Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / md / bcache / util.h
1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
7 #include <linux/llist.h>
8 #include <linux/ratelimit.h>
9 #include <linux/vmalloc.h>
10 #include <linux/workqueue.h>
11
12 #include "closure.h"
13
14 #define PAGE_SECTORS            (PAGE_SIZE / 512)
15
16 struct closure;
17
18 #ifdef CONFIG_BCACHE_DEBUG
19
20 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
21 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
22
23 #else /* DEBUG */
24
25 #define atomic_dec_bug(v)       atomic_dec(v)
26 #define atomic_inc_bug(v, i)    atomic_inc(v)
27
28 #endif
29
30 #define DECLARE_HEAP(type, name)                                        \
31         struct {                                                        \
32                 size_t size, used;                                      \
33                 type *data;                                             \
34         } name
35
36 #define init_heap(heap, _size, gfp)                                     \
37 ({                                                                      \
38         size_t _bytes;                                                  \
39         (heap)->used = 0;                                               \
40         (heap)->size = (_size);                                         \
41         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
42         (heap)->data = NULL;                                            \
43         if (_bytes < KMALLOC_MAX_SIZE)                                  \
44                 (heap)->data = kmalloc(_bytes, (gfp));                  \
45         if ((!(heap)->data) && ((gfp) & GFP_KERNEL))                    \
46                 (heap)->data = vmalloc(_bytes);                         \
47         (heap)->data;                                                   \
48 })
49
50 #define free_heap(heap)                                                 \
51 do {                                                                    \
52         if (is_vmalloc_addr((heap)->data))                              \
53                 vfree((heap)->data);                                    \
54         else                                                            \
55                 kfree((heap)->data);                                    \
56         (heap)->data = NULL;                                            \
57 } while (0)
58
59 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
60
61 #define heap_sift(h, i, cmp)                                            \
62 do {                                                                    \
63         size_t _r, _j = i;                                              \
64                                                                         \
65         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
66                 _r = _j * 2 + 1;                                        \
67                 if (_r + 1 < (h)->used &&                               \
68                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
69                         _r++;                                           \
70                                                                         \
71                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
72                         break;                                          \
73                 heap_swap(h, _r, _j);                                   \
74         }                                                               \
75 } while (0)
76
77 #define heap_sift_down(h, i, cmp)                                       \
78 do {                                                                    \
79         while (i) {                                                     \
80                 size_t p = (i - 1) / 2;                                 \
81                 if (cmp((h)->data[i], (h)->data[p]))                    \
82                         break;                                          \
83                 heap_swap(h, i, p);                                     \
84                 i = p;                                                  \
85         }                                                               \
86 } while (0)
87
88 #define heap_add(h, d, cmp)                                             \
89 ({                                                                      \
90         bool _r = !heap_full(h);                                        \
91         if (_r) {                                                       \
92                 size_t _i = (h)->used++;                                \
93                 (h)->data[_i] = d;                                      \
94                                                                         \
95                 heap_sift_down(h, _i, cmp);                             \
96                 heap_sift(h, _i, cmp);                                  \
97         }                                                               \
98         _r;                                                             \
99 })
100
101 #define heap_pop(h, d, cmp)                                             \
102 ({                                                                      \
103         bool _r = (h)->used;                                            \
104         if (_r) {                                                       \
105                 (d) = (h)->data[0];                                     \
106                 (h)->used--;                                            \
107                 heap_swap(h, 0, (h)->used);                             \
108                 heap_sift(h, 0, cmp);                                   \
109         }                                                               \
110         _r;                                                             \
111 })
112
113 #define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
114
115 #define heap_full(h)    ((h)->used == (h)->size)
116
117 #define DECLARE_FIFO(type, name)                                        \
118         struct {                                                        \
119                 size_t front, back, size, mask;                         \
120                 type *data;                                             \
121         } name
122
123 #define fifo_for_each(c, fifo, iter)                                    \
124         for (iter = (fifo)->front;                                      \
125              c = (fifo)->data[iter], iter != (fifo)->back;              \
126              iter = (iter + 1) & (fifo)->mask)
127
128 #define __init_fifo(fifo, gfp)                                          \
129 ({                                                                      \
130         size_t _allocated_size, _bytes;                                 \
131         BUG_ON(!(fifo)->size);                                          \
132                                                                         \
133         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
134         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
135                                                                         \
136         (fifo)->mask = _allocated_size - 1;                             \
137         (fifo)->front = (fifo)->back = 0;                               \
138         (fifo)->data = NULL;                                            \
139                                                                         \
140         if (_bytes < KMALLOC_MAX_SIZE)                                  \
141                 (fifo)->data = kmalloc(_bytes, (gfp));                  \
142         if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))                    \
143                 (fifo)->data = vmalloc(_bytes);                         \
144         (fifo)->data;                                                   \
145 })
146
147 #define init_fifo_exact(fifo, _size, gfp)                               \
148 ({                                                                      \
149         (fifo)->size = (_size);                                         \
150         __init_fifo(fifo, gfp);                                         \
151 })
152
153 #define init_fifo(fifo, _size, gfp)                                     \
154 ({                                                                      \
155         (fifo)->size = (_size);                                         \
156         if ((fifo)->size > 4)                                           \
157                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
158         __init_fifo(fifo, gfp);                                         \
159 })
160
161 #define free_fifo(fifo)                                                 \
162 do {                                                                    \
163         if (is_vmalloc_addr((fifo)->data))                              \
164                 vfree((fifo)->data);                                    \
165         else                                                            \
166                 kfree((fifo)->data);                                    \
167         (fifo)->data = NULL;                                            \
168 } while (0)
169
170 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
171 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
172
173 #define fifo_empty(fifo)        (!fifo_used(fifo))
174 #define fifo_full(fifo)         (!fifo_free(fifo))
175
176 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
177 #define fifo_back(fifo)                                                 \
178         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
179
180 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
181
182 #define fifo_push_back(fifo, i)                                         \
183 ({                                                                      \
184         bool _r = !fifo_full((fifo));                                   \
185         if (_r) {                                                       \
186                 (fifo)->data[(fifo)->back++] = (i);                     \
187                 (fifo)->back &= (fifo)->mask;                           \
188         }                                                               \
189         _r;                                                             \
190 })
191
192 #define fifo_pop_front(fifo, i)                                         \
193 ({                                                                      \
194         bool _r = !fifo_empty((fifo));                                  \
195         if (_r) {                                                       \
196                 (i) = (fifo)->data[(fifo)->front++];                    \
197                 (fifo)->front &= (fifo)->mask;                          \
198         }                                                               \
199         _r;                                                             \
200 })
201
202 #define fifo_push_front(fifo, i)                                        \
203 ({                                                                      \
204         bool _r = !fifo_full((fifo));                                   \
205         if (_r) {                                                       \
206                 --(fifo)->front;                                        \
207                 (fifo)->front &= (fifo)->mask;                          \
208                 (fifo)->data[(fifo)->front] = (i);                      \
209         }                                                               \
210         _r;                                                             \
211 })
212
213 #define fifo_pop_back(fifo, i)                                          \
214 ({                                                                      \
215         bool _r = !fifo_empty((fifo));                                  \
216         if (_r) {                                                       \
217                 --(fifo)->back;                                         \
218                 (fifo)->back &= (fifo)->mask;                           \
219                 (i) = (fifo)->data[(fifo)->back]                        \
220         }                                                               \
221         _r;                                                             \
222 })
223
224 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
225 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
226
227 #define fifo_swap(l, r)                                                 \
228 do {                                                                    \
229         swap((l)->front, (r)->front);                                   \
230         swap((l)->back, (r)->back);                                     \
231         swap((l)->size, (r)->size);                                     \
232         swap((l)->mask, (r)->mask);                                     \
233         swap((l)->data, (r)->data);                                     \
234 } while (0)
235
236 #define fifo_move(dest, src)                                            \
237 do {                                                                    \
238         typeof(*((dest)->data)) _t;                                     \
239         while (!fifo_full(dest) &&                                      \
240                fifo_pop(src, _t))                                       \
241                 fifo_push(dest, _t);                                    \
242 } while (0)
243
244 /*
245  * Simple array based allocator - preallocates a number of elements and you can
246  * never allocate more than that, also has no locking.
247  *
248  * Handy because if you know you only need a fixed number of elements you don't
249  * have to worry about memory allocation failure, and sometimes a mempool isn't
250  * what you want.
251  *
252  * We treat the free elements as entries in a singly linked list, and the
253  * freelist as a stack - allocating and freeing push and pop off the freelist.
254  */
255
256 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
257         struct {                                                        \
258                 type    *freelist;                                      \
259                 type    data[size];                                     \
260         } name
261
262 #define array_alloc(array)                                              \
263 ({                                                                      \
264         typeof((array)->freelist) _ret = (array)->freelist;             \
265                                                                         \
266         if (_ret)                                                       \
267                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
268                                                                         \
269         _ret;                                                           \
270 })
271
272 #define array_free(array, ptr)                                          \
273 do {                                                                    \
274         typeof((array)->freelist) _ptr = ptr;                           \
275                                                                         \
276         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
277         (array)->freelist = _ptr;                                       \
278 } while (0)
279
280 #define array_allocator_init(array)                                     \
281 do {                                                                    \
282         typeof((array)->freelist) _i;                                   \
283                                                                         \
284         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
285         (array)->freelist = NULL;                                       \
286                                                                         \
287         for (_i = (array)->data;                                        \
288              _i < (array)->data + ARRAY_SIZE((array)->data);            \
289              _i++)                                                      \
290                 array_free(array, _i);                                  \
291 } while (0)
292
293 #define array_freelist_empty(array)     ((array)->freelist == NULL)
294
295 #define ANYSINT_MAX(t)                                                  \
296         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
297
298 int bch_strtoint_h(const char *, int *);
299 int bch_strtouint_h(const char *, unsigned int *);
300 int bch_strtoll_h(const char *, long long *);
301 int bch_strtoull_h(const char *, unsigned long long *);
302
303 static inline int bch_strtol_h(const char *cp, long *res)
304 {
305 #if BITS_PER_LONG == 32
306         return bch_strtoint_h(cp, (int *) res);
307 #else
308         return bch_strtoll_h(cp, (long long *) res);
309 #endif
310 }
311
312 static inline int bch_strtoul_h(const char *cp, long *res)
313 {
314 #if BITS_PER_LONG == 32
315         return bch_strtouint_h(cp, (unsigned int *) res);
316 #else
317         return bch_strtoull_h(cp, (unsigned long long *) res);
318 #endif
319 }
320
321 #define strtoi_h(cp, res)                                               \
322         (__builtin_types_compatible_p(typeof(*res), int)                \
323         ? bch_strtoint_h(cp, (void *) res)                              \
324         : __builtin_types_compatible_p(typeof(*res), long)              \
325         ? bch_strtol_h(cp, (void *) res)                                \
326         : __builtin_types_compatible_p(typeof(*res), long long)         \
327         ? bch_strtoll_h(cp, (void *) res)                               \
328         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
329         ? bch_strtouint_h(cp, (void *) res)                             \
330         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
331         ? bch_strtoul_h(cp, (void *) res)                               \
332         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
333         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
334
335 #define strtoul_safe(cp, var)                                           \
336 ({                                                                      \
337         unsigned long _v;                                               \
338         int _r = kstrtoul(cp, 10, &_v);                                 \
339         if (!_r)                                                        \
340                 var = _v;                                               \
341         _r;                                                             \
342 })
343
344 #define strtoul_safe_clamp(cp, var, min, max)                           \
345 ({                                                                      \
346         unsigned long _v;                                               \
347         int _r = kstrtoul(cp, 10, &_v);                                 \
348         if (!_r)                                                        \
349                 var = clamp_t(typeof(var), _v, min, max);               \
350         _r;                                                             \
351 })
352
353 #define snprint(buf, size, var)                                         \
354         snprintf(buf, size,                                             \
355                 __builtin_types_compatible_p(typeof(var), int)          \
356                      ? "%i\n" :                                         \
357                 __builtin_types_compatible_p(typeof(var), unsigned)     \
358                      ? "%u\n" :                                         \
359                 __builtin_types_compatible_p(typeof(var), long)         \
360                      ? "%li\n" :                                        \
361                 __builtin_types_compatible_p(typeof(var), unsigned long)\
362                      ? "%lu\n" :                                        \
363                 __builtin_types_compatible_p(typeof(var), int64_t)      \
364                      ? "%lli\n" :                                       \
365                 __builtin_types_compatible_p(typeof(var), uint64_t)     \
366                      ? "%llu\n" :                                       \
367                 __builtin_types_compatible_p(typeof(var), const char *) \
368                      ? "%s\n" : "%i\n", var)
369
370 ssize_t bch_hprint(char *buf, int64_t v);
371
372 bool bch_is_zero(const char *p, size_t n);
373 int bch_parse_uuid(const char *s, char *uuid);
374
375 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
376                             size_t selected);
377
378 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
379
380 struct time_stats {
381         spinlock_t      lock;
382         /*
383          * all fields are in nanoseconds, averages are ewmas stored left shifted
384          * by 8
385          */
386         uint64_t        max_duration;
387         uint64_t        average_duration;
388         uint64_t        average_frequency;
389         uint64_t        last;
390 };
391
392 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
393
394 #define NSEC_PER_ns                     1L
395 #define NSEC_PER_us                     NSEC_PER_USEC
396 #define NSEC_PER_ms                     NSEC_PER_MSEC
397 #define NSEC_PER_sec                    NSEC_PER_SEC
398
399 #define __print_time_stat(stats, name, stat, units)                     \
400         sysfs_print(name ## _ ## stat ## _ ## units,                    \
401                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
402
403 #define sysfs_print_time_stats(stats, name,                             \
404                                frequency_units,                         \
405                                duration_units)                          \
406 do {                                                                    \
407         __print_time_stat(stats, name,                                  \
408                           average_frequency,    frequency_units);       \
409         __print_time_stat(stats, name,                                  \
410                           average_duration,     duration_units);        \
411         __print_time_stat(stats, name,                                  \
412                           max_duration,         duration_units);        \
413                                                                         \
414         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
415                     ? div_s64(local_clock() - (stats)->last,            \
416                               NSEC_PER_ ## frequency_units)             \
417                     : -1LL);                                            \
418 } while (0)
419
420 #define sysfs_time_stats_attribute(name,                                \
421                                    frequency_units,                     \
422                                    duration_units)                      \
423 read_attribute(name ## _average_frequency_ ## frequency_units);         \
424 read_attribute(name ## _average_duration_ ## duration_units);           \
425 read_attribute(name ## _max_duration_ ## duration_units);               \
426 read_attribute(name ## _last_ ## frequency_units)
427
428 #define sysfs_time_stats_attribute_list(name,                           \
429                                         frequency_units,                \
430                                         duration_units)                 \
431 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
432 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
433 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
434 &sysfs_ ## name ## _last_ ## frequency_units,
435
436 #define ewma_add(ewma, val, weight, factor)                             \
437 ({                                                                      \
438         (ewma) *= (weight) - 1;                                         \
439         (ewma) += (val) << factor;                                      \
440         (ewma) /= (weight);                                             \
441         (ewma) >> factor;                                               \
442 })
443
444 struct bch_ratelimit {
445         /* Next time we want to do some work, in nanoseconds */
446         uint64_t                next;
447
448         /*
449          * Rate at which we want to do work, in units per nanosecond
450          * The units here correspond to the units passed to bch_next_delay()
451          */
452         unsigned                rate;
453 };
454
455 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
456 {
457         d->next = local_clock();
458 }
459
460 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
461
462 #define __DIV_SAFE(n, d, zero)                                          \
463 ({                                                                      \
464         typeof(n) _n = (n);                                             \
465         typeof(d) _d = (d);                                             \
466         _d ? _n / _d : zero;                                            \
467 })
468
469 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
470
471 #define container_of_or_null(ptr, type, member)                         \
472 ({                                                                      \
473         typeof(ptr) _ptr = ptr;                                         \
474         _ptr ? container_of(_ptr, type, member) : NULL;                 \
475 })
476
477 #define RB_INSERT(root, new, member, cmp)                               \
478 ({                                                                      \
479         __label__ dup;                                                  \
480         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
481         typeof(new) this;                                               \
482         int res, ret = -1;                                              \
483                                                                         \
484         while (*n) {                                                    \
485                 parent = *n;                                            \
486                 this = container_of(*n, typeof(*(new)), member);        \
487                 res = cmp(new, this);                                   \
488                 if (!res)                                               \
489                         goto dup;                                       \
490                 n = res < 0                                             \
491                         ? &(*n)->rb_left                                \
492                         : &(*n)->rb_right;                              \
493         }                                                               \
494                                                                         \
495         rb_link_node(&(new)->member, parent, n);                        \
496         rb_insert_color(&(new)->member, root);                          \
497         ret = 0;                                                        \
498 dup:                                                                    \
499         ret;                                                            \
500 })
501
502 #define RB_SEARCH(root, search, member, cmp)                            \
503 ({                                                                      \
504         struct rb_node *n = (root)->rb_node;                            \
505         typeof(&(search)) this, ret = NULL;                             \
506         int res;                                                        \
507                                                                         \
508         while (n) {                                                     \
509                 this = container_of(n, typeof(search), member);         \
510                 res = cmp(&(search), this);                             \
511                 if (!res) {                                             \
512                         ret = this;                                     \
513                         break;                                          \
514                 }                                                       \
515                 n = res < 0                                             \
516                         ? n->rb_left                                    \
517                         : n->rb_right;                                  \
518         }                                                               \
519         ret;                                                            \
520 })
521
522 #define RB_GREATER(root, search, member, cmp)                           \
523 ({                                                                      \
524         struct rb_node *n = (root)->rb_node;                            \
525         typeof(&(search)) this, ret = NULL;                             \
526         int res;                                                        \
527                                                                         \
528         while (n) {                                                     \
529                 this = container_of(n, typeof(search), member);         \
530                 res = cmp(&(search), this);                             \
531                 if (res < 0) {                                          \
532                         ret = this;                                     \
533                         n = n->rb_left;                                 \
534                 } else                                                  \
535                         n = n->rb_right;                                \
536         }                                                               \
537         ret;                                                            \
538 })
539
540 #define RB_FIRST(root, type, member)                                    \
541         container_of_or_null(rb_first(root), type, member)
542
543 #define RB_LAST(root, type, member)                                     \
544         container_of_or_null(rb_last(root), type, member)
545
546 #define RB_NEXT(ptr, member)                                            \
547         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
548
549 #define RB_PREV(ptr, member)                                            \
550         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
551
552 /* Does linear interpolation between powers of two */
553 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
554 {
555         unsigned fract = x & ~(~0 << fract_bits);
556
557         x >>= fract_bits;
558         x   = 1 << x;
559         x  += (x * fract) >> fract_bits;
560
561         return x;
562 }
563
564 void bch_bio_map(struct bio *bio, void *base);
565
566 static inline sector_t bdev_sectors(struct block_device *bdev)
567 {
568         return bdev->bd_inode->i_size >> 9;
569 }
570
571 #define closure_bio_submit(bio, cl, dev)                                \
572 do {                                                                    \
573         closure_get(cl);                                                \
574         bch_generic_make_request(bio, &(dev)->bio_split_hook);          \
575 } while (0)
576
577 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
578 uint64_t bch_crc64(const void *, size_t);
579
580 #endif /* _BCACHE_UTIL_H */