Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515
516         struct thin_c *tc;
517         dm_block_t virt_block;
518         dm_block_t data_block;
519         struct dm_bio_prison_cell *cell, *cell2;
520         int err;
521
522         /*
523          * If the bio covers the whole area of a block then we can avoid
524          * zeroing or copying.  Instead this bio is hooked.  The bio will
525          * still be in the cell, so care has to be taken to avoid issuing
526          * the bio twice.
527          */
528         struct bio *bio;
529         bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534         struct pool *pool = m->tc->pool;
535
536         if (m->quiesced && m->prepared) {
537                 list_add(&m->list, &pool->prepared_mappings);
538                 wake_worker(pool);
539         }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544         unsigned long flags;
545         struct dm_thin_new_mapping *m = context;
546         struct pool *pool = m->tc->pool;
547
548         m->err = read_err || write_err ? -EIO : 0;
549
550         spin_lock_irqsave(&pool->lock, flags);
551         m->prepared = 1;
552         __maybe_add_mapping(m);
553         spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558         unsigned long flags;
559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560         struct dm_thin_new_mapping *m = h->overwrite_mapping;
561         struct pool *pool = m->tc->pool;
562
563         m->err = err;
564
565         spin_lock_irqsave(&pool->lock, flags);
566         m->prepared = 1;
567         __maybe_add_mapping(m);
568         spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * Workqueue.
575  */
576
577 /*
578  * Prepared mapping jobs.
579  */
580
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586         struct pool *pool = tc->pool;
587         unsigned long flags;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         cell_release(pool, cell, &pool->deferred_bios);
591         spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593         wake_worker(pool);
594 }
595
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601         struct pool *pool = tc->pool;
602         unsigned long flags;
603
604         spin_lock_irqsave(&pool->lock, flags);
605         cell_release_no_holder(pool, cell, &pool->deferred_bios);
606         spin_unlock_irqrestore(&pool->lock, flags);
607
608         wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613         if (m->bio)
614                 m->bio->bi_end_io = m->saved_bi_end_io;
615         cell_error(m->tc->pool, m->cell);
616         list_del(&m->list);
617         mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622         struct thin_c *tc = m->tc;
623         struct pool *pool = tc->pool;
624         struct bio *bio;
625         int r;
626
627         bio = m->bio;
628         if (bio)
629                 bio->bi_end_io = m->saved_bi_end_io;
630
631         if (m->err) {
632                 cell_error(pool, m->cell);
633                 goto out;
634         }
635
636         /*
637          * Commit the prepared block into the mapping btree.
638          * Any I/O for this block arriving after this point will get
639          * remapped to it directly.
640          */
641         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642         if (r) {
643                 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
644                             dm_device_name(pool->pool_md), r);
645                 set_pool_mode(pool, PM_READ_ONLY);
646                 cell_error(pool, m->cell);
647                 goto out;
648         }
649
650         /*
651          * Release any bios held while the block was being provisioned.
652          * If we are processing a write bio that completely covers the block,
653          * we already processed it so can ignore it now when processing
654          * the bios in the cell.
655          */
656         if (bio) {
657                 cell_defer_no_holder(tc, m->cell);
658                 bio_endio(bio, 0);
659         } else
660                 cell_defer(tc, m->cell);
661
662 out:
663         list_del(&m->list);
664         mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669         struct thin_c *tc = m->tc;
670
671         bio_io_error(m->bio);
672         cell_defer_no_holder(tc, m->cell);
673         cell_defer_no_holder(tc, m->cell2);
674         mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679         struct thin_c *tc = m->tc;
680
681         inc_all_io_entry(tc->pool, m->bio);
682         cell_defer_no_holder(tc, m->cell);
683         cell_defer_no_holder(tc, m->cell2);
684
685         if (m->pass_discard)
686                 remap_and_issue(tc, m->bio, m->data_block);
687         else
688                 bio_endio(m->bio, 0);
689
690         mempool_free(m, tc->pool->mapping_pool);
691 }
692
693 static void process_prepared_discard(struct dm_thin_new_mapping *m)
694 {
695         int r;
696         struct thin_c *tc = m->tc;
697
698         r = dm_thin_remove_block(tc->td, m->virt_block);
699         if (r)
700                 DMERR_LIMIT("dm_thin_remove_block() failed");
701
702         process_prepared_discard_passdown(m);
703 }
704
705 static void process_prepared(struct pool *pool, struct list_head *head,
706                              process_mapping_fn *fn)
707 {
708         unsigned long flags;
709         struct list_head maps;
710         struct dm_thin_new_mapping *m, *tmp;
711
712         INIT_LIST_HEAD(&maps);
713         spin_lock_irqsave(&pool->lock, flags);
714         list_splice_init(head, &maps);
715         spin_unlock_irqrestore(&pool->lock, flags);
716
717         list_for_each_entry_safe(m, tmp, &maps, list)
718                 (*fn)(m);
719 }
720
721 /*
722  * Deferred bio jobs.
723  */
724 static int io_overlaps_block(struct pool *pool, struct bio *bio)
725 {
726         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
727 }
728
729 static int io_overwrites_block(struct pool *pool, struct bio *bio)
730 {
731         return (bio_data_dir(bio) == WRITE) &&
732                 io_overlaps_block(pool, bio);
733 }
734
735 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
736                                bio_end_io_t *fn)
737 {
738         *save = bio->bi_end_io;
739         bio->bi_end_io = fn;
740 }
741
742 static int ensure_next_mapping(struct pool *pool)
743 {
744         if (pool->next_mapping)
745                 return 0;
746
747         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
748
749         return pool->next_mapping ? 0 : -ENOMEM;
750 }
751
752 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
753 {
754         struct dm_thin_new_mapping *r = pool->next_mapping;
755
756         BUG_ON(!pool->next_mapping);
757
758         pool->next_mapping = NULL;
759
760         return r;
761 }
762
763 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
764                           struct dm_dev *origin, dm_block_t data_origin,
765                           dm_block_t data_dest,
766                           struct dm_bio_prison_cell *cell, struct bio *bio)
767 {
768         int r;
769         struct pool *pool = tc->pool;
770         struct dm_thin_new_mapping *m = get_next_mapping(pool);
771
772         INIT_LIST_HEAD(&m->list);
773         m->quiesced = 0;
774         m->prepared = 0;
775         m->tc = tc;
776         m->virt_block = virt_block;
777         m->data_block = data_dest;
778         m->cell = cell;
779         m->err = 0;
780         m->bio = NULL;
781
782         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
783                 m->quiesced = 1;
784
785         /*
786          * IO to pool_dev remaps to the pool target's data_dev.
787          *
788          * If the whole block of data is being overwritten, we can issue the
789          * bio immediately. Otherwise we use kcopyd to clone the data first.
790          */
791         if (io_overwrites_block(pool, bio)) {
792                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
793
794                 h->overwrite_mapping = m;
795                 m->bio = bio;
796                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
797                 inc_all_io_entry(pool, bio);
798                 remap_and_issue(tc, bio, data_dest);
799         } else {
800                 struct dm_io_region from, to;
801
802                 from.bdev = origin->bdev;
803                 from.sector = data_origin * pool->sectors_per_block;
804                 from.count = pool->sectors_per_block;
805
806                 to.bdev = tc->pool_dev->bdev;
807                 to.sector = data_dest * pool->sectors_per_block;
808                 to.count = pool->sectors_per_block;
809
810                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
811                                    0, copy_complete, m);
812                 if (r < 0) {
813                         mempool_free(m, pool->mapping_pool);
814                         DMERR_LIMIT("dm_kcopyd_copy() failed");
815                         cell_error(pool, cell);
816                 }
817         }
818 }
819
820 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
821                                    dm_block_t data_origin, dm_block_t data_dest,
822                                    struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824         schedule_copy(tc, virt_block, tc->pool_dev,
825                       data_origin, data_dest, cell, bio);
826 }
827
828 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
829                                    dm_block_t data_dest,
830                                    struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832         schedule_copy(tc, virt_block, tc->origin_dev,
833                       virt_block, data_dest, cell, bio);
834 }
835
836 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
837                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
838                           struct bio *bio)
839 {
840         struct pool *pool = tc->pool;
841         struct dm_thin_new_mapping *m = get_next_mapping(pool);
842
843         INIT_LIST_HEAD(&m->list);
844         m->quiesced = 1;
845         m->prepared = 0;
846         m->tc = tc;
847         m->virt_block = virt_block;
848         m->data_block = data_block;
849         m->cell = cell;
850         m->err = 0;
851         m->bio = NULL;
852
853         /*
854          * If the whole block of data is being overwritten or we are not
855          * zeroing pre-existing data, we can issue the bio immediately.
856          * Otherwise we use kcopyd to zero the data first.
857          */
858         if (!pool->pf.zero_new_blocks)
859                 process_prepared_mapping(m);
860
861         else if (io_overwrites_block(pool, bio)) {
862                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863
864                 h->overwrite_mapping = m;
865                 m->bio = bio;
866                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
867                 inc_all_io_entry(pool, bio);
868                 remap_and_issue(tc, bio, data_block);
869         } else {
870                 int r;
871                 struct dm_io_region to;
872
873                 to.bdev = tc->pool_dev->bdev;
874                 to.sector = data_block * pool->sectors_per_block;
875                 to.count = pool->sectors_per_block;
876
877                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
878                 if (r < 0) {
879                         mempool_free(m, pool->mapping_pool);
880                         DMERR_LIMIT("dm_kcopyd_zero() failed");
881                         cell_error(pool, cell);
882                 }
883         }
884 }
885
886 /*
887  * A non-zero return indicates read_only or fail_io mode.
888  * Many callers don't care about the return value.
889  */
890 static int commit(struct pool *pool)
891 {
892         int r;
893
894         if (get_pool_mode(pool) != PM_WRITE)
895                 return -EINVAL;
896
897         r = dm_pool_commit_metadata(pool->pmd);
898         if (r) {
899                 DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
900                             dm_device_name(pool->pool_md), r);
901                 set_pool_mode(pool, PM_READ_ONLY);
902         }
903
904         return r;
905 }
906
907 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
908 {
909         int r;
910         dm_block_t free_blocks;
911         unsigned long flags;
912         struct pool *pool = tc->pool;
913
914         /*
915          * Once no_free_space is set we must not allow allocation to succeed.
916          * Otherwise it is difficult to explain, debug, test and support.
917          */
918         if (pool->no_free_space)
919                 return -ENOSPC;
920
921         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
922         if (r)
923                 return r;
924
925         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
926                 DMWARN("%s: reached low water mark for data device: sending event.",
927                        dm_device_name(pool->pool_md));
928                 spin_lock_irqsave(&pool->lock, flags);
929                 pool->low_water_triggered = 1;
930                 spin_unlock_irqrestore(&pool->lock, flags);
931                 dm_table_event(pool->ti->table);
932         }
933
934         if (!free_blocks) {
935                 /*
936                  * Try to commit to see if that will free up some
937                  * more space.
938                  */
939                 r = commit(pool);
940                 if (r)
941                         return r;
942
943                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944                 if (r)
945                         return r;
946
947                 /*
948                  * If we still have no space we set a flag to avoid
949                  * doing all this checking and return -ENOSPC.  This
950                  * flag serves as a latch that disallows allocations from
951                  * this pool until the admin takes action (e.g. resize or
952                  * table reload).
953                  */
954                 if (!free_blocks) {
955                         DMWARN("%s: no free data space available.",
956                                dm_device_name(pool->pool_md));
957                         spin_lock_irqsave(&pool->lock, flags);
958                         pool->no_free_space = 1;
959                         spin_unlock_irqrestore(&pool->lock, flags);
960                         return -ENOSPC;
961                 }
962         }
963
964         r = dm_pool_alloc_data_block(pool->pmd, result);
965         if (r) {
966                 if (r == -ENOSPC &&
967                     !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
968                     !free_blocks) {
969                         DMWARN("%s: no free metadata space available.",
970                                dm_device_name(pool->pool_md));
971                         set_pool_mode(pool, PM_READ_ONLY);
972                 }
973                 return r;
974         }
975
976         return 0;
977 }
978
979 /*
980  * If we have run out of space, queue bios until the device is
981  * resumed, presumably after having been reloaded with more space.
982  */
983 static void retry_on_resume(struct bio *bio)
984 {
985         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986         struct thin_c *tc = h->tc;
987         struct pool *pool = tc->pool;
988         unsigned long flags;
989
990         spin_lock_irqsave(&pool->lock, flags);
991         bio_list_add(&pool->retry_on_resume_list, bio);
992         spin_unlock_irqrestore(&pool->lock, flags);
993 }
994
995 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
996 {
997         struct bio *bio;
998         struct bio_list bios;
999
1000         bio_list_init(&bios);
1001         cell_release(pool, cell, &bios);
1002
1003         while ((bio = bio_list_pop(&bios)))
1004                 retry_on_resume(bio);
1005 }
1006
1007 static void process_discard(struct thin_c *tc, struct bio *bio)
1008 {
1009         int r;
1010         unsigned long flags;
1011         struct pool *pool = tc->pool;
1012         struct dm_bio_prison_cell *cell, *cell2;
1013         struct dm_cell_key key, key2;
1014         dm_block_t block = get_bio_block(tc, bio);
1015         struct dm_thin_lookup_result lookup_result;
1016         struct dm_thin_new_mapping *m;
1017
1018         build_virtual_key(tc->td, block, &key);
1019         if (bio_detain(tc->pool, &key, bio, &cell))
1020                 return;
1021
1022         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1023         switch (r) {
1024         case 0:
1025                 /*
1026                  * Check nobody is fiddling with this pool block.  This can
1027                  * happen if someone's in the process of breaking sharing
1028                  * on this block.
1029                  */
1030                 build_data_key(tc->td, lookup_result.block, &key2);
1031                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1032                         cell_defer_no_holder(tc, cell);
1033                         break;
1034                 }
1035
1036                 if (io_overlaps_block(pool, bio)) {
1037                         /*
1038                          * IO may still be going to the destination block.  We must
1039                          * quiesce before we can do the removal.
1040                          */
1041                         m = get_next_mapping(pool);
1042                         m->tc = tc;
1043                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1044                         m->virt_block = block;
1045                         m->data_block = lookup_result.block;
1046                         m->cell = cell;
1047                         m->cell2 = cell2;
1048                         m->err = 0;
1049                         m->bio = bio;
1050
1051                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1052                                 spin_lock_irqsave(&pool->lock, flags);
1053                                 list_add(&m->list, &pool->prepared_discards);
1054                                 spin_unlock_irqrestore(&pool->lock, flags);
1055                                 wake_worker(pool);
1056                         }
1057                 } else {
1058                         inc_all_io_entry(pool, bio);
1059                         cell_defer_no_holder(tc, cell);
1060                         cell_defer_no_holder(tc, cell2);
1061
1062                         /*
1063                          * The DM core makes sure that the discard doesn't span
1064                          * a block boundary.  So we submit the discard of a
1065                          * partial block appropriately.
1066                          */
1067                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1068                                 remap_and_issue(tc, bio, lookup_result.block);
1069                         else
1070                                 bio_endio(bio, 0);
1071                 }
1072                 break;
1073
1074         case -ENODATA:
1075                 /*
1076                  * It isn't provisioned, just forget it.
1077                  */
1078                 cell_defer_no_holder(tc, cell);
1079                 bio_endio(bio, 0);
1080                 break;
1081
1082         default:
1083                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1084                             __func__, r);
1085                 cell_defer_no_holder(tc, cell);
1086                 bio_io_error(bio);
1087                 break;
1088         }
1089 }
1090
1091 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1092                           struct dm_cell_key *key,
1093                           struct dm_thin_lookup_result *lookup_result,
1094                           struct dm_bio_prison_cell *cell)
1095 {
1096         int r;
1097         dm_block_t data_block;
1098         struct pool *pool = tc->pool;
1099
1100         r = alloc_data_block(tc, &data_block);
1101         switch (r) {
1102         case 0:
1103                 schedule_internal_copy(tc, block, lookup_result->block,
1104                                        data_block, cell, bio);
1105                 break;
1106
1107         case -ENOSPC:
1108                 no_space(pool, cell);
1109                 break;
1110
1111         default:
1112                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1113                             __func__, r);
1114                 set_pool_mode(pool, PM_READ_ONLY);
1115                 cell_error(pool, cell);
1116                 break;
1117         }
1118 }
1119
1120 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1121                                dm_block_t block,
1122                                struct dm_thin_lookup_result *lookup_result)
1123 {
1124         struct dm_bio_prison_cell *cell;
1125         struct pool *pool = tc->pool;
1126         struct dm_cell_key key;
1127
1128         /*
1129          * If cell is already occupied, then sharing is already in the process
1130          * of being broken so we have nothing further to do here.
1131          */
1132         build_data_key(tc->td, lookup_result->block, &key);
1133         if (bio_detain(pool, &key, bio, &cell))
1134                 return;
1135
1136         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1137                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1138         else {
1139                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1140
1141                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1142                 inc_all_io_entry(pool, bio);
1143                 cell_defer_no_holder(tc, cell);
1144
1145                 remap_and_issue(tc, bio, lookup_result->block);
1146         }
1147 }
1148
1149 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1150                             struct dm_bio_prison_cell *cell)
1151 {
1152         int r;
1153         dm_block_t data_block;
1154         struct pool *pool = tc->pool;
1155
1156         /*
1157          * Remap empty bios (flushes) immediately, without provisioning.
1158          */
1159         if (!bio->bi_size) {
1160                 inc_all_io_entry(pool, bio);
1161                 cell_defer_no_holder(tc, cell);
1162
1163                 remap_and_issue(tc, bio, 0);
1164                 return;
1165         }
1166
1167         /*
1168          * Fill read bios with zeroes and complete them immediately.
1169          */
1170         if (bio_data_dir(bio) == READ) {
1171                 zero_fill_bio(bio);
1172                 cell_defer_no_holder(tc, cell);
1173                 bio_endio(bio, 0);
1174                 return;
1175         }
1176
1177         r = alloc_data_block(tc, &data_block);
1178         switch (r) {
1179         case 0:
1180                 if (tc->origin_dev)
1181                         schedule_external_copy(tc, block, data_block, cell, bio);
1182                 else
1183                         schedule_zero(tc, block, data_block, cell, bio);
1184                 break;
1185
1186         case -ENOSPC:
1187                 no_space(pool, cell);
1188                 break;
1189
1190         default:
1191                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1192                             __func__, r);
1193                 set_pool_mode(pool, PM_READ_ONLY);
1194                 cell_error(pool, cell);
1195                 break;
1196         }
1197 }
1198
1199 static void process_bio(struct thin_c *tc, struct bio *bio)
1200 {
1201         int r;
1202         struct pool *pool = tc->pool;
1203         dm_block_t block = get_bio_block(tc, bio);
1204         struct dm_bio_prison_cell *cell;
1205         struct dm_cell_key key;
1206         struct dm_thin_lookup_result lookup_result;
1207
1208         /*
1209          * If cell is already occupied, then the block is already
1210          * being provisioned so we have nothing further to do here.
1211          */
1212         build_virtual_key(tc->td, block, &key);
1213         if (bio_detain(pool, &key, bio, &cell))
1214                 return;
1215
1216         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1217         switch (r) {
1218         case 0:
1219                 if (lookup_result.shared) {
1220                         process_shared_bio(tc, bio, block, &lookup_result);
1221                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1222                 } else {
1223                         inc_all_io_entry(pool, bio);
1224                         cell_defer_no_holder(tc, cell);
1225
1226                         remap_and_issue(tc, bio, lookup_result.block);
1227                 }
1228                 break;
1229
1230         case -ENODATA:
1231                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1232                         inc_all_io_entry(pool, bio);
1233                         cell_defer_no_holder(tc, cell);
1234
1235                         remap_to_origin_and_issue(tc, bio);
1236                 } else
1237                         provision_block(tc, bio, block, cell);
1238                 break;
1239
1240         default:
1241                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1242                             __func__, r);
1243                 cell_defer_no_holder(tc, cell);
1244                 bio_io_error(bio);
1245                 break;
1246         }
1247 }
1248
1249 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1250 {
1251         int r;
1252         int rw = bio_data_dir(bio);
1253         dm_block_t block = get_bio_block(tc, bio);
1254         struct dm_thin_lookup_result lookup_result;
1255
1256         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1257         switch (r) {
1258         case 0:
1259                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1260                         bio_io_error(bio);
1261                 else {
1262                         inc_all_io_entry(tc->pool, bio);
1263                         remap_and_issue(tc, bio, lookup_result.block);
1264                 }
1265                 break;
1266
1267         case -ENODATA:
1268                 if (rw != READ) {
1269                         bio_io_error(bio);
1270                         break;
1271                 }
1272
1273                 if (tc->origin_dev) {
1274                         inc_all_io_entry(tc->pool, bio);
1275                         remap_to_origin_and_issue(tc, bio);
1276                         break;
1277                 }
1278
1279                 zero_fill_bio(bio);
1280                 bio_endio(bio, 0);
1281                 break;
1282
1283         default:
1284                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1285                             __func__, r);
1286                 bio_io_error(bio);
1287                 break;
1288         }
1289 }
1290
1291 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1292 {
1293         bio_io_error(bio);
1294 }
1295
1296 /*
1297  * FIXME: should we also commit due to size of transaction, measured in
1298  * metadata blocks?
1299  */
1300 static int need_commit_due_to_time(struct pool *pool)
1301 {
1302         return jiffies < pool->last_commit_jiffies ||
1303                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1304 }
1305
1306 static void process_deferred_bios(struct pool *pool)
1307 {
1308         unsigned long flags;
1309         struct bio *bio;
1310         struct bio_list bios;
1311
1312         bio_list_init(&bios);
1313
1314         spin_lock_irqsave(&pool->lock, flags);
1315         bio_list_merge(&bios, &pool->deferred_bios);
1316         bio_list_init(&pool->deferred_bios);
1317         spin_unlock_irqrestore(&pool->lock, flags);
1318
1319         while ((bio = bio_list_pop(&bios))) {
1320                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1321                 struct thin_c *tc = h->tc;
1322
1323                 /*
1324                  * If we've got no free new_mapping structs, and processing
1325                  * this bio might require one, we pause until there are some
1326                  * prepared mappings to process.
1327                  */
1328                 if (ensure_next_mapping(pool)) {
1329                         spin_lock_irqsave(&pool->lock, flags);
1330                         bio_list_merge(&pool->deferred_bios, &bios);
1331                         spin_unlock_irqrestore(&pool->lock, flags);
1332
1333                         break;
1334                 }
1335
1336                 if (bio->bi_rw & REQ_DISCARD)
1337                         pool->process_discard(tc, bio);
1338                 else
1339                         pool->process_bio(tc, bio);
1340         }
1341
1342         /*
1343          * If there are any deferred flush bios, we must commit
1344          * the metadata before issuing them.
1345          */
1346         bio_list_init(&bios);
1347         spin_lock_irqsave(&pool->lock, flags);
1348         bio_list_merge(&bios, &pool->deferred_flush_bios);
1349         bio_list_init(&pool->deferred_flush_bios);
1350         spin_unlock_irqrestore(&pool->lock, flags);
1351
1352         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1353                 return;
1354
1355         if (commit(pool)) {
1356                 while ((bio = bio_list_pop(&bios)))
1357                         bio_io_error(bio);
1358                 return;
1359         }
1360         pool->last_commit_jiffies = jiffies;
1361
1362         while ((bio = bio_list_pop(&bios)))
1363                 generic_make_request(bio);
1364 }
1365
1366 static void do_worker(struct work_struct *ws)
1367 {
1368         struct pool *pool = container_of(ws, struct pool, worker);
1369
1370         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1371         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1372         process_deferred_bios(pool);
1373 }
1374
1375 /*
1376  * We want to commit periodically so that not too much
1377  * unwritten data builds up.
1378  */
1379 static void do_waker(struct work_struct *ws)
1380 {
1381         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1382         wake_worker(pool);
1383         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1384 }
1385
1386 /*----------------------------------------------------------------*/
1387
1388 static enum pool_mode get_pool_mode(struct pool *pool)
1389 {
1390         return pool->pf.mode;
1391 }
1392
1393 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1394 {
1395         int r;
1396
1397         pool->pf.mode = mode;
1398
1399         switch (mode) {
1400         case PM_FAIL:
1401                 DMERR("%s: switching pool to failure mode",
1402                       dm_device_name(pool->pool_md));
1403                 dm_pool_metadata_read_only(pool->pmd);
1404                 pool->process_bio = process_bio_fail;
1405                 pool->process_discard = process_bio_fail;
1406                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1407                 pool->process_prepared_discard = process_prepared_discard_fail;
1408                 break;
1409
1410         case PM_READ_ONLY:
1411                 DMERR("%s: switching pool to read-only mode",
1412                       dm_device_name(pool->pool_md));
1413                 r = dm_pool_abort_metadata(pool->pmd);
1414                 if (r) {
1415                         DMERR("%s: aborting transaction failed",
1416                               dm_device_name(pool->pool_md));
1417                         set_pool_mode(pool, PM_FAIL);
1418                 } else {
1419                         dm_pool_metadata_read_only(pool->pmd);
1420                         pool->process_bio = process_bio_read_only;
1421                         pool->process_discard = process_discard;
1422                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1423                         pool->process_prepared_discard = process_prepared_discard_passdown;
1424                 }
1425                 break;
1426
1427         case PM_WRITE:
1428                 dm_pool_metadata_read_write(pool->pmd);
1429                 pool->process_bio = process_bio;
1430                 pool->process_discard = process_discard;
1431                 pool->process_prepared_mapping = process_prepared_mapping;
1432                 pool->process_prepared_discard = process_prepared_discard;
1433                 break;
1434         }
1435 }
1436
1437 /*----------------------------------------------------------------*/
1438
1439 /*
1440  * Mapping functions.
1441  */
1442
1443 /*
1444  * Called only while mapping a thin bio to hand it over to the workqueue.
1445  */
1446 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1447 {
1448         unsigned long flags;
1449         struct pool *pool = tc->pool;
1450
1451         spin_lock_irqsave(&pool->lock, flags);
1452         bio_list_add(&pool->deferred_bios, bio);
1453         spin_unlock_irqrestore(&pool->lock, flags);
1454
1455         wake_worker(pool);
1456 }
1457
1458 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1459 {
1460         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1461
1462         h->tc = tc;
1463         h->shared_read_entry = NULL;
1464         h->all_io_entry = NULL;
1465         h->overwrite_mapping = NULL;
1466 }
1467
1468 /*
1469  * Non-blocking function called from the thin target's map function.
1470  */
1471 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1472 {
1473         int r;
1474         struct thin_c *tc = ti->private;
1475         dm_block_t block = get_bio_block(tc, bio);
1476         struct dm_thin_device *td = tc->td;
1477         struct dm_thin_lookup_result result;
1478         struct dm_bio_prison_cell cell1, cell2;
1479         struct dm_bio_prison_cell *cell_result;
1480         struct dm_cell_key key;
1481
1482         thin_hook_bio(tc, bio);
1483
1484         if (get_pool_mode(tc->pool) == PM_FAIL) {
1485                 bio_io_error(bio);
1486                 return DM_MAPIO_SUBMITTED;
1487         }
1488
1489         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1490                 thin_defer_bio(tc, bio);
1491                 return DM_MAPIO_SUBMITTED;
1492         }
1493
1494         r = dm_thin_find_block(td, block, 0, &result);
1495
1496         /*
1497          * Note that we defer readahead too.
1498          */
1499         switch (r) {
1500         case 0:
1501                 if (unlikely(result.shared)) {
1502                         /*
1503                          * We have a race condition here between the
1504                          * result.shared value returned by the lookup and
1505                          * snapshot creation, which may cause new
1506                          * sharing.
1507                          *
1508                          * To avoid this always quiesce the origin before
1509                          * taking the snap.  You want to do this anyway to
1510                          * ensure a consistent application view
1511                          * (i.e. lockfs).
1512                          *
1513                          * More distant ancestors are irrelevant. The
1514                          * shared flag will be set in their case.
1515                          */
1516                         thin_defer_bio(tc, bio);
1517                         return DM_MAPIO_SUBMITTED;
1518                 }
1519
1520                 build_virtual_key(tc->td, block, &key);
1521                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1522                         return DM_MAPIO_SUBMITTED;
1523
1524                 build_data_key(tc->td, result.block, &key);
1525                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1526                         cell_defer_no_holder_no_free(tc, &cell1);
1527                         return DM_MAPIO_SUBMITTED;
1528                 }
1529
1530                 inc_all_io_entry(tc->pool, bio);
1531                 cell_defer_no_holder_no_free(tc, &cell2);
1532                 cell_defer_no_holder_no_free(tc, &cell1);
1533
1534                 remap(tc, bio, result.block);
1535                 return DM_MAPIO_REMAPPED;
1536
1537         case -ENODATA:
1538                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1539                         /*
1540                          * This block isn't provisioned, and we have no way
1541                          * of doing so.  Just error it.
1542                          */
1543                         bio_io_error(bio);
1544                         return DM_MAPIO_SUBMITTED;
1545                 }
1546                 /* fall through */
1547
1548         case -EWOULDBLOCK:
1549                 /*
1550                  * In future, the failed dm_thin_find_block above could
1551                  * provide the hint to load the metadata into cache.
1552                  */
1553                 thin_defer_bio(tc, bio);
1554                 return DM_MAPIO_SUBMITTED;
1555
1556         default:
1557                 /*
1558                  * Must always call bio_io_error on failure.
1559                  * dm_thin_find_block can fail with -EINVAL if the
1560                  * pool is switched to fail-io mode.
1561                  */
1562                 bio_io_error(bio);
1563                 return DM_MAPIO_SUBMITTED;
1564         }
1565 }
1566
1567 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1568 {
1569         int r;
1570         unsigned long flags;
1571         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1572
1573         spin_lock_irqsave(&pt->pool->lock, flags);
1574         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1575         spin_unlock_irqrestore(&pt->pool->lock, flags);
1576
1577         if (!r) {
1578                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1579                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1580         }
1581
1582         return r;
1583 }
1584
1585 static void __requeue_bios(struct pool *pool)
1586 {
1587         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1588         bio_list_init(&pool->retry_on_resume_list);
1589 }
1590
1591 /*----------------------------------------------------------------
1592  * Binding of control targets to a pool object
1593  *--------------------------------------------------------------*/
1594 static bool data_dev_supports_discard(struct pool_c *pt)
1595 {
1596         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1597
1598         return q && blk_queue_discard(q);
1599 }
1600
1601 static bool is_factor(sector_t block_size, uint32_t n)
1602 {
1603         return !sector_div(block_size, n);
1604 }
1605
1606 /*
1607  * If discard_passdown was enabled verify that the data device
1608  * supports discards.  Disable discard_passdown if not.
1609  */
1610 static void disable_passdown_if_not_supported(struct pool_c *pt)
1611 {
1612         struct pool *pool = pt->pool;
1613         struct block_device *data_bdev = pt->data_dev->bdev;
1614         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1615         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1616         const char *reason = NULL;
1617         char buf[BDEVNAME_SIZE];
1618
1619         if (!pt->adjusted_pf.discard_passdown)
1620                 return;
1621
1622         if (!data_dev_supports_discard(pt))
1623                 reason = "discard unsupported";
1624
1625         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1626                 reason = "max discard sectors smaller than a block";
1627
1628         else if (data_limits->discard_granularity > block_size)
1629                 reason = "discard granularity larger than a block";
1630
1631         else if (!is_factor(block_size, data_limits->discard_granularity))
1632                 reason = "discard granularity not a factor of block size";
1633
1634         if (reason) {
1635                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1636                 pt->adjusted_pf.discard_passdown = false;
1637         }
1638 }
1639
1640 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1641 {
1642         struct pool_c *pt = ti->private;
1643
1644         /*
1645          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1646          */
1647         enum pool_mode old_mode = pool->pf.mode;
1648         enum pool_mode new_mode = pt->adjusted_pf.mode;
1649
1650         /*
1651          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1652          * not going to recover without a thin_repair.  So we never let the
1653          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1654          * may have been due to a lack of metadata or data space, and may
1655          * now work (ie. if the underlying devices have been resized).
1656          */
1657         if (old_mode == PM_FAIL)
1658                 new_mode = old_mode;
1659
1660         pool->ti = ti;
1661         pool->low_water_blocks = pt->low_water_blocks;
1662         pool->pf = pt->adjusted_pf;
1663
1664         set_pool_mode(pool, new_mode);
1665
1666         return 0;
1667 }
1668
1669 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1670 {
1671         if (pool->ti == ti)
1672                 pool->ti = NULL;
1673 }
1674
1675 /*----------------------------------------------------------------
1676  * Pool creation
1677  *--------------------------------------------------------------*/
1678 /* Initialize pool features. */
1679 static void pool_features_init(struct pool_features *pf)
1680 {
1681         pf->mode = PM_WRITE;
1682         pf->zero_new_blocks = true;
1683         pf->discard_enabled = true;
1684         pf->discard_passdown = true;
1685 }
1686
1687 static void __pool_destroy(struct pool *pool)
1688 {
1689         __pool_table_remove(pool);
1690
1691         if (dm_pool_metadata_close(pool->pmd) < 0)
1692                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1693
1694         dm_bio_prison_destroy(pool->prison);
1695         dm_kcopyd_client_destroy(pool->copier);
1696
1697         if (pool->wq)
1698                 destroy_workqueue(pool->wq);
1699
1700         if (pool->next_mapping)
1701                 mempool_free(pool->next_mapping, pool->mapping_pool);
1702         mempool_destroy(pool->mapping_pool);
1703         dm_deferred_set_destroy(pool->shared_read_ds);
1704         dm_deferred_set_destroy(pool->all_io_ds);
1705         kfree(pool);
1706 }
1707
1708 static struct kmem_cache *_new_mapping_cache;
1709
1710 static struct pool *pool_create(struct mapped_device *pool_md,
1711                                 struct block_device *metadata_dev,
1712                                 unsigned long block_size,
1713                                 int read_only, char **error)
1714 {
1715         int r;
1716         void *err_p;
1717         struct pool *pool;
1718         struct dm_pool_metadata *pmd;
1719         bool format_device = read_only ? false : true;
1720
1721         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1722         if (IS_ERR(pmd)) {
1723                 *error = "Error creating metadata object";
1724                 return (struct pool *)pmd;
1725         }
1726
1727         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1728         if (!pool) {
1729                 *error = "Error allocating memory for pool";
1730                 err_p = ERR_PTR(-ENOMEM);
1731                 goto bad_pool;
1732         }
1733
1734         pool->pmd = pmd;
1735         pool->sectors_per_block = block_size;
1736         if (block_size & (block_size - 1))
1737                 pool->sectors_per_block_shift = -1;
1738         else
1739                 pool->sectors_per_block_shift = __ffs(block_size);
1740         pool->low_water_blocks = 0;
1741         pool_features_init(&pool->pf);
1742         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1743         if (!pool->prison) {
1744                 *error = "Error creating pool's bio prison";
1745                 err_p = ERR_PTR(-ENOMEM);
1746                 goto bad_prison;
1747         }
1748
1749         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1750         if (IS_ERR(pool->copier)) {
1751                 r = PTR_ERR(pool->copier);
1752                 *error = "Error creating pool's kcopyd client";
1753                 err_p = ERR_PTR(r);
1754                 goto bad_kcopyd_client;
1755         }
1756
1757         /*
1758          * Create singlethreaded workqueue that will service all devices
1759          * that use this metadata.
1760          */
1761         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1762         if (!pool->wq) {
1763                 *error = "Error creating pool's workqueue";
1764                 err_p = ERR_PTR(-ENOMEM);
1765                 goto bad_wq;
1766         }
1767
1768         INIT_WORK(&pool->worker, do_worker);
1769         INIT_DELAYED_WORK(&pool->waker, do_waker);
1770         spin_lock_init(&pool->lock);
1771         bio_list_init(&pool->deferred_bios);
1772         bio_list_init(&pool->deferred_flush_bios);
1773         INIT_LIST_HEAD(&pool->prepared_mappings);
1774         INIT_LIST_HEAD(&pool->prepared_discards);
1775         pool->low_water_triggered = 0;
1776         pool->no_free_space = 0;
1777         bio_list_init(&pool->retry_on_resume_list);
1778
1779         pool->shared_read_ds = dm_deferred_set_create();
1780         if (!pool->shared_read_ds) {
1781                 *error = "Error creating pool's shared read deferred set";
1782                 err_p = ERR_PTR(-ENOMEM);
1783                 goto bad_shared_read_ds;
1784         }
1785
1786         pool->all_io_ds = dm_deferred_set_create();
1787         if (!pool->all_io_ds) {
1788                 *error = "Error creating pool's all io deferred set";
1789                 err_p = ERR_PTR(-ENOMEM);
1790                 goto bad_all_io_ds;
1791         }
1792
1793         pool->next_mapping = NULL;
1794         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1795                                                       _new_mapping_cache);
1796         if (!pool->mapping_pool) {
1797                 *error = "Error creating pool's mapping mempool";
1798                 err_p = ERR_PTR(-ENOMEM);
1799                 goto bad_mapping_pool;
1800         }
1801
1802         pool->ref_count = 1;
1803         pool->last_commit_jiffies = jiffies;
1804         pool->pool_md = pool_md;
1805         pool->md_dev = metadata_dev;
1806         __pool_table_insert(pool);
1807
1808         return pool;
1809
1810 bad_mapping_pool:
1811         dm_deferred_set_destroy(pool->all_io_ds);
1812 bad_all_io_ds:
1813         dm_deferred_set_destroy(pool->shared_read_ds);
1814 bad_shared_read_ds:
1815         destroy_workqueue(pool->wq);
1816 bad_wq:
1817         dm_kcopyd_client_destroy(pool->copier);
1818 bad_kcopyd_client:
1819         dm_bio_prison_destroy(pool->prison);
1820 bad_prison:
1821         kfree(pool);
1822 bad_pool:
1823         if (dm_pool_metadata_close(pmd))
1824                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1825
1826         return err_p;
1827 }
1828
1829 static void __pool_inc(struct pool *pool)
1830 {
1831         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1832         pool->ref_count++;
1833 }
1834
1835 static void __pool_dec(struct pool *pool)
1836 {
1837         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1838         BUG_ON(!pool->ref_count);
1839         if (!--pool->ref_count)
1840                 __pool_destroy(pool);
1841 }
1842
1843 static struct pool *__pool_find(struct mapped_device *pool_md,
1844                                 struct block_device *metadata_dev,
1845                                 unsigned long block_size, int read_only,
1846                                 char **error, int *created)
1847 {
1848         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1849
1850         if (pool) {
1851                 if (pool->pool_md != pool_md) {
1852                         *error = "metadata device already in use by a pool";
1853                         return ERR_PTR(-EBUSY);
1854                 }
1855                 __pool_inc(pool);
1856
1857         } else {
1858                 pool = __pool_table_lookup(pool_md);
1859                 if (pool) {
1860                         if (pool->md_dev != metadata_dev) {
1861                                 *error = "different pool cannot replace a pool";
1862                                 return ERR_PTR(-EINVAL);
1863                         }
1864                         __pool_inc(pool);
1865
1866                 } else {
1867                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1868                         *created = 1;
1869                 }
1870         }
1871
1872         return pool;
1873 }
1874
1875 /*----------------------------------------------------------------
1876  * Pool target methods
1877  *--------------------------------------------------------------*/
1878 static void pool_dtr(struct dm_target *ti)
1879 {
1880         struct pool_c *pt = ti->private;
1881
1882         mutex_lock(&dm_thin_pool_table.mutex);
1883
1884         unbind_control_target(pt->pool, ti);
1885         __pool_dec(pt->pool);
1886         dm_put_device(ti, pt->metadata_dev);
1887         dm_put_device(ti, pt->data_dev);
1888         kfree(pt);
1889
1890         mutex_unlock(&dm_thin_pool_table.mutex);
1891 }
1892
1893 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1894                                struct dm_target *ti)
1895 {
1896         int r;
1897         unsigned argc;
1898         const char *arg_name;
1899
1900         static struct dm_arg _args[] = {
1901                 {0, 3, "Invalid number of pool feature arguments"},
1902         };
1903
1904         /*
1905          * No feature arguments supplied.
1906          */
1907         if (!as->argc)
1908                 return 0;
1909
1910         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1911         if (r)
1912                 return -EINVAL;
1913
1914         while (argc && !r) {
1915                 arg_name = dm_shift_arg(as);
1916                 argc--;
1917
1918                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1919                         pf->zero_new_blocks = false;
1920
1921                 else if (!strcasecmp(arg_name, "ignore_discard"))
1922                         pf->discard_enabled = false;
1923
1924                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1925                         pf->discard_passdown = false;
1926
1927                 else if (!strcasecmp(arg_name, "read_only"))
1928                         pf->mode = PM_READ_ONLY;
1929
1930                 else {
1931                         ti->error = "Unrecognised pool feature requested";
1932                         r = -EINVAL;
1933                         break;
1934                 }
1935         }
1936
1937         return r;
1938 }
1939
1940 static void metadata_low_callback(void *context)
1941 {
1942         struct pool *pool = context;
1943
1944         DMWARN("%s: reached low water mark for metadata device: sending event.",
1945                dm_device_name(pool->pool_md));
1946
1947         dm_table_event(pool->ti->table);
1948 }
1949
1950 static sector_t get_metadata_dev_size(struct block_device *bdev)
1951 {
1952         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1953         char buffer[BDEVNAME_SIZE];
1954
1955         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1956                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1957                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1958                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1959         }
1960
1961         return metadata_dev_size;
1962 }
1963
1964 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1965 {
1966         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1967
1968         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1969
1970         return metadata_dev_size;
1971 }
1972
1973 /*
1974  * When a metadata threshold is crossed a dm event is triggered, and
1975  * userland should respond by growing the metadata device.  We could let
1976  * userland set the threshold, like we do with the data threshold, but I'm
1977  * not sure they know enough to do this well.
1978  */
1979 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1980 {
1981         /*
1982          * 4M is ample for all ops with the possible exception of thin
1983          * device deletion which is harmless if it fails (just retry the
1984          * delete after you've grown the device).
1985          */
1986         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1987         return min((dm_block_t)1024ULL /* 4M */, quarter);
1988 }
1989
1990 /*
1991  * thin-pool <metadata dev> <data dev>
1992  *           <data block size (sectors)>
1993  *           <low water mark (blocks)>
1994  *           [<#feature args> [<arg>]*]
1995  *
1996  * Optional feature arguments are:
1997  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1998  *           ignore_discard: disable discard
1999  *           no_discard_passdown: don't pass discards down to the data device
2000  */
2001 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2002 {
2003         int r, pool_created = 0;
2004         struct pool_c *pt;
2005         struct pool *pool;
2006         struct pool_features pf;
2007         struct dm_arg_set as;
2008         struct dm_dev *data_dev;
2009         unsigned long block_size;
2010         dm_block_t low_water_blocks;
2011         struct dm_dev *metadata_dev;
2012         fmode_t metadata_mode;
2013
2014         /*
2015          * FIXME Remove validation from scope of lock.
2016          */
2017         mutex_lock(&dm_thin_pool_table.mutex);
2018
2019         if (argc < 4) {
2020                 ti->error = "Invalid argument count";
2021                 r = -EINVAL;
2022                 goto out_unlock;
2023         }
2024
2025         as.argc = argc;
2026         as.argv = argv;
2027
2028         /*
2029          * Set default pool features.
2030          */
2031         pool_features_init(&pf);
2032
2033         dm_consume_args(&as, 4);
2034         r = parse_pool_features(&as, &pf, ti);
2035         if (r)
2036                 goto out_unlock;
2037
2038         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2039         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2040         if (r) {
2041                 ti->error = "Error opening metadata block device";
2042                 goto out_unlock;
2043         }
2044
2045         /*
2046          * Run for the side-effect of possibly issuing a warning if the
2047          * device is too big.
2048          */
2049         (void) get_metadata_dev_size(metadata_dev->bdev);
2050
2051         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2052         if (r) {
2053                 ti->error = "Error getting data device";
2054                 goto out_metadata;
2055         }
2056
2057         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2058             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2059             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2060             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2061                 ti->error = "Invalid block size";
2062                 r = -EINVAL;
2063                 goto out;
2064         }
2065
2066         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2067                 ti->error = "Invalid low water mark";
2068                 r = -EINVAL;
2069                 goto out;
2070         }
2071
2072         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2073         if (!pt) {
2074                 r = -ENOMEM;
2075                 goto out;
2076         }
2077
2078         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2079                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2080         if (IS_ERR(pool)) {
2081                 r = PTR_ERR(pool);
2082                 goto out_free_pt;
2083         }
2084
2085         /*
2086          * 'pool_created' reflects whether this is the first table load.
2087          * Top level discard support is not allowed to be changed after
2088          * initial load.  This would require a pool reload to trigger thin
2089          * device changes.
2090          */
2091         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2092                 ti->error = "Discard support cannot be disabled once enabled";
2093                 r = -EINVAL;
2094                 goto out_flags_changed;
2095         }
2096
2097         pt->pool = pool;
2098         pt->ti = ti;
2099         pt->metadata_dev = metadata_dev;
2100         pt->data_dev = data_dev;
2101         pt->low_water_blocks = low_water_blocks;
2102         pt->adjusted_pf = pt->requested_pf = pf;
2103         ti->num_flush_bios = 1;
2104
2105         /*
2106          * Only need to enable discards if the pool should pass
2107          * them down to the data device.  The thin device's discard
2108          * processing will cause mappings to be removed from the btree.
2109          */
2110         ti->discard_zeroes_data_unsupported = true;
2111         if (pf.discard_enabled && pf.discard_passdown) {
2112                 ti->num_discard_bios = 1;
2113
2114                 /*
2115                  * Setting 'discards_supported' circumvents the normal
2116                  * stacking of discard limits (this keeps the pool and
2117                  * thin devices' discard limits consistent).
2118                  */
2119                 ti->discards_supported = true;
2120         }
2121         ti->private = pt;
2122
2123         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2124                                                 calc_metadata_threshold(pt),
2125                                                 metadata_low_callback,
2126                                                 pool);
2127         if (r)
2128                 goto out_free_pt;
2129
2130         pt->callbacks.congested_fn = pool_is_congested;
2131         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2132
2133         mutex_unlock(&dm_thin_pool_table.mutex);
2134
2135         return 0;
2136
2137 out_flags_changed:
2138         __pool_dec(pool);
2139 out_free_pt:
2140         kfree(pt);
2141 out:
2142         dm_put_device(ti, data_dev);
2143 out_metadata:
2144         dm_put_device(ti, metadata_dev);
2145 out_unlock:
2146         mutex_unlock(&dm_thin_pool_table.mutex);
2147
2148         return r;
2149 }
2150
2151 static int pool_map(struct dm_target *ti, struct bio *bio)
2152 {
2153         int r;
2154         struct pool_c *pt = ti->private;
2155         struct pool *pool = pt->pool;
2156         unsigned long flags;
2157
2158         /*
2159          * As this is a singleton target, ti->begin is always zero.
2160          */
2161         spin_lock_irqsave(&pool->lock, flags);
2162         bio->bi_bdev = pt->data_dev->bdev;
2163         r = DM_MAPIO_REMAPPED;
2164         spin_unlock_irqrestore(&pool->lock, flags);
2165
2166         return r;
2167 }
2168
2169 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2170 {
2171         int r;
2172         struct pool_c *pt = ti->private;
2173         struct pool *pool = pt->pool;
2174         sector_t data_size = ti->len;
2175         dm_block_t sb_data_size;
2176
2177         *need_commit = false;
2178
2179         (void) sector_div(data_size, pool->sectors_per_block);
2180
2181         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2182         if (r) {
2183                 DMERR("%s: failed to retrieve data device size",
2184                       dm_device_name(pool->pool_md));
2185                 return r;
2186         }
2187
2188         if (data_size < sb_data_size) {
2189                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2190                       dm_device_name(pool->pool_md),
2191                       (unsigned long long)data_size, sb_data_size);
2192                 return -EINVAL;
2193
2194         } else if (data_size > sb_data_size) {
2195                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2196                 if (r) {
2197                         DMERR("%s: failed to resize data device",
2198                               dm_device_name(pool->pool_md));
2199                         set_pool_mode(pool, PM_READ_ONLY);
2200                         return r;
2201                 }
2202
2203                 *need_commit = true;
2204         }
2205
2206         return 0;
2207 }
2208
2209 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2210 {
2211         int r;
2212         struct pool_c *pt = ti->private;
2213         struct pool *pool = pt->pool;
2214         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2215
2216         *need_commit = false;
2217
2218         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2219
2220         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2221         if (r) {
2222                 DMERR("%s: failed to retrieve metadata device size",
2223                       dm_device_name(pool->pool_md));
2224                 return r;
2225         }
2226
2227         if (metadata_dev_size < sb_metadata_dev_size) {
2228                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2229                       dm_device_name(pool->pool_md),
2230                       metadata_dev_size, sb_metadata_dev_size);
2231                 return -EINVAL;
2232
2233         } else if (metadata_dev_size > sb_metadata_dev_size) {
2234                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2235                 if (r) {
2236                         DMERR("%s: failed to resize metadata device",
2237                               dm_device_name(pool->pool_md));
2238                         return r;
2239                 }
2240
2241                 *need_commit = true;
2242         }
2243
2244         return 0;
2245 }
2246
2247 /*
2248  * Retrieves the number of blocks of the data device from
2249  * the superblock and compares it to the actual device size,
2250  * thus resizing the data device in case it has grown.
2251  *
2252  * This both copes with opening preallocated data devices in the ctr
2253  * being followed by a resume
2254  * -and-
2255  * calling the resume method individually after userspace has
2256  * grown the data device in reaction to a table event.
2257  */
2258 static int pool_preresume(struct dm_target *ti)
2259 {
2260         int r;
2261         bool need_commit1, need_commit2;
2262         struct pool_c *pt = ti->private;
2263         struct pool *pool = pt->pool;
2264
2265         /*
2266          * Take control of the pool object.
2267          */
2268         r = bind_control_target(pool, ti);
2269         if (r)
2270                 return r;
2271
2272         r = maybe_resize_data_dev(ti, &need_commit1);
2273         if (r)
2274                 return r;
2275
2276         r = maybe_resize_metadata_dev(ti, &need_commit2);
2277         if (r)
2278                 return r;
2279
2280         if (need_commit1 || need_commit2)
2281                 (void) commit(pool);
2282
2283         return 0;
2284 }
2285
2286 static void pool_resume(struct dm_target *ti)
2287 {
2288         struct pool_c *pt = ti->private;
2289         struct pool *pool = pt->pool;
2290         unsigned long flags;
2291
2292         spin_lock_irqsave(&pool->lock, flags);
2293         pool->low_water_triggered = 0;
2294         pool->no_free_space = 0;
2295         __requeue_bios(pool);
2296         spin_unlock_irqrestore(&pool->lock, flags);
2297
2298         do_waker(&pool->waker.work);
2299 }
2300
2301 static void pool_postsuspend(struct dm_target *ti)
2302 {
2303         struct pool_c *pt = ti->private;
2304         struct pool *pool = pt->pool;
2305
2306         cancel_delayed_work(&pool->waker);
2307         flush_workqueue(pool->wq);
2308         (void) commit(pool);
2309 }
2310
2311 static int check_arg_count(unsigned argc, unsigned args_required)
2312 {
2313         if (argc != args_required) {
2314                 DMWARN("Message received with %u arguments instead of %u.",
2315                        argc, args_required);
2316                 return -EINVAL;
2317         }
2318
2319         return 0;
2320 }
2321
2322 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2323 {
2324         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2325             *dev_id <= MAX_DEV_ID)
2326                 return 0;
2327
2328         if (warning)
2329                 DMWARN("Message received with invalid device id: %s", arg);
2330
2331         return -EINVAL;
2332 }
2333
2334 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2335 {
2336         dm_thin_id dev_id;
2337         int r;
2338
2339         r = check_arg_count(argc, 2);
2340         if (r)
2341                 return r;
2342
2343         r = read_dev_id(argv[1], &dev_id, 1);
2344         if (r)
2345                 return r;
2346
2347         r = dm_pool_create_thin(pool->pmd, dev_id);
2348         if (r) {
2349                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2350                        argv[1]);
2351                 return r;
2352         }
2353
2354         return 0;
2355 }
2356
2357 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2358 {
2359         dm_thin_id dev_id;
2360         dm_thin_id origin_dev_id;
2361         int r;
2362
2363         r = check_arg_count(argc, 3);
2364         if (r)
2365                 return r;
2366
2367         r = read_dev_id(argv[1], &dev_id, 1);
2368         if (r)
2369                 return r;
2370
2371         r = read_dev_id(argv[2], &origin_dev_id, 1);
2372         if (r)
2373                 return r;
2374
2375         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2376         if (r) {
2377                 DMWARN("Creation of new snapshot %s of device %s failed.",
2378                        argv[1], argv[2]);
2379                 return r;
2380         }
2381
2382         return 0;
2383 }
2384
2385 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2386 {
2387         dm_thin_id dev_id;
2388         int r;
2389
2390         r = check_arg_count(argc, 2);
2391         if (r)
2392                 return r;
2393
2394         r = read_dev_id(argv[1], &dev_id, 1);
2395         if (r)
2396                 return r;
2397
2398         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2399         if (r)
2400                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2401
2402         return r;
2403 }
2404
2405 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2406 {
2407         dm_thin_id old_id, new_id;
2408         int r;
2409
2410         r = check_arg_count(argc, 3);
2411         if (r)
2412                 return r;
2413
2414         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2415                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2416                 return -EINVAL;
2417         }
2418
2419         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2420                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2421                 return -EINVAL;
2422         }
2423
2424         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2425         if (r) {
2426                 DMWARN("Failed to change transaction id from %s to %s.",
2427                        argv[1], argv[2]);
2428                 return r;
2429         }
2430
2431         return 0;
2432 }
2433
2434 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2435 {
2436         int r;
2437
2438         r = check_arg_count(argc, 1);
2439         if (r)
2440                 return r;
2441
2442         (void) commit(pool);
2443
2444         r = dm_pool_reserve_metadata_snap(pool->pmd);
2445         if (r)
2446                 DMWARN("reserve_metadata_snap message failed.");
2447
2448         return r;
2449 }
2450
2451 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2452 {
2453         int r;
2454
2455         r = check_arg_count(argc, 1);
2456         if (r)
2457                 return r;
2458
2459         r = dm_pool_release_metadata_snap(pool->pmd);
2460         if (r)
2461                 DMWARN("release_metadata_snap message failed.");
2462
2463         return r;
2464 }
2465
2466 /*
2467  * Messages supported:
2468  *   create_thin        <dev_id>
2469  *   create_snap        <dev_id> <origin_id>
2470  *   delete             <dev_id>
2471  *   trim               <dev_id> <new_size_in_sectors>
2472  *   set_transaction_id <current_trans_id> <new_trans_id>
2473  *   reserve_metadata_snap
2474  *   release_metadata_snap
2475  */
2476 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2477 {
2478         int r = -EINVAL;
2479         struct pool_c *pt = ti->private;
2480         struct pool *pool = pt->pool;
2481
2482         if (!strcasecmp(argv[0], "create_thin"))
2483                 r = process_create_thin_mesg(argc, argv, pool);
2484
2485         else if (!strcasecmp(argv[0], "create_snap"))
2486                 r = process_create_snap_mesg(argc, argv, pool);
2487
2488         else if (!strcasecmp(argv[0], "delete"))
2489                 r = process_delete_mesg(argc, argv, pool);
2490
2491         else if (!strcasecmp(argv[0], "set_transaction_id"))
2492                 r = process_set_transaction_id_mesg(argc, argv, pool);
2493
2494         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2495                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2496
2497         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2498                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2499
2500         else
2501                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2502
2503         if (!r)
2504                 (void) commit(pool);
2505
2506         return r;
2507 }
2508
2509 static void emit_flags(struct pool_features *pf, char *result,
2510                        unsigned sz, unsigned maxlen)
2511 {
2512         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2513                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2514         DMEMIT("%u ", count);
2515
2516         if (!pf->zero_new_blocks)
2517                 DMEMIT("skip_block_zeroing ");
2518
2519         if (!pf->discard_enabled)
2520                 DMEMIT("ignore_discard ");
2521
2522         if (!pf->discard_passdown)
2523                 DMEMIT("no_discard_passdown ");
2524
2525         if (pf->mode == PM_READ_ONLY)
2526                 DMEMIT("read_only ");
2527 }
2528
2529 /*
2530  * Status line is:
2531  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2532  *    <used data sectors>/<total data sectors> <held metadata root>
2533  */
2534 static void pool_status(struct dm_target *ti, status_type_t type,
2535                         unsigned status_flags, char *result, unsigned maxlen)
2536 {
2537         int r;
2538         unsigned sz = 0;
2539         uint64_t transaction_id;
2540         dm_block_t nr_free_blocks_data;
2541         dm_block_t nr_free_blocks_metadata;
2542         dm_block_t nr_blocks_data;
2543         dm_block_t nr_blocks_metadata;
2544         dm_block_t held_root;
2545         char buf[BDEVNAME_SIZE];
2546         char buf2[BDEVNAME_SIZE];
2547         struct pool_c *pt = ti->private;
2548         struct pool *pool = pt->pool;
2549
2550         switch (type) {
2551         case STATUSTYPE_INFO:
2552                 if (get_pool_mode(pool) == PM_FAIL) {
2553                         DMEMIT("Fail");
2554                         break;
2555                 }
2556
2557                 /* Commit to ensure statistics aren't out-of-date */
2558                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2559                         (void) commit(pool);
2560
2561                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2562                 if (r) {
2563                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2564                               dm_device_name(pool->pool_md), r);
2565                         goto err;
2566                 }
2567
2568                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2569                 if (r) {
2570                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2571                               dm_device_name(pool->pool_md), r);
2572                         goto err;
2573                 }
2574
2575                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2576                 if (r) {
2577                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2578                               dm_device_name(pool->pool_md), r);
2579                         goto err;
2580                 }
2581
2582                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2583                 if (r) {
2584                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2585                               dm_device_name(pool->pool_md), r);
2586                         goto err;
2587                 }
2588
2589                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2590                 if (r) {
2591                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2592                               dm_device_name(pool->pool_md), r);
2593                         goto err;
2594                 }
2595
2596                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2597                 if (r) {
2598                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2599                               dm_device_name(pool->pool_md), r);
2600                         goto err;
2601                 }
2602
2603                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2604                        (unsigned long long)transaction_id,
2605                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2606                        (unsigned long long)nr_blocks_metadata,
2607                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2608                        (unsigned long long)nr_blocks_data);
2609
2610                 if (held_root)
2611                         DMEMIT("%llu ", held_root);
2612                 else
2613                         DMEMIT("- ");
2614
2615                 if (pool->pf.mode == PM_READ_ONLY)
2616                         DMEMIT("ro ");
2617                 else
2618                         DMEMIT("rw ");
2619
2620                 if (!pool->pf.discard_enabled)
2621                         DMEMIT("ignore_discard");
2622                 else if (pool->pf.discard_passdown)
2623                         DMEMIT("discard_passdown");
2624                 else
2625                         DMEMIT("no_discard_passdown");
2626
2627                 break;
2628
2629         case STATUSTYPE_TABLE:
2630                 DMEMIT("%s %s %lu %llu ",
2631                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2632                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2633                        (unsigned long)pool->sectors_per_block,
2634                        (unsigned long long)pt->low_water_blocks);
2635                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2636                 break;
2637         }
2638         return;
2639
2640 err:
2641         DMEMIT("Error");
2642 }
2643
2644 static int pool_iterate_devices(struct dm_target *ti,
2645                                 iterate_devices_callout_fn fn, void *data)
2646 {
2647         struct pool_c *pt = ti->private;
2648
2649         return fn(ti, pt->data_dev, 0, ti->len, data);
2650 }
2651
2652 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2653                       struct bio_vec *biovec, int max_size)
2654 {
2655         struct pool_c *pt = ti->private;
2656         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2657
2658         if (!q->merge_bvec_fn)
2659                 return max_size;
2660
2661         bvm->bi_bdev = pt->data_dev->bdev;
2662
2663         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2664 }
2665
2666 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2667 {
2668         struct pool *pool = pt->pool;
2669         struct queue_limits *data_limits;
2670
2671         limits->max_discard_sectors = pool->sectors_per_block;
2672
2673         /*
2674          * discard_granularity is just a hint, and not enforced.
2675          */
2676         if (pt->adjusted_pf.discard_passdown) {
2677                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2678                 limits->discard_granularity = data_limits->discard_granularity;
2679         } else
2680                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2681 }
2682
2683 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2684 {
2685         struct pool_c *pt = ti->private;
2686         struct pool *pool = pt->pool;
2687         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2688
2689         /*
2690          * If the system-determined stacked limits are compatible with the
2691          * pool's blocksize (io_opt is a factor) do not override them.
2692          */
2693         if (io_opt_sectors < pool->sectors_per_block ||
2694             do_div(io_opt_sectors, pool->sectors_per_block)) {
2695                 blk_limits_io_min(limits, 0);
2696                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2697         }
2698
2699         /*
2700          * pt->adjusted_pf is a staging area for the actual features to use.
2701          * They get transferred to the live pool in bind_control_target()
2702          * called from pool_preresume().
2703          */
2704         if (!pt->adjusted_pf.discard_enabled) {
2705                 /*
2706                  * Must explicitly disallow stacking discard limits otherwise the
2707                  * block layer will stack them if pool's data device has support.
2708                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2709                  * user to see that, so make sure to set all discard limits to 0.
2710                  */
2711                 limits->discard_granularity = 0;
2712                 return;
2713         }
2714
2715         disable_passdown_if_not_supported(pt);
2716
2717         set_discard_limits(pt, limits);
2718 }
2719
2720 static struct target_type pool_target = {
2721         .name = "thin-pool",
2722         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2723                     DM_TARGET_IMMUTABLE,
2724         .version = {1, 9, 0},
2725         .module = THIS_MODULE,
2726         .ctr = pool_ctr,
2727         .dtr = pool_dtr,
2728         .map = pool_map,
2729         .postsuspend = pool_postsuspend,
2730         .preresume = pool_preresume,
2731         .resume = pool_resume,
2732         .message = pool_message,
2733         .status = pool_status,
2734         .merge = pool_merge,
2735         .iterate_devices = pool_iterate_devices,
2736         .io_hints = pool_io_hints,
2737 };
2738
2739 /*----------------------------------------------------------------
2740  * Thin target methods
2741  *--------------------------------------------------------------*/
2742 static void thin_dtr(struct dm_target *ti)
2743 {
2744         struct thin_c *tc = ti->private;
2745
2746         mutex_lock(&dm_thin_pool_table.mutex);
2747
2748         __pool_dec(tc->pool);
2749         dm_pool_close_thin_device(tc->td);
2750         dm_put_device(ti, tc->pool_dev);
2751         if (tc->origin_dev)
2752                 dm_put_device(ti, tc->origin_dev);
2753         kfree(tc);
2754
2755         mutex_unlock(&dm_thin_pool_table.mutex);
2756 }
2757
2758 /*
2759  * Thin target parameters:
2760  *
2761  * <pool_dev> <dev_id> [origin_dev]
2762  *
2763  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2764  * dev_id: the internal device identifier
2765  * origin_dev: a device external to the pool that should act as the origin
2766  *
2767  * If the pool device has discards disabled, they get disabled for the thin
2768  * device as well.
2769  */
2770 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2771 {
2772         int r;
2773         struct thin_c *tc;
2774         struct dm_dev *pool_dev, *origin_dev;
2775         struct mapped_device *pool_md;
2776
2777         mutex_lock(&dm_thin_pool_table.mutex);
2778
2779         if (argc != 2 && argc != 3) {
2780                 ti->error = "Invalid argument count";
2781                 r = -EINVAL;
2782                 goto out_unlock;
2783         }
2784
2785         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2786         if (!tc) {
2787                 ti->error = "Out of memory";
2788                 r = -ENOMEM;
2789                 goto out_unlock;
2790         }
2791
2792         if (argc == 3) {
2793                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2794                 if (r) {
2795                         ti->error = "Error opening origin device";
2796                         goto bad_origin_dev;
2797                 }
2798                 tc->origin_dev = origin_dev;
2799         }
2800
2801         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2802         if (r) {
2803                 ti->error = "Error opening pool device";
2804                 goto bad_pool_dev;
2805         }
2806         tc->pool_dev = pool_dev;
2807
2808         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2809                 ti->error = "Invalid device id";
2810                 r = -EINVAL;
2811                 goto bad_common;
2812         }
2813
2814         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2815         if (!pool_md) {
2816                 ti->error = "Couldn't get pool mapped device";
2817                 r = -EINVAL;
2818                 goto bad_common;
2819         }
2820
2821         tc->pool = __pool_table_lookup(pool_md);
2822         if (!tc->pool) {
2823                 ti->error = "Couldn't find pool object";
2824                 r = -EINVAL;
2825                 goto bad_pool_lookup;
2826         }
2827         __pool_inc(tc->pool);
2828
2829         if (get_pool_mode(tc->pool) == PM_FAIL) {
2830                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2831                 goto bad_thin_open;
2832         }
2833
2834         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2835         if (r) {
2836                 ti->error = "Couldn't open thin internal device";
2837                 goto bad_thin_open;
2838         }
2839
2840         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2841         if (r)
2842                 goto bad_thin_open;
2843
2844         ti->num_flush_bios = 1;
2845         ti->flush_supported = true;
2846         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2847
2848         /* In case the pool supports discards, pass them on. */
2849         ti->discard_zeroes_data_unsupported = true;
2850         if (tc->pool->pf.discard_enabled) {
2851                 ti->discards_supported = true;
2852                 ti->num_discard_bios = 1;
2853                 /* Discard bios must be split on a block boundary */
2854                 ti->split_discard_bios = true;
2855         }
2856
2857         dm_put(pool_md);
2858
2859         mutex_unlock(&dm_thin_pool_table.mutex);
2860
2861         return 0;
2862
2863 bad_thin_open:
2864         __pool_dec(tc->pool);
2865 bad_pool_lookup:
2866         dm_put(pool_md);
2867 bad_common:
2868         dm_put_device(ti, tc->pool_dev);
2869 bad_pool_dev:
2870         if (tc->origin_dev)
2871                 dm_put_device(ti, tc->origin_dev);
2872 bad_origin_dev:
2873         kfree(tc);
2874 out_unlock:
2875         mutex_unlock(&dm_thin_pool_table.mutex);
2876
2877         return r;
2878 }
2879
2880 static int thin_map(struct dm_target *ti, struct bio *bio)
2881 {
2882         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2883
2884         return thin_bio_map(ti, bio);
2885 }
2886
2887 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2888 {
2889         unsigned long flags;
2890         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2891         struct list_head work;
2892         struct dm_thin_new_mapping *m, *tmp;
2893         struct pool *pool = h->tc->pool;
2894
2895         if (h->shared_read_entry) {
2896                 INIT_LIST_HEAD(&work);
2897                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2898
2899                 spin_lock_irqsave(&pool->lock, flags);
2900                 list_for_each_entry_safe(m, tmp, &work, list) {
2901                         list_del(&m->list);
2902                         m->quiesced = 1;
2903                         __maybe_add_mapping(m);
2904                 }
2905                 spin_unlock_irqrestore(&pool->lock, flags);
2906         }
2907
2908         if (h->all_io_entry) {
2909                 INIT_LIST_HEAD(&work);
2910                 dm_deferred_entry_dec(h->all_io_entry, &work);
2911                 if (!list_empty(&work)) {
2912                         spin_lock_irqsave(&pool->lock, flags);
2913                         list_for_each_entry_safe(m, tmp, &work, list)
2914                                 list_add(&m->list, &pool->prepared_discards);
2915                         spin_unlock_irqrestore(&pool->lock, flags);
2916                         wake_worker(pool);
2917                 }
2918         }
2919
2920         return 0;
2921 }
2922
2923 static void thin_postsuspend(struct dm_target *ti)
2924 {
2925         if (dm_noflush_suspending(ti))
2926                 requeue_io((struct thin_c *)ti->private);
2927 }
2928
2929 /*
2930  * <nr mapped sectors> <highest mapped sector>
2931  */
2932 static void thin_status(struct dm_target *ti, status_type_t type,
2933                         unsigned status_flags, char *result, unsigned maxlen)
2934 {
2935         int r;
2936         ssize_t sz = 0;
2937         dm_block_t mapped, highest;
2938         char buf[BDEVNAME_SIZE];
2939         struct thin_c *tc = ti->private;
2940
2941         if (get_pool_mode(tc->pool) == PM_FAIL) {
2942                 DMEMIT("Fail");
2943                 return;
2944         }
2945
2946         if (!tc->td)
2947                 DMEMIT("-");
2948         else {
2949                 switch (type) {
2950                 case STATUSTYPE_INFO:
2951                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2952                         if (r) {
2953                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2954                                 goto err;
2955                         }
2956
2957                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2958                         if (r < 0) {
2959                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2960                                 goto err;
2961                         }
2962
2963                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2964                         if (r)
2965                                 DMEMIT("%llu", ((highest + 1) *
2966                                                 tc->pool->sectors_per_block) - 1);
2967                         else
2968                                 DMEMIT("-");
2969                         break;
2970
2971                 case STATUSTYPE_TABLE:
2972                         DMEMIT("%s %lu",
2973                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2974                                (unsigned long) tc->dev_id);
2975                         if (tc->origin_dev)
2976                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2977                         break;
2978                 }
2979         }
2980
2981         return;
2982
2983 err:
2984         DMEMIT("Error");
2985 }
2986
2987 static int thin_iterate_devices(struct dm_target *ti,
2988                                 iterate_devices_callout_fn fn, void *data)
2989 {
2990         sector_t blocks;
2991         struct thin_c *tc = ti->private;
2992         struct pool *pool = tc->pool;
2993
2994         /*
2995          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2996          * we follow a more convoluted path through to the pool's target.
2997          */
2998         if (!pool->ti)
2999                 return 0;       /* nothing is bound */
3000
3001         blocks = pool->ti->len;
3002         (void) sector_div(blocks, pool->sectors_per_block);
3003         if (blocks)
3004                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3005
3006         return 0;
3007 }
3008
3009 static struct target_type thin_target = {
3010         .name = "thin",
3011         .version = {1, 9, 0},
3012         .module = THIS_MODULE,
3013         .ctr = thin_ctr,
3014         .dtr = thin_dtr,
3015         .map = thin_map,
3016         .end_io = thin_endio,
3017         .postsuspend = thin_postsuspend,
3018         .status = thin_status,
3019         .iterate_devices = thin_iterate_devices,
3020 };
3021
3022 /*----------------------------------------------------------------*/
3023
3024 static int __init dm_thin_init(void)
3025 {
3026         int r;
3027
3028         pool_table_init();
3029
3030         r = dm_register_target(&thin_target);
3031         if (r)
3032                 return r;
3033
3034         r = dm_register_target(&pool_target);
3035         if (r)
3036                 goto bad_pool_target;
3037
3038         r = -ENOMEM;
3039
3040         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3041         if (!_new_mapping_cache)
3042                 goto bad_new_mapping_cache;
3043
3044         return 0;
3045
3046 bad_new_mapping_cache:
3047         dm_unregister_target(&pool_target);
3048 bad_pool_target:
3049         dm_unregister_target(&thin_target);
3050
3051         return r;
3052 }
3053
3054 static void dm_thin_exit(void)
3055 {
3056         dm_unregister_target(&thin_target);
3057         dm_unregister_target(&pool_target);
3058
3059         kmem_cache_destroy(_new_mapping_cache);
3060 }
3061
3062 module_init(dm_thin_init);
3063 module_exit(dm_thin_exit);
3064
3065 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3066 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3067 MODULE_LICENSE("GPL");