Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / md / bcache / btree.c
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "writeback.h"
27
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
37
38 /*
39  * Todo:
40  * register_bcache: Return errors out to userspace correctly
41  *
42  * Writeback: don't undirty key until after a cache flush
43  *
44  * Create an iterator for key pointers
45  *
46  * On btree write error, mark bucket such that it won't be freed from the cache
47  *
48  * Journalling:
49  *   Check for bad keys in replay
50  *   Propagate barriers
51  *   Refcount journal entries in journal_replay
52  *
53  * Garbage collection:
54  *   Finish incremental gc
55  *   Gc should free old UUIDs, data for invalid UUIDs
56  *
57  * Provide a way to list backing device UUIDs we have data cached for, and
58  * probably how long it's been since we've seen them, and a way to invalidate
59  * dirty data for devices that will never be attached again
60  *
61  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62  * that based on that and how much dirty data we have we can keep writeback
63  * from being starved
64  *
65  * Add a tracepoint or somesuch to watch for writeback starvation
66  *
67  * When btree depth > 1 and splitting an interior node, we have to make sure
68  * alloc_bucket() cannot fail. This should be true but is not completely
69  * obvious.
70  *
71  * Make sure all allocations get charged to the root cgroup
72  *
73  * Plugging?
74  *
75  * If data write is less than hard sector size of ssd, round up offset in open
76  * bucket to the next whole sector
77  *
78  * Also lookup by cgroup in get_open_bucket()
79  *
80  * Superblock needs to be fleshed out for multiple cache devices
81  *
82  * Add a sysfs tunable for the number of writeback IOs in flight
83  *
84  * Add a sysfs tunable for the number of open data buckets
85  *
86  * IO tracking: Can we track when one process is doing io on behalf of another?
87  * IO tracking: Don't use just an average, weigh more recent stuff higher
88  *
89  * Test module load/unload
90  */
91
92 enum {
93         BTREE_INSERT_STATUS_INSERT,
94         BTREE_INSERT_STATUS_BACK_MERGE,
95         BTREE_INSERT_STATUS_OVERWROTE,
96         BTREE_INSERT_STATUS_FRONT_MERGE,
97 };
98
99 #define MAX_NEED_GC             64
100 #define MAX_SAVE_PRIO           72
101
102 #define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
103
104 #define PTR_HASH(c, k)                                                  \
105         (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
106
107 static struct workqueue_struct *btree_io_wq;
108
109 static inline bool should_split(struct btree *b)
110 {
111         struct bset *i = write_block(b);
112         return b->written >= btree_blocks(b) ||
113                 (b->written + __set_blocks(i, i->keys + 15, b->c)
114                  > btree_blocks(b));
115 }
116
117 #define insert_lock(s, b)       ((b)->level <= (s)->lock)
118
119 /*
120  * These macros are for recursing down the btree - they handle the details of
121  * locking and looking up nodes in the cache for you. They're best treated as
122  * mere syntax when reading code that uses them.
123  *
124  * op->lock determines whether we take a read or a write lock at a given depth.
125  * If you've got a read lock and find that you need a write lock (i.e. you're
126  * going to have to split), set op->lock and return -EINTR; btree_root() will
127  * call you again and you'll have the correct lock.
128  */
129
130 /**
131  * btree - recurse down the btree on a specified key
132  * @fn:         function to call, which will be passed the child node
133  * @key:        key to recurse on
134  * @b:          parent btree node
135  * @op:         pointer to struct btree_op
136  */
137 #define btree(fn, key, b, op, ...)                                      \
138 ({                                                                      \
139         int _r, l = (b)->level - 1;                                     \
140         bool _w = l <= (op)->lock;                                      \
141         struct btree *_child = bch_btree_node_get((b)->c, key, l, _w);  \
142         if (!IS_ERR(_child)) {                                          \
143                 _child->parent = (b);                                   \
144                 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
145                 rw_unlock(_w, _child);                                  \
146         } else                                                          \
147                 _r = PTR_ERR(_child);                                   \
148         _r;                                                             \
149 })
150
151 /**
152  * btree_root - call a function on the root of the btree
153  * @fn:         function to call, which will be passed the child node
154  * @c:          cache set
155  * @op:         pointer to struct btree_op
156  */
157 #define btree_root(fn, c, op, ...)                                      \
158 ({                                                                      \
159         int _r = -EINTR;                                                \
160         do {                                                            \
161                 struct btree *_b = (c)->root;                           \
162                 bool _w = insert_lock(op, _b);                          \
163                 rw_lock(_w, _b, _b->level);                             \
164                 if (_b == (c)->root &&                                  \
165                     _w == insert_lock(op, _b)) {                        \
166                         _b->parent = NULL;                              \
167                         _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
168                 }                                                       \
169                 rw_unlock(_w, _b);                                      \
170                 bch_cannibalize_unlock(c);                              \
171                 if (_r == -ENOSPC) {                                    \
172                         wait_event((c)->try_wait,                       \
173                                    !(c)->try_harder);                   \
174                         _r = -EINTR;                                    \
175                 }                                                       \
176         } while (_r == -EINTR);                                         \
177                                                                         \
178         _r;                                                             \
179 })
180
181 /* Btree key manipulation */
182
183 void bkey_put(struct cache_set *c, struct bkey *k)
184 {
185         unsigned i;
186
187         for (i = 0; i < KEY_PTRS(k); i++)
188                 if (ptr_available(c, k, i))
189                         atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
190 }
191
192 /* Btree IO */
193
194 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
195 {
196         uint64_t crc = b->key.ptr[0];
197         void *data = (void *) i + 8, *end = end(i);
198
199         crc = bch_crc64_update(crc, data, end - data);
200         return crc ^ 0xffffffffffffffffULL;
201 }
202
203 static void bch_btree_node_read_done(struct btree *b)
204 {
205         const char *err = "bad btree header";
206         struct bset *i = b->sets[0].data;
207         struct btree_iter *iter;
208
209         iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
210         iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
211         iter->used = 0;
212
213 #ifdef CONFIG_BCACHE_DEBUG
214         iter->b = b;
215 #endif
216
217         if (!i->seq)
218                 goto err;
219
220         for (;
221              b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
222              i = write_block(b)) {
223                 err = "unsupported bset version";
224                 if (i->version > BCACHE_BSET_VERSION)
225                         goto err;
226
227                 err = "bad btree header";
228                 if (b->written + set_blocks(i, b->c) > btree_blocks(b))
229                         goto err;
230
231                 err = "bad magic";
232                 if (i->magic != bset_magic(&b->c->sb))
233                         goto err;
234
235                 err = "bad checksum";
236                 switch (i->version) {
237                 case 0:
238                         if (i->csum != csum_set(i))
239                                 goto err;
240                         break;
241                 case BCACHE_BSET_VERSION:
242                         if (i->csum != btree_csum_set(b, i))
243                                 goto err;
244                         break;
245                 }
246
247                 err = "empty set";
248                 if (i != b->sets[0].data && !i->keys)
249                         goto err;
250
251                 bch_btree_iter_push(iter, i->start, end(i));
252
253                 b->written += set_blocks(i, b->c);
254         }
255
256         err = "corrupted btree";
257         for (i = write_block(b);
258              index(i, b) < btree_blocks(b);
259              i = ((void *) i) + block_bytes(b->c))
260                 if (i->seq == b->sets[0].data->seq)
261                         goto err;
262
263         bch_btree_sort_and_fix_extents(b, iter);
264
265         i = b->sets[0].data;
266         err = "short btree key";
267         if (b->sets[0].size &&
268             bkey_cmp(&b->key, &b->sets[0].end) < 0)
269                 goto err;
270
271         if (b->written < btree_blocks(b))
272                 bch_bset_init_next(b);
273 out:
274         mempool_free(iter, b->c->fill_iter);
275         return;
276 err:
277         set_btree_node_io_error(b);
278         bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
279                             err, PTR_BUCKET_NR(b->c, &b->key, 0),
280                             index(i, b), i->keys);
281         goto out;
282 }
283
284 static void btree_node_read_endio(struct bio *bio, int error)
285 {
286         struct closure *cl = bio->bi_private;
287         closure_put(cl);
288 }
289
290 void bch_btree_node_read(struct btree *b)
291 {
292         uint64_t start_time = local_clock();
293         struct closure cl;
294         struct bio *bio;
295
296         trace_bcache_btree_read(b);
297
298         closure_init_stack(&cl);
299
300         bio = bch_bbio_alloc(b->c);
301         bio->bi_rw      = REQ_META|READ_SYNC;
302         bio->bi_size    = KEY_SIZE(&b->key) << 9;
303         bio->bi_end_io  = btree_node_read_endio;
304         bio->bi_private = &cl;
305
306         bch_bio_map(bio, b->sets[0].data);
307
308         bch_submit_bbio(bio, b->c, &b->key, 0);
309         closure_sync(&cl);
310
311         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
312                 set_btree_node_io_error(b);
313
314         bch_bbio_free(bio, b->c);
315
316         if (btree_node_io_error(b))
317                 goto err;
318
319         bch_btree_node_read_done(b);
320         bch_time_stats_update(&b->c->btree_read_time, start_time);
321
322         return;
323 err:
324         bch_cache_set_error(b->c, "io error reading bucket %zu",
325                             PTR_BUCKET_NR(b->c, &b->key, 0));
326 }
327
328 static void btree_complete_write(struct btree *b, struct btree_write *w)
329 {
330         if (w->prio_blocked &&
331             !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332                 wake_up_allocators(b->c);
333
334         if (w->journal) {
335                 atomic_dec_bug(w->journal);
336                 __closure_wake_up(&b->c->journal.wait);
337         }
338
339         w->prio_blocked = 0;
340         w->journal      = NULL;
341 }
342
343 static void __btree_node_write_done(struct closure *cl)
344 {
345         struct btree *b = container_of(cl, struct btree, io.cl);
346         struct btree_write *w = btree_prev_write(b);
347
348         bch_bbio_free(b->bio, b->c);
349         b->bio = NULL;
350         btree_complete_write(b, w);
351
352         if (btree_node_dirty(b))
353                 queue_delayed_work(btree_io_wq, &b->work,
354                                    msecs_to_jiffies(30000));
355
356         closure_return(cl);
357 }
358
359 static void btree_node_write_done(struct closure *cl)
360 {
361         struct btree *b = container_of(cl, struct btree, io.cl);
362         struct bio_vec *bv;
363         int n;
364
365         __bio_for_each_segment(bv, b->bio, n, 0)
366                 __free_page(bv->bv_page);
367
368         __btree_node_write_done(cl);
369 }
370
371 static void btree_node_write_endio(struct bio *bio, int error)
372 {
373         struct closure *cl = bio->bi_private;
374         struct btree *b = container_of(cl, struct btree, io.cl);
375
376         if (error)
377                 set_btree_node_io_error(b);
378
379         bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
380         closure_put(cl);
381 }
382
383 static void do_btree_node_write(struct btree *b)
384 {
385         struct closure *cl = &b->io.cl;
386         struct bset *i = b->sets[b->nsets].data;
387         BKEY_PADDED(key) k;
388
389         i->version      = BCACHE_BSET_VERSION;
390         i->csum         = btree_csum_set(b, i);
391
392         BUG_ON(b->bio);
393         b->bio = bch_bbio_alloc(b->c);
394
395         b->bio->bi_end_io       = btree_node_write_endio;
396         b->bio->bi_private      = cl;
397         b->bio->bi_rw           = REQ_META|WRITE_SYNC|REQ_FUA;
398         b->bio->bi_size         = set_blocks(i, b->c) * block_bytes(b->c);
399         bch_bio_map(b->bio, i);
400
401         /*
402          * If we're appending to a leaf node, we don't technically need FUA -
403          * this write just needs to be persisted before the next journal write,
404          * which will be marked FLUSH|FUA.
405          *
406          * Similarly if we're writing a new btree root - the pointer is going to
407          * be in the next journal entry.
408          *
409          * But if we're writing a new btree node (that isn't a root) or
410          * appending to a non leaf btree node, we need either FUA or a flush
411          * when we write the parent with the new pointer. FUA is cheaper than a
412          * flush, and writes appending to leaf nodes aren't blocking anything so
413          * just make all btree node writes FUA to keep things sane.
414          */
415
416         bkey_copy(&k.key, &b->key);
417         SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
418
419         if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
420                 int j;
421                 struct bio_vec *bv;
422                 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
423
424                 bio_for_each_segment(bv, b->bio, j)
425                         memcpy(page_address(bv->bv_page),
426                                base + j * PAGE_SIZE, PAGE_SIZE);
427
428                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
429
430                 continue_at(cl, btree_node_write_done, NULL);
431         } else {
432                 b->bio->bi_vcnt = 0;
433                 bch_bio_map(b->bio, i);
434
435                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
436
437                 closure_sync(cl);
438                 __btree_node_write_done(cl);
439         }
440 }
441
442 void bch_btree_node_write(struct btree *b, struct closure *parent)
443 {
444         struct bset *i = b->sets[b->nsets].data;
445
446         trace_bcache_btree_write(b);
447
448         BUG_ON(current->bio_list);
449         BUG_ON(b->written >= btree_blocks(b));
450         BUG_ON(b->written && !i->keys);
451         BUG_ON(b->sets->data->seq != i->seq);
452         bch_check_keys(b, "writing");
453
454         cancel_delayed_work(&b->work);
455
456         /* If caller isn't waiting for write, parent refcount is cache set */
457         closure_lock(&b->io, parent ?: &b->c->cl);
458
459         clear_bit(BTREE_NODE_dirty,      &b->flags);
460         change_bit(BTREE_NODE_write_idx, &b->flags);
461
462         do_btree_node_write(b);
463
464         b->written += set_blocks(i, b->c);
465         atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
466                         &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
467
468         bch_btree_sort_lazy(b);
469
470         if (b->written < btree_blocks(b))
471                 bch_bset_init_next(b);
472 }
473
474 static void bch_btree_node_write_sync(struct btree *b)
475 {
476         struct closure cl;
477
478         closure_init_stack(&cl);
479         bch_btree_node_write(b, &cl);
480         closure_sync(&cl);
481 }
482
483 static void btree_node_write_work(struct work_struct *w)
484 {
485         struct btree *b = container_of(to_delayed_work(w), struct btree, work);
486
487         rw_lock(true, b, b->level);
488
489         if (btree_node_dirty(b))
490                 bch_btree_node_write(b, NULL);
491         rw_unlock(true, b);
492 }
493
494 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
495 {
496         struct bset *i = b->sets[b->nsets].data;
497         struct btree_write *w = btree_current_write(b);
498
499         BUG_ON(!b->written);
500         BUG_ON(!i->keys);
501
502         if (!btree_node_dirty(b))
503                 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
504
505         set_btree_node_dirty(b);
506
507         if (journal_ref) {
508                 if (w->journal &&
509                     journal_pin_cmp(b->c, w->journal, journal_ref)) {
510                         atomic_dec_bug(w->journal);
511                         w->journal = NULL;
512                 }
513
514                 if (!w->journal) {
515                         w->journal = journal_ref;
516                         atomic_inc(w->journal);
517                 }
518         }
519
520         /* Force write if set is too big */
521         if (set_bytes(i) > PAGE_SIZE - 48 &&
522             !current->bio_list)
523                 bch_btree_node_write(b, NULL);
524 }
525
526 /*
527  * Btree in memory cache - allocation/freeing
528  * mca -> memory cache
529  */
530
531 static void mca_reinit(struct btree *b)
532 {
533         unsigned i;
534
535         b->flags        = 0;
536         b->written      = 0;
537         b->nsets        = 0;
538
539         for (i = 0; i < MAX_BSETS; i++)
540                 b->sets[i].size = 0;
541         /*
542          * Second loop starts at 1 because b->sets[0]->data is the memory we
543          * allocated
544          */
545         for (i = 1; i < MAX_BSETS; i++)
546                 b->sets[i].data = NULL;
547 }
548
549 #define mca_reserve(c)  (((c->root && c->root->level)           \
550                           ? c->root->level : 1) * 8 + 16)
551 #define mca_can_free(c)                                         \
552         max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
553
554 static void mca_data_free(struct btree *b)
555 {
556         struct bset_tree *t = b->sets;
557         BUG_ON(!closure_is_unlocked(&b->io.cl));
558
559         if (bset_prev_bytes(b) < PAGE_SIZE)
560                 kfree(t->prev);
561         else
562                 free_pages((unsigned long) t->prev,
563                            get_order(bset_prev_bytes(b)));
564
565         if (bset_tree_bytes(b) < PAGE_SIZE)
566                 kfree(t->tree);
567         else
568                 free_pages((unsigned long) t->tree,
569                            get_order(bset_tree_bytes(b)));
570
571         free_pages((unsigned long) t->data, b->page_order);
572
573         t->prev = NULL;
574         t->tree = NULL;
575         t->data = NULL;
576         list_move(&b->list, &b->c->btree_cache_freed);
577         b->c->bucket_cache_used--;
578 }
579
580 static void mca_bucket_free(struct btree *b)
581 {
582         BUG_ON(btree_node_dirty(b));
583
584         b->key.ptr[0] = 0;
585         hlist_del_init_rcu(&b->hash);
586         list_move(&b->list, &b->c->btree_cache_freeable);
587 }
588
589 static unsigned btree_order(struct bkey *k)
590 {
591         return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
592 }
593
594 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
595 {
596         struct bset_tree *t = b->sets;
597         BUG_ON(t->data);
598
599         b->page_order = max_t(unsigned,
600                               ilog2(b->c->btree_pages),
601                               btree_order(k));
602
603         t->data = (void *) __get_free_pages(gfp, b->page_order);
604         if (!t->data)
605                 goto err;
606
607         t->tree = bset_tree_bytes(b) < PAGE_SIZE
608                 ? kmalloc(bset_tree_bytes(b), gfp)
609                 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
610         if (!t->tree)
611                 goto err;
612
613         t->prev = bset_prev_bytes(b) < PAGE_SIZE
614                 ? kmalloc(bset_prev_bytes(b), gfp)
615                 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
616         if (!t->prev)
617                 goto err;
618
619         list_move(&b->list, &b->c->btree_cache);
620         b->c->bucket_cache_used++;
621         return;
622 err:
623         mca_data_free(b);
624 }
625
626 static struct btree *mca_bucket_alloc(struct cache_set *c,
627                                       struct bkey *k, gfp_t gfp)
628 {
629         struct btree *b = kzalloc(sizeof(struct btree), gfp);
630         if (!b)
631                 return NULL;
632
633         init_rwsem(&b->lock);
634         lockdep_set_novalidate_class(&b->lock);
635         INIT_LIST_HEAD(&b->list);
636         INIT_DELAYED_WORK(&b->work, btree_node_write_work);
637         b->c = c;
638         closure_init_unlocked(&b->io);
639
640         mca_data_alloc(b, k, gfp);
641         return b;
642 }
643
644 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
645 {
646         struct closure cl;
647
648         closure_init_stack(&cl);
649         lockdep_assert_held(&b->c->bucket_lock);
650
651         if (!down_write_trylock(&b->lock))
652                 return -ENOMEM;
653
654         BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
655
656         if (b->page_order < min_order ||
657             (!flush &&
658              (btree_node_dirty(b) ||
659               atomic_read(&b->io.cl.remaining) != -1))) {
660                 rw_unlock(true, b);
661                 return -ENOMEM;
662         }
663
664         if (btree_node_dirty(b))
665                 bch_btree_node_write_sync(b);
666
667         /* wait for any in flight btree write */
668         closure_wait_event(&b->io.wait, &cl,
669                            atomic_read(&b->io.cl.remaining) == -1);
670
671         return 0;
672 }
673
674 static unsigned long bch_mca_scan(struct shrinker *shrink,
675                                   struct shrink_control *sc)
676 {
677         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
678         struct btree *b, *t;
679         unsigned long i, nr = sc->nr_to_scan;
680         unsigned long freed = 0;
681
682         if (c->shrinker_disabled)
683                 return SHRINK_STOP;
684
685         if (c->try_harder)
686                 return SHRINK_STOP;
687
688         /* Return -1 if we can't do anything right now */
689         if (sc->gfp_mask & __GFP_IO)
690                 mutex_lock(&c->bucket_lock);
691         else if (!mutex_trylock(&c->bucket_lock))
692                 return -1;
693
694         /*
695          * It's _really_ critical that we don't free too many btree nodes - we
696          * have to always leave ourselves a reserve. The reserve is how we
697          * guarantee that allocating memory for a new btree node can always
698          * succeed, so that inserting keys into the btree can always succeed and
699          * IO can always make forward progress:
700          */
701         nr /= c->btree_pages;
702         nr = min_t(unsigned long, nr, mca_can_free(c));
703
704         i = 0;
705         list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
706                 if (freed >= nr)
707                         break;
708
709                 if (++i > 3 &&
710                     !mca_reap(b, 0, false)) {
711                         mca_data_free(b);
712                         rw_unlock(true, b);
713                         freed++;
714                 }
715         }
716
717         /*
718          * Can happen right when we first start up, before we've read in any
719          * btree nodes
720          */
721         if (list_empty(&c->btree_cache))
722                 goto out;
723
724         for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
725                 b = list_first_entry(&c->btree_cache, struct btree, list);
726                 list_rotate_left(&c->btree_cache);
727
728                 if (!b->accessed &&
729                     !mca_reap(b, 0, false)) {
730                         mca_bucket_free(b);
731                         mca_data_free(b);
732                         rw_unlock(true, b);
733                         freed++;
734                 } else
735                         b->accessed = 0;
736         }
737 out:
738         mutex_unlock(&c->bucket_lock);
739         return freed;
740 }
741
742 static unsigned long bch_mca_count(struct shrinker *shrink,
743                                    struct shrink_control *sc)
744 {
745         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
746
747         if (c->shrinker_disabled)
748                 return 0;
749
750         if (c->try_harder)
751                 return 0;
752
753         return mca_can_free(c) * c->btree_pages;
754 }
755
756 void bch_btree_cache_free(struct cache_set *c)
757 {
758         struct btree *b;
759         struct closure cl;
760         closure_init_stack(&cl);
761
762         if (c->shrink.list.next)
763                 unregister_shrinker(&c->shrink);
764
765         mutex_lock(&c->bucket_lock);
766
767 #ifdef CONFIG_BCACHE_DEBUG
768         if (c->verify_data)
769                 list_move(&c->verify_data->list, &c->btree_cache);
770 #endif
771
772         list_splice(&c->btree_cache_freeable,
773                     &c->btree_cache);
774
775         while (!list_empty(&c->btree_cache)) {
776                 b = list_first_entry(&c->btree_cache, struct btree, list);
777
778                 if (btree_node_dirty(b))
779                         btree_complete_write(b, btree_current_write(b));
780                 clear_bit(BTREE_NODE_dirty, &b->flags);
781
782                 mca_data_free(b);
783         }
784
785         while (!list_empty(&c->btree_cache_freed)) {
786                 b = list_first_entry(&c->btree_cache_freed,
787                                      struct btree, list);
788                 list_del(&b->list);
789                 cancel_delayed_work_sync(&b->work);
790                 kfree(b);
791         }
792
793         mutex_unlock(&c->bucket_lock);
794 }
795
796 int bch_btree_cache_alloc(struct cache_set *c)
797 {
798         unsigned i;
799
800         for (i = 0; i < mca_reserve(c); i++)
801                 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802                         return -ENOMEM;
803
804         list_splice_init(&c->btree_cache,
805                          &c->btree_cache_freeable);
806
807 #ifdef CONFIG_BCACHE_DEBUG
808         mutex_init(&c->verify_lock);
809
810         c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
811
812         if (c->verify_data &&
813             c->verify_data->sets[0].data)
814                 list_del_init(&c->verify_data->list);
815         else
816                 c->verify_data = NULL;
817 #endif
818
819         c->shrink.count_objects = bch_mca_count;
820         c->shrink.scan_objects = bch_mca_scan;
821         c->shrink.seeks = 4;
822         c->shrink.batch = c->btree_pages * 2;
823         register_shrinker(&c->shrink);
824
825         return 0;
826 }
827
828 /* Btree in memory cache - hash table */
829
830 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
831 {
832         return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
833 }
834
835 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
836 {
837         struct btree *b;
838
839         rcu_read_lock();
840         hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
841                 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
842                         goto out;
843         b = NULL;
844 out:
845         rcu_read_unlock();
846         return b;
847 }
848
849 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
850 {
851         struct btree *b;
852
853         trace_bcache_btree_cache_cannibalize(c);
854
855         if (!c->try_harder) {
856                 c->try_harder = current;
857                 c->try_harder_start = local_clock();
858         } else if (c->try_harder != current)
859                 return ERR_PTR(-ENOSPC);
860
861         list_for_each_entry_reverse(b, &c->btree_cache, list)
862                 if (!mca_reap(b, btree_order(k), false))
863                         return b;
864
865         list_for_each_entry_reverse(b, &c->btree_cache, list)
866                 if (!mca_reap(b, btree_order(k), true))
867                         return b;
868
869         return ERR_PTR(-ENOMEM);
870 }
871
872 /*
873  * We can only have one thread cannibalizing other cached btree nodes at a time,
874  * or we'll deadlock. We use an open coded mutex to ensure that, which a
875  * cannibalize_bucket() will take. This means every time we unlock the root of
876  * the btree, we need to release this lock if we have it held.
877  */
878 static void bch_cannibalize_unlock(struct cache_set *c)
879 {
880         if (c->try_harder == current) {
881                 bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
882                 c->try_harder = NULL;
883                 wake_up(&c->try_wait);
884         }
885 }
886
887 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
888 {
889         struct btree *b;
890
891         BUG_ON(current->bio_list);
892
893         lockdep_assert_held(&c->bucket_lock);
894
895         if (mca_find(c, k))
896                 return NULL;
897
898         /* btree_free() doesn't free memory; it sticks the node on the end of
899          * the list. Check if there's any freed nodes there:
900          */
901         list_for_each_entry(b, &c->btree_cache_freeable, list)
902                 if (!mca_reap(b, btree_order(k), false))
903                         goto out;
904
905         /* We never free struct btree itself, just the memory that holds the on
906          * disk node. Check the freed list before allocating a new one:
907          */
908         list_for_each_entry(b, &c->btree_cache_freed, list)
909                 if (!mca_reap(b, 0, false)) {
910                         mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
911                         if (!b->sets[0].data)
912                                 goto err;
913                         else
914                                 goto out;
915                 }
916
917         b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
918         if (!b)
919                 goto err;
920
921         BUG_ON(!down_write_trylock(&b->lock));
922         if (!b->sets->data)
923                 goto err;
924 out:
925         BUG_ON(!closure_is_unlocked(&b->io.cl));
926
927         bkey_copy(&b->key, k);
928         list_move(&b->list, &c->btree_cache);
929         hlist_del_init_rcu(&b->hash);
930         hlist_add_head_rcu(&b->hash, mca_hash(c, k));
931
932         lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
933         b->level        = level;
934         b->parent       = (void *) ~0UL;
935
936         mca_reinit(b);
937
938         return b;
939 err:
940         if (b)
941                 rw_unlock(true, b);
942
943         b = mca_cannibalize(c, k);
944         if (!IS_ERR(b))
945                 goto out;
946
947         return b;
948 }
949
950 /**
951  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
952  * in from disk if necessary.
953  *
954  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
955  *
956  * The btree node will have either a read or a write lock held, depending on
957  * level and op->lock.
958  */
959 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
960                                  int level, bool write)
961 {
962         int i = 0;
963         struct btree *b;
964
965         BUG_ON(level < 0);
966 retry:
967         b = mca_find(c, k);
968
969         if (!b) {
970                 if (current->bio_list)
971                         return ERR_PTR(-EAGAIN);
972
973                 mutex_lock(&c->bucket_lock);
974                 b = mca_alloc(c, k, level);
975                 mutex_unlock(&c->bucket_lock);
976
977                 if (!b)
978                         goto retry;
979                 if (IS_ERR(b))
980                         return b;
981
982                 bch_btree_node_read(b);
983
984                 if (!write)
985                         downgrade_write(&b->lock);
986         } else {
987                 rw_lock(write, b, level);
988                 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
989                         rw_unlock(write, b);
990                         goto retry;
991                 }
992                 BUG_ON(b->level != level);
993         }
994
995         b->accessed = 1;
996
997         for (; i <= b->nsets && b->sets[i].size; i++) {
998                 prefetch(b->sets[i].tree);
999                 prefetch(b->sets[i].data);
1000         }
1001
1002         for (; i <= b->nsets; i++)
1003                 prefetch(b->sets[i].data);
1004
1005         if (btree_node_io_error(b)) {
1006                 rw_unlock(write, b);
1007                 return ERR_PTR(-EIO);
1008         }
1009
1010         BUG_ON(!b->written);
1011
1012         return b;
1013 }
1014
1015 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
1016 {
1017         struct btree *b;
1018
1019         mutex_lock(&c->bucket_lock);
1020         b = mca_alloc(c, k, level);
1021         mutex_unlock(&c->bucket_lock);
1022
1023         if (!IS_ERR_OR_NULL(b)) {
1024                 bch_btree_node_read(b);
1025                 rw_unlock(true, b);
1026         }
1027 }
1028
1029 /* Btree alloc */
1030
1031 static void btree_node_free(struct btree *b)
1032 {
1033         unsigned i;
1034
1035         trace_bcache_btree_node_free(b);
1036
1037         BUG_ON(b == b->c->root);
1038
1039         if (btree_node_dirty(b))
1040                 btree_complete_write(b, btree_current_write(b));
1041         clear_bit(BTREE_NODE_dirty, &b->flags);
1042
1043         cancel_delayed_work(&b->work);
1044
1045         mutex_lock(&b->c->bucket_lock);
1046
1047         for (i = 0; i < KEY_PTRS(&b->key); i++) {
1048                 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
1049
1050                 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1051                             PTR_BUCKET(b->c, &b->key, i));
1052         }
1053
1054         bch_bucket_free(b->c, &b->key);
1055         mca_bucket_free(b);
1056         mutex_unlock(&b->c->bucket_lock);
1057 }
1058
1059 struct btree *bch_btree_node_alloc(struct cache_set *c, int level, bool wait)
1060 {
1061         BKEY_PADDED(key) k;
1062         struct btree *b = ERR_PTR(-EAGAIN);
1063
1064         mutex_lock(&c->bucket_lock);
1065 retry:
1066         if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, wait))
1067                 goto err;
1068
1069         bkey_put(c, &k.key);
1070         SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1071
1072         b = mca_alloc(c, &k.key, level);
1073         if (IS_ERR(b))
1074                 goto err_free;
1075
1076         if (!b) {
1077                 cache_bug(c,
1078                         "Tried to allocate bucket that was in btree cache");
1079                 goto retry;
1080         }
1081
1082         b->accessed = 1;
1083         bch_bset_init_next(b);
1084
1085         mutex_unlock(&c->bucket_lock);
1086
1087         trace_bcache_btree_node_alloc(b);
1088         return b;
1089 err_free:
1090         bch_bucket_free(c, &k.key);
1091 err:
1092         mutex_unlock(&c->bucket_lock);
1093
1094         trace_bcache_btree_node_alloc_fail(b);
1095         return b;
1096 }
1097
1098 static struct btree *btree_node_alloc_replacement(struct btree *b, bool wait)
1099 {
1100         struct btree *n = bch_btree_node_alloc(b->c, b->level, wait);
1101         if (!IS_ERR_OR_NULL(n))
1102                 bch_btree_sort_into(b, n);
1103
1104         return n;
1105 }
1106
1107 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1108 {
1109         unsigned i;
1110
1111         bkey_copy(k, &b->key);
1112         bkey_copy_key(k, &ZERO_KEY);
1113
1114         for (i = 0; i < KEY_PTRS(k); i++) {
1115                 uint8_t g = PTR_BUCKET(b->c, k, i)->gen + 1;
1116
1117                 SET_PTR_GEN(k, i, g);
1118         }
1119
1120         atomic_inc(&b->c->prio_blocked);
1121 }
1122
1123 /* Garbage collection */
1124
1125 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1126 {
1127         uint8_t stale = 0;
1128         unsigned i;
1129         struct bucket *g;
1130
1131         /*
1132          * ptr_invalid() can't return true for the keys that mark btree nodes as
1133          * freed, but since ptr_bad() returns true we'll never actually use them
1134          * for anything and thus we don't want mark their pointers here
1135          */
1136         if (!bkey_cmp(k, &ZERO_KEY))
1137                 return stale;
1138
1139         for (i = 0; i < KEY_PTRS(k); i++) {
1140                 if (!ptr_available(c, k, i))
1141                         continue;
1142
1143                 g = PTR_BUCKET(c, k, i);
1144
1145                 if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1146                         g->gc_gen = PTR_GEN(k, i);
1147
1148                 if (ptr_stale(c, k, i)) {
1149                         stale = max(stale, ptr_stale(c, k, i));
1150                         continue;
1151                 }
1152
1153                 cache_bug_on(GC_MARK(g) &&
1154                              (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1155                              c, "inconsistent ptrs: mark = %llu, level = %i",
1156                              GC_MARK(g), level);
1157
1158                 if (level)
1159                         SET_GC_MARK(g, GC_MARK_METADATA);
1160                 else if (KEY_DIRTY(k))
1161                         SET_GC_MARK(g, GC_MARK_DIRTY);
1162
1163                 /* guard against overflow */
1164                 SET_GC_SECTORS_USED(g, min_t(unsigned,
1165                                              GC_SECTORS_USED(g) + KEY_SIZE(k),
1166                                              (1 << 14) - 1));
1167
1168                 BUG_ON(!GC_SECTORS_USED(g));
1169         }
1170
1171         return stale;
1172 }
1173
1174 #define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1175
1176 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1177 {
1178         uint8_t stale = 0;
1179         unsigned keys = 0, good_keys = 0;
1180         struct bkey *k;
1181         struct btree_iter iter;
1182         struct bset_tree *t;
1183
1184         gc->nodes++;
1185
1186         for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1187                 stale = max(stale, btree_mark_key(b, k));
1188                 keys++;
1189
1190                 if (bch_ptr_bad(b, k))
1191                         continue;
1192
1193                 gc->key_bytes += bkey_u64s(k);
1194                 gc->nkeys++;
1195                 good_keys++;
1196
1197                 gc->data += KEY_SIZE(k);
1198         }
1199
1200         for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1201                 btree_bug_on(t->size &&
1202                              bset_written(b, t) &&
1203                              bkey_cmp(&b->key, &t->end) < 0,
1204                              b, "found short btree key in gc");
1205
1206         if (b->c->gc_always_rewrite)
1207                 return true;
1208
1209         if (stale > 10)
1210                 return true;
1211
1212         if ((keys - good_keys) * 2 > keys)
1213                 return true;
1214
1215         return false;
1216 }
1217
1218 #define GC_MERGE_NODES  4U
1219
1220 struct gc_merge_info {
1221         struct btree    *b;
1222         unsigned        keys;
1223 };
1224
1225 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1226                                  struct keylist *, atomic_t *, struct bkey *);
1227
1228 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1229                              struct keylist *keylist, struct gc_stat *gc,
1230                              struct gc_merge_info *r)
1231 {
1232         unsigned i, nodes = 0, keys = 0, blocks;
1233         struct btree *new_nodes[GC_MERGE_NODES];
1234         struct closure cl;
1235         struct bkey *k;
1236
1237         memset(new_nodes, 0, sizeof(new_nodes));
1238         closure_init_stack(&cl);
1239
1240         while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1241                 keys += r[nodes++].keys;
1242
1243         blocks = btree_default_blocks(b->c) * 2 / 3;
1244
1245         if (nodes < 2 ||
1246             __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1247                 return 0;
1248
1249         for (i = 0; i < nodes; i++) {
1250                 new_nodes[i] = btree_node_alloc_replacement(r[i].b, false);
1251                 if (IS_ERR_OR_NULL(new_nodes[i]))
1252                         goto out_nocoalesce;
1253         }
1254
1255         for (i = nodes - 1; i > 0; --i) {
1256                 struct bset *n1 = new_nodes[i]->sets->data;
1257                 struct bset *n2 = new_nodes[i - 1]->sets->data;
1258                 struct bkey *k, *last = NULL;
1259
1260                 keys = 0;
1261
1262                 if (i > 1) {
1263                         for (k = n2->start;
1264                              k < end(n2);
1265                              k = bkey_next(k)) {
1266                                 if (__set_blocks(n1, n1->keys + keys +
1267                                                  bkey_u64s(k), b->c) > blocks)
1268                                         break;
1269
1270                                 last = k;
1271                                 keys += bkey_u64s(k);
1272                         }
1273                 } else {
1274                         /*
1275                          * Last node we're not getting rid of - we're getting
1276                          * rid of the node at r[0]. Have to try and fit all of
1277                          * the remaining keys into this node; we can't ensure
1278                          * they will always fit due to rounding and variable
1279                          * length keys (shouldn't be possible in practice,
1280                          * though)
1281                          */
1282                         if (__set_blocks(n1, n1->keys + n2->keys,
1283                                          b->c) > btree_blocks(new_nodes[i]))
1284                                 goto out_nocoalesce;
1285
1286                         keys = n2->keys;
1287                         /* Take the key of the node we're getting rid of */
1288                         last = &r->b->key;
1289                 }
1290
1291                 BUG_ON(__set_blocks(n1, n1->keys + keys,
1292                                     b->c) > btree_blocks(new_nodes[i]));
1293
1294                 if (last)
1295                         bkey_copy_key(&new_nodes[i]->key, last);
1296
1297                 memcpy(end(n1),
1298                        n2->start,
1299                        (void *) node(n2, keys) - (void *) n2->start);
1300
1301                 n1->keys += keys;
1302                 r[i].keys = n1->keys;
1303
1304                 memmove(n2->start,
1305                         node(n2, keys),
1306                         (void *) end(n2) - (void *) node(n2, keys));
1307
1308                 n2->keys -= keys;
1309
1310                 if (bch_keylist_realloc(keylist,
1311                                         KEY_PTRS(&new_nodes[i]->key), b->c))
1312                         goto out_nocoalesce;
1313
1314                 bch_btree_node_write(new_nodes[i], &cl);
1315                 bch_keylist_add(keylist, &new_nodes[i]->key);
1316         }
1317
1318         for (i = 0; i < nodes; i++) {
1319                 if (bch_keylist_realloc(keylist, KEY_PTRS(&r[i].b->key), b->c))
1320                         goto out_nocoalesce;
1321
1322                 make_btree_freeing_key(r[i].b, keylist->top);
1323                 bch_keylist_push(keylist);
1324         }
1325
1326         /* We emptied out this node */
1327         BUG_ON(new_nodes[0]->sets->data->keys);
1328         btree_node_free(new_nodes[0]);
1329         rw_unlock(true, new_nodes[0]);
1330
1331         closure_sync(&cl);
1332
1333         for (i = 0; i < nodes; i++) {
1334                 btree_node_free(r[i].b);
1335                 rw_unlock(true, r[i].b);
1336
1337                 r[i].b = new_nodes[i];
1338         }
1339
1340         bch_btree_insert_node(b, op, keylist, NULL, NULL);
1341         BUG_ON(!bch_keylist_empty(keylist));
1342
1343         memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1344         r[nodes - 1].b = ERR_PTR(-EINTR);
1345
1346         trace_bcache_btree_gc_coalesce(nodes);
1347         gc->nodes--;
1348
1349         /* Invalidated our iterator */
1350         return -EINTR;
1351
1352 out_nocoalesce:
1353         closure_sync(&cl);
1354
1355         while ((k = bch_keylist_pop(keylist)))
1356                 if (!bkey_cmp(k, &ZERO_KEY))
1357                         atomic_dec(&b->c->prio_blocked);
1358
1359         for (i = 0; i < nodes; i++)
1360                 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1361                         btree_node_free(new_nodes[i]);
1362                         rw_unlock(true, new_nodes[i]);
1363                 }
1364         return 0;
1365 }
1366
1367 static unsigned btree_gc_count_keys(struct btree *b)
1368 {
1369         struct bkey *k;
1370         struct btree_iter iter;
1371         unsigned ret = 0;
1372
1373         for_each_key_filter(b, k, &iter, bch_ptr_bad)
1374                 ret += bkey_u64s(k);
1375
1376         return ret;
1377 }
1378
1379 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1380                             struct closure *writes, struct gc_stat *gc)
1381 {
1382         unsigned i;
1383         int ret = 0;
1384         bool should_rewrite;
1385         struct btree *n;
1386         struct bkey *k;
1387         struct keylist keys;
1388         struct btree_iter iter;
1389         struct gc_merge_info r[GC_MERGE_NODES];
1390         struct gc_merge_info *last = r + GC_MERGE_NODES - 1;
1391
1392         bch_keylist_init(&keys);
1393         bch_btree_iter_init(b, &iter, &b->c->gc_done);
1394
1395         for (i = 0; i < GC_MERGE_NODES; i++)
1396                 r[i].b = ERR_PTR(-EINTR);
1397
1398         while (1) {
1399                 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
1400                 if (k) {
1401                         r->b = bch_btree_node_get(b->c, k, b->level - 1, true);
1402                         if (IS_ERR(r->b)) {
1403                                 ret = PTR_ERR(r->b);
1404                                 break;
1405                         }
1406
1407                         r->keys = btree_gc_count_keys(r->b);
1408
1409                         ret = btree_gc_coalesce(b, op, &keys, gc, r);
1410                         if (ret)
1411                                 break;
1412                 }
1413
1414                 if (!last->b)
1415                         break;
1416
1417                 if (!IS_ERR(last->b)) {
1418                         should_rewrite = btree_gc_mark_node(last->b, gc);
1419                         if (should_rewrite) {
1420                                 n = btree_node_alloc_replacement(last->b,
1421                                                                  false);
1422
1423                                 if (!IS_ERR_OR_NULL(n)) {
1424                                         bch_btree_node_write_sync(n);
1425                                         bch_keylist_add(&keys, &n->key);
1426
1427                                         make_btree_freeing_key(last->b,
1428                                                                keys.top);
1429                                         bch_keylist_push(&keys);
1430
1431                                         btree_node_free(last->b);
1432
1433                                         bch_btree_insert_node(b, op, &keys,
1434                                                               NULL, NULL);
1435                                         BUG_ON(!bch_keylist_empty(&keys));
1436
1437                                         rw_unlock(true, last->b);
1438                                         last->b = n;
1439
1440                                         /* Invalidated our iterator */
1441                                         ret = -EINTR;
1442                                         break;
1443                                 }
1444                         }
1445
1446                         if (last->b->level) {
1447                                 ret = btree_gc_recurse(last->b, op, writes, gc);
1448                                 if (ret)
1449                                         break;
1450                         }
1451
1452                         bkey_copy_key(&b->c->gc_done, &last->b->key);
1453
1454                         /*
1455                          * Must flush leaf nodes before gc ends, since replace
1456                          * operations aren't journalled
1457                          */
1458                         if (btree_node_dirty(last->b))
1459                                 bch_btree_node_write(last->b, writes);
1460                         rw_unlock(true, last->b);
1461                 }
1462
1463                 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1464                 r->b = NULL;
1465
1466                 if (need_resched()) {
1467                         ret = -EAGAIN;
1468                         break;
1469                 }
1470         }
1471
1472         for (i = 0; i < GC_MERGE_NODES; i++)
1473                 if (!IS_ERR_OR_NULL(r[i].b)) {
1474                         if (btree_node_dirty(r[i].b))
1475                                 bch_btree_node_write(r[i].b, writes);
1476                         rw_unlock(true, r[i].b);
1477                 }
1478
1479         bch_keylist_free(&keys);
1480
1481         return ret;
1482 }
1483
1484 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1485                              struct closure *writes, struct gc_stat *gc)
1486 {
1487         struct btree *n = NULL;
1488         int ret = 0;
1489         bool should_rewrite;
1490
1491         should_rewrite = btree_gc_mark_node(b, gc);
1492         if (should_rewrite) {
1493                 n = btree_node_alloc_replacement(b, false);
1494
1495                 if (!IS_ERR_OR_NULL(n)) {
1496                         bch_btree_node_write_sync(n);
1497                         bch_btree_set_root(n);
1498                         btree_node_free(b);
1499                         rw_unlock(true, n);
1500
1501                         return -EINTR;
1502                 }
1503         }
1504
1505         if (b->level) {
1506                 ret = btree_gc_recurse(b, op, writes, gc);
1507                 if (ret)
1508                         return ret;
1509         }
1510
1511         bkey_copy_key(&b->c->gc_done, &b->key);
1512
1513         return ret;
1514 }
1515
1516 static void btree_gc_start(struct cache_set *c)
1517 {
1518         struct cache *ca;
1519         struct bucket *b;
1520         unsigned i;
1521
1522         if (!c->gc_mark_valid)
1523                 return;
1524
1525         mutex_lock(&c->bucket_lock);
1526
1527         c->gc_mark_valid = 0;
1528         c->gc_done = ZERO_KEY;
1529
1530         for_each_cache(ca, c, i)
1531                 for_each_bucket(b, ca) {
1532                         b->gc_gen = b->gen;
1533                         if (!atomic_read(&b->pin)) {
1534                                 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1535                                 SET_GC_SECTORS_USED(b, 0);
1536                         }
1537                 }
1538
1539         mutex_unlock(&c->bucket_lock);
1540 }
1541
1542 size_t bch_btree_gc_finish(struct cache_set *c)
1543 {
1544         size_t available = 0;
1545         struct bucket *b;
1546         struct cache *ca;
1547         unsigned i;
1548
1549         mutex_lock(&c->bucket_lock);
1550
1551         set_gc_sectors(c);
1552         c->gc_mark_valid = 1;
1553         c->need_gc      = 0;
1554
1555         if (c->root)
1556                 for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1557                         SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1558                                     GC_MARK_METADATA);
1559
1560         for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1561                 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1562                             GC_MARK_METADATA);
1563
1564         /* don't reclaim buckets to which writeback keys point */
1565         rcu_read_lock();
1566         for (i = 0; i < c->nr_uuids; i++) {
1567                 struct bcache_device *d = c->devices[i];
1568                 struct cached_dev *dc;
1569                 struct keybuf_key *w, *n;
1570                 unsigned j;
1571
1572                 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1573                         continue;
1574                 dc = container_of(d, struct cached_dev, disk);
1575
1576                 spin_lock(&dc->writeback_keys.lock);
1577                 rbtree_postorder_for_each_entry_safe(w, n,
1578                                         &dc->writeback_keys.keys, node)
1579                         for (j = 0; j < KEY_PTRS(&w->key); j++)
1580                                 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1581                                             GC_MARK_DIRTY);
1582                 spin_unlock(&dc->writeback_keys.lock);
1583         }
1584         rcu_read_unlock();
1585
1586         for_each_cache(ca, c, i) {
1587                 uint64_t *i;
1588
1589                 ca->invalidate_needs_gc = 0;
1590
1591                 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1592                         SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1593
1594                 for (i = ca->prio_buckets;
1595                      i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1596                         SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1597
1598                 for_each_bucket(b, ca) {
1599                         b->last_gc      = b->gc_gen;
1600                         c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1601
1602                         if (!atomic_read(&b->pin) &&
1603                             GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1604                                 available++;
1605                                 if (!GC_SECTORS_USED(b))
1606                                         bch_bucket_add_unused(ca, b);
1607                         }
1608                 }
1609         }
1610
1611         mutex_unlock(&c->bucket_lock);
1612         return available;
1613 }
1614
1615 static void bch_btree_gc(struct cache_set *c)
1616 {
1617         int ret;
1618         unsigned long available;
1619         struct gc_stat stats;
1620         struct closure writes;
1621         struct btree_op op;
1622         uint64_t start_time = local_clock();
1623
1624         trace_bcache_gc_start(c);
1625
1626         memset(&stats, 0, sizeof(struct gc_stat));
1627         closure_init_stack(&writes);
1628         bch_btree_op_init(&op, SHRT_MAX);
1629
1630         btree_gc_start(c);
1631
1632         do {
1633                 ret = btree_root(gc_root, c, &op, &writes, &stats);
1634                 closure_sync(&writes);
1635
1636                 if (ret && ret != -EAGAIN)
1637                         pr_warn("gc failed!");
1638         } while (ret);
1639
1640         available = bch_btree_gc_finish(c);
1641         wake_up_allocators(c);
1642
1643         bch_time_stats_update(&c->btree_gc_time, start_time);
1644
1645         stats.key_bytes *= sizeof(uint64_t);
1646         stats.data      <<= 9;
1647         stats.in_use    = (c->nbuckets - available) * 100 / c->nbuckets;
1648         memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1649
1650         trace_bcache_gc_end(c);
1651
1652         bch_moving_gc(c);
1653 }
1654
1655 static int bch_gc_thread(void *arg)
1656 {
1657         struct cache_set *c = arg;
1658         struct cache *ca;
1659         unsigned i;
1660
1661         while (1) {
1662 again:
1663                 bch_btree_gc(c);
1664
1665                 set_current_state(TASK_INTERRUPTIBLE);
1666                 if (kthread_should_stop())
1667                         break;
1668
1669                 mutex_lock(&c->bucket_lock);
1670
1671                 for_each_cache(ca, c, i)
1672                         if (ca->invalidate_needs_gc) {
1673                                 mutex_unlock(&c->bucket_lock);
1674                                 set_current_state(TASK_RUNNING);
1675                                 goto again;
1676                         }
1677
1678                 mutex_unlock(&c->bucket_lock);
1679
1680                 try_to_freeze();
1681                 schedule();
1682         }
1683
1684         return 0;
1685 }
1686
1687 int bch_gc_thread_start(struct cache_set *c)
1688 {
1689         c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1690         if (IS_ERR(c->gc_thread))
1691                 return PTR_ERR(c->gc_thread);
1692
1693         set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1694         return 0;
1695 }
1696
1697 /* Initial partial gc */
1698
1699 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1700                                    unsigned long **seen)
1701 {
1702         int ret = 0;
1703         unsigned i;
1704         struct bkey *k, *p = NULL;
1705         struct bucket *g;
1706         struct btree_iter iter;
1707
1708         for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1709                 for (i = 0; i < KEY_PTRS(k); i++) {
1710                         if (!ptr_available(b->c, k, i))
1711                                 continue;
1712
1713                         g = PTR_BUCKET(b->c, k, i);
1714
1715                         if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1716                                                 seen[PTR_DEV(k, i)]) ||
1717                             !ptr_stale(b->c, k, i)) {
1718                                 g->gen = PTR_GEN(k, i);
1719
1720                                 if (b->level)
1721                                         g->prio = BTREE_PRIO;
1722                                 else if (g->prio == BTREE_PRIO)
1723                                         g->prio = INITIAL_PRIO;
1724                         }
1725                 }
1726
1727                 btree_mark_key(b, k);
1728         }
1729
1730         if (b->level) {
1731                 bch_btree_iter_init(b, &iter, NULL);
1732
1733                 do {
1734                         k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
1735                         if (k)
1736                                 btree_node_prefetch(b->c, k, b->level - 1);
1737
1738                         if (p)
1739                                 ret = btree(check_recurse, p, b, op, seen);
1740
1741                         p = k;
1742                 } while (p && !ret);
1743         }
1744
1745         return 0;
1746 }
1747
1748 int bch_btree_check(struct cache_set *c)
1749 {
1750         int ret = -ENOMEM;
1751         unsigned i;
1752         unsigned long *seen[MAX_CACHES_PER_SET];
1753         struct btree_op op;
1754
1755         memset(seen, 0, sizeof(seen));
1756         bch_btree_op_init(&op, SHRT_MAX);
1757
1758         for (i = 0; c->cache[i]; i++) {
1759                 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1760                 seen[i] = kmalloc(n, GFP_KERNEL);
1761                 if (!seen[i])
1762                         goto err;
1763
1764                 /* Disables the seen array until prio_read() uses it too */
1765                 memset(seen[i], 0xFF, n);
1766         }
1767
1768         ret = btree_root(check_recurse, c, &op, seen);
1769 err:
1770         for (i = 0; i < MAX_CACHES_PER_SET; i++)
1771                 kfree(seen[i]);
1772         return ret;
1773 }
1774
1775 /* Btree insertion */
1776
1777 static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1778 {
1779         struct bset *i = b->sets[b->nsets].data;
1780
1781         memmove((uint64_t *) where + bkey_u64s(insert),
1782                 where,
1783                 (void *) end(i) - (void *) where);
1784
1785         i->keys += bkey_u64s(insert);
1786         bkey_copy(where, insert);
1787         bch_bset_fix_lookup_table(b, where);
1788 }
1789
1790 static bool fix_overlapping_extents(struct btree *b, struct bkey *insert,
1791                                     struct btree_iter *iter,
1792                                     struct bkey *replace_key)
1793 {
1794         void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
1795         {
1796                 if (KEY_DIRTY(k))
1797                         bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
1798                                                      offset, -sectors);
1799         }
1800
1801         uint64_t old_offset;
1802         unsigned old_size, sectors_found = 0;
1803
1804         while (1) {
1805                 struct bkey *k = bch_btree_iter_next(iter);
1806                 if (!k ||
1807                     bkey_cmp(&START_KEY(k), insert) >= 0)
1808                         break;
1809
1810                 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1811                         continue;
1812
1813                 old_offset = KEY_START(k);
1814                 old_size = KEY_SIZE(k);
1815
1816                 /*
1817                  * We might overlap with 0 size extents; we can't skip these
1818                  * because if they're in the set we're inserting to we have to
1819                  * adjust them so they don't overlap with the key we're
1820                  * inserting. But we don't want to check them for replace
1821                  * operations.
1822                  */
1823
1824                 if (replace_key && KEY_SIZE(k)) {
1825                         /*
1826                          * k might have been split since we inserted/found the
1827                          * key we're replacing
1828                          */
1829                         unsigned i;
1830                         uint64_t offset = KEY_START(k) -
1831                                 KEY_START(replace_key);
1832
1833                         /* But it must be a subset of the replace key */
1834                         if (KEY_START(k) < KEY_START(replace_key) ||
1835                             KEY_OFFSET(k) > KEY_OFFSET(replace_key))
1836                                 goto check_failed;
1837
1838                         /* We didn't find a key that we were supposed to */
1839                         if (KEY_START(k) > KEY_START(insert) + sectors_found)
1840                                 goto check_failed;
1841
1842                         if (KEY_PTRS(k) != KEY_PTRS(replace_key) ||
1843                             KEY_DIRTY(k) != KEY_DIRTY(replace_key))
1844                                 goto check_failed;
1845
1846                         /* skip past gen */
1847                         offset <<= 8;
1848
1849                         BUG_ON(!KEY_PTRS(replace_key));
1850
1851                         for (i = 0; i < KEY_PTRS(replace_key); i++)
1852                                 if (k->ptr[i] != replace_key->ptr[i] + offset)
1853                                         goto check_failed;
1854
1855                         sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1856                 }
1857
1858                 if (bkey_cmp(insert, k) < 0 &&
1859                     bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1860                         /*
1861                          * We overlapped in the middle of an existing key: that
1862                          * means we have to split the old key. But we have to do
1863                          * slightly different things depending on whether the
1864                          * old key has been written out yet.
1865                          */
1866
1867                         struct bkey *top;
1868
1869                         subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
1870
1871                         if (bkey_written(b, k)) {
1872                                 /*
1873                                  * We insert a new key to cover the top of the
1874                                  * old key, and the old key is modified in place
1875                                  * to represent the bottom split.
1876                                  *
1877                                  * It's completely arbitrary whether the new key
1878                                  * is the top or the bottom, but it has to match
1879                                  * up with what btree_sort_fixup() does - it
1880                                  * doesn't check for this kind of overlap, it
1881                                  * depends on us inserting a new key for the top
1882                                  * here.
1883                                  */
1884                                 top = bch_bset_search(b, &b->sets[b->nsets],
1885                                                       insert);
1886                                 shift_keys(b, top, k);
1887                         } else {
1888                                 BKEY_PADDED(key) temp;
1889                                 bkey_copy(&temp.key, k);
1890                                 shift_keys(b, k, &temp.key);
1891                                 top = bkey_next(k);
1892                         }
1893
1894                         bch_cut_front(insert, top);
1895                         bch_cut_back(&START_KEY(insert), k);
1896                         bch_bset_fix_invalidated_key(b, k);
1897                         return false;
1898                 }
1899
1900                 if (bkey_cmp(insert, k) < 0) {
1901                         bch_cut_front(insert, k);
1902                 } else {
1903                         if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
1904                                 old_offset = KEY_START(insert);
1905
1906                         if (bkey_written(b, k) &&
1907                             bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1908                                 /*
1909                                  * Completely overwrote, so we don't have to
1910                                  * invalidate the binary search tree
1911                                  */
1912                                 bch_cut_front(k, k);
1913                         } else {
1914                                 __bch_cut_back(&START_KEY(insert), k);
1915                                 bch_bset_fix_invalidated_key(b, k);
1916                         }
1917                 }
1918
1919                 subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
1920         }
1921
1922 check_failed:
1923         if (replace_key) {
1924                 if (!sectors_found) {
1925                         return true;
1926                 } else if (sectors_found < KEY_SIZE(insert)) {
1927                         SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1928                                        (KEY_SIZE(insert) - sectors_found));
1929                         SET_KEY_SIZE(insert, sectors_found);
1930                 }
1931         }
1932
1933         return false;
1934 }
1935
1936 static bool btree_insert_key(struct btree *b, struct btree_op *op,
1937                              struct bkey *k, struct bkey *replace_key)
1938 {
1939         struct bset *i = b->sets[b->nsets].data;
1940         struct bkey *m, *prev;
1941         unsigned status = BTREE_INSERT_STATUS_INSERT;
1942
1943         BUG_ON(bkey_cmp(k, &b->key) > 0);
1944         BUG_ON(b->level && !KEY_PTRS(k));
1945         BUG_ON(!b->level && !KEY_OFFSET(k));
1946
1947         if (!b->level) {
1948                 struct btree_iter iter;
1949
1950                 /*
1951                  * bset_search() returns the first key that is strictly greater
1952                  * than the search key - but for back merging, we want to find
1953                  * the previous key.
1954                  */
1955                 prev = NULL;
1956                 m = bch_btree_iter_init(b, &iter, PRECEDING_KEY(&START_KEY(k)));
1957
1958                 if (fix_overlapping_extents(b, k, &iter, replace_key)) {
1959                         op->insert_collision = true;
1960                         return false;
1961                 }
1962
1963                 if (KEY_DIRTY(k))
1964                         bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
1965                                                      KEY_START(k), KEY_SIZE(k));
1966
1967                 while (m != end(i) &&
1968                        bkey_cmp(k, &START_KEY(m)) > 0)
1969                         prev = m, m = bkey_next(m);
1970
1971                 if (key_merging_disabled(b->c))
1972                         goto insert;
1973
1974                 /* prev is in the tree, if we merge we're done */
1975                 status = BTREE_INSERT_STATUS_BACK_MERGE;
1976                 if (prev &&
1977                     bch_bkey_try_merge(b, prev, k))
1978                         goto merged;
1979
1980                 status = BTREE_INSERT_STATUS_OVERWROTE;
1981                 if (m != end(i) &&
1982                     KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1983                         goto copy;
1984
1985                 status = BTREE_INSERT_STATUS_FRONT_MERGE;
1986                 if (m != end(i) &&
1987                     bch_bkey_try_merge(b, k, m))
1988                         goto copy;
1989         } else {
1990                 BUG_ON(replace_key);
1991                 m = bch_bset_search(b, &b->sets[b->nsets], k);
1992         }
1993
1994 insert: shift_keys(b, m, k);
1995 copy:   bkey_copy(m, k);
1996 merged:
1997         bch_check_keys(b, "%u for %s", status,
1998                        replace_key ? "replace" : "insert");
1999
2000         if (b->level && !KEY_OFFSET(k))
2001                 btree_current_write(b)->prio_blocked++;
2002
2003         trace_bcache_btree_insert_key(b, k, replace_key != NULL, status);
2004
2005         return true;
2006 }
2007
2008 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2009                                   struct keylist *insert_keys,
2010                                   struct bkey *replace_key)
2011 {
2012         bool ret = false;
2013         int oldsize = bch_count_data(b);
2014
2015         while (!bch_keylist_empty(insert_keys)) {
2016                 struct bset *i = write_block(b);
2017                 struct bkey *k = insert_keys->keys;
2018
2019                 if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
2020                     > btree_blocks(b))
2021                         break;
2022
2023                 if (bkey_cmp(k, &b->key) <= 0) {
2024                         if (!b->level)
2025                                 bkey_put(b->c, k);
2026
2027                         ret |= btree_insert_key(b, op, k, replace_key);
2028                         bch_keylist_pop_front(insert_keys);
2029                 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2030                         BKEY_PADDED(key) temp;
2031                         bkey_copy(&temp.key, insert_keys->keys);
2032
2033                         bch_cut_back(&b->key, &temp.key);
2034                         bch_cut_front(&b->key, insert_keys->keys);
2035
2036                         ret |= btree_insert_key(b, op, &temp.key, replace_key);
2037                         break;
2038                 } else {
2039                         break;
2040                 }
2041         }
2042
2043         BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2044
2045         BUG_ON(bch_count_data(b) < oldsize);
2046         return ret;
2047 }
2048
2049 static int btree_split(struct btree *b, struct btree_op *op,
2050                        struct keylist *insert_keys,
2051                        struct bkey *replace_key)
2052 {
2053         bool split;
2054         struct btree *n1, *n2 = NULL, *n3 = NULL;
2055         uint64_t start_time = local_clock();
2056         struct closure cl;
2057         struct keylist parent_keys;
2058
2059         closure_init_stack(&cl);
2060         bch_keylist_init(&parent_keys);
2061
2062         n1 = btree_node_alloc_replacement(b, true);
2063         if (IS_ERR(n1))
2064                 goto err;
2065
2066         split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
2067
2068         if (split) {
2069                 unsigned keys = 0;
2070
2071                 trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
2072
2073                 n2 = bch_btree_node_alloc(b->c, b->level, true);
2074                 if (IS_ERR(n2))
2075                         goto err_free1;
2076
2077                 if (!b->parent) {
2078                         n3 = bch_btree_node_alloc(b->c, b->level + 1, true);
2079                         if (IS_ERR(n3))
2080                                 goto err_free2;
2081                 }
2082
2083                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2084
2085                 /*
2086                  * Has to be a linear search because we don't have an auxiliary
2087                  * search tree yet
2088                  */
2089
2090                 while (keys < (n1->sets[0].data->keys * 3) / 5)
2091                         keys += bkey_u64s(node(n1->sets[0].data, keys));
2092
2093                 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
2094                 keys += bkey_u64s(node(n1->sets[0].data, keys));
2095
2096                 n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
2097                 n1->sets[0].data->keys = keys;
2098
2099                 memcpy(n2->sets[0].data->start,
2100                        end(n1->sets[0].data),
2101                        n2->sets[0].data->keys * sizeof(uint64_t));
2102
2103                 bkey_copy_key(&n2->key, &b->key);
2104
2105                 bch_keylist_add(&parent_keys, &n2->key);
2106                 bch_btree_node_write(n2, &cl);
2107                 rw_unlock(true, n2);
2108         } else {
2109                 trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
2110
2111                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2112         }
2113
2114         bch_keylist_add(&parent_keys, &n1->key);
2115         bch_btree_node_write(n1, &cl);
2116
2117         if (n3) {
2118                 /* Depth increases, make a new root */
2119                 bkey_copy_key(&n3->key, &MAX_KEY);
2120                 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2121                 bch_btree_node_write(n3, &cl);
2122
2123                 closure_sync(&cl);
2124                 bch_btree_set_root(n3);
2125                 rw_unlock(true, n3);
2126
2127                 btree_node_free(b);
2128         } else if (!b->parent) {
2129                 /* Root filled up but didn't need to be split */
2130                 closure_sync(&cl);
2131                 bch_btree_set_root(n1);
2132
2133                 btree_node_free(b);
2134         } else {
2135                 /* Split a non root node */
2136                 closure_sync(&cl);
2137                 make_btree_freeing_key(b, parent_keys.top);
2138                 bch_keylist_push(&parent_keys);
2139
2140                 btree_node_free(b);
2141
2142                 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2143                 BUG_ON(!bch_keylist_empty(&parent_keys));
2144         }
2145
2146         rw_unlock(true, n1);
2147
2148         bch_time_stats_update(&b->c->btree_split_time, start_time);
2149
2150         return 0;
2151 err_free2:
2152         btree_node_free(n2);
2153         rw_unlock(true, n2);
2154 err_free1:
2155         btree_node_free(n1);
2156         rw_unlock(true, n1);
2157 err:
2158         if (n3 == ERR_PTR(-EAGAIN) ||
2159             n2 == ERR_PTR(-EAGAIN) ||
2160             n1 == ERR_PTR(-EAGAIN))
2161                 return -EAGAIN;
2162
2163         pr_warn("couldn't split");
2164         return -ENOMEM;
2165 }
2166
2167 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2168                                  struct keylist *insert_keys,
2169                                  atomic_t *journal_ref,
2170                                  struct bkey *replace_key)
2171 {
2172         BUG_ON(b->level && replace_key);
2173
2174         if (should_split(b)) {
2175                 if (current->bio_list) {
2176                         op->lock = b->c->root->level + 1;
2177                         return -EAGAIN;
2178                 } else if (op->lock <= b->c->root->level) {
2179                         op->lock = b->c->root->level + 1;
2180                         return -EINTR;
2181                 } else {
2182                         /* Invalidated all iterators */
2183                         return btree_split(b, op, insert_keys, replace_key) ?:
2184                                 -EINTR;
2185                 }
2186         } else {
2187                 BUG_ON(write_block(b) != b->sets[b->nsets].data);
2188
2189                 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2190                         if (!b->level)
2191                                 bch_btree_leaf_dirty(b, journal_ref);
2192                         else
2193                                 bch_btree_node_write_sync(b);
2194                 }
2195
2196                 return 0;
2197         }
2198 }
2199
2200 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2201                                struct bkey *check_key)
2202 {
2203         int ret = -EINTR;
2204         uint64_t btree_ptr = b->key.ptr[0];
2205         unsigned long seq = b->seq;
2206         struct keylist insert;
2207         bool upgrade = op->lock == -1;
2208
2209         bch_keylist_init(&insert);
2210
2211         if (upgrade) {
2212                 rw_unlock(false, b);
2213                 rw_lock(true, b, b->level);
2214
2215                 if (b->key.ptr[0] != btree_ptr ||
2216                     b->seq != seq + 1)
2217                         goto out;
2218         }
2219
2220         SET_KEY_PTRS(check_key, 1);
2221         get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2222
2223         SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2224
2225         bch_keylist_add(&insert, check_key);
2226
2227         ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2228
2229         BUG_ON(!ret && !bch_keylist_empty(&insert));
2230 out:
2231         if (upgrade)
2232                 downgrade_write(&b->lock);
2233         return ret;
2234 }
2235
2236 struct btree_insert_op {
2237         struct btree_op op;
2238         struct keylist  *keys;
2239         atomic_t        *journal_ref;
2240         struct bkey     *replace_key;
2241 };
2242
2243 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2244 {
2245         struct btree_insert_op *op = container_of(b_op,
2246                                         struct btree_insert_op, op);
2247
2248         int ret = bch_btree_insert_node(b, &op->op, op->keys,
2249                                         op->journal_ref, op->replace_key);
2250         if (ret && !bch_keylist_empty(op->keys))
2251                 return ret;
2252         else
2253                 return MAP_DONE;
2254 }
2255
2256 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2257                      atomic_t *journal_ref, struct bkey *replace_key)
2258 {
2259         struct btree_insert_op op;
2260         int ret = 0;
2261
2262         BUG_ON(current->bio_list);
2263         BUG_ON(bch_keylist_empty(keys));
2264
2265         bch_btree_op_init(&op.op, 0);
2266         op.keys         = keys;
2267         op.journal_ref  = journal_ref;
2268         op.replace_key  = replace_key;
2269
2270         while (!ret && !bch_keylist_empty(keys)) {
2271                 op.op.lock = 0;
2272                 ret = bch_btree_map_leaf_nodes(&op.op, c,
2273                                                &START_KEY(keys->keys),
2274                                                btree_insert_fn);
2275         }
2276
2277         if (ret) {
2278                 struct bkey *k;
2279
2280                 pr_err("error %i", ret);
2281
2282                 while ((k = bch_keylist_pop(keys)))
2283                         bkey_put(c, k);
2284         } else if (op.op.insert_collision)
2285                 ret = -ESRCH;
2286
2287         return ret;
2288 }
2289
2290 void bch_btree_set_root(struct btree *b)
2291 {
2292         unsigned i;
2293         struct closure cl;
2294
2295         closure_init_stack(&cl);
2296
2297         trace_bcache_btree_set_root(b);
2298
2299         BUG_ON(!b->written);
2300
2301         for (i = 0; i < KEY_PTRS(&b->key); i++)
2302                 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2303
2304         mutex_lock(&b->c->bucket_lock);
2305         list_del_init(&b->list);
2306         mutex_unlock(&b->c->bucket_lock);
2307
2308         b->c->root = b;
2309
2310         bch_journal_meta(b->c, &cl);
2311         closure_sync(&cl);
2312 }
2313
2314 /* Map across nodes or keys */
2315
2316 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2317                                        struct bkey *from,
2318                                        btree_map_nodes_fn *fn, int flags)
2319 {
2320         int ret = MAP_CONTINUE;
2321
2322         if (b->level) {
2323                 struct bkey *k;
2324                 struct btree_iter iter;
2325
2326                 bch_btree_iter_init(b, &iter, from);
2327
2328                 while ((k = bch_btree_iter_next_filter(&iter, b,
2329                                                        bch_ptr_bad))) {
2330                         ret = btree(map_nodes_recurse, k, b,
2331                                     op, from, fn, flags);
2332                         from = NULL;
2333
2334                         if (ret != MAP_CONTINUE)
2335                                 return ret;
2336                 }
2337         }
2338
2339         if (!b->level || flags == MAP_ALL_NODES)
2340                 ret = fn(op, b);
2341
2342         return ret;
2343 }
2344
2345 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2346                           struct bkey *from, btree_map_nodes_fn *fn, int flags)
2347 {
2348         return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2349 }
2350
2351 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2352                                       struct bkey *from, btree_map_keys_fn *fn,
2353                                       int flags)
2354 {
2355         int ret = MAP_CONTINUE;
2356         struct bkey *k;
2357         struct btree_iter iter;
2358
2359         bch_btree_iter_init(b, &iter, from);
2360
2361         while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) {
2362                 ret = !b->level
2363                         ? fn(op, b, k)
2364                         : btree(map_keys_recurse, k, b, op, from, fn, flags);
2365                 from = NULL;
2366
2367                 if (ret != MAP_CONTINUE)
2368                         return ret;
2369         }
2370
2371         if (!b->level && (flags & MAP_END_KEY))
2372                 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2373                                      KEY_OFFSET(&b->key), 0));
2374
2375         return ret;
2376 }
2377
2378 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2379                        struct bkey *from, btree_map_keys_fn *fn, int flags)
2380 {
2381         return btree_root(map_keys_recurse, c, op, from, fn, flags);
2382 }
2383
2384 /* Keybuf code */
2385
2386 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2387 {
2388         /* Overlapping keys compare equal */
2389         if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2390                 return -1;
2391         if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2392                 return 1;
2393         return 0;
2394 }
2395
2396 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2397                                             struct keybuf_key *r)
2398 {
2399         return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2400 }
2401
2402 struct refill {
2403         struct btree_op op;
2404         unsigned        nr_found;
2405         struct keybuf   *buf;
2406         struct bkey     *end;
2407         keybuf_pred_fn  *pred;
2408 };
2409
2410 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2411                             struct bkey *k)
2412 {
2413         struct refill *refill = container_of(op, struct refill, op);
2414         struct keybuf *buf = refill->buf;
2415         int ret = MAP_CONTINUE;
2416
2417         if (bkey_cmp(k, refill->end) >= 0) {
2418                 ret = MAP_DONE;
2419                 goto out;
2420         }
2421
2422         if (!KEY_SIZE(k)) /* end key */
2423                 goto out;
2424
2425         if (refill->pred(buf, k)) {
2426                 struct keybuf_key *w;
2427
2428                 spin_lock(&buf->lock);
2429
2430                 w = array_alloc(&buf->freelist);
2431                 if (!w) {
2432                         spin_unlock(&buf->lock);
2433                         return MAP_DONE;
2434                 }
2435
2436                 w->private = NULL;
2437                 bkey_copy(&w->key, k);
2438
2439                 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2440                         array_free(&buf->freelist, w);
2441                 else
2442                         refill->nr_found++;
2443
2444                 if (array_freelist_empty(&buf->freelist))
2445                         ret = MAP_DONE;
2446
2447                 spin_unlock(&buf->lock);
2448         }
2449 out:
2450         buf->last_scanned = *k;
2451         return ret;
2452 }
2453
2454 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2455                        struct bkey *end, keybuf_pred_fn *pred)
2456 {
2457         struct bkey start = buf->last_scanned;
2458         struct refill refill;
2459
2460         cond_resched();
2461
2462         bch_btree_op_init(&refill.op, -1);
2463         refill.nr_found = 0;
2464         refill.buf      = buf;
2465         refill.end      = end;
2466         refill.pred     = pred;
2467
2468         bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2469                            refill_keybuf_fn, MAP_END_KEY);
2470
2471         trace_bcache_keyscan(refill.nr_found,
2472                              KEY_INODE(&start), KEY_OFFSET(&start),
2473                              KEY_INODE(&buf->last_scanned),
2474                              KEY_OFFSET(&buf->last_scanned));
2475
2476         spin_lock(&buf->lock);
2477
2478         if (!RB_EMPTY_ROOT(&buf->keys)) {
2479                 struct keybuf_key *w;
2480                 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2481                 buf->start      = START_KEY(&w->key);
2482
2483                 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2484                 buf->end        = w->key;
2485         } else {
2486                 buf->start      = MAX_KEY;
2487                 buf->end        = MAX_KEY;
2488         }
2489
2490         spin_unlock(&buf->lock);
2491 }
2492
2493 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2494 {
2495         rb_erase(&w->node, &buf->keys);
2496         array_free(&buf->freelist, w);
2497 }
2498
2499 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2500 {
2501         spin_lock(&buf->lock);
2502         __bch_keybuf_del(buf, w);
2503         spin_unlock(&buf->lock);
2504 }
2505
2506 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2507                                   struct bkey *end)
2508 {
2509         bool ret = false;
2510         struct keybuf_key *p, *w, s;
2511         s.key = *start;
2512
2513         if (bkey_cmp(end, &buf->start) <= 0 ||
2514             bkey_cmp(start, &buf->end) >= 0)
2515                 return false;
2516
2517         spin_lock(&buf->lock);
2518         w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2519
2520         while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2521                 p = w;
2522                 w = RB_NEXT(w, node);
2523
2524                 if (p->private)
2525                         ret = true;
2526                 else
2527                         __bch_keybuf_del(buf, p);
2528         }
2529
2530         spin_unlock(&buf->lock);
2531         return ret;
2532 }
2533
2534 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2535 {
2536         struct keybuf_key *w;
2537         spin_lock(&buf->lock);
2538
2539         w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2540
2541         while (w && w->private)
2542                 w = RB_NEXT(w, node);
2543
2544         if (w)
2545                 w->private = ERR_PTR(-EINTR);
2546
2547         spin_unlock(&buf->lock);
2548         return w;
2549 }
2550
2551 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2552                                           struct keybuf *buf,
2553                                           struct bkey *end,
2554                                           keybuf_pred_fn *pred)
2555 {
2556         struct keybuf_key *ret;
2557
2558         while (1) {
2559                 ret = bch_keybuf_next(buf);
2560                 if (ret)
2561                         break;
2562
2563                 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2564                         pr_debug("scan finished");
2565                         break;
2566                 }
2567
2568                 bch_refill_keybuf(c, buf, end, pred);
2569         }
2570
2571         return ret;
2572 }
2573
2574 void bch_keybuf_init(struct keybuf *buf)
2575 {
2576         buf->last_scanned       = MAX_KEY;
2577         buf->keys               = RB_ROOT;
2578
2579         spin_lock_init(&buf->lock);
2580         array_allocator_init(&buf->freelist);
2581 }
2582
2583 void bch_btree_exit(void)
2584 {
2585         if (btree_io_wq)
2586                 destroy_workqueue(btree_io_wq);
2587 }
2588
2589 int __init bch_btree_init(void)
2590 {
2591         btree_io_wq = create_singlethread_workqueue("bch_btree_io");
2592         if (!btree_io_wq)
2593                 return -ENOMEM;
2594
2595         return 0;
2596 }