4263 static ssize_t
4264 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4265 {
4266         int min;
4267         char *e;
4268         if (strncmp(buf, "system", 6)==0) {
4269                 mddev->sync_speed_min = 0;
4270                 return len;
4271         }
4272         min = simple_strtoul(buf, &e, 10);
4273         if (buf == e || (*e && *e != '\n') || min <= 0)
4274                 return -EINVAL;
4275         mddev->sync_speed_min = min;
4276         return len;
4277 }
4278
4279 static struct md_sysfs_entry md_sync_min =
4280 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4281
4282 static ssize_t
4283 sync_max_show(struct mddev *mddev, char *page)
4284 {
4285         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4286                        mddev->sync_speed_max ? "local": "system");
4287 }
4288
4289 static ssize_t
4290 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4291 {
4292         int max;
4293         char *e;
4294         if (strncmp(buf, "system", 6)==0) {
4295                 mddev->sync_speed_max = 0;
4296                 return len;
4297         }
4298         max = simple_strtoul(buf, &e, 10);
4299         if (buf == e || (*e && *e != '\n') || max <= 0)
4300                 return -EINVAL;
4301         mddev->sync_speed_max = max;
4302         return len;
4303 }
4304
4305 static struct md_sysfs_entry md_sync_max =
4306 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4307
4308 static ssize_t
4309 degraded_show(struct mddev *mddev, char *page)
4310 {
4311         return sprintf(page, "%d\n", mddev->degraded);
4312 }
4313 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4314
4315 static ssize_t
4316 sync_force_parallel_show(struct mddev *mddev, char *page)
4317 {
4318         return sprintf(page, "%d\n", mddev->parallel_resync);
4319 }
4320
4321 static ssize_t
4322 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4323 {
4324         long n;
4325
4326         if (kstrtol(buf, 10, &n))
4327                 return -EINVAL;
4328
4329         if (n != 0 && n != 1)
4330                 return -EINVAL;
4331
4332         mddev->parallel_resync = n;
4333
4334         if (mddev->sync_thread)
4335                 wake_up(&resync_wait);
4336
4337         return len;
4338 }
4339
4340 /* force parallel resync, even with shared block devices */
4341 static struct md_sysfs_entry md_sync_force_parallel =
4342 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4343        sync_force_parallel_show, sync_force_parallel_store);
4344
4345 static ssize_t
4346 sync_speed_show(struct mddev *mddev, char *page)
4347 {
4348         unsigned long resync, dt, db;
4349         if (mddev->curr_resync == 0)
4350                 return sprintf(page, "none\n");
4351         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4352         dt = (jiffies - mddev->resync_mark) / HZ;
4353         if (!dt) dt++;
4354         db = resync - mddev->resync_mark_cnt;
4355         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4356 }
4357
4358 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4359
4360 static ssize_t
4361 sync_completed_show(struct mddev *mddev, char *page)
4362 {
4363         unsigned long long max_sectors, resync;
4364
4365         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4366                 return sprintf(page, "none\n");
4367
4368         if (mddev->curr_resync == 1 ||
4369             mddev->curr_resync == 2)
4370                 return sprintf(page, "delayed\n");
4371
4372         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4373             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4374                 max_sectors = mddev->resync_max_sectors;
4375         else
4376                 max_sectors = mddev->dev_sectors;
4377
4378         resync = mddev->curr_resync_completed;
4379         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4380 }
4381
4382 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4383
4384 static ssize_t
4385 min_sync_show(struct mddev *mddev, char *page)
4386 {
4387         return sprintf(page, "%llu\n",
4388                        (unsigned long long)mddev->resync_min);
4389 }
4390 static ssize_t
4391 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4392 {
4393         unsigned long long min;
4394         if (kstrtoull(buf, 10, &min))
4395                 return -EINVAL;
4396         if (min > mddev->resync_max)
4397                 return -EINVAL;
4398         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4399                 return -EBUSY;
4400
4401         /* Must be a multiple of chunk_size */
4402         if (mddev->chunk_sectors) {
4403                 sector_t temp = min;
4404                 if (sector_div(temp, mddev->chunk_sectors))
4405                         return -EINVAL;
4406         }
4407         mddev->resync_min = min;
4408
4409         return len;
4410 }
4411
4412 static struct md_sysfs_entry md_min_sync =
4413 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4414
4415 static ssize_t
4416 max_sync_show(struct mddev *mddev, char *page)
4417 {
4418         if (mddev->resync_max == MaxSector)
4419                 return sprintf(page, "max\n");
4420         else
4421                 return sprintf(page, "%llu\n",
4422                                (unsigned long long)mddev->resync_max);
4423 }
4424 static ssize_t
4425 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4426 {
4427         if (strncmp(buf, "max", 3) == 0)
4428                 mddev->resync_max = MaxSector;
4429         else {
4430                 unsigned long long max;
4431                 if (kstrtoull(buf, 10, &max))
4432                         return -EINVAL;
4433                 if (max < mddev->resync_min)
4434                         return -EINVAL;
4435                 if (max < mddev->resync_max &&
4436                     mddev->ro == 0 &&
4437                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4438                         return -EBUSY;
4439
4440                 /* Must be a multiple of chunk_size */
4441                 if (mddev->chunk_sectors) {
4442                         sector_t temp = max;
4443                         if (sector_div(temp, mddev->chunk_sectors))
4444                                 return -EINVAL;
4445                 }
4446                 mddev->resync_max = max;
4447         }
4448         wake_up(&mddev->recovery_wait);
4449         return len;
4450 }
4451
4452 static struct md_sysfs_entry md_max_sync =
4453 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4454
4455 static ssize_t
4456 suspend_lo_show(struct mddev *mddev, char *page)
4457 {
4458         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4459 }
4460
4461 static ssize_t
4462 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4463 {
4464         char *e;
4465         unsigned long long new = simple_strtoull(buf, &e, 10);
4466         unsigned long long old = mddev->suspend_lo;
4467
4468         if (mddev->pers == NULL || 
4469             mddev->pers->quiesce == NULL)
4470                 return -EINVAL;
4471         if (buf == e || (*e && *e != '\n'))
4472                 return -EINVAL;
4473
4474         mddev->suspend_lo = new;
4475         if (new >= old)
4476                 /* Shrinking suspended region */
4477                 mddev->pers->quiesce(mddev, 2);
4478         else {
4479                 /* Expanding suspended region - need to wait */
4480                 mddev->pers->quiesce(mddev, 1);
4481                 mddev->pers->quiesce(mddev, 0);
4482         }
4483         return len;
4484 }
4485 static struct md_sysfs_entry md_suspend_lo =
4486 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4487
4488
4489 static ssize_t
4490 suspend_hi_show(struct mddev *mddev, char *page)
4491 {
4492         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4493 }
4494
4495 static ssize_t
4496 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4497 {
4498         char *e;
4499         unsigned long long new = simple_strtoull(buf, &e, 10);
4500         unsigned long long old = mddev->suspend_hi;
4501
4502         if (mddev->pers == NULL ||
4503             mddev->pers->quiesce == NULL)
4504                 return -EINVAL;
4505         if (buf == e || (*e && *e != '\n'))
4506                 return -EINVAL;
4507
4508         mddev->suspend_hi = new;
4509         if (new <= old)
4510                 /* Shrinking suspended region */
4511                 mddev->pers->quiesce(mddev, 2);
4512         else {
4513                 /* Expanding suspended region - need to wait */
4514                 mddev->pers->quiesce(mddev, 1);
4515                 mddev->pers->quiesce(mddev, 0);
4516         }
4517         return len;
4518 }
4519 static struct md_sysfs_entry md_suspend_hi =
4520 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4521
4522 static ssize_t
4523 reshape_position_show(struct mddev *mddev, char *page)
4524 {
4525         if (mddev->reshape_position != MaxSector)
4526                 return sprintf(page, "%llu\n",
4527                                (unsigned long long)mddev->reshape_position);
4528         strcpy(page, "none\n");
4529         return 5;
4530 }
4531
4532 static ssize_t
4533 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4534 {
4535         struct md_rdev *rdev;
4536         char *e;
4537         unsigned long long new = simple_strtoull(buf, &e, 10);
4538         if (mddev->pers)
4539                 return -EBUSY;
4540         if (buf == e || (*e && *e != '\n'))
4541                 return -EINVAL;
4542         mddev->reshape_position = new;
4543         mddev->delta_disks = 0;
4544         mddev->reshape_backwards = 0;
4545         mddev->new_level = mddev->level;
4546         mddev->new_layout = mddev->layout;
4547         mddev->new_chunk_sectors = mddev->chunk_sectors;
4548         rdev_for_each(rdev, mddev)
4549                 rdev->new_data_offset = rdev->data_offset;
4550         return len;
4551 }
4552
4553 static struct md_sysfs_entry md_reshape_position =
4554 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4555        reshape_position_store);
4556
4557 static ssize_t
4558 reshape_direction_show(struct mddev *mddev, char *page)
4559 {
4560         return sprintf(page, "%s\n",
4561                        mddev->reshape_backwards ? "backwards" : "forwards");
4562 }
4563
4564 static ssize_t
4565 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4566 {
4567         int backwards = 0;
4568         if (cmd_match(buf, "forwards"))
4569                 backwards = 0;
4570         else if (cmd_match(buf, "backwards"))
4571                 backwards = 1;
4572         else
4573                 return -EINVAL;
4574         if (mddev->reshape_backwards == backwards)
4575                 return len;
4576
4577         /* check if we are allowed to change */
4578         if (mddev->delta_disks)
4579                 return -EBUSY;
4580
4581         if (mddev->persistent &&
4582             mddev->major_version == 0)
4583                 return -EINVAL;
4584
4585         mddev->reshape_backwards = backwards;
4586         return len;
4587 }
4588
4589 static struct md_sysfs_entry md_reshape_direction =
4590 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4591        reshape_direction_store);
4592
4593 static ssize_t
4594 array_size_show(struct mddev *mddev, char *page)
4595 {
4596         if (mddev->external_size)
4597                 return sprintf(page, "%llu\n",
4598                                (unsigned long long)mddev->array_sectors/2);
4599         else
4600                 return sprintf(page, "default\n");
4601 }
4602
4603 static ssize_t
4604 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4605 {
4606         sector_t sectors;
4607
4608         if (strncmp(buf, "default", 7) == 0) {
4609                 if (mddev->pers)
4610                         sectors = mddev->pers->size(mddev, 0, 0);
4611                 else
4612                         sectors = mddev->array_sectors;
4613
4614                 mddev->external_size = 0;
4615         } else {
4616                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4617                         return -EINVAL;
4618                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4619                         return -E2BIG;
4620
4621                 mddev->external_size = 1;
4622         }
4623
4624         mddev->array_sectors = sectors;
4625         if (mddev->pers) {
4626                 set_capacity(mddev->gendisk, mddev->array_sectors);
4627                 revalidate_disk(mddev->gendisk);
4628         }
4629         return len;
4630 }
4631
4632 static struct md_sysfs_entry md_array_size =
4633 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4634        array_size_store);
4635
4636 static struct attribute *md_default_attrs[] = {
4637         &md_level.attr,
4638         &md_layout.attr,
4639         &md_raid_disks.attr,
4640         &md_chunk_size.attr,
4641         &md_size.attr,
4642         &md_resync_start.attr,
4643         &md_metadata.attr,
4644         &md_new_device.attr,
4645         &md_safe_delay.attr,
4646         &md_array_state.attr,
4647         &md_reshape_position.attr,
4648         &md_reshape_direction.attr,
4649         &md_array_size.attr,
4650         &max_corr_read_errors.attr,
4651         NULL,
4652 };
4653
4654 static struct attribute *md_redundancy_attrs[] = {
4655         &md_scan_mode.attr,
4656         &md_last_scan_mode.attr,
4657         &md_mismatches.attr,
4658         &md_sync_min.attr,
4659         &md_sync_max.attr,
4660         &md_sync_speed.attr,
4661         &md_sync_force_parallel.attr,
4662         &md_sync_completed.attr,
4663         &md_min_sync.attr,
4664         &md_max_sync.attr,
4665         &md_suspend_lo.attr,
4666         &md_suspend_hi.attr,
4667         &md_bitmap.attr,
4668         &md_degraded.attr,
4669         NULL,
4670 };
4671 static struct attribute_group md_redundancy_group = {
4672         .name = NULL,
4673         .attrs = md_redundancy_attrs,
4674 };
4675
4676
4677 static ssize_t
4678 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4679 {
4680         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4681         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4682         ssize_t rv;
4683
4684         if (!entry->show)
4685                 return -EIO;
4686         spin_lock(&all_mddevs_lock);
4687         if (list_empty(&mddev->all_mddevs)) {
4688                 spin_unlock(&all_mddevs_lock);
4689                 return -EBUSY;
4690         }
4691         mddev_get(mddev);
4692         spin_unlock(&all_mddevs_lock);
4693
4694         rv = mddev_lock(mddev);
4695         if (!rv) {
4696                 rv = entry->show(mddev, page);
4697                 mddev_unlock(mddev);
4698         }
4699         mddev_put(mddev);
4700         return rv;
4701 }
4702
4703 static ssize_t
4704 md_attr_store(struct kobject *kobj, struct attribute *attr,
4705               const char *page, size_t length)
4706 {
4707         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4708         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4709         ssize_t rv;
4710
4711         if (!entry->store)
4712                 return -EIO;
4713         if (!capable(CAP_SYS_ADMIN))
4714                 return -EACCES;
4715         spin_lock(&all_mddevs_lock);
4716         if (list_empty(&mddev->all_mddevs)) {
4717                 spin_unlock(&all_mddevs_lock);
4718                 return -EBUSY;
4719         }
4720         mddev_get(mddev);
4721         spin_unlock(&all_mddevs_lock);
4722         if (entry->store == new_dev_store)
4723                 flush_workqueue(md_misc_wq);
4724         rv = mddev_lock(mddev);
4725         if (!rv) {
4726                 rv = entry->store(mddev, page, length);
4727                 mddev_unlock(mddev);
4728         }
4729         mddev_put(mddev);
4730         return rv;
4731 }
4732
4733 static void md_free(struct kobject *ko)
4734 {
4735         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4736
4737         if (mddev->sysfs_state)
4738                 sysfs_put(mddev->sysfs_state);
4739
4740         if (mddev->gendisk) {
4741                 del_gendisk(mddev->gendisk);
4742                 put_disk(mddev->gendisk);
4743         }
4744         if (mddev->queue)
4745                 blk_cleanup_queue(mddev->queue);
4746
4747         kfree(mddev);
4748 }
4749
4750 static const struct sysfs_ops md_sysfs_ops = {
4751         .show   = md_attr_show,
4752         .store  = md_attr_store,
4753 };
4754 static struct kobj_type md_ktype = {
4755         .release        = md_free,
4756         .sysfs_ops      = &md_sysfs_ops,
4757         .default_attrs  = md_default_attrs,
4758 };
4759
4760 int mdp_major = 0;
4761
4762 static void mddev_delayed_delete(struct work_struct *ws)
4763 {
4764         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4765
4766         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4767         kobject_del(&mddev->kobj);
4768         kobject_put(&mddev->kobj);
4769 }
4770
4771 static int md_alloc(dev_t dev, char *name)
4772 {
4773         static DEFINE_MUTEX(disks_mutex);
4774         struct mddev *mddev = mddev_find(dev);
4775         struct gendisk *disk;
4776         int partitioned;
4777         int shift;
4778         int unit;
4779         int error;
4780
4781         if (!mddev)
4782                 return -ENODEV;
4783
4784         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4785         shift = partitioned ? MdpMinorShift : 0;
4786         unit = MINOR(mddev->unit) >> shift;
4787
4788         /* wait for any previous instance of this device to be
4789          * completely removed (mddev_delayed_delete).
4790          */
4791         flush_workqueue(md_misc_wq);
4792
4793         mutex_lock(&disks_mutex);
4794         error = -EEXIST;
4795         if (mddev->gendisk)
4796                 goto abort;
4797
4798         if (name) {
4799                 /* Need to ensure that 'name' is not a duplicate.
4800                  */
4801                 struct mddev *mddev2;
4802                 spin_lock(&all_mddevs_lock);
4803
4804                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4805                         if (mddev2->gendisk &&
4806                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4807                                 spin_unlock(&all_mddevs_lock);
4808                                 goto abort;
4809                         }
4810                 spin_unlock(&all_mddevs_lock);
4811         }
4812
4813         error = -ENOMEM;
4814         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4815         if (!mddev->queue)
4816                 goto abort;
4817         mddev->queue->queuedata = mddev;
4818
4819         blk_queue_make_request(mddev->queue, md_make_request);
4820         blk_set_stacking_limits(&mddev->queue->limits);
4821
4822         disk = alloc_disk(1 << shift);
4823         if (!disk) {
4824                 blk_cleanup_queue(mddev->queue);
4825                 mddev->queue = NULL;
4826                 goto abort;
4827         }
4828         disk->major = MAJOR(mddev->unit);
4829         disk->first_minor = unit << shift;
4830         if (name)
4831                 strcpy(disk->disk_name, name);
4832         else if (partitioned)
4833                 sprintf(disk->disk_name, "md_d%d", unit);
4834         else
4835                 sprintf(disk->disk_name, "md%d", unit);
4836         disk->fops = &md_fops;
4837         disk->private_data = mddev;
4838         disk->queue = mddev->queue;
4839         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4840         /* Allow extended partitions.  This makes the
4841          * 'mdp' device redundant, but we can't really
4842          * remove it now.
4843          */
4844         disk->flags |= GENHD_FL_EXT_DEVT;
4845         mddev->gendisk = disk;
4846         /* As soon as we call add_disk(), another thread could get
4847          * through to md_open, so make sure it doesn't get too far
4848          */
4849         mutex_lock(&mddev->open_mutex);
4850         add_disk(disk);
4851
4852         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4853                                      &disk_to_dev(disk)->kobj, "%s", "md");
4854         if (error) {
4855                 /* This isn't possible, but as kobject_init_and_add is marked
4856                  * __must_check, we must do something with the result
4857                  */
4858                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4859                        disk->disk_name);
4860                 error = 0;
4861         }
4862         if (mddev->kobj.sd &&
4863             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4864                 printk(KERN_DEBUG "pointless warning\n");
4865         mutex_unlock(&mddev->open_mutex);
4866  abort:
4867         mutex_unlock(&disks_mutex);
4868         if (!error && mddev->kobj.sd) {
4869                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4870                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4871         }
4872         mddev_put(mddev);
4873         return error;
4874 }
4875
4876 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4877 {
4878         md_alloc(dev, NULL);
4879         return NULL;
4880 }
4881
4882 static int add_named_array(const char *val, struct kernel_param *kp)
4883 {
4884         /* val must be "md_*" where * is not all digits.
4885          * We allocate an array with a large free minor number, and
4886          * set the name to val.  val must not already be an active name.
4887          */
4888         int len = strlen(val);
4889         char buf[DISK_NAME_LEN];
4890
4891         while (len && val[len-1] == '\n')
4892                 len--;
4893         if (len >= DISK_NAME_LEN)
4894                 return -E2BIG;
4895         strlcpy(buf, val, len+1);
4896         if (strncmp(buf, "md_", 3) != 0)
4897                 return -EINVAL;
4898         return md_alloc(0, buf);
4899 }
4900
4901 static void md_safemode_timeout(unsigned long data)
4902 {
4903         struct mddev *mddev = (struct mddev *) data;
4904
4905         if (!atomic_read(&mddev->writes_pending)) {
4906                 mddev->safemode = 1;
4907                 if (mddev->external)
4908                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4909         }
4910         md_wakeup_thread(mddev->thread);
4911 }
4912
4913 static int start_dirty_degraded;
4914
4915 int md_run(struct mddev *mddev)
4916 {
4917         int err;
4918         struct md_rdev *rdev;
4919         struct md_personality *pers;
4920
4921         if (list_empty(&mddev->disks))
4922                 /* cannot run an array with no devices.. */
4923                 return -EINVAL;
4924
4925         if (mddev->pers)
4926                 return -EBUSY;
4927         /* Cannot run until previous stop completes properly */
4928         if (mddev->sysfs_active)
4929                 return -EBUSY;
4930
4931         /*
4932          * Analyze all RAID superblock(s)
4933          */
4934         if (!mddev->raid_disks) {
4935                 if (!mddev->persistent)
4936                         return -EINVAL;
4937                 analyze_sbs(mddev);
4938         }
4939
4940         if (mddev->level != LEVEL_NONE)
4941                 request_module("md-level-%d", mddev->level);
4942         else if (mddev->clevel[0])
4943                 request_module("md-%s", mddev->clevel);
4944
4945         /*
4946          * Drop all container device buffers, from now on
4947          * the only valid external interface is through the md
4948          * device.
4949          */
4950         rdev_for_each(rdev, mddev) {
4951                 if (test_bit(Faulty, &rdev->flags))
4952                         continue;
4953                 sync_blockdev(rdev->bdev);
4954                 invalidate_bdev(rdev->bdev);
4955
4956                 /* perform some consistency tests on the device.
4957                  * We don't want the data to overlap the metadata,
4958                  * Internal Bitmap issues have been handled elsewhere.
4959                  */
4960                 if (rdev->meta_bdev) {
4961                         /* Nothing to check */;
4962                 } else if (rdev->data_offset < rdev->sb_start) {
4963                         if (mddev->dev_sectors &&
4964                             rdev->data_offset + mddev->dev_sectors
4965                             > rdev->sb_start) {
4966                                 printk("md: %s: data overlaps metadata\n",
4967                                        mdname(mddev));
4968                                 return -EINVAL;
4969                         }
4970                 } else {
4971                         if (rdev->sb_start + rdev->sb_size/512
4972                             > rdev->data_offset) {
4973                                 printk("md: %s: metadata overlaps data\n",
4974                                        mdname(mddev));
4975                                 return -EINVAL;
4976                         }
4977                 }
4978                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4979         }
4980
4981         if (mddev->bio_set == NULL)
4982                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4983
4984         spin_lock(&pers_lock);
4985         pers = find_pers(mddev->level, mddev->clevel);
4986         if (!pers || !try_module_get(pers->owner)) {
4987                 spin_unlock(&pers_lock);
4988                 if (mddev->level != LEVEL_NONE)
4989                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4990                                mddev->level);
4991                 else
4992                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4993                                mddev->clevel);
4994                 return -EINVAL;
4995         }
4996         mddev->pers = pers;
4997         spin_unlock(&pers_lock);
4998         if (mddev->level != pers->level) {
4999                 mddev->level = pers->level;
5000                 mddev->new_level = pers->level;
5001         }
5002         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5003
5004         if (mddev->reshape_position != MaxSector &&
5005             pers->start_reshape == NULL) {
5006                 /* This personality cannot handle reshaping... */
5007                 mddev->pers = NULL;
5008                 module_put(pers->owner);
5009                 return -EINVAL;
5010         }
5011
5012         if (pers->sync_request) {
5013                 /* Warn if this is a potentially silly
5014                  * configuration.
5015                  */
5016                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5017                 struct md_rdev *rdev2;
5018                 int warned = 0;
5019
5020                 rdev_for_each(rdev, mddev)
5021                         rdev_for_each(rdev2, mddev) {
5022                                 if (rdev < rdev2 &&
5023                                     rdev->bdev->bd_contains ==
5024                                     rdev2->bdev->bd_contains) {
5025                                         printk(KERN_WARNING
5026                                                "%s: WARNING: %s appears to be"
5027                                                " on the same physical disk as"
5028                                                " %s.\n",
5029                                                mdname(mddev),
5030                                                bdevname(rdev->bdev,b),
5031                                                bdevname(rdev2->bdev,b2));
5032                                         warned = 1;
5033                                 }
5034                         }
5035
5036                 if (warned)
5037                         printk(KERN_WARNING
5038                                "True protection against single-disk"
5039                                " failure might be compromised.\n");
5040         }
5041
5042         mddev->recovery = 0;
5043         /* may be over-ridden by personality */
5044         mddev->resync_max_sectors = mddev->dev_sectors;
5045
5046         mddev->ok_start_degraded = start_dirty_degraded;
5047
5048         if (start_readonly && mddev->ro == 0)
5049                 mddev->ro = 2; /* read-only, but switch on first write */
5050
5051         err = mddev->pers->run(mddev);
5052         if (err)
5053                 printk(KERN_ERR "md: pers->run() failed ...\n");
5054         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5055                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5056                           " but 'external_size' not in effect?\n", __func__);
5057                 printk(KERN_ERR
5058                        "md: invalid array_size %llu > default size %llu\n",
5059                        (unsigned long long)mddev->array_sectors / 2,
5060                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5061                 err = -EINVAL;
5062                 mddev->pers->stop(mddev);
5063         }
5064         if (err == 0 && mddev->pers->sync_request &&
5065             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5066                 err = bitmap_create(mddev);
5067                 if (err) {
5068                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5069                                mdname(mddev), err);
5070                         mddev->pers->stop(mddev);
5071                 }
5072         }
5073         if (err) {
5074                 module_put(mddev->pers->owner);
5075                 mddev->pers = NULL;
5076                 bitmap_destroy(mddev);
5077                 return err;
5078         }
5079         if (mddev->pers->sync_request) {
5080                 if (mddev->kobj.sd &&
5081                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5082                         printk(KERN_WARNING
5083                                "md: cannot register extra attributes for %s\n",
5084                                mdname(mddev));
5085                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5086         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5087                 mddev->ro = 0;
5088
5089         atomic_set(&mddev->writes_pending,0);
5090         atomic_set(&mddev->max_corr_read_errors,
5091                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5092         mddev->safemode = 0;
5093         mddev->safemode_timer.function = md_safemode_timeout;
5094         mddev->safemode_timer.data = (unsigned long) mddev;
5095         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5096         mddev->in_sync = 1;
5097         smp_wmb();
5098         mddev->ready = 1;
5099         rdev_for_each(rdev, mddev)
5100                 if (rdev->raid_disk >= 0)
5101                         if (sysfs_link_rdev(mddev, rdev))
5102                                 /* failure here is OK */;
5103         
5104         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5105         
5106         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5107                 md_update_sb(mddev, 0);
5108
5109         md_new_event(mddev);
5110         sysfs_notify_dirent_safe(mddev->sysfs_state);
5111         sysfs_notify_dirent_safe(mddev->sysfs_action);
5112         sysfs_notify(&mddev->kobj, NULL, "degraded");
5113         return 0;
5114 }
5115 EXPORT_SYMBOL_GPL(md_run);
5116
5117 static int do_md_run(struct mddev *mddev)
5118 {
5119         int err;
5120
5121         err = md_run(mddev);
5122         if (err)
5123                 goto out;
5124         err = bitmap_load(mddev);
5125         if (err) {
5126                 bitmap_destroy(mddev);
5127                 goto out;
5128         }
5129
5130         md_wakeup_thread(mddev->thread);
5131         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5132
5133         set_capacity(mddev->gendisk, mddev->array_sectors);
5134         revalidate_disk(mddev->gendisk);
5135         mddev->changed = 1;
5136         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5137 out:
5138         return err;
5139 }
5140
5141 static int restart_array(struct mddev *mddev)
5142 {
5143         struct gendisk *disk = mddev->gendisk;
5144
5145         /* Complain if it has no devices */
5146         if (list_empty(&mddev->disks))
5147                 return -ENXIO;
5148         if (!mddev->pers)
5149                 return -EINVAL;
5150         if (!mddev->ro)
5151                 return -EBUSY;
5152         mddev->safemode = 0;
5153         mddev->ro = 0;
5154         set_disk_ro(disk, 0);
5155         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5156                 mdname(mddev));
5157         /* Kick recovery or resync if necessary */
5158         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5159         md_wakeup_thread(mddev->thread);
5160         md_wakeup_thread(mddev->sync_thread);
5161         sysfs_notify_dirent_safe(mddev->sysfs_state);
5162         return 0;
5163 }
5164
5165 /* similar to deny_write_access, but accounts for our holding a reference
5166  * to the file ourselves */
5167 static int deny_bitmap_write_access(struct file * file)
5168 {
5169         struct inode *inode = file->f_mapping->host;
5170
5171         spin_lock(&inode->i_lock);
5172         if (atomic_read(&inode->i_writecount) > 1) {
5173                 spin_unlock(&inode->i_lock);
5174                 return -ETXTBSY;
5175         }
5176         atomic_set(&inode->i_writecount, -1);
5177         spin_unlock(&inode->i_lock);
5178
5179         return 0;
5180 }
5181
5182 void restore_bitmap_write_access(struct file *file)
5183 {
5184         struct inode *inode = file->f_mapping->host;
5185
5186         spin_lock(&inode->i_lock);
5187         atomic_set(&inode->i_writecount, 1);
5188         spin_unlock(&inode->i_lock);
5189 }
5190
5191 static void md_clean(struct mddev *mddev)
5192 {
5193         mddev->array_sectors = 0;
5194         mddev->external_size = 0;
5195         mddev->dev_sectors = 0;
5196         mddev->raid_disks = 0;
5197         mddev->recovery_cp = 0;
5198         mddev->resync_min = 0;
5199         mddev->resync_max = MaxSector;
5200         mddev->reshape_position = MaxSector;
5201         mddev->external = 0;
5202         mddev->persistent = 0;
5203         mddev->level = LEVEL_NONE;
5204         mddev->clevel[0] = 0;
5205         mddev->flags = 0;
5206         mddev->ro = 0;
5207         mddev->metadata_type[0] = 0;
5208         mddev->chunk_sectors = 0;
5209         mddev->ctime = mddev->utime = 0;
5210         mddev->layout = 0;
5211         mddev->max_disks = 0;
5212         mddev->events = 0;
5213         mddev->can_decrease_events = 0;
5214         mddev->delta_disks = 0;
5215         mddev->reshape_backwards = 0;
5216         mddev->new_level = LEVEL_NONE;
5217         mddev->new_layout = 0;
5218         mddev->new_chunk_sectors = 0;
5219         mddev->curr_resync = 0;
5220         atomic64_set(&mddev->resync_mismatches, 0);
5221         mddev->suspend_lo = mddev->suspend_hi = 0;
5222         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5223         mddev->recovery = 0;
5224         mddev->in_sync = 0;
5225         mddev->changed = 0;
5226         mddev->degraded = 0;
5227         mddev->safemode = 0;
5228         mddev->merge_check_needed = 0;
5229         mddev->bitmap_info.offset = 0;
5230         mddev->bitmap_info.default_offset = 0;
5231         mddev->bitmap_info.default_space = 0;
5232         mddev->bitmap_info.chunksize = 0;
5233         mddev->bitmap_info.daemon_sleep = 0;
5234         mddev->bitmap_info.max_write_behind = 0;
5235 }
5236
5237 static void __md_stop_writes(struct mddev *mddev)
5238 {
5239         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5240         if (mddev->sync_thread) {
5241                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5242                 md_reap_sync_thread(mddev);
5243         }
5244
5245         del_timer_sync(&mddev->safemode_timer);
5246
5247         bitmap_flush(mddev);
5248         md_super_wait(mddev);
5249
5250         if (mddev->ro == 0 &&
5251             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5252                 /* mark array as shutdown cleanly */
5253                 mddev->in_sync = 1;
5254                 md_update_sb(mddev, 1);
5255         }
5256 }
5257
5258 void md_stop_writes(struct mddev *mddev)
5259 {
5260         mddev_lock_nointr(mddev);
5261         __md_stop_writes(mddev);
5262         mddev_unlock(mddev);
5263 }
5264 EXPORT_SYMBOL_GPL(md_stop_writes);
5265
5266 static void __md_stop(struct mddev *mddev)
5267 {
5268         mddev->ready = 0;
5269         mddev->pers->stop(mddev);
5270         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5271                 mddev->to_remove = &md_redundancy_group;
5272         module_put(mddev->pers->owner);
5273         mddev->pers = NULL;
5274         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5275 }
5276
5277 void md_stop(struct mddev *mddev)
5278 {
5279         /* stop the array and free an attached data structures.
5280          * This is called from dm-raid
5281          */
5282         __md_stop(mddev);
5283         bitmap_destroy(mddev);
5284         if (mddev->bio_set)
5285                 bioset_free(mddev->bio_set);
5286 }
5287
5288 EXPORT_SYMBOL_GPL(md_stop);
5289
5290 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5291 {
5292         int err = 0;
5293         int did_freeze = 0;
5294
5295         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5296                 did_freeze = 1;
5297                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5298                 md_wakeup_thread(mddev->thread);
5299         }
5300         if (mddev->sync_thread) {
5301                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5302                 /* Thread might be blocked waiting for metadata update
5303                  * which will now never happen */
5304                 wake_up_process(mddev->sync_thread->tsk);
5305         }
5306         mddev_unlock(mddev);
5307         wait_event(resync_wait, mddev->sync_thread == NULL);
5308         mddev_lock_nointr(mddev);
5309
5310         mutex_lock(&mddev->open_mutex);
5311         if (atomic_read(&mddev->openers) > !!bdev ||
5312             mddev->sync_thread ||
5313             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5314                 printk("md: %s still in use.\n",mdname(mddev));
5315                 if (did_freeze) {
5316                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317                         md_wakeup_thread(mddev->thread);
5318                 }
5319                 err = -EBUSY;
5320                 goto out;
5321         }
5322         if (mddev->pers) {
5323                 __md_stop_writes(mddev);
5324
5325                 err  = -ENXIO;
5326                 if (mddev->ro==1)
5327                         goto out;
5328                 mddev->ro = 1;
5329                 set_disk_ro(mddev->gendisk, 1);
5330                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5331                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5332                 err = 0;
5333         }
5334 out:
5335         mutex_unlock(&mddev->open_mutex);
5336         return err;
5337 }
5338
5339 /* mode:
5340  *   0 - completely stop and dis-assemble array
5341  *   2 - stop but do not disassemble array
5342  */
5343 static int do_md_stop(struct mddev * mddev, int mode,
5344                       struct block_device *bdev)
5345 {
5346         struct gendisk *disk = mddev->gendisk;
5347         struct md_rdev *rdev;
5348         int did_freeze = 0;
5349
5350         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5351                 did_freeze = 1;
5352                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5353                 md_wakeup_thread(mddev->thread);
5354         }
5355         if (mddev->sync_thread) {
5356                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5357                 /* Thread might be blocked waiting for metadata update
5358                  * which will now never happen */
5359                 wake_up_process(mddev->sync_thread->tsk);
5360         }
5361         mddev_unlock(mddev);
5362         wait_event(resync_wait, mddev->sync_thread == NULL);
5363         mddev_lock_nointr(mddev);
5364
5365         mutex_lock(&mddev->open_mutex);
5366         if (atomic_read(&mddev->openers) > !!bdev ||
5367             mddev->sysfs_active ||
5368             mddev->sync_thread ||
5369             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5370                 printk("md: %s still in use.\n",mdname(mddev));
5371                 mutex_unlock(&mddev->open_mutex);
5372                 if (did_freeze) {
5373                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5374                         md_wakeup_thread(mddev->thread);
5375                 }
5376                 return -EBUSY;
5377         }
5378         if (mddev->pers) {
5379                 if (mddev->ro)
5380                         set_disk_ro(disk, 0);
5381
5382                 __md_stop_writes(mddev);
5383                 __md_stop(mddev);
5384                 mddev->queue->merge_bvec_fn = NULL;
5385                 mddev->queue->backing_dev_info.congested_fn = NULL;
5386
5387                 /* tell userspace to handle 'inactive' */
5388                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5389
5390                 rdev_for_each(rdev, mddev)
5391                         if (rdev->raid_disk >= 0)
5392                                 sysfs_unlink_rdev(mddev, rdev);
5393
5394                 set_capacity(disk, 0);
5395                 mutex_unlock(&mddev->open_mutex);
5396                 mddev->changed = 1;
5397                 revalidate_disk(disk);
5398
5399                 if (mddev->ro)
5400                         mddev->ro = 0;
5401         } else
5402                 mutex_unlock(&mddev->open_mutex);
5403         /*
5404          * Free resources if final stop
5405          */
5406         if (mode == 0) {
5407                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5408
5409                 bitmap_destroy(mddev);
5410                 if (mddev->bitmap_info.file) {
5411                         restore_bitmap_write_access(mddev->bitmap_info.file);
5412                         fput(mddev->bitmap_info.file);
5413                         mddev->bitmap_info.file = NULL;
5414                 }
5415                 mddev->bitmap_info.offset = 0;
5416
5417                 export_array(mddev);
5418
5419                 md_clean(mddev);
5420                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5421                 if (mddev->hold_active == UNTIL_STOP)
5422                         mddev->hold_active = 0;
5423         }
5424         blk_integrity_unregister(disk);
5425         md_new_event(mddev);
5426         sysfs_notify_dirent_safe(mddev->sysfs_state);
5427         return 0;
5428 }
5429
5430 #ifndef MODULE
5431 static void autorun_array(struct mddev *mddev)
5432 {
5433         struct md_rdev *rdev;
5434         int err;
5435
5436         if (list_empty(&mddev->disks))
5437                 return;
5438
5439         printk(KERN_INFO "md: running: ");
5440
5441         rdev_for_each(rdev, mddev) {
5442                 char b[BDEVNAME_SIZE];
5443                 printk("<%s>", bdevname(rdev->bdev,b));
5444         }
5445         printk("\n");
5446
5447         err = do_md_run(mddev);
5448         if (err) {
5449                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5450                 do_md_stop(mddev, 0, NULL);
5451         }
5452 }
5453
5454 /*
5455  * lets try to run arrays based on all disks that have arrived
5456  * until now. (those are in pending_raid_disks)
5457  *
5458  * the method: pick the first pending disk, collect all disks with
5459  * the same UUID, remove all from the pending list and put them into
5460  * the 'same_array' list. Then order this list based on superblock
5461  * update time (freshest comes first), kick out 'old' disks and
5462  * compare superblocks. If everything's fine then run it.
5463  *
5464  * If "unit" is allocated, then bump its reference count
5465  */
5466 static void autorun_devices(int part)
5467 {
5468         struct md_rdev *rdev0, *rdev, *tmp;
5469         struct mddev *mddev;
5470         char b[BDEVNAME_SIZE];
5471
5472         printk(KERN_INFO "md: autorun ...\n");
5473         while (!list_empty(&pending_raid_disks)) {
5474                 int unit;
5475                 dev_t dev;
5476                 LIST_HEAD(candidates);
5477                 rdev0 = list_entry(pending_raid_disks.next,
5478                                          struct md_rdev, same_set);
5479
5480                 printk(KERN_INFO "md: considering %s ...\n",
5481                         bdevname(rdev0->bdev,b));
5482                 INIT_LIST_HEAD(&candidates);
5483                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5484                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5485                                 printk(KERN_INFO "md:  adding %s ...\n",
5486                                         bdevname(rdev->bdev,b));
5487                                 list_move(&rdev->same_set, &candidates);
5488                         }
5489                 /*
5490                  * now we have a set of devices, with all of them having
5491                  * mostly sane superblocks. It's time to allocate the
5492                  * mddev.
5493                  */
5494                 if (part) {
5495                         dev = MKDEV(mdp_major,
5496                                     rdev0->preferred_minor << MdpMinorShift);
5497                         unit = MINOR(dev) >> MdpMinorShift;
5498                 } else {
5499                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5500                         unit = MINOR(dev);
5501                 }
5502                 if (rdev0->preferred_minor != unit) {
5503                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5504                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5505                         break;
5506                 }
5507
5508                 md_probe(dev, NULL, NULL);
5509                 mddev = mddev_find(dev);
5510                 if (!mddev || !mddev->gendisk) {
5511                         if (mddev)
5512                                 mddev_put(mddev);
5513                         printk(KERN_ERR
5514                                 "md: cannot allocate memory for md drive.\n");
5515                         break;
5516                 }
5517                 if (mddev_lock(mddev)) 
5518                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5519                                mdname(mddev));
5520                 else if (mddev->raid_disks || mddev->major_version
5521                          || !list_empty(&mddev->disks)) {
5522                         printk(KERN_WARNING 
5523                                 "md: %s already running, cannot run %s\n",
5524                                 mdname(mddev), bdevname(rdev0->bdev,b));
5525                         mddev_unlock(mddev);
5526                 } else {
5527                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5528                         mddev->persistent = 1;
5529                         rdev_for_each_list(rdev, tmp, &candidates) {
5530                                 list_del_init(&rdev->same_set);
5531                                 if (bind_rdev_to_array(rdev, mddev))
5532                                         export_rdev(rdev);
5533                         }
5534                         autorun_array(mddev);
5535                         mddev_unlock(mddev);
5536                 }
5537                 /* on success, candidates will be empty, on error
5538                  * it won't...
5539                  */
5540                 rdev_for_each_list(rdev, tmp, &candidates) {
5541                         list_del_init(&rdev->same_set);
5542                         export_rdev(rdev);
5543                 }
5544                 mddev_put(mddev);
5545         }
5546         printk(KERN_INFO "md: ... autorun DONE.\n");
5547 }
5548 #endif /* !MODULE */
5549
5550 static int get_version(void __user * arg)
5551 {
5552         mdu_version_t ver;
5553
5554         ver.major = MD_MAJOR_VERSION;
5555         ver.minor = MD_MINOR_VERSION;
5556         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5557
5558         if (copy_to_user(arg, &ver, sizeof(ver)))
5559                 return -EFAULT;
5560
5561         return 0;
5562 }
5563
5564 static int get_array_info(struct mddev * mddev, void __user * arg)
5565 {
5566         mdu_array_info_t info;
5567         int nr,working,insync,failed,spare;
5568         struct md_rdev *rdev;
5569
5570         nr = working = insync = failed = spare = 0;
5571         rcu_read_lock();
5572         rdev_for_each_rcu(rdev, mddev) {
5573                 nr++;
5574                 if (test_bit(Faulty, &rdev->flags))
5575                         failed++;
5576                 else {
5577                         working++;
5578                         if (test_bit(In_sync, &rdev->flags))
5579                                 insync++;       
5580                         else
5581                                 spare++;
5582                 }
5583         }
5584         rcu_read_unlock();
5585
5586         info.major_version = mddev->major_version;
5587         info.minor_version = mddev->minor_version;
5588         info.patch_version = MD_PATCHLEVEL_VERSION;
5589         info.ctime         = mddev->ctime;
5590         info.level         = mddev->level;
5591         info.size          = mddev->dev_sectors / 2;
5592         if (info.size != mddev->dev_sectors / 2) /* overflow */
5593                 info.size = -1;
5594         info.nr_disks      = nr;
5595         info.raid_disks    = mddev->raid_disks;
5596         info.md_minor      = mddev->md_minor;
5597         info.not_persistent= !mddev->persistent;
5598
5599         info.utime         = mddev->utime;
5600         info.state         = 0;
5601         if (mddev->in_sync)
5602                 info.state = (1<<MD_SB_CLEAN);
5603         if (mddev->bitmap && mddev->bitmap_info.offset)
5604                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5605         info.active_disks  = insync;
5606         info.working_disks = working;
5607         info.failed_disks  = failed;
5608         info.spare_disks   = spare;
5609
5610         info.layout        = mddev->layout;
5611         info.chunk_size    = mddev->chunk_sectors << 9;
5612
5613         if (copy_to_user(arg, &info, sizeof(info)))
5614                 return -EFAULT;
5615
5616         return 0;
5617 }
5618
5619 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5620 {
5621         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5622         char *ptr, *buf = NULL;
5623         int err = -ENOMEM;
5624
5625         file = kmalloc(sizeof(*file), GFP_NOIO);
5626
5627         if (!file)
5628                 goto out;
5629
5630         /* bitmap disabled, zero the first byte and copy out */
5631         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632                 file->pathname[0] = '\0';
5633                 goto copy_out;
5634         }
5635
5636         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637         if (!buf)
5638                 goto out;
5639
5640         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641                      buf, sizeof(file->pathname));
5642         if (IS_ERR(ptr))
5643                 goto out;
5644
5645         strcpy(file->pathname, ptr);
5646
5647 copy_out:
5648         err = 0;
5649         if (copy_to_user(arg, file, sizeof(*file)))
5650                 err = -EFAULT;
5651 out:
5652         kfree(buf);
5653         kfree(file);
5654         return err;
5655 }
5656
5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659         mdu_disk_info_t info;
5660         struct md_rdev *rdev;
5661
5662         if (copy_from_user(&info, arg, sizeof(info)))
5663                 return -EFAULT;
5664
5665         rcu_read_lock();
5666         rdev = find_rdev_nr_rcu(mddev, info.number);
5667         if (rdev) {
5668                 info.major = MAJOR(rdev->bdev->bd_dev);
5669                 info.minor = MINOR(rdev->bdev->bd_dev);
5670                 info.raid_disk = rdev->raid_disk;
5671                 info.state = 0;
5672                 if (test_bit(Faulty, &rdev->flags))
5673                         info.state |= (1<<MD_DISK_FAULTY);
5674                 else if (test_bit(In_sync, &rdev->flags)) {
5675                         info.state |= (1<<MD_DISK_ACTIVE);
5676                         info.state |= (1<<MD_DISK_SYNC);
5677                 }
5678                 if (test_bit(WriteMostly, &rdev->flags))
5679                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680         } else {
5681                 info.major = info.minor = 0;
5682                 info.raid_disk = -1;
5683                 info.state = (1<<MD_DISK_REMOVED);
5684         }
5685         rcu_read_unlock();
5686
5687         if (copy_to_user(arg, &info, sizeof(info)))
5688                 return -EFAULT;
5689
5690         return 0;
5691 }
5692
5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696         struct md_rdev *rdev;
5697         dev_t dev = MKDEV(info->major,info->minor);
5698
5699         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700                 return -EOVERFLOW;
5701
5702         if (!mddev->raid_disks) {
5703                 int err;
5704                 /* expecting a device which has a superblock */
5705                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706                 if (IS_ERR(rdev)) {
5707                         printk(KERN_WARNING 
5708                                 "md: md_import_device returned %ld\n",
5709                                 PTR_ERR(rdev));
5710                         return PTR_ERR(rdev);
5711                 }
5712                 if (!list_empty(&mddev->disks)) {
5713                         struct md_rdev *rdev0
5714                                 = list_entry(mddev->disks.next,
5715                                              struct md_rdev, same_set);
5716                         err = super_types[mddev->major_version]
5717                                 .load_super(rdev, rdev0, mddev->minor_version);
5718                         if (err < 0) {
5719                                 printk(KERN_WARNING 
5720                                         "md: %s has different UUID to %s\n",
5721                                         bdevname(rdev->bdev,b), 
5722                                         bdevname(rdev0->bdev,b2));
5723                                 export_rdev(rdev);
5724                                 return -EINVAL;
5725                         }
5726                 }
5727                 err = bind_rdev_to_array(rdev, mddev);
5728                 if (err)
5729                         export_rdev(rdev);
5730                 return err;
5731         }
5732
5733         /*
5734          * add_new_disk can be used once the array is assembled
5735          * to add "hot spares".  They must already have a superblock
5736          * written
5737          */
5738         if (mddev->pers) {
5739                 int err;
5740                 if (!mddev->pers->hot_add_disk) {
5741                         printk(KERN_WARNING 
5742                                 "%s: personality does not support diskops!\n",
5743                                mdname(mddev));
5744                         return -EINVAL;
5745                 }
5746                 if (mddev->persistent)
5747                         rdev = md_import_device(dev, mddev->major_version,
5748                                                 mddev->minor_version);
5749                 else
5750                         rdev = md_import_device(dev, -1, -1);
5751                 if (IS_ERR(rdev)) {
5752                         printk(KERN_WARNING 
5753                                 "md: md_import_device returned %ld\n",
5754                                 PTR_ERR(rdev));
5755                         return PTR_ERR(rdev);
5756                 }
5757                 /* set saved_raid_disk if appropriate */
5758                 if (!mddev->persistent) {
5759                         if (info->state & (1<<MD_DISK_SYNC)  &&
5760                             info->raid_disk < mddev->raid_disks) {
5761                                 rdev->raid_disk = info->raid_disk;
5762                                 set_bit(In_sync, &rdev->flags);
5763                         } else
5764                                 rdev->raid_disk = -1;
5765                 } else
5766                         super_types[mddev->major_version].
5767                                 validate_super(mddev, rdev);
5768                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5769                      rdev->raid_disk != info->raid_disk) {
5770                         /* This was a hot-add request, but events doesn't
5771                          * match, so reject it.
5772                          */
5773                         export_rdev(rdev);
5774                         return -EINVAL;
5775                 }
5776
5777                 if (test_bit(In_sync, &rdev->flags))
5778                         rdev->saved_raid_disk = rdev->raid_disk;
5779                 else
5780                         rdev->saved_raid_disk = -1;
5781
5782                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784                         set_bit(WriteMostly, &rdev->flags);
5785                 else
5786                         clear_bit(WriteMostly, &rdev->flags);
5787
5788                 rdev->raid_disk = -1;
5789                 err = bind_rdev_to_array(rdev, mddev);
5790                 if (!err && !mddev->pers->hot_remove_disk) {
5791                         /* If there is hot_add_disk but no hot_remove_disk
5792                          * then added disks for geometry changes,
5793                          * and should be added immediately.
5794                          */
5795                         super_types[mddev->major_version].
5796                                 validate_super(mddev, rdev);
5797                         err = mddev->pers->hot_add_disk(mddev, rdev);
5798                         if (err)
5799                                 unbind_rdev_from_array(rdev);
5800                 }
5801                 if (err)
5802                         export_rdev(rdev);
5803                 else
5804                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5805
5806                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807                 if (mddev->degraded)
5808                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810                 if (!err)
5811                         md_new_event(mddev);
5812                 md_wakeup_thread(mddev->thread);
5813                 return err;
5814         }
5815
5816         /* otherwise, add_new_disk is only allowed
5817          * for major_version==0 superblocks
5818          */
5819         if (mddev->major_version != 0) {
5820                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821                        mdname(mddev));
5822                 return -EINVAL;
5823         }
5824
5825         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826                 int err;
5827                 rdev = md_import_device(dev, -1, 0);
5828                 if (IS_ERR(rdev)) {
5829                         printk(KERN_WARNING 
5830                                 "md: error, md_import_device() returned %ld\n",
5831                                 PTR_ERR(rdev));
5832                         return PTR_ERR(rdev);
5833                 }
5834                 rdev->desc_nr = info->number;
5835                 if (info->raid_disk < mddev->raid_disks)
5836                         rdev->raid_disk = info->raid_disk;
5837                 else
5838                         rdev->raid_disk = -1;
5839
5840                 if (rdev->raid_disk < mddev->raid_disks)
5841                         if (info->state & (1<<MD_DISK_SYNC))
5842                                 set_bit(In_sync, &rdev->flags);
5843
5844                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845                         set_bit(WriteMostly, &rdev->flags);
5846
5847                 if (!mddev->persistent) {
5848                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850                 } else
5851                         rdev->sb_start = calc_dev_sboffset(rdev);
5852                 rdev->sectors = rdev->sb_start;
5853
5854                 err = bind_rdev_to_array(rdev, mddev);
5855                 if (err) {
5856                         export_rdev(rdev);
5857                         return err;
5858                 }
5859         }
5860
5861         return 0;
5862 }
5863
5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866         char b[BDEVNAME_SIZE];
5867         struct md_rdev *rdev;
5868
5869         rdev = find_rdev(mddev, dev);
5870         if (!rdev)
5871                 return -ENXIO;
5872
5873         clear_bit(Blocked, &rdev->flags);
5874         remove_and_add_spares(mddev, rdev);
5875
5876         if (rdev->raid_disk >= 0)
5877                 goto busy;
5878
5879         kick_rdev_from_array(rdev);
5880         md_update_sb(mddev, 1);
5881         md_new_event(mddev);
5882
5883         return 0;
5884 busy:
5885         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5886                 bdevname(rdev->bdev,b), mdname(mddev));
5887         return -EBUSY;
5888 }
5889
5890 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5891 {
5892         char b[BDEVNAME_SIZE];
5893         int err;
5894         struct md_rdev *rdev;
5895
5896         if (!mddev->pers)
5897                 return -ENODEV;
5898
5899         if (mddev->major_version != 0) {
5900                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5901                         " version-0 superblocks.\n",
5902                         mdname(mddev));
5903                 return -EINVAL;
5904         }
5905         if (!mddev->pers->hot_add_disk) {
5906                 printk(KERN_WARNING 
5907                         "%s: personality does not support diskops!\n",
5908                         mdname(mddev));
5909                 return -EINVAL;
5910         }
5911
5912         rdev = md_import_device(dev, -1, 0);
5913         if (IS_ERR(rdev)) {
5914                 printk(KERN_WARNING 
5915                         "md: error, md_import_device() returned %ld\n",
5916                         PTR_ERR(rdev));
5917                 return -EINVAL;
5918         }
5919
5920         if (mddev->persistent)
5921                 rdev->sb_start = calc_dev_sboffset(rdev);
5922         else
5923                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5924
5925         rdev->sectors = rdev->sb_start;
5926
5927         if (test_bit(Faulty, &rdev->flags)) {
5928                 printk(KERN_WARNING 
5929                         "md: can not hot-add faulty %s disk to %s!\n",
5930                         bdevname(rdev->bdev,b), mdname(mddev));
5931                 err = -EINVAL;
5932                 goto abort_export;
5933         }
5934         clear_bit(In_sync, &rdev->flags);
5935         rdev->desc_nr = -1;
5936         rdev->saved_raid_disk = -1;
5937         err = bind_rdev_to_array(rdev, mddev);
5938         if (err)
5939                 goto abort_export;
5940
5941         /*
5942          * The rest should better be atomic, we can have disk failures
5943          * noticed in interrupt contexts ...
5944          */
5945
5946         rdev->raid_disk = -1;
5947
5948         md_update_sb(mddev, 1);
5949
5950         /*
5951          * Kick recovery, maybe this spare has to be added to the
5952          * array immediately.
5953          */
5954         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5955         md_wakeup_thread(mddev->thread);
5956         md_new_event(mddev);
5957         return 0;
5958
5959 abort_export:
5960         export_rdev(rdev);
5961         return err;
5962 }
5963
5964 static int set_bitmap_file(struct mddev *mddev, int fd)
5965 {
5966         int err;
5967
5968         if (mddev->pers) {
5969                 if (!mddev->pers->quiesce)
5970                         return -EBUSY;
5971                 if (mddev->recovery || mddev->sync_thread)
5972                         return -EBUSY;
5973                 /* we should be able to change the bitmap.. */
5974         }
5975
5976
5977         if (fd >= 0) {
5978                 if (mddev->bitmap)
5979                         return -EEXIST; /* cannot add when bitmap is present */
5980                 mddev->bitmap_info.file = fget(fd);
5981
5982                 if (mddev->bitmap_info.file == NULL) {
5983                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5984                                mdname(mddev));
5985                         return -EBADF;
5986                 }
5987
5988                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5989                 if (err) {
5990                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5991                                mdname(mddev));
5992                         fput(mddev->bitmap_info.file);
5993                         mddev->bitmap_info.file = NULL;
5994                         return err;
5995                 }
5996                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5997         } else if (mddev->bitmap == NULL)
5998                 return -ENOENT; /* cannot remove what isn't there */
5999         err = 0;
6000         if (mddev->pers) {
6001                 mddev->pers->quiesce(mddev, 1);
6002                 if (fd >= 0) {
6003                         err = bitmap_create(mddev);
6004                         if (!err)
6005                                 err = bitmap_load(mddev);
6006                 }
6007                 if (fd < 0 || err) {
6008                         bitmap_destroy(mddev);
6009                         fd = -1; /* make sure to put the file */
6010                 }
6011                 mddev->pers->quiesce(mddev, 0);
6012         }
6013         if (fd < 0) {
6014                 if (mddev->bitmap_info.file) {
6015                         restore_bitmap_write_access(mddev->bitmap_info.file);
6016                         fput(mddev->bitmap_info.file);
6017                 }
6018                 mddev->bitmap_info.file = NULL;
6019         }
6020
6021         return err;
6022 }
6023
6024 /*
6025  * set_array_info is used two different ways
6026  * The original usage is when creating a new array.
6027  * In this usage, raid_disks is > 0 and it together with
6028  *  level, size, not_persistent,layout,chunksize determine the
6029  *  shape of the array.
6030  *  This will always create an array with a type-0.90.0 superblock.
6031  * The newer usage is when assembling an array.
6032  *  In this case raid_disks will be 0, and the major_version field is
6033  *  use to determine which style super-blocks are to be found on the devices.
6034  *  The minor and patch _version numbers are also kept incase the
6035  *  super_block handler wishes to interpret them.
6036  */
6037 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6038 {
6039
6040         if (info->raid_disks == 0) {
6041                 /* just setting version number for superblock loading */
6042                 if (info->major_version < 0 ||
6043                     info->major_version >= ARRAY_SIZE(super_types) ||
6044                     super_types[info->major_version].name == NULL) {
6045                         /* maybe try to auto-load a module? */
6046                         printk(KERN_INFO 
6047                                 "md: superblock version %d not known\n",
6048                                 info->major_version);
6049                         return -EINVAL;
6050                 }
6051                 mddev->major_version = info->major_version;
6052                 mddev->minor_version = info->minor_version;
6053                 mddev->patch_version = info->patch_version;
6054                 mddev->persistent = !info->not_persistent;
6055                 /* ensure mddev_put doesn't delete this now that there
6056                  * is some minimal configuration.
6057                  */
6058                 mddev->ctime         = get_seconds();
6059                 return 0;
6060         }
6061         mddev->major_version = MD_MAJOR_VERSION;
6062         mddev->minor_version = MD_MINOR_VERSION;
6063         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6064         mddev->ctime         = get_seconds();
6065
6066         mddev->level         = info->level;
6067         mddev->clevel[0]     = 0;
6068         mddev->dev_sectors   = 2 * (sector_t)info->size;
6069         mddev->raid_disks    = info->raid_disks;
6070         /* don't set md_minor, it is determined by which /dev/md* was
6071          * openned
6072          */
6073         if (info->state & (1<<MD_SB_CLEAN))
6074                 mddev->recovery_cp = MaxSector;
6075         else
6076                 mddev->recovery_cp = 0;
6077         mddev->persistent    = ! info->not_persistent;
6078         mddev->external      = 0;
6079
6080         mddev->layout        = info->layout;
6081         mddev->chunk_sectors = info->chunk_size >> 9;
6082
6083         mddev->max_disks     = MD_SB_DISKS;
6084
6085         if (mddev->persistent)
6086                 mddev->flags         = 0;
6087         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6088
6089         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6090         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6091         mddev->bitmap_info.offset = 0;
6092
6093         mddev->reshape_position = MaxSector;
6094
6095         /*
6096          * Generate a 128 bit UUID
6097          */
6098         get_random_bytes(mddev->uuid, 16);
6099
6100         mddev->new_level = mddev->level;
6101         mddev->new_chunk_sectors = mddev->chunk_sectors;
6102         mddev->new_layout = mddev->layout;
6103         mddev->delta_disks = 0;
6104         mddev->reshape_backwards = 0;
6105
6106         return 0;
6107 }
6108
6109 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6110 {
6111         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6112
6113         if (mddev->external_size)
6114                 return;
6115
6116         mddev->array_sectors = array_sectors;
6117 }
6118 EXPORT_SYMBOL(md_set_array_sectors);
6119
6120 static int update_size(struct mddev *mddev, sector_t num_sectors)
6121 {
6122         struct md_rdev *rdev;
6123         int rv;
6124         int fit = (num_sectors == 0);
6125
6126         if (mddev->pers->resize == NULL)
6127                 return -EINVAL;
6128         /* The "num_sectors" is the number of sectors of each device that
6129          * is used.  This can only make sense for arrays with redundancy.
6130          * linear and raid0 always use whatever space is available. We can only
6131          * consider changing this number if no resync or reconstruction is
6132          * happening, and if the new size is acceptable. It must fit before the
6133          * sb_start or, if that is <data_offset, it must fit before the size
6134          * of each device.  If num_sectors is zero, we find the largest size
6135          * that fits.
6136          */
6137         if (mddev->sync_thread)
6138                 return -EBUSY;
6139
6140         rdev_for_each(rdev, mddev) {
6141                 sector_t avail = rdev->sectors;
6142
6143                 if (fit && (num_sectors == 0 || num_sectors > avail))
6144                         num_sectors = avail;
6145                 if (avail < num_sectors)
6146                         return -ENOSPC;
6147         }
6148         rv = mddev->pers->resize(mddev, num_sectors);
6149         if (!rv)
6150                 revalidate_disk(mddev->gendisk);
6151         return rv;
6152 }
6153
6154 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6155 {
6156         int rv;
6157         struct md_rdev *rdev;
6158         /* change the number of raid disks */
6159         if (mddev->pers->check_reshape == NULL)
6160                 return -EINVAL;
6161         if (raid_disks <= 0 ||
6162             (mddev->max_disks && raid_disks >= mddev->max_disks))
6163                 return -EINVAL;
6164         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6165                 return -EBUSY;
6166
6167         rdev_for_each(rdev, mddev) {
6168                 if (mddev->raid_disks < raid_disks &&
6169                     rdev->data_offset < rdev->new_data_offset)
6170                         return -EINVAL;
6171                 if (mddev->raid_disks > raid_disks &&
6172                     rdev->data_offset > rdev->new_data_offset)
6173                         return -EINVAL;
6174         }
6175
6176         mddev->delta_disks = raid_disks - mddev->raid_disks;
6177         if (mddev->delta_disks < 0)
6178                 mddev->reshape_backwards = 1;
6179         else if (mddev->delta_disks > 0)
6180                 mddev->reshape_backwards = 0;
6181
6182         rv = mddev->pers->check_reshape(mddev);
6183         if (rv < 0) {
6184                 mddev->delta_disks = 0;
6185                 mddev->reshape_backwards = 0;
6186         }
6187         return rv;
6188 }
6189
6190
6191 /*
6192  * update_array_info is used to change the configuration of an
6193  * on-line array.
6194  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6195  * fields in the info are checked against the array.
6196  * Any differences that cannot be handled will cause an error.
6197  * Normally, only one change can be managed at a time.
6198  */
6199 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6200 {
6201         int rv = 0;
6202         int cnt = 0;
6203         int state = 0;
6204
6205         /* calculate expected state,ignoring low bits */
6206         if (mddev->bitmap && mddev->bitmap_info.offset)
6207                 state |= (1 << MD_SB_BITMAP_PRESENT);
6208
6209         if (mddev->major_version != info->major_version ||
6210             mddev->minor_version != info->minor_version ||
6211 /*          mddev->patch_version != info->patch_version || */
6212             mddev->ctime         != info->ctime         ||
6213             mddev->level         != info->level         ||
6214 /*          mddev->layout        != info->layout        || */
6215             !mddev->persistent   != info->not_persistent||
6216             mddev->chunk_sectors != info->chunk_size >> 9 ||
6217             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6218             ((state^info->state) & 0xfffffe00)
6219                 )
6220                 return -EINVAL;
6221         /* Check there is only one change */
6222         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6223                 cnt++;
6224         if (mddev->raid_disks != info->raid_disks)
6225                 cnt++;
6226         if (mddev->layout != info->layout)
6227                 cnt++;
6228         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6229                 cnt++;
6230         if (cnt == 0)
6231                 return 0;
6232         if (cnt > 1)
6233                 return -EINVAL;
6234
6235         if (mddev->layout != info->layout) {
6236                 /* Change layout
6237                  * we don't need to do anything at the md level, the
6238                  * personality will take care of it all.
6239                  */
6240                 if (mddev->pers->check_reshape == NULL)
6241                         return -EINVAL;
6242                 else {
6243                         mddev->new_layout = info->layout;
6244                         rv = mddev->pers->check_reshape(mddev);
6245                         if (rv)
6246                                 mddev->new_layout = mddev->layout;
6247                         return rv;
6248                 }
6249         }
6250         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6251                 rv = update_size(mddev, (sector_t)info->size * 2);
6252
6253         if (mddev->raid_disks    != info->raid_disks)
6254                 rv = update_raid_disks(mddev, info->raid_disks);
6255
6256         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6257                 if (mddev->pers->quiesce == NULL)
6258                         return -EINVAL;
6259                 if (mddev->recovery || mddev->sync_thread)
6260                         return -EBUSY;
6261                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6262                         /* add the bitmap */
6263                         if (mddev->bitmap)
6264                                 return -EEXIST;
6265                         if (mddev->bitmap_info.default_offset == 0)
6266                                 return -EINVAL;
6267                         mddev->bitmap_info.offset =
6268                                 mddev->bitmap_info.default_offset;
6269                         mddev->bitmap_info.space =
6270                                 mddev->bitmap_info.default_space;
6271                         mddev->pers->quiesce(mddev, 1);
6272                         rv = bitmap_create(mddev);
6273                         if (!rv)
6274                                 rv = bitmap_load(mddev);
6275                         if (rv)
6276                                 bitmap_destroy(mddev);
6277                         mddev->pers->quiesce(mddev, 0);
6278                 } else {
6279                         /* remove the bitmap */
6280                         if (!mddev->bitmap)
6281                                 return -ENOENT;
6282                         if (mddev->bitmap->storage.file)
6283                                 return -EINVAL;
6284                         mddev->pers->quiesce(mddev, 1);
6285                         bitmap_destroy(mddev);
6286                         mddev->pers->quiesce(mddev, 0);
6287                         mddev->bitmap_info.offset = 0;
6288                 }
6289         }
6290         md_update_sb(mddev, 1);
6291         return rv;
6292 }
6293
6294 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6295 {
6296         struct md_rdev *rdev;
6297         int err = 0;
6298
6299         if (mddev->pers == NULL)
6300                 return -ENODEV;
6301
6302         rcu_read_lock();
6303         rdev = find_rdev_rcu(mddev, dev);
6304         if (!rdev)
6305                 err =  -ENODEV;
6306         else {
6307                 md_error(mddev, rdev);
6308                 if (!test_bit(Faulty, &rdev->flags))
6309                         err = -EBUSY;
6310         }
6311         rcu_read_unlock();
6312         return err;
6313 }
6314
6315 /*
6316  * We have a problem here : there is no easy way to give a CHS
6317  * virtual geometry. We currently pretend that we have a 2 heads
6318  * 4 sectors (with a BIG number of cylinders...). This drives
6319  * dosfs just mad... ;-)
6320  */
6321 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6322 {
6323         struct mddev *mddev = bdev->bd_disk->private_data;
6324
6325         geo->heads = 2;
6326         geo->sectors = 4;
6327         geo->cylinders = mddev->array_sectors / 8;
6328         return 0;
6329 }
6330
6331 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6332                         unsigned int cmd, unsigned long arg)
6333 {
6334         int err = 0;
6335         void __user *argp = (void __user *)arg;
6336         struct mddev *mddev = NULL;
6337         int ro;
6338
6339         switch (cmd) {
6340         case RAID_VERSION:
6341         case GET_ARRAY_INFO:
6342         case GET_DISK_INFO:
6343                 break;
6344         default:
6345                 if (!capable(CAP_SYS_ADMIN))
6346                         return -EACCES;
6347         }
6348
6349         /*
6350          * Commands dealing with the RAID driver but not any
6351          * particular array:
6352          */
6353         switch (cmd) {
6354         case RAID_VERSION:
6355                 err = get_version(argp);
6356                 goto done;
6357
6358         case PRINT_RAID_DEBUG:
6359                 err = 0;
6360                 md_print_devices();
6361                 goto done;
6362
6363 #ifndef MODULE
6364         case RAID_AUTORUN:
6365                 err = 0;
6366                 autostart_arrays(arg);
6367                 goto done;
6368 #endif
6369         default:;
6370         }
6371
6372         /*
6373          * Commands creating/starting a new array:
6374          */
6375
6376         mddev = bdev->bd_disk->private_data;
6377
6378         if (!mddev) {
6379                 BUG();
6380                 goto abort;
6381         }
6382
6383         /* Some actions do not requires the mutex */
6384         switch (cmd) {
6385         case GET_ARRAY_INFO:
6386                 if (!mddev->raid_disks && !mddev->external)
6387                         err = -ENODEV;
6388                 else
6389                         err = get_array_info(mddev, argp);
6390                 goto abort;
6391
6392         case GET_DISK_INFO:
6393                 if (!mddev->raid_disks && !mddev->external)
6394                         err = -ENODEV;
6395                 else
6396                         err = get_disk_info(mddev, argp);
6397                 goto abort;
6398
6399         case SET_DISK_FAULTY:
6400                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6401                 goto abort;
6402         }
6403
6404         if (cmd == ADD_NEW_DISK)
6405                 /* need to ensure md_delayed_delete() has completed */
6406                 flush_workqueue(md_misc_wq);
6407
6408         if (cmd == HOT_REMOVE_DISK)
6409                 /* need to ensure recovery thread has run */
6410                 wait_event_interruptible_timeout(mddev->sb_wait,
6411                                                  !test_bit(MD_RECOVERY_NEEDED,
6412                                                            &mddev->flags),
6413                                                  msecs_to_jiffies(5000));
6414         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6415                 /* Need to flush page cache, and ensure no-one else opens
6416                  * and writes
6417                  */
6418                 mutex_lock(&mddev->open_mutex);
6419                 if (atomic_read(&mddev->openers) > 1) {
6420                         mutex_unlock(&mddev->open_mutex);
6421                         err = -EBUSY;
6422                         goto abort;
6423                 }
6424                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6425                 mutex_unlock(&mddev->open_mutex);
6426                 sync_blockdev(bdev);
6427         }
6428         err = mddev_lock(mddev);
6429         if (err) {
6430                 printk(KERN_INFO 
6431                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6432                         err, cmd);
6433                 goto abort;
6434         }
6435
6436         if (cmd == SET_ARRAY_INFO) {
6437                 mdu_array_info_t info;
6438                 if (!arg)
6439                         memset(&info, 0, sizeof(info));
6440                 else if (copy_from_user(&info, argp, sizeof(info))) {
6441                         err = -EFAULT;
6442                         goto abort_unlock;
6443                 }
6444                 if (mddev->pers) {
6445                         err = update_array_info(mddev, &info);
6446                         if (err) {
6447                                 printk(KERN_WARNING "md: couldn't update"
6448                                        " array info. %d\n", err);
6449                                 goto abort_unlock;
6450                         }
6451                         goto done_unlock;
6452                 }
6453                 if (!list_empty(&mddev->disks)) {
6454                         printk(KERN_WARNING
6455                                "md: array %s already has disks!\n",
6456                                mdname(mddev));
6457                         err = -EBUSY;
6458                         goto abort_unlock;
6459                 }
6460                 if (mddev->raid_disks) {
6461                         printk(KERN_WARNING
6462                                "md: array %s already initialised!\n",
6463                                mdname(mddev));
6464                         err = -EBUSY;
6465                         goto abort_unlock;
6466                 }
6467                 err = set_array_info(mddev, &info);
6468                 if (err) {
6469                         printk(KERN_WARNING "md: couldn't set"
6470                                " array info. %d\n", err);
6471                         goto abort_unlock;
6472                 }
6473                 goto done_unlock;
6474         }
6475
6476         /*
6477          * Commands querying/configuring an existing array:
6478          */
6479         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6480          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6481         if ((!mddev->raid_disks && !mddev->external)
6482             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6483             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6484             && cmd != GET_BITMAP_FILE) {
6485                 err = -ENODEV;
6486                 goto abort_unlock;
6487         }
6488
6489         /*
6490          * Commands even a read-only array can execute:
6491          */
6492         switch (cmd) {
6493         case GET_BITMAP_FILE:
6494                 err = get_bitmap_file(mddev, argp);
6495                 goto done_unlock;
6496
6497         case RESTART_ARRAY_RW:
6498                 err = restart_array(mddev);
6499                 goto done_unlock;
6500
6501         case STOP_ARRAY:
6502                 err = do_md_stop(mddev, 0, bdev);
6503                 goto done_unlock;
6504
6505         case STOP_ARRAY_RO:
6506                 err = md_set_readonly(mddev, bdev);
6507                 goto done_unlock;
6508
6509         case HOT_REMOVE_DISK:
6510                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6511                 goto done_unlock;
6512
6513         case ADD_NEW_DISK:
6514                 /* We can support ADD_NEW_DISK on read-only arrays
6515                  * on if we are re-adding a preexisting device.
6516                  * So require mddev->pers and MD_DISK_SYNC.
6517                  */
6518                 if (mddev->pers) {
6519                         mdu_disk_info_t info;
6520                         if (copy_from_user(&info, argp, sizeof(info)))
6521                                 err = -EFAULT;
6522                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6523                                 /* Need to clear read-only for this */
6524                                 break;
6525                         else
6526                                 err = add_new_disk(mddev, &info);
6527                         goto done_unlock;
6528                 }
6529                 break;
6530
6531         case BLKROSET:
6532                 if (get_user(ro, (int __user *)(arg))) {
6533                         err = -EFAULT;
6534                         goto done_unlock;
6535                 }
6536                 err = -EINVAL;
6537
6538                 /* if the bdev is going readonly the value of mddev->ro
6539                  * does not matter, no writes are coming
6540                  */
6541                 if (ro)
6542                         goto done_unlock;
6543
6544                 /* are we are already prepared for writes? */
6545                 if (mddev->ro != 1)
6546                         goto done_unlock;
6547
6548                 /* transitioning to readauto need only happen for
6549                  * arrays that call md_write_start
6550                  */
6551                 if (mddev->pers) {
6552                         err = restart_array(mddev);
6553                         if (err == 0) {
6554                                 mddev->ro = 2;
6555                                 set_disk_ro(mddev->gendisk, 0);
6556                         }
6557                 }
6558                 goto done_unlock;
6559         }
6560
6561         /*
6562          * The remaining ioctls are changing the state of the
6563          * superblock, so we do not allow them on read-only arrays.
6564          * However non-MD ioctls (e.g. get-size) will still come through
6565          * here and hit the 'default' below, so only disallow
6566          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6567          */
6568         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6569                 if (mddev->ro == 2) {
6570                         mddev->ro = 0;
6571                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6572                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6573                         /* mddev_unlock will wake thread */
6574                         /* If a device failed while we were read-only, we
6575                          * need to make sure the metadata is updated now.
6576                          */
6577                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6578                                 mddev_unlock(mddev);
6579                                 wait_event(mddev->sb_wait,
6580                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6581                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6582                                 mddev_lock_nointr(mddev);
6583                         }
6584                 } else {
6585                         err = -EROFS;
6586                         goto abort_unlock;
6587                 }
6588         }
6589
6590         switch (cmd) {
6591         case ADD_NEW_DISK:
6592         {
6593                 mdu_disk_info_t info;
6594                 if (copy_from_user(&info, argp, sizeof(info)))
6595                         err = -EFAULT;
6596                 else
6597                         err = add_new_disk(mddev, &info);
6598                 goto done_unlock;
6599         }
6600
6601         case HOT_ADD_DISK:
6602                 err = hot_add_disk(mddev, new_decode_dev(arg));
6603                 goto done_unlock;
6604
6605         case RUN_ARRAY:
6606                 err = do_md_run(mddev);
6607                 goto done_unlock;
6608
6609         case SET_BITMAP_FILE:
6610                 err = set_bitmap_file(mddev, (int)arg);
6611                 goto done_unlock;
6612
6613         default:
6614                 err = -EINVAL;
6615                 goto abort_unlock;
6616         }
6617
6618 done_unlock:
6619 abort_unlock:
6620         if (mddev->hold_active == UNTIL_IOCTL &&
6621             err != -EINVAL)
6622                 mddev->hold_active = 0;
6623         mddev_unlock(mddev);
6624
6625         return err;
6626 done:
6627         if (err)
6628                 MD_BUG();
6629 abort:
6630         return err;
6631 }
6632 #ifdef CONFIG_COMPAT
6633 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6634                     unsigned int cmd, unsigned long arg)
6635 {
6636         switch (cmd) {
6637         case HOT_REMOVE_DISK:
6638         case HOT_ADD_DISK:
6639         case SET_DISK_FAULTY:
6640         case SET_BITMAP_FILE:
6641                 /* These take in integer arg, do not convert */
6642                 break;
6643         default:
6644                 arg = (unsigned long)compat_ptr(arg);
6645                 break;
6646         }
6647
6648         return md_ioctl(bdev, mode, cmd, arg);
6649 }
6650 #endif /* CONFIG_COMPAT */
6651
6652 static int md_open(struct block_device *bdev, fmode_t mode)
6653 {
6654         /*
6655          * Succeed if we can lock the mddev, which confirms that
6656          * it isn't being stopped right now.
6657          */
6658         struct mddev *mddev = mddev_find(bdev->bd_dev);
6659         int err;
6660
6661         if (!mddev)
6662                 return -ENODEV;
6663
6664         if (mddev->gendisk != bdev->bd_disk) {
6665                 /* we are racing with mddev_put which is discarding this
6666                  * bd_disk.
6667                  */
6668                 mddev_put(mddev);
6669                 /* Wait until bdev->bd_disk is definitely gone */
6670                 flush_workqueue(md_misc_wq);
6671                 /* Then retry the open from the top */
6672                 return -ERESTARTSYS;
6673         }
6674         BUG_ON(mddev != bdev->bd_disk->private_data);
6675
6676         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6677                 goto out;
6678
6679         err = 0;
6680         atomic_inc(&mddev->openers);
6681         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6682         mutex_unlock(&mddev->open_mutex);
6683
6684         check_disk_change(bdev);
6685  out:
6686         return err;
6687 }
6688
6689 static void md_release(struct gendisk *disk, fmode_t mode)
6690 {
6691         struct mddev *mddev = disk->private_data;
6692
6693         BUG_ON(!mddev);
6694         atomic_dec(&mddev->openers);
6695         mddev_put(mddev);
6696 }
6697
6698 static int md_media_changed(struct gendisk *disk)
6699 {
6700         struct mddev *mddev = disk->private_data;
6701
6702         return mddev->changed;
6703 }
6704
6705 static int md_revalidate(struct gendisk *disk)
6706 {
6707         struct mddev *mddev = disk->private_data;
6708
6709         mddev->changed = 0;
6710         return 0;
6711 }
6712 static const struct block_device_operations md_fops =
6713 {
6714         .owner          = THIS_MODULE,
6715         .open           = md_open,
6716         .release        = md_release,
6717         .ioctl          = md_ioctl,
6718 #ifdef CONFIG_COMPAT
6719         .compat_ioctl   = md_compat_ioctl,
6720 #endif
6721         .getgeo         = md_getgeo,
6722         .media_changed  = md_media_changed,
6723         .revalidate_disk= md_revalidate,
6724 };
6725
6726 static int md_thread(void * arg)
6727 {
6728         struct md_thread *thread = arg;
6729
6730         /*
6731          * md_thread is a 'system-thread', it's priority should be very
6732          * high. We avoid resource deadlocks individually in each
6733          * raid personality. (RAID5 does preallocation) We also use RR and
6734          * the very same RT priority as kswapd, thus we will never get
6735          * into a priority inversion deadlock.
6736          *
6737          * we definitely have to have equal or higher priority than
6738          * bdflush, otherwise bdflush will deadlock if there are too
6739          * many dirty RAID5 blocks.
6740          */
6741
6742         allow_signal(SIGKILL);
6743         while (!kthread_should_stop()) {
6744
6745                 /* We need to wait INTERRUPTIBLE so that
6746                  * we don't add to the load-average.
6747                  * That means we need to be sure no signals are
6748                  * pending
6749                  */
6750                 if (signal_pending(current))
6751                         flush_signals(current);
6752
6753                 wait_event_interruptible_timeout
6754                         (thread->wqueue,
6755                          test_bit(THREAD_WAKEUP, &thread->flags)
6756                          || kthread_should_stop(),
6757                          thread->timeout);
6758
6759                 clear_bit(THREAD_WAKEUP, &thread->flags);
6760                 if (!kthread_should_stop())
6761                         thread->run(thread);
6762         }
6763
6764         return 0;
6765 }
6766
6767 void md_wakeup_thread(struct md_thread *thread)
6768 {
6769         if (thread) {
6770                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6771                 set_bit(THREAD_WAKEUP, &thread->flags);
6772                 wake_up(&thread->wqueue);
6773         }
6774 }
6775
6776 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6777                 struct mddev *mddev, const char *name)
6778 {
6779         struct md_thread *thread;
6780
6781         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6782         if (!thread)
6783                 return NULL;
6784
6785         init_waitqueue_head(&thread->wqueue);
6786
6787         thread->run = run;
6788         thread->mddev = mddev;
6789         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6790         thread->tsk = kthread_run(md_thread, thread,
6791                                   "%s_%s",
6792                                   mdname(thread->mddev),
6793                                   name);
6794         if (IS_ERR(thread->tsk)) {
6795                 kfree(thread);
6796                 return NULL;
6797         }
6798         return thread;
6799 }
6800
6801 void md_unregister_thread(struct md_thread **threadp)
6802 {
6803         struct md_thread *thread = *threadp;
6804         if (!thread)
6805                 return;
6806         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6807         /* Locking ensures that mddev_unlock does not wake_up a
6808          * non-existent thread
6809          */
6810         spin_lock(&pers_lock);
6811         *threadp = NULL;
6812         spin_unlock(&pers_lock);
6813
6814         kthread_stop(thread->tsk);
6815         kfree(thread);
6816 }
6817
6818 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6819 {
6820         if (!mddev) {
6821                 MD_BUG();
6822                 return;
6823         }
6824
6825         if (!rdev || test_bit(Faulty, &rdev->flags))
6826                 return;
6827
6828         if (!mddev->pers || !mddev->pers->error_handler)
6829                 return;
6830         mddev->pers->error_handler(mddev,rdev);
6831         if (mddev->degraded)
6832                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6833         sysfs_notify_dirent_safe(rdev->sysfs_state);
6834         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6835         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6836         md_wakeup_thread(mddev->thread);
6837         if (mddev->event_work.func)
6838                 queue_work(md_misc_wq, &mddev->event_work);
6839         md_new_event_inintr(mddev);
6840 }
6841
6842 /* seq_file implementation /proc/mdstat */
6843
6844 static void status_unused(struct seq_file *seq)
6845 {
6846         int i = 0;
6847         struct md_rdev *rdev;
6848
6849         seq_printf(seq, "unused devices: ");
6850
6851         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6852                 char b[BDEVNAME_SIZE];
6853                 i++;
6854                 seq_printf(seq, "%s ",
6855                               bdevname(rdev->bdev,b));
6856         }
6857         if (!i)
6858                 seq_printf(seq, "<none>");
6859
6860         seq_printf(seq, "\n");
6861 }
6862
6863
6864 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6865 {
6866         sector_t max_sectors, resync, res;
6867         unsigned long dt, db;
6868         sector_t rt;
6869         int scale;
6870         unsigned int per_milli;
6871
6872         if (mddev->curr_resync <= 3)
6873                 resync = 0;
6874         else
6875                 resync = mddev->curr_resync
6876                         - atomic_read(&mddev->recovery_active);
6877
6878         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6879             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6880                 max_sectors = mddev->resync_max_sectors;
6881         else
6882                 max_sectors = mddev->dev_sectors;
6883
6884         /*
6885          * Should not happen.
6886          */
6887         if (!max_sectors) {
6888                 MD_BUG();
6889                 return;
6890         }
6891         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6892          * in a sector_t, and (max_sectors>>scale) will fit in a
6893          * u32, as those are the requirements for sector_div.
6894          * Thus 'scale' must be at least 10
6895          */
6896         scale = 10;
6897         if (sizeof(sector_t) > sizeof(unsigned long)) {
6898                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6899                         scale++;
6900         }
6901         res = (resync>>scale)*1000;
6902         sector_div(res, (u32)((max_sectors>>scale)+1));
6903
6904         per_milli = res;
6905         {
6906                 int i, x = per_milli/50, y = 20-x;
6907                 seq_printf(seq, "[");
6908                 for (i = 0; i < x; i++)
6909                         seq_printf(seq, "=");
6910                 seq_printf(seq, ">");
6911                 for (i = 0; i < y; i++)
6912                         seq_printf(seq, ".");
6913                 seq_printf(seq, "] ");
6914         }
6915         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6916                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6917                     "reshape" :
6918                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6919                      "check" :
6920                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6921                       "resync" : "recovery"))),
6922                    per_milli/10, per_milli % 10,
6923                    (unsigned long long) resync/2,
6924                    (unsigned long long) max_sectors/2);
6925
6926         /*
6927          * dt: time from mark until now
6928          * db: blocks written from mark until now
6929          * rt: remaining time
6930          *
6931          * rt is a sector_t, so could be 32bit or 64bit.
6932          * So we divide before multiply in case it is 32bit and close
6933          * to the limit.
6934          * We scale the divisor (db) by 32 to avoid losing precision
6935          * near the end of resync when the number of remaining sectors
6936          * is close to 'db'.
6937          * We then divide rt by 32 after multiplying by db to compensate.
6938          * The '+1' avoids division by zero if db is very small.
6939          */
6940         dt = ((jiffies - mddev->resync_mark) / HZ);
6941         if (!dt) dt++;
6942         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6943                 - mddev->resync_mark_cnt;
6944
6945         rt = max_sectors - resync;    /* number of remaining sectors */
6946         sector_div(rt, db/32+1);
6947         rt *= dt;
6948         rt >>= 5;
6949
6950         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6951                    ((unsigned long)rt % 60)/6);
6952
6953         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6954 }
6955
6956 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6957 {
6958         struct list_head *tmp;
6959         loff_t l = *pos;
6960         struct mddev *mddev;
6961
6962         if (l >= 0x10000)
6963                 return NULL;
6964         if (!l--)
6965                 /* header */
6966                 return (void*)1;
6967
6968         spin_lock(&all_mddevs_lock);
6969         list_for_each(tmp,&all_mddevs)
6970                 if (!l--) {
6971                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6972                         mddev_get(mddev);
6973                         spin_unlock(&all_mddevs_lock);
6974                         return mddev;
6975                 }
6976         spin_unlock(&all_mddevs_lock);
6977         if (!l--)
6978                 return (void*)2;/* tail */
6979         return NULL;
6980 }
6981
6982 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6983 {
6984         struct list_head *tmp;
6985         struct mddev *next_mddev, *mddev = v;
6986         
6987         ++*pos;
6988         if (v == (void*)2)
6989                 return NULL;
6990
6991         spin_lock(&all_mddevs_lock);
6992         if (v == (void*)1)
6993                 tmp = all_mddevs.next;
6994         else
6995                 tmp = mddev->all_mddevs.next;
6996         if (tmp != &all_mddevs)
6997                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6998         else {
6999                 next_mddev = (void*)2;
7000                 *pos = 0x10000;
7001         }               
7002         spin_unlock(&all_mddevs_lock);
7003
7004         if (v != (void*)1)
7005                 mddev_put(mddev);
7006         return next_mddev;
7007
7008 }
7009
7010 static void md_seq_stop(struct seq_file *seq, void *v)
7011 {
7012         struct mddev *mddev = v;
7013
7014         if (mddev && v != (void*)1 && v != (void*)2)
7015                 mddev_put(mddev);
7016 }
7017
7018 static int md_seq_show(struct seq_file *seq, void *v)
7019 {
7020         struct mddev *mddev = v;
7021         sector_t sectors;
7022         struct md_rdev *rdev;
7023
7024         if (v == (void*)1) {
7025                 struct md_personality *pers;
7026                 seq_printf(seq, "Personalities : ");
7027                 spin_lock(&pers_lock);
7028                 list_for_each_entry(pers, &pers_list, list)
7029                         seq_printf(seq, "[%s] ", pers->name);
7030
7031                 spin_unlock(&pers_lock);
7032                 seq_printf(seq, "\n");
7033                 seq->poll_event = atomic_read(&md_event_count);
7034                 return 0;
7035         }
7036         if (v == (void*)2) {
7037                 status_unused(seq);
7038                 return 0;
7039         }
7040
7041         if (mddev_lock(mddev) < 0)
7042                 return -EINTR;
7043
7044         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7045                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7046                                                 mddev->pers ? "" : "in");
7047                 if (mddev->pers) {
7048                         if (mddev->ro==1)
7049                                 seq_printf(seq, " (read-only)");
7050                         if (mddev->ro==2)
7051                                 seq_printf(seq, " (auto-read-only)");
7052                         seq_printf(seq, " %s", mddev->pers->name);
7053                 }
7054
7055                 sectors = 0;
7056                 rdev_for_each(rdev, mddev) {
7057                         char b[BDEVNAME_SIZE];
7058                         seq_printf(seq, " %s[%d]",
7059                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7060                         if (test_bit(WriteMostly, &rdev->flags))
7061                                 seq_printf(seq, "(W)");
7062                         if (test_bit(Faulty, &rdev->flags)) {
7063                                 seq_printf(seq, "(F)");
7064                                 continue;
7065                         }
7066                         if (rdev->raid_disk < 0)
7067                                 seq_printf(seq, "(S)"); /* spare */
7068                         if (test_bit(Replacement, &rdev->flags))
7069                                 seq_printf(seq, "(R)");
7070                         sectors += rdev->sectors;
7071                 }
7072
7073                 if (!list_empty(&mddev->disks)) {
7074                         if (mddev->pers)
7075                                 seq_printf(seq, "\n      %llu blocks",
7076                                            (unsigned long long)
7077                                            mddev->array_sectors / 2);
7078                         else
7079                                 seq_printf(seq, "\n      %llu blocks",
7080                                            (unsigned long long)sectors / 2);
7081                 }
7082                 if (mddev->persistent) {
7083                         if (mddev->major_version != 0 ||
7084                             mddev->minor_version != 90) {
7085                                 seq_printf(seq," super %d.%d",
7086                                            mddev->major_version,
7087                                            mddev->minor_version);
7088                         }
7089                 } else if (mddev->external)
7090                         seq_printf(seq, " super external:%s",
7091                                    mddev->metadata_type);
7092                 else
7093                         seq_printf(seq, " super non-persistent");
7094
7095                 if (mddev->pers) {
7096                         mddev->pers->status(seq, mddev);
7097                         seq_printf(seq, "\n      ");
7098                         if (mddev->pers->sync_request) {
7099                                 if (mddev->curr_resync > 2) {
7100                                         status_resync(seq, mddev);
7101                                         seq_printf(seq, "\n      ");
7102                                 } else if (mddev->curr_resync >= 1)
7103                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7104                                 else if (mddev->recovery_cp < MaxSector)
7105                                         seq_printf(seq, "\tresync=PENDING\n      ");
7106                         }
7107                 } else
7108                         seq_printf(seq, "\n       ");
7109
7110                 bitmap_status(seq, mddev->bitmap);
7111
7112                 seq_printf(seq, "\n");
7113         }
7114         mddev_unlock(mddev);
7115         
7116         return 0;
7117 }
7118
7119 static const struct seq_operations md_seq_ops = {
7120         .start  = md_seq_start,
7121         .next   = md_seq_next,
7122         .stop   = md_seq_stop,
7123         .show   = md_seq_show,
7124 };
7125
7126 static int md_seq_open(struct inode *inode, struct file *file)
7127 {
7128         struct seq_file *seq;
7129         int error;
7130
7131         error = seq_open(file, &md_seq_ops);
7132         if (error)
7133                 return error;
7134
7135         seq = file->private_data;
7136         seq->poll_event = atomic_read(&md_event_count);
7137         return error;
7138 }
7139
7140 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7141 {
7142         struct seq_file *seq = filp->private_data;
7143         int mask;
7144
7145         poll_wait(filp, &md_event_waiters, wait);
7146
7147         /* always allow read */
7148         mask = POLLIN | POLLRDNORM;
7149
7150         if (seq->poll_event != atomic_read(&md_event_count))
7151                 mask |= POLLERR | POLLPRI;
7152         return mask;
7153 }
7154
7155 static const struct file_operations md_seq_fops = {
7156         .owner          = THIS_MODULE,
7157         .open           = md_seq_open,
7158         .read           = seq_read,
7159         .llseek         = seq_lseek,
7160         .release        = seq_release_private,
7161         .poll           = mdstat_poll,
7162 };
7163
7164 int register_md_personality(struct md_personality *p)
7165 {
7166         spin_lock(&pers_lock);
7167         list_add_tail(&p->list, &pers_list);
7168         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7169         spin_unlock(&pers_lock);
7170         return 0;
7171 }
7172
7173 int unregister_md_personality(struct md_personality *p)
7174 {
7175         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7176         spin_lock(&pers_lock);
7177         list_del_init(&p->list);
7178         spin_unlock(&pers_lock);
7179         return 0;
7180 }
7181
7182 static int is_mddev_idle(struct mddev *mddev, int init)
7183 {
7184         struct md_rdev * rdev;
7185         int idle;
7186         int curr_events;
7187
7188         idle = 1;
7189         rcu_read_lock();
7190         rdev_for_each_rcu(rdev, mddev) {
7191                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7192                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7193                               (int)part_stat_read(&disk->part0, sectors[1]) -
7194                               atomic_read(&disk->sync_io);
7195                 /* sync IO will cause sync_io to increase before the disk_stats
7196                  * as sync_io is counted when a request starts, and
7197                  * disk_stats is counted when it completes.
7198                  * So resync activity will cause curr_events to be smaller than
7199                  * when there was no such activity.
7200                  * non-sync IO will cause disk_stat to increase without
7201                  * increasing sync_io so curr_events will (eventually)
7202                  * be larger than it was before.  Once it becomes
7203                  * substantially larger, the test below will cause
7204                  * the array to appear non-idle, and resync will slow
7205                  * down.
7206                  * If there is a lot of outstanding resync activity when
7207                  * we set last_event to curr_events, then all that activity
7208                  * completing might cause the array to appear non-idle
7209                  * and resync will be slowed down even though there might
7210                  * not have been non-resync activity.  This will only
7211                  * happen once though.  'last_events' will soon reflect
7212                  * the state where there is little or no outstanding
7213                  * resync requests, and further resync activity will
7214                  * always make curr_events less than last_events.
7215                  *
7216                  */
7217                 if (init || curr_events - rdev->last_events > 64) {
7218                         rdev->last_events = curr_events;
7219                         idle = 0;
7220                 }
7221         }
7222         rcu_read_unlock();
7223         return idle;
7224 }
7225
7226 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7227 {
7228         /* another "blocks" (512byte) blocks have been synced */
7229         atomic_sub(blocks, &mddev->recovery_active);
7230         wake_up(&mddev->recovery_wait);
7231         if (!ok) {
7232                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7233                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7234                 md_wakeup_thread(mddev->thread);
7235                 // stop recovery, signal do_sync ....
7236         }
7237 }
7238
7239
7240 /* md_write_start(mddev, bi)
7241  * If we need to update some array metadata (e.g. 'active' flag
7242  * in superblock) before writing, schedule a superblock update
7243  * and wait for it to complete.
7244  */
7245 void md_write_start(struct mddev *mddev, struct bio *bi)
7246 {
7247         int did_change = 0;
7248         if (bio_data_dir(bi) != WRITE)
7249                 return;
7250
7251         BUG_ON(mddev->ro == 1);
7252         if (mddev->ro == 2) {
7253                 /* need to switch to read/write */
7254                 mddev->ro = 0;
7255                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7256                 md_wakeup_thread(mddev->thread);
7257                 md_wakeup_thread(mddev->sync_thread);
7258                 did_change = 1;
7259         }
7260         atomic_inc(&mddev->writes_pending);
7261         if (mddev->safemode == 1)
7262                 mddev->safemode = 0;
7263         if (mddev->in_sync) {
7264                 spin_lock_irq(&mddev->write_lock);
7265                 if (mddev->in_sync) {
7266                         mddev->in_sync = 0;
7267                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7268                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7269                         md_wakeup_thread(mddev->thread);
7270                         did_change = 1;
7271                 }
7272                 spin_unlock_irq(&mddev->write_lock);
7273         }
7274         if (did_change)
7275                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7276         wait_event(mddev->sb_wait,
7277                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7278 }
7279
7280 void md_write_end(struct mddev *mddev)
7281 {
7282         if (atomic_dec_and_test(&mddev->writes_pending)) {
7283                 if (mddev->safemode == 2)
7284                         md_wakeup_thread(mddev->thread);
7285                 else if (mddev->safemode_delay)
7286                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7287         }
7288 }
7289
7290 /* md_allow_write(mddev)
7291  * Calling this ensures that the array is marked 'active' so that writes
7292  * may proceed without blocking.  It is important to call this before
7293  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7294  * Must be called with mddev_lock held.
7295  *
7296  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7297  * is dropped, so return -EAGAIN after notifying userspace.
7298  */
7299 int md_allow_write(struct mddev *mddev)
7300 {
7301         if (!mddev->pers)
7302                 return 0;
7303         if (mddev->ro)
7304                 return 0;
7305         if (!mddev->pers->sync_request)
7306                 return 0;
7307
7308         spin_lock_irq(&mddev->write_lock);
7309         if (mddev->in_sync) {
7310                 mddev->in_sync = 0;
7311                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7312                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7313                 if (mddev->safemode_delay &&
7314                     mddev->safemode == 0)
7315                         mddev->safemode = 1;
7316                 spin_unlock_irq(&mddev->write_lock);
7317                 md_update_sb(mddev, 0);
7318                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7319         } else
7320                 spin_unlock_irq(&mddev->write_lock);
7321
7322         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7323                 return -EAGAIN;
7324         else
7325                 return 0;
7326 }
7327 EXPORT_SYMBOL_GPL(md_allow_write);
7328
7329 #define SYNC_MARKS      10
7330 #define SYNC_MARK_STEP  (3*HZ)
7331 #define UPDATE_FREQUENCY (5*60*HZ)
7332 void md_do_sync(struct md_thread *thread)
7333 {
7334         struct mddev *mddev = thread->mddev;
7335         struct mddev *mddev2;
7336         unsigned int currspeed = 0,
7337                  window;
7338         sector_t max_sectors,j, io_sectors;
7339         unsigned long mark[SYNC_MARKS];
7340         unsigned long update_time;
7341         sector_t mark_cnt[SYNC_MARKS];
7342         int last_mark,m;
7343         struct list_head *tmp;
7344         sector_t last_check;
7345         int skipped = 0;
7346         struct md_rdev *rdev;
7347         char *desc, *action = NULL;
7348         struct blk_plug plug;
7349
7350         /* just incase thread restarts... */
7351         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7352                 return;
7353         if (mddev->ro) /* never try to sync a read-only array */
7354                 return;
7355
7356         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7357                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7358                         desc = "data-check";
7359                         action = "check";
7360                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7361                         desc = "requested-resync";
7362                         action = "repair";
7363                 } else
7364                         desc = "resync";
7365         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7366                 desc = "reshape";
7367         else
7368                 desc = "recovery";
7369
7370         mddev->last_sync_action = action ?: desc;
7371
7372         /* we overload curr_resync somewhat here.
7373          * 0 == not engaged in resync at all
7374          * 2 == checking that there is no conflict with another sync
7375          * 1 == like 2, but have yielded to allow conflicting resync to
7376          *              commense
7377          * other == active in resync - this many blocks
7378          *
7379          * Before starting a resync we must have set curr_resync to
7380          * 2, and then checked that every "conflicting" array has curr_resync
7381          * less than ours.  When we find one that is the same or higher
7382          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7383          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7384          * This will mean we have to start checking from the beginning again.
7385          *
7386          */
7387
7388         do {
7389                 mddev->curr_resync = 2;
7390
7391         try_again:
7392                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7393                         goto skip;
7394                 for_each_mddev(mddev2, tmp) {
7395                         if (mddev2 == mddev)
7396                                 continue;
7397                         if (!mddev->parallel_resync
7398                         &&  mddev2->curr_resync
7399                         &&  match_mddev_units(mddev, mddev2)) {
7400                                 DEFINE_WAIT(wq);
7401                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7402                                         /* arbitrarily yield */
7403                                         mddev->curr_resync = 1;
7404                                         wake_up(&resync_wait);
7405                                 }
7406                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7407                                         /* no need to wait here, we can wait the next
7408                                          * time 'round when curr_resync == 2
7409                                          */
7410                                         continue;
7411                                 /* We need to wait 'interruptible' so as not to
7412                                  * contribute to the load average, and not to
7413                                  * be caught by 'softlockup'
7414                                  */
7415                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7416                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7417                                     mddev2->curr_resync >= mddev->curr_resync) {
7418                                         printk(KERN_INFO "md: delaying %s of %s"
7419                                                " until %s has finished (they"
7420                                                " share one or more physical units)\n",
7421                                                desc, mdname(mddev), mdname(mddev2));
7422                                         mddev_put(mddev2);
7423                                         if (signal_pending(current))
7424                                                 flush_signals(current);
7425                                         schedule();
7426                                         finish_wait(&resync_wait, &wq);
7427                                         goto try_again;
7428                                 }
7429                                 finish_wait(&resync_wait, &wq);
7430                         }
7431                 }
7432         } while (mddev->curr_resync < 2);
7433
7434         j = 0;
7435         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7436                 /* resync follows the size requested by the personality,
7437                  * which defaults to physical size, but can be virtual size
7438                  */
7439                 max_sectors = mddev->resync_max_sectors;
7440                 atomic64_set(&mddev->resync_mismatches, 0);
7441                 /* we don't use the checkpoint if there's a bitmap */
7442                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7443                         j = mddev->resync_min;
7444                 else if (!mddev->bitmap)
7445                         j = mddev->recovery_cp;
7446
7447         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7448                 max_sectors = mddev->resync_max_sectors;
7449         else {
7450                 /* recovery follows the physical size of devices */
7451                 max_sectors = mddev->dev_sectors;
7452                 j = MaxSector;
7453                 rcu_read_lock();
7454                 rdev_for_each_rcu(rdev, mddev)
7455                         if (rdev->raid_disk >= 0 &&
7456                             !test_bit(Faulty, &rdev->flags) &&
7457                             !test_bit(In_sync, &rdev->flags) &&
7458                             rdev->recovery_offset < j)
7459                                 j = rdev->recovery_offset;
7460                 rcu_read_unlock();
7461         }
7462
7463         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7464         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7465                 " %d KB/sec/disk.\n", speed_min(mddev));
7466         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7467                "(but not more than %d KB/sec) for %s.\n",
7468                speed_max(mddev), desc);
7469
7470         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7471
7472         io_sectors = 0;
7473         for (m = 0; m < SYNC_MARKS; m++) {
7474                 mark[m] = jiffies;
7475                 mark_cnt[m] = io_sectors;
7476         }
7477         last_mark = 0;
7478         mddev->resync_mark = mark[last_mark];
7479         mddev->resync_mark_cnt = mark_cnt[last_mark];
7480
7481         /*
7482          * Tune reconstruction:
7483          */
7484         window = 32*(PAGE_SIZE/512);
7485         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7486                 window/2, (unsigned long long)max_sectors/2);
7487
7488         atomic_set(&mddev->recovery_active, 0);
7489         last_check = 0;
7490
7491         if (j>2) {
7492                 printk(KERN_INFO
7493                        "md: resuming %s of %s from checkpoint.\n",
7494                        desc, mdname(mddev));
7495                 mddev->curr_resync = j;
7496         } else
7497                 mddev->curr_resync = 3; /* no longer delayed */
7498         mddev->curr_resync_completed = j;
7499         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7500         md_new_event(mddev);
7501         update_time = jiffies;
7502
7503         blk_start_plug(&plug);
7504         while (j < max_sectors) {
7505                 sector_t sectors;
7506
7507                 skipped = 0;
7508
7509                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7510                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7511                       (mddev->curr_resync - mddev->curr_resync_completed)
7512                       > (max_sectors >> 4)) ||
7513                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7514                      (j - mddev->curr_resync_completed)*2
7515                      >= mddev->resync_max - mddev->curr_resync_completed
7516                             )) {
7517                         /* time to update curr_resync_completed */
7518                         wait_event(mddev->recovery_wait,
7519                                    atomic_read(&mddev->recovery_active) == 0);
7520                         mddev->curr_resync_completed = j;
7521                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7522                             j > mddev->recovery_cp)
7523                                 mddev->recovery_cp = j;
7524                         update_time = jiffies;
7525                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7526                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7527                 }
7528
7529                 while (j >= mddev->resync_max &&
7530                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7531                         /* As this condition is controlled by user-space,
7532                          * we can block indefinitely, so use '_interruptible'
7533                          * to avoid triggering warnings.
7534                          */
7535                         flush_signals(current); /* just in case */
7536                         wait_event_interruptible(mddev->recovery_wait,
7537                                                  mddev->resync_max > j
7538                                                  || test_bit(MD_RECOVERY_INTR,
7539                                                              &mddev->recovery));
7540                 }
7541
7542                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7543                         break;
7544
7545                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7546                                                   currspeed < speed_min(mddev));
7547                 if (sectors == 0) {
7548                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7549                         break;
7550                 }
7551
7552                 if (!skipped) { /* actual IO requested */
7553                         io_sectors += sectors;
7554                         atomic_add(sectors, &mddev->recovery_active);
7555                 }
7556
7557                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7558                         break;
7559
7560                 j += sectors;
7561                 if (j > 2)
7562                         mddev->curr_resync = j;
7563                 mddev->curr_mark_cnt = io_sectors;
7564                 if (last_check == 0)
7565                         /* this is the earliest that rebuild will be
7566                          * visible in /proc/mdstat
7567                          */
7568                         md_new_event(mddev);
7569
7570                 if (last_check + window > io_sectors || j == max_sectors)
7571                         continue;
7572
7573                 last_check = io_sectors;
7574         repeat:
7575                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7576                         /* step marks */
7577                         int next = (last_mark+1) % SYNC_MARKS;
7578
7579                         mddev->resync_mark = mark[next];
7580                         mddev->resync_mark_cnt = mark_cnt[next];
7581                         mark[next] = jiffies;
7582                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7583                         last_mark = next;
7584                 }
7585
7586                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7587                         break;
7588
7589                 /*
7590                  * this loop exits only if either when we are slower than
7591                  * the 'hard' speed limit, or the system was IO-idle for
7592                  * a jiffy.
7593                  * the system might be non-idle CPU-wise, but we only care
7594                  * about not overloading the IO subsystem. (things like an
7595                  * e2fsck being done on the RAID array should execute fast)
7596                  */
7597                 cond_resched();
7598
7599                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7600                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7601
7602                 if (currspeed > speed_min(mddev)) {
7603                         if ((currspeed > speed_max(mddev)) ||
7604                                         !is_mddev_idle(mddev, 0)) {
7605                                 msleep(500);
7606                                 goto repeat;
7607                         }
7608                 }
7609         }
7610         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7611                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7612                ? "interrupted" : "done");
7613         /*
7614          * this also signals 'finished resyncing' to md_stop
7615          */
7616         blk_finish_plug(&plug);
7617         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7618
7619         /* tell personality that we are finished */
7620         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7621
7622         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7623             mddev->curr_resync > 2) {
7624                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7625                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7626                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7627                                         printk(KERN_INFO
7628                                                "md: checkpointing %s of %s.\n",
7629                                                desc, mdname(mddev));
7630                                         if (test_bit(MD_RECOVERY_ERROR,
7631                                                 &mddev->recovery))
7632                                                 mddev->recovery_cp =
7633                                                         mddev->curr_resync_completed;
7634                                         else
7635                                                 mddev->recovery_cp =
7636                                                         mddev->curr_resync;
7637                                 }
7638                         } else
7639                                 mddev->recovery_cp = MaxSector;
7640                 } else {
7641                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7642                                 mddev->curr_resync = MaxSector;
7643                         rcu_read_lock();
7644                         rdev_for_each_rcu(rdev, mddev)
7645                                 if (rdev->raid_disk >= 0 &&
7646                                     mddev->delta_disks >= 0 &&
7647                                     !test_bit(Faulty, &rdev->flags) &&
7648                                     !test_bit(In_sync, &rdev->flags) &&
7649                                     rdev->recovery_offset < mddev->curr_resync)
7650                                         rdev->recovery_offset = mddev->curr_resync;
7651                         rcu_read_unlock();
7652                 }
7653         }
7654  skip:
7655         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7656
7657         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7658                 /* We completed so min/max setting can be forgotten if used. */
7659                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7660                         mddev->resync_min = 0;
7661                 mddev->resync_max = MaxSector;
7662         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7663                 mddev->resync_min = mddev->curr_resync_completed;
7664         mddev->curr_resync = 0;
7665         wake_up(&resync_wait);
7666         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7667         md_wakeup_thread(mddev->thread);
7668         return;
7669 }
7670 EXPORT_SYMBOL_GPL(md_do_sync);
7671
7672 static int remove_and_add_spares(struct mddev *mddev,
7673                                  struct md_rdev *this)
7674 {
7675         struct md_rdev *rdev;
7676         int spares = 0;
7677         int removed = 0;
7678
7679         rdev_for_each(rdev, mddev)
7680                 if ((this == NULL || rdev == this) &&
7681                     rdev->raid_disk >= 0 &&
7682                     !test_bit(Blocked, &rdev->flags) &&
7683                     (test_bit(Faulty, &rdev->flags) ||
7684                      ! test_bit(In_sync, &rdev->flags)) &&
7685                     atomic_read(&rdev->nr_pending)==0) {
7686                         if (mddev->pers->hot_remove_disk(
7687                                     mddev, rdev) == 0) {
7688                                 sysfs_unlink_rdev(mddev, rdev);
7689                                 rdev->raid_disk = -1;
7690                                 removed++;
7691                         }
7692                 }
7693         if (removed && mddev->kobj.sd)
7694                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7695
7696         if (this)
7697                 goto no_add;
7698
7699         rdev_for_each(rdev, mddev) {
7700                 if (rdev->raid_disk >= 0 &&
7701                     !test_bit(In_sync, &rdev->flags) &&
7702                     !test_bit(Faulty, &rdev->flags))
7703                         spares++;
7704                 if (rdev->raid_disk >= 0)
7705                         continue;
7706                 if (test_bit(Faulty, &rdev->flags))
7707                         continue;
7708                 if (mddev->ro &&
7709                     rdev->saved_raid_disk < 0)
7710                         continue;
7711
7712                 rdev->recovery_offset = 0;
7713                 if (mddev->pers->
7714                     hot_add_disk(mddev, rdev) == 0) {
7715                         if (sysfs_link_rdev(mddev, rdev))
7716                                 /* failure here is OK */;
7717                         spares++;
7718                         md_new_event(mddev);
7719                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7720                 }
7721         }
7722 no_add:
7723         if (removed)
7724                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7725         return spares;
7726 }
7727
7728 /*
7729  * This routine is regularly called by all per-raid-array threads to
7730  * deal with generic issues like resync and super-block update.
7731  * Raid personalities that don't have a thread (linear/raid0) do not
7732  * need this as they never do any recovery or update the superblock.
7733  *
7734  * It does not do any resync itself, but rather "forks" off other threads
7735  * to do that as needed.
7736  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7737  * "->recovery" and create a thread at ->sync_thread.
7738  * When the thread finishes it sets MD_RECOVERY_DONE
7739  * and wakeups up this thread which will reap the thread and finish up.
7740  * This thread also removes any faulty devices (with nr_pending == 0).
7741  *
7742  * The overall approach is:
7743  *  1/ if the superblock needs updating, update it.
7744  *  2/ If a recovery thread is running, don't do anything else.
7745  *  3/ If recovery has finished, clean up, possibly marking spares active.
7746  *  4/ If there are any faulty devices, remove them.
7747  *  5/ If array is degraded, try to add spares devices
7748  *  6/ If array has spares or is not in-sync, start a resync thread.
7749  */
7750 void md_check_recovery(struct mddev *mddev)
7751 {
7752         if (mddev->suspended)
7753                 return;
7754
7755         if (mddev->bitmap)
7756                 bitmap_daemon_work(mddev);
7757
7758         if (signal_pending(current)) {
7759                 if (mddev->pers->sync_request && !mddev->external) {
7760                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7761                                mdname(mddev));
7762                         mddev->safemode = 2;
7763                 }
7764                 flush_signals(current);
7765         }
7766
7767         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7768                 return;
7769         if ( ! (
7770                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7771                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7772                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7773                 (mddev->external == 0 && mddev->safemode == 1) ||
7774                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7775                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7776                 ))
7777                 return;
7778
7779         if (mddev_trylock(mddev)) {
7780                 int spares = 0;
7781
7782                 if (mddev->ro) {
7783                         /* On a read-only array we can:
7784                          * - remove failed devices
7785                          * - add already-in_sync devices if the array itself
7786                          *   is in-sync.
7787                          * As we only add devices that are already in-sync,
7788                          * we can activate the spares immediately.
7789                          */
7790                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7791                         remove_and_add_spares(mddev, NULL);
7792                         mddev->pers->spare_active(mddev);
7793                         goto unlock;
7794                 }
7795
7796                 if (!mddev->external) {
7797                         int did_change = 0;
7798                         spin_lock_irq(&mddev->write_lock);
7799                         if (mddev->safemode &&
7800                             !atomic_read(&mddev->writes_pending) &&
7801                             !mddev->in_sync &&
7802                             mddev->recovery_cp == MaxSector) {
7803                                 mddev->in_sync = 1;
7804                                 did_change = 1;
7805                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7806                         }
7807                         if (mddev->safemode == 1)
7808                                 mddev->safemode = 0;
7809                         spin_unlock_irq(&mddev->write_lock);
7810                         if (did_change)
7811                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7812                 }
7813
7814                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7815                         md_update_sb(mddev, 0);
7816
7817                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7818                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7819                         /* resync/recovery still happening */
7820                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7821                         goto unlock;
7822                 }
7823                 if (mddev->sync_thread) {
7824                         md_reap_sync_thread(mddev);
7825                         goto unlock;
7826                 }
7827                 /* Set RUNNING before clearing NEEDED to avoid
7828                  * any transients in the value of "sync_action".
7829                  */
7830                 mddev->curr_resync_completed = 0;
7831                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7832                 /* Clear some bits that don't mean anything, but
7833                  * might be left set
7834                  */
7835                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7836                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7837
7838                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7839                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7840                         goto unlock;
7841                 /* no recovery is running.
7842                  * remove any failed drives, then
7843                  * add spares if possible.
7844                  * Spares are also removed and re-added, to allow
7845                  * the personality to fail the re-add.
7846                  */
7847
7848                 if (mddev->reshape_position != MaxSector) {
7849                         if (mddev->pers->check_reshape == NULL ||
7850                             mddev->pers->check_reshape(mddev) != 0)
7851                                 /* Cannot proceed */
7852                                 goto unlock;
7853                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7854                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7855                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7856                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7857                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7858                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7859                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7860                 } else if (mddev->recovery_cp < MaxSector) {
7861                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7862                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7863                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7864                         /* nothing to be done ... */
7865                         goto unlock;
7866
7867                 if (mddev->pers->sync_request) {
7868                         if (spares) {
7869                                 /* We are adding a device or devices to an array
7870                                  * which has the bitmap stored on all devices.
7871                                  * So make sure all bitmap pages get written
7872                                  */
7873                                 bitmap_write_all(mddev->bitmap);
7874                         }
7875                         mddev->sync_thread = md_register_thread(md_do_sync,
7876                                                                 mddev,
7877                                                                 "resync");
7878                         if (!mddev->sync_thread) {
7879                                 printk(KERN_ERR "%s: could not start resync"
7880                                         " thread...\n", 
7881                                         mdname(mddev));
7882                                 /* leave the spares where they are, it shouldn't hurt */
7883                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7884                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7885                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7886                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7887                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7888                         } else
7889                                 md_wakeup_thread(mddev->sync_thread);
7890                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7891                         md_new_event(mddev);
7892                 }
7893         unlock:
7894                 wake_up(&mddev->sb_wait);
7895
7896                 if (!mddev->sync_thread) {
7897                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7898                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7899                                                &mddev->recovery))
7900                                 if (mddev->sysfs_action)
7901                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7902                 }
7903                 mddev_unlock(mddev);
7904         }
7905 }
7906
7907 void md_reap_sync_thread(struct mddev *mddev)
7908 {
7909         struct md_rdev *rdev;
7910
7911         /* resync has finished, collect result */
7912         md_unregister_thread(&mddev->sync_thread);
7913         wake_up(&resync_wait);
7914         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7915             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7916                 /* success...*/
7917                 /* activate any spares */
7918                 if (mddev->pers->spare_active(mddev)) {
7919                         sysfs_notify(&mddev->kobj, NULL,
7920                                      "degraded");
7921                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7922                 }
7923         }
7924         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7925             mddev->pers->finish_reshape)
7926                 mddev->pers->finish_reshape(mddev);
7927
7928         /* If array is no-longer degraded, then any saved_raid_disk
7929          * information must be scrapped.  Also if any device is now
7930          * In_sync we must scrape the saved_raid_disk for that device
7931          * do the superblock for an incrementally recovered device
7932          * written out.
7933          */
7934         rdev_for_each(rdev, mddev)
7935                 if (!mddev->degraded ||
7936                     test_bit(In_sync, &rdev->flags))
7937                         rdev->saved_raid_disk = -1;
7938
7939         md_update_sb(mddev, 1);
7940         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7941         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7942         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7943         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7944         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7945         /* flag recovery needed just to double check */
7946         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7947         sysfs_notify_dirent_safe(mddev->sysfs_action);
7948         md_new_event(mddev);
7949         if (mddev->event_work.func)
7950                 queue_work(md_misc_wq, &mddev->event_work);
7951 }
7952
7953 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7954 {
7955         sysfs_notify_dirent_safe(rdev->sysfs_state);
7956         wait_event_timeout(rdev->blocked_wait,
7957                            !test_bit(Blocked, &rdev->flags) &&
7958                            !test_bit(BlockedBadBlocks, &rdev->flags),
7959                            msecs_to_jiffies(5000));
7960         rdev_dec_pending(rdev, mddev);
7961 }
7962 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7963
7964 void md_finish_reshape(struct mddev *mddev)
7965 {
7966         /* called be personality module when reshape completes. */
7967         struct md_rdev *rdev;
7968
7969         rdev_for_each(rdev, mddev) {
7970                 if (rdev->data_offset > rdev->new_data_offset)
7971                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7972                 else
7973                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7974                 rdev->data_offset = rdev->new_data_offset;
7975         }
7976 }
7977 EXPORT_SYMBOL(md_finish_reshape);
7978
7979 /* Bad block management.
7980  * We can record which blocks on each device are 'bad' and so just
7981  * fail those blocks, or that stripe, rather than the whole device.
7982  * Entries in the bad-block table are 64bits wide.  This comprises:
7983  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7984  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7985  *  A 'shift' can be set so that larger blocks are tracked and
7986  *  consequently larger devices can be covered.
7987  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7988  *
7989  * Locking of the bad-block table uses a seqlock so md_is_badblock
7990  * might need to retry if it is very unlucky.
7991  * We will sometimes want to check for bad blocks in a bi_end_io function,
7992  * so we use the write_seqlock_irq variant.
7993  *
7994  * When looking for a bad block we specify a range and want to
7995  * know if any block in the range is bad.  So we binary-search
7996  * to the last range that starts at-or-before the given endpoint,
7997  * (or "before the sector after the target range")
7998  * then see if it ends after the given start.
7999  * We return
8000  *  0 if there are no known bad blocks in the range
8001  *  1 if there are known bad block which are all acknowledged
8002  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8003  * plus the start/length of the first bad section we overlap.
8004  */
8005 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8006                    sector_t *first_bad, int *bad_sectors)
8007 {
8008         int hi;
8009         int lo;
8010         u64 *p = bb->page;
8011         int rv;
8012         sector_t target = s + sectors;
8013         unsigned seq;
8014
8015         if (bb->shift > 0) {
8016                 /* round the start down, and the end up */
8017                 s >>= bb->shift;
8018                 target += (1<<bb->shift) - 1;
8019                 target >>= bb->shift;
8020                 sectors = target - s;
8021         }
8022         /* 'target' is now the first block after the bad range */
8023
8024 retry:
8025         seq = read_seqbegin(&bb->lock);
8026         lo = 0;
8027         rv = 0;
8028         hi = bb->count;
8029
8030         /* Binary search between lo and hi for 'target'
8031          * i.e. for the last range that starts before 'target'
8032          */
8033         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8034          * are known not to be the last range before target.
8035          * VARIANT: hi-lo is the number of possible
8036          * ranges, and decreases until it reaches 1
8037          */
8038         while (hi - lo > 1) {
8039                 int mid = (lo + hi) / 2;
8040                 sector_t a = BB_OFFSET(p[mid]);
8041                 if (a < target)
8042                         /* This could still be the one, earlier ranges
8043                          * could not. */
8044                         lo = mid;
8045                 else
8046                         /* This and later ranges are definitely out. */
8047                         hi = mid;
8048         }
8049         /* 'lo' might be the last that started before target, but 'hi' isn't */
8050         if (hi > lo) {
8051                 /* need to check all range that end after 's' to see if
8052                  * any are unacknowledged.
8053                  */
8054                 while (lo >= 0 &&
8055                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8056                         if (BB_OFFSET(p[lo]) < target) {
8057                                 /* starts before the end, and finishes after
8058                                  * the start, so they must overlap
8059                                  */
8060                                 if (rv != -1 && BB_ACK(p[lo]))
8061                                         rv = 1;
8062                                 else
8063                                         rv = -1;
8064                                 *first_bad = BB_OFFSET(p[lo]);
8065                                 *bad_sectors = BB_LEN(p[lo]);
8066                         }
8067                         lo--;
8068                 }
8069         }
8070
8071         if (read_seqretry(&bb->lock, seq))
8072                 goto retry;
8073
8074         return rv;
8075 }
8076 EXPORT_SYMBOL_GPL(md_is_badblock);
8077
8078 /*
8079  * Add a range of bad blocks to the table.
8080  * This might extend the table, or might contract it
8081  * if two adjacent ranges can be merged.
8082  * We binary-search to find the 'insertion' point, then
8083  * decide how best to handle it.
8084  */
8085 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8086                             int acknowledged)
8087 {
8088         u64 *p;
8089         int lo, hi;
8090         int rv = 1;
8091         unsigned long flags;
8092
8093         if (bb->shift < 0)
8094                 /* badblocks are disabled */
8095                 return 0;
8096
8097         if (bb->shift) {
8098                 /* round the start down, and the end up */
8099                 sector_t next = s + sectors;
8100                 s >>= bb->shift;
8101                 next += (1<<bb->shift) - 1;
8102                 next >>= bb->shift;
8103                 sectors = next - s;
8104         }
8105
8106         write_seqlock_irqsave(&bb->lock, flags);
8107
8108         p = bb->page;
8109         lo = 0;
8110         hi = bb->count;
8111         /* Find the last range that starts at-or-before 's' */
8112         while (hi - lo > 1) {
8113                 int mid = (lo + hi) / 2;
8114                 sector_t a = BB_OFFSET(p[mid]);
8115                 if (a <= s)
8116                         lo = mid;
8117                 else
8118                         hi = mid;
8119         }
8120         if (hi > lo && BB_OFFSET(p[lo]) > s)
8121                 hi = lo;
8122
8123         if (hi > lo) {
8124                 /* we found a range that might merge with the start
8125                  * of our new range
8126                  */
8127                 sector_t a = BB_OFFSET(p[lo]);
8128                 sector_t e = a + BB_LEN(p[lo]);
8129                 int ack = BB_ACK(p[lo]);
8130                 if (e >= s) {
8131                         /* Yes, we can merge with a previous range */
8132                         if (s == a && s + sectors >= e)
8133                                 /* new range covers old */
8134                                 ack = acknowledged;
8135                         else
8136                                 ack = ack && acknowledged;
8137
8138                         if (e < s + sectors)
8139                                 e = s + sectors;
8140                         if (e - a <= BB_MAX_LEN) {
8141                                 p[lo] = BB_MAKE(a, e-a, ack);
8142                                 s = e;
8143                         } else {
8144                                 /* does not all fit in one range,
8145                                  * make p[lo] maximal
8146                                  */
8147                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8148                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8149                                 s = a + BB_MAX_LEN;
8150                         }
8151                         sectors = e - s;
8152                 }
8153         }
8154         if (sectors && hi < bb->count) {
8155                 /* 'hi' points to the first range that starts after 's'.
8156                  * Maybe we can merge with the start of that range */
8157                 sector_t a = BB_OFFSET(p[hi]);
8158                 sector_t e = a + BB_LEN(p[hi]);
8159                 int ack = BB_ACK(p[hi]);
8160                 if (a <= s + sectors) {
8161                         /* merging is possible */
8162                         if (e <= s + sectors) {
8163                                 /* full overlap */
8164                                 e = s + sectors;
8165                                 ack = acknowledged;
8166                         } else
8167                                 ack = ack && acknowledged;
8168
8169                         a = s;
8170                         if (e - a <= BB_MAX_LEN) {
8171                                 p[hi] = BB_MAKE(a, e-a, ack);
8172                                 s = e;
8173                         } else {
8174                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8175                                 s = a + BB_MAX_LEN;
8176                         }
8177                         sectors = e - s;
8178                         lo = hi;
8179                         hi++;
8180                 }
8181         }
8182         if (sectors == 0 && hi < bb->count) {
8183                 /* we might be able to combine lo and hi */
8184                 /* Note: 's' is at the end of 'lo' */
8185                 sector_t a = BB_OFFSET(p[hi]);
8186                 int lolen = BB_LEN(p[lo]);
8187                 int hilen = BB_LEN(p[hi]);
8188                 int newlen = lolen + hilen - (s - a);
8189                 if (s >= a && newlen < BB_MAX_LEN) {
8190                         /* yes, we can combine them */
8191                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8192                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8193                         memmove(p + hi, p + hi + 1,
8194                                 (bb->count - hi - 1) * 8);
8195                         bb->count--;
8196                 }
8197         }
8198         while (sectors) {
8199                 /* didn't merge (it all).
8200                  * Need to add a range just before 'hi' */
8201                 if (bb->count >= MD_MAX_BADBLOCKS) {
8202                         /* No room for more */
8203                         rv = 0;
8204                         break;
8205                 } else {
8206                         int this_sectors = sectors;
8207                         memmove(p + hi + 1, p + hi,
8208                                 (bb->count - hi) * 8);
8209                         bb->count++;
8210
8211                         if (this_sectors > BB_MAX_LEN)
8212                                 this_sectors = BB_MAX_LEN;
8213                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8214                         sectors -= this_sectors;
8215                         s += this_sectors;
8216                 }
8217         }
8218
8219         bb->changed = 1;
8220         if (!acknowledged)
8221                 bb->unacked_exist = 1;
8222         write_sequnlock_irqrestore(&bb->lock, flags);
8223
8224         return rv;
8225 }
8226
8227 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8228                        int is_new)
8229 {
8230         int rv;
8231         if (is_new)
8232                 s += rdev->new_data_offset;
8233         else
8234                 s += rdev->data_offset;
8235         rv = md_set_badblocks(&rdev->badblocks,
8236                               s, sectors, 0);
8237         if (rv) {
8238                 /* Make sure they get written out promptly */
8239                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8240                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8241                 md_wakeup_thread(rdev->mddev->thread);
8242         }
8243         return rv;
8244 }
8245 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8246
8247 /*
8248  * Remove a range of bad blocks from the table.
8249  * This may involve extending the table if we spilt a region,
8250  * but it must not fail.  So if the table becomes full, we just
8251  * drop the remove request.
8252  */
8253 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8254 {
8255         u64 *p;
8256         int lo, hi;
8257         sector_t target = s + sectors;
8258         int rv = 0;
8259
8260         if (bb->shift > 0) {
8261                 /* When clearing we round the start up and the end down.
8262                  * This should not matter as the shift should align with
8263                  * the block size and no rounding should ever be needed.
8264                  * However it is better the think a block is bad when it
8265                  * isn't than to think a block is not bad when it is.
8266                  */
8267                 s += (1<<bb->shift) - 1;
8268                 s >>= bb->shift;
8269                 target >>= bb->shift;
8270                 sectors = target - s;
8271         }
8272
8273         write_seqlock_irq(&bb->lock);
8274
8275         p = bb->page;
8276         lo = 0;
8277         hi = bb->count;
8278         /* Find the last range that starts before 'target' */
8279         while (hi - lo > 1) {
8280                 int mid = (lo + hi) / 2;
8281                 sector_t a = BB_OFFSET(p[mid]);
8282                 if (a < target)
8283                         lo = mid;
8284                 else
8285                         hi = mid;
8286         }
8287         if (hi > lo) {
8288                 /* p[lo] is the last range that could overlap the
8289                  * current range.  Earlier ranges could also overlap,
8290                  * but only this one can overlap the end of the range.
8291                  */
8292                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8293                         /* Partial overlap, leave the tail of this range */
8294                         int ack = BB_ACK(p[lo]);
8295                         sector_t a = BB_OFFSET(p[lo]);
8296                         sector_t end = a + BB_LEN(p[lo]);
8297
8298                         if (a < s) {
8299                                 /* we need to split this range */
8300                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8301                                         rv = 0;
8302                                         goto out;
8303                                 }
8304                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8305                                 bb->count++;
8306                                 p[lo] = BB_MAKE(a, s-a, ack);
8307                                 lo++;
8308                         }
8309                         p[lo] = BB_MAKE(target, end - target, ack);
8310                         /* there is no longer an overlap */
8311                         hi = lo;
8312                         lo--;
8313                 }
8314                 while (lo >= 0 &&
8315                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8316                         /* This range does overlap */
8317                         if (BB_OFFSET(p[lo]) < s) {
8318                                 /* Keep the early parts of this range. */
8319                                 int ack = BB_ACK(p[lo]);
8320                                 sector_t start = BB_OFFSET(p[lo]);
8321                                 p[lo] = BB_MAKE(start, s - start, ack);
8322                                 /* now low doesn't overlap, so.. */
8323                                 break;
8324                         }
8325                         lo--;
8326                 }
8327                 /* 'lo' is strictly before, 'hi' is strictly after,
8328                  * anything between needs to be discarded
8329                  */
8330                 if (hi - lo > 1) {
8331                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8332                         bb->count -= (hi - lo - 1);
8333                 }
8334         }
8335
8336         bb->changed = 1;
8337 out:
8338         write_sequnlock_irq(&bb->lock);
8339         return rv;
8340 }
8341
8342 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8343                          int is_new)
8344 {
8345         if (is_new)
8346                 s += rdev->new_data_offset;
8347         else
8348                 s += rdev->data_offset;
8349         return md_clear_badblocks(&rdev->badblocks,
8350                                   s, sectors);
8351 }
8352 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8353
8354 /*
8355  * Acknowledge all bad blocks in a list.
8356  * This only succeeds if ->changed is clear.  It is used by
8357  * in-kernel metadata updates
8358  */
8359 void md_ack_all_badblocks(struct badblocks *bb)
8360 {
8361         if (bb->page == NULL || bb->changed)
8362                 /* no point even trying */
8363                 return;
8364         write_seqlock_irq(&bb->lock);
8365
8366         if (bb->changed == 0 && bb->unacked_exist) {
8367                 u64 *p = bb->page;
8368                 int i;
8369                 for (i = 0; i < bb->count ; i++) {
8370                         if (!BB_ACK(p[i])) {
8371                                 sector_t start = BB_OFFSET(p[i]);
8372                                 int len = BB_LEN(p[i]);
8373                                 p[i] = BB_MAKE(start, len, 1);
8374                         }
8375                 }
8376                 bb->unacked_exist = 0;
8377         }
8378         write_sequnlock_irq(&bb->lock);
8379 }
8380 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8381
8382 /* sysfs access to bad-blocks list.
8383  * We present two files.
8384  * 'bad-blocks' lists sector numbers and lengths of ranges that
8385  *    are recorded as bad.  The list is truncated to fit within
8386  *    the one-page limit of sysfs.
8387  *    Writing "sector length" to this file adds an acknowledged
8388  *    bad block list.
8389  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8390  *    been acknowledged.  Writing to this file adds bad blocks
8391  *    without acknowledging them.  This is largely for testing.
8392  */
8393
8394 static ssize_t
8395 badblocks_show(struct badblocks *bb, char *page, int unack)
8396 {
8397         size_t len;
8398         int i;
8399         u64 *p = bb->page;
8400         unsigned seq;
8401
8402         if (bb->shift < 0)
8403                 return 0;
8404
8405 retry:
8406         seq = read_seqbegin(&bb->lock);
8407
8408         len = 0;
8409         i = 0;
8410
8411         while (len < PAGE_SIZE && i < bb->count) {
8412                 sector_t s = BB_OFFSET(p[i]);
8413                 unsigned int length = BB_LEN(p[i]);
8414                 int ack = BB_ACK(p[i]);
8415                 i++;
8416
8417                 if (unack && ack)
8418                         continue;
8419
8420                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8421                                 (unsigned long long)s << bb->shift,
8422                                 length << bb->shift);
8423         }
8424         if (unack && len == 0)
8425                 bb->unacked_exist = 0;
8426
8427         if (read_seqretry(&bb->lock, seq))
8428                 goto retry;
8429
8430         return len;
8431 }
8432
8433 #define DO_DEBUG 1
8434
8435 static ssize_t
8436 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8437 {
8438         unsigned long long sector;
8439         int length;
8440         char newline;
8441 #ifdef DO_DEBUG
8442         /* Allow clearing via sysfs *only* for testing/debugging.
8443          * Normally only a successful write may clear a badblock
8444          */
8445         int clear = 0;
8446         if (page[0] == '-') {
8447                 clear = 1;
8448                 page++;
8449         }
8450 #endif /* DO_DEBUG */
8451
8452         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8453         case 3:
8454                 if (newline != '\n')
8455                         return -EINVAL;
8456         case 2:
8457                 if (length <= 0)
8458                         return -EINVAL;
8459                 break;
8460         default:
8461                 return -EINVAL;
8462         }
8463
8464 #ifdef DO_DEBUG
8465         if (clear) {
8466                 md_clear_badblocks(bb, sector, length);
8467                 return len;
8468         }
8469 #endif /* DO_DEBUG */
8470         if (md_set_badblocks(bb, sector, length, !unack))
8471                 return len;
8472         else
8473                 return -ENOSPC;
8474 }
8475
8476 static int md_notify_reboot(struct notifier_block *this,
8477                             unsigned long code, void *x)
8478 {
8479         struct list_head *tmp;
8480         struct mddev *mddev;
8481         int need_delay = 0;
8482
8483         for_each_mddev(mddev, tmp) {
8484                 if (mddev_trylock(mddev)) {
8485                         if (mddev->pers)
8486                                 __md_stop_writes(mddev);
8487                         mddev->safemode = 2;
8488                         mddev_unlock(mddev);
8489                 }
8490                 need_delay = 1;
8491         }
8492         /*
8493          * certain more exotic SCSI devices are known to be
8494          * volatile wrt too early system reboots. While the
8495          * right place to handle this issue is the given
8496          * driver, we do want to have a safe RAID driver ...
8497          */
8498         if (need_delay)
8499                 mdelay(1000*1);
8500
8501         return NOTIFY_DONE;
8502 }
8503
8504 static struct notifier_block md_notifier = {
8505         .notifier_call  = md_notify_reboot,
8506         .next           = NULL,
8507         .priority       = INT_MAX, /* before any real devices */
8508 };
8509
8510 static void md_geninit(void)
8511 {
8512         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8513
8514         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8515 }
8516
8517 static int __init md_init(void)
8518 {
8519         int ret = -ENOMEM;
8520
8521         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8522         if (!md_wq)
8523                 goto err_wq;
8524
8525         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8526         if (!md_misc_wq)
8527                 goto err_misc_wq;
8528
8529         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8530                 goto err_md;
8531
8532         if ((ret = register_blkdev(0, "mdp")) < 0)
8533                 goto err_mdp;
8534         mdp_major = ret;
8535
8536         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8537                             md_probe, NULL, NULL);
8538         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8539                             md_probe, NULL, NULL);
8540
8541         register_reboot_notifier(&md_notifier);
8542         raid_table_header = register_sysctl_table(raid_root_table);
8543
8544         md_geninit();
8545         return 0;
8546
8547 err_mdp:
8548         unregister_blkdev(MD_MAJOR, "md");
8549 err_md:
8550         destroy_workqueue(md_misc_wq);
8551 err_misc_wq:
8552         destroy_workqueue(md_wq);
8553 err_wq:
8554         return ret;
8555 }
8556
8557 #ifndef MODULE
8558
8559 /*
8560  * Searches all registered partitions for autorun RAID arrays
8561  * at boot time.
8562  */
8563
8564 static LIST_HEAD(all_detected_devices);
8565 struct detected_devices_node {
8566         struct list_head list;
8567         dev_t dev;
8568 };
8569
8570 void md_autodetect_dev(dev_t dev)
8571 {
8572         struct detected_devices_node *node_detected_dev;
8573
8574         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8575         if (node_detected_dev) {
8576                 node_detected_dev->dev = dev;
8577                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8578         } else {
8579                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8580                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8581         }
8582 }
8583
8584
8585 static void autostart_arrays(int part)
8586 {
8587         struct md_rdev *rdev;
8588         struct detected_devices_node *node_detected_dev;
8589         dev_t dev;
8590         int i_scanned, i_passed;
8591
8592         i_scanned = 0;
8593         i_passed = 0;
8594
8595         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8596
8597         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8598                 i_scanned++;
8599                 node_detected_dev = list_entry(all_detected_devices.next,
8600                                         struct detected_devices_node, list);
8601                 list_del(&node_detected_dev->list);
8602                 dev = node_detected_dev->dev;
8603                 kfree(node_detected_dev);
8604                 rdev = md_import_device(dev,0, 90);
8605                 if (IS_ERR(rdev))
8606                         continue;
8607
8608                 if (test_bit(Faulty, &rdev->flags)) {
8609                         MD_BUG();
8610                         continue;
8611                 }
8612                 set_bit(AutoDetected, &rdev->flags);
8613                 list_add(&rdev->same_set, &pending_raid_disks);
8614                 i_passed++;
8615         }
8616
8617         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8618                                                 i_scanned, i_passed);
8619
8620         autorun_devices(part);
8621 }
8622
8623 #endif /* !MODULE */
8624
8625 static __exit void md_exit(void)
8626 {
8627         struct mddev *mddev;
8628         struct list_head *tmp;
8629
8630         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8631         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8632
8633         unregister_blkdev(MD_MAJOR,"md");
8634         unregister_blkdev(mdp_major, "mdp");
8635         unregister_reboot_notifier(&md_notifier);
8636         unregister_sysctl_table(raid_table_header);
8637         remove_proc_entry("mdstat", NULL);
8638         for_each_mddev(mddev, tmp) {
8639                 export_array(mddev);
8640                 mddev->hold_active = 0;
8641         }
8642         destroy_workqueue(md_misc_wq);
8643         destroy_workqueue(md_wq);
8644 }
8645
8646 subsys_initcall(md_init);
8647 module_exit(md_exit)
8648
8649 static int get_ro(char *buffer, struct kernel_param *kp)
8650 {
8651         return sprintf(buffer, "%d", start_readonly);
8652 }
8653 static int set_ro(const char *val, struct kernel_param *kp)
8654 {
8655         char *e;
8656         int num = simple_strtoul(val, &e, 10);
8657         if (*val && (*e == '\0' || *e == '\n')) {
8658                 start_readonly = num;
8659                 return 0;
8660         }
8661         return -EINVAL;
8662 }
8663
8664 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8665 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8666
8667 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8668
8669 EXPORT_SYMBOL(register_md_personality);
8670 EXPORT_SYMBOL(unregister_md_personality);
8671 EXPORT_SYMBOL(md_error);
8672 EXPORT_SYMBOL(md_done_sync);
8673 EXPORT_SYMBOL(md_write_start);
8674 EXPORT_SYMBOL(md_write_end);
8675 EXPORT_SYMBOL(md_register_thread);
8676 EXPORT_SYMBOL(md_unregister_thread);
8677 EXPORT_SYMBOL(md_wakeup_thread);
8678 EXPORT_SYMBOL(md_check_recovery);
8679 EXPORT_SYMBOL(md_reap_sync_thread);
8680 MODULE_LICENSE("GPL");
8681 MODULE_DESCRIPTION("MD RAID framework");
8682 MODULE_ALIAS("md");
8683 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);